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Drought-Damage Functions for the Estimation of Drought Costs under Future 

Projections of Climate Change 

 

Abstract 

Drought events and their impacts pose a considerable problem for governments, businesses 

and individuals. Superimposed on this is the risk of anthropogenic climate change. Climate 

models are increasingly being used to understand how climate change may affect future 

drought regimes. However, methodologies to quantify economic costs which could occur 

under these future scenarios are virtually non-existent. In this study historic drought events 

were identified in regional precipitation data using the Standardised Precipitation Index, and 

their magnitude quantified and linked to reported economic costs. Drought damage functions 

were created for Australia, Brazil, China, India, Spain/Portugal and the USA. Projections of 

drought magnitude for 2003-2050 were modelled using the Community Integrated 

Assessment System, for a range of climate and emission scenarios, and future economic 

costs estimated. Severe and extreme drought events were projected to cause estimated 

additional losses ranging between 0.04 and 9% of national GDP in Australia, the USA and 

Spain/Portugal under future scenarios of climate change. The combined effect on global 

GDP from projected long-term drought events in the countries analysed resulted in additional 

annual losses of 0.01 to 0.25%.  This is considered conservative as the analysis is 

representative of seven countries only; does not incorporate the possibility of successive 

drought events, or compounding effects on vulnerability from interactions with other extreme 

events. Furthermore, it excludes indirect economic effects; social and environmental losses; 

the possibility of increasing vulnerability due to changing socio-economic conditions; and the 

possibility of irreversible or systemic collapse of economies as the study highlighted that 

under future climate change drought magnitude may exceed current experience potentially 

passing thresholds of social and economic resilience. Stringent mitigation had little effect on 

the increasing impacts of drought in the first half of the 21st century, so in the short-term 

adaptation in drought ‘hot spots’ will be crucial. 

 

Keywords 

Drought; Standardized Precipitation Index; Damage Functions; Integrated Assessment; 

Economic Costs; Climate Change 

 

 

1. Introduction  

Drought is a natural hazard which can be defined simply as resulting from a deficiency of 

precipitation from ‘normal’ conditions (Wilhite 2005). Droughts are slow onset, spatially 

extensive, events that can affect regions for weeks, months or years. Drought can also be 

defined based on the duration of the precipitation deficit and the particular impacts that 

evolve over time. For example, meteorological drought which relates to a deficit in 

precipitation from average conditions; hydrological drought which implies a departure in 

surface and sub-surface water supplies from average conditions; and agricultural drought 

related to the availability of soil moisture to support crop growth (Wilhite and Buchannan-

Smith 2005). 

 

Droughts have one of the largest impacts on society of all extreme weather types, affecting 

over 1.5 billion people from 1980 to 2008 (EM-DAT 2012), and can have large economic 

impacts. The 2002 drought in the USA was estimated to have caused losses of over 20 
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billion US$ (Wilhite 2005). Evidence suggests that the economic costs of drought have been 

increasing over the 20th and early 21st century (EM-DAT 2012). It is argued that such trends 

are primarily due to changing socio-economic conditions and better reporting mechanisms 

(Höppe and Pielke 2006). However, in the future anthropogenic climate change may play a 

more dominant role in exacerbating impacts for certain regions as it is projected that drought 

affected areas are likely to increase in extent in the future (IPCC 2012). 

 

Changing drought regimes could affect the scale of future economic impacts. Since the 

1990s there has been increased focus on modelling and understanding changing patterns of 

extreme weather events (Meehl et al. 2000). Yet, the quantification of associated impacts is 

still in its infancy and consistent methodologies for economic cost assessments are still 

developing (Hallegatte et al. 2007; Pielke 2007). Consequently, major omissions in studies 

assessing the total economic costs of climate change are the impacts associated with 

extreme weather (Buchner et al. 2006; Tol 2009). Ignoring extreme weather events means 

that such studies exclude impacts that could appreciably increase cost estimates and 

arguably cause the greatest socio-economic impacts. Equally, the exclusion of extreme 

weather events from economic assessments means that the potential benefits of early, 

stringent mitigation in the form of avoided damages will not be recognised. 

 

One approach to cost assessments is the use of climate damage functions which are simple 

relationships linking market or non-market impacts to climate indicators. However, a major 

barrier for estimating economic impacts of drought, as with other extreme weather events, is 

that of reliable and consistent impact data (Easterling et al. 2000). Damage estimates for a 

particular drought event can vary widely depending on the reporting body; the range and 

type of costs included; and the time in which estimates are reported. Additionally, the climate 

indicator has typically been global mean temperature change, which automatically hinders 

the application to drought which requires assessment at appropriate temporal and spatial 

scales. 

 

To date almost no studies have attempted to provide quantitative estimates of the economic 

impacts of drought under future climate change, and to the best of the authors’ knowledge 

no comprehensive economic drought damage functions exist. It is the development of a 

methodology to estimate potential drought losses, under future scenarios of climate change, 

which form the basis for this paper. Section two outlines the methodology for creating 

drought damage functions, results, and a discussion of findings. Section three outlines the 

Integrated Assessment Model CIAS (Community Integrated Assessment System) and 

method used to identify and quantify future drought events. Section four presents the 

estimates of future economic drought costs made utilising the drought damage functions. 

Section five discusses the results and significance of the findings, with final conclusions 

presented in section six. 

 

2. Creating Economic Drought Damage Functions 

2.1. Drought Analysis 

The focus of the study is on Australia, Brazil, China, India, Portugal, Spain, and the USA. 

These countries were selected as they have been reported as suffering numerous drought 

events from 1940-2002 (EM-DAT 2012); they cover different geographical, climatological, 

and hydrological regimes; and have different economic structures. In addition these 
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countries are already known to suffer water stress and are vulnerable to future climate 

change (Bates et al. 2008). In order to identify and quantify historical drought events the 

study utilises the Standardised Precipitation Index (SPI), developed by McKee et al. (1993). 

The SPI is a meteorological drought index based on precipitation data, and has been shown 

to perform better than other more complex drought indexes (Lloyd-Hughes and Saunders 

2002; Keyantash and Dracup 2002). Furthermore, as precipitation deficit will have different 

impacts depending on the time over which it occurs the SPI can be determined for different 

time periods. This allows the dynamics of different types of droughts to be assessed (a full 

description of equations to calculate the SPI based on the gamma distribution are available 

in, inter alia., Lloyd-Hughes and Saunders (2002)). Drought can be categorised based on its 

SPI value, with each category occurring a known percentage of the time (table 1). The 

application of the SPI to this study is desirable as it provides a method for analysing the 

occurrence and intensity of drought, and also for defining drought start and end months, 

duration, and magnitude. 

 

[Table 1] 

 

2.2. Drought event data 

In order to link characteristics of historical drought events to their economic impacts the 

Emergency Disaster Database (EM-DAT) was used (EM-DAT 2012). This is the only publicly 

available drought database that documents global drought events. The database records the 

occurrence and impacts of large-scale disasters providing information on the start and end 

dates of drought, the number of people affected, killed, and as used in this study the 

reported economic damage (in US$) in the value of the year of occurrence. In the absence 

of multiple databases information from EM-DAT is taken as valid and hence results 

presented are highly dependent on the quantity and quality of the data. EM-DAT has a clear 

procedure in place for adding events to the database and once added the new event 

undergoes a validation process. In addition, the drought database was recently updated to 

reduce inconsistency in records and problems that arose due to the slow onset, spatially 

extensive, prolonged and complex characteristics of droughts (Below et al. 2007). 

 

2.3. Identifying and quantifying historical drought events 

The task of accurately and systematically quantifying historical drought events is not a 

simple one as each drought is unique, and drought characteristics can be highly variable 

over different time periods. In this study SPI-6 was used to represent shorter-term, seasonal 

drought, whilst SPI-12 was used to represent longer-term hydrological drought. Firstly, 

monthly SPI-6 and SPI-12 values were computed based on the gamma distribution as 

outlined in Lloyd-Hughes and Saunders (2002). The monthly SPI-6 and SPI-12 values were 

calculated for each country for 1940-2002, based on precipitation data at a 0.5° resolution 

from the widely used CRUTS2.1 dataset (Mitchell and Jones, 2005). The start year was set 

as 1940 in order to keep the length of the precipitation data record as long as possible, 

bearing in mind that drought event data before this time is limited and less robust.  

 

Secondly, for each drought event reported in EM-DAT both the SPI-6 and SPI-12 time-series 

data were analysed. It was important to consider more than one time-period when trying to 

identify historic drought events as drought characteristics such as duration and magnitude 

can be highly variable over different time periods. Furthermore, the use of multiple time 

periods is valuable in capturing droughts which may only show up in the short or long-term 
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and which would otherwise be excluded. Both the SPI-6 and SPI-12 time-series data were 

analysed for the specific states or administrative regions reported as being affected.  As 

drought will rarely, if ever, affect an entire country (Wilhite 2005) it was hoped this approach 

would focus results on the drought affected area only. Bar charts of average SPI time-series 

data were created for each reported drought to ascertain if the event could be detected in 

the observed precipitation data. Drought was defined as a period where negative SPI values 

were identified which coincided with the approximate drought dates reported in EM-DAT 

(Jenkins and Warren 2014). The drought start date was defined as the first month in which 

the SPI became negative and the drought end date was defined as the first month in which 

the SPI became positive again. 

 

Once a drought event was identified the third step was to aggregate the SPI values for the 

drought-affected cells. McKee et al., (1993, p.2) define drought magnitude as the absolute 

sum of the SPI values across the duration of the recorded drought. This has been modified 

in this study to encompass the spatial extent of each event. For each identified drought 

event equation one is used to calculate the Monthly Drought Magnitude (MDM) of the 

affected region for each month the drought is observed to have occurred in the SPI data, 

where k = drought month, n = total number of grid cells affected in month k, and j = grid cells 

affected in month k. Total Drought Magnitude (TDM) is then calculated using equation two, 

which sums the MDM over the duration of the recorded drought, where m = total number of 

months drought is observed to have occurred in the SPI data. 

 

                    Eq. 1 

                                                               Eq. 2 

 

 

Both the SPI-6 and SPI-12 time-series were analysed separately for each drought event 

reported in EM-DAT for the countries of interest. Where a drought was identified the TDM 

was linked to impact data from EM-DAT on the economic damages (see Jenkins (2011) for 

full result tables for each country). Economic damages were reported by EM-DAT in current 

US$ for the year in which the drought occurred. For multi-year droughts the start year of the 

event provided by EM-DAT was assumed to be the year in which US$ were reported. In 

order to account for changing wealth and to enable the comparison of drought events over 

time the reported damages were inflation adjusted to 2002 US$ based on GDP data from 

The World Bank (2010). Using a standard metric across time is beneficial as it means that 

the focus of the economic analysis will be on impacts of climate change rather than impacts 

of changing socio-economic conditions. 

 

2.4. Results and discussion 

Using regional, gridded, SPI data enabled 56 (78%) of the drought events reported in EM-

DAT to be identified and quantified using the above methodology (table 2), although it 

should be noted that not all of the events were detected at both SPI-6 and SPI-12 time 

periods. However, of the 56 drought events quantified by this study only 34 events had data 
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avaliable on the economic damages. Of the 16 events in the EM-DAT database that could 

not be quantified five were affected by the use of the pre-defined SPI time periods. For 

example, where a drought was extremely short and severe and was only detectable using a 

smaller SPI time period (e.g. SPI-3), or where multi-year droughts were identified using SPI-

6 and SPI-12 suggesting a longer SPI time period would be required to quantify the reported 

drought as a single event.  Four events could not be quantified as they were not clearly 

detectable in the precipitation data, especially where no data was available in EM-DAT 

regarding the specific regions affected. Two droughts were identified in preceding or 

following years to those reported by EM-DAT and additional literature could not be found to 

validate the drought dates. Finally, as five of the reported drought events had not terminated 

by December 2002 they could not be fully quantified and were excluded. 

 

[Table 2] 

 

Conversely, drought events were also visible in the SPI time-series data which were not 

reported in EM-DAT, which may reflect limitations of the database. States are not required to 

report to EM-DAT and it is compiled from data reported in the media or by aid agencies and 

so smaller scale events which do not receive international assistance may fail to appear 

(Webster et al. 2008). Due to the validation method if the drought event is not reported by 

the international community in at least two suitable sources it is excluded. As an example, a 

severe drought was identified in the precipitation data in 1956 to 1957 in north-west China, 

but was not reported in EM-DAT. A recent study by Xiao et al., (2009) also identifies severe 

drought in north-west China in 1956 to 1958. An explanation for its exclusion may be the 

limited reporting of drought impacts in China to the wider international community prior to the 

1980s (Schmidt et al. 2009). Hirabayashi et al., (2008) used the EM-DAT database to 

validate historic flood events and found similar issues. Flood events obtained statistically 

from a daily discharge dataset were not always included in EM-DAT, especially for regions 

with low populations or for regions where damage due to disasters is not well reported. 

However, the authors noted that most severe flood events in the daily discharge data were 

captured by the database. 

 

In order to create country specific drought damage functions the relationship between TDM 

(referred to hereafter as drought magnitude) and economic costs from EM-DAT were 

assessed for the 34 events where economic data was available. Where drought events were 

detected at both SPI-6 and SPI-12 time periods the same economic value is used whilst the 

drought magnitude will differ, highlighting how drought characteristics can vary when 

considered at different time periods. The country specific drought damage functions are 

presented in figures 1a-f for SPI-6 and SPI-12 time periods separately. Results are 

presented graphically in line with the presentation of other climate damage functions. Best-fit 

trend lines represent the most statistically significant fit to the data for SPI-6 (solid line) and 

SPI-12 (dashed line). Due to the limited number of drought events reported for Spain and 

Portugal it was decided to amalgamate the data as it was deemed that the climate 

characteristics of the countries were sufficiently similar, allowing the Iberian Peninsula to be 

included in the analysis. 

 

[Figure 1a-f] 
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The R2 values in figure 1 suggest that there is very good correlation in the data for Australia, 

China, India, Spain/Portugal, and the USA, and that drought magnitude can account for 70-

99% of the variance seen in the economic damages. One reason may be that damages are 

considered primarily agricultural and so economic impacts are expected to correlate closely 

to drought magnitude.  It is important to highlight that that study period is for 1940-2002 only 

and Australia, for example, has suffered from more recent severe drought events. Whilst 

EM-DAT does include entries for drought events since 2002, at the time of the analysis the 

observed precipitation data was only available until 2002. In the future it would be beneficial 

to extend the analysis and see how robust the damage functions are to the inclusion of 

additional drought events. 

 

For China data was only used post 1980 due to reliability concerns (Schmidt et al. 2009). 

This resulted in the exclusion of a drought event in 1965 estimated to cost 565m US$ which 

affects the trend heavily as it has the largest drought magnitude but relatively small 

economic damages compared to other events. This may reflect the fact that prior to China 

opening up to the international community in the early 1980s the country may have 

underestimated damages to reduce international intervention (ibid.). Alternatively, the 

drought may have affected a region with relatively little economic activity, or it may represent 

an inaccurate estimation of the economic data. 

 

The trend seen for Brazil is extremely weak suggesting that economic damages decline 

slightly as drought magnitude increases. This trend is heavily influenced by a drought event 

in 1983 which resulted in the highest drought magnitude but very low economic costs. The 

reported costs of drought events in Brazil were found to be strongly related to the location 

where they occur. Droughts in south and central Brazil affected coffee crops, a main export 

for Brazil, which resulted in high economic costs. Droughts in the arid northeast had lower 

damages as this is a poorer region dominated by more subsistence farming. This suggests 

that for Brazil separate regional damage functions may be more appropriate. However, 

drought event frequency and impact data was not sufficient enough to do this in a robust 

manner. In the future the use of regional economic time-series data when carrying out the 

loss normalisation process may also improve the accuracy of results for Brazil and other 

countries. 

 

The methodology employed and drought damage functions created are promising and, with 

the exception of Brazil, show good correlation between magnitude of historic drought events 

and economic damages.This is an interesting result given that Toya and Skidmore (2007) 

investigate relationships between different measures of social/economic development and 

economic effects of natural disatsers using EM-DAT, and illustrate that many factors can 

influence disaster damages. As noted above one reason may be that damages are considered 

primarily agricultural and so economic impacts are expected to correlate closely to drought 

magnitude. 

 

For most countries the damage functions reflect a liner trend in drought magnitude and 

damages. However exponential functions are fitted for Australia and the USA where there are 

a few very extreme events in terms of their magnitude and damage costs. Both these countries 

had the largest magnitude events and reported economic costs. In contrast India suffered an 

event of similar magnitude but had comparatively lower costs reflected in the linear damage 

function. However, for Australia, China, India and Spain/Portugal the number of data points 
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on which the trends are fitted are extremely limited. Therefore, there is the possibility that the 

trends identified are due to sampling uncertainty. Similarly, the shape of the damage functions 

will also reflect this uncertainty and could change with the inclusion/exclusion of additional 

points, especially very extreme events in terms of magnitude and cost. Whilst it is suggested 

that the most severe drought events have been captured in the analysis, it is important to flag 

the possible effects that the inclusion of additional events would have on the shape and scale 

of the drought damage functions, and any subsequent economic estimates made using them. 

However, the drought damage functions were not expected to show perfect correlation 

between economic impact data and drought magnitude. As well as drought events varying 

between different regions and being dependent on the particular characteristics of that region, 

economic impacts may also differ over time due to changes in the economic structure of 

countries, and due to societal interactions. 

 

In interpreting the drought damage functions it is also important to reiterate that results will 

depend directly on the quality and quantity of the underlying data. The first issue is that 

whilst 61 events could be identified and quantified using the above method only 34 of these 

events had data avaliable on the reported economic damages and could be used for the 

damage functions. Secondly, the quantity and quality of disaster loss data is of particular 

concern for China before the 1980s and prior to the 1970s for Australia, Europe, India, the 

USA and Central America. Data also improves in quality over time as prior to 1980 many 

smaller events may not have been included and only large scale events recorded, giving an 

unbalanced view of drought impacts. However, as drought events occur less frequently than 

other weather extremes such as floods it was decided to focus on the period of data in EM-

DAT from 1940-2002 so as not to restrict the amount of drought data further. Of the drought 

events used in the economic damage functions only two events occurred before the 1970s. 

 

Advantages of the methodology include that the shape of the damage functions are derived 

directly from the drought magnitude and reported impact data, rather than reflecting the 

expert opinion of the author. In addition, the methodology addresses other common 

limitations of climate damage functions in that they are calibrated to historical climate data, 

historical event data and historical impact data; they are not based on single estimates from 

literature or on author opinion; and they are event, country and region specific. 

 

3. Projections of Drought Magnitude under Future Scenarios of Climate Change 

3.1. The Community Integrated Assessment System (CIAS)  

In order to assess how climate change will affect global precipitation and subsequently the 

magnitude of drought events in the first half of the 21st century the integrated assessment 

model (IAM) CIAS is used (Warren et al. 2008). CIAS has been designed to assess policy 

options, avoided damages and uncertainties associated with climate change (Warren et al. 

2008). CIAS was driven by the IPCC Special Report on Emission Scenarios (SRES)  A1FI 

emission scenario, which assume no climate change mitigation, and a greenhouse gas 

mitigation scenario provided by E3MG (Energy-Environment-Economy Global Model) 

(Barker et al. 2006) that results in stabilisation of CO2 at 450ppm by 2100. Within CIAS the 

emission scenarios drive a simple Climate Model (SCM) MAGICC which has been tuned to 

emulate seven Atmosphere-Ocean General Circulation Models (AOGCMs) used within the 

IPCC Third Assessment Report (TAR) so that the user can force the model to emulate the 

behaviour of any of these (Warren et al. 2008). 
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CIAS also incorporates the downscaling model ClimGen (Climate Generator) which uses 

pattern scaling to provide monthly precipitation data, at a 0.5° resolution for observed (1901-

2002 based on the CRUTS2.1 dataset) and future climate (2001-2100). ClimGen uses 

simulations from five GCMs available from the World Climate Research Programme's 

(WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset, 

each run with up to four SRES scenarios. The different patterns generated allow the range of 

uncertainty related to the use of different GCMs and emission scenarios to be investigated. 

Thus, the ‘pattern scaling’ approach allows the computational simplicity of SCMs and the 

spatial patterns of GCMs to be combined (Mitchell 2003). The results are interpolated using 

the ClimGen ‘gamma-method’ which expresses the precipitation changes seen in the GCM 

pattern as a fractional change from present day precipitation, and also considers inter-annual 

variability independently of mean precipitation changes. The observed inter-annual variability 

is modified according to changes in the shape parameter of the gamma distribution, which 

provides a measure of skewness of the distribution, derived from the selected GCM simulation 

(Warren et al. 2012). 

 

The study uses the A1FI SRES emission scenario and the E3MG 450ppm CO2 stabilisation 

scenario, and the GCMs HADCM3, CSIRO2, and ECHAM4 for a total of six scenario runs. 

These GCMs were selected as they adequately sample the full range of global precipitation 

projection outcomes, with ECHAM4 projecting lower precipitation rates than most of other 

models under climate change, CSIRO2 projecting higher rates than most, and HADCM3 

projecting a more common outcome. 

 

3.2. Modelling and quantifying future drought events 

For each of the scenario runs the precipitation data was transformed to the SPI for both SPI-

6 and SPI-12 time periods. As observed precipitation data from 1955-2002 were used to 

create future precipitation time-series data in ClimGen, with the natural variability in mean 

monthly precipitation trends for 1955-2002 assumed to repeat unchanged during the period 

2003-2050, any changes seen in the precipitation distribution and subsequently SPI data 

could be attributed (in the model) to anthropogenic climate change. 

 

When creating the drought damage functions bar graphs of the average monthly SPI values 

were used to identify reported drought events, at SPI-6 and SPI-12 time periods. The 

drought events were assessed based on the specific states/regions reported as affected in 

the EM-DAT database. However, such guidance on drought location was not available for 

future projections of drought. Consequently, countries were divided into smaller regions, to 

encompass specific climate regimes and provide information on regional drought regimes. 

This approach has been widely used in order to provide robust statements of regional 

climate change (Sheffield and Wood 2008; IPCC 2007b). The regions used in this study 

were based primarily on those defined in the above studies (figure 2 and table 3). However, 

as some of these regions were still very large they were further divided based on country 

specific climate change reports and information on particular precipitation regimes of the 

countries. 

 

[Figure 2] 

[Table 3] 
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Bar charts of average monthly SPI were created for each of the regions for 2003-2050, for 

each scenario and for SPI-6 and SPI-12 time periods, so that drought events could be 

visually identified. The same methodology was also applied to the observed data for the 

baseline period (1955-2003) so any changes in future drought characteristics could be 

compared to historic characteristics. A drought event was recorded where the SPI value 

reached or exceeded the threshold of -1.50, to represent severe and extreme drought. The 

drought start month was recorded as the first month when the SPI value fell below zero prior 

to the threshold being reached and ending when the SPI value exceeded zero. The 

threshold was used to isolate the effects of severe and extreme drought events as it was 

assumed that larger magnitude events will result in the most severe economic 

consequences; the National Drought Mitigation Centre state that for longer time periods, 

such as SPI-12, SPI values below -1.50 are usually a good indicator that fairly significant 

impacts are occurring in agriculture and potentially other sectors; it was assumed that severe 

and extreme drought events would be difficult to cope with compared to more moderate 

events, even if future adaptation takes place; and as there is some evidence to suggest that 

at a global level the frequency of severe and extreme drought events will increase whilst the 

number of moderate events will remain stable (Burke et al. 2006). 

 

Once drought events were identified in the time-series data drought magnitude was 

quantified using equations one and two. Where countries were divided into multiple regions, 

the same drought event could potentially encompass two or more regions. In order to avoid 

misinterpretation where regional drought dates coincided GIS was used to map the spatial 

data and identify visually if these were separate events or a single event encompassing 

multiple regions. 

 

3.3. Projections of future drought magnitude and discussion 

Drought event magnitude was computed for each country and scenario (representing the 

A1FI SRES emission scenario and the E3MG 450ppm CO2 stabilisation scenario, and the 

GCMs HADCM3, CSIRO2, and ECHAM4) to provide a range of results.  For each scenario 

the drought magnitude of individual events was averaged for the 1955-2002 and 2003-2050 

periods. Results were averaged as the method did not aim to explicitly present projections of 

individual events, their exact timing, or location but reflect a broader picture of changes that 

may occur under future climate change. Figures 3a and 3b display the change in average 

drought magnitude for 2003-2050 for the seven countries studied for SPI-6 and SPI-12 time 

periods. 

 

[Figure 3] 

 

The general direction of trends in average drought magnitude are consistent with the broad 

IPCC findings of Christensen et al., (2007a) for the countries assessed. The range 

represents the results generated under the six climate/emission scenarios simulated using 

emulations of three different GCMs and highlights how drought characteristics can vary, 

even being of a different sign, depending on the particular scenario used. Medium and 

longer-term drought events, reflected in figure 3b, are projected to be particularly severe 

under future climate change. This is in agreement with Vasiliades et al., (2009) who also 

used downscaled monthly precipitation data converted to the SPI to assess drought. One 

explanation may be that the SPI-12 results reflect an average annual decline in precipitation, 

although this decline may not be evenly distributed over seasons. In comparison, the SPI-6 
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index will be more sensitive to short-term variability in the volume and intensity of 

precipitation. 

 

The SPI is advantageous as it is a relatively simple index based on precipitation. However, 

in applying the SPI to future projections it is important to consider that whilst precipitation 

may be the primary factor in drought occurrence, under climate change high temperatures 

may have an increasingly large effect on drought events. This is particularly important as it is 

projected that annual average temperatures increase in all of the countries assessed in this 

study in the 21st century (IPCC 2007b). This already appears to be the case in Australia 

where recent drought events have not been drier than recorded 20th century droughts, but 

they have been accompanied by higher temperatures (CSIRO and Australian BoM 2007). 

Changes in temperature, radiation, atmospheric humidity, and wind speed can also affect 

the amount of evaporation and further exaggerate effects of decreased precipitation on 

surface water and run-off (IPCC 2007b), whereas this study is limited to the analysis of 

projected meteorological, rather than hydrological, drought.  

 

The study used pre-defined country regions to overcome issues of spatial averaging when 

assessing future drought events. This method differed from that used to create the drought 

damage functions, where historical drought events were identified based on information from 

EM-DAT on the date and specific states affected. Comparing the drought frequency 

estimated in section 2.4 (guided by historical data on the specific states affected), and the 

drought frequency of events in the baseline period estimated in this section (which used 

coarser pre-defined country regions) highlighted that the results were similar, although fewer 

drought events were identified in the SPI time-series data using the pre-defined country 

regions. This result is to be expected as in many cases the pre-defined country regions 

encompassed larger areas than those analysed when creating the drought damage 

functions. This finding can also be explained by the additional use of a SPI threshold to 

define drought. That is, in creating the drought damage functions the threshold was zero as 

long as there was a period where negative SPI values could be identified which coincided 

with the drought details in EM-DAT. In modelling past and future drought events using the 

coarser country regions the SPI threshold was set at -1.50 and so some smaller magnitude 

events that only affected a single state or very small regions of a country were not captured. 

Conversely, for SPI-6 drought events the use of pre-defined country regions resulted in more 

drought events being detected in Australia and Portugal. For Australia, this was linked to the 

identification of drought events that occurred prior to 1965 as EM-DAT only reported drought 

events from 1967 onwards. For Portugal, it is postulated that the additional drought events 

identified may not have caused significant impacts to meet the EM-DAT criteria, or data may 

not have been available for the event to be included in the database. It is concluded that the 

use of the coarser pre-defined country regions enabled the largest magnitude drought 

events in 1955-2002 and 2003-2050 to be identified. As the focus of this analysis was on 

severe and extreme drought events only, this methodology is assumed robust. 

 

4. Estimating Future Economic Drought Costs 

Estimates of direct economic drought costs were made using the damage functions 

presented in section 2.4. Economic damages were normalised to 2002 US$ when creating 

the damage functions with future estimates of drought costs presented in the same metric. 

Economic costs are presented as average annual costs as the methodology does not aim 

to explicitly present projections of economic costs of individual drought events for a given 
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time and region. Tables 4 and 5 present the annual estimated drought costs for the 

observed (1955-2002) and future (2003-2050) periods, for each country, climate/emission 

scenario and GCM emulation, and SPI time period. No estimates are provided for Brazil, 

due to the very weak trend seen in the economic drought damage function. The tables 

highlight the large range in results gained using different GCMs compared to the 

similarities in results across the two emission/stabilisation scenarios. Figure 4a-b presents 

the percentage change in annual economic costs from 1955-2002 to 2003-2050 (column 6, 

tables 4 and 5). The range of results shown reflect the maximum and minimum percentage 

change reported across the six scenarios. The black crosses highlight the average 

percentage change in in annual economic costs estimated across the six scenarios. 

 

[Table 4] 

[Table 5] 

[Figure 4] 

 

Average annual drought damages are projected to increase for both SPI-6 and SPI-12 

drought events in Australia. For SPI-12 drought losses would be particularly devastating, 

increasing from 1.95bn US$ to 35bn US$ in 2003-2050. This reflects the range of results 

generated using the different GCMs (table 5). The analysis highlights that the largest 

magnitude SPI-6 drought event could cost the Australian economy 37bn US$. To put this 

into perspective the 1981-1982 and 2002-03 drought events were estimated to cost 12.9bn 

and 7.9bn US$ respectively (CSIRO and Australian BoM 2007; EM-DAT 2012) hence the 

cost of individual drought events could rise dramatically in the future. The largest magnitude 

SPI-12 drought event was projected to cost 701bn US$. This value is greater than the entire 

Australian Economy in 2002 and highlights a serious problem when estimating costs of 

extremely large magnitude drought events. This can be linked to the shape and scale of the 

exponential damage function used, which in turn was based on limited data points, and the 

assumption that the trend would remain constant for drought events outside the range of 

historical experience. To demonstrate this, economic costs were also estimated assuming a 

linear damage function. Whilst this had a limited effect on cost estimates of SPI-6 drought 

events the largest magnitude SPI-12 drought event which was identified (under the ECHAM 

450ppm scenario) was projected to cost 31bn US$ compared to 701bn US$ estimated using 

the exponential damage function. 

 

In China average annual economic drought damages were projected to decrease during 

2003-2050 for SPI-6 and SPI-12 drought events. This suggests that the effect of climate 

change on precipitation regimes in China is beneficial in regards to the mitigation of severe 

and extreme drought events and the economic damages they may impose, which has also 

been noted by other authors (e.g. Chen and Sun 2009). The range in results is also very 

small as only one drought event was projected to occur in the SPI-6 and SPI-12 data for all 

scenarios. Similarly, for India average annual economic drought damages were projected to 

decline. Drought events of a severe or extreme nature were only projected to occur for one 

scenario for the SPI-6 time-period, hence the small range seen in figure 4. 

 

In Spain, in a worst case scenario average annual economic drought costs increase from 

330m US$ in 1955-2002 to 1.8bn US$ in 2003-2050 for SPI-6 drought events. The use of 

annualised data hides some significant variability in the economic damages of individual 

drought events. The largest magnitude events identified in the SPI data were estimated to 
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cost Spain 25.5bn US$ for SPI-6 droughts and 26.9bn US$ for SPI-12 droughts, reflecting 

approximately 4% of the country’s GDP. These values are significantly larger than historic 

losses reported by EM-DAT, with the most expensive drought on record estimated to have 

cost 5.9bn US$. In Portugal, average annual economic costs are also projected to increase 

for both SPI-6 and SPI-12 droughts. The average percentage change in annual drought 

damages are higher for SPI-6 drought events for both Spain and Portugal, compared to SPI-

12 drought events, due to the higher frequency of SPI-6 drought events. 

 

In the USA, in a worst-case scenario annual drought losses increase from 5bn US$ in 1955-

2002 to 17.5bn US$ in 2003-2050 for SPI-6 drought events. The largest magnitude SPI-6 

drought event was projected to cost around 392bn US$. In comparison, the drought event in 

1980-81 which affected central and eastern parts of the USA was estimated to have cost 

208bn US$ (EM-DAT 2012). The largest magnitude SPI-12 drought was projected to cost 

5,455bn US$, equivalent to 50% of US GDP. Again, as was the case with Australia this 

suggests that economic costs of extremely large magnitude drought events are 

overestimated when using non-linear damage functions. In contrast the same drought event 

was estimated to cost 920bn US$ if a linear damage function was assumed. 

 

Average annual economic drought damages are presented in Table 6 as a percentage of 

each country’s GDP, based on economic data from the World Bank (2010). For comparative 

purposes estimates for the USA and Australia generated using the hypothetical linear 

damage functions are also displayed. 

 

[Table 6] 

 

Additionally, average annual economic drought costs were summed across the countries 

analysed and compared to global GDP (in 2002 US$) (figure 5). For SPI-6 droughts 

economic losses for 1955-2002 are equivalent to 0.02% of global GDP. This increases under 

all the scenarios ranging from 0.03% to 0.06% of global GDP. Economic costs for SPI-12 

drought events during 1955-2002 are equivalent to 0.12% of global GDP. Costs also 

increase under all the scenarios ranging from 0.13% to 0.37% of global GDP. The results 

highlight that drought events in the countries analysed are expected to have a negative 

impact on global GDP in the first half of the 21st century. The benefits of reduced drought 

impacts projected for India and China are outweighed by increasing economic costs in 

Australia, Spain, Portugal and the USA, with all scenarios resulting in greater losses as a 

proportion of global GDP compared to the 1955-2002 period. When using the hypothetical 

linear drought damage functions for Australia and the USA, losses as a proportion of global 

GDP still increase from 1955-2002 to 2003-2050 for SPI-6 droughts under all scenarios. 

Economic costs for SPI-12 drought events also increase in the future using HADCM3 and 

CSIRO2, although costs are less significant than presented in figure 5, and decline 

compared to 1955-2002 using ECHAM4.  

 

[Figure 5] 

 

In interpreting figure 5 it is important to emphasise that the results represent economic 

drought losses in seven countries only as a proportion of global GDP. It was not considered 

feasible to extrapolate estimates of economic drought costs to other countries as the above 

results were generated based on country specific drought impact data, and regional 
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projections of precipitation. Nevertheless, considering drought effects under future climate 

change to just a handful of countries still results in noticeable impacts on global GDP. 

 

4.1. Discussion 

The drought damage functions created have proven to be functional tools in the estimation 

of future drought costs, yet it is difficult to accurately assess the robustness of the results. 

Annual economic costs estimated for 1955-2002 using the drought damage functions can be 

compared to the economic data available from EM-DAT for the same time-period. Indeed, in 

doing this it was found that the economic estimates generated via the damage functions 

were higher than those losses reported by EM-DAT. This is not surprising as economic data 

was only available for 61% of the drought events reported in EM-DAT, and not all drought 

events identified in the precipitation data were included in EM-DAT. Alternatively, this may 

suggest that the method overestimates economic costs in the baseline and future time 

periods. For the USA annual economic costs of ~5bn US$ were projected for 1955-2002 for 

SPI-6 drought events, which is consistent with the estimate made by FEMA that drought 

events resulted in average annual losses of 6-8bn US$ nationally (FEMA1995).  Conversely, 

annual economic losses estimated using SPI-12 were considerably higher at 36bn US$. The 

FEMA estimate is reported to be very rough, based mainly on agricultural drought losses, 

and is likely to exclude economic losses associated with mega-drought events like that of the 

1950s (Hayes et al. 2004). Therefore, this area of research would benefit from the 

development of further data sets, methodologies and quantitative studies on the impacts of 

drought in the future to help validate results generated. The over-estimation of costs seen for 

the USA for SPI-12 drought events can also be linked to the use of the exponential damage 

function. Whilst a benefit of the methodology was that the shape and scale of the damage 

functions were fitted to actual historical impact and climate data, these functions were then 

assumed to remain unchanged when applied to future drought projections. Whilst drought 

costs can increase indefinitely under the damage functions, in reality costs may be restricted 

by the specific characteristics of a region and the total value of assets at risk.  Furthermore, 

where the magnitude of future drought exceeds that of past experienced drought, estimates 

are based on extrapolation rather than interpolation. 

 

The study also illustrated that the magnitude and costs of individual drought events could 

exceed that of historical events, potentially causing socio-economic thresholds to be 

exceeded beyond which the scale of economic costs could increase rapidly. Consequently, 

past a certain threshold a linear damage function, for example, may become non-linear, 

resulting in greater costs than estimated here using the stationary drought damage 

functions. Similarly, tipping points may exist beyond which the magnitude of a drought is so 

severe that there is irreversible or systemic collapse of economies. For example, a series of 

severe droughts may be so destructive to agriculture that the economy may pass a threshold 

where agriculture is no longer a viable market, resulting in a complete shift in the economic 

structure of a region or country. The existence of such thresholds and tipping points (Renaud 

et al. 2010), which were not considered in this analysis, would have large consequences for 

future economic costs of drought. Potentially, estimates of tipping points could be  

hypothesised from the existing drought damage functions e.g. the level of drought 

magnitude, above which the cost to a countries’ GDP is deemed as unsustainable or 

unacceptable, could be used to define unacceptable drought risk. 

 



14 

 

The analysis normalised economic data by adjusting for inflation, however, this is a relatively 

simple way to account for changing economic conditions, which does not take into account 

changes in wealth, assets at risk, or changing populations.  Similarly, in terms of future 

tipping points human interactions, which may change under future socio-economic 

development, can also increase vulnerability to drought. For example, simulations of 

Amazon deforestation typically suggest declining precipitation of ~20-30%, thus land-use 

change alone could potentially cause critical thresholds to be passed (Lenton et al. 2008). 

Such complex interactions are not reflected by the drought damage functions. Socio-

economic interventions such as irrigation, extraction of groundwater, or other drought 

management/adaptation strategies that may mediate drought effects are not considered. 

Whilst government and institutional intervention may reduce drought losses there is also the 

potential for an additional threshold in terms of adaptability. For example, in the short-term 

effects of drought may be mitigated through increased used of ground water or irrigation 

systems. Yet, the ability to use such mechanisms under increasingly severe and frequent 

droughts may reach a threshold in the future beyond which the processes themselves, or the 

levels of investment, are no longer viable or sustainable (Sheffield and Wood 2011).  

 

In interpreting the cost estimates one should also consider that there is the potential for 

certain countries to suffer from successive drought events. The effect of successive drought 

events on an economy already weakened by a preceding event may result in larger costs 

than estimated by this study. Similarly, the economic estimates presented here do not 

incorporate the possibility that a region or country may become increasingly vulnerable due 

to compounding impacts from interactions with other extreme weather events. Finally, results 

are also deemed to represent direct economic costs only, ignoring indirect costs and 

additional social and environmental impacts of drought. 

 

5. Conclusions 

Drought can affect virtually any region of the world, regardless of precipitation or 

temperature regime, posing a significant risk to both developed and developing countries. 

However, quantitative estimates of the economic losses which could occur under future 

scenarios of climate change are extremely limited. By investigating the relationship between 

historic drought events and their costs economic drought damage functions were developed 

to facilitate such an analysis. These drought damage functions are, to the best of the authors 

knowledge, the only country specific drought damage functions created to date, and improve 

on some of the limitations of traditional climate damage functions. Namely, their shape and 

scale are empirically grounded; they are calibrated to historical event data and precipitation 

data; and the methodology can be used to quantify drought magnitude across different 

countries, regions and time-scales. The methodology developed provides a first step to 

quantifying drought events and investigating their relationship with economic damages, at a 

broad scale. Data permitting, this could be built upon at a national or regional level to 

improve the robustness of the damage functions, and include a more in depth investigation 

of the relationship between droughts, socioeconomic factors and economic damages. 

 

Severe and extreme drought events were projected to cause estimated additional losses 

ranging between 0.04 and 9% of national GDP in Australia, the USA and Spain/Portugal under 

future scenarios of climate change. The combined effect on global GDP from projected long-

term (SPI-12) drought events in the countries analysed resulted in additional annual losses of 

0.01 to 0.25%, regardless of stringent mitigation. This is considered a conservative estimate, 
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and the costs of individual drought events have the potential to rise dramatically, exceeding 

historic experience. However, the results must be interpreted with caution due to many 

modelling caveats, and as the quality and quantity of impact data remains a large issue. 

Accordingly, there are many potential extensions to this research useful for enhancing the 

robustness of the methodology and for increasing the applicability of the outputs for climate 

change analysis. One such step would be to further explore and quantify the uncertainty in the 

results presented here. 
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SPI Value Category Probability (%) 

2.00 > Extremely moist 2.3% 

1.50 – 1.99 Severely moist 4.4% 

1.00 – 1.49 Moderately moist 9.2% 

-0.99 – 0.99 Near Normal 68.2% 

-1.00 – -1.49 Moderately dry 9.2% 

-1.50 – -1.99 Severely dry 4.4% 

-2.00 < Extremely dry 2.3% 

Table 1: SPI Categories. Source: McKee et al., (1993) 

 

 

Country 
Total Number of 

drought events reported 
in EM-DAT 1940-2002 

Number of reported drought 
events visible in regional 

precipitation data (% of total) 

Australia 9 8 (89%) 

Brazil 13 10 (77%) 

China P Rep 22 14 (64%) 

India 12 10 (83%) 

Portugal 2 1 (50%) 

Spain 4 4(100%) 

United States 10 9 (90%) 

TOTAL 72 56 (78%) 

Table 2: The number of historical drought events reported in EM-DAT detectable in both or 

one of the regional SPI-6 and SPI-12 precipitation data sets 

 

http://data.worldbank.org/data-catalog/world-development-indicators


18 

 

 

Name Acronym Latitude (°) Longitude (°) 

Northwest Australia NW-AUS 27.75S – 10.25S 112.75E – 138.25E 

Southwest Australia SW-AUS 43.75S - 28.25S 114.25E – 138.25E 

Northeast  Australia NE-AUS 27.75S – 10.25S 138.75E – 153.75E 

Southeast Australia SE-AUS 43.75S - 28.25S 138.75E – 153.75E 

Northwest Brazil NW-BRA 15.75S – 4.25N 73.75W – 50.25W 

Northeast Brazil NE-BRA 15.75S – 0.25N 49.75W – 34.75W 

Southern Brazil S-BRA 33.25S – 16.25S 57.75W – 38.75W 

Northwest China NW-CH 36.25N – 49.25N 74.25E – 100.25E 

Southwest China SW-CH 22.25N – 35.75N 79.25E – 100.25E 

Northeast China NE-CH 32.75N – 50.75N 100.75E – 119.75E 

Southeast China SE-CH 18.25N – 32.25N 100.75E – 122.75E 

North-Northeast China NNE-CH 38.75N – 53.25N 120.25E – 134.75E 

Northwest India NW-IND 18.75N – 35.75N 68.25E – 79.75E 

Northeast India NE-IND 18.75N – 35.75N 80.25E – 97.25E 

Southern India S-IND 8.25N – 18.35N 72.75E – 84.25E 

Spain SPA 36.25N – 43.75N 9.25W – 3.25E 

Portugal POR 36.75N – 42.25N 9.25W – 6.75W 

North-West USA NW-USA 40.75N – 48.75N 124.75W – 103.25W 

South-West USA SW-USA 29.75N – 40.25N 124.25W – 103.25W 

Central USA C-USA 26.25N – 48.75N 102.75W – 84.75W 

Eastern USA E-USA 24.75N – 47.25N 84.25W – 66.75W 

Table 3: Definition of regions used in this study 

 

 

 

 

Country 
Emission 
Scenario 

GCM 
Estimated 

Annual Drought 
Cost  

Change in 
Annual Drought 

Cost from 
Observed to 
2003-2050 

Percentage 
Change in 

Annual Drought 
Cost from 

Observed to 
2003-2050 

Australia 

Baseline 
(1955-2002) 

-- 1,030,619 -- -- 

A1FI  
(2003-2050) 

ECHAM4 2,691,787 1,661,167 161% 

HADCM3 1,597,934 567,315 55% 

CSIRO2 905,399 -125,220 -12% 

450ppm 
(2003-2050) 

ECHAM4 3,123,693 2,093,074 203% 

HADCM3 1,626,592 595,973 58% 

CSIRO2 910,129 -120,490 -12% 

China 

Baseline 
(1955-2002) 

-- 882,617 -- -- 

A1FI 
(2003-2050) 

ECHAM4 242,293 -640,324 -73% 

HADCM3 220,506 -662,111 -75% 

CSIRO2 225,876 -656,740 -74% 

450ppm 
(2003-2050) 

ECHAM4 244,817 -637,799 -72% 

HADCM3 221,337 -661,279 -75% 

CSIRO2 225,726 -656,891 -74% 

India 

Baseline 
(1955-2002) 

-- 70,720 -- -- 

A1FI 
(2003-2050) 

ECHAM4 0 0 -100% 

HADCM3 0 0 -100% 

CSIRO2 28,011 -42,710 -60% 

ECHAM4 0 0 -100% 
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450ppm 
(2003-2050) 

HADCM3 0 0 -100% 

CSIRO2 28,022 -42,698 -60% 

Portugal 

Baseline 
(1955-2002) 

-- 
376,195 

-- -- 

A1FI 
(2003-2050) 

ECHAM4 824,232 448,037 119% 

HADCM3 698,521 322,325 86% 

CSIRO2 406,433 30,237 8% 

450ppm 
(2003-2050) 

ECHAM4 802,666 426,470 113% 

HADCM3 665,850 289,655 77% 

CSIRO2 406,173 29,978 8% 

Spain 

Baseline 
(1955-2002) 

-- 
329,655 

-- -- 

A1FI 
(2003-2050) 

ECHAM4 1,790,998 1,461,343 443% 

HADCM3 1,678,716 1,349,061 409% 

CSIRO2 672,134 342,479 104% 

450ppm 
(2003-2050) 

ECHAM4 1,640,530 1,310,875 398% 

HADCM3 1,457,221 1,127,566 342% 

CSIRO2 671,118 341,463 104% 

USA 

Baseline 
(1955-2002) 

-- 5,011,213 -- -- 

A1FI 
(2003-2050) 

ECHAM4 6,340,576 1,329,363 27% 

HADCM3 4,511,781 -499,432 -10% 

CSIRO2 17,558,660 12,547,447 250% 

450ppm 
(2003-2050) 

ECHAM4 6,569,432 1,558,219 31% 

HADCM3 4,494,265 -516,948 -10% 

CSIRO2 16,774,378 11,763,165 235% 

Table 4: Economic estimates of future SPI-6 drought events in 2002 US$ (000’s). 

 

 

Country 
Emission 
Scenario 

GCM 
Estimated 

Annual Drought 
Cost  

Absolute 
Change in 

Annual Drought 
Cost from 

observed to 
2003-2050 

Percentage 
change in 

Annual Drought 
Cost from 

observed to 
2003-2050 

Australia 

Baseline 
(1955-2002)  

-- 1,956,644 -- -- 

A1FI  
(2003-2050) 

ECHAM4 33,717,025 31,760,381 1623% 

HADCM3 2,877,107 920,463 47% 

CSIRO2 1,560,497 -396,147 -20% 

450ppm 
(2003-2050) 

ECHAM4 35,152,379 33,195,735 1697% 

HADCM3 3,132,850 1,176,207 60% 

CSIRO2 1,623,617 -333,027 -17% 

China 

Baseline 
(1955-2002) 

-- 578,869 -- -- 

A1FI 
(2003-2050) 

ECHAM4 537,897 -40,972 -7% 

HADCM3 443,118 -135,751 -23% 

CSIRO2 468,667 -110,202 -19% 

450ppm 
(2003-2050) 

ECHAM4 540,264 -38,605 -7% 

HADCM3 435,655 -143,214 -25% 

CSIRO2 468,028 -110,840 -19% 

India 

Baseline 
(1955-2002) 

-- 16,111 -- -- 

A1FI 
(2003-2050) 

ECHAM4 0 0 -100% 

HADCM3 0 0 -100% 

CSIRO2 0 0 -100% 

ECHAM4 0 0 -100% 
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450ppm 
(2003-2050) 

HADCM3 0 0 -100% 

CSIRO2 0 0 -100% 

Portugal 

Baseline 
(1955-2002) 

-- 
213,635 

-- -- 

A1FI 
(2003-2050) 

ECHAM4 306,042 92,407 43 

HADCM3 316,702 103,067 48 

CSIRO2 140,271 -73,364 -34 

450ppm 
(2003-2050) 

ECHAM4 471,563 257,928 121 

HADCM3 400,069 186,434 87 

CSIRO2 135,873 -77,762 -36 

Spain 

Baseline 
(1955-2002) 

-- 
374,575 

-- -- 

A1FI 
(2003-2050) 

ECHAM4 919,643 545,068 146 

HADCM3 780,950 406,375 108 

CSIRO2 354,799 -19,776 -5 

450ppm 
(2003-2050) 

ECHAM4 1,071,282 696,707 186 

HADCM3 825,978 451,404 121 

CSIRO2 353,915 -20,660 -6 

USA 

Baseline 
(1955-2002) 

-- 
35,811,162 

-- -- 

A1FI 
(2003-2050) 

ECHAM4 7,243,484 -28,567,678 -80% 

HADCM3 93,896,437 58,085,275 162% 

CSIRO2 118,451,286 82,640,124 231% 

450ppm 
(2003-2050) 

ECHAM4 7,243,078 -28,568,085 -80% 

HADCM3 93,961,890 58,150,728 162% 

CSIRO2 119,463,443 83,652,281 234% 

Table 5: As table 4 but for SPI-12 drought events 

 

 

 

Country 

Average annual % loss of GDP 
from future drought events  

(min, max) 

SPI-6 SPI-12 

Australia 
0.47 

(0.24, 0.81) 
3.38 

(0.41, 9.13) 

Australia (linear) 
0.43 

(0.27, 0.65) 
0.46 

(0.16, 0.85) 

China 
0.02 

(0.02, 0.02) 
0.03 

(0.03, 0.04) 

India 
0.002 

(0.00, 0.01) 
0.00 

(0.00, 0.00) 

Portugal 
0.53 

(0.34, 0.69) 
0.25 

(0.11, 0.34) 

Spain 
0.20 

(0.10, 0.27) 
0.11 

(0.05, 0.16) 

USA 
0.09 

(0.04, 0.17) 
0.71 

(0.07, 1.15) 

USA (linear) 
0.10 

(0.07, 0.16) 
0.16 

(0.06, 0.23) 

Table 6: Average annual economic drought costs in 2003-2050 as a percentage of country 

GDP (in 2002 US$). Numbers in brackets represent the minimum and maximum range 

arising from use of different emissions scenarios and GCM emulations. 
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Figure Captions 

 

Figure 2a-f: Country specific drought damage functions: The relationship between drought 

magnitude (calculated using the 1940-2002 SPI data (except for China)) and the reported 

economic damages from the EM-DAT dataset (solid line = SPI-6, dashed line = SPI-12). 

 

Figure 2: Country regions used in this study (defined in table 3) 

 

Figure 3a-b: Change in drought magnitude for 2003-2050 compared to 1955-2002 using 

ECHAM4, HADCM3 and CSIRO2 and the A1FI and 450ppm scenarios. Black crosses 

indicate mean values. 

 

Figure 4a-b: The percentage change in annual economic damages for 2003-2050 compared 

to 1955-2002 modelled using the GCMs ECHAM4, HADCM3 and CSIRO2 and the A1FI and 

450ppm scenarios. Values given represent the maximum and minimum percentage change 

reported. The black crosses indicate the average value calculated across all the scenario 

runs presented in column 6, tables 4 and 5. 

 

Figure 5: Average annual economic costs of SPI-6 and SPI-12 drought events in Australia, 

China, India, Portugal, Spain, and the USA presented as a percentage of global GDP (2002 

US$), for various scenarios (the dotted and dashed lines represent the 1955-2002 losses for 

SPI-6 and SPI-12 respectively) 
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Figure 2a-f: Country specific drought damage functions: The relationship between drought 

magnitude (calculated using the 1940-2002 SPI data (except for China)) and the reported 

economic damages from the EM-DAT dataset (solid line = SPI-6, dashed line = SPI-12). 
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Figure 2: Country regions used in this study (defined in table 3) 

 

 
Figure 3a-b: Change in drought magnitude for 2003-2050 compared to 1955-2002 using 

ECHAM4, HADCM3 and CSIRO2 and the A1FI and 450ppm scenarios. Black crosses 

indicate mean values. 
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Figure 4a-b: The percentage change in annual economic damages for 2003-2050 compared 

to 1955-2002 modelled using the GCMs ECHAM4, HADCM3 and CSIRO2 and the A1FI and 

450ppm scenarios. Values given represent the maximum and minimum percentage change 

reported. The black crosses indicate the average value calculated across all the scenario 

runs presented in column 6, tables 4 and 5. 

 

 

 
Figure 5: Average annual economic costs of SPI-6 and SPI-12 drought events in Australia, 

China, India, Portugal, Spain, and the USA presented as a percentage of global GDP (2002 

US$), for various scenarios (the dotted and dashed lines represent the 1955-2002 losses for 

SPI-6 and SPI-12 respectively) 

 


