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ABSTRACT 
  
A wide range of mechanisms is available for achieving rapid optical responsivity in material components.  Amongst 
them, some of the most promising for potential device applications are those associated with an ultrafast response and a 
short cycle time.  These twin criteria for photoresponsive action substantially favor optical, over most other, forms of 
response such as those fundamentally associated with photothermal, photochemical or optomechanical processes.  The 
engagement of nonlinear mechanisms to actively control the characteristics of optical materials is not new.  Indeed, it has 
been known for over fifty years that polarization effects of this nature occur in the optical Kerr effect – although in fluid 
media the involvement of a molecular reorientation mechanism leads to a significant response time.  It has more recently 
emerged that there are other, less familiar forms of optical nonlinearity that can provide a means for one beam of light to 
instantly influence another.  In particular, major material properties such as absorptivity or emissivity can be subjected to 
instant and highly localized control by the transmission of light with an off-resonant wavelength.  This presentation 
introduces and compares the key electrodynamic mechanisms, discussing the features that suggest the most attractive 
possibilities for exploitation.  The most significant of such mechanistic features include the off-resonant activation of 
optical emission, the control of excited-state lifetimes, the access of dark states, the inhibition or re-direction of exciton 
migration, and a coupling of stimulated emission with coherent scattering.  It is shown that these offer a variety of new 
possibilities for ultrafast optical switching and transistor action, ultimately providing all-optical control with nanoscale 
precision. 
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1.  INTRODUCTION 

Using quantum electrodynamics (QED) as a theoretical framework, a number of novel developments have emerged in 
relation to controlling light with light – especially in relation to emission.  Such advances relate loosely to the well-
known ac Kerr effect, in which an applied electromagnetic field induces a change in the refractive index of a material 
with any light passing through it also altered, or by the fact that the throughput of a laser beam into a system may 
produce stimulated emission when the laser frequency matches the emission energy – a phenomenon with many 
applications, as for example in the recent Nobel Prize winning technique known as stimulated emission depletion 
spectroscopy.1-6  However, outside of stimulated emission, it has emerged that a moderately intense, off-resonant laser 
beam may significantly alter the rate and intensity of emission.7-10  Under these circumstances, the probe laser essentially 
confers optical nonlinearity onto the emission – and consequently, each excited-state lifetime is appreciably modified.  
Indeed, in principle a very long lifetime (essentially forbidden) transition could be activated.  Although certain analogies 
might be drawn with the enhancement of optical emission through its coupling with plasmonic surfaces,11-20 the present 
development modifies spontaneous emission through direct interaction with the oscillating electric field of throughput 
radiation, without the need of any surface.  Related to the control of emission is the coupling of stimulated emission with 
coherent scattering, which may lead to optical transistor action, and the population of dark states by the control of light 
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In general the emission intensity, I', is found by multiplying the Fermi Rule of equation (1) by the energy of an emitted 
photon ħω' ≡ ħck'; this signifies the emission signal that follows relaxation from an excited state.  The net intensity is 
found from 22 c Mkπρ ′′ =I , where M includes the first term of equation (2) – which corresponds to conventional emission 
as illustrated by Figure 1(a) – and the second term is relevant when the probe beam is applied as shown by Figure 1(b); 
higher-order terms contribute negligibly.  As determined elsewhere,9 the following general result is discovered; 
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where I is the irradiance of the laser probe, ( ); ,αχ ω ω ω′ −ijk

0

 is the nonlinear transition hyperpolarizability tensor and e 
represents the polarization vector of the input photons with energy ħck.  The first term corresponds to spontaneous 
emission, intrinsic to the system and independent of the probe laser beam, while the last term signifies a coupling of the 
elastically forward-scattered probe beam with the emission.  The middle term, linear in I, signifies a quantum 
interference of these two concurrent processes.  In general, it is assumed that the leading term in equation (3) is non-zero 
and the second one is the leading correction – this leads to interesting fluorescence anisotropic effects.7,10  However, 
there are circumstances in which the final term (which corresponds to nonlinear optical response) alone provides the 
emission, i.e. when the first and second terms of equation (3) are null.  This will now be explored.   
 
Consider, for instance, a system where the electronic population is efficiently transferred to a state α that would normally 
decay non-radiatively, where transitions from α to 0 are weak or entirely precluded – as, for example, through inherent 
geometric or symmetry constraints.  In such a situation, terms in equation (3) that feature the transition dipole μ0α do not 
contribute: radiative emission only occurs in a response to the off-resonant throughput beam, in a three-photon allowed 
transition.  Such a configuration may indeed provide the basis for an all-optical switch, whose operation would be as 
follows: (i) a molecule is indirectly excited to a ‘dark’ state (i.e. one whose direct excitation from the ground state is 
forbidden); (ii) precluded by the one-photon dipole selection rules, emission from the dark state occurs on application of 
the probe beam only; (iii) this activation of the emission occurs for electronic transitions that are three-photon allowed, 
but single-photon forbidden.  To summarize, switching action occurs since the throughput and absence of the input laser 
results in activation and deactivation of the emission, respectively – namely, the nanoscale control of light by light.  
Practically, it will be necessary for the radiation to be delivered in a pulse whose duration and delay, both with respect to 
the initial excitation, are sufficiently short that it can engage with the system before there is significant non-radiative 
dissipation of the excited state.   
 
In addition, it is interesting that indirect excitation to a dark state may be possible by a system analogous to light-
controlled emission.  In terms of quantum electrodynamics, light absorption is simply emission reversed so that, as a 
result, similar equations will arise;22 the mechanisms corresponding to such a case are presented in Figure 2.  It is thus 
possible for electronic states that are usually inaccessible (i.e. electronic transition that are one-photon forbidden) to 
become reachable by the three-photon mechanism.  It should also be noted that a similar all-optical switching process has 
previously been proposed based on resonance energy transfer.24,25 
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which, on introduction of the probe beam, transistor action produces above threshold operation (denoted by the upper pair of 
horizontal lines). 
 

All-optical control of such a pumped active medium is achievable by the nonlinear engagement of the laser emission 
with elastic forward scattering of the off-resonant probe beam (as before): the first term of equation (3) corresponds to 
direct emission through electronic decay between energy levels E2 and E1, whilst the other two terms only arise through 
application of the probe beam.  The degree of modification of the light emission can be measured by taking the ratio of 
the second term – i.e. the lead correction term (as stated earlier) – against the first; the corresponding parameter η may be 
approximated as:  

 
( )

2

0

.I
c

μ
η

ωε
=

′Δ Δ hE E +
   (7)

  
By inspection of equation (6), it is clear that the variable g will be affected on introduction of the probe beam, since the 
radiative and population decay rate both suffer change (but to differing degrees); the non-radiative decay rate is assumed 
to be constant.  By simple manipulation, an expression for g is given by; 
 

 ( ) ( )
( ) ( )
1

1 .
Y I

g I
Y I Y Iη

−
= +

+
   (8)

  
where ( ) ( ) ( )rad 2Y I I Iγ γ=  and ( ) ( )nr 2 1I Y Iγ γ = − .  With the previous condition g = 5/4 for I = 0, and adopting 
indicative values μ = 16×10-30 C m, ΔE = 10-20 J and ħω' = 10-19 J, inserting equation (8) into (6) generates the results that 
correspond to the two additional curves on Figure 4.  For a constant pumping rate at a level indicated by the dotted 
vertical line, the system operates below threshold when no signal laser is present; on introduction of an off-resonant 
probe beam with an irradiance approaching 2 × 1011 W cm-2, the output climbs by fourteen orders of magnitude, rising to 
sixteen orders if the signal input is doubled – typical of a laser operating at threshold.  Transistor action with respect to 
the probe beam is clearly evident. 
 
 

4. DISCUSSION 
 
To achieve any all-optical device that can modify the emission properties of a suitable material using an off-resonant 
beam – or to modify the properties of one beam by another – is most effectively implemented by tailoring simultaneous 
nanoscale interactions.  A photonic formulation readily identifies promising features, latent in perturbation theory, which 
can provide a suitable fundamental basis for such forms of action.  These are terms that are normally overlooked, but 
which can become significant when the off-resonant beam is of sufficient intensity, or within cavity configurations that 
are held just below the threshold for laser action.  The detailed analysis of theory thus reveals a potentially new basis for 
achieving all-optical transistor action, which is achievable using a relatively simple optical configuration.  Compared 
with most other suggested schemes, this offers the advantages of ultrafast response with high repetition rate and high 
efficiency, with a setup that is sufficiently straightforward to invite the investigation of applications.  All of the necessary 
theory has now been put fully in place. 
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