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ABSTRACT: Despite rapid advances in the field of metal-free,
“frustrated Lewis pair” (FLP)-catalyzed hydrogenation, the
need for strictly anhydrous reaction conditions has hampered
wide-scale uptake of this methodology. Herein, we report that,
despite the generally perceived moisture sensitivity of FLPs,
1,4-dioxane solutions of B(C6F5)3 actually show appreciable
moisture tolerance and can catalyze hydrogenation of a range
of weakly basic substrates without the need for rigorously inert
conditions. In particular, reactions can be performed directly in
commercially available nonanhydrous solvents without sub-
sequent drying or use of internal desiccants.
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With the advent of “frustrated Lewis pair” (FLP)
chemistry, metal-free catalytic hydrogenation has

managed to progress, in less than a decade, from the first
example of reversible metal-free H2 activation,1 into an
established area of active research.2 In this remarkably short
span of time, the substrate scope of FLP hydrogenation
methodologies (in which H2 is activated through the
cooperative action of a Lewis acid/base pair precluded from
forming a strong classical adduct) has expanded from the initial
basic imines and aziridines3 to include a wide variety of other
functional groups,2 including heterocycles,4 simple alkenes, and
alkynes,5 and most recently, aldehydes and ketones.6

As FLP chemistry becomes more established, focus has
inevitably begun to shift from early, “proof-of-concept” studies
to the aim of developing more practical and widely applicable
FLP catalysts. To this end, recent reports have been seen
emphasizing the development of FLPs that can operate with
low catalyst loadings,5a,7 or with high enantioselectivity.8

Despite these advances, one factor that seriously limits the
attractiveness of the FLP catalysts reported to date is their
extreme sensitivity (and perceived sensitivity) to moisture9 (as
well as many other functional groups),4,9,10 requiring these
reagents to be handled and employed under rigorously inert
conditions through use of gloveboxes and Schlenk lines. This
lack of H2O tolerance represents a significant practical barrier
to the uptake of FLP catalysis by the broader chemical
community that must be overcome if FLPs are truly to become
viable alternatives to transition metal hydrogenation catalysts.
Several attempts have been made to mitigate this problem in

recent years. For example, we have reported the use of

B(C6Cl5)(C6F5)2
11 as a bench-stable Lewis acid for FLP

chemistry;12 however, this system still required the use of
rigorously dry reaction conditions (including freshly distilled,
anhydrous solvent) during catalytic hydrogenations. Separately,
Ingleson et al. have described the use of the N-methylacridi-
nium cation as a Lewis acid for FLP H2 activation in wet 1,2-
dichlorobenzene,13 yet these reaction conditions were not
extended to subsequent hydrogenation catalysis. In addition,
significant hydrolysis (40%) was observed. More recently,
Stephan et al. have reported an FLP-catalyzed deoxygenation of
aryl ketones and, although this reaction produces H2O as a
byproduct, the use of molecular sieves as a reagent ensures that
the reaction mixture remains strictly anhydrous.6c As such, the
challenge of developing simple, H2O-tolerant FLP catalytic
systems remains an open one.14

The origins of FLPs’ moisture sensitivity can be understood
by considering as an example the archetypal Lewis acid of FLP
chemistry: commercially available B(C6F5)3 (1). Because of its
high Lewis acidity, complexation of H2O not only is strong, but
also leads to significant Brønsted acidification (the pKa of [1·
OH2] has been found to be comparable to that of HCl)15 and
accordingly, deprotonation by even moderately strong bases
(including the amines and phosphines typically employed in
FLP chemistry) is irreversible. Under more forcing conditions,
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the adduct [1·OH2] is also prone to decomposition via B−C
bond protonolysis (Scheme 1).16

Recently, we6a and Stephan et al.6b have independently
reported the hydrogenation of ketones and aldehydes to
alcohols, catalyzed by 1 in ethereal solvents (Scheme 2). These
reactions are clearly tolerant of hydroxylic functionalities, which
is attributed to the weak Brønsted basicity of the ethers
employed, which inhibits irreversible deprotonation of the
highly acidic [1·ROH] adducts.
Following on from these results, we reasoned that these

systems might also be capable of tolerating the presence of
H2O, for similar reasons, which would represent an important
advance for the field of FLP chemistry. Initial investigations
focused on the hydrogenation of acetone (the simplest
substrate previously examined under anhydrous conditions).
Gratifyingly, when 1 was replaced with the preformed adduct 1·
OH2

15 under identical conditions, selective hydrogenation to 2-
propanol was observed to proceed cleanly and with good
turnover number (Table 1, entry 2). Although the rate of
reaction is reduced (c.f. Table 1, entry 1), confirming that H2O
acts as a significant catalyst poison, inhibition by H2O is
nonetheless clearly reversible. At the time, this represented the
first example of an FLP-catalyzed hydrogenation that is tolerant
of stoichiometric (relative to catalyst) H2O.
Increasing the H2 pressure led to a significant rate

enhancement, even at lower catalyst loadings (Table 1, entry
3) and without any detectable catalyst decomposition
(ascertained by 19F and 11B NMR spectroscopy). Under these
conditions, several more equivalents of H2O could be tolerated,
with an attendant decrease in rate yet otherwise no major
difference in reaction outcome (Table 1, entries 4 and 5).
On the basis of the ability of this system to tolerate multiple

equivalents of water, we reasoned that the use of “undried”
solvents ought to be achievable; impressively, the reaction
could be performed very effectively in nonanhydrous
commercial solvent17 even without any need for subsequent
drying, degassing, or other purification. Furthermore, doubling
the substrate and catalyst concentrations allowed for a
significant decrease in reaction time (Table 1, entry 6).
The mechanism by which the hydrogenation is believed to

occur is identical to that proposed for the anhydrous reaction,
with [1·OH2] acting as an off-cycle resting state (Scheme 3).18

As with previously observed alcohol tolerance, H2O tolerance is
attributed to the lack of any strong base, meaning irreversible

deprotonation of [1·OH2] does not occur (c.f. Scheme 1). Even
so, it seems possible that reversible deprotonation does occur,
which could be consistent with the acidity of this adduct (vide
supra).19 Evidence for deprotonation comes from 11B NMR
spectroscopy: although [1·OH2] alone shows an 11B NMR
resonance at 4.6 ppm in the noncoordinating yet highly polar
solvent 1,2-difluorobenzene (DFB), addition of 1,4-dioxane
leads to a clear upfield shift, to −0.6 ppm with 1 equiv of
ethereal base, and −2.1 ppm with 10 equiv (Figure 1).20

Typical nonanhydrous reaction mixtures, which contain [1·
OH2] in neat 1,4-dioxane, produce resonances farther upfield
still, at −3.0 ppm. For comparison, the 11B NMR shift of
[NMe4][1·OH], which contains the “free” conjugate base of [1·
OH2], has been reported as −2.1 ppm in CD2Cl2, with similar
shifts for related salts.21 1H NMR analysis also suggests an
interaction between [1·OH2] and 1,4-dioxane, with the 1,4-
dioxane resonance shifted slightly downfield, from 3.56 ppm in
the absence of [1·OH2], to 3.59 ppm in the presence of 1 equiv,
indicating overall deshielding. Although displacement of H2O
for 1,4-dioxane could also potentially explain these shifts in the
NMR spectra, this possibility can be discounted: addition of 1
and 10 equiv of 1,4-dioxane to dry 1 in DFB leads to 11B NMR
resonances at 9.8 and 5.7 ppm, respectively, and 1,4-dioxane 1H
resonances at 3.96 and 3.59 ppm, respectively; in all cases
significantly farther downfield than when H2O is also present.
Reversible deprotonation of [1·OH2] and the related [1·

ROH] adducts may partially explain the large effect that
pressure has been observed to have on both the anhydrous and
nonanhydrous reactions. Increasing H2 pressure will increase
the solution concentration of H2 and, in turn, the degree of H2
activation. The resulting increase in Brønsted acid concen-
tration should perturb the equilibrium between [1·OH2]/[1·
iPrOH] and [1·OH]−/[1·OiPr] − in favor of the more weakly
bound neutral adducts, hence facilitating catalytic turnover via
ROH/H2O dissociation from 1.

Scheme 1. Pathways for Deactivation of 1 by H2O

Scheme 2. Previously-Reported Hydrogenation of Aldehydes and Ketones Catalyzed by 1.6a,ba

aR = aryl, alkyl; R′ = alkyl, H.

Table 1. Metal-free catalytic hydrogenation of acetone in the
presence of various amounts of H2O

entry [Me2CO], M
[1],

mol % [H2O]/[1]
p,
bar t, h

conv,
%a TON

1b,c 0.50 5 0 13 6 99 20
2c 0.29 5 1d 13 70 94 19
3e 0.27 2.5 1 50 39 92 37
4e 0.27 2.5 2 50 84 98 39
5e 0.27 2.5 5 50 108 92 37
6f 0.53 2.5 >1g 50 15 94 38

aAll conversions measured by 1H NMR integration. bResult taken
from Ashley et al.6a c0.2 mmol acetone. dAdded as [1·OH2].

e4.0
mmol acetone. f8 mmol acetone, ACS reagent grade commercial
solvent (Sigma-Aldrich). gConfirmed by control experiments (see the
SI).
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Given that the rationale for H2O tolerance in this system
depends primarily on the absence of a strong base, it seemed
reasonable that catalytic hydrogenation without the need for
rigorously dry conditions might also be achievable for other
weakly basic substrates. To this end, a variety of additional
substrates (both carbonyls and noncarbonyls) were treated
under similar conditions. For most, clean, efficient catalytic
reduction was observed without the need for extensive further
optimization (Table 2, entries 1−7), clearly indicating the
generality of this water-tolerant methodology. As well as using
undried solvent, reactions could be performed under open
bench conditions without the need for inert atmosphere
containment systems22 (although long-term storage of 1 is best
carried out in a glovebox). By contrast, the attempted reduction
of cyclohexanone under the same conditions was unsuccessful
(Table 2, entry 8), which is qualitatively consistent with
previous observations made under dry conditions,6a for which
higher pressures were required for hydrogenation than for the

other carbonyl substrates. Collectively, these results suggest a
similar substrate scope for the anhydrous and nonanhydrous
reaction protocols.
In addition to the advantages already discussed, moisture-

tolerance should also allow FLPs to catalyze reactions that
produce H2O. To this end, acetophenone was exposed to our
anhydrous reaction conditions. Clean, catalytic reductive
deoxygenation to ethylbenzene23 was observed, despite the
concomitant formation of H2O (5 equiv relative to catalyst)
that necessarily occurs (Scheme 4).
In conclusion, we have demonstrated a number of examples

of FLP-catalyzed hydrogenation reactions demonstrating
appreciable water tolerance. As a result, a variety of weakly
basic substrates can be hydrogenated cleanly and in high yield,
in the absence of a transition metal catalyst, in commercial-
grade “bench” (undried) solvents. By removing the need for
both extensive, laborious drying of reaction solvents and inert
atmosphere reaction techniques, this development significantly

Scheme 3. Proposed Mechanism for Moisture-Tolerant Hydrogenation of Acetonea

aPossible hydrogen bonding of solvent with [1·ROH] and [1·OH2] omitted for clarity.

Figure 1. Variation in 11B NMR chemical shift of [1·OH2] upon addition of 1,4-dioxane in DFB.
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increases the practicality of the FLP hydrogenation method-
ology. These findings extend the current reach of FLP
hydrogenation catalysis from rigorously anhydrous research
laboratory conditions into industrially relevant, commercially
available solvent grades and reaction conditions.
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