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1 Introduction

A key problem in biology is to reconstruct the evolutionary history of a set of taxa using data
such as DNA sequences or morphological features. These histories are commonly represented
by phylogenetic trees, and can be used, for example, to inform genomics studies, analyse virus
epidemics and understand the origins of humans [23]. Even so, in case evolutionary processes
such as recombination and hybridization are involved, it can be more appropriate to represent
histories using phylogenetic networks instead of trees [2].

Generally speaking, a phylogenetic network is any type of graph with a subset of its vertices
labelled by the set of taxa that in some way represents evolutionary relationships between the
taxa [13]. Here, however, we focus on a special type of phylogenetic network called a level-1
network. We present the formal definition for this type of network in the next section but,
essentially, it is a binary, directed acyclic graph with a single root, whose leaves correspond
to the taxa, and in which any two cycles are disjoint (for example, see Figure 2 below). This
type of network was first considered in [20] and is closely related to so-called galled-trees [3,
7]. Level-1 networks have been used to, for example, analyse virus evolution [10], and are of
practical importance since their simple structure allows for efficient construction [7,10,15] and
comparison [17].

One of the main approaches that have been used to construct level-1 networks is from triplet
sets, that is, sets of rooted binary trees with three leaves (see e.g. [10,18,19,22]). Even so, it has
been observed that the set of triplets displayed by a level-1 network does not necessarily provide
all of the information required to uniquely define or encode the network [5]. Motivated by this
observation, in [11] an algorithm was developed for constructing level-1 networks from a network
analogue of triplets: rooted binary networks with three leaves, or trinets. This algorithm relies
on the fact that the trinets displayed by a level-1 network do indeed encode the network [11].
Even so, the algorithm was developed for dense trinet sets only, i.e. sets in which there is a trinet
associated to each combination of three taxa.

In this paper, we consider the problem of constructing level-1 networks from arbitrary sets of
level-1 trinets and binets, where a binet is an even simpler building block than a trinet, consisting
of a rooted binary network with just two leaves. We consider binets as well as trinets since they
can provide important information to help piece together sets of trinets. Our approach can
be regarded as a generalisation of the well-known supertree algorithm called Build [1,23] for
checking whether or not a set of triplets is displayed by a phylogenetic tree and constructing
such a tree if this is the case. In particular, the algorithm we present in Section 4 is one of the
first supernetwork algorithms for constructing a phylogenetic network from a set of networks.
Note that some algorithms have already been developed for computing unrooted supernetworks
– see, for example [8,12].

We expect that our algorithm could be useful in practice as there are programs which can be
used to compute trinets from biological data [14,26] (and also binets as subnets of the com-
puted trinets). Some of these programs use optimisation criteria such as likelihood which can
be very computationally expensive for large datasets, but which are much more practical for
small datasets. Note that a similar strategy was used in the quartet puzzling [24] approach for
computing phylogenetic trees from four-leaved trees or quartets based on likelihood, before like-
lihood became more practical for larger data sets. It should be noted, however, that most of the
current programs for computing phylogenetic networks are based on the trees embedded within
a network, and so they might not be able to distinguish between different types of trinets [21].
Hopefully the development of new models will make it possible to deal with potential difficulties
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in this respect. Also, it could be of interest to build networks from networks on slightly larger
subsets (such as size-four and size-five subets) and try to merge these instead of or as well as
trinets, as such subsets may be more informative than size-three ones.

We now summarize the contents of the paper. After introducing some basic notation in the
next section, in Section 3 we begin by presenting a polynomial-time algorithm for deciding
whether or not there exists some level-1 network that displays a given set of level-1 binets, and
for constructing such a network if it actually exists (see Theorem 1). Then, in Section 4, we
present an exponential-time algorithm for an arbitrary set consisting of binets and trinets (see
Theorem 2). This algorithm uses a top-down approach that is somewhat similar in nature to the
Build algorithm [1,23] but it is considerably more intricate. The algorithm can be generalised
to instances containing level-1 networks with arbitrarily many leaves since trinets encode level-1
networks [11].

In Section 5 we show that for the special instance where each cycle in the input trinets has size
three our exponential-time algorithm is actually guaranteed to work in polynomial time. This is
still the case when the input consists of binary level-1 networks with arbitrarily many leaves as
long as all their cycles have length three. However, in Section 6 we prove that in general it is NP-
hard to decide whether or not there exists a binary level-1 network that displays an arbitrary set
of trinets (see Theorem 4). We also show that this problem remains NP-hard if we insist that the
network contains only one cycle. Our proof is similar to the proof that it is NP-hard to decide the
same question for an arbitrary set of triplets given in [18], but the reduction is more complicated.
In Section 7, we conclude with a discussion of some directions for future work.

2 Preliminaries

Let X be some finite set of labels. We will refer to the elements of X as taxa. A rooted phylogenetic
network N on X is a simple directed acyclic graph which has a single indegree-0 vertex (the
root, denoted by ρ(N)), no indegree-1 outdegree-1 vertices and its outdegree-0 vertices (the
leaves) bijectively labelled by the elements of X. We will refer to rooted phylogenetic networks
as networks for short. In addition, we will identify each leaf with its label and denote the set of
leaves of a network N by L(N). For a set N of networks, L(N ) is defined to be ∪N∈NL(N). A
network is called binary if all vertices have indegree and outdegree at most two and all vertices
with indegree two (the reticulations) have outdegree one. Refining a vertex with outdegree d > 2
means replacing the vertex by a path of d − 1 vertices of outdegree 2. A cycle of a network is
the union of two non-identical, internally-vertex-disjoint, directed s-t paths, for any two distinct
vertices s, t. The size of the cycle is the number of vertices that are on at least one of these
paths. A cycle is tiny if it has size three and large otherwise. A network is said to be a tiny cycle
network if all its cycles are tiny. A binary network is said to be a binary level-1 network if all
its cycles are disjoint. We only consider binary level-1 networks in this paper, see Figure 2 for
an example containing one tiny and two large cycles. Note that, when |X| = 1, there exists a
unique binary level-1 network on X consisting of a single vertex labelled by the only element of
X.

If N is a network on X and X ′ ⊆ X nonempty, then a vertex v of N is a stable ancestor of X ′

(in N) if every directed path from the root of N to a leaf in X ′ contains v. The lowest stable
ancestor of X ′ is the unique vertex LSA(X ′) that is a stable ancestor of X ′ and such that there
is no directed path from LSA(X ′) to any of the other stable ancestors of X ′.
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Fig. 1 The two binary level-1 binets and the eight binary level-1 trinets.

A binet is a network with exactly two leaves and a trinet is a network with exactly three leaves.
In this paper, we only consider binary level-1 binets and trinets. There exist two binary level-1
binets and eight binary level-1 trinets (up to relabelling) [11], all presented in Figure 1. In the
following, we will use the names of the trinets and binets indicated in that figure. For example,
T1(x, y; z) denotes the only rooted tree on {x, y, z} where {x, y} is a cluster, where a cluster is
the entire set of leaf descendants of a node. Trinet T1(x, y; z) is also called a triplet.

A set B of binets on a set X of taxa is called dense if for each pair of taxa from X there is
at least one binet in B on those taxa. A set T of (binets and) trinets on X is dense if for each
combination of three taxa from X there is at least one trinet in T on those taxa.

Given a phylogenetic network N on X and a subset X ′ ⊆ X, we define the network N |X ′ as the
network obtained from N by deleting all vertices and arcs that are not on a directed path from
the lowest stable ancestor of X ′ to a leaf in X ′ and repeatedly suppressing indegree-1 outdegree-1
vertices and replacing parallel arcs by single arcs until neither operation is applicable.

Two networks N,N ′ on X are said to be equivalent if there exists an isomorphism between N
and N ′ that maps each leaf of N to the leaf of N ′ with the same label.

Given two networks N,N ′ with L(N ′) ⊆ L(N), we say that N displays N ′ if N |L(N ′) is equiva-
lent to N ′. Note that this definition in particular applies to the cases that N ′ is a binet or trinet.
In addition, we say that N displays a set N of networks if N displays each network in N .

Given a network N , we use the notation T(N) to denote the set of all trinets and binets displayed
by N . For a set N of networks, T(N ) denotes

⋃
N∈N T(N). Given a set T of trinets and/or binets

on X and a nonempty subset X ′ ⊆ X, we define the restriction of T to X ′ as

T|X ′ := {T |(L(T ) ∩X ′) : T ∈ T and |L(T ) ∩X ′| ∈ {2, 3}}.

The following observation will be useful.
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Fig. 2 A binary level-1 network N . Its set of high leaves is H = {a, b, c, d, e, f, g, h, i,m}. The bipartition of H
induced by N is {{a, b}, {c, d, e, f, g, h, i,m}}. Hence, a and b are on the same side in N and c, d, e, f, g, h, i and m
are on the same side in N . The pendant sidenetworks of N are N(L1), N(L2), N(R1) and N(R2). Leaves j, k
and l are low in N .

Observation 1 Let T be a set of trinets and binets on X and suppose that there exists a binary
level-1 network N on X such that T ⊆ T(N). Then, for any nonempty subset X ′ of X, N |X ′ is
a binary level-1 network displaying T|X ′.

Proof Let X ′ be a nonempty subset of X and consider a trinet or binet T ′ ∈ T|X ′. Then there
exists a binet or trinet T ∈ T such that T ′ = T |(L(T )∩X ′). Since T ∈ T ⊆ T(N), T is displayed
by N . When restricting N to N |X ′, first the vertices and arcs that are not on a directed path
from the lowest stable ancestor of X ′ to a leaf in X ′ are deleted. Hence, all vertices and arcs on
directed paths from LSA(X ′) to leaves in L(T ) ∩X ′ are kept. Thus, T ′ = T |(L(T ) ∩X ′) is still
displayed. Suppressing indegree-1 outdegree-1 vertices and replacing parallel arcs by single arcs
does not change this. Hence, T ′ is displayed by N ′. ut

We call a network cycle-rooted if its root is contained in a cycle. A cycle-rooted network is called
tiny-cycle rooted if its root is in a tiny cycle and large-cycle rooted otherwise. If N is a cycle-rooted
binary level-1 network whose root ρ(N) is in cycle C, then there exists a unique reticulation r
that is contained in C. We say that a leaf x is high in N if there exists a path from ρ(N) to x
that does not pass through r, otherwise we say that x is low in N . If N is not cycle-rooted, then
we define all leaves to be high in N . We say that two leaves are at the same elevation in N if
they are either both high or both low in N . Two leaves x, y that are both high in N are said
to be on the same side in N if x and y are both reachable from the same child of ρ(N) by two
directed paths. A bipartition {L,R} of the set H of high leaves in N is the bipartition of H
induced by N if all leaves in L are on the same side SL in N and all the leaves in R are on the
same side SR in N , with SL 6= SR. (Note that one between SL and SR could be empty). Finally,
if N is cycle-rooted, we say that a subnetwork N ′ of N is a pendant subnetwork if there exists
in N some arc (u, ρ′) that is a cut-arc, i.e., an arc whose removal disconnects the graph, with ρ′

the root of N ′ and u a vertex of the cycle containing the root of N . If, in addition, u is not a
reticulation, then N ′ is said to be a pendant sidenetwork of N . If, in addition, L(N ′) ⊆ S with S
a part of the bipartition of the high leaves of N induced by N , then we say that N ′ is a pendant
sidenetwork on side S. See Figure 2 for an illustration of these definitions.

We end this section by giving a short description of the Build algorithm [1,23], which decides if
there exists a rooted tree (i.e. a network without reticulations) displaying a given set of triplets L.
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The Build algorithm constructs a graph RL(L) with a vertex for each taxon and an edge {x, y}
precisely if there exists a triplet T1(x, y; z) ∈ L for some z. If RL(L) is connected, the algorithm
halts and reports that there exists no rooted tree displaying L. Otherwise, let X1, . . . , Xk be the
vertex sets of the connected components of RL(L). The algorithm recursively tries to construct
trees displaying L|X1, . . .L|Xk. If such trees exist, Build outputs a rooted tree consisting of
a new root with arcs to the roots of the recursively computed trees. Otherwise, the algorithm
reports that there exists no solution.

Our algorithm for trinets described in Section 4 can be seen as a generalization of the Build
algorithm. It uses a graph R which generalizes the RL graph, but also has three additional steps
which use different graphs. Our algorithm for binets described in the next section also uses a
similar recursive approach. Finally, we note that our algorithms always construct binary networks,
but this is just for convenience. These algorithms could be adapted to construct nonbinary
networks, just as Build constructs nonbinary trees.

3 Constructing a network from a set of binets

In this section we describe a polynomial-time algorithm for deciding if there exists some binary
level-1 network displaying a given set B of binets, and constructing such a network if it exists.
We treat this case separately because it is much simpler than the trinet algorithms and gives an
introduction to the techniques we use.

The first step of the algorithm is to construct the graph Rb(B)1, which has a vertex for each
taxon and an edge {x, y} if (at least) one of N(x; y) and N(y;x) is contained in B.

If the graph Rb(B) is disconnected and has connected components X1, . . . , Xp, then the algo-
rithm constructs a network N by recursively computing networks N(X1), . . . , N(Xp) displaying
B|X1, . . . ,B|Xp respectively, creating a new root node ρ and adding arcs from ρ to the roots
of N(X1), . . . , N(Xp), and refining arbitrarily the root ρ in order to make the network binary.
See Figure 3 for an example.

If the graph Rb(B) is connected, then the algorithm constructs the graph Kb(B), which has a
vertex for each taxon and an edge {x, y} precisely if T (x, y) ∈ B. In addition, the algorithm
constructs the directed graph Ωb(B), which has a vertex for each connected component of Kb(B)
and an arc (π1, π2) precisely if there exists a binet N(y;x) ∈ B with x ∈ V (π1) and y ∈ V (π2)
(with V (π) denoting the vertex set of a given connected component π).

The algorithm searches for a nonempty strict subset U of the vertices of Ωb(B) such that there
is no arc (π1, π2) with π1 /∈ U and π2 ∈ U . This can be done in polynomial time by collapsing
directed cycles until an acyclic digraph is obtained and then searching for an indegree-0 vertex.
If there exists no such set U then the algorithm halts and outputs that there exists no solution.
Otherwise, let H be the union of the vertex sets of the connected components of Kb(B) that cor-
respond to elements of U and define Low = X \H. The algorithm recursively constructs networks
N(H) displaying B|H and N(Low) displaying B|Low. Subsequently, the algorithm constructs a
network N consisting of vertices ρ, v, r, arcs (ρ, v), (v, r), (ρ, r), networks N(Low), N(H) and an
arc from v to the root of N(H) and an arc from r to the root of N(Low). See Figure 4 for an
example of this case.

1 The superscript b indicates that this definition is only used for binets. In Section 4, we will introduce a graph
R(T) which will be used for general sets of binets and trinets and is a generalisation of Rb(B) in the sense that
Rb(B) = R(B) if B contains only binets.
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Fig. 3 Example of a step of the algorithm for constructing a network N from the set B of binets. The graph Rb(B)
has connected components X1 = {a, b, c, d, e} and X2 = {f, g}. Hence, network N is obtained by combining
recursively computed networks N(X1) and N(X2) by hanging them below a new root. See Figure 4 for the first
recursive step.
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Fig. 4 Example of the recursive step, which constructs a network N(X1) from binet set B|X1, with B and X1

as in Figure 3. Network N(X1) is cycle-rooted because graph Rb is connected. One possible strict subset of the
vertices of Ωb(B|X1) with no incoming arcs is {a, b}. Hence, H = {a, b} can be made the high leaves of the
network, and Low = {c, d, e} the low leaves. Combining recursively computed networks N(H) and N(Low) by
hanging them below a new cycle as described by the algorithm then gives network N(X1). Note that other valid
subsets of the vertices of Ωb(B|X1) are {a, b, d}, {a, b, c}, {a, b, c, d} and {d}, which lead to alternative solutions.

Finally, when |X| ≤ 2 (in some recursive step), the problem can be solved trivially. When |X| = 1,
the algorithm outputs a network consisting of a single vertex labelled by the only element of X,
which is the root as well as the leaf of the network. When |X| = 2 and there is a single binet
remaining, the algorithm outputs that binet. When |X| = 2 and there are at least two binets
remaining, then the algorithm halts and outputs that there exists no solution.

This completes the description of the algorithm for binets. Clearly, it is a polynomial-time algo-
rithm and its correctness is shown in the following theorem.

Theorem 1 Given a set B of binets on a set X of taxa, there exists a polynomial-time algorithm
that decides if there exists a binary level-1 network on X that displays all binets in B, and that
constructs such a network if it exists.

Proof We prove by induction on |X| that the algorithm described above produces a binary level-1
network on X displaying B if such a network exists. The induction basis for |X| ≤ 2 is clearly
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true. Now let |X| ≥ 3, B a set of binets on X and assume that there exists some binary level-1
network on X displaying B. There are two cases.

First assume that the graph Rb(B) is disconnected and has connected components C1, . . . , Cp.
Then the algorithm recursively computes networks N |C1, . . . , N |Cp displaying the sets B|C1, . . .,
B|Cp respectively. Such networks exist by Observation 1 and can be found by the algorithm by
induction. It follows that the network N which is constructed by the algorithm displays all binets
in B of which both taxa are in the same connected component of Rb(B). Each other binet is of
the form T (x, y) by the definition of graph Rb(B). Hence, those binets are also displayed by N ,
by construction.

Now assume that the graph Rb(B) is connected. Then we claim that there exists no binary
level-1 network displaying B that is not cycle-rooted. To see this, assume that there exists such
a network, let v1, v2 be the two children of its root and Xi the leaves reachable by a directed
path from vi, for i = 1, 2. Then there is no edge {a, b} in Rb(B) for any a ∈ X1 and b ∈ X2.
Since X1 ∪X2 = X, it follows that Rb(B) is disconnected, which is a contradiction. Hence, any
network that is a valid solution is cycle-rooted.

The algorithm then searches for a nonempty strict subset U of the vertices of Ωb(B) with no
incoming arc, i.e., for which there is no arc (π1, π2) with π1 /∈ U and π2 ∈ U . First assume that
there exists no such set U . Then the algorithm reports that there exists no solution. To prove
that this is correct, assume that N ′ is some binary level-1 network on X displaying B and let H
be the set of leaves that are high in N ′. The graph Kb(B) contains no edges between taxa that
are high in N ′ and taxa that are low in N ′ (because such taxa x, y cannot be together in a
T (x, y) binet). Hence, the set H is a union of vertex sets of connected components of Kb(B) and
their representing vertices of Ωb(B) form a subset U . If there were an arc (π1, π2) in Ωb(B) with
π1 /∈ U and π2 ∈ U , then there would be a binet N(y;x) ∈ B with x ∈ V (π1) and y ∈ V (π2).
This binet N(y;x) would not be displayed by N ′ because y ∈ H and x /∈ H. Therefore, we
conclude that there is no arc (π1, π2) in Ωb(B) with π1 /∈ U and π2 ∈ U . Hence, we have obtained
a contradiction to the assumption that there is no such set U .

Now assume that there exists such a set U . Then the algorithm recursively constructs networks
N(H) displaying B|H and N(Low) displaying B|Low, with H the union of the vertex sets of the
connected components of Kb(B) corresponding to the elements of U , and with Low = X \ H.
The algorithm then constructs a network N consisting of a cycle with networks N(H) hanging
from the side of the cycle and network N(Low) hanging below the cycle, as in Figure 4. Networks
N(H) and N(Low) exist by Observation 1 and can be found by the algorithm by induction.
Because these networks display B|H and B|Low respectively, each binet from B that has both its
leaves high or both its leaves low in N is displayed by N . Each other binet is of the form N(x; y)
with x low and y high in N , because otherwise there would exist an element in U which would
have an incoming arc in Ωb(B). Hence, such binets are also displayed by N . ut

4 Constructing a network from a nondense set of binets and trinets

In this section we present an algorithm to construct a binary level-1 network displaying a given
nondense set of binets and trinets, if any exists. This algorithm can be regarded as a generalisation
of the Build algorithm [1,23] for checking whether or not there exists a rooted phylogenetic tree
displaying a set of triplets.
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4.1 Outline

Let T be a set of binary level-1 trinets and binets on a setX of taxa. In this section we will describe
an exponential-time algorithm for deciding whether there exists a binary level-1 network N on X
with T ⊆ T(N). Note that, if T contains trinets or binets that are not level-1, we know that such
a network cannot exist because all binets and trinets displayed by a binary level-1 network are
binary level-1 networks.

Throughout this section, we will assume that there exists some binary level-1 network on X that
displays T and we will show that in this case we can reconstruct such a network N .

Our approach aims at constructing the network N recursively; the recursive steps that are used
depend on the structure of N . The main steps of our approach are the following:

1. we determine whether the network N is cycle-rooted (see Section 4.2);

2. if this is the case, we guess the high and low leaves of N (see Section 4.3);

3. then, we guess how to partition the high leaves into the “left” and “right” leaves (see Sec-
tion 4.4);

4. finally, we determine how to partition the leaves on each side into the leaves of the different
sidenetworks on that side (see Section 4.5).

Although we could do Steps 2 and 3 in a purely brute force way, we present several structural
lemmas which restrict the search space and will be useful in Section 5.

Once we have found a correct partition of the leaves (i.e., after Step 4), we recursively compute
networks for each block of the partition and combine them into a single network. In the case
that the network is not cycle-rooted, we do this by creating a root and adding arcs from this
root to the recursively computed networks. Otherwise, the network is cycle-rooted. In this case,
we construct a cycle with outgoing cut-arcs to the roots of the recursively computed networks,
as illustrated in Figure 2.

The fact that we can recursively compute networks for each block of the computed partition
follows from Observation 1.

In the next sections we present a detailed description of our algorithm to reconstruct N . We will
illustrate the procedure by applying it to the example set of trinets depicted in Figure 5. The
pseudocode is presented in Algorithm 1 and Table 1 gives an overview of the different graphs
used by the algorithm.

4.2 Is the network cycle-rooted?

To determine whether or not N is cycle-rooted, we define a graph R(T) as follows. The vertex
set of R(T) is the set X of taxa and the edge set has an edge {a, b} if there exists a trinet or
binet T ∈ T with a, b ∈ L(T ) that is cycle-rooted or contains a common ancestor of a and b
different from the root of T (or both). For an example, see Figure 6.

Lemma 1 Let N be a binary level-1 network and T ⊆ T(N). If R(T) is disconnected and has
connected components C1, . . . , Cp, then T is displayed by the binary level-1 network N ′ obtained
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Fig. 5 The set T of trinets that we use to illustrate the inner workings of our algorithm.
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Fig. 6 The graph R(T) for the set T of trinets in Figure 5. Since R(T) is connected, any network displaying T
is cycle-rooted.

by creating a new root ρ and adding arcs from ρ to the roots of N |C1, . . . , N |Cp, and refining
arbitrarily the root ρ in order to make the resulting network binary.

Proof By Observation 1, N ′ displays each binet and each trinet of T whose leaves are all in
the same connected component of R(T). Consider a binet B ∈ T on {a, b} with a and b in
different components. Then there is no edge {a, b} in R(T) and hence B is not cycle-rooted,
i.e. B = T (a, b), and B is clearly displayed by N ′. Now consider a trinet T ∈ T on {a, b, c}
with a, b, c in three different components. Then, none of {a, b}, {b, c} and {a, c} is an edge inR(T).
Hence, none of the pairs {a, b}, {b, c}, {a, c} has a common ancestor other than the root of T .
Employing Figure 1, this is impossible and so T cannot exist. Finally, consider a trinet T ′ ∈ T
on {a, b, c} with a, b ∈ Ci and c ∈ Cj with i 6= j. Then there is no edge {a, c} and no edge {b, c}
in R(T). Consequently, T ′ is not cycle-rooted and the pairs {a, c} and {b, c} do not have a
common ancestor in T ′ other than the root of T ′. Hence, T ′ ∈ {T1(a, b; c), N3(a; b; c), N3(b; a; c)}.
If T ′ = T1(a, b; c), thenN |Ci displays T ′|Ci = T (a, b) and henceN ′ displays T ′. If T ′ = N3(a; b; c),
then N |Ci displays T ′|Ci = N(a; b) and, so, N ′ displays T ′. Symmetrically, if T ′ = N3(b; a; c),
then N |Ci displays T ′|Ci = N(b; a) and, so, N ′ displays T ′. We conclude that N ′ displays T. ut

Hence, if R(T) is disconnected, we can recursively reconstruct a network for each of its connected
components and combine the solutions to the subproblems in the way detailed in Lemma 1. If all
input trinets are of the form T1(x, y; z), then this simulates the Build algorithm [1,23].

If R(T) is connected, then we can apply the following lemma:
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Lemma 2 Let N be a binary level-1 network on X and T ⊆ T(N). If R(T) is connected
and |X| ≥ 2, then N is cycle-rooted.

Proof Suppose to the contrary that R(T) is connected and that N is not cycle-rooted. Let v1, v2
be the two children of the root of N and Xi the leaves of N reachable by a directed path from vi,
for i = 1, 2. Note that X1 ∩X2 = ∅ and X1 ∪X2 = X. Let a ∈ X1 and b ∈ X2 and let T be any
trinet or binet displayed by N that contains a and b. Then we have that T is not cycle-rooted
and that the only common ancestor of a and b in T is the root of T . Hence, there is no edge {a, b}
in R(T) for any a ∈ X1 and b ∈ X2, which implies that R(T) is disconnected; a contradiction. ut

In the remainder of this section, we assume that R(T) is connected and thus that N is cycle-
rooted.

4.3 Separating the high and the low leaves

We define a graph K(T) whose purpose is to help decide which leaves are at the same elevation
in N . The vertex set of K(T) is the set of taxa X and the edge set contains an edge {a, b} if there
exists a trinet or binet T ∈ T with a, b ∈ L(T ) and in which a and b are at the same elevation
in T .

Lemma 3 Let N be a cycle-rooted binary level-1 network and T ⊆ T(N). If C is a connected
component of K(T), then all leaves in C are at the same elevation in N .

Proof We prove the lemma by showing that there is no edge in K(T) between any two leaves
that are not at the same elevation in N . Let h and ` be leaves that are, respectively, high and
low in N . Then, in any trinet or binet T displayed by N that contains h and `, we have that T is
cycle-rooted and that h is high in T and ` is low in T . Hence, there is no edge {h, `} in K(T). ut

We now define a directed graph Ω(T) whose purpose is to help decide which leaves are high and
which ones are low in N . The vertex set of Ω(T) is the set of connected components of K(T)
and the arc set contains an arc (π, π′) precisely if there is a cycle-rooted binet or trinet T ∈ T
with h, ` ∈ L(T ) with h ∈ V (π) high in T , ` ∈ V (π′) low in T . See Figure 7 for an example for
both graphs.

Lemma 4 Let T be a set of binets and trinets on a set X of taxa. Let N be a cycle-rooted binary
level-1 network displaying T. Then there exists a nonempty strict subset U of the vertices of Ω(T)
for which there is no arc (π, π′) with π′ ∈ U , π /∈ U such that the set of leaves that are high in N
equals ∪π∈UV (π).

Proof Let H be the set of leaves that are high in N . Note that H 6= ∅. By Lemma 3, H is the
union of connected components of K(T) and hence the union of a set U of vertices of Ω(T) that
respresent those components. We need to show that there is no arc (π, π′) with π′ ∈ U , π /∈ U
in Ω(T). To see this, notice that if there were such an arc, there would be a trinet or binet T ∈ T
that is cycle-rooted and has leaves h, ` ∈ L(T ) with h ∈ V (π) high in T and ` ∈ V (π′) low in T .
However, such a trinet can only be displayed by N if either h is high in N and ` is low in N or h
and ` are at the same elevation in N . This leads to a contradiction because h ∈ V (π) with π /∈ U
and ` ∈ V (π′) with π′ ∈ U and, hence, h is low in N and ` is high in N . ut
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Fig. 7 The graph K(T) in solid lines and the directed graph Ω(T) in dashed lines, for the set T of trinets in
Figure 5.

We now distinguish two cases. The first case is that the root of the network is in a cycle with
size at least four, i.e., the network is large-cycle rooted. The second case is that the root of the
network is in a cycle with size three, i.e., that the network is tiny-cycle rooted. To construct a
network from a given set of binets and trinets, the algorithm explores both options.

4.3.1 The network is large-cycle rooted

In this case, we can simply try all subsets of vertices of Ω(T) with no incoming arcs (i.e. arcs that
begin outside and end inside the subset). For at least one such set U will hold that

⋃
π∈U V (π)

is the set of leaves that are high in the network by Lemma 4.

A set T of binets and trinets on a set X of taxa is called semi-dense if for each pair of taxa
from X there is at least one binet or trinet that contains both of them. If T is semi-dense, then
we can identify the set of high leaves by the following lemma.

Lemma 5 Let T be a semi-dense set of binets and trinets on a set X of taxa. Let N be a binary
large-cycle rooted level-1 network displaying T. Let H be the set of leaves that are high in N .
Then there is a unique indegree-0 vertex π0 of Ω(T) and H = V (π0).

Proof Since T is semi-dense, for any two leaves h, h′ ∈ H that are below different cut-arcs leaving
the cycle C containing the root of N , there exists a binet or a trinet T in T containing both h
and h′. Then, since T is displayed by N , T has to be a binet or a trinet where h and h′ are at
the same elevation. This implies that there is an edge {h, h′} in K(T). Then, since there exist at
least two different cut-arcs leaving C, the leaves in H are all in the same connected component
of K(T). Then, by Lemma 3, H forms a connected component of K(T). Hence, H is a vertex
of Ω(T). This vertex has indegree-0 because no trinet or binet T displayed by N has a leaf ` /∈ H
that is high in T and a leaf h ∈ H that is low in T . Therefore, H is an indegree-0 vertex of Ω(T).
Moreover, by construction, there is an arc from H to each other vertex of Ω(T). Hence, H is the
unique indegree-0 vertex of Ω(T). ut
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Fig. 8 Example for the case that the network is tiny-cycle rooted. From left to right are depicted a set of trinets T,
its graphs K†(T) (solid) and Ω†(T) (dashed) and the resulting network N , obtained by combining networks N(H)
and N(Low). Note that the two edges labelled † are in K†(T) but not in K(T).

4.3.2 The network is tiny-cycle rooted

For this case, we define a modified graph K†(T), which is the graph obtained from K(T) as
follows. For each pair of leaves a, b ∈ X, we add an edge {a, b} if there is no such edge yet
and there exists a large-cycle rooted trinet T ∈ T with a, b ∈ L(T ) (i.e. T is of type S1(x, y; z)
or S2(x; y; z)). The idea behind these extra edges is that if the network is tiny-cycle rooted and
it displays a large-cycle rooted trinet, then all leaves of this trinet must be in the same pendant
subnetwork and hence at the same elevation.

The directed graph Ω†(T) is defined in a similar way as Ω(T) but its vertex set is the set of
connected components of K†(T). Its arc set has, as in Ω(T), an arc (π, π′) if there is a binet or
trinet T ∈ T that is cycle-rooted and has leaves h, ` ∈ L(T ) with h ∈ V (π) high in T , ` ∈ V (π′)
low in T .

Our approach for this case is to take a non-empty strict subset U of the vertices of Ω†(T) that has
no incoming arcs and to take H to be the union of the elements of U . Then, a network display-
ing T can be constructed by combining a network N(H) displaying T|H and a network N(Low)
displaying T|Low, with Low = X \ H. (An example is depicted in Figure 8). The next lemma
shows the correctness of this step.

Lemma 6 Let T be a set of binets and trinets on a set X of taxa. Let N be a binary tiny-cycle
rooted level-1 network displaying T. Then there is a non-empty strict subset U of the vertices
of Ω†(T) such that there is no arc (π, π′) with π′ ∈ U , π /∈ U . Moreover, if U is any such
set of vertices, then there exists a binary tiny-cycle rooted level-1 network N ′ displaying T in
which

⋃
π∈U V (π) is the set of leaves that are high in N ′.

Proof Let H denote the set of leaves that are high in N . Then, H is the union of the vertex sets
of one or more connected components of K(T) by Lemma 3. Any large-cycle rooted trinet which
contains a leaf in H and a leaf not in H cannot be displayed by N because N is tiny-cycle rooted.
Hence, H is also the union of one or more connected components of K†(T). These components
form a subset U of the vertices of Ω†(T). Furthermore, there is no arc (π, π′) with π′ ∈ U , π /∈ U
since no trinet or binet T displayed by N has a leaf that is in H and high in T and a leaf that
is not in H and that is low in T .

Now consider any nonempty strict subset U ′ of the vertices of Ω†(T) with no incoming arcs,
let H ′ be the union of the vertex sets of the corresponding connected components of K†(T) and
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let L′ow = X \H ′. Let N(H ′) be a binary level-1 network displaying T|H ′ and let N(L′ow) be a
binary level-1 network displaying T|L′ow. Such networks exist by Observation 1. Let N ′ be the
network consisting of vertices ρ, v, r, arcs (ρ, v), (v, r), (ρ, r), networks N(L′ow), N(H ′) and an arc
from v to the root of N(H ′) and an arc from r to the root of N(L′ow). Clearly, N ′ is a tiny-cycle
rooted level-1 network and H ′ is the set of leaves that are high in N ′.

It remains to prove that N ′ displays T. First observe that for any h ∈ H ′ and ` ∈ X \H ′, there is
no edge {h, `} in K†(T) (because otherwise h and ` would lie in the same connected component).
Hence, by construction of K†(T), any binet or trinet containing h and ` can not be tiny-cycle
rooted and cannot have h and ` at the same elevation. Moreover, in any such binet or trinet, h
must be high and ` must be low, because otherwise there would be an arc entering U ′ in Ω†(T).

Consider any trinet or binet T ∈ T. If the leaves of T are all in H ′ or all in L′ then T ∈ T|H ′
or T ∈ T|L′ and so T is clearly displayed by N ′. If T is a binet containing one leaf h ∈ H ′ and
one leaf ` ∈ X \H ′, then T must be N(`;h) (by the previous paragraph) and, again, T is clearly
displayed by N ′. Now suppose that T contains one leaf h ∈ H ′ and two leaves `, `′ ∈ X \ H ′.
Since we have argued in the previous paragraph that T is tiny-cycle rooted, T must be of the
form N2(`, `′;h), N5(`; `′;h) or N5(`′; `;h). Moreover, since N(L′ow) displays the binet on ` and `′,
and since h is high in T and `, `′ low, it again follows that T is displayed by N ′. Finally, assume
that T contains two leaves h, h′ ∈ H ′ and a single leaf ` ∈ X \H ′. Then (since T is tiny-cycle
rooted) T must be of the form N1(h, h′; `) or N4(h;h′; `). Since N(H ′) displays the binet on h
and h′, it follows that N ′ again displays T . ut

Note that the proof of Lemma 6 describes how to build a tiny-cycle rooted level-1 network
displaying T if such a network exists. Therefore, we assume from now on that the to be constructed
network is large-cycle rooted.

4.4 Separating the left and the right leaves

The next step is to divide the set H of leaves that are high in N into the leaves that are “on the
left” and the leaves that are “on the right” of the cycle containing the root or, more precisely, to
find the bipartition of H induced by some network displaying a given set of binets and trinets.
We use the following definition.

Definition 1 A bipartition of some set H ⊆ X is called feasible with respect to a set of binets
and trinets T if the following holds:

(F1) if there is a binet or trinet T ∈ T containing leaves a, b ∈ H that has a common ancestor in T
that is not the root of T , then a and b are in the same part of the bipartition and

(F2) if there is a trinet S1(x, y; z) ∈ T with x, y ∈ H and z ∈ X \H, then x and y are in different
parts of the bipartition.

Note that one part of a feasible bipartition may be empty. The next lemma shows that the
bipartition of H induced by N must be feasible. Hence, to find the right bipartion we only need
to consider feasible ones.

Lemma 7 Let N be a cycle-rooted binary level-1 network, let T ⊆ T(N), let H be the set of
leaves that are high in N and let {L,R} be the bipartition of H induced by N . Then {L,R} is
feasible with respect to T.
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Fig. 9 The graph M(T, H) in solid lines and the graph W(T, H) in dashed lines, for the set T of trinets in
Figure 5 and H = {a, b, c, d, e, f, g, h, i,m}. A proper 2-colouring of W(T, H) is to color {a} and {b} in red and
{c, d, e, f, g, h, i,m} in blue.

Proof First consider a binet or trinet T ∈ T containing leaves a, b ∈ H that have a common
ancestor in T that is not the root of T . Since N displays T , it follows that a and b have a
common ancestor in N that is not the root of N . Hence, a and b are on the same side in N .
Since {L,R} is the bipartition of H induced by N , it now follows that a and b are in the same
part of the bipartition, as required.

Now consider a trinet S1(x, y; z) ∈ T with x, y ∈ H and z ∈ X \H. Since N displays T , we have
that x and y are not on the same side in N . Since {L,R} is the bipartition of H induced by N ,
it follows that x and y are contained in different parts of the bipartition, as required. ut

We now show how a feasible bipartition of a set H ⊆ X can be found in polynomial time.
We define a graph M(T, H) = (H,E(M)) with an edge {a, b} ∈ E(M) if there is a trinet or
binet T ∈ T with a, b ∈ L(T ) distinct and in which there is a common ancestor of a and b that
is not the root of T . The idea behind this graph is that leaves that are in the same connected
component of this graph have to be in the same part of the bipartition.

Now define a graph W(T, H) = (V (W), E(W)) as follows. The vertex set V (W) is the set of
connected components of M(T, H) and there is an edge {π, π′} ∈ E(W) precisely if there exists
a trinet S1(x, y; z) ∈ T with x ∈ V (π), y ∈ V (π′) and z ∈ X \H. The purpose of this graph is to
ensure that groups of leaves are in different parts of the bipartition, whenever this is necessary.
See Figure 9 for an example.

Lemma 8 Let T be a set of binets and trinets on X and H ⊆ X. A bipartition {L,R} of H is
feasible with respect to T if and only if

(I) V (π) ⊆ L or V (π) ⊆ R for all π ∈ V (W) and

(II) there does not exist {π, π′} ∈ E(W) with (V (π) ∪ V (π′)) ⊆ L or (V (π) ∪ V (π′)) ⊆ R.

Proof The lemma follows directly from observing that (F1) holds if and only if (I) holds and
that (F2) holds if and only if (II) holds. ut

By Lemma 8, all feasible bipartitions can be found by finding all 2-colourings of the graphW(T, H).
At least one of them is the bipartition induced by a valid solutionN (if one exists) by Lemma 7.

For example, consider the input set of trinets T from Figure 5. Since T is not semi-dense, we
have to guess which connected components of K(T) form the set H of leaves that are high in the
network (see Section 4.3). If we guess H = {a, b, c, d, e, f, g, h, i,m}, then we obtain the graphs
M(T, H) and W(T, H) as depicted in Figure 9. The only possible 2-colouring (up to symmetry)
of the graph W(T, H) is indicated in the figure. From this we can conclude that a and b are on
the same side of the network and that all other high leaves (c, d, e, f, g, h,m) are “on the other
side” (i.e., none of them is on the same side as a or b).
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4.5 Finding the pendant sidenetworks

The next step is to divide the leaves of each part of the bipartition of the set of high leaves of
the network into the leaves of the pendant sidenetworks. For this, we define the following graph
and digraph.

Let T be a set of binets and trinets on X, let H ( X, let {L,R} be some bipartition of H that is
feasible with respect to T and let S′ ⊆ S ∈ {L,R}. Consider the graph O(T, S′, H) with vertex
set S′ and an edge {a, b} if

– there exists a trinet or binet T ∈ T|S′ with a, b ∈ L(T ) that has a cycle that contains the
root or a common ancestor of a and b (or both) or;

– there exists a trinet T ∈ T with L(T ) = {a, b, c} with c /∈ H and such that c is low in T and a
and b are high in T and both in the same pendant sidenetwork of T or;

– T1(a, b; c) ∈ T|S′ for some c ∈ S′.

The directed graph D(T, S′, H) (possibly having loops) has a vertex for each connected compo-
nent of O(T, S′, H) and it has an arc (π1, π2) (possibly, π1 = π2) precisely if there is a trinet in T
of the form S2(x; y; z) with x ∈ V (π1), y ∈ V (π2) and z /∈ H.

For example, Figure 10 shows the set of trinets from Figure 5 restricted to the set S = R =
{c, d, e, f, g, h, i,m}. The corresponding graphsO(T, R,H) andD(T, R,H), withH = {a, b, c, d, e,
f, g, h, i,m}, are depicted in Figure 11.
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Fig. 10 The restricted set of trinets T|R with R = {c, d, e, f, g, h, i,m} and T the set of trinets in Figure 5 and
H = {a, b, c, d, e, f, g, h, i,m}.
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Fig. 11 The graph O(T, R,H) in solid lines and the digraph D(T, R,H) in dashed lines, with R and H as in
Figure 10.
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The following lemma shows that, if the digraph D(T, S′, H) has no indegree-0 vertex, there exists
no binary level-1 network displaying T in which H is the set of high leaves and all leaves in S′

are on the same side.

Lemma 9 Let T be a set of binets and trinets on X, let H ( X, let {L,R} be a bipartition
of H that is feasible with respect to T and let S′ ⊆ S ∈ {L,R}. If the graph D(T, S′, H) has no
indegree-0 vertex, then there exists no binary level-1 network N that displays T in which H is
the set of high leaves and all leaves in S′ are on the same side.

Proof Suppose that there exists such a network N . Let {L,R} be the bipartition of H induced
by N and suppose without loss of generality that L∩S′ 6= ∅. Let L1, . . . , Lq be the partition of L
induced by the pendant sidenetworks of N , ordered from the nearest to the farthest from the root.
Let i be the first index for which Li∩S′ 6= ∅. Then, by the definition of O(T, S′, H), Li∩S′ is the
union of one or more connected components of O(T, S′, H). Each of these connected components
has indegree 0 in D(T, S′, H). ut

Let T, X,H,L and R be as above. We present a sidenetwork partitioning algorithm, which pro-
ceeds as follows for each S ∈ {L,R}. Choose one indegree-0 vertex of D(T, S,H) and call it S1.
This will be the set of leaves of the first pendant sidenetwork on side S. Then, construct the
graph O(T, S \ S1, H) and digraph D(T, S \ S1, H), select an indegree-0 vertex and call it S2.
Continue like this, i.e. let Si be an indegree-0 vertex of D(T, S \ (S1 ∪ . . . ∪ Si−1), H), until an
empty graph or a digraph with no indegree-0 vertex is obtained. In the latter case, there is no
valid solution (under the given assumptions) by Lemma 9. Otherwise, we obtain sets L1, . . . , Lq
and R1, . . . , Rq′ containing the leaves of the pendant sidenetworks on both sides.

In the example in Figure 11, the only indegree-0 vertex of D(T, R,H) is {c, d}. Hence, we
have R1 = {c, d}. Since O(T, R \ {c, d}) is connected, R2 = {e, f, g, h, i,m} follows.

4.6 Constructing the network

We build a binary level-1 network N∗ based on the sets H,L1, . . . , Lq, R1, . . . , Rq′ as follows.
Let N(Li) be a binary level-1 network displaying T|Li for i = 1, . . . , q and let N(Ri) be a binary
level-1 network displaying T|Ri for i = 1, . . . , q′ (note that it is possible that one of q and q′

is 0.). We can build these networks recursively, and they exist by Observation 1. In addition,
we recursively build a network N(Low) displaying T|Low with Low = X \H. Now we combine
these networks into a single network N∗ as follows. We create a root ρ, a reticulation r, and two
directed paths (ρ, u1, . . . , uq, r), (ρ, v1, . . . , vq′ , r) from ρ to r (if q = 0 (respectively q′ = 0) then
there are no internal vertices on the first (resp. second) path). Then we add an arc from ui to
the root of N(Li), for i = 1, . . . , q, we add an arc from vi to the root of N(Ri) for i = 1, . . . , q′

and, finally, we add an arc from r to the root of N(Low). This completes the construction of N∗.
For an example, see Figure 2.

We now prove that the network N∗ constructed in this way displays the input trinets, assuming
that there exists some solution that has H as its set of high leaves and {L,R} as the bipartition
of H induced by it.

Lemma 10 Let T be a set of binets and trinets, let N be a cycle-rooted binary level-1 network
displaying T, let H be the set of leaves that are high in N and let {L,R} be the feasible bipartition
of H induced by N . Then the binary level-1 network N∗ constructed above displays T.
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Proof The proof is by induction on the number |L(T)| of leaves in T. The induction basis for
|L(T)| ≤ 2 is trivial. Hence, assume |L(T)| ≥ 3.

For each pendant subnetwork N ′ of N∗ with leaf-set X ′, there exists a binary level-1 network
displaying T|X ′ by Observation 1. Hence, the network N ′ that has been computed recursively by
the algorithm displays T|X ′ by induction. It follows that any trinet or binet whose leaves are all
in the same pendant sidenetwork of N∗ is displayed by N∗. Hence, it remains to consider binets
and trinets containing leaves in at least two different pendant subnetworks of N∗.

Let B ∈ T be a binet on leaves that are in two different pendant subnetworks of N∗. If B =
N(y;x) then, because B is displayed by N , y is low in N and hence also low in N∗. Since x
and y are in different pendant subnetworks of N∗, it follows that x is high in N∗ and hence B
is displayed by N∗. If B = T (x, y) then there is an edge {x, y} in K(T) and hence x and y are
at the same elevation in N∗. Since x and y are in different pendant subnetworks, both must be
high in N∗ and it follows that N∗ displays B.

Now consider a trinet T ∈ T on leaves x, y, z that are in at least two different pendant subnet-
works. At least one of x, y, z is high in N∗ because otherwise all three leaves would be in the
same pendant subnetwork N(Low), with Low = X \H. We now consider the different types of
trinet that T can be.

First suppose that T = T1(x, y; z). Then x, y, z form a clique in K(T) and hence all of x, y and z
are high in N∗. Moreover, by feasibility, x and y are in the same part of the bipartition {L,R}
and hence on the same side in N∗. If x and y are in the same pendant subnetwork then the binet
T |{x, y} = T (x, y) is displayed by this pendant subnetwork. Hence, in that case, T is clearly
displayed by N∗. Now assume that x and y are in different pendant subnetworks and assume
without loss of generality that x, y ∈ R. If z ∈ L then, again, T is clearly displayed by N∗. Hence
assume that x, y, z ∈ R. Then, for each set R′ ⊆ R containing x, y, z, the graph O(T, R′, H) has
an edge between x and y. Hence, either x and y are in the same pedant sidenetwork, or z is in a
pendant sidenetwork above the pendant sidenetworks that contain x and y. Hence, T is displayed
by N∗.

Now suppose that T ∈ {N1(x, y; z), N4(x; y; z)}. Then there is an edge {x, y} in K(T) and hence x
and y are at the same elevation in N∗. First note that x, y and z are not all high in N∗ because
otherwise x, y and z would all be in the same part S of the bipartition {L,R} by feasibility and
in the same pendant sidenetwork because they form a clique in O(T, S,H). Hence, z is not at
the same elevation as x and y and hence z is not in the same connected component of K(T) as x
and y. Then there is an arc (π, π′) in Ω(T) with π the component containing x and y and π′ the
component containing z. Hence x and y are high in N∗ and z is low in N∗ (since π′ has indegree
greater than zero). Then, x and y are in the same part S of the bipartition {L,R} by feasibility
and in the same pendant subnetwork of N∗ because there is an edge {x, y} in O(T, S). Hence,
since the binet T |{x, y} is displayed by the pendant subnetwork containing x and y, we conclude
that T is displayed by N∗.

Now suppose that T = S1(x, y; z). We can argue in the same way as in the previous case that x
and y are high in N∗ and that z is low in N∗. By feasibility, x and y are in different parts of the
bipartition {L,R} and, hence, N∗ displays T .

Now suppose that T ∈ {N2(x, y; z), N5(x; y; z)}. Then we can argue as before that x and y are
at the same elevation in N∗ and that z is not at the same elevation as x and y and hence that z
is not in the same connected component of K(T) as x and y. Then there is an arc (π, π′) in Ω(T)
with π the component containing z and π′ the component containing x and y. Hence, z is high
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in N∗ and x and y are low in N∗. Since the binet T |{x, y} is displayed by N(Low), we conclude
that T is displayed by N∗.

Now suppose that T = N3(x; y; z). Observe that x, y, z are all high in N3(x; y; z) because this
trinet is not cycle-rooted. Therefore, x, y, z form a clique in K(T) and hence all of x, y and z
are high in N∗. Moreover, by feasibility, x and y are in the same part of the bipartition {L,R},
say in R, and hence on the same side in N∗. First suppose that z ∈ L. Then, T|R contains the
binet T |{x, y} which is cycle-rooted. Hence, there is an edge {x, y} in O(T, R,H) and x and y
are in the same pendant sidenetwork. Since T |{x, y} is displayed by this pendant subnetwork,
it follows that T is displayed by N∗. Now assume that z ∈ R. Then the trinet T is in T|R and
has a common ancestor of x and y contained in a cycle. Hence, as before, x and y are in the
same pendant sidenetwork of N∗ and, since T |{x, y} is displayed by that pendant sidenetwork,
it follows that T is displayed by N∗.

Finally, suppose that T = S2(x; y; z). As in the case T ∈ {N1(x, y; z), N4(x; y; z)}, we can argue
that x and y are high in N∗ and that z is low in N∗. Then, by feasibility, x and y are on the
same side S in N∗. First suppose that x and y are in the same pendant sidenetwork of N∗.
Consider an iteration i of the sidenetwork partitioning algorithm with x, y ∈ S \ (S1∪ . . .∪Si−1).
Then there is an arc (π1, π2) in D(T, S \ (S1 ∪ . . . ∪ Si−1), H) with x ∈ V (π1) and y ∈ V (π2)
(possibly π1 = π2). Hence, Si does not contain y because π2 does not have indegree-0. It follows
that x and y are in different sidenetworks and that the sidenetwork containing x is above the
sidenetwork containing y. Hence, N∗ displays T , which concludes the proof of the lemma. ut

See Algorithm 1 for the pseudocode of the algorithm and Table 1 for an overview of the definitions
of the graphs used in the algorithm. Note that Lemma 5 shows correctness of Lines 14-16, which
speed up the algorithm significantly in the case that the input is semi-dense.

Theorem 2 There exists an O(3|X|poly(|X|)) time algorithm that constructs a binary level-1
network N displaying a given set T of binets and trinets on a taxon set X, if such a network
exists.

Proof If the graph R(T) is disconnected and has connected components C1, . . . , Cp, then we
recursively compute binary level-1 networks N1, . . . , Np displaying T|C1, . . . ,T|Cp respectively.
Then, by Lemma 1, T is displayed by the binary level-1 network N ′ obtained by creating a root ρ
and adding arcs from ρ to the roots of N |C1, . . . , N |Cp, and refining the root ρ in order to make
the network binary.

IfR(T) is connected, then any binary level-1 network N displaying T is cycle-rooted by Lemma 2.
If there exists such a network that is tiny-cycle rooted, then we can find such a network by
Lemma 6.

Otherwise, we can “guess”, using Lemma 4, a set of leaves H such that there exists some bi-
nary level-1 network N displaying T in which H is the set of leaves that are high. Moreover,
using Lemma 8, we can “guess” a feasible partition {L,R} of H with respect to T by “guess-
ing” a proper 2-colouring of the graph W(T, H). The total number of possible guesses for the
tripartition {L,R,X \H} is at most 3|X|.

If there exists a binary level-1 network N ′ displaying T then, by Lemma 10, there exists some
tripartition (L,R,X \H) for which network N∗ from Lemma 10 displays all binets and trinets
in T.
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Graph Vertices Edges/Arcs

R(T) X an edge {a, b} if there exists T ∈ T with a, b ∈ L(T ) and T is cycle-
rooted or contains a common ancestor of a and b;

K(T) X an edge {a, b} if there exists T ∈ T with a, b ∈ L(T ) and in which a
and b are at the same elevation in T ;

Ω(T) connected components
of K(T)

arc (π, π′) if there exists T ∈ T that is cycle-rooted and with h, ` ∈
L(T ) with h ∈ V (π) high in T , ` ∈ V (π′) low in T ;

K†(T) X union of edges of K(T) and edges {a, b} for which there exists T ∈ T
with a, b ∈ L(T ) that is large-cycle rooted;

Ω†(T) connected components
of K†(T)

arcs defined as for Ω(T);

M(T, H) H an edge {a, b} if there exists T ∈ T with a, b ∈ L(T ) distinct and
in which there is a common ancestor of a and b that is not the root
of T ;

W(T, H) connected components
of M(T, H)

an edge {π, π′} if there exists a trinet S1(x, y; z) ∈ T with x ∈ V (π),
y ∈ V (π′) and z ∈ X \H;

O(T, S′, H) S′ ⊆ S ∈ {L,R} an edge {a, b} if

– there exists T ∈ T|S′ with a, b ∈ L(T ) that has a cycle containing
the root or a common ancestor of a and b (or both) or;

– there exists T ∈ T with L(T ) = {a, b, c} with c /∈ H and such
that c is low in T and a and b are high in T and both in the same
pendant sidenetwork of T or;

– T1(a, b; c) ∈ T|S′ for some c ∈ S′;

D(T, S′, H) connected components
of O(T, S′, H)

an arc (π1, π2) (possibly, π1 = π2) if there exists S2(x; y; z) ∈ T with
x ∈ V (π1), y ∈ V (π2) and z /∈ H.

Table 1 Overview of the graphs used by Algorithm 1.

It remains to analyse the running time. Each recursive step takes O(3|X|poly(|X|)) time and the
number of recursive steps is certainly at most |X|, leading to O(3|X|poly(|X|)) in total since, by
Observation 1, the various recursive steps are independent of each other. ut

Note that the running time analysis in the proof Theorem 2 is pessimistic since, by Lemma 3, the
set H of high leaves must be the union of a subset of the vertices of Ω(T) with no incoming arcs.
Moreover, the number of feasible bipartitions of H is also restricted because each such bipartition
must correspond to a 2-colouring of the graph W(T, H). Hence, the number of possible guesses
is restricted (but still exponential).

We conclude this section by extending Theorem 2 to instances containing networks with arbi-
trarily many leaves.

Corollary 1 There exists an O(3|X|poly(|X|)) time algorithm that constructs a binary level-1
network N displaying a given set N of binary level-1 networks, if such a network exists.

Proof We apply Theorem 2 to the set T(N ) of binets and trinets displayed by the networks in N .
To check that the resulting network N displays N , consider a network N ′ ∈ N . Since binary
level-1 networks are encoded by their trinets [11], any binary level-1 network displaying T(N ′)
is equivalent to N ′. Hence, N |L(N ′) is equivalent to N ′. Therefore, N ′ is displayed by N . Since
|T(N )| = O(|X|3), the running time is O(3|X|poly(|X|)) as in Theorem 2. ut
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Algorithm 1: Constructing a binary level-1 network displaying a given set T of binets and
trinets, if such a network exists

1 Step 1: Determine if the network is cycle-rooted
2 if R(T) is disconnected then
3 // The network is not cycle-rooted;
4 Recurse on the connected components.
5 if each recursive call returns a nonempty network then
6 combine the partial networks into a network N on X as detailed in Lemma 1; return N ;

7 else
8 return ∅.

9 else
10 // The network is cycle-rooted;
11 Step 2: Find the high leaves

12 if there exists a non-empty strict subset U of the vertices of Ω†(T) with no incoming arcs then
13 // The network is tiny-cycle rooted;
14 Set H =

⋃
π∈U V (π);

15 Construct a network N on X by combining a network N(H) displaying T|H and a
network N(Low) displaying T|(X \H) as detailled in Lemma 6; return N ;

16 else
17 // The network is large-cycle rooted;
18 if T is semi-dense then
19 if there is a unique indegree-0 vertex π0 of Ω(T) then
20 Set H = V (π0) and go to line 24;

21 else
22 for all non-empty strict subsets U of the vertices of Ω(T) with no incoming arcs do
23 Set H =

⋃
π∈U V (π);

24 Step 3: Separate the left and the right leaves
25 Find all feasible bipartitions of H by finding all 2-colourings of W(T, H);
26 if there exists at least one feasible bipartition then
27 for each such bipartition {L,R} do
28 Step 4: Find the pendant sidenetworks
29 Apply the sidenetwork partitioning algorithm described in Section 4.5;
30 if the sidenetwork partitioning algorithm does not find a D(T, S′, H) without

indegree-0 vertex then
31 Construct a network N as described in Section 4.6; return N ;

32 return ∅.

5 Constructing a binary level-1 network from a set of tiny-cycle networks in
polynomial time

Recall that a network is a tiny-cycle network if each cycle consists of exactly three vertices.
It is easy to see that each tiny-cycle network is a level-1 network. Note that all binary level-1
binets and trinets except for S1(x, y; z) and S2(x; y; z) are tiny-cycle networks. We prove the
following.

Theorem 3 Given a set T of tiny-cycle binets and tiny-cycle trinets, we can decide in polynomial
time if there exists a binary level-1 network displaying T and construct such a network if it exists.

Proof Let N be a binary level-1 network displaying T. If N is not a tiny-cycle network, then
we construct a tiny-cycle network N ′ from N as follows (see Figure 12 for an illustration).
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Fig. 12 Transformation from a binary level-1 network N to a tiny-cycle network N ′, used in the proof of
Theorem 3 (with n = 3 and m = 2).

For each cycle of N consisting of internally vertex-disjoint directed paths (s, v1, . . . , vn, t) and
(s, w1, . . . , wm, t) with n + m ≥ 2, do the following. Delete arcs (vn, t) and (wm, t), suppress vn
and wm, add vertices q and r and arcs (q, r), (r, t), (q, t) and (r, s). Finally, if s is not the root
of N , let p be the parent of s in N and replace arc (p, s) by an arc (p, q). Let N ′ be the obtained
network. It is easy to verify that any binary tiny-cycle network that is displayed by N is also
displayed by N ′ and that N ′ is a tiny-cycle network. Hence, we may restrict our attention to
constructing tiny-cycle networks.

The only two cases to consider are that the to be constructed network is not cycle-rooted and
that it is tiny-cycle rooted. By Lemmas 1 and 2, we can deal with the first case in the same way
as in the polynomial-time algorithm for binets from Section 3 with R(T) instead of Rb(B). By
Lemma 6, we can deal with the second case in the same way as in the polynomial-time algorithm
for binets with Ω†(T) instead of Ωb(B) (and hence K†(T) instead of Kb(B)). ut

Note that Theorem 3 applies to sets of binets and trinets that do not contain any trinets of
the form S1(x, y; z) and S2(x; y; z). The following corollary generalises this theorem to general
instances of tiny-cycle networks. It follows from Theorem 3 in the same way as Corollary 1 follows
from Theorem 2.

Corollary 2 Given a set N of tiny-cycle networks, we can decide in polynomial time if there
exists a binary level-1 network displaying N and construct such a network if it exists.

6 Complexity of constructing a level-1 network from a nondense set of trinets

In this section, we show that it is NP-hard to construct a binary level-1 network from a nondense
set of trinets. The reduction is a nontrivial adaptation of the reduction given by Jansson, Nguyen
and Sung [19] for deciding if there exists a level-1 network that is consistent with a given set of
triplets in the following sense. A network N is consistent with a triplet T if N contains a subgraph
that is a subdivision of T . The notions of triplet consistency and trinet display are fundamentally
different in networks (while they are the same in trees). In particular, a network displays only
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one trinet on three taxa but may be consistent with two distinct triplets on these three taxa (for
example, network N in Figure 13 is consistent with triplets T1(b, x1; z1) and T1(b, z1;x1) but the
only trinet on these taxa that N displays is S1(x1, z1; b)). Consequently, Theorem 4 does not
follow directly from the result in [19].

Because trinets provide more information than triplets, one might hope that constructing a
network from trinets is computationally easier than from triplets. However, Theorem 4 shows that
this is (in the considered setting) not the case. The proof uses a reduction from SetSplitting,
which is similar to the reduction in [19]. However, with trinets it is much more difficult to
enforce a simple structure (a cycle with one leaf below it and all other leaves on its left and
right sides) without enforcing on which side each leaf is. To achieve this, the reduction uses three
different types of trinets, and it is not clear if the problem remains NP-hard if only trinets of
type S1(x, y; z) or only trinets of type S2(x; y; z) are present.

Theorem 4 Given a set of trinets T, it is NP-hard to decide if there exists a binary level-1
network N displaying T. In addition, it is NP-hard to decide if there exists such a network with
a single reticulation.

Proof We reduce from the NP-hard problem SetSplitting [6].

The SetSplitting problem is defined as follows. Given a set U and a collection C of size-3
subsets of U , decide if there exists a bipartition of U into sets A and B such that for each C ∈ C
holds that C ∩ A 6= ∅ and C ∩ B 6= ∅? If such a bipartition exists, then we call it a set splitting
for C.

The reduction is as follows. For an example see Figure 13. Assume that C = {C1, . . . , Ck},
with k ≥ 1, and furthermore that the elements of U are totally ordered (by an operation <).
We create a taxon set X and a trinet set T on X as follows. For each u ∈ U , put a taxon u0
in X. In addition, add a special taxon b to X. Then, for each Ci = {u, v, w} with u < v < w,
add taxa ui, u

′
i, vi, v

′
i, wi, w

′
i to X and add the following trinets to T: T1(vi, v

′
i;ui), T1(wi, w

′
i; vi),

T1(ui, u
′
i;wi), S2(vi; v

′
i; b), S2(wi;w

′
i; b), S2(ui;u

′
i; b), S1(ui, u0; b), S1(vi, v0; b), S1(wi, w0; b), re-

sulting in T comprising of three different types of trinets. This completes the reduction.

First we show that, if there exists a set splitting for C, then there exists a network N on X that
displays T and has exactly one reticulation. Let {A,B} be a set splitting for C. We construct
a network N whose root is in a cycle and each arc leaving this cycle ends in a leaf. Hence, N
has precisely one reticulation, whose child is leaf. Label this leaf by taxon b. Let {L,R} be the
bipartition of X \{b} induced by N . Then, for each u ∈ A we put u0 in L and ui and u′i for i ≥ 1
in R. Symmetrically, for each u ∈ B we put u0 in R and ui and u′i for i ≥ 1 in L. It remains
to describe the order of the leaves on each side of the network. For each i ∈ {1, . . . , k} and for
any two leaves xi, yi that are on the same side in N , put xi above yi and y′i if x < y (and put
yi above xi and x′i if y > x). In addition, put each xi above x′i. The ordering can be completed
arbitrarily. For an example, see the network in Figure 13. To see that N displays T, first observe
that all trinets of the form S2(xi;x

′
i; b) are displayed by N because we put xi above x′i and on

the same side. In addition, all trinets of the form S1(xi, x0; b) are also displayed by N because xi
and x0 are on opposite sides of N . Now consider a constraint Ci = {u, v, w} ∈ C with u < v < w.
Since {A,B} is a set splitting, |Ci ∩ A| = 2 or |Ci ∩ B| = 2. Suppose that u and v are in the
same set, say u, v ∈ A. The other two cases can be dealt with in a similar manner. It then
follows that w ∈ B and hence that ui, vi, u

′
i, v
′
i ∈ R and wi, w

′
i ∈ L. It then follows that trinets

T1(wi, w
′
i; vi) and T1(ui, u

′
i;wi) are displayed by N . Moreover, since u < v, we have that ui is



24 Huber, van Iersel, Moulton, Scornavacca and Wu

y1 y′1 x1

C1 = {x, y, z}

y1

y′1
b

z1 z′1 y1

z1

z′1
b

x1 x′
1 z1

x1

x′
1

b

x2 x′
2 q2

C2 = {q, x, z}

x2

x′
2

b

z2 z′2 x2

z2

z′2
b

q2 q′2 z2

q2

q′2
b

x1 x0

b

y1 y0

b

z1 z0

b

x2 x0

b

q2 q0

b

z2 z0

b

x1

x′
1

x2

x′
2

y1

y′1
y2

y′2
z0

q0

b

z1

z′1
z2

z′2
q1

q′1
q2

q′2
x0

y0

N

Fig. 13 An example of the reduction if the input of the SetSplitting problem is C = {{x, y, z}, {q, x, z}} (with
q < x < y < z). A valid set splitting is {{q, z}, {x, y}} and the network N indicated in the figure displays all
trinets produced by the reduction.

above vi and v′i. Hence, also trinet T1(vi, v
′
i;ui) is displayed by N . We conclude that T is displayed

by N .

It remains to show that if there exists a network on X that displays T, then there exists a
set splitting A,B for C. So assume that there exists a network N on X that displays T. From
Lemma 2 it follows that N is cycle-rooted. By Lemma 3, all leaves in X \ {b} are at the same
elevation in N . Consequently, by Lemma 4, the leaves in X \ {b} are all high in N and b is low
in N . Let {L,R} be the bipartition of X \ {b} induced by N . Define A = {u ∈ U | u0 ∈ L} and
B = {u ∈ U | u0 ∈ R}. We claim that A and B form a set splitting for C. To show this, assume
the contrary, i.e., that there exists some constraint Ci = {u, v, w} ∈ C, with u < v < w, such
that either u, v, w ∈ A or u, v, w ∈ B. Assume without loss of generality that u, v, w ∈ A. Then
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u0, v0, w0 ∈ L. Hence, ui, vi, wi ∈ R since the trinets S1(ui, u0; b), S1(vi, v0; b) and S1(wi, w0; b)
are contained in T. Then, since S2(ui;u

′
i; b) ∈ T, we obtain that u′i ∈ R. Moreover, ui and u′i are

in different sidenetworks of N . Then, since T1(ui, u
′
i;wi) ∈ T, the sidenetwork containing wi is

strictly above the sidenetwork containing ui. However, it follows in the same way from trinets
S2(vi; v

′
i; b) and T1(vi, v

′
i;ui) that the sidenetwork of N containing ui is strictly above the sidenet-

work containing vi. Furthermore, it follows from the trinets S2(wi;w
′
i; b) and T1(wi, w

′
i; vi) that

the sidenetwork containing vi is strictly above the sidenetwork containing wi. Hence, we have
obtained a contradiction. It follows that A and B form a set splitting of C, completing the proof.

ut

7 Concluding remarks

We have presented an exponential time algorithm for determining whether or not an arbitrary
set of binets and trinets is displayed by a level-1 network, shown that this problem is NP-hard,
and given some polynomial time algorithms for solving it in certain special instances. It would
be interesting to know whether other special instances are also solvable in polynomial time (for
example, when either S1(x, y; z)-type or S2(x; y; z)-type trinets are excluded).

We note that the problem of deciding if a set of binets and trinets is displayed by a level-1
network remains NP-hard when the input set is semi-dense, i.e. for each combination of two
taxa it contains at least one binet or trinet containing those two taxa. Although the trinet set
produced in the proof of Theorem 4 is not semi-dense, it is not difficult to make it semi-dense
without affecting the reduction, by adding a binet T (x, y) for all x, y ∈ X \ {b}.

As mentioned in the introduction, our algorithms can be regarded as a supernetwork approach
for constructing phylogenetic networks. It is therefore worth noting that our main algorithms
extend to the case where the input consists of a collection of binary level-1 networks, where each
input network is allowed to have any number of leaves.

Furthermore, we have shown that constructing a binary level-1 network from a set of trinets is
NP-hard in general. One could instead consider the problem of constructing such networks from
networks on (at least) m leaves, 3 ≤ m ≤ |X| (or m-nets for short). However, it can be shown
that it is also NP-hard to decide if a set of level-1 m-nets is displayed by a level-1 network or
not. This can be shown by a simple reduction from the problem for trinets.

It would also be of interest to develop algorithms to reconstruct level-k networks for k ≥ 2 from
m-nets (a binary network is said to be level -k if every biconnected component contains at most k
reticulations [4]). Note that the trinets displayed by a level-2 network always encode the network
[16], but that in general trinets do not encode level-k networks [9]. Therefore, in light also of the
results in this paper, we anticipate that these problems might be quite challenging in general.
Even so, it could still be very useful to develop heuristics for tackling such problems as this has
proven very useful in both supertree and phylogenetic network construction.
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