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ABSTRACT 
  
The laser-induced intermolecular force that exists between two or more particles subjected to a moderately intense laser 
beam is termed ‘optical binding’.  Completely distinct from the single-particle forces that give rise to optical trapping, 
the phenomenon of optical binding is a manifestation of the coupling between optically induced dipole moments in 
neutral particles.  In conjunction with optical trapping, the optomechanical forces in optical binding afford means for the 
manipulation and fabrication of optically bound matter. The Casimir-Polder potential that is intrinsic to all matter can be 
overridden by the optical binding force in cases where the laser beam is of sufficient intensity.  Chiral discrimination can 
arise when the laser input has a circular polarization, if the particles are themselves chiral.  Then, it emerges that the 
interaction between particles with a particular handedness is responsive to the left- or right-handedness of the light.  The 
present analysis, which expands upon previous studies of chiral discrimination in optical binding, identifies a novel 
mechanism that others have previously overlooked, signifying that the discriminatory effect is much more prominent 
than originally thought.   The new theory leads to results for freely-tumbling chiral particles subjected to circularly 
polarized light.  Rigorous conditions are established for the energy shifts to be non-zero and display discriminatory 
effects with respect to the handedness of the incident beam.  Detailed calculations indicate that the energy shift is larger 
than those previously reported by three orders of magnitude.  
 
Keywords: optical forces, optical binding, optically bound matter, quantum electrodynamics, circularly polarized light, 
chirality, chiral discrimination, nanoparticles 
 
 

1.  INTRODUCTION 
 
Optical binding is an optomechanical phenomenon, predicted by Thirunamachandran1 and distinct from optical trapping, 
where the applied electromagnetic radiation not only traps but also induces an optical force between particles.  These 
laser-induced forces can be either attractive or repulsive (despite an implication of the former in the usually applied term 
“binding”) and it may override the attractive inter-particle Casimir-Polder force2 that always exists.  The earliest 
experimental efforts focused on binding between dielectric microparticles3-8 but increasing attention has more recently 
been given to nanoparticle systems.9-11  Theoretical developments on the latter (for example see refs 12,13 and references 
therein) include molecular studies based on quantum theory.14-16  Here, our attention is drawn to the novel effects that 
arise when both the trapped nanoparticles and input light are chiral, with either the same or the opposite sense of 
handedness.  Optical forces are said to be discriminatory when different physical results arise for opposite handedness of 
molecules and/or the applied circularly polarized beam.  These discriminatory effects may be attributed to low molecular 
symmetry, such that selection rules allow at least some electronic transitions to include contributions from not only 
electric dipole, but also other electric and magnetic multipole moments. Examples of discriminatory optical processes 
include circular dichroism17 and circular differential scattering,18 whilst recent investigations have also revealed that 
discriminatory optical forces can occur in optical trapping.19  Although small in comparison to forces mediated by 
electric-electric dipole interactions, the leading chiral-dependent term typically corresponds to electric-magnetic dipole 
couplings.  Some chiral aspects of optical binding have been identified previously;20 this earlier study showed that the 
discriminatory effects are of the order of 10-6 smaller than the electric-electric dipole coupling forces, and independent of 
the handedness of incident radiation.  In a more recent analysis21 it has been revealed that the electric-magnetic terms that 
contribute, which were not considered in the previous work, are in fact of high physical importance – meaning that the 
chiral binding force is typically several orders of magnitude greater than previously thought and, moreover, dependent on 
both the handedness of the radiation and the trapped particles. 
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2.  SUMMARY OF THE DERIVATION 
 
In the following derivation the method of induced moments22-24 is used to calculate the laser-induced shift in energy 
created between a pair of chiral particles in the presence of a circularly polarized beam.  The physical basis of the 
method of induced moments is that electromagnetic fields induce electric multipole (En) and magnetic multipole (Mn) 
moments in polarizable bodies, and as a consequence multipole-multipole coupling occurs via resonant interaction.  The 
leading contribution to optical binding forces comes from a coupling between the polarizabilities of the two particles 
(E12-E12 coupling) and it is non-discriminatory with regard to chirality. The original studies25 on the discriminatory 
forces at play in optical binding were concerned with a polarizability variant (E1M1-E1M1) coupling mechanism 
between chiral particles.  Although E12 couplings are non-discriminatory, it is possible for one chiral particle to engage 
its E12 properties with the E1M1 properties of another chiral particle to produce E12-E1M1 couplings – which, owing to 
the E1M1 component are discriminatory.  The E12-E1M1 energy shift for a pair of chiral molecules is represented as; 
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Here, the non-discriminatory E12 interaction is represented by the electric-dipole polarizability ( ),ijα ξ ω  of a species ξ  
and the discriminatory mixed electric-magnetic counterpart, E1M1, is denoted by ( ),ijG ξ ω , which changes sign when 
one enantiomer is replaced by another of opposite handedness.  The explicit forms of ( ),ijα ξ ω  and ( ),ijG ξ ω  are given 
in ref. 21.  It is noteworthy that whilst ( ),ijα ξ ω  is a real quantity, ( ),ijG ξ ω  is imaginary.  Here, ( )id ξ

⊥ R and ( )jb ξR  are 
the transverse displacement electric field operator and magnetic field operators, respectively.  In equation (1), ( ),ijV k R  
and ( ),ijU k R  represent retarded resonant dipole-dipole interaction tensors, for E1-E1 and E1-M1 couplings, 
respectively.26  Expanding the induced moments in (1) we find; 
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where, due to the time-odd character of the magnetic-dipole operator (and with the magnetic transition dipoles satisfying 
the relation 0 0r r

i im m− = ), we use the identity ij jiG G ′− = .  Thus, equation (5) can be understood as the coupling of the 
polarizability tensor, α , of one particle with the G tensor of the other, which we can write in shorthand as " "Gα −
coupling.  In addition, E12-E12 involves " "α α−  coupling and E1M1-E1M1, " "G G− coupling.  Further manipulation 
of equation (5) is possible by taking the expectation values of both the molecular and radiation parts, and carrying out an 
orientational average using standard techniques,27 i.e.: 
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This expression represents an energy shift between two particles within a quantization volume, V. 
 
 

3.  RESULTS AND ANALYSIS 
 
At this stage it becomes evident that the polarization state of the input light dictates the observed behavior.  For a pair of 
particles in either of the k ║ R or k ┴ R configurations, the radiation-induced energy shift (6) is zero when the incident 
light is linearly polarized; however, the use of circularly polarized light produces non-zero energy shifts for both possible 
configurations, which are given below.  Given a specific enantiomer, the superscript L/R on the left-hand side of each 
equation can be taken to signify the handedness of the radiation, correlating with the plus/minus signs on the right; 
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where I denotes the input laser irradiance (equal to 2n c k Vh ) and to further simplify notation we have used 

( ) ( ), ,G iGξ ω ξ ω′ ′=% .  Furthermore, we carry out a phased-weighted pair orientational average,28 which involves 
averaging over all k relative to R and over the relative orientations of the pair of molecules in the system, as is 
appropriate when the particle pair is in a liquid state. As with the previous results (7) and (8), the energy shift for a pair 
of freely tumbling chiral particles is zero if the incident radiation is linearly polarized.  For circularly-polarized light the 
result is non-zero and the total phased-averaged energy shift is given as; 
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As with the dominant electric dipole " "α α−  coupling, the result depends linearly on the irradiance of the input beam. 
The discriminatory effects embedded within the " "Gα −  coupling arise from both the handedness of the radiation and 
of the particles.  Recalling that a particle’s G tensor is of opposite sign for either the right- or left-handed enantiomer, it 
is evident the discriminatory binding energy contributions (7), (8), and (9) are zero for a pair of opposite enantiomers, 
but non-zero for a pair of chiral particles of the same handedness.  Moreover, the sign of the energy shift depends on 
both the particle and of the radiation handedness. For example, a pair of right-handed particles irradiated by right-handed 
light has the same discriminatory binding force as the corresponding pair of left-handed particles irradiated by left-
handed light.  It is worth noting, though, that the energy shift would in fact be non-zero for a right- and left-handed pair 
of non-identical particles, since the magnitudes of their G tensors would then differ.  
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