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Abstract 

 

The legume M. truncatula overcomes low soil nutrient conditions by forming 

symbiotic associations with nitrogen-fixing soil bacteria called rhizobia (Root Nodule 

Symbiosis) and fungi which assist in the acquisition of phosphate, collectively called 

arbuscular mycorrhizae (Arbuscular Mycorrhizal Symbiosis). Establishment of 

functional beneficial symbioses requires successful microbial infection. An initial 

exchange of signalling molecules between the host and the microbe sets off 

extensive transcriptional reprogramming of the host developmental programme to 

accommodate the incoming microbe. Microbial lipochitooligosaccharide molecules 

trigger a signalling pathway comprising a core set of around seven genes common 

to both symbioses, central to which is the calcium calmodulin kinase, CCaMK. Here 

I describe the identification and characterization of three novel M. truncatula ATP-

Binding cassette containing sub-family B transporters, transcriptionally induced 

upon infection by both rhizobia and mycorrhizae; therefore named AMN for ABC 

transporters in Mycorrhization and Nodulation. Promoter-GUS expression reveals 

that these genes are exclusive to infection structure containing root hair cells and 

arbuscule containing root cortical cells. I use different SYM pathway mutants to 

show that the induction of these transporters is dependent on CCaMK and other 

members of the symbiotic pathway. Conservation of these transporters across 

mycorrhizing angiosperms suggested an important evolutionary function therefore I 

identified and characterized single and double mutants. In the absence of any 

aberrant symbiotic phenotype a triple mutant was also generated but remains to be 

characterized.  

Since ABC sub-family B transporters in Arabidopsis are known to efflux auxin I also 

undertook a multipronged approach to identify a role for auxin in rhizobial infection. 

Using pharmacological and physiological assays I describe results that indicate a 

positive role for auxin in infection. Lastly I describe the nodulation phenotype of 

mtlax2 and mtiaa8; a homologue of the Arabidopsis AtAUX1 auxin influx carrier and 

an infection induced AUX/IAA repressor respectively. A lower nodule number in 

both mutants provide the first genetic evidence for auxin’s role in nodule 

development.  
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Chapter One:  

Introduction 
 

 

 

 

1.1 A Brief overview of the Root nodule and Arbuscular mycorrhizal 

Symbioses 

Under nitrogen limiting conditions, legumes secrete flavonoids into the rhizosphere 

and induce symbiotic rhizobia to start producing Nodulation (Nod) factors (NFs). 

Nod factor are rhizobially produced lipochitooligosaccharide (LCO) molecules that 

consist of a chitin backbone with an N-linked fatty acid moiety attached to the non-

reducing terminal sugar and they confer specificity to host plants (Denarie, Debelle, 

& Prome, 1996). Two simultaneous but genetically separable processes – infection 

and nodule organogenesis occur downstream of Nod-factor perception. Nod-factor 

recognition is followed by plasma membrane depolarization and oscillations in 

calcium (calcium spiking) in and near the nucleus and the induction of early 

nodulation genes (ENODs) at the epidermal surface.  The bacteria  then attach to 

the root hair after which localized production of NFs by the attached rhizobia leads 

to root hair curling and entrapment of the bacterial micro-colonies in a so-called 

‘infection pocket’ (Murray, 2011). Along with epidermal responses, cortical cells 

activate mitosis to form a nodule primordium. The infection threads grow towards 

the developing primordia and rhizobia are released into the inner cells in the nodule 

via an endocytotic-type mechanism that encapsulates the bacteria within the plant 

membrane. Nodules with a persistent meristem are called indeterminate such as 

seen in Medicago truncatula. Determinate nodules such as those of Lotus japonicus 

lose their meristematic activity soon after they form. 

Low phosphate conditions, trigger an exchange of signals between the plant host 

and members of phylum Glomeromycota, arbuscular mycorrhizae. More than 80% 

of land plants can form associations with these arbuscular mycorrhizal (AM) fungi. 

Plant secreted strigolactones stimulate fungal spore germination and hyphal 
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branching (Akiyama, Matsuzaki, & Hayashi, 2005; Besserer et al., 2006). Like the 

bacterial symbionts, AM fungi then produce LCOs which trigger perinuclear calcium 

oscillations in the host which initiates downstream developmental pathways 

including root growth (Maillet et al., 2011). Once the AM fungal hypha reaches the 

root surface it penetrates a hypodermal passage cell and branches extensively to 

form the arbuscule, which is the primary nutrient exchange site. As the arbuscule 

develops the host plant generates plasma membrane that extends around the 

arbuscules across which phosphorus and other nutrients are then exchanged 

(Bonfante & Genre, 2010). The identity of this peri-arbuscular membrane (PAM) is 

unique and differs from the cell membrane. Evidence for this is provided by the 

observation that the symbiotic phosphate transporter MtPT4 is localized specifically 

to the PAM and is absent from the surrounding cell membrane (Pumplin, Zhang, 

Noar, & Harrison, 2012).  

Concomitant to the plasma membrane synthesis, new cell wall material is also 

deposited around the infection structures. According to Gage, a central unanswered 

question to the understanding of infection thread growth pertains to the reorientation 

of cell wall deposition from the tip of growing root hair cells to the centre of the 

infection pocket surrounding the bacteria (Gage, 2004).  The remodelling of the cell 

wall to initiate the infection thread is a host-mediated process that requires a pectate 

lyase (Xie et al., 2012). New cell wall is deposited inside the lumen of the advancing 

infection thread membrane providing rigidity to the structure. AM fungal entry is also 

dependent on the plant host for entry, as cell wall degrading enzymes appear to be 

limited (Garcia-Romera, Garcia-Garrido, & Ocampo, 1992), and unlike the case with 

pathogenic appressoria, entry does not depend on mechanical pressure from the 

hyphopodium. Cellular reorganization around the arbuscule includes deposition of 

β-1,4 glucans, polygalactourans and xyloglucans which are the primary constituents 

of the peri-arbuscular matrix (Brewin, 2004)(Bonfante and Perroto 1995)  

1.1.1 A common signalling pathway regulates both rhizobial and 

mycorrhizal symbioses 

Recognition of Nod-factors and Myc factors (Denarie et al., 1996; Maillet et al., 

2011), by LysM domain-containing cell surface receptors are the first step in 

activating this pathway. Rhizobial Nod-factors are perceived by the signalling 

receptor MtNFP (NOD FACTOR PERCEPTION) /LjNFR5 (NOD FACTOR 

RECEPTOR 5) but bacterial admission is allowed only following recognition by the 

entry receptor MtLYK3 (LysM DOMAIN RECEPTOR KINASE 3) /LjNFR1 (NOD-
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FACTOR RECEPTOR 1)   (Limpens et al., 2003; Madsen et al., 2003; Radutoiu et 

al., 2003; Smit et al., 2007). Mutations in these genes block rhizobial entry and 

nodule formation. Interestingly, these nod-factor receptor mutants are unaffected in 

their ability to be colonized by mycorrhizal fungi indicating that a separate 

recognition receptor must exist for Myc-factor perception. Rhizobia and mycorrhiza 

form endosymbiotic associations which appear vastly different; however the legume 

host employs a core set of genes which comprise a signalling pathway common to 

both symbioses. DOES NOT MAKE INFECTION 2 (MtDMI2)/ SYMBIOSIS 

RECEPTOR KINASE (LjSYMRK) putatively acts as a co-receptor for the other LysM 

domain containing receptors and is required for both rhizobial and mycorrhizal 

signalling (Gherbi et al., 2008). Downstream of these recognition events, the cation 

channels CASTOR and POLLUX in Lotus and the POLLUX orthologue DOES NOT 

MAKE INFECTION 1 (DMI1) in Medicago are required for nuclear calcium 

oscillations serve as signatures that help distinguish the incoming microbe 

(Charpentier et al., 2008; Riely, Lougnon, Ane, & Cook, 2007), Mutations in these 

genes affect both rhizobial and mycorrhizal colonization of the plant (C. Chen, Fan, 

Gao, & Zhu, 2009). These calcium signatures are interpreted by the central 

regulator of symbiosis signalling CALCIUM CALMODULIN KINASE (CCaMK) or 

DOES NOT MAKE INFECTION 3 (DMI3). Activation of this regulatory kinase is 

sufficient to initiate nodule organogenesis and initiate formation of the pre-

penetration apparatus which develops during mycorrhizal colonization (Gleason et 

al., 2006; Takeda, Maekawa, & Hayashi, 2012). CCaMK phosphorylates CYCLOPS 

(L. japonicus)/IPD3 (INTERACTING PROTEIN DMI3) a transcriptional activator the 

absence of which blocks rhizobial infection and impairs mycorrhizal colonization 

(Horvath et al., 2011; Singh, Katzer, Lambert, Cerri, & Parniske, 2014; Yano et al., 

2008). A suite of GRAS domain containing transcription factors act downstream of 

CCaMK and control nodule formation (S. Hirsch et al., 2009). NSP2 plays an 

essential role in both nodulation and mycorrhization. NSP1 is solely root nodule 

symbiosis specific (S. Hirsch et al., 2009; Smit et al., 2005). Mutation in RAM1 

(REQUIRED FOR ARBUSCULAR MYCORRHIZATION 1) another GRAS domain 

containing transcription factor was recently shown to specifically and strongly inhibit 

mycorrhizal colonization without affecting nodulation (Gobbato et al., 2012). 

NODULATON INCEPTION (NIN) encodes another transcription factor that is 

required for nodule organogenesis. Some epidermal responses to rhizobia occur 

even in the absence of this gene but the mutant shows hyper curling of infected root 

hairs and a wider expression zone for the infection marker ENOD11 (Schauser, 

Roussis, Stiller, & Stougaard, 1999). The expression of NIN itself is higher in the 
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mutant background indicating that NIN must control its own expression in a positive 

feedback regulatory loop (Marsh et al., 2007). The only other common symbiotic 

gene known encodes the major sperm domain containing protein, VAPYRIN, which 

is involved in infection thread progression and mycorrhizal colonization. (Murray et 

al., 2011; Pumplin et al., 2010). VAPYRIN is evidence that structural genes that are 

common to both symbioses exist downstream of the signalling pathway and forms a 

basis for future research towards discovering the identity and function of such genes 

(G. E. D. Oldroyd, 2013). 

 

Figure 1. 1: Overview of the common symbiotic signalling pathway  

Pathway shows key molecular players downstream of Nod-factor and Myc-

factor perception by LysM domain receptors. Perinuclear calcium oscillations 

decoded by the central regulator of symbiotic signalling CCamK are relayed to 

downstream components. Notably the GRAS domain containing TFs NSP1, 

RAM1 and another TF NIN are not shared by both pathways in establishment 

of symbioses. Taken from (G. E. D. Oldroyd, 2013) 



1.2 A role for auxin in nodulation 

Plant development and environment signals are integrated by various plant growth 

regulators. Plant growth substances namely, auxin, cytokinin, ethylene, abscisic 

acid as well as jasmonic acid and salicylic acid are noted regulators of plant microbe 

interactions (Murray et al., 2011).  Together with cytokinins, auxins affect almost 

every aspect of development and therefore can be expected to play important roles 

in infection and nodule organogenesis. 

Went (1926) originally showed that asymmetric application of the plant hormone 

auxin, on decapitated Avena coleoptile, causes it to bend in proportion to the 

amount of auxin applied. Using this principle, Thimann in 1936 showed that sections 

of young pea nodules, both, from the base and the meristematic apex, cause 

significant bending of the avena coleoptile. Since the activity was not only ascribed 

to the nodule meristem but to the entire nodule cortex, he hypothesized that auxin in 

nodules was perhaps related to tissue infected with rhizobia (Thimann, 1936). Auxin 

was thus established to play a role in symbiosis. However, it was not until 1989 that 

Hirsch et al. showed that nodule-like structures could be initiated in the absence of 

bacterial symbionts using auxin transport inhibitors (ATIs) (A. M. Hirsch, 

Bhuvaneswari, Torrey, & Bisseling, 1989). Further evidence that changes in auxin 

transport were important for nodulation was provided by studies using the promoter 

of soybean GH3, an early auxin responsive gene, fused to a GUS reporter. Using 

this tool, Mathesius et al. noted a striking but transient arrest in auxin transport at 

the site of infection as early as 24 hours post infection followed by a strong increase 

at the same position where the nodule later initiated (Mathesius et al., 1998). 

Remarkably, purified Nod-factors were shown to disrupt auxin transport in a similar 

manner to naphthylphthalamic acid (NPA) (Boot, van Brussel, Tak, Spaink, & Kijne, 

1999; Pacios-Bras et al., 2002).  

Directional or ‘polar auxin transport’ (PAT) refers to the cell-to-cell movement of 

auxin mediated by members of the AUX-LAX family of influx carriers and efflux 

transporters like the PIN-FORMED (PIN) (Friml, 2003). P-GLYCOPROTEIN (PGP) 

family proteins also contribute to auxin transport by mediating an apolar efflux of 

auxin that helps maintain auxin flow to the root meristem (Band et al., 2014). The 

PGPs are members of the B subfamily of the ABC transporters. To date, four 

members of the family in Arabidopsis, namely AtABCB1, AtABCB4, AtABCB19, 

AtABCB21 have been implicated in transport of auxin (Geisler et al., 2005; 

Kamimoto et al., 2012; Noh, Bandyopadhyay, Peer, Spalding, & Murphy, 2003; Noh, 
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Murphy, & Spalding, 2001; Terasaka et al., 2005). Although ABCB14 is known to 

transport malate, the abcb14 mutant also had reduced auxin transport activity 

(Kaneda et al., 2011; Lee et al., 2008). This suggests that ABCBs are multi affinity 

transporters which have inherent auxin transport ability. In M. truncatula, there are 

ten MtPIN genes, five AUX-LAX genes (Schnabel & Frugoli, 2004) and based on 

the latest release of the Medicago genome Mt4.0, we have found at least 33 genes 

encoding full ABC subfamily B type transporters (this study). ABC transporters in 

nodule organogenesis and microbial infection have been described in detail in the 

following section. 

Auxin acts as a developmental trigger primarily by creating local cellular gradients in 

the existing auxin stream using this PAT machinery. Both in Medicago and Lotus, 

within the first 50 hours post infection the expression of the soybean auxin response 

marker GH3 expression accumulates at the site of inoculation (Mathesius et al., 

1998; Pacios-Bras et al., 2003). The synthetic auxin marker DR5 which consists of 5 

tandem repeats of the auxin response element TGTCTC is widely used as an auxin 

response marker (Ulmasov, Hagen, & Guilfoyle, 1999). A recently developed 

marker for auxin activity utilizes the domain II (DII) of the Arabidopsis Aux/IAA28 

gene which is degraded rapidly upon perception of auxin (Brunoud et al., 2012). The 

DII domain fused with a fluorescent marker shows high activity in regions with low 

auxin and absence in high auxin containing tissues, at a cellular resolution. The use 

of such markers in Medicago might provide a better understanding of auxins role in 

infection and organogenesis but these tolls remains to be developed.  Upon 

infection, both the stably transformed GH3 marker and the synthetic auxin marker 

DR5-GUS in Medicago hairy roots show an arrest in auxin transport at the 

inoculation site (Huo, Schnabel, Hughes, & Frugoli, 2006). In determinate nodules 

of stably transformed DR5-NLS-GFP lines of Lotus, 72 hrs post infection, marker 

activity is observed in a few outer cortical cells just below the infected root hair cell. 

As nodule development progresses, the actively dividing cortical cells of the nodule 

maintain this DR5 expression until the rhizobia enter the cortex (Suzaki et al., 2012). 

By six days post infection, DR5 marker expression is restricted to the outer cortex of 

the nodule (Takanashi, Sugiyama, & Yazaki, 2011). The authors suggest that since 

the DR5 expression pattern seems to mimic meristem activity within the nodule, 

restriction of the marker expression to the periphery of a determinate nodule occurs 

because the parenchymatic cells in this region retain meristematic activity. In 

Medicago, DR5 expression in mature nodules is especially strong in the vascular 



23 
 
 

bundles (Guan et al., 2013). In another study, overexpression of miRNA160 in 

soybean, which silences repressor auxin-response factors (ARFs), resulted in a 

decrease in nodule number (Turner et al., 2013). However, no effect on infection 

thread frequency was noted for these lines. ARFs act downstream of AUX/IAA 

repressor proteins to mediate auxin response.  

  

Since these RNAi lines are hypersensitive to auxin the authors speculate whether 

auxin might in-fact have a negative role in nodule primordia formation while not 

affecting rhizobial infection per se. However, these studies are difficult to interpret 

due to the miRNA having been expressed ectopically and having multiple targets 

which could have unforeseen consequences. Moreover, observations that in the M. 

truncatula hypernodulating mutants sickle and sunn, auxin transport is enhanced, 

points at a specific role for auxin transport in nodule organogenesis (Prayitno, Rolfe, 

& Mathesius, 2006; van Noorden, Ross, Reid, Rolfe, & Mathesius, 2006). However, 

no functional genetic evidence exists to date showing the involvement of auxin in 

nodule development (Mathesius, 2008).  

Plant flavonoids act as natural auxin transport inhibitors by competing with NPA 

binding sites (Jacobs & Rubery, 1988).  Since the inhibition of auxin transport by 

NPA was shown to initiate nodule like organs (A. M. Hirsch et al., 1989) it follows 

that endogenous auxin transport inhibitors (ATIs), i.e flavonoids also play a role in 

nodule organogenesis. Wasson et al. showed that in M. truncatula, by silencing the 

enzyme chalcone synthase which catalyses the first step of the flavonoid 

biosynthesis pathway nodulation can be eliminated (Wasson, Pellerone, & 

Mathesius, 2006). Conversely, in the hyper-nodulating mutant of L. japonicus har1, 

a stronger DR5 expression was associated with a wider cortical area of expression 

and excessive cell division in comparison to the wild type (Suzaki et al., 2012). 

Figure1. 2: Overview of early 
auxin signalling and response.  
 
AUX/IAAs form inactive dimers with 
ARFs and prevent transcription of 
target genes in the absence of auxin. 
In the presence of auxin, AUX/IAAs 
are target for degradation via the 26 
S proteasome which results in de-
repression of ARF activity and 
activation of auxin signalling 
responses. From (Teale, Paponov, & 
Palme, 2006) 
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Auxin is thus thought to have a positive role in nodule organogenesis with 

flavonoids having a potential role in its regulation.   

1.2.1 Auxin and rhizobial infection 

Most of the research in the nodulation field so far has focused on the involvement of 

auxin transport in nodule organogenesis rather than its role in infection (Mathesius, 

2008). Recently, transcripts of LjABCB1, a L. japonicus homologue of the auxin 

transporting Arabidopsis ABCB4 gene, were found to be nodule-specific. The 

promoter-GUS fusion further showed its expression was limited to the uninfected 

cells of the nodule (Takanashi, Sugiyama, Sato, Tabata, & Yazaki, 2012). S. 

cerevisea expressing LjABCB1 accumulated less IAA than a control strain 

transformed with the empty vector control, suggesting that LjABCB1 functions as an 

auxin exporter. In another model symbiosis – between the actinomycete Frankia 

and the actinorhizal plant Casuarina glauca, the gene encoding the Casuarina 

homologue of the Arabidopsis AUX1 permease CgAux1 was found to be expressed 

only in infected cells of the nodule (Peret et al., 2007). Moreover, the authors 

showed that CgAUX1 is specifically induced in infected root hairs. Using antibodies 

it was further shown that auxin accumulates in infected cells of the nodule (Perrine-

Walker et al., 2010). What role might auxin play in infected cells? Auxin has a well-

established role in cell wall expansion/loosening and it can be expected that it may 

be important for expansion of infection containing cells of the nodule. Although a 

general expression pattern of members of the MtLAX family was studied by in situ 

hybridization in Medicago (de Billy, Grosjean, May, Bennett, & Cullimore, 2001), it is 

not clear whether infection by rhizobia is similarly associated with AUX1 expression, 

and studies in model legumes would provide insight into whether this feature is 

evolutionarily conserved with actinorhizal plants. 
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1.3 ABC Transporters in Plant-Microbe interactions 

1.3.1 Section I: Secondary metabolites and transport processes in 

plant-microbe interactions  

1.3.1.1 Secondary metabolites and transport processes are crucial to 

symbiosis 

Functional, beneficial symbioses culminate in the acquisition of the two mineral 

nutrients which can be most limiting to plant growth, namely nitrogen and 

phosphorous. It follows therefore that symbiotic membrane transporters are 

important targets for crop improvement (Schroeder et al., 2013). The symbiotic 

phosphate transporter MtPT4 mediates the uptake of phosphates provided by 

arbuscular mycorrhizal fungal symbionts, (Harrison, Dewbre, & Liu, 2002). A 

mutation in this gene disrupts the interaction between the plant host and the 

microbe and consequently arbuscules degenerate prematurely and symbiosis fails 

to be established (Javot, Penmetsa, Terzaghi, Cook, & Harrison, 2007; 

Veereshlingam et al., 2004).  However, transporter functions are not restricted to 

nutrient exchange only. Symbiosis requires a constant communication between two 

organisms and transport of signals and metabolites is fundamental to every stage of 

symbiosis (Bapaume & Reinhardt, 2012; Udvardi & Poole, 2013).  

Many secondary metabolites provide adaptive advantage to sessile plants, which 

are subject to the mercy of an ever changing environment. Under low nutrient 

conditions in the soil, members of the family leguminosae and their compatible 

bacterial symbionts seek each other out and then establish a mutualistic relation by 

using a range of metabolites and signals, the transport of which is spatially and 

temporally fine-tuned. Phenolics such as flavonoids and iso-flavonoids produced as 

a result of nitrogen deficiency stimulate soil bacteria called rhizobia to produce 

lipochitooligosaccharides called Nod-factors. Nod-factors in turn trigger nodulation 

which is accompanied by the production of a variety of host metabolites. Perception 

of Nod-factors by the host causes increased production of specific (iso) flavonoids, 

creating a positive feedback loop based on microbial and host secretion of signalling 

molecules (Hassan & Mathesius, 2012). Some of these metabolic changes have 

been shown to occur in root hairs upon infection including increases in Nod gene 

inducing flavonoids (Brechenmacher et al., 2010). Legumes such as the model plant 

M. truncatula also synthesize phytoalexins such as medicarpin which may serve to 
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ward off both opportunistic soil pathogens and incompatible rhizobia (Dakora & 

Phillips, 1996). 

Under phosphate limitation, specific compounds are produced by plants that can 

increase mycorrhizal colonization including flavonoids and strigolactones (Akiyama, 

Matsuoka, & Hayashi, 2002). Strigolactones are sesquiterpene lactones that guide 

the mutualistic fungi to its host. Secreted strigolactones stimulate fungal spore 

germination followed by hyphal branching before penetrating the host root (Akiyama 

et al., 2005; Besserer et al., 2006). Infection by mycorrhiza in turn activates the 

methylerythritol 4-phosphate pathway (MEP) or non-mevalonate pathway for 

biosynthesis of terpenoids which includes production of various other 

apocarotenoids such as mycorradicin whose role in the symbiosis is not yet 

understood (Walter, Floss, Hans, Fester, & Strack, 2007). At later stages of 

infection, as a common feature to both rhizobial and mycorrhizal interactions, the 

host must continually provide food in the form of simple carboxylic acids and various 

nutrients to maintain the endosymbionts (Pfeffer, Douds, Bécard, & Shachar-Hill, 

1999; Poole & Allaway, 2000). Reportedly, the plant allocates 5-21% of 

photosynthtically fixed carbon to rhizosphere secretions (Walker, Bais, Grotewold, & 

Vivanco, 2003). Movement of all these substances must occur across intact 

membranes and energy-dependent transfer of substrates against a concentration 

gradient must be facilitated by transporters.  

1.3.1.2 Plant-parasite lifestyles  

In its broadest and most widely accepted definition, symbiosis refers to the close 

and often long term relation between two species. Thus interactions between 

pathogens and resistant or susceptible hosts can be included in the umbrella term 

‘symbioses. However, in this thesis symbiosis is used to refer specifically to the 

mutually beneficial symbioses, nodulation and mycorrhization. Instead of trying to 

attract these microbes, the host plant attempts to mount a successful defence 

reaction by secreting phytoanticipins and phytoalexins to inhibit the entry and 

proliferation of the pathogen. Pathogens include biotrophs which derive their 

nutrition from living host tissue while microbes that derive their nutrition from dead 

infected cells are called necrotrophs. Hemibiotrophs include pathogens who follow 

an initial biotrophic lifestyle followed by a necrotrophic stage (Oliver & Ipcho, 2004). 

Hormone signalling networks are wired to mount an attuned defence response 

based on these pathogenic lifestyles. Salicylic acid, jasmonic acid and ethylene 
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have been implicated in plant immunity and disease resistance involving extensive 

inter‐communication between their respective signalling pathways (Pieterse, Van 

der Does, Zamioudis, Leon-Reyes, & Van Wees, 2012).  

1.4 Section II: ABC transporters and metabolite transport 

1.4.1 A large complement of plant ABC transporters enables trafficking 

of diverse metabolites 

The transport of metabolites can be passive or active. Active or ATP-dependent 

transport of metabolites has the advantage of being highly regulated in terms of 

when and where it is activated in a tissue, allowing such transporters to play 

extremely specialized roles in physiological processes. According to the Transporter 

Classification Database, transporters can be grouped into 5 well defined classes 

and further into sub-classes and then again into more than 750 families, based on a 

functional/phylogenetic five tier system (Saier, Reddy, Tamang, & Vastermark, 

2014). The class of ‘primary active transporters’ further consists of five sub-classes 

from A to E depending on the energy source which drives the solute transport. ATP 

Binding cassette containing family of transporters along with 24 other families 

belong to the subclass A that derives its energy from hydrolysis of diphosphate 

bonds of inorganic pyrophosphate such as ATP. The ATP binding cassette (ABC) 

transporter family utilizes the energy derived from magnesium bound ATP (MgATP) 

hydrolysis to shuttle a diverse array of metabolites across membranes. Efflux 

transporters move the substrate away from the cytosol while influx transporters 

move them into the cytosol. Full-molecule functional transporters comprise of two 

modularly organized segments, each containing a multi-pass transmembrane 

domain (TMD) and the ATP binding or Nucleotide binding domain (NDB). Genes 

encoding only a single TMD and NBD are termed half transporters which must 

homo or hetero dimerize to form a fully functional transporter (Martinoia et al., 2002; 

Rea, 2007; Rees, Johnson, & Lewinson, 2009). 

The ABC transporter family, although ubiquitously present in all organisms, was 

noted to have considerably expanded in plants (Jasinski, Ducos, Martinoia, & 

Boutry, 2003; Sánchez-Fernández, Davies, Coleman, & Rea, 2001). According to 

Sanchez-Fernandez et al., a disproportionately large allocation of the genome to 

ABC transporters, concomitant with the expansion of secondary metabolite diversity 

in plants may reflect their need for a constant dialogue with their chemically 
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complex, microbially rich, immediate environment (Sánchez-Fernández et al., 

2001). ABC transporters are particularly well equipped to deal with this chemical 

diversity firstly because they are known to transport a remarkably wide variety of 

substrates. These range from alkaloids such as catharanthine (Yu & De Luca, 

2013), isoprenoids such as the hormone abscisic acid (Kang et al., 2010), to 

phenolics like anthocyanidin-3-O-glucosides (Francisco et al., 2013). In fact, mere 

heterologous expression of a yeast ABC transporter in tobacco was sufficient to 

increase export of plant secondary metabolites into suspension cell cultures 

(Goossens, Hakkinen, Laakso, Oksman-Caldentey, & Inze, 2003). Secondly, a 

single transporter can have ‘multispecificity’, meaning the same transporter can be 

responsible for movement of more than one substance. The Arabidopsis ABCC1 is 

involved in vacuolar sequestration of folates in addition to phytochelatin metalloid 

complexes of various potentially toxic metals (Mendoza-Cozatl, Jobe, Hauser, & 

Schroeder, 2011; Raichaudhuri et al., 2009). A feature of the ABCs is that, half ABC 

transporters can further form homo and hetero dimers, combinations of which 

possibly add to the set of substrates that they transport. As an example, the 

Arabidopsis ABCG11 was shown to form homodimers with itself and heterodimers 

with ABCG12 to form a full functional transporter (McFarlane, Shin, Bird, & 

Samuels, 2010). Consequently, even though the amino acid sequence of the 

transmembrane region is thought to provide substrate specificity, homology-based 

classification is not enough to predict transporter function. Nevertheless, the 

promiscuity of these ABC transporters necessitates a strict systematic ordering of 

ABC transporters as a first step to genetic and biochemical dissection of function. 

1.4.2 Analysis of the Medicago ABC transporter family reveals an 

expansion of all sub-families 

In providing an analysis of the important genes involved in symbiosis we first 

consider the ABC complement of three model plants with differing lifestyles and 

varying abilities to interact with plant microbes. Arabidopsis and rice are well 

established model systems to study plant microbe interactions. While Arabidopsis 

serves as a prototype for fundamental research in plant-pathogen interactions 

(Nishimura & Dangl, 2010), the monocot rice provides a genetically amenable 

system to study interactions with beneficial mycorrhizae (Gutjahr et al., 2008). In an 

early comparison between the ABCs encoded by their genomes it was noted that 

Arabidopsis and rice both have a similar number of genes allocated to ABC 
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transporters, each containing around 54 and 45 full-molecule transporter genes 

respectively (Garcia, Bouige, Forestier, & Dassa, 2004; Jasinski et al., 2003). 

Differences in the number of homologues between the two model plants were 

thought to have arisen as a result of sub-functionalization after the monocot-dicot 

split. One such instance is the loss of mycorrhiza-related transporters in the 

Brassicaceae (see below). Legume evolution, including the ability to nodulate, is 

marked by a whole-genome duplication that took place 60 MYA prior to the radiation 

of most, if not all, legume species (Young et al., 2011). The recently sequenced 

Medicago truncatula genome (Tang et al., 2014) encodes 99 full-molecule 

transporters some of which are predicted to play important roles in root nodule 

symbiosis (RNS) and arbuscular mycorrhizal symbiosis (AMS) based on analyses of 

their transcriptional profiles (Benedito et al., 2010; Z. Miao et al., 2012) . All sub-

families from ABCA to ABCI, classified based on homology to ABC transporters in 

the human genome, were represented in the Medicago genome except ABCH 

which characteristically is absent from plants (Verrier et al., 2008). Notably, the size 

of sub-family G, of which numerous genes are known to function in plant-microbe 

interactions, is twice as large in Medicago compared to Arabidopsis (Figure 1). Sub-

family G is unique in the organization of the two NBD and TMD domains and in 

plants comprises exclusively of ‘reverse’ oriented molecules (NBD-TMD) (Verrier et 

al., 2008). Though the significance of this observation may not be clear at present, 

future discoveries might shed light on possible inherent structural features of this 

sub-family that make it advantageous for the plant to use with incoming microbes. 

Comparison between the three model systems is likely to provide interesting 

candidate genes critical for microbial associations. 
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Figure 1. 3: Phylogenetic tree showing interrelations between Sub-family G 

members of M. truncatula and A. thaliana 

Branches designating half ABCG transporters are denoted by solid black lines 

while full transporters are in solid red lines. ABCG transporters from other 

species are included in the phylogenetic tree and those mentioned in the text are 

highlighted in blue.  



31 
 
 

Over the past four years there have been several studies in both legumes and non-

legumes uncovering critical roles for ABC transporters in symbiosis development. It 

is emerging now, that ABC transporters possibly play roles from the initial signal 

exchange through development of infection structures up to maintenance of the 

interaction. We draw examples from both, root nodule symbiosis and arbuscular 

mycorrhizal symbiosis and when relevant, supplement it with examples from 

interactions with pathogens and attempt to consolidate these findings to put them in 

perspective of the distinct stages of symbiosis that they are involved in. 

1.5 Section III: ABC transporters involved in different stages of plant 

microbe interactions 

Transporters with roles in metabolite secretion can serve several purposes, 

chemoattraction and antibiosis, formation of defence barriers or specialized 

microbial accommodation structures and nutrient provision, with significant potential 

for overlap between categories. Transporters involved in surveillance, which 

perceive environmental cues, both biotic and abiotic, may be constitutively 

expressed or induced by environmental cues such as nutrient deficiency (i.e. 

flavonoids, strigolactones). In either case it serves to induce corresponding signals 

from the microbe that can be subsequently detected by the plant. In a similar 

fashion, the other transporter classes can be regulated upon perception of signals 

from the symbionts while preparing to accommodate the incoming microbe and to 

establish a suitable nutrient exchange interface.  Ultimately, functional interactions 

that involve transporter functions include the modulation of defence responses, 

exchange of signals and nutrients and developmental events required for microbe 

accommodation. We classify plant ABC transporters studied so far in plant microbe 

interactions based on the above mentioned criteria into the following three 

categories.  

1.5.1 Plant signalling to microbes 

Formation of tailored ecological niches requires energy-expending host cells 

(Bulgarelli et al., 2012). Plants accomplish this by releasing metabolites into their 

surroundings. If energy expenditure is pharmacologically blocked, for example with 

the use of an inhibitor of ABC efflux pumps such as sodium orthovanadate, 

diagnostic fractions of  Arabidopsis root secretions are qualitatively altered in a 

dose-dependent manner (Loyola-Vargas, Broeckling, Badri, & Vivanco, 2007). 
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Furthermore, an alteration in the composition of exudates caused by the 

Arabidopsis abcg30 mutation retarded the growth of microbes in vitro and also 

dramatically changed the identity of rhizosphere microflora (Badri et al., 2009). 

Although this may be due to pleiotropic effects of the mutation on multiple metabolic 

pathways, it suggests ABC transporters are important players in host-controlled 

design of their environs.  

From the standpoint of host-microbe communications, it can be argued that the 

most agronomically important secretions of legumes belong to a class of phenolic 

compounds, the flavonoids and iso-flavonoids. Each legume species deploys a 

combination of flavonoids to attract compatible symbionts. These chemo-attractants 

can be detected in exudates under low nitrogen conditions (Maxwell, Hartwig, 

Joseph, & Phillips, 1989). Conditional secretion of these chemoattractants might 

indicate the plant’s underlying need for conservation of ATP that is otherwise 

needed for exudation of these substances into the rhizosphere. Although their 

transport machinery has been elusive so far (Hassan & Mathesius, 2012), ABC 

transporters have been implicated repeatedly in transport of these and related 

phenylpropanoid pathway derivatives (Buer, Muday, & Djordjevic, 2007; Goodman, 

Casati, & Walbot, 2004). Translocation of the soybean signalling flavonoid, 

genistein, was shown to be MgATP dependent and could be inhibited by sodium 

orthovanadate indicative of the involvement of an ABC transporter. In the absence 

of any further transcriptional induction by low nitrogen conditions the authors 

conclude that the transporter is probably expressed constitutively and that increased 

levels of flavonoids secreted under low nitrogen conditions are likely to be due to 

biosynthetic changes (Sugiyama, Shitan, & Yazaki, 2007). The ABC transporter 

gene responsible, however, is yet to be identified.  

The phytohormone strigolactone which inhibits shoot branching in plants can also 

act as a signal for mycorrhiza (Akiyama et al., 2005). Strigolactone induced spore 

germination and hyphal branching is accompanied by an increase in size and 

number of the fungal mitochondria (Besserer et al., 2006). The recently discovered 

transport machinery for these sesquiterpene lactones in Petunia x hybrida involves 

the PhPDR1 gene, a ABCG type plasma-membrane-localized ABC transporter, 

induced in response to phosphate deficiency in hypodermal passage cells of the 

root (Kretzschmar et al., 2012). The transcript level of this transporter is correlated 

with the early stages mycorrhizal colonization but is decreased at later stages, 

possibly reflecting the decreased requirements for the chemoattractant in the root 
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exudates.  Interestingly, the P. x hybrida pdr1 mutant showed reduced mycorrhizal 

colonization although the infection structures developed normally. Given that 

stigolactones are also produced during nodulation (Liu et al., 2011), analysis of the 

Medicago orthologue of PhPDR1 might provide useful insights into the role of 

strigolactones in rhizobial infection.   

Another plant-to-mycorrhiza signalling molecule are cutin monomers produced by 

the M. truncatula glycerol-3-phosphate acyl transferase RAM2 (REQUIRED FOR 

ARBUSCULAR MYCORRHIZATION); these cutin monomers are also important for 

invasion by the hemibiotrophic oomycete P. palmivora (Wang et al., 2012). The 

ram2 mutant is defective in formation of fungal and oomycete hyphopodia and 

mycorrhizal appressoria. Since external addition of cutin monomers alone is enough 

to restore infection by either microbe, the authors concluded that cutin is involved in 

signalling rather than structural aspects of the interaction. Induction of the RAM2 

transcript requires the central regulator of symbiosis signalling, CCaMK. However, 

the ccamk mutant, although blocked in mycorrhizal colonization can still form 

hyphopodia at the root surface and so basal expression of RAM2 at the epidermis is 

thought to be independent of CCaMK (Murray, Cousins, Jackson, & Liu, 2013). 

Moreover, successful infection by P. palmivora does not require CCaMK indicating 

that the product of the RAM2 biosynthetic pathway is constitutively present at the 

root surface. Although it is not known how these cutin monomers are transported in 

symbiosis,  there are several reports implicating half ABCG transporters in the 

transport of cuticular lipids (G. Chen et al., 2011; McFarlane et al., 2010; 

Panikashvili, Shi, Schreiber, & Aharoni, 2011; Pighin et al., 2004). Based on these 

observations, a hypothetical Medicago cutin transporter can be predicted to be an 

ABCG transporter which is plasma membrane localized and is active constitutively 

but is transcriptionally induced by mycorrhizae.  

Maintenance of defence barriers and prevention of disease requires active 

secretion. Legumes responding to beneficial symbionts release phytoalexins like 

medicarpin and formononetin which quite possibly evolved to detain opportunistic 

soil pathogens in the soil. Previously found to be secreted under low nitrogen 

conditions, secretion of these isoflavonoids was reported to be induced by elicitors 

from Phytopthora medicagenis (Banasiak et al., 2013). Silencing of ABCG10 in 

Medicago led to increased infection by P. medicagenis while levels of detected 

isoflavonoids correspondingly decreased. The authors also reported MtABCG10 to 

be induced by liquiritigenin and iso-liquiritigenin, suggesting a wide chemical variety 
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of isoflavonoids as substrate. However, no direct transport assays support this 

hypothesis.  

Pre-infection defences include numerous anti-microbial compounds which can be 

secreted constitutively or are pathogen induced. Tobacco leaf exudates are 

composed of various phytochemicals, including the solanaceous terpenoid sclareol. 

A Nicotiana plumbaginifolia plasma-membrane ABC transporter NpPDR1, which 

can be induced by sclareol and its analogue sclareolide is perhaps the first ABC 

transporter identified as having a role in plant defence (Jasinski et al., 2001). 

Addition of ATP synthesis inhibitors increased retention of a radioactively-labelled 

sclareolide derivative in cultured cells of Nicotiana, confirming that export of sclareol 

is ATP dependent.  NpPDR1 was expressed constitutively in leaf trichomes (the 

primary sites of sclareol biosynthesis) and throughout the root except in the root 

tips. However, upon attack by necrotrophic fungal pathogens such as Botrytis 

cinerea, which causes soft rot, expression was immediately detected in whole 

leaves. Knockdown of NpPDR1 by RNAi rendered N. plumbaginifolia NpPDR1 

susceptible to this normally incompatible pathogen indicating a role for the 

transporter in non-host resistance. Transcriptional control by the jasmonic acid 

pathway shed light on its regulation by the defense signalling pathway (Stukkens et 

al., 2005) and was followed up by studies of the orthologous AtPDR12 in 

Arabidopsis.  Orthologues of Arabidopsis AtPDR12, N. plumbaginifolia (NpPDR1) in 

N. tabacum (NtPDR1) and soybean (GmPDR12) are all inducible by methyl 

jasmonate and to an extent salicylic acid (Eichhorn, Klinghammer, Becht, & 

Tenhaken, 2006; Sasabe, Toyoda, Shiraishi, Inagaki, & Ichinose, 2002; van den 

Brule, Muller, Fleming, & Smart, 2002) demonstrating ABC transporters as 

conserved molecular players in defence signalling pathways across species.  

Localized secretion of anti-microbial metabolites at the site of microbial entry is 

possibly mediated by the Arabidopsis AtPDR8 full-molecule transporter belonging to 

sub-family G.  AtABCG36/AtPDR8/AtPEN3 (penetration 3) is perhaps the best 

studied full ABCG transporter in non-host resistance. Although present ubiquitously 

in all organs and polarly-localized in root epidermal cells (Langowski, Ruzicka, 

Naramoto, Kleine-Vehn, & Friml, 2010), PEN3 accumulates at sites surrounding 

localized infection pockets upon pathogen recognition at the cell surface. In fact, 

application of PAMPs is enough to trigger the actin cytoskeleton-mediated 

recruitment of these transporters to the site of application (Underwood & Somerville, 

2013). Targeted focal localization of this transporter at the penetration site suggests 
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a targeted secretion of anti-microbial metabolites but no substrate has yet been 

identified. The atpdr8 mutant allows the entry and development of fungal papillae of 

normally incompatible pathogens which include the necrotrophic fungus Blumeris 

graminis pv. hordei, Erysiphe pisi and the oomycete P. infestans. The pathogen’s 

growth is eventually restricted by post-penetration defence mechanisms that include 

callose depositions around the infection structure (Stein et al., 2006). MLO based 

resistance to powdery mildew, specifically Golovinomyces orontii is also PEN3 

dependant (Consonni et al., 2006). mlo mutants show complete immunity to the 

fungal pathogen in contrast to the wild type where the fungus penetrates susceptible 

cells and hyphae extend throughout the leaf. The double mutant Atmlo2 Atpen3 

reverts to wild type levels of infection and displays the yellow chlorotic patches 

associated with pen3 related susceptibility. AtPDR7 which is the closest homologue 

of AtPDR8 was shown to not be involved in penetration resistance to non-host 

pathogens demonstrating a unique role for AtPDR8 in generalized non-host 

resistance.   

Finally, the wheat gene Lr34 (Leaf rust 34) which has provided durable partial 

resistance for over 50 years to the two rust causing fungi Puccinia triticina and P. 

striiformis has recently been revealed to encode an ABC transporter. Lr34 was 

mapped to the seventh chromosome of the D genome of polyploid wheat and 

identified as a 1401 amino acid long ABCG transporter (Krattinger et al., 2009). 

Although marked by senescing leaf tips, Lr34 if present in the genome provides 

heritable, long term resistance in the adult plant to not only the two above 

mentioned rust fungi but also to stem rust causing fungus and the powdery mildew 

B. graminis. The characteristic necrotic leaf tips also indicate that Lr34 is 

constitutively expressed. (Krattinger et al., 2011) Interestingly, some senescence 

related marker genes were found to be upregulated in Lr34 lines especially the flag 

leaves which was also found to be the most resistant organ in the plant.  

1.5.2 Cellular accommodation of microbes 

Once the microbe is in contact with the host, the host can take measures to allow 

entry providing the proper signals are present. Often, purified elicitors are sufficient 

to trigger a cellular reprogramming of the contacted host cell. In the case of Nod-

factors, entire developmental programmes can be initiated such as root hair 

branching, the formation of the pre-infection thread, and nodule organogenesis. 

Upon rhizobial attachment, root hairs curl to entrap the bacteria following which the 
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plasma membrane invaginates and extends down through the root hair forming the 

so called ‘infection thread’ which provides a conduit for the rhizobia to colonize the 

nodule cortex (Murray, 2011). Finally an entire new organ in the form of a nodule 

develops to house the incoming bacteria. During the mycorrhizal interaction, the 

plant plasma surrounds the appressoria and following cortical penetration it extends 

manifold to firstly surround the incoming hyphae; at later stages it encases the 

primary sites of nutrient exchange, the fungal arbuscules and is now called the peri-

arbuscular membrane (Parniske, 2008). Inhibition of pathogen entry after protective 

physical barriers have been overcome as well as formation and function of host-

pathogen interfaces such as the extra-haustorial membrane is also supported by 

energy dependent active processes involving transporters.  

Gradients of the plant hormone auxin trigger developmental changes ranging from 

organ initiation to cell expansion including root hair growth. A role for auxin in 

nodulation has been hypothesized since the finding that application of auxin 

transport inhibitors like NPA and TIBA to legume roots can create nodule-like 

structures called ‘pseudonodules’ in the absence of rhizobia (A. M. Hirsch et al., 

1989; Rightmyer & Long, 2011). Nod-Factor alone can also initiate organogenic 

events in some legumes perhaps using the same cellular machinery. A screen for 

NPA binding sites in Arabidopsis led to the discovery of ABCB transporters which 

were subsequently shown to efflux auxin (Noh et al., 2001). Since then a number of 

ABCB transporters have been shown to transport indole-acetic acid. This includes 

the Arabidopsis ABCB4 which is a facultative importer and exporter of auxin (Cho, 

Lee, & Cho, 2007; Santelia et al., 2005). Several ABC transporters have been 

implicated in nodulation and mycorrhization. The expression of LjABCB4 which is an 

orthologue of the auxin-transporting AtABCB4 was associated specifically with 

uninfected cells of the nodule. The Lotus ABC family was defined for the 

incompletely sequenced legume (Sugiyama et al., 2006) and the authors uncovered 

two sub-groups of homologous genes encoding Lotus orthologues of Arabidopsis 

MRP14 (Subfamily C) and PDR12 (Subfamily G) ABC transporters which were 

highly induced after inoculation by the Lotus symbiont Mesorhizobium loti.  

A forward genetics screen for Medicago mutants with defects in mycorrhizal 

colonization led to the identification of STR1 and STR2 (STUNTED ARBUSCULE), 

two half ABCG transporters that when knocked down had compromised arbuscule 

development but intact pre-symbiotic signalling (Q. Zhang, Blaylock, & Harrison, 

2010). The knockdown roots showed shrivelled infection structures which, unlike 
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arbuscules in the wild type root, did not fill the entire infected cortical cell. The 

fungus had difficulty initiating the arbuscule as well as in hyphal branching required 

to form the arbuscule. All events prior to arbuscule development from signalling to 

hyphopodia formation and intracellular hyphal extension appeared to be normal. 

The functional conservation of these transporters in all mycorrhizal angiosperms 

was demonstrated by an ensuing study in rice which observed a similar extent of 

morphological defect if either gene was mutated (Gutjahr et al., 2012). Presence of 

nurse plants in the vicinity did not overcome the deficiency ruling out a rhizospheric 

secreted signal as a candidate substrate. Both transporters co-localized to the peri-

arbuscular membrane which has a unique molecular identity (Pumplin et al., 2012) 

showing that the two transporters dimerize to form the full functional ABC 

transporter. Knockdown of str2 in the str1 mutant background did not further 

enhance the severity of the phenotype supporting the idea of coordinated transport 

of a common substrate. Dissimilarities with arbuscule phenotypes of strigolactone 

biosynthetic mutants are enough to rule strigolactones out as a substrate. Cutin 

monomers have been suggested as possible substrates but the hypothesis remains 

to be tested (Wang et al., 2012). Another Medicago ABC transporter, MtABCB1, 

responsive to mycorrhiza was identified in transcriptomic studies of laser dissected 

cortical cells containing arbuscules. Spatial expression patterns of this full molecule 

transporter belonging to sub-family B showed an association with arbuscules but 

unlike the STRs it was also present in adjacent cortical cells three weeks post 

inoculation (Gaude, Bortfeld, Duensing, Lohse, & Krajinski, 2012). 

1.5.3 Nutrient exchange and additional processes 

Maintenance of symbiotic associations is important for mutualistic and (hemi) 

biotrophic interactions which require the host plant to remain alive for the entire 

duration or part of the microbe’s life cycle. One aspect of this is the sequestration of 

potentially toxic chemicals such as phytoalexins across the tonoplast which can be 

considered as ‘storage excretion’. The majority of ABC transporters of sub-family C 

studied except AtMRP4 localize to the plant vacuolar membrane (Klein, Burla, & 

Martinoia, 2006). These ABCC transporters function as glutathione-S-conjugate 

pumps that move substrates into the vacuole only in the conjugated form (Rea, Li, 

Lu, Drozdowicz, & Martinoia, 1998). The previously mentioned isoflavonoid 

medicarpin when conjugated with glutathione proved to be an excellent substrate for 

MgATP dependent, vanadate sensitive uptake into vacuolar membrane vesicles of 
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the legume Vigna mungo. Non glutathionated medicarpin was transported with an 

efficiency four times lower than GS-medicarpin and this influx was independent of 

MgATP (Z. S. Li, Alfenito, Rea, Walbot, & Dixon, 1997). The authors speculate that 

non-infected neighbouring cells sequester the toxic medicarpin into vacuoles to 

prevent cellular damage and maintain healthy cells while at the same time they are 

prepared to remobilize the isoflavonoid if the infection spreads.  

Ultimately, a sustained successful relationship requires exchange of nutrients 

between the host and the symbiont. However, no plant ABC transporters have been 

implicated in nutrient transfer to the microbe at present. For pathogens, leakage of 

sugars may serve as a susceptibility factor. Mutations in transporters which release 

sugars to the plants surface may provide resistance but there is no information at 

present about the chemical nature of substrate for any of the ABC transporters 

involved in plant-pathogen interactions. This remains one of the major challenges in 

the future both for academic and agronomic interest.  

1. 6 Conclusion and future challenges  

1. The ABC transporter family contains key members which decide the 

outcome of many plant-microbe interactions. With advances in genome 

sequencing technologies, inventories of ABC transporter genes in diverse 

plants are increasing. A large proportion of the transporters with known 

function seem to be involved in plant-microbe interactions highlighting a 

need to consolidate what is known at present. Integrating current knowledge 

might reveal conserved mechanisms involved in host-microbe interactions. 

2. Linking transporters to their substrate remains one of the primary challenges 

in ABC transporter research. So far only one symbiotic ABC transporter 

namely, PhPDR1, has been described whose substrate as well as role in 

infection progression is known. Further biochemical studies are required to 

uncover specific substrates of important ABC transporters like Medicago 

STR1/2 and the Arabidopsis PDR8 (PEN3) and wheat LR34 to conclusively 

ascribe function for agricultural exploitation. On the other hand, it is also a 

priority to identify ABC transporters likely to transfer known substrates 

essential to the development of symbiosis like auxin and malate, for which 

ABCs have been identified in other tissues and organisms.  
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1.7 Summary 

 

 

 

 

 

 

ABC transporters are involved in many different processes and are associated with 

almost all stages of plant-microbe interactions (Figure 1.4). To date however, no 

such transporter common to both bacterial and fungal symbiotic associations have 

been identified and/or characterized in any species. Understanding their regulation 

and function will shed light on transport processes fundamental to the establishment 

of symbioses and reveal how the common symbiosis pathway differentially 

regulates a core set of genes to accommodate microbes with vastly different life-

styles.  

  

Figure 1.4: Summary diagram showing ABC transporters associated with 

Root nodule symbiosis and Arbuscular mycorrhizal symbiosis studied to 

date. 

Labels in bold denote substrates identified or predicted. Gene names are given in 

parentheses below the substrate.  

 

 



40 
 
 

 

Aims and Objectives 
 

 

Through the research described in this thesis, I aim to investigate the role of 

different transporters involved in symbiotic infection processes; in particular, the 

ATP binding cassette (ABC) transporter family, members of which have been shown 

to play important roles in plant-microbe interactions (Chapter 3-4). Specifically, I 

attempt to  

(1) Identify ABC transporters common to both Root nodule symbiosis (RNS) and 

arbuscular mycorrhizal symbiosis (AMS) in Medicago using in silico tools and 

evaluate spatio-temporal activity of candidate genes using promoter-GUS fusions 

and semi-quantitative RT PCR. 

(2) Understand the role of the candidate transporters in symbiotic interactions by 

identifying and characterizing single mutants and subsequently generating double 

and triple mutants, in addition to using RNAi and gene overexpression strategies.  

(3) Discern the key regulatory genes of the common symbiosis signalling pathway 

that control the specificity of expression of the transporters during rhizobial and 

mycorrhizal infection.  

In the last chapter of my thesis (Chapter 5) I present results that address the single 

question – Does the phytohormone Auxin play a role in root nodule symbiosis? My 

objectives thus were  

(1) Using pharmacological, physiological and molecular biological experiments 

understand how manipulating the endogenous auxin stream can alter rhizobial 

infection events. 

(2) Find key genes in the auxin transport and signalling pathway that control nodule 

organogenesis.  

  



41 
 
 

 

Chapter Two:  

Materials and Methods 

 

 

 

2.1 Plant Methods 

2.1.1.1 Medicago truncatula lines and growth conditions 

Medicago truncatula ecotypes Jemalong A17 (Barker et al., 1990) and R108 

seedlings (Hoffmann, Trinh, Leung, Kondorosi, & Kondorosi, 1997) were used in 

this study. All mutants and transgenic plants described in this study were derivatives 

of either ecotype. Plants were grown in a 1:1 mixture of Terra green and sharp sand 

(TG::SS) or in John Innes Cereal Mix (loam based) or Barley mix (N100 P200 

K200). Plants were watered regularly as needed and kept in controlled environment 

chambers with a 16 hour photoperiod at 20°C and 80% humidity.  

On plates, seedlings were either grown on distilled water agar (DWA) or Fahraeus 

plant medium (FP) using a filter paper sandwich method. Briefly, Whatman paper 

(Grade 0858 Cellulose Qualitative Filter Paper) was cut to size to fit square tissue 

culture dishes (Fischer scientific) and sterilized. Seedlings were grown vertically on 

1.5% agarose slants between two filter paper squares.  

The following M. truncatula lines were used for this study.  

Lines Description Background Reference 

A17 Jemalong Wild type   

R108 Wild type   

nfp-1 Mutation C 31 Jemalong A17 (Ben Amor, 2003) 

dmi3-1 A 14-bp deletion in the gene caused 
translational termination after 
approximately two-third of the kinase 
domain. 

Jemalong A17 (Wais et al., 
2000) 
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nsp1-1 Contains a premature stop codon 
and encodes a truncated protein of 
239, instead of 554, amino acids 

Jemalong A17 (Catoira et al., 
2000)  

nsp2-2 Contains a 435 bp deletion that 
removes a major portion of the 
conserved GRAS domain. 

Jemalong A 17 (G. E. D. Oldroyd 
& Long, 2003) 

ram1-1 induced by fast neutron 
mutagenesis, deletion was 
approximately 71 kb and contained 
ten predicted genes 

Jemalong A 17 (Gobbato et al., 
2012)  

nin-1 11-bp deletion starting at position 
1850  

Jemalong A17 (Marsh et al., 
2007)  

NF5606 (amn1-1) tnt1 insertion in exon 1, Backcrossed 
once to WT R-108 

R108 This study 

NF17134 (amn1-
2) 

tnt1 insertion in exon 6 backcrossed 

once to WT R-108 
R108 This study 

NF 9733 (amn2-
1) 

tnt1 insertion in exon 3 R108 This study 

NF18154 (amn3-
1) 

tnt1 insertion in exon 1, Backcrossed 
once to WT R-108 

R108 This study 

NF8444 (amn3-2) tnt1 insertion in exon 1, Backcrossed 

once to WT R-108 
R108 This study 

NF12598(amn3-
3) 

tnt1 insertion in exon 4 R108 This study 

NF 19099(amn3-
4) 

tnt1 insertion in exon 5 R108 This study 

NF 10070 (iaa8-1) tnt1 insertion in exon 1 R108 This study 

NF 14494 (lax2-1) tnt1 insertion in exon 4 R108 This study 

NF 16662 (lax2-2) tnt1 insertion in exon 4 R108 This study 

amn1-1 amn2-1 double mutant  R108 This study 

amn1-2 amn2-1 double mutant  R108 This study 

amn1-1 amn3-1 double mutant  R108 This study 

amn1-1 amn3-2 double mutant  R108 This study 

amn2-1 amn3-1 double mutant  R108 This study 

amn2-1 amn3-2 double mutant  R108 This study 

amn1-1 amn2-1 
amn3-1 

triple mutant  R108 This study 

lax2-1 DR5-GUS double cross generated by crossing 
lax2-1 with transgenic DR5-GUS (R-

108) 

R108 This study 

Iaa8-1 DR5-GUS double cross generated by crossing 
iaa8-1 with transgenic DR-5GUS (R-

108) 

R108 This study 

DR5-GUS  R108 (Zhou et al., 
2011) 

GH3-GUS  A17 (Mathesius et al., 
1998) 

 

 

Table 2.1: List of M. truncatula lines used in this study 
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2.1.1.2 Seed sterilization, scarification and vernalisation 

M. truncatula pods were split open by grinding and seeds collected. To disrupt the 

seed coat, seeds were scarified using concentrated sulphuric acid for eight minutes 

and rinsed with distilled water a minimum of five times in universal glass jars. Under 

sterile conditions, sodium hypochlorite (Sigma Aldrich reagent grade 10-15% active 

chlorine) was added to each bottle for two minutes after which the bleach was 

decanted and the seeds rinsed repeatedly until no traces of the bleach remained. 

Alternatively, seeds were scratched between two sheets of sand paper to scarify the 

seed coat and then treated with bleach. Sterilized seeds were left in sterile water for 

2-3 hours till they imbibed water and swelled up. They were then individually placed 

on DWA medium in deep dish petri dishes. The petri dishes were wrapped in 

aluminium foil and transferred to 4°C. For most experiments, the seeds were 

vernalized for a minimum of three days for most experiments to synchronize 

germination or 14 days for early flowering of plants 

(https://www.noble.org/Medicago-handbook/).  

2.1.1.3. Cross fertilizations 

To generate different allelic combinations between mutant plants or transgenics, 

flowers were first emasculated and then hand pollinated with pollen from the desired 

parent under a dissection microscope. The recipient (ovule donor) flowers were 

selected for a stage when the petals had not yet unfurled but were longer than five 

millimetres. A single incision was made in the petals to free the anthers and the 

stigma without damaging them. Crossing was carried out only if anthers of the 

female parent had not yet dehisced. Anthers were then removed from the recipient 

flower, either using fine forceps or suction generated from a pump, to avoid self-

fertilization. Pollen from the desired male parent was carefully placed on the tip of 

the stigma and the flower petals gently replaced to maintain humidity. In addition, 

the crossed flower was carefully lowered into a humidified chamber (falcon tube 

containing distilled water) and plugged with cotton. For a successful cross, the pod 

started developing within days and once the pod stopped coiling, it was taken out of 

the tube and covered with a net bag. The seed pod was allowed to develop to 

maturity and seeds collected once they turned brown and fell off the branch 

naturally. The F1 seeds were sterilized as described above and grown in soil. 

Homozygous F2 progeny were selected by polymerase chain reaction (PCR) 

screening of the required gene and segregation ratio was analysed.  
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2.1.1.4 Generation of stably transformed hairy roots of M. truncatula  

Seeds were sterilized and vernalized for three days as described above. The night 

before transformation the petri dishes containing WT seeds were placed at RT in an 

inverted position. Under sterile conditions, the entire meristematic root tip was 

excised and the cut end of the remaining seedling dipped in the Agrobacterium 

rhizogenes culture. Twelve seedlings each were placed on modified FP (MOD-FP) 

medium agar plates and kept upright in controlled environment chambers for 7-10 

days. The untransformed roots were excised and discarded while the remaining 

roots were placed onto selection medium containing 20µg/ml kanamycin if antibiotic 

transformation selection was used. If ds RED transformation marker was used for 

selection, only positively fluorescing plants were transferred onto fresh medium. The 

plants were grown on plates till transformed hairy roots developed and then 

transferred to soil for nodulation assays or on water agar plates for infection assays.   

2.2. Microbiological methods 

2.2.1 Bacterial methods 

2.2.1.1 Bacterial strains and growth conditions 

Escherichia coli cultures were grown at 37°C for 16 hours overnight at 250 RPM in 

10 ml cultures. A. rhizogenes strain AR1193 (Stougaard, Abildsten, & Marcker, 

1987) was used for hairy root transformations of M. truncatula and A. tumefaciens 

GV3101 was used for transient transformations. Single colonies were used for 

inoculating 5 ml TY medium and grown on shaking cultures at 28°C as required. 

Sino rhizobium maillot strains were grown overnight at 28°C under shaking 

conditions. Long term storage of bacteria was done at a final concentration of 15% 

glycerol at -80°C.  

The following bacterial strains were used in this study 

Bacterial 

Strains 

Genotype Purpose Source Reference 

E. coli DH 5a F
-
 endA1 glnV44 thi-1 

recA1 relA1 gyrA96 

deoR nupG 

Φ80dlacZΔM15 

Δ(lacZYA-argF)U169, 

hsdR17(rK
-
 mK

+
), λ– 

General 

purpose 

plasmid 

amplification 

and cloning  

Invitrogen 

(Life 

technologies) 
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E. coli SCS110  rpsL (Strr) thr leu 

endA thi-1 lacY galK 

galT ara tonA tsx dam 

dcm supE44 ∆  (lac-

proAB) [F´ traD36 

proAB lacIq Z∆M15] 

Methylation free 

plasmid 

preparations 

Phil Poole, 

JIC 

 

E. coli JM 109 endA1 glnV44 thi-1 

relA1 gyrA96 recA1 

mcrB
+
 Δ(lac-proAB) 

e14- [F' traD36 

proAB
+
 lacI

q
 lacZΔM15] 

hsdR17(rK
-
mK

+
) 

Endonuclease A 

minus strain for 

propagation of 

large plasmids 

Invitrogen 

(Life 

technologies) 

 

E. coli DB 3.1 F- gyrA462 endA1 

glnV44 Δ(sr1-recA) 

mcrB mrr hsdS20(rB
-
, 

mB
-
) ara14 galK2 lacY1 

proA2 rpsL20(Sm
r
) 

xyl5 Δleu mtl1 

ccdB resistant 

propagation of 

gateway 

destination 

vectors  

J. Allan 

Downie, JIC 

 

A. rhizogenes 

AR1193 

 Gene transfer to 

plants 

 (Stougaard 

et al., 

1987) 

A. tumefaciens 

GV3101 

 Transient 

expression of 

genes 

  

S. meliloti 1021  Symbiotic 

partner of M. 

truncatula 

J. Allan 

Downie, JIC 

 

S. meliloti 2011  Symbiotic 

partner of M. 

truncatula 

J. Allan 

Downie, JIC 

 

S. meliloti 

SL44 

(nodΔD1ABC) 

 Non-nod factor 

producing strain 

of S. meliloti 

1021 

J. Allan 

Downie, JIC 

 

 

 

2.2.1.2 Bacterial plasmid preparation and transformation by heat-shock 

or electroporation 

Overnight grown cultures of E. coli were pelleted at 10,000 RPM for 10 minutes in 2 

ml Eppendorf tubes. Plasmid was isolated by the alkaline lysis method using the 

Qiagen miniprep kit following manufacturer instructions. E. coli chemically 

competent cells were transformed by a 45 second heat shock at 42°C followed by 

an immediate cold shock on ice. SOC medium was added to each aliquot and 

Table 2.2: List of bacterial strains used in this study 



46 
 
 

transformed cells allowed to recover for an hour on a shaker at 37°C. The cells were 

pelleted by centrifugation and transformed cells selected on medium containing 

desired antibiotic. Agrobacterium cells were transformed by electroporation. In 

individual sterile cuvettes (Geneflow), 40 µl competent cell and approximately 100 

ng plasmid were added. Current was applied at 2.5V for 10 seconds at a resistance 

of 200 ohms and SOC medium added immediately after. The transformed cells 

were allowed to recover at 28°C on a shaker for one hour and selected on TY 

medium containing appropriate antibiotics.  

The following vectors, plasmids and constructs were used in this study. 

Name  Insert/Description  Backbone  Reference 

 Gateway ENTRY vector pDONR201  

 Gateway ENTRY vector pGEMT Easy Invitrogen 

 Gateway ENTRY vector pENTR/dTOPO Invitrogen 

pAMN1-GUS 1.06 Kb upstream of 

Medtr3g086420 

pKGWFS7 This study 

pAMN2-GUS 1.78 Kb upstream of 

Medtr4g081190 

pKGWFS7 This study 

pAMN3-GUS 2.1 Kb upstream of 

Medtr8g022270 

pKGWFS7 This study 

pMtLAX2-GUS 2.8 Kb upstream of 

Medtr7g067450 

pKGWFS7 This study 

pMtIAA8-GUS 1.9 Kb upstream of 

MTR_5g067350 

pKGWFS7 This study 

pEXPA7:CDSMtLAX2:T35S CDS  Medtr7g067450 pK7WG2-R*-

pExpa7  

 

pEXPA7:CDSAMN2:T35S CDS  Medtr4g081190 pK7WG2-R*-

pExpa7  

 

pEXPA7:GUS:T35S pENTR™-gus 

Arabidopsis thaliana β-

glucuronidase (gus) gene  

pK7WG2-R*-

pExpa7 

 

p35S:CDSAMN2:egfp:T35S CDS  Medtr4g081190 pK7WG2-R  

p35S:eGFP:egfp:T35S free gfp pK7WG2-R  

pGAL:AMN2 CDS  Medtr4g081190 pYESDEST-52  

pGAL:MtLAX2 CDS  Medtr7g067450 pYESDEST-52  

pGAL:AMN2:eGFP CDS  Medtr4g081190  pAG306GAL-

ccdB-eGFP 

Addgene 

corp.  
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pENOD11:AtIAA17:T35S AtIAA17 WT  pAGM4723  

pENOD11: 

AtIAA17mImII:T35S 

AtIAA17 dominant 

negative 

pAGM4723  

pENOD11: 

AtIAA17mImIIMsc1: T35S 

AtIAA17 Control pAGM4723  

 

 

2.2.1.3 Plasmid mobilization by Tri-parental mating 

Tri-parental mating is based on the principle that a conjugative plasmid existing in 

one bacterial strain (helper) aids in the transfer of the desired plasmid (donor) 

present in another bacterial strain into a third (acceptor) strain. On a TY agar plate 

containing no antibiotic, the strain containing the desired donor plasmid, the 

acceptor strain and the helper strain were streaked out separately. On the same 

plate, these strains was streaked in a patch where all three were mixed. This mating 

plate was incubated overnight at 37°C. The next day, the patch was replica plated 

onto a sterile velvet cloth and bacterial colonies transferred onto a fresh TY plate 

containing antibiotics for selection of the acceptor stain transformed with the 

plasmid of interest. This plate was incubated at 28°C for three days or till colonies 

appeared. The colonies were re-streaked onto a fresh plate to obtain single colonies 

which were used for further experiments.  

2.2.1.4 Blue White Screening 

To screen for recombinant clones containing the gene of interest, blue white 

screening was performed in which white colonies identify clones with a disrupted 

lacZ gene in the plasmid backbone indicating the presence of an insert. Blue-white 

selection is only possible in E. coli strains such as DH5α which contain the amino-

terminal fragment of the LacZ product allowing for α-complementation. To the 

growth medium, X-GAL (Formedium) a chromogenic substrate for β-galactosidase 

and a Lac operon inducer – IPTG (Isopropyl β-D-1-thiogalactopyranoside) were 

added to a final concentration of 40 µg/ml and 100 µM respectively along with the 

antibiotic. Plates were incubated overnight and colonies screened visually for colour 

development.   

Table 2.3: Table of vectors, plasmids and constructs used in the study 
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2.2.2 Saccharomyces cereviseae transformation and culture 

2.2.2.1 Yeast strains and growth conditions  

All yeast strains were derivatives of the BY4742 background and were obtained 

from the Euroscarf collection (http://web.uni-frankfurt.de/fb15/mikro/euroscarf/). 

Cells were grown at 28°C for the desired amount of time in either the YPD or SD 

medium with suitable dropouts and carbon source.  Long term storage was in 15% 

glycerol.  

2.2.2.2 Yeast competent cell preparation and transformation 

A single colony was used to inoculate 10 ml cultures of YPAD medium and grown 

overnight at 28°C on a shaker at 250 RPM. The next day, the overnight culture was 

adjusted to an absorbance 0.2 OD600 in YPD medium. The sub-cultured cells were 

allowed to grow up to absorbance at OD600 0.6 to 0.8. The cells were pelleted by 

centrifugation at 2500 RPM for 5 minutes. The resultant cell pellet was re-

suspended in 2 ml of sterile distilled water. Per transformation, 240 µl 50% PEG 

(MW 3350), 36 µl 1 M Lithium acetate and 30 µl of 2 mg/ml single stranded DNA 

was added to 100 µl of re-suspended yeast cells in a sterile tube. 150-300 ng of the 

desired plasmid was added per tube and mixed by vortexing. The tube was 

incubated at 42°C for 45 minutes in a water bath. The cells were pelleted and re-

suspended in 100 µl of sterile 0.9% NaCl and plated onto appropriate auxotrophic 

selection medium.  

2.2.2.3 Yeast drop test  

A single yeast colony containing the desired construct was grown overnight in 5 mL 

SD dropout medium. The next day, all cultures were diluted in water to ~0.6 

absorbance at OD600. In a sterile 96 well cell culture dish (Thermo) cells were 

serially diluted five times. Using a multichannel pipette, 5 µl of each culture was 

pipetted onto the selection medium and the plate allowed to dry. The plate was then 

incubated at 28°C for 3-5 days and a photograph was taken.  

The following yeast strains were used in this study.  
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Strain Mutation Genotype Accession 

number 

Reference 

YML070w yap1-1  BY4742; Mat a; his3D1; 

leu2D0; lys2D0; ura3D0; 

YML070w::kanMX4 

Y16483 R. Prusty 

(2004) 

YJR040w gef1 BY4742; Mat a; his3D1; 

leu2D0; lys2D0; ura3D0; 

YJR040w::kanMX4 

Y16838  

Wild type BY4742 MATα ; his3Δ 1; leu2Δ 0; lys2Δ 

0; ura3Δ 0 

Y10000  

 

 

Medium Recipe for 1 litre 

Farhaeus Plant (FP) 

medium 

0.1 g CaCl2. 2H2O, 0.12 g MgSO4, 0.01g KHPO4, 

0.150 g NaHPO4.12H2O, 5 mg ferric citrate, 2.86 g 

H3BO3, 2.03 g MnSO4, 0.22 g ZnSO4.7H2O, 0.08 g 

CuSO4.5H2O, 0.08 g H2MoO4.4H2O, pH 6.3-6.7. 

For solid medium 0.5% (w/v) LabM No. 1 agar 

was added. 

Modilfied FP medium FP medium containing 0.5 mM NH4NO3 

Buffered Nodulation 

(BNM) medium 

390 mg MES, 344 mg CaSO4.2H2O, 0.125 g 

KH2PO4, 122 mg MgSO4.7H2O, 18.65 mg 

Na2EDTA, 13.9 mg FeSO4.7H2O, 4.6 mg 

ZnSO4.7H2O, 3.1 mg H3BO3, 8.45 mg 

MnSO4.H2O, 0.25 mg Na2MoO4.2H2O, 0.016 mg 

CuSO4.5H2O, 0.025 mg CoCl2.6H2O, pH 6.5. For 

solid medium 11.5 % (w/v) LabM No. 1 agar 

(Formedium) was added. 

Distilled water agar (DWA) 

medium 

1.5 % (w/v) Lab M No. 1 agar (Formedium, UK, 

pH 5.7 (adjusted with KOH). 

LB (Luria-Bertani) 

medium 

Tryptone 10.0g Yeast Extract 5.0g NaCl 10.0g pH 

7.0 10g added for solid medium  

Table 2.4: Yeast strains used in the present study 
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TY (Tryptone-Yeast agar) 

medium 

Tryptone 5.0g Yeast Extract 3.0g CaCl2 6H2O 

1.32g  

SOC (Super optimal broth 

with catabolite repressor) 

medium 

Tryptone 20.0g Yeast Extract 5.0g NaCl 0.58g 

KCl 0.19g MgCl2 2.03g MgSO4 7H2O 2.46g 

Glucose 3.6g 

YPAD medium (YPD with 

adenine) 

Yeast Extract 10g Peptone 20g Glucose 20g 

Adenine 20mg 

SD (Synthetic Defined) 

medium 

Yeast Nitrogen Base without Ammonium Sulphate 

and Amino Acids (Formedium) 1.9g (NH4)SO4 

(Ammonium Sulphate) 5g Dropout Uracil 

Glucose/Galactose/Xylose Carbon source 

 

 

Buffers Recipe for 1 litre 

Z Buffer 100 mM Sodium phosphate buffer (100 mM 

Na2HPO4, NaH2PO4 each) 10 mM KCl, 1 mM 

MgCl2 pH 7.4 

GUS Buffer 50 mM Sodium phosphate buffer, 1 mM EDTA, 

1% Triton-X 

PIPES (piperazine-N,N′bis[2-

ethanesulfonic acid]) Buffer 

5.8 g NaCl, 30 g PIPES, 1M NaOH, 2 g 

MgCl2•6H2O 

 

 

Antibiotic Solvent   Final-concentration 

(μg/ml) 

Carbenicillin  Water 100 

Kanamycin  Water 100 

Rifampicin  Ethanol 50 

Spectinomycin  Water 100 

Streptomycin Water 200 

Tetracycline  Ethanol 5 

 

Table 2.5: Recipe for preparation of media used in this study 

Table 4.5: Recipe for preparation of buffers used in this study 

Table 2.6: Antibiotics used in this study 
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2.3 Molecular Biological methods 

2.3.1 DNA Methods 

2.3.1.1 Agarose gel electrophoresis 

DNA fragments were resolved by running the samples on a 1% agarose gel at 100 

V in 1x TAE (Tris acetate EDTA). An ethidium bromide bath prepared at a 

concentration of 0.5 µg/ml was used for visualization of the DNA bands. Analytical 

gels were photographed using Geneflash Syngene Bioimaging system.  

2.3.1.2 PCR cycling conditions 

All PCR reactions were carried out using the G-Storm or PTC 225 Peltier thermal 

cyclers. For all cloning purposes the hi-fidelity Phusion taq (New England Biolabs) 

was used, using manufacture recommended concentrations. For general purpose 

genotyping and colony PCRs the GoTaq green master mix was used.  

Stage  Temperature 

(°C) 

Time-period 

(Phusion) 

Time-period 

(GoTaq) 

Number of 

cycles 

Initial 

Denaturation 

96 5 minutes 5 minutes x1 

Denaturation 96 30 sec 30 sec  

Annealing 55-60 30 sec 30 sec x30-35 

Extension 72 30 sec per Kb 1 minute per 

Kb 

 

Final 

extension 

72 10 minutes 10 minutes x1 

 

 

2.3.1.3 Restriction digestion 

Sequence specific digestion of DNA was carried out using restriction enzymes from 

NEB or Roche. The reaction was setup with 1 µg plasmid or PCR purified 

fragments. Wherever compatible a double digest was setup in the same buffer 

otherwise sequential digest carried out.  

Table 2.7: Standard PCR cycling Parameters 
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2.3.1.4 DNA gel extraction 

Ethidium bromide stained DNA was visualised on a long wavelength UV 

transilluminator and the required section excised using a scalpel blade. Fragments 

were purified using the QIAquick gel extraction kit (Qiagen) following the 

manufacturer’s instructions. 

2.3.1.5 Sequencing using BigDye V3.1 

Sequencing ready‐reactions were performed using gene‐specific primers: 1.6 μl 2 

μM gene‐specific primer, 1.5 μl 5x sequencing buffer, 4.9 μl dH2O, 1 μl DNA from 

miniprep (typically >200 ng/μl), 1 μl Big Dye v3.1 (10 μl final volume). PCR cycling 

conditions were as follows: 25 cycles at 96 °C for 10 s, 55 °C for 5 s and 60 °C for 4 

min. Sequencing ready‐reactions were submitted to Genome Enterprise Ltd 

(Norwich, UK) or MWG operon (Eurofins, Germany) and results were analysed 

using ContigExpress (Vector NTI Advance 10, Invitrogen). 

2.3.1.6 Gateway Cloning: BP reaction and LR reaction 

Gateway technology is based on the ability of ‘‘site-specific recombinases to 

catalyse a reciprocal double-stranded DNA exchange between two DNA segments 

provided both DNA segments carry very specific sequences’’ (SB Primrose, R 

Twyman – 2009 7
th
 Ed.). To create entry clones, the required gene fragment was 

amplified using primers containing gateway compatible end sequences. The forward 

primer started with 5’‐GGGGACAAGTTTGTACAAAAAAGCAGGCT-3’ while the 

reverse primer had the sequence 5’‐GGGGACCACTTTGTACAAGAAAGCTGGGT-

3’. The purified fragment was sequenced and cloned into the ccdB ‘suicide gene’ 

containing pDONR201 vector backbone. A ligation reaction was setup using a 1::3 

vector::insert molecular ratio in an 8 µl reaction and 2 µl of enzyme BP clonase 

added (Invitrogen). Ligation was allowed to proceed overnight at 25°C and 

terminated the next day by addition of 1 µl proteinase K. The entire ligation mix was 

used to transform 50 µl of chemically competent E. coli cells. In case of the 

pENTR/dTOPO vector (Invitrogen) a four base pair CACC tag on the forward primer 

was added for cloning. The purified fragment was used for cloning according to the 

manufactures protocol. The reaction was allowed to proceed overnight and 2-5 µl 

was used for transforming 50 µl of competent cells. Colonies were screened by 

restriction digestion or colony PCR and confirmed by sequencing.  
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For the LR reaction, the desired entry clone and the destination vector plasmid were 

purified and the concentrations noted using the Nanodrop 2000 UV-Vis 

spectrophotometer. 150 ng of each vector was added to a thin walled pcr tube along 

with 2 µl of LR clonase and the volume made upto 10 µl. The reaction was allowed 

to proceed overnight at 25°C and terminated the next day by addition of 1 µl of 

Proteinase K. 2-5 µl of the reaction was used for transforming chemically competent 

cells and plated onto appropriate selection medium. Colonies were screened by 

restriction digestion and confirmed by end sequencing of clones insert.  

2.3.1.7 Golden gate assembly: Level 1 and Level 2 (Binary) vector 

assembly 

The protocol was adapted from (ref). Individual components to be assembled were 

synthesised from life technologies GeneArtR. To construct ‘level 1’ vectors a thin 

walled PCR tube, 100 ng of the linearized vector backbone and equimolar amounts 

of the other assembly pieces were added to a 15 µl total reaction mixture volume. 

The reaction mixture contained a final concentration of 1x NEB T4 buffer, 1x BSA, 

and 1 µl of BsaI and T4 ligase (New England Biolabs) each. The tube was placed 

into a thermocyler and cycling parameters setup as follows. (37°C/ 

3min//16°C/4min) x25 cycles (50°C/5min//80C/5°min) x1 cycle. 2 µl of the assembly 

reaction was transformed into 20 µl of competent E. coli cells. Only white colonies 

selected on the basis of blue white screening were screened by restriction digestion 

and confirmed by sequencing. Construction of level two vectors was done using the 

same protocol but the BsaI was replaced with BpiI restrictions enzyme. Selection of 

untransformed colonies was based on red-white selection; the untransformed 

colonies appeared red.  

2.3.2 RNA methods 

All gene expression analyses were performed with Microsoft Excel 2010 and the M. 

truncatula Gene Expression Atlas (http://mtgea.noble.org/jic/). Further statistical 

analyses were performed with the Genstat 16th Ed software package.  

2.3.2.1 General sample collection and RNA isolation 

Tissue was collected post the desired treatment in 2 mL Eppendorf tubes or 

wrapped in aluminium foil and immediately snap frozen in liquid nitrogen. The 

samples were ground in liquid nitrogen in a pre-chilled mortar and pestle treated 

http://mtgea.noble.org/jic/
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with RNAseZAP (Invitrogen). The ground samples were collected in 2 mL 

Eppendorf tubes. RNA was isolated using RNeasy plant mini kit (QIAgen) following 

the manufacturer’s protocol. The eluted RNA was treated with DNase (Invitrogen) 

following the manufacturer’s protocol and the quality evaluated by agarose gel 

electrophoresis.  

2.3.2.2. Root hair tissue collection and RNA isolation 

 

A root hair harvesting protocol was adapted from Ramos and Bisseling (Ramos & 

Bisseling, 2003). Root tips were removed and the roots plunged into liquid nitrogen 

contained in a Teflon-coated loaf tin (Dunelm Mill). A Daler Rowney number 2 filbert 

paint brush (Dunelm Mill) was used to brush root hairs and collected in the tin. 

Around 120-150 roots were used per RNA sample and the remaining nitrogen was 

poured into a 45 ml PTFE-coated conical centrifuge tube (VWR) and the nitrogen 

left to boil off. RNA was isolated from this purified root hair sample using RNeasy 

plant micro kit (QIAgen) according to the manufactures protocol and quality 

analysed using a Bioanalyser.  

2.3.2.3 Complimentary DNA (cDNA) synthesis 

RNA samples were placed on ice at all times and quantified on the same day the 

synthesis was performed. 1 µg of total RNA was used per sample unless stated 

otherwise. To a final volume of 13 µl, 1 µg RNA and dNTPs and oligo dT primers 

were added. For gene specific priming, antisense primers were designed and used 

at a final concentration of 2 pmol. The tubes were incubated at 65 °C for 5 minutes 

and immediately placed on ice for at least one minute. To this, buffer and DTT were 

added to a final concentration of 1x and 0.1 mM respectively. Finally, 40 units of the 

enzyme RNAseout and 200 units of Superscript III were added. The tubes were 

placed in the thermocycler and cycling parameters were as follows 50°C/60 

min//70°C/15 min. If the sample was intended for amplification of full length cDNA, 1 

µl RNAseH was added to remove DNA RNA hybrids.  

2.3.2.4 Primer efficiency calculations and quantitative PCR 

To calculate the efficiency of the qPCR primers used in this study, serially diluted 

cDNA samples were used and quantitative PCR carried out to determine their Ct 

value and corresponding dilution ratio as described below. 
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Quantitative PCR was carried out to compare the relative abundance of a transcript 

across different sample types and treatment conditions. The cDNA was prepared as 

above (2.3.2.3) and diluted 20 fold in sterile double distilled water. Forward and 

reverse primers up to a final concentration of 0.2 mM in 5 µl, 5 µl of the diluted 

cDNA and 10 µl of SYBR Green Taq Ready Mix (Sigma) was added to a total 

reaction volume of 20 µl. A minimum of three technical replicates each were used 

for three biological replicates per experiment. The plate was carefully sealed with 

Biorad transparent qPCR lids and samples mixed by flicking the wells. The samples 

were collected by a brief spin and placed into the Biorad 96 CFX Real time cycler. 

The cycling parameters used were 96°/5min// (96°C/10sec/60°C/15sec/72°C/20sec) 

x41// unless stated otherwise and followed up by a melt curve analysis from 65°C to 

95°C. The resultant threshold cycle Ct values were exported to Microsoft Excel 

2010 and the data analysed.  

2.4 Assays used in this study 

2.4.1 Bacterial growth curve assay 

The requisite strain(s) of bacteria was grown overnight in 5 ml culture with 

appropriate antibiotics. The following day, the absorbance at OD600 was measured 

using an Eppendorf biophotometer and the CFU (colony forming units) calculated 

and noted. This culture was diluted in fresh medium to 10-5 CFU. In a 48 well plate, 

360 µl of sterile medium containing the desired dilution of the chemical to be tested 

was added. A minimum of five replicates were used per treatment and the wells 

were randomly assigned per treatment. 40 µl of the diluted culture was added to 

each well containing 360 µl of the medium to get a final volume of 400 µl per well. 

The plate was placed into the infinite 2000 plate reader under shaking conditions 

and the OD600 absorbance measured at an interval of 1 hour upto 50 hours. The 

data was exported to Microsoft Excel 2010 and the average of all replicates per 

treatment plotted on a graph. 

2.4.2 Root hair length measurement 

Root hair length was measured using the Leica DFC 420 stereo microscope and the 

Leica application suite Version 4.2.0 software. Medicago seedlings were germinated 

as described earlier. Overnight germinated seedlings were selected only if the root 

tip was not curved and 5 seedlings per plate per treatment were placed between 
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filter paper sandwiches on square petri dishes. The seedlings were allowed to grow 

for seven days under long day conditions. To measure the root hair length, the top 

filter paper was removed carefully with forceps without moving the roots and placed 

under the microscope. Five consecutive root hairs on each side of the root were 

measured by specifying the base and the tip pf the hair using the software. Average 

of all root hairs was calculated and compared. 

2.4.3 Histochemical localization of GUS 

To visualize spatial patterns of gene expression, X-GlcA staining of β-Glucuronidase 

activity was performed. To 50 ml of GUS buffer, 196 µl of 250 mg/ml X-GlcA 

(Melford) in DMF (Dimethyl formamide) was added and finally mixed. Tissue 

samples were taken in small petri dishes and covered in the staining solution and 

the plates kept at 28 °C in dark. After the desired colour intensity developed, the 

staining solution was removed and the samples washed with fresh GUS buffer. 

2.4.4 Infection assay and β-Galactosidase staining 

Roots infected with pXLGD4 (phemA:LacZ) containing plasmids could be stained 

with X-GAL a chromogenic dye which acts as a substrate for the enzyme β-

galactosidase encoded by the bacterial gene lacZ. 25% Gluteraldehyde (Sigma) 

was diluted to 2.5% in Z-buffer and tissue submerged in this solution. The samples 

were then subjected to a vacuum for 10 minutes after which the tissues were 

allowed to stay in the solution for an hour in dark at RT. The tissue was then 

washed repeatedly with buffer a minimum of three times and 1 ml of the staining 

solution added (or enough to cover the samples). For 1 mL of the staining solution 

50 µl each of 100 mM potassium ferrocyanide and potassium ferricyanide and 20 µl 

of 40 mg/ml of X-gal in DMF was made up in Z-buffer. The samples were then 

placed at 28 °C in the dark overnight (16 hours). The reaction was stopped by 

disposing the staining solution and washing at least three times with Z-buffer. The 

roots were then analysed under a microscope and the number of infection threads 

quantified or images captured.   

2.4.5 SYTO13 Green-Fluorescent staining to visualize rhizobia 

SYTO13 stains (Invitrogen) nucleic acids, and thus can be used to localize rhizobia 

accurately in plant tissue such as nodule sections. Nodule sections were incubated 
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in 1 µL/mL SYTO13 green in PIPES buffer and visualized directly under a 

fluorescent filter and images captured.  

2.4.6 Nodulation assay 

To compare nodule number between different genotypes seeds were sterilized, 

scarified and vernalized as described before. Overnight germinated seedlings were 

transferred to sterile terragreen and sharp sand mixed to a 1:1 ratio and covered by 

a transparent lid to maintain humidity. Specifically, P40 (2 inch diagonals) trays 

were used for all nodulation assays. After allowing seven days of growth, plants 

were inoculated with 1 ml of rhizobia at a final absorbance of 0.02-0.05 at OD600 

diluted in water. The plants were allowed to grow for three weeks under long day 

conditions and watered regularly. To count the number of nodules, soil was 

completely removed from each pot without damaging the roots and the roots gently 

washed in water. Pink (Nitrogen fixing) and white nodules were scored separately 

and the numbers recorded.  

2.4.7 Mycorrhization assay and Ink staining 

To compare differences in percentage colonisation by the fungus Rhizophagus 

irregularis, seedlings were germinated as described. The seedlings were allowed to 

grow on plates for seven days on DWA medium and gently removed from the plates 

with forceps without damaging the roots. They were then transferred to TG::SS low 

nutrient growth medium mixed with 25-30% chive inoculum containing roots of chive 

plants infected with spores of the mycorrhizal fungus. Alternatively, seedlings were 

transferred to inoculum containing growth medium directly after germination. Plants 

were covered with a lid to maintain humidity and allowed to grow for 4-5 weeks 

before harvesting the root tissue. Roots were washed and approximately one inch of 

each sample from around two third of the total root length was collected for analysis. 

The fungus was visualized using an ink staining protocol (Q. Zhang et al., 2010). 

Roots were placed in float racks containing 2 ml eppendorf tubes with holes at the 

bottom to allow drainage. The rack was placed in boiling 10% w/v potassium 

hydroxide solution for 12 minutes to clear the roots and the excess solution allowed 

to drain off by blotting onto a blue roll. It was then placed into the staining solution 

containing 5% ink and 10% acetic acid at 96°C for 6 minutes. Finally, the samples 

were washed with distilled water to remove excess stain.  
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2.4.8 Wheat germ agglutinin (WGA) staining of fungus 

Harvested roots were washed with water to remove soil and transferred to 50% 

ethanol for 4 hours. The ethanol was removed and samples transferred to a 20% 

w/v KOH solution at 28°C. After 2 days the solution was removed and samples 

washed thoroughly with distilled water. 0.1 M HCl was then added for 1-2 hours and 

rinsed again with distilled water and once with buffer PBS. WGA-AlexaFlour 568 

was added to PBS buffer at a final concentration of 0.2 µg/mL and samples 

immersed in this staining solution overnight at 28°C in dark. The next day, samples 

were rinsed and observed under the microscope.  

2.5 Bioinformatics Analyses  

2.5.1 Defining the M. truncatula ABC transporter family 

To define the complete M. truncatula ABC transporter family two approaches were 

taken. In the first one, all M. truncatula annotated protein sequences of IMGAG 

version 3.5 (http://bioinfo3.noble.org/Medicago/index_MT3.html) were analysed for 

the presence of (ATP Binding cassette) ABC signature motifs and transmembrane 

domains (TMD) and Nucleotide binding domains (NBD) using PFAM search 

(http://pfam.xfam.org/). Only those genes with two NBDs and two TMDs were 

termed full transporters and those with only one of each were termed as half 

transporters. In the second approach, full Arabidopsis ABC transporter sequences 

were retrieved from (ref) and the sequences used to run BLAST against the entire 

Medicago genome database deposited in 

(http://bioinfo3.noble.org/Medicago/index_MT3.html) and retrieve the top 10 hits for 

each gene. This was repeated 4 times for each of the hits found in the searches. All 

genes retrieved in this manner were reverse blasted to the A. thaliana genome and 

a list was compiled of only those genes which matched an A. thaliana ABC 

transporter. Probeset IDs were obtained for the genes and used for expression 

analysis whenever necessary.  

2.5.2 Retrieving orthologues of candidate genes from different species 

Individual protein sequences were utilized for BLAST searches against the entire 

database of protein sequences on NCBI. Additionally for Lotus and Oryza 

http://www.kazusa.or.jp/e/ and http://plants.ensembl.org/index.html were searched.  

A reciprocal BLAST was used to validate the putative orthologues. In case of rice, 

http://bioinfo3.noble.org/medicago/index_MT3.html
http://pfam.xfam.org/
http://www.kazusa.or.jp/e/
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the transcriptome in response to mycorrhiza was analysed for ABC transporters 

which were co-regulated and their functional orthologues in M. truncatula retrieved.  

2.5.3 Co-regulation Analysis 

Publically available expression data for AMN 1, AMN2 and AMN3 were downloaded 

from http://mtgea.noble.org/v3/. Expression was analysed across vegetative 

conditions, in nodules and upon infection by arbuscular mycorrhiza. In a separate 

analysis, a list of genes were compiled which was induced in root hairs upon 

infection with compatible rhizobia and not negatively controlled by the transcription 

factors NIN, ERN1 and NFYA1. Genes common to both lists were said to be co-

regulated with the candidate genes. 

2.6 Microscopy Techniques 

2.6.1 Light Microscopy 

All images were captured using the Nikon Eclipse 800 microscope and the Instudio 

software. Images were processed using ImageJ.  

2.6.2 Confocal Laser Scanning Microscopy 

Nodule sections stained with SYTO13 fluorescent dye were observed using the 

Leica SP5 Confocal Microscope (Leica Microsystems, Wetzlar, Germany). After 

excitation at 488 nm, eGFP emission were detected using >660 nm filter set. All 

samples were imaged with the 20x objectives.  

 Primer name 5' to 3' Sequence 

P_1 Tnt_amn1_F CTC ATC GGT TCG AAC TGT TTA CTC G 

P_2 Tnt_amn1_R TGGTTCCAGCAAAGAGTGTAGGCT 

P_3 AMN1_CDS_F ATGGGAAACAAAGGTGGATT 

P_4 AMN1_CDS_R TCAAGTTGAATGACTTTGTTGTAGCC 

P_5 qAMN1_F ATGTTTATTGATACATGCAGGAGA 

P_6 qAMN1_R CAA CTG CTC TGG GGG AAA CCA AT 

P_7 Tnt_amn2_F ATATGATCAAGTAAAATTCTTTATCTT 

P_8 Tnt_amn2_R AAAGCCTTTCCTTTCTTCTC 

P_9 AMN2_CDS_F ATGGGGAGCAATAGCATGTTTCGTT 

P_10 AMN2_CDS_R TCACCTAGGGGAGCTACCATGTTGAAG 

P_11 qAMN2_F_1 CATGAATTCATAAGTGGAATGAATGA 

P_12 qAMN2_R_1 AGC TCT GGC TAA GGC TAT TCT TTG T 

http://mtgea.noble.org/v3/
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P_13 Tnt_AMN3_F GACAATCCGAGAAGACACTATCCAAC 

P_14 Tnt_AMN3_R TTGGTGGCCCTAGCAACATG 

P_15 AMN3_CDS_F ATGGCTGATTCTTCCTTTGAGATAGA 

P_16 AMN3_CDS_R TGCTTACGGTGCGAATATGAGTG 

P_17 qAMN3_R_1 GTTATGAAACACAGGTTGGTGAAAGT 

P_18 qAMN3_R_1 G ATT CCA AGT CTA ATG CAC TGC TT 

P_19 AMN1_antisense_cDNA GTGGACTCCCATATACTGAAATAATATAACC 

P_20 RNAi_128_F CACCGGAGTATGCTGGACAAGAACT 

P_21 RNAi_128_R ACTTGGAAGGTTGTAGAAGAG 

P_22 MtLAX2_Tnt_F TGAAACAGTAACATCTACTACATAAATG 

P_23 MtLAX2_Tnt_R TCGGTTCAATTAATTCATGTCATTT 

P_24 MtLAX_CDS_F ATGTTGCCACAAAAACAAGG 

P_25 MtLAX_CDS_R TCATGTGTCTAATTGAACAAACT 

P_26 pMtLAX2_F TCTCTATTATGATGATAACTTGAGTTCTAC 

P_27 pMtLAX2_R TGTTTCTCTCTTTTCTTAACAAAACC 

P_28 pIAA8_F CACCATTACATTGAGTAGTAGTAG 

P_29 pIAA8_R CACAATGAATACAAAGTTTC 

P_30 Tnt_IAA8_F CATTTTTCTCTCTTCTATGTTACTAA 

P_31 Tnt_IAA8_R TATAGTTCTAAATTGCAGTCCG 

P_32 TntF TCCTTGTTGGATTGGTAGCC 

P_33 TntR CAGTGAACGAGCAGAACCTGTG 

P_34 pAMN1_F AGC CTT AGG GGG TGT TTG TTT CCT 

P_35 pAMN1_R CAATCGTGACACGATTTTGGATG 

P_36 pAMN2_F GACATACCCCCATCAACCACA 

P_37 pAMN2_R TTTCCCTATAGACTCTCCCTTTTGG 

P_38 pAMN3_F CCTATGATTTAGTTAGTCATGGTTGTG 

P_39 pAMN3_R GCTAGCTAGCTACCTAGCAGCCAGTG 

P_40 AMN1_CDSseq_F3 CAATGGAAGCTACTACCAACCACAGGAC 

P_41 HISTONE H3_F CCCTGGAACTGTTGCTCTTC 

P_42 HISTONE H3_R CCTGAGCAATTTCACGAACC 

P_43 TIP41-F GCTTTGCCACCTGTTGAAGT 

P_44 TIP41-R AGCACCGCTTCCACAATAAG 

P_45 Ubiquitin-F GCCGGAAAACAGCTAGAAGA 

P_46 Ubiquitin-R GGAGACGGAGAACAAGGTGA 

P_47 MtPT4_F GGATTCTTTTGCACGTTCTTGG 

P_48 Mt PT4_R CCTGTCATTTGGTGTTGCAGTG 

P_49 MtIAA8_F ATGTCTCTACCAAGGCTAGG 

P_50 MtIAA8_R TTAGTTCCTGCTTTTACTTT 

  Table 2.8: List of primers used in this study 
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Chapter Three:  

Analysing the phylogeny and expression of M. truncatula 
ABC subfamily B transporters during root nodule symbiosis 

(RNS) and arbuscular mycorrhizal symbiosis (AMS)  
 

 

 

 

3. 1 Introduction 

Several studies in the past five years have reported ABC transporters to be 

important players in symbiosis. Members of subfamily G, in particular, have been 

found to play diverse roles in arbuscular mycorrhizal symbiosis at different stages of 

the association. One example is the Petunia x hybrida strigolactone transporter 

PhPDR1 was shown to be required for initial establishment of symbiosis with 

mycorrhizae (Kretzschmar et al., 2012). A second example is the two peri-

arbuscular membrane localized half ABCG transporters, STR1 and STR2 which 

were shown to be essential for arbuscule development, mutations in which, lead to 

prematurely degenerating arbuscules (Kall, Krogh, & Sonnhammer, 2004; Q. Zhang 

et al., 2010). Mutants of the orthologous transporters in rice, also phenocopied the 

stunted arbuscule morphology observed in the str1 mutants (Gutjahr et al., 2012) 

indicating an evolutionarily conserved function across all angiosperms. It is likely 

that ABCGs are also important for nodulation. Based on pharmacological studies, 

transport of genistein, a potent nod-gene inducing flavonoid in soybean is predicted 

to be through members of ABC transporter family other than sub-family B or C 

(Sugiyama et al., 2007). In keeping with this observation, knockdown of the M. 

truncatula ABC transporter MtABCG10 using RNA interference reduced the amount 

of isoflavonoids released into the root exudate (Banasiak et al., 2013). Other ABC 

transporters are also likely involved in the symbioses. During nodule development 

LjABCB1 was shown to be expressed in uninfected cells of the nodule and yeast 

cells accumulated less auxin when the transporter was expressed in this 

heterologous system suggesting it was an auxin efflux transporter (Takanashi et al., 
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2012). However, no ABC transporters have been reported which have a role in both 

symbioses (Bapaume & Reinhardt, 2012; Udvardi & Poole, 2013) . The recent 

completion of genome sequencing for M. truncatula and legumes has made the 

study of complete gene families possible. The genome sequence, along with the 

availability of a large volume of transcriptomic data under symbiotic and non-

symbiotic conditions means it is now possible to identify ABC transporters specific 

to symbiosis (Tang et al., 2014; Young et al., 2011) . To address this I defined and 

then analysed the expression of the ABC transporter family in M. truncatula in silico 

to identify a set of three ABC-B transporters expressed during both nodulation and 

mycorrhization. I then followed up these candidates by analysing their temporal and 

spatial expression, gene regulation and by investigating their role in symbiosis. 

In plants, the complete ABC transporter family has been described for Arabidopsis 

(Sanchez-Fernandez, Davies, Coleman, & Rea, 2001), Oryza (Jasinski et al., 2003), 

Vitis (Cakir & Kilickaya, 2013), Zea mays (Pang, Li, Liu, Meng, & Yu, 2013) and the 

partial family for Lotus japonicus (Sugiyama et al., 2006) which is still not completely 

sequenced. I defined the complete ABC transporter family for M. truncatula. Next I 

reasoned that transporters which were exclusively responsive to Nod-factor or Myc-

factor alone would play highly specialized roles in symbiosis and would be important 

candidate genes to investigate. Root hairs as the primary sites of infection are the 

first cell layer to perceive microbes and are an attractive tissue to study pre-infection 

and infection related processes. At the start of this project, since there was no 

transcriptomic data available for root hairs treated with nod-factor I isolated root 

hairs after 24 hours of treatment with high concentrations of (10 nM) Nod-factor (NF 

prepared by Giulia Morieri, Allan Downie)  and then I extracted RNA which was then 

used for microarray analyses (Affymetrix GeneChip® Medicago Genome Array).  

From these analyses I identified three novel ABC sub-family B transporter genes 

which were specifically induced in response to rhizobia in nodules or infected root 

hairs and in roots in response to mycorrhiza. We named these three transporters as  

for ABCB in Mycorrhization and Nodulation. Even though the arbuscular mycorrhizal 

symbiosis (AMS) is 450 million years old, the AMNs have evolved roles in the 

relatively recent root nodule symbiosis (RNS) indicating that these transporters 

possibly perform important roles central to the development of symbiotic 

associations. In agreement with this idea, I further found homologues of these 

transporters in both monocotyledonous and dicotyledonous plants and established 
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that the AMNs are probably conserved across angiosperms. I then confirmed the 

symbiotic expression of these genes using different approaches. 

3. 2 Results and discussion 

3.2.1 The complete M. truncatula ABC transporter family comprises of 

167 putative members 

The Medicago genome has eight chromosomes and has a total size of 465 Mb. Perhaps 

the most significant finding from the analysis of the genome was that around 60 MYA, 

the same time as RNS evolved, there was a whole-genome duplication (Young et al., 

2011). According to the authors, this duplication led to the split of the papillionoids, the 

taxonomic clade under which Medicago and most other legumes are classified, from 

asterids, resulting in specialisation and the evolution of nodulation in the former. They 

noted that many gene families considerably expanded, possibly due to higher rates of 

local gene duplication in Medicago that allowed for specialization between 

homeologues. In keeping with these observations, I found that that the total number of 

full ABC transporters in Medicago is almost double, 99 in comparison to the 54 in 

Arabidopsis. This significant expansion of this group of transporters might indicate 

specialized roles for some members of this family which may be involved in rhizobial 

symbiosis. The total number of genes encoding both half and full ABC transporters is 

not double compared to Arabidopsis, possibly because of loss of copies of genes during 

evolution. This exercise also provided evidence for local gene duplications with clusters 

on chromosome 6 and 7 consisting of 4-5 members (Figure 3.1). These genes show 

more that 90 % homology to each other at the amino acid level.  

 

A comparison of the total number of ABC transporters in Medicago and Arabidopsis and 

their classification further into sub-families is given in Table 3.1. The HUGO 

nomenclature is followed as recommended by Verrier et al (Verrier et al., 2008). I found 

that the Medicago genome encodes for 167 putative ABC domain containing ORFs of 

which 146 genes have at least one intrinsic membrane domain. All eight plant sub-

families including sub-family ABC-I are represented in the legume genome. As the 

assignment of families was based on reverse (reciprocal) BLAST to the Arabidopsis 

genome, there are no members in the ABCH sub-family as none exist in plants. 

Importantly, as in Arabidopsis, the ABC-G family with 60 members including full and half 

transporters, remains the largest sub-family in Medicago however there is a twofold 

increase in the membership to this family. Since most of the ABC transporters found to 

be involved in plant-microbe interactions are ABCG transporters, this observation might 

indicate further roles for hitherto unstudied members of this sub-family in symbiosis. 
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Phylogenetic relationships between all full molecule transporters, containing two NBD 

and two TMDs each, are shown in figure 3.1. All five families of full molecule 

transporters are represented and each forms a distinct cluster in the unrooted tree 

generated using clustal omega. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 1: An unrooted cladogram showing phylogenetic relationships 

between members of full-molecule ABC transporter sub-families of M. 

truncatula. 

The M. truncatula ABC transporter full molecule family comprises of 99 ORFs 

each containing two ABC transporter domains and transmembrane domains. 

Each protein is represented by the corresponding gene IMGAG ID. The largest 

sub-family for full molecules is the sub-family C with 35 members, closely 

followed by ABCB with 33 members. ABCA and ABCD each contain a single 

representative member. Each sub-family forms distinct clusters with different 

branch colours representing each clade as shown in the key provided. Tree was 

constructed using amino-acid sequences in clustal omega 

(http://www.ebi.ac.uk/Tools/msa/clustalo/). The AMNs are highlighted in red. 

AMN1 (Medtr3g084630.1), AMN2 (Medtr4g081190.1) and AMN3 

(Medtr8g022270.1)The figure was modified using the Figtree software.  

   

http://www.ebi.ac.uk/Tools/msa/clustalo/
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HUGO 

sub-

family 

Sanchez-Fernandez sub-family  Domain 

Organization 

Arabidopsis Medicago 

ABCA ABC1 Homologue (AOH) (TMD-NBD)2 1 1 

 ABC2 Homologue (ATH) TMD-NBD 12 6 

ABCB Multidrug resistance (MDR) (TMD-NBD)2 22 33 

 Transporter associated with 

antigen processing (TAP), ABC 

transporter of the mitochondria 

(ATM), Lipid-A like exporter 

TMD-NBD 7 10 

ABCC Multidrug resistance associated  

protein (MRP) 

(TMD-NBD)2 15 35 

  TMD-NBD  1 

ABCD Peroxisomal membrane protein 

(PMP) 

(TMD-NBD)2 1 1 

  TMD-NBD 1 1 

ABCE RNAse L inhibitor (RLI) NBD-NBD 3 4 

ABCF General control non-repressible 

(GCN) 

NBD-NBD 5 6 

ABCG Pleiotropic drug resistance 

(PDR) 

(NBD-TMD)2 15 29 

 White brown complex 

homologue (WBC)  

NBD-TMD 28 31 

ABCH  NBD-TMD 0 0 

ABCI Non-intrinsic proteins (NAP), 

Structural maintenance of 

chromosomes (SMC) 

NBD 21 9 

  TOTAL 131 167 

 

 

 

 

3.2.2 Three ABC sub-family B members are induced specifically in 

response to symbiosis 

To next analyse the expression pattern of the identified list of transporters, I 

retrieved the transcript sequences for all of the 167 genes and identified the 

microarray probeset IDs with potential matches to the transcripts. I only considered 

those with a 99% and above identity match with the target. This resulted in a list of 

220 probeset IDs for 124 genes since more than one ID can exist for any one gene. 

For 43 ABC transporters I thus could not find any probeset. I then then examined 

Table 3.1: A comparison of ABC transporters in Arabidopsis and 

Medicago. 

 (Updated from (Verrier et al., 2008)) 
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the expression pattern of the genes for which probesets were available to identify 

those which were symbiosis specific, meaning they were induced under conditions 

in which a beneficial microbe was present but were not otherwise expressed under 

vegetative conditions. I obtained the average expression values for these probesets 

under the following experimental conditions Vegetative: leaf, stem, flower, pod, seed 

10 dap (days after pollination), root-non mycorrhized, root 0 dpi, root hair 3 dpi 

uninfected, root hair 5 dpi uninfected. The symbiotic conditions considered were 

nodule 4 dpi, nodule 10dpi, nodule 14 dpi, nodule 16 dpi, nodule 28 dpi, root 

mycorrhized, root hair 3 dpi infected and root hair 5 dpi infected. I devised a 

mathematical index based on the expression values to designate specificity of 

expression with a unitless number, called the specificity number (SN). 

                      

(𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑦𝑚𝑏𝑖𝑜𝑡𝑖𝑐 −𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑜𝑛 𝑠𝑦𝑚𝑏𝑖𝑜𝑡𝑖𝑐 )𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑜𝑛 𝑠𝑦𝑚𝑏𝑖𝑜𝑡𝑖𝑐 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒
 = Specificity number 

 

The higher the ratio between the symbiotic and non-symbiotic conditions the more 

‘specific’ the expression. Of the 124 genes I selected those with a SN higher than 2. 

The list of 18 genes is presented in Table 3. 2. The robustness of this method was 

proved by the presence of the STR2 transporter on this short list of 17 Medicago 

genes specific to symbiosis. No probeset could be found for the STR1 transporter.  

Of most interest to us were three ABC transporters belonging to sub-family B, 

AMN1 (Medtr3g084630.1), AMN2 (Medtr4g081190.1) and AMN3 

(Medtr8g022270.1), that were responsive to both, rhizobia in infected root hairs only 

and mycorrhizal infection in whole roots. I chose to study these transporters 

because of initial microarray experiments performed in my group on infected root 

hairs which indicated two of the transporters, AMN1 and AMN2 to be exclusively 

induced upon rhizobial infection. I identified AMN3 during bioinformatics analyses of 

the rest of the ABC-B sub-family. There were four other ABCB transporters which 

showed induction upon either mycorrhization or nodulation only. These genes were 

induced by mycorrhizae irrespective of the strain used to infect the roots implying a 

fundamental role in infection by members of Glomeromycota; but importantly no 

pathogens were noted to induce these genes, further emphasizing the role of the 

AMNs (for ABCB in Mycorrhization and Nodulation) specifically in symbiotic 

infection and not infection by pathogens. 
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Figure 3. 2: Expression of M. truncatula AMN1, AMN2, and AMN3 in 

different tissues.  

 AMN1 (Mtr.1103.1.S1_at), AMN2 (Mtr.44070.1.S1_at) and AMN3 

(Mtr.46524.1.S1_at) are specifically induced in root hairs infected with S. meliloti 

and in whole roots inoculated with R. irregularis. These are not expressed in 

tissues under non-symbiotic conditions. Expression values were taken from the 

Medicago Gene Expression Atlas and represent average of three biological 

replicates. Error bars denote standard error of the mean (S.E). This strong and 

striking induction of AMN1 and AMN2 transcripts in root hairs formed the basis 

for selection of these two genes as candidate genes to be studied further. AMN3 

was identified upon further inventorization of all ABC-B subfamily members of 

Medicago truncatula when it showed an identical expression pattern.  
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Figure 3.3: Expression of M. truncatula AMN1, AMN2, and AMN3 in different 

tissues upon infection by either mycorrhiza or rhizobia. 

 (A) Quantitative RT-PCR expression data showing AMN1, AMN2, and AMN3 

increase over time in WT M. truncatula Jemalong A17 roots, inoculated with R. 

irregularis. Approximate percentage colonization of three representative samples 

is indicated within brackets next to the time point used for harvesting root tissue. 

For the 14 dpi + 14 dpi time point, colonization was allowed to proceed for 2 

weeks after which the plants were transferred to full nutrient containing soil. (B) 

Quantitative RT-PCR data showing induction of AMN1, AMN2, and AMN3 in root 

hairs (RH) infected with S. meliloti and a control strain, which is unable to 

produce Nod factors.  

Primers for AMN1 (P_5 and P_6) AMN2 (P_11 and P_12) and AMN3 (P_17 and 

P_18) Values represent average of three biological replicates each. Error bars 

depict standard error of mean (S.E) Asterisks indicate *p = 0.05 **p < 0.05 ***p < 

0.01 using Student’s t-test 
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Two of the transporters, AMN1 and AMN2, are the closest homologues to each  

other in Medicago while the third AMN3 was different from all other Medicago sub-

family B members (Figure 3.5). All three transporters were forward oriented full 

molecule ABC transporters containing the characteristic Walker A and Walker B 

motif in addition to the ABC signature motif (Figure 3.3). AMN1, AMN2, and AMN3 

are predicted to have 12 integral membrane spanning domains (Figure 3.4) each 

and are predicted to localize to the plasma membrane using pLOC (Chou & Shen, 

2008).  

Since the AMNs seemed to have a role in early stages of symbiotic infection, it was 

essential to understand whether they were simply induced by Nod-Factors and Myc-

factors alone. 24 hours post treatment with high concentrations of Nod factor, all 

three AMNs could be detected in root hairs and whole roots of Medicago truncatula 

(Figure 3.2). They were also highly induced by Myc factors alone (S. Bensmihen 

personal communication) suggesting a very early role in both symbioses. 

 

 

AMN3      MADSSFEIDNPRRHYPTPVSYQSISGSSSFINSASRSNATPRTRRTRRNRIPSTPFASDD 

AMN2      ------------------------------------------------------------ 

AMN1      ------------------------------------------------------------ 

                                                                       

AMN3      DRSWQGEVSWKFEPTGLREHSTNFGSVLSPWPTNSTSDRSRVFRQSANDYYLSRIGGFRN 

AMN2      ------------------------------------------------------------ 

AMN1      ------------------------------------------------------------ 

                                                                      

AMN3      LTNSSNDHSSYGRVELKSHVARATNDHSYFDQYSGFSKLGIIKEGVNSGNRHINKKASPL 

AMN2      ------------------------------------------------------------ 

AMN1      ------------------------------------------------------------ 

                                                                       

 AMN3      AEEDELSGIDYSISDEHVKHDHGHGVPSYGRKSPSQIYGGGGGYSHYESKMASGYDDDEG 

 AMN2      ------------------------------------------------------------ 

 AMN1      ------------------------------------------------------------                                                                

AMN3      DEDMDEDDVVGPPKNVGLFSLFRYTRNWDWLLVFIGCIGALINGGSLPWYSYLFGNLVNK 

AMN2      ---------------MGSNSMFRYADGFDKLLMFFGTLGSLGDGLQNPLMMYILSDVINA 

AMN1      --------------MGNKGGFLRYADGVDKLLLFFGTLGCIGDGIQTPLTMLVLGSLIDD 

                             .::**:   * **:*:* :*.: :* . *    ::..:::  

AMN3      LSREAKNDKDQMLKDVEQICIFMTGLAAVVVVGAYMEITCWRLVGERSAQRIRTEYLRAI 

AMN2      YGDK--NSR-LNQHDVNKFALKLLCVAIGVGISAFIEGICWNRTAERQASRMRVEYLKSV 

AMN1      YARGGSEHI-VSIHNINKYALKLLGIALGVAFSAFIVGVCWTRTAERQTSRMRIEYLKSI 

           .    :      ::::: .: :  :*  * ..*::   **  ..**.:.*:* ***::: 

AMN3      LRQDISFFDTDINTG----DIMHGIASDVAQIQEVMGEKMAHFIHHVFTFICGYAVGFRR 

AMN2      LRQEVGFFDTQTAGSSTTYQVVSLISSDANTVQSALCEKIPDCLTYMSTFFFCHIFAFVL 

AMN1      LRQEVGFFDKQTN-SSTTFQVIATITSDAQTIQDTMSDKVPNCLVHLSAFFSSFIVALFL 

          ***::.***.:   .    :::  *:**.  :*..: :*: . : :: :*:  . ..:   

AMN3      SWKVSLVVFSVTPLTMFCGMAYKALYGGLTAKEEASYRKAGSIAEQAISSIRTVFSFVAE 

AMN2      SWRLALAAIPLSIMFIVPALVFGKIMLDVTMKMIESYGVAGGIAEQAISSIRTVFSYVGE 

AMN1      SWRLAVAAFPFSIMMIMPALIFGNAMKELGGKMKDAFGVAGSIAEQAISSVRTVYSYVGE 

          **::::..: .: : :. .: :      :  *   ::  **.********:***:*:*.* 

AMN3      SQLGEKYSELLQKSAPIGAKIGFAKGAGMGVIYLVTYSTWALAFWYGSILIARGELDGGS 

AMN2      NQTLKRFSTALEKTMEFGIKQGFAKGLMLGSM-GVIYVSWGFQAWVGTFLISDKGEKGGH 

AMN1      KQTLKRFSSALETCMQLGIKQGQTKGVVVGSF-GLLYATWAFQSWVGSVLVRTKGEKGGK 

          .*  :::*  *:.   :* * * :**  :* :  : * :*.:  * *:.*:     .**  



70 
 
 

                                                               A-loop                                                                                                                

AMN3      AIACFFGVNVGGRGLALALSYFAQFAQGTVAASRVFYIIERIPEIDPYNPEGRKLSSVRG 

AMN2      VFVAGFNILMGGLSILSALPNLTAIMEASSAVTRLYEMIDRVPVIDSEEKKGKALSHVRG 

AMN1      VFCAEICIIWGGLSLMSALPNLASILEATIAATRIFEMIDRKPTINSTKEKGRILKHTRG 

          .: . : :  ** .:  **  :: : :.: *.:*:: :*:* * *:  : :*: *. .** 

                                           Walker A Motif 

AMN3      RIELKNVIFAYPSRPDSLILNSINLVFPSSKTLALVGASGGGKSTIFALIERFYDPIEGI 

AMN2      EIEFKDIYFCYPSRPDSPVLQEFNLIIPAGKRIGLVGGSGSGKSTIIALLERFYDPVEGE 

AMN1      EITFKDVEFSYPSRPDTLILQGLNLKVQACKTVGLVGGSGSGKSTIISLLERFYDPTCGE 

          .* :*:: *.******: :*: :** . : * :.***.**.*****::*:******  *  

AMN3      ITLDGHDLRTLQVKWLRDQIGMVGQEPILFATSILENVMMGKDNATKEEAISACIAADAH 

AMN2      ILLDGHKINRLQLKWLRSNLGLVNQEPVLFATSIKENILFGKEGASMESVISAAKSANAH 

AMN1      ILLDGFDIKRLHLKWFRSLIGLVNQEPILFATSIRENILFGKEGASMEDVITAAKAANAH 

          * ***..:. *::**:*. :*:* ***:****** **:::**: *: *..*:*. :*:** 

                        ABC signature motif    Walker B motif 

AMN3      NFISKLPLRYDTQVGDRGTKLSGGQKQRIALARAMIKNPKILLLDEPTSALDAESEAAVQ 

AMN2      DFIVKLPDGYETQVGQFGFQLSGGQKQRIAIARALLRDPKVLLLDEATSALDSQSERVVQ 

AMN1      DFIVKLPNGYETQVGQLGAQLSGGQKQRIAIARALIRDPKILLLDEATSALDSQSERVVQ 

          :** ***  *:****: * :**********:***::::**:***** *****::** .** 

AMN3      RAIDKISAGRTTIVIAHRIATVKNADSIVVLEHGSVTEIGDHRQLMSK----AGTYFNLV 

AMN2      AAIDQASKGRTTIIIAHRLSTIRTADTIAVLQAGKVIETGSHNVLMEINGGEGGEYARMV 

AMN1      DALDLASRGRTTIIIAHRLSTIRKADSIVVLQSGRVVESGSHNELLQLNNGQGGVYTEML 

           *:*  * *****:****::*::.**:*.**: * * * *.*. *:.     .* * .:: 

AMN3      KLATESISKPLPTENNMQITKDL--------------------SSINNKYAPDIA-KSSY 

AMN2      KLQQVTAQNDEIKHSNLQLEGKSSHRMSIPQSPGMSFKSSTPGTPMLYPFSQGFSIGTPY 

AMN1      NLQQTSQNENAQHQIN-----KSPRAMENPIT---SSNPSRKSTPIHHAFSPAQPFSPIY 

          :*   : .:    . *     .                     : :   ::        * 

 

AMN3      LVDISRSKLEDSMQDENQEDIEDKKYKKSRNYKLSEVWKLQKPEFMMLISGLVMGMFAGA 

AMN2      SYS-IQYDHDD---DSYEDDFKRSNHPAPSQWRL---LKMNAPEWGRGVLGVLGAIGSGA 

AMN1      SISVIGSSFDD----DYSSENVEKPYK--SNISHWRLLQMNAPEWKYALFGCLGAIGSGI 

            .:   . :*    :  .:  .:  :     .  .: ::: **:   : * : .: :*  

AMN3      CLSLFPLVLGISLGVYFSDDTSKMKRDVGYLCLVLVGLGFGCILSMTGQQGLCGWAGSKL 

AMN2      VQPINAYCVGLLISVYFEPDTSKMKSKARALALVFLGIGVFNFFTSILQHYNFAVMGERL 

AMN1      CQPFYSYCLGIVASVYFIDDNARIKSQIRLYSIIFCCISAVNFVSGLIQHHNFSIMGERL 

             :    :*:  .***  *.:::* .    .:::  :.   :.:   *:   .  *.:* 

AMN3      TLRVRNLLFQSILRQEPGWFDFDENSTGVLVSKLSIDAVSFRSVLGDRFSVLLMGLSSAA 

AMN2      TKRIREKILEKLMSFEIGWFDHEDNTSAAICARLASEANLVRSLVGDRMSLLAQAIFGSI 

AMN1      LKRVRENLLEKVLTFEIGWFDQEENTSAVICARLATEANLVRSLVAERMSLLVQVSVTAL 

            *:*: :::.::  * **** ::*::..: ::*: :*  .**::.:*:*:*      :  

AMN3      VGLGVSFVFNWELTLVAAAVTPLTLGASYINLIINIG-PKINNNSYARASNIASGAVSNI 

AMN2      FAYTVGLVLTWRLSLVMIAVQPLVIGSFYARSVLMKTMAEKTRKAQREGSQLASEAVINH 

AMN1      LAFVLGLIVTWRVAIVMIAMQPLIISCLYSKTVLMKSMSGKAKNAQRDASQLAMEATTNH 

          ..  :.::..*.:::*  *: ** :.. * . ::        .::   .*::*  *. *  

AMN3      RTVATFSAQEQIVNAFDKALSEPRKKSLKSSQLQGLVFGLFQGAMYAAYTLTLWFGAYLV 

AMN2      RTITAFSSQKRMLALFKATMTGPKQESIRQSWISGFGLFSSQFFNTSSTALAYWYGGSLL 

AMN1      RTIAAFSSEKRILNLFKTAMDGPKMESIKQSWISGSILSMSQFITTASIALTFWYGGILL 

          **:::**::::::  *. ::  *: :*::.* :.*  :   *    :: :*: *:*. *: 

AMN3      KNNRGDFDDVYKIFLILVLSSFSVGQLAGLAPDTSMAASSIPAVQDVINRKPLIGNDGRK 

AMN2      IKGQIEPTELFQAFLILLFTAYIIAEAGSMTSDISKGSNAVGSVFAILDRKSEIDPETLW 

AMN1      NRKQVESKQLLQVFLILMGTGRQIADTGSMTSDIAKSGKAISSVFAILDRKTQIEPEDTR 

           . : :  :: : ****: :.  :.: ..:: * : ...:: :*  :::**  *  :    

A-loop                            Walker A Motif 

AMN3      TKKVDRSKAFKIEFKMVTFAYPSRPEVTVLRNFCLKVQGGSTVALVGPSGSGKSTVVWLT 

AMN2      GADKKRKIRGRVELKNVFFAYPSRPEQMVFQGLNLKVEAGRTVALVGHSGCGKSTIIGLI 

AMN1      HTKFKKSMKGDIKLKDVFFSYPARPDQMILKGLSLEIEAGKTIALVGQSGSGKSTIIGLI 

            . .:.    :::* * *:**:**:  ::: : *:::.* *:**** **.****:: *  

AMN3      QRFYDPDQGKVMMSGVDLREIDVKWLRRQIALVGQEPALFAGSIRENIAFGDQSASWAEI 

AMN2      ERFYDPIKGTVCIDEQDIKTYNLRMLRSHIALVSQEPTLFSGTIRENIAYGKENATESEI 

AMN1      ERFYDPIKGSIFIDNCDIKELHLKSLRSHIALVSQEPTLFAGTIRDNIVYGKEDASEAEI 

          :***** :*.: :.  *::  .:: ** :****.***:**:*:**:**.:*.:.*: :** 

                                   ABC signature motif  Walker B motif 

AMN3      EAAAMEAYIHKFISGLPQGYETQVGESGVQLSGGQKQRIAIARAILKKSKVLLLDEASSA 

AMN2      RRAATVANAHEFISGMNEGYETHCGERGVQLSGGQKQRIALARAILKNPAILLLDEATSA 

AMN1      RKAARLANAHDFISGMREGYDTYCGERGVQLSGGQKQRIAIARAMLKNPPILLLDEATSA 

          . **  *  *.****: :**:*  ** *************:***:**:  :******:** 



71 
 
 

AMN3      LDLESEKHIQEALKNVSKEATTIIVAHRLSTIREADKIAVMRNGEVVEYGSHDTLISSIQ 

AMN2      LDSASEVLVQEALEKIMVGRTCIAVAHRLSTIQNSNSIAVIKNGKVVEQGSHNELISLGR 

AMN1      LDSVSENLVQEALEKMMVGRTCVVIAHRLSTIQSVDSIAVIKNGKVVEQGSHSQLLNDRS 

          **  **  :****:::    * : :*******:. :.***::**:*** ***. *:.    

AMN3      NGLYASLVRAETEANAFS* 

AMN2      NGAYHSLVKLQHGSSPR*- 

AMN1      NGTYYSLIRLQQSHST*-- 

          ** * **:: :   .     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 4: Amino acid sequence alignment of AMN1, AMN2, and 

AMN3 showing characteristic domains of a Full ABC transporter 

AMN1, AMN2, AMN3 are three forward oriented, full-molecule ATP Binding 

Cassette domain containing intrinsic membrane proteins comprising two 

transmembrane domains and two nucleotide binding domains (highlighted in 

grey and dark grey respectively). The nucleotide binding domain is highly 

conserved and amino acid residues of characteristic signature motifs such as the 

Walker A (Q-loop) and the Walker B motifs (highlighted in red) are present, ~120 

amino acids apart. The ABC signature motif (named C), characteristic of all ATP 

binding proteins is situated between the two Walker motifs (marked in red). A 

short stretch of aromatic amino acid, the A-loop, containing sub-domain 25 

residues upstream of the Walker A motif is highlighted in green. AMN3 is unique 

in containing a stretch of serine rich hydrophilic residues highlighted in pink, at 

the N terminus which makes it different from all other ABCs present in sub-family 

B. It is of unknown significance. The domains were determined using pfam and 

NCBI annotations and alignment generated using Clustal omega.                                              
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A.    

 

B.   

 

C.  

 

 

 

  

Figure 3.5: Hydrophobicity plots showing predicted transmembrane 

regions for AMN1, AMN2, and AMN3 

AMN1 (A), AMN2 (B) and AMN3 (C) were predicted to have 12 transmembrane 

regions each using PredictProtein (https://www.predictprotein.org/) as shown. 

Magenta boxes designate the position of the transmembrane helix. The N 

terminal region was predicted to be cytoplasmic for all three transporters. Boxes 

in green represent hydrophilic residues. AMN gene identifiers are as follows 

AMN1 (Medtr3g084630.1), AMN2 (Medtr4g081190.1) and AMN3 

(Medtr8g022270.1) 

https://www.predictprotein.org/
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Gene Model Probeset ID Domain 

Organizatio

n 

Sub-

family 

SN Expression  

Medtr5g07032

0.1 

Mtr.5725.1.S1_s

_at 

(TMD-NBD)2 ABCG 80 RNS: Nodule 10 

dpi,14dpi,16dpi,28dpi 

 Mtr.5725.1.S1_a

t 

(TMD-NBD)2 ABCG 20 RNS: Nodule 10 

dpi,14dpi,16dpi 

Medtr8g02227

0.1 (AMN3) 

Mtr.46524.1.S1_

at 

(TMD-NBD)2 ABCB 36 RNS: Infected root hair 

3dpi,5dpi, 10 nM Nod 

Factor AMS:Mycorrhized 

root, Arbusculated and 

adjacent cells 

Medtr4g08119

0.1 (AMN2) 

Mtr.44070.1.S1_

at 

(TMD-NBD)2 ABCB 29 RNS: Infected root hair 

3dpi,5dpi, Nodule Zone 2, 

10 nM Nod Factor AMS: 

Mycorrhized root, 

Arbusculated and adjacent 

cells 

Medtr4g10817

0.1 

Mtr.49882.1.S1_

at 

TMD-NBD ABCA 25 RNS: Nodule all stages, 

Nodule Zone 2, 

Vegetative: Seed 

Medtr3g08643

0.1 (AMN1) 

Mtr.1103.1.S1_a

t 

(TMD-NBD)2 ABCB 21 RNS: Infected root hair 

3dpi,5dpi, 10 nM Nod 

Factor AMS:Mycorrhized 

root, Arbusculated and 

adjacent cells 

Medtr4g12404

0.1 

Mtr.43343.1.S1_

at 

(TMD-NBD)2 ABCB 11 RNS:Nodule 16 dpi , 

Pathogen: 

Phytopthora,Ralstonia , 

Vegetative: Root tip,  

 Mtr.6889.1.S1_a

t 

(TMD-NBD)2 ABCB 5 RNS: 16 dpi, 28 dpi, 

Pathogen: 

Phymatotrichum, 

Vegetative: Full Nitrogen 

whole root ,  

Medtr4g07793

0.1 

Mtr.9965.1.S1_a

t 

(TMD-NBD)2 ABCB 8 RNS: Nodule 10dpi, 16dpi, 

28 dpi Pathogen: 

Phymatotrichum , 

Vegetative: Root hairs  

Medtr1g05052

5.1 

Mtr.2427.1.S1_a

t 

(TMD-NBD)2 ABCG 6 RNS: Nodule all stages, 

AMS: Mycorrhized root 

cortical cells 

Medtr5g09483

0.1 

Mtr.41168.1.S1_

at 

(TMD-NBD)2 ABCC 6 RNS: Nodule all stages, 

Vegetative: Root and 

Root hairs  

Medtr3g09343

0.1 

Mtr.4782.1.S1_a

t 

(TMD-NBD)2 ABCB 6 AMS: Root mycorrhizal 

(induced) Vegetative: 

Root non-mycorrhizal  

 Mtr.27228.1.S1_

at 

(TMD-NBD)2 ABCB 2 AMS: Root mycorrhizal 

(induced) Vegetative: 

Root non-mycorrhizal, Full 

Nitrogen root 

Medtr6g08867

0.1 

Mtr.11576.1.S1_

at 

(TMD-NBD)2 ABCB 4 RNS: Nodule all stages 

Medtr5g03091

0.1 

Mtr.51195.1.S1_

at 

TMD-NBD ABCG 3 RNS: Nodule 16 dpi, 

AMS: Mycorrhized root, 

Arbusculated cells 

Vegetative: Root hair 5 

dpi, Hypocotyl, Root 
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Medtr8g10741

0.1 

Mtr.39481.1.S1_

at 

NBD ABCI 3 RNS: Nodule 3 dpi, 

Vegetative: Root, Leaf,  

Medtr4g01163

0.1 

Mtr.32240.1.S1_

at 

(NBD-TMD)2 ABCG 2 RNS: Nodule all stages 

Vegetative: Root, 

Hypocotyl  

Medtr1g09466

0.1 

Mtr.19183.1.S1_

s_at 

(NBD-TMD)2 ABCG 2 RNS: 10 nM Nod Factor 

Vegetative: Constitutive in 

root hair, Root border cell  

Medtr1g01164

0.1 

Mtr.18815.1.S1_

at 

(NBD-TMD)2 ABCG 2 RNS: Nodule, AMS: 

Mycorrhized root, 

Vegetative: Leaf, Root ,  

Medtr3g01182

0.1 

Mtr.7160.1.S1_a

t 

(TMD-NBD)2 ABCC 2 RNS: Nodule Vegetative: 

Root, Leaf, Shoot  

 

 

 

 

3.2.3 AMN1, AMN2, and AMN3 are not present in Arabidopsis but are 

evolutionarily conserved across all mycorrhizal angiosperms 

To identify a role for the AMNs in symbiosis we looked for orthologues in the model 

plant Arabidopsis by constructing a phylogenetic tree consisting of all members of 

the full-molecule sub-family B shown in Figure 3. 5. The AMNs had no orthologues 

in Arabidopsis and did not cluster together with any previously characterized 

members of the family. This further substantiated our observation that the AMNs are 

symbiosis-specific since the Brassicaceae family members including Arabidopsis 

cannot nodulate or mycorrhize and would be expected to have lost symbiosis 

related genes.  

I could find the AMNs in all dicotyledonous plants which possess the ability to 

mycorrhize and/or nodulate and whose sequences are available on 

NCBI/Phytozome (Figure 3.6). With monocots however, the reverse BLAST criteria 

for identification of an orthologue was not satisfied for either of the genes. We thus 

looked for ABC transporters induced upon mycorrhization in rice transcriptomic 

studies and identified an ABCB transporter, the closest homologue of which in 

Medicago was AMN2 closely followed by AMN1. Using this sequence I was able to 

identify homologous sequences in other monocotyledonous species all of which 

were full ABCB transporters. Further, inclusion of rice ABCB transporters in 

Table 3. 2: Medicago ABC transporters induced either during Root 

Nodule Symbiosis (RNS) or Arbuscular Mycorrhizal Symbiosis (AMS) 

Specificity of transporters is reported in descending order except when two 

probeset IDs correspond to the same gene model (Genome V4). Expression 

data were taken from MtGEA and the unpublished microarray data. 
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phylogenetic tree construction showed them as clear orthologues for AMN1 and 

AMN2 Figure 3.5.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Phylogenetic relationships between sub-family B full-

molecule ABC transporters of Arabidopsis, Medicago and Oryza. 

M. truncatula and Arabidopsis and O. sativa protein sequences were retrieved 

from their respective databases. A rooted phylogram was created using 

CLUSTAL OMEGA.  AMN1, AMN2, AMN3 are highlighted in red. Notably AMN1, 

AMN2, and AMN3 have no direct orthologues in Arabidopsis. In addition, all 

Arabidopsis ABCBs studied so far (highlighted here in blue) form separate sub-

clades suggesting un-relatedness in the type of substrate transported,  
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A phylogenetic tree was constructed using all the orthologous amino acid 

sequences (Figure 3.6). That all legumes cluster together could suggest neo or sub  

 

 

Figure 3.7: Medicago truncatula AMN1, AMN2, and AMN3 orthologues are 

conserved in dicots which can nodulate or mycorrhize. 

M. truncatula protein sequences were used to retrieve orthologous sequences 

on NCBI. A rooted phylogram was created using CLUSTAL omega.  AMN1, 

AMN2, AMN3 orthologues form distinct clusters comprising of dicotyledonous 

plant species which can form beneficial fungal and bacterial associations. 

Members of family Leguminosae, which can nodulate, further form sub-clusters, 

shown here encircled in grey. AMN2 but not AMN1 and AMN3 was found in 

Lupinus, which can nodulate but does not mycorrhize. Arabidopsis thaliana 

ABCB transporter ABCB15 and an unrelated Oryza sativa ABCB transporter 

were used as outgroups. Scientific names and accession numbers are provided 

in supplemental table 3.1. 



functionalization of the transporters in legumes or alternatively may simply reflect 

the shared ancestry of the legumes.  The fact that Lupinus, which can nodulate but 

not mycorrhize, has retained AMN2 suggests that this protein may be important for 

RNS. This could suggest neo or sub functionalization of the transporters in legumes 

or alternatively may simply reflect the shared ancestry of the legumes. Secondly, 

AMN3 did not have a clear orthologue in either Arabidopsis or rice. This could 

indicate a sub-functionalization requirement during rhizobial infection. Thirdly, AMN2 

seems to be the best conserved amongst the three AMNs and could be found over 

a wider range of species. In addition, Soybean was found to have two copies of this 

transporter. Lastly, AMN2 and AMN3 could also be found in an actinorhizal 

angiosperm, Datisca which forms associations with filamentous bacteria called 

Frankia. It will be interesting to test whether the AMNs are also involved in 

actinorhizal symbiosis.  

3.2.4 AMNs are expressed in M. truncatula upon infection with 

symbionts 

To confirm the validity of the microarray data I used quantitative PCR. Using root 

hair cDNA provided by A. Breakspear, I estimated the transcript abundance 

corresponding to these genes in M. truncatula WT Jemalong A17 root hairs infected 

with WT Nod-factor producing S. meliloti 1021 and compared them to root hairs 

infected with the non-Nod factor producing strain SL44.  The AMN transcripts could 

be detected in control treated root hairs at very low abundance and was significantly 

increased upon infection (Figure 3.2 C).  

 

To quantitate expression during mycorrhizal colonization I monitored the expression 

of the AMNs along with the progression of infection over time. I harvested three 

samples of which I scored the number of arbuscules and vesicles to get a rough 

estimate of the percentage colonization. Each biological replicate consisted of a 

pooled sample of three plants each. The transcript levels were determined for 8 time 

points (Figure 3.2 B) including one time point (14dpi  +14 dpi) in which the plants 

were grown for two weeks in low nutrient soil and then were transferred to full 

nutrient containing soil.  Upon initial contact at 3 dpi, where the plants were just 

beginning to get colonized and showed approximately 0.33% colonization, the 

AMNs were not induced indicating a role in the later stages of mycorrhizal 

colonization. The increase in expression of all three AMNs correlated with a 

proportionate increase in colonization. When infected plants were transferred to full 
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nutrient containing soil after an initial two weeks in low nutrient soil, the expression 

of the AMNs reduced dramatically and was almost completely switched off. After 

this treatment, there were still internal arbuscules and vesicles present inside the 

root. This indicated that expression of AMNs is associated with actively progressing 

infection.  

3.2.5 Promoters of AMN1, AMN2, and AMN3 are associated with 

rhizobial infection 

The AMN1, AMN2, AMN3 promoters were assessed for their spatio temporal 

expression patterns using promoter GUS fusions. In general, AMN1 and AMN2 

promoters showed overlapping patterns of expression with variations in the spread 

and the strength of the expression in tissue. Gene expression of AMN2 and AMN3 

could be detected within a few hours of staining whereas AMN1 required longer 

staining procedures to detect low levels of GUS expression. Upon infection with 

rhizobia, at 10 dpi AMN1 expression was associated with root hairs forming an 

infection pocket or those containing an infection thread (Figure 3.6). A few root hairs 

surrounding the infected root hairs also showed GUS activity. AMN2 showed a 

similar pattern of expression and was also associated with infection structure 

containing root hair cells. AMN3 showed the most divergent pattern of expression 

even through it was also associated with infected root hairs. The expression of 

AMN3 was spread over a zone of the root responding to Nod-factor responsive root 

hairs but was induced in infection containing cells (Figure 3.6). This explains why 

the expression of AMN3 is the easiest to detect. In uninfected plants, all three AMNs 

could be detected in low levels in vascular tissue and lateral root primordia as well 

as the root tip. AMN1 could be detected in root cap cells as well (Figure 3.7). 

 

 

 

 

 

FIGURE 3.8: Spatial expression pattern of AMN1, AMN2, and AMN3 

promoter ten days post inoculation with S. meliloti  

M. truncatula A-17 WT hairy roots transformed with the Gateway destination 
vector pKGWFS7 containing the AMNs promoter-GUS reporter sequence 
stained for GUS activity using the chromogenic substrate X-GlcA (in blue). 
Rhizobia carrying the pXLGD4 plasmid for pHemA:LacZ, stained in Magenta. 

Bright field image showing GUS staining (A,B,C)  expression associated with 
pAMN1-GUS expression in rhizobially infected roots. pAMN2-GUS (D,E,F) 
pAMN3-GUS (G,H) showing micro-colony containing root hair cell stained blue in 
comparison to cells nearby  
 
Scale bar denotes 100 µm 
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Figure 3.9: Non-symbiotic expression pattern of AMN1, AMN2, and 

AMN3  

M. truncatula Jemalong A-17 WT hairy roots transformed with the Gateway 
destination vector pKGWFS7 containing upstream promoter sequence of the 
AMNs stained for GUS activity using the chromogenic substrate X-GlcA (in 
blue).  
(A,B,C) Bright field image showing GUS staining associated with pAMN1-GUS 
expression in the emergent lateral root, root tip and vascular bundle. (D,E,F) 
pAMN2-GUS (G,H,I) pAMN3-GUS. Scale bar denotes 100 µm 
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3.2.6 Promoters of AMN1, AMN2, and AMN3 are associated with 

mycorrhizal infection 

 

Previous studies classify mycorrhizal responsive genes to fall under early 

(responsive to myc factor, appressoria formation and hyphal penetration), 

arbuscule associated, and adjacent cell associated the latter referring to cells 

adjacent to cells containing arbuscules. Consistent with the qPCR and microarray 

studies, I noted that of the three genes AMN1 is the gene most weakly expressed in 

roots. After 4 weeks I could note induction in arbuscule containing cells but found 

that it was not associated with intercellular hyphae or vesicles. No expression of 

pAMN1:GUS was observed upon hyphal penetration of the root surface (Figure 3.8 

E,F). This weak induction might be because the cloned promoter consists of only 

1000 bps upstream of the ATG start site and therefore might be missing some 

upstream regulatory elements. AMN2 expression was also not associated with 

intercellular hyphae through the cortex (Figure 3.9) but was induced very strongly in 

arbuscule containing cells. AMN3 mirrored the expression of AMN2 and was not 

induced upon initial contact and was instead upregulated in arbusculated cells 

(Figure 3.10). In addition, a constitutive expression was seen throughout the root.  I 

also observed expression at 4 wpi which reproduced the expression pattern seen at 

2 wpi for both the AMN2 and AMN3 promoters.  
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Figure 3.10: Spatial expression pattern of the AMN1 promoter four 

weeks post inoculation with R. irregularis 

M. truncatula A-17 WT hairy roots transformed with the Gateway destination 
vector pKGWFS7 containing 1006 bps upstream of ATG were stained for GUS 
activity using the chromogenic substrate X-GlcA (in blue). The fungus, R. 
irregularis, was stained with WGA Alexa Fluor 568 (in red). 

(A,B) Bright field image showing GUS activity associated with a cell hosting an 
arbuscule. Corresponding fluorescent image showing mycorrhiza on the right. 
(C,D) Individual arbuscule containing cells shown at 100x magnification  
(E,F) No GUS activity was detected upon initial contact with hyphae.  
Scale bar denotes 50 µm 
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Figure 3.11: Spatial expression pattern of the AMN2 promoter two 

weeks post inoculation with R. irregularis 

M. truncatula A-17 WT hairy roots transformed with the Gateway destination 
vector pKGWFS7 containing 1773 bps upstream of ATG were stained for GUS 
activity using the chromogenic substrate X-GlcA (in blue). The fungus, R. 
irregularis, was stained with WGA Alexa Fluor 568 (in red). 

(A,B) Bright field image showing GUS activity associated with cell hosting an 
arbuscule. Corresponding fluorescent image showing mycorrhiza on the right.  

(C,D) Individual arbuscule containing cells shown at 100x magnification  
 
(E,F) No GUS expression was detected upon initial contact with hyphae.  

Scale bar denotes 50 µm 
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Figure 3.12: Spatial expression pattern of the AMN3 promoter two 

weeks post inoculation with R. irregularis 

M. truncatula A-17 WT hairy roots transformed with the Gateway destination 
vector pKGWFS7 containing 2006 bps upstream of ATG were stained for GUS 
activity using the chromogenic substrate X-GlcA (in blue). The fungus, R. 
irregularis, was stained with WGA Alexa Fluor 568 (in red). 

(A,B) Bright field image showing GUS activity associated with cell hosting an 
arbuscule. Corresponding fluorescent image showing mycorrhiza on the right. 
Arrowheads indicate arbuscules.  

(C,D) Individual arbuscule containing cells shown at 100x magnification.  

(E,F) Extracellular hyphae extending over the surface of the root before entering 
the root did not induce expression of pAMN3.   

Scale bar denotes 50 µm 
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Figure 3.13: Staining pattern of vector control hairy root lines 

M. truncatula WT hairy roots transformed with an empty binary vector and 

stained for GUS activity for 48 hours.  

(A,) Bright field image showing GUS activity at the base of the hypocotyl.  

(B) Primary root tip showing absence of GUS expression in vascular bundle and 

root apical meristem.  

(C) Bright field image showing absence of GUS activity in vascular bundle and 

root hairs.   

(C) Bright field image showing absence of GUS activity in lateral roots.   

Scale bar denotes 100 µm 
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3.3 Conclusion 

 

Together using transcriptomic and expression studies I confirmed that AMN1, 

AMN2, and AMN3 are three novel, functionally uncharacterized ABC sub-family B 

type transporters in M. truncatula. They are conserved across angiosperms and are 

specifically induced upon infection by both rhizobia and mycorrhizae in infected 

cells. Admittedly, there might be more ABCB transporters not a part of the presently 

available genome that are specific to symbiosis. In addition, the in silico approach 

taken to find the find symbiosis specific transporters were based on available 

transcriptomic data for specific probesets. It is estimated that only about 85% of 

transcribed genes are represented on the Medicago Affymetrix chip. A possible 

shortcoming of using this method therefore is overlooking genes for which no 

probesets can be found or which have a poor correlation to actual levels of 

transcript. The method would also overlook any gene which is not strongly 

transcriptionally regulated, for instance having dual roles in symbiosis and 

vegetative tissues as it will have a very low SN value.  

 

The phylogenetic analyses of the AMNs and the presence of the homologues of 

these transporters in mycorrhizal angiosperms provide compelling evidence that the 

AMNs likely play an important role in symbiosis. Although these three transporters 

are symbiosis specific there might be other more ‘constitutive’ ABCBs that transport 

the same substrate in vegetative tissues. One such candidate is the 

Medtr6g088670.1 transporter, tentatively called MtABCB4 which I identified using 

the latest release of Medicago genome sequence (Version 4.0) (Tang et al., 2014). 

This transporter shares sequence similarity to all three AMNs at the nucleotide and 

the protein level as evidenced by its phylogenetic position in the tree (Figure 3.5).  

 

AMNs have been identified in several transcriptomic studies designed to identify 

mycorrhizal genes. The first mention of these mycorrhizal ABCB transporters was in 

a study designed to identify mycorrhiza responsive genes in whole roots at 4 wpi 

with Glomus intraradices (R. irregularis). The study grouped them with 37 other 

genes which were found to be specifically mycorrhiza responsive (Gomez et al., 

2009). Another transcriptomic study which aimed to differentiate between the 

arbuscule containing and the adjacent cortical cells using laser capture 

microdissection microscopy found the AMNs in arbusculated cells but noted that 

these transporters were also expressed in cells adjacent to those containing 
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arbuscules (Gaude et al., 2012).  They noted that other arbuscule markers, such as 

MtPT4 were not present in this sample therefore making it seem less likely that this 

was due to contamination. An independent research report validated this using 

promoter-GUS for AMN3 which they reported as ABCB1 but with a different gene 

identifier from a previous version of the M. truncatula genome annotation 

endeavour. A recent study noticed that all three AMNs are induced by early contact 

where they defined early contact as 3 wpi, however they could not rule out the 

possibility that there were arbuscules present in the tissue harvested (Ortu et al., 

2012). 

I used quantitative real time PCR and promoter GUS analyses and could establish 

that the AMNs are associated with actively progressing rhizobial and mycorrhiza 

infection. The expression is spatially restricted to infection structure containing cells. 

Taken together, the three AMNs described in this chapter are exciting candidates 

for further functional genetic studies in Medicago truncatula.  

 

  



 

 

Chapter Four:  

Genetic analyses of function and regulation of three ABC 
sub-family B transporters in mycorrhization and nodulation 

(AMNs) 

 
 

 

 

4.1 Introduction 

Medicago truncatula is a model legume used to study rhizobial and mycorrhizal 

interactions. Its small genome size of around 500 Mb extending over 8 

chromosomes, inbreeding nature and ease of transformation by tissue culture 

methods makes it an attractive genetic model (Cook, 1999; G. E. Oldroyd & Geurts, 

2001). With the recent completion of the Medicago genome sequence (Tang et al., 

2014; Young et al., 2011), the availability of extensive EST sequences 

transcriptomic data and a large population of Tnt1 mutants, Medicago is amenable 

to reverse genetic techniques. Tobacco Tnt1, a copy-and-paste DNA-

retrotransposon mobilizes during regeneration in tissue culture in Medicago but is 

otherwise stable (d'Erfurth et al., 2003). This ability was exploited to create a 

population of Tnt1 mutants by somatic embryogenesis from M. truncatula ecotype 

R-108. The parental line contained five Tnt1 inserts and over 20,000 lines were 

derived from it (Pislariu et al., 2012). We took a genetic approach to determine the 

function of the AMNs in symbiosis and identified Tnt1 insertion mutants from the M. 

truncatula R-108 collection.  

An alternative genetic approach is the use of RNA interference (RNAi). RNAi has 

been used widely in legumes to provide genetic evidence of function in the absence 

of a mutant. It is based on the ability of the endogenous silencing machinery to 

cleave double stranded RNA into short sequences using the endonuclease Dicer; 
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followed by cleavage of complementary target mRNAs, by the RISC (RNA induced 

gene silencing) complex containing the ARGONAUTE protein (Waterhouse & 

Helliwell, 2003). In Medicago, the double stranded hairpin RNA can be introduced 

into the cell by A. rhizogenes mediated hairy root transformation using a Gateway 

binary vector. Transgenic hairy roots can both nodulate and mycorrhize if inoculated 

by a compatible symbiotic partner. However, a disadvantage of using the hairy root 

system in Medicago is that often the roots are chimeric and contain both 

transformed and untransformed roots. Also, as the transgenes are randomly 

inserted into the genome they are subject to position effects and can therefore vary 

greatly in their expression. Since generation of stably transformed lines is a time 

and resource intensive process however, hairy roots provide a quick alternative. 

The hairy root transformation system is also useful to studying gene function using 

overexpression. In this chapter I describe the isolation and characterization of Tnt1 

mutant lines and RNAi lines; and overexpression studies to study the role of the 

AMNs.  

Genes with related functions are often expressed under the same conditions and in 

the same tissues. It follows from this that by determining what genes are co-

regulated with our genes of interest we can derive information about their function. 

In addition, analyses of promoter motifs can provide critical information about 

transcription factors that regulate gene expression. I combined both approaches 

and identified regulatory genes which provide clues to the function of the AMNs. 

With the exception of Coptis japonicus CjMDR1 and CjMDR2 which are ABCB 

transporters involved in transport of an isoquinoline alkaloid berberine (Shitan et al., 

2003; Shitan et al., 2013), all Arabidopsis full molecule ABCB transporters studied 

so far have been implicated in transport of auxin including AtABCB19 (Noh et al., 

2001), AtABCB21 (Kamimoto et al., 2012) and AtABCB14 (Kaneda et al., 2011) and 

also a Lotus japonicus LjABCB1 (Takanashi et al., 2012). The AMNs which also 

belong to this sub-family are therefore putative auxin transporters. Presence of 

many AuxREs (Auxin responsive elements) upto 2 kb upstream of the translation 

start site of all three genes together with the observation that often the expression of 

ABC transporter genes can be substrate inducible implicated auxin as a possible 

substrate of the AMNs. In addition, several auxin signalling markers have 

expression patterns that closely resemble those of the AMNs including being 

expressed specifically in infected root hair cells (Breakspear et al., 2014). To 

address this hypothesis, I tested several potential substrates by applying candidate 
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chemicals to WT roots and performing qRT-PCR to determine if the AMNs were 

transcriptionally responsive. 

Both nodulation and mycorrhization utilize a common set of core regulatory genes 

which control the outcome of both symbioses. These genes belong to the common 

symbiotic pathway as described in Chapter 1. With the availability of these mutants 

and other symbiotic mutants in Medicago, it is possible to query where the AMNs 

are positioned relative to other members in the pathway. I thus performed qPCR in 

various SYM pathway mutants infected by either microbe or treated with its elicitor 

and identified genes regulating the expression of the AMNs during symbiosis.  

4.2 Results and Discussion 

4.2.1 The intron-exon structure of AMN1 and AMN2 is conserved 

The available sequence of AMN1, AMN2, and AMN3 were confirmed by amplifying 

and sequencing their cDNA from mycorrhized roots of Medicago truncatula ecotype 

A17. I was unable to amplify the AMN1 full length transcript from infected root tissue 

upon repeated attempts. Closer analysis of the gene arrangement around the 

predicted locus showed an orphan ORF encoding ABC membrane fragment 

(predicted as gene Medtr3g086420) ~1.5 Kb upstream of the predicted start of 

AMN1 (Medtr3g086430). This gene fragment shared >80% homology to the first 

TMD of AMN2. I therefore used the gene prediction server GENSCAN (Burge & 

Karlin, 1997) using sequence upstream of Medtr3g086420 and included the entire 

AMN1 downstream sequence (Medtr3g086430). The resultant gene provided a 

gene model for a full ABC-B transporter with homology to AMN2 including in the first 

transmembrane domain. I designed primers for this predicted AMN1 CDS using the 

now corrected model and was able to amplify and verify the sequence using RT 

PCR amplified product. Since the transcript is not highly abundant (as determined 

by qRT-PCR), it was necessary to use an antisense gene specific primer designed 

at the 3’ UTR to prime cDNA synthesis using 3 µg total RNA. I could then amplify 

full length AMN1 using this cDNA. The full length AMN2 transcript on the other hand 

was readily amplified using as little as 1 µg of total RNA as template. Upon 

sequencing of the product, I found that the AMN2 predicted gene model included an 

extra 33 bps at the 5’ end of the third exon and predicted a false intron in the now 

6th exon. AMN1 and AMN2 were thus, both mis-annotated and the corrected 

sequence is provided in Appendix 1.1 and Appendix 1.2. Based on this information, 
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AMN1 and AMN2 were both predicted to be made up of six introns and seven 

exons. The AMN3 CDS sequenced product was found to be identical to the 4.7 Kb 

CDS encoding AMN3 predicted gene model. On average, eukaryotic genes contain 

approximately 3.7 introns per Kb of DNA (Deutsch & Long, 1999). Although some 

intronic sequences have been shown to exert a regulatory effect on the gene, the 

reason why introns are retained is not well understood. However intron-exon 

positions have been routinely used to derive evolutionary relations between genes, 

orthologous genes have been found to have more conserved intron positions than 

non-orthologous genes (Henricson, Forslund, & Sonnhammer, 2010). Although the 

intron lengths vary the exon lengths between AMN1 and AMN2 are conserved 

suggesting that these genes have a common ancestor (Figure 4.1 A). AMN1 and 

AMN2 encode two ABC transporters of 137.06 kDa and 137.72 kDa while AMN3 

encodes a 163.60 kDa protein.  

4.2.2 Two mutant alleles each of AMN1 and AMN3 and one for AMN2 

were identified  

Two Tnt1 insertion mutant lines each representing different alleles for all three 

AMNs were obtained from the Samuel Roberts Noble foundation: amn1-1 (NF5606), 

amn1-2 (NF17134), amn2-1 (NF9733), amn3-1 (NF18154) and amn3-2 (NF8444). 

The identified insertions were at positions 2291 bps, 4616 bps, 1548 bps, 361 bps, 

408 bps away from the ATG start site of their respective genes. The inserted Tnt1 

transposon sequence introduces a series of missense mutations and followed by a 

stop codon in the transcript of the gene it is inserted in. The resultant hybrid 

transcript introduces a premature stop during translation thereby forming truncated 

non-functional proteins.  Heterozygous or homozygous plants were identified from 

these lines for each allele except for one AMN2 line (Figure 4.1 A). Heterozygous 

plants were allowed to self-fertilize and a homozygous plant was selected from this 

progeny before further experiments were carried out. All identified insertions were in 

exons and no gross morphological changes could be seen in the mutants (Figure 

4.1 C). However, qPCR data consistently showed a two-to-ten times higher 

expression of AMN1 in the mutant background relative to WT upon mycorrhization 

(supplementary). I therefore decided to use RT-PCR to try and amplify the full 

length gene using RNA samples from mycorrhized roots since the AMNs are hardly 

detected in uninfected root tissue. UBIQUITIN was used as a positive control and it 

amplified from all samples. Oligo-dT primed cDNA was sufficient to amplify full 
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length AMN2 transcript from the wild type samples but not from the mutant amn2-1 

(NF9733). This could happen if the entire 5.2 Kb Tnt1 retrotransposon was 

transcribed while integrated within the gene of interest. This was confirmed by using 

a Tnt1 specific forward primer and the gene specific reverse primer and was also 

able to amplify the hybrid transcript in the mutants but understandably never from 

wild type control plants. In case of amn1-2 (NF17134) and amn3-1 (NF18154), I had 

to increase the starting amount of RNA and use antisense gene specific primers to 

prime cDNA synthesis. Again, I was able to confirm the presence of the hybrid 

transcript in the mutants but not the full length WT transcripts conclusively 

ascertaining that the M. truncatula lines were mutants (Figure 4.2 B). qPCR 

detection of the incorrect hybrid transcripts thus could imply a regulatory feedback 

mechanism used by the plant to create a functional AMN transporter when 

challenged by microbes. 
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Figure 4. 1: Identification of amn1, amn2, and amn3 mutant alleles of M. 

truncatula 

A. Gene structure diagram of AMN1, AMN2, and AMN3 showing positions of 

the Tnt1 inserts in exon one (amn1-2) and exon six (amn1-2) of AMN1 and a 

single allele for AMN2 in exon three (amn2-1) and two alleles for AMN3 both in 

exon 1 (amn3-1, amn3-2). Alleles are numbered according to their position in 

the gene. Note also a similar exon intron arrangement for AMN1 and AMN2, 

each with seven exons and six introns. C. Backcrossed M. truncatula R-108 

mutant lines for amn1, amn2, and amn3 alleles show no obvious morphological 

phenotypic abnormalities three weeks after infection with S. meliloti 1021 

compared to the wild type.  
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Figure 4.2: DNA Polymerase Chain Reaction confirmation of Tnt1 insertion 

mutant lines 

A. Gel image confirming presence of tnt1 insertions at predicted sites. Bands 

represent PCR amplified products with a forward or reverse tnt1 primer 

combined with a gene specific primer using DNA extracted from mutant lines. 

amn1-1 (P_32 and P_2) amn1-2 (P_33 and P_4) amn2-1 (P_32 and P_8) amn3-

1 and amn3-2 (P_32 and P_14) Faint band in lane 3 control is a non-specific 

product. B. Gel image confirming absence of WT gene sequence in mutant lines. 

Bands represent PCR amplified products with gene specific primers. amn1-1 

(P_1 and P_2) amn1-2 (P_40 and P_4) amn2-1 (P_7 and P_8) amn3-1 and 

amn3-2 (P_13 and P_14)  

C: Control. Expected sizes are indicated on top of the bands. Lane 1 represents 

a 1 kb DNA marker. 
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Figure 4.3: Semi quantitative RT-PCR confirmation of Tnt1 insertion mutant 

lines 

(a,b,c,d,e). Gel image confirming presence of tnt1 insertions at predicted sites. Bands 

represent PCR amplified products using cDNA generated from RNA extracted using 

mutant lines with a forward or reverse tnt1 primer combined with a gene specific primer. 

amn1-1 (P_32 and P_4) amn1-2 (P_33 and P_4) amn2-1 (P_32 and P_10) amn3-1 and 

amn3-2 (P_32 and P_14) (f,g,h). Gel image confirming absence of WT full-length 

transcript in mutant lines. Bands represent PCR amplified products with gene specific 

primers on cDNA generated using RNA extracted from mutant lines. AMN1 (P_3 and 

P_4) AMN2 (P_9 and P_10) AMN3 (P_15 and P_16) Expected sizes are indicated on 

the right. Histone H3 (P_41 and P_42) amplifies from all samples as shown, validating 

the quality of the cDNA was comparable. 
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4.2.3 Single mutants of AMN1 AMN2 and AMN3 are unaffected in their 

ability to form symbiotic associations with both rhizobia and 

arbuscular mycorrhizae 

Tnt1 lines typically contain many background insertion events which can complicate 

phenotypic analyses. All mutants were thus backcrossed to the parental WT R-108 

lines with the exception of amn2-1 and homozygotes identified prior to further 

characterization. Nodulation was tested at 3 wpi with S. meliloti strain Sm1021 

(Figure 4.2 A). There was also no experimentally reproducible difference consistent 

across alleles for any mutant in the number of nitrogen fixing ‘pink’ nodules and 

developing uninfected ‘white’ nodules compared to WT. Nodules also showed no 

gross morphological differences. Colonization was then tested with Rhizophagus 

irregularis 5 weeks post inoculation in the mutants. No differences in total 

colonization percentage consistent between alleles were observed for the single 

mutants (Figure 4.2 B). There were no obvious changes in arbuscule structures 

which filled up the entire cell as in the WT.  

When the ratio of pink/white nodules was calculated for the same experiment, using 

a Student’s t-test I found that there was a statistically significant decrease in amn2-1 

(1.83), amn3-1 (1.50) and amn3-2 (1.43) compared to WT R108 (4.14) but not in 

amn1-1 (3.91) and amn1-2 (3.78) mutant alleles (Supplementary Figure 5.6). 

Numbers in brackets represent average of the ratios calculated. Using a paired t-

test I found the p values were equal to 0.02, 0.009, 0.008 for amn2-1 and amn3-1 

and amn3-2 respectively when compared to the WT plants. Plants in which the 

denominator (white nodules) was 0 were not included in the calculation; these 

findings should therefore be considered cautiously. The reduction in this ratio could 

indicate that the nodules which do develop on mutant alleles of AMN2 and AMN3 

have a slight delay in commencement of nitrogen fixation given that the pink colour 

indicates nitrogen fixing nodules. Possibly, absence of the AMNs might impede the 

passage of the bacteria through the infection thread, delaying nitrogen fixation.  

The absence of an obvious defect in nodule number in the single mutants could be 

explained by genetic redundancy amongst the AMNs. I thus proceeded to cross the 

single mutants with each other in multiple allelic combinations. Since we might 

expect AMN3 also to contribute to the flux of the transported substrate or a close 

chemical relative, I also generated double and triple crosses with amn3 alleles. 

However, it takes 5 months from germination to seed harvest in M. truncatula; 
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therefore it takes approximately 12-14 months from the time of making the cross 

before one obtains sufficient seed from homozygous double mutants for phenotype 

testing. I therefore decided to use RNA interference technology to knockdown both 

AMN1 and AMN2 to simulate a double mutant in transgenic hairy roots. IN addition, 

I tested the RNAi construct in the amn3 mutant background to simulate a triple 

mutant.  

4.2.4 RNAi knockdown of AMN1 and AMN2 has a negative effect on 

nodule number and mycorrhizal percentage colonization 

Considering the large size of the ABC transporter family, off target silencing is a 

potential problem when using RNA interference technology. To circumvent this 

possibility I identified a probe for the RNAi from the AMN1 sequence extending over 

128 bps complementary to a highly conserved region of the first transmembrane 

domain that is common between AMN1 and AMN2. It was essential to avoid the 

nucleotide binding domain which is highly conserved across all sub-families. A 

discontinuous mega BLAST, which is sensitive to alignments with a low degree of 

identity, of the probe sequence against the Medicago genome retrieved only the 

corresponding homologous region of the AMN2 gene, supporting its specificity. The 

symbiotic phenotypes were then used in AMN1/AMN2 RNAi knockdown roots. The 

number of nodules 3 wpi were reduced by 50% in transgenic hairy roots expressing 

this RNAi construct, compared to the empty vector controls. Nodules in RNAi lines 

appeared to be small and triangular in shape but they appeared to be infected 

normally (Appendix 1.6). This phenotype for the double knockdown was observed in 

two independent experiments but could not be reproduced in the third trial. To 

simulate a triple mutant the same RNAi construct was used in amn3-1 and amn3-2. 

The AMN1/AMN2 knockdown in the amn3-2 mutants did not have a further additive 

effect on the observed reduction in total nodule number (Figure 4.3 A).  

The same strategy was then used to evaluate mycorrhization. The total percentage 

colonization was noted to be reduced by ~18% five weeks post colonization by R. 

irregularis (Figure 4.3 B). Fewer arbuscules were noted in the roots expressing the 

RNAi construct although they developed normally once they initiated in a cortical 

cell (Appendix 1.6). This phenotype was only observed in one experimental trial. 

Similar to the nodulation experiment, knockdown of AMN1 and AMN2 in the amn3-2 

background did not further enhance the phenotype suggesting that AMN3 is not 

involved in the same function as AMN1 and AMN2.  
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Mycorrhized root samples from four independent transgenic RNAi knockdown roots 

were tested by qPCR to determine the efficiency of knockdown using the described 

construct. Since the construct was designed to be specific for AMN1 and AMN2, 

gene expression of AMN3 was checked as a negative control. In all four lines, 

relative expression of AMN1 and AMN2 was lower than in empty vector controls 

even when the percentage colonization was approximately equal (EV-2 and KD-3) 

confirming the efficiency of the knockdown (Figure 4.4 A). However, expression of 

AMN3 was also lower in the RNAi lines as compared to the controls. One reason 

could be that off-target silencing caused by the RNAi construct might be knocking 

down AMN3. Alternatively, the observed decrease in AMN3 expression in RNAi 

lines could be a reflection of lower percentage colonization of those lines.  
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Figure 4.4: Symbiotic phenotypes of single mutant alleles of AMN1, AMN2, 

and AMN3 

A. No statistically significant difference in total nodule number that was 

consistent between mutant alleles could be observed 3 weeks post infection 

(wpi) with S. meliloti 1021 using Student’s t-test. Values represent average of the 

mean. 24-30 plants per line were scored. Error bars depict Standard error of the 

mean (S.E). Number of pink, nitrogen fixing nodules and white, uninfected 

nodules was also comparable between all lines tested. A statistically significant 

difference in ratios of pink/ white nodules is discussed in section 4.2.2 B. WT 

and AMN mutant alleles are normally colonized by the fungal symbiont R. 

irregularis four weeks post inoculation. No difference in total arbuscule number 

was recorded. 23-25 plants were scored for each line. A Student’s t-test was 

performed for either experiment. Values represent average percentage 

colonization. Error bars depict standard error of the mean (S.E).  
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 Figure 4.5: Double knockdown of AMN1 and AMN2 negatively affects both 

rhizobial and mycorrhizal associations 

A. Average number of nodules is decreased by ~50% in AMN1-antisense lines 

three wpi with Sm 1021. This phenotype is not further enhanced in the amn3-2 

mutant allele. Number of plants (n) is indicated at the base of each bar. B. 

Percentage colonization of M. truncatula RNAi lines by Rhizophagus irregularis 

five wpi is lower than empty vector controls. Arbuscule development is further 

affected in these lines. Number of plants varied between 10 to 11 for each line.  

H: Hyphae V: Vesicle A: Arbuscule. Error bars denote standard error of the mean 

(S.E). A Student’s t-test was used to determine statistical significance of the 

differences. Asterisks denote * p<0.05, ** p<0.01, ***p<0.001 
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Figure 4.6: Relative expression of AMN1, AMN2, and AMN3 in RNAi 

expressing lines 

A. quantitative RT-PCR values comparing Empty vector (EV 1-4) and 

Knockdown RNAi (KD 1-4) expressing lines in M. truncatula A17. Wild type 

shows reduced expression of AMN1 and AMN2 in knockdown lines. Expression 

of AMN3 is also reduced. B. Expression of the RNAi antisense construct in 

amn3-2 background (KD 5-7) replicates the reduction in AMN1, AMN2 transcript 

levels seen in A. Error bars denote standard error between technical replicates.  

Primers used in the experiment AMN1 (P_5 and P_6), AMN2 (P_11 and P_12), 

AMN3 (P_17 and P_18), Tip41 (P_43 and P_44), Ubiquitin (P_45 and P_46). 

Values represent average of three technical replicates. Error bars depict 

standard error of mean (S.E). 
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The effects of AMN1, AMN2 knockdown in the amn3-2 mutant background were 

also monitored by qPCR (Figure 4.4 B). Mycorrhized root tissue from three 

independent root samples each from empty vector control and RNAi expressing 

transgenics in the amn3-2 tnt1 mutant background were tested for relative 

expression of the three AMNs. As seen in the WT background, the RNAi construct 

did indeed reduce the expression of AMN1 and AMN2. AMN3 expression in the 

amn3-2 mutant background did not correlate with colonization percentage. Since 

the entire AMN3 transcript containing the Tnt1 insert is transcribed (Section 4.2.1), 

we can expect to detect the transcript by qPCR even in the mutant background.  

4.2.5 Double mutants of AMN1 and AMN2 do not show any change in 

nodule number and mycorrhizal colonization 

Six allelic double mutants were generated and so far one combination representing 

amn1 amn2, amn1 amn3 and amn2 amn3 for defects in mycorrhizal associations. 

Mutations segregated in a mendelian fashion with two exceptions wherein I had to 

increase the sample size to find a double mutant (Table 4.1). No growth defects or 

other non-symbiotic phenotypes were seen in any of the mutant combinations. I did 

not have enough seeds to phenotype amn2 amn3 for nodulation yet. Allelic 

combinations amn1-1 amn2-1, amn1-2 amn2-1 and amn1-1 amn3-1 had nodule 

numbers comparable to WT (Figure 4.5 A, C). Nodules were also morphologically 

indistinguishable from WT.  

Many mycorrhizal mutant phenotypes can be overcome with application of high 

inoculum concentrations. Therefore I used a weaker R. irregularis inoculum (5% v/v 

compared with the normal 25% v/v) and allowed the plants to grow till WT plants 

were ~20% colonized. No difference in total percentage colonization could be 

observed for all mutants and arbuscules developed normally (Figure 4.5 B, D). In 

amn2 amn3 however, there was a decrease in frequency of vesicles. To confirm this 

phenotype, the second allelic combination will be tested for consistency.  

F1 seeds for the amn1-1 amn2-1 amn3-2 triple mutants are awaited presently and 

will be screened for homozygotes before a phenotype is tested. 
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 Gene 1 
(Homozygous) 

Gene2 
(Homozygous) 

Double 
Homozygous 

plants 

Total Ratio 

amn1-1xWT R-
108 

  4 19 4.75:1 

amn1-2xWT R-
108 

  3 24 8:1 

amn3-1xWT R-
108 

  5 49 9.8:1 

amn3-2xWT R-
108 

  9 28 3.11:1 

amn1-1xamn3-
1 

10 9 3 46 15.33:1 

amn1-1xamn3-
2 

12 6 2 34 17:1 

amn1-1xamn2-
1 

38 38 4 165 41.25:1 

amn1-2xamn2-
1 

6 5 1 44 44:1 

amn1-2 
BCxamn2-1 

16 27 4 72 18:1 

amn2-1xamn3-
1 

36 39 8 141 17.63:1 

amn2-1xamn3-
2 

24 15 4 71 17.75:1 

lax2-1xDR5-
GUS 

8 Taken forward 
to next 

generation 

- 44  

iaa8-1xDR5-
GUS 

5 Taken forward 
to next 

generation 

- 24  

 

 

  

Table 4.1: Genotypic ratios of the crosses tested and described in this thesis.  

BC stands for backcrossed line 
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4.2.6 Constitutive root hair expression of AMN2 blocks cortical 

penetration of Infection threads 

Overexpression of ABC transporters can confer phenotypes associated with the 

endogenous function of the gene in planta (Kuromori et al., 2010). Overexpression 

of a transporter may provide a phenotype if the substrate is already present in the 

cell. For instance it could promote excess secretion and possibly overproduction of 

the substrate through positive feedback on #the biosynthetic pathway. I 

hypothesized that constitutive expression of the AMNs in all root hairs might affect 

rhizobial infection frequency or structure through excess secretion. To test this 

hypothesis I expressed AMN2 from the M. truncatula Expansin A7 (pExpA7:AMN2) 

promoter shown previously in the lab to be expressed in a constitutive fashion in the 

epidermis including root hairs. Three weeks after infection with Sm1021 transgenic 

plants were scored for nodule number and changes in morphology of the infection 

threads were investigated.  

Total nodule number in pExpA7-AMN2 transgenic roots was not changed compared 

to those transformed with the empty vector. However, there was a statistically 

significant increase in the number of white, uninfected nodules in hairy roots 

overexpressing the AMN2 transporter (Figure 4.6 A). On an average, only 1.5 

nodules were uninfected in the EV vector control roots in contrast to approximately 

5 in pExpA7-AMN2 transgenic roots and this appeared to be due to an increase in 

total nodule number in the overexpression roots, although this increase was not 

significant (p=0.037). In addition, infection threads in the overexpressed roots 

initiated and developed normally like in the WT until they reached the cortex. At a 

stage when the infection threads in the WT were ramifying into underlying nodule 

primordia (Figure 4.6 B-E), infection threads showed irregular, distorted tips which 

seemed to have difficulty penetrating into the cortex.  
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Figure 4.8: Expansin A7 driven constitutive expression of AMN2 affects 

nodule number and Infection thread structure.  

A. No difference in total nodule number of M truncatula A17 WT transgenic roots 

containing the empty vector construct or expressing pExpA7::AMN2. Values 

represent average of N=15 and N=11 for Control and AMN2 overexpressing 

lines respectively. A Student’s t-test was used to determine statistical 

significance. Asterisks denote *p<0.05. Error bars denote standard error of 

mean. B,C. Infection threads in control EV expressing lines branch normally and 

ramify into the cortex. The tip of the thread is not affected once it reaches the 

cortex (E,F) D-F ITs do not colonize underlying nodules (E) Aberrant tip 

structures are visible as the infection thread reaches the root cortex. S. meliloti 

1021 (pXLGD4 expressing HemA::LacZ) stained in blue.  

Scale bars denote 100 µm. 

Figure 4.7: Symbiotic phenotypes of AMN double mutant combinations 

No change in average nodule number A. or average mycorrhizal percentage 

colonization B. in amn1 amn3 double mutants (n=23) C. Number of nodules is 

comparable to WT at 2 wpi and 3 wpi in amn1 amn2 double mutants (n=25) D. 

Total percentage colonization upon inoculation with R. irregularis is the same in 

amn2 amn3 and amn1 amn2. Vesicle frequency is lower than WT in amn2 amn3 

(n=15 for each). A Student’s t-test was used to test statistical significance. 

Asterisks denote **p<0.01 Error bars denote standard error of mean.  
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These phenotypes of failed epidermal-cortical progression of ITs and uninfected 

nodules may point towards a primary defect in IT formation in the outer cortex.  This 

result could be explained if the transported substrate is either a negative regulator of 

infection thread development or a positive regulator which negatively affects 

structural development of IT growth at high concentrations. This experiment was 

only carried out once and therefore needs to be repeated. The effect of AMN1 

overexpression could be tested in a similar manner to provide a separate line of 

evidence. 

4.2.7 AMN1, AMN2, and AMN3 co-regulation analyses 

As described above, these genes are all induced in rhizobial and mycorrhizal 

infected tissues, and an initial analysis showed that the expression profiles of 

AMN1, AMN2, and AMN3 are highly correlated across symbiotic treatments raising 

the possibility that they may transport the same or related substrates. I theorized 

that the metabolic pathway associated with biosynthesis of the substrate for AMNs 

may be transcriptionally co-regulated with these genes. To test this hypothesis, I 

retrieved probesets 70% correlated with AMN1, AMN2, and AMN3 across rhizobial 

and mycorrhizal experimental treatments from the MtGEA. A list of genes co-

regulated with probeset IDs co-regulated with the AMNs is presented in Table 4.1. 

Of the 23 genes co-regulated with the AMNs, eight encode enzymes involved in 

different metabolic reactions (Table 4.1 – V.). Of these, two genes were previously 

studied to be symbiosis related. The DXS2 gene is a chloroplast localized enzyme 

which catabolizes the first rate limiting step in the methyleythritol-4-phosphate 

(MEP) pathway for biosynthesis of isoprenoids. Previously shown to be mycorrhiza 

induced, this gene is expressed only in arbuscule containing cells (Floss et al., 

2008). It is absent from Arabidopsis, further supporting its role as a symbiosis 

specific gene. Knockdown of DXS2 by RNAi results in reduced levels of C27 

apocarotenoids in mycorrhized roots such as mycorradicin and a higher proportion 

of degenerating arbuscules were seen. Interestingly, a recent report has revealed a 

role for apocarotenoids in soybean nodulation and data from our group shows 

expression of DXS2 in root hairs of M. truncatula seedlings infected with S. meliloti 

1021 (Kim et al., 2013). If DXS2 is required for the biosynthesis of AMN substrates, 

it would suggest they are transporting an apocarotenoids with a role in both 

symbioses. In addition, a second gene involved in DWARF27 was also co-regulated 

(Table 4.1 - V).  
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Another co-regulated gene of noteworthy mention is the chalcone-o-

methyltransferase which is required for methylation of isoliquiritigenin to form a Nod-

factor inducing flavonoid, 4,4'-dihydroxy-2'-methoxychalcone (Maxwell, Harrison, & 

Dixon, 1993). Isoliquirotigenin also acts as a precursor to another Nod gene 

inducing flavonoid called liquiritigenin (Jez, Bowman, & Noel, 2002). Liquitiginenin in 

turn can be converted to another Nod gene inducing flavone, dihydroxyflavone (J. 

Zhang, Subramanian, Stacey, & Yu, 2009). A role for flavonoids is well established 

in a symbiotic context and both rhizobia and mycorrhizae sense these 

chemoattractants and initiate a dialogue with the host plant. Infection by rhizobia is 

known to cause massive changes in phenylpropanoid pathway derivatives 

(Breakspear et al., 2014) including PAL (PHENYLAMMONIA LYASE) which 

catalyses the first committed step in this pathway and CHS (CHALCONE 

SYNTHASE) and these very same genes are also expressed in arbuscule 

containing cortical cells (Harrison Dixon 2003). It is also worth mentioning here that 

the Medicago BLUE COPPER PROTEIN1 (MtBCP1) previously shown to localize to 

the plasma membrane around the trunk of the arbuscule and around the hyphae 

was also co-regulated with the AMNs.  

 
PROBESET ID GENE DESCRIPTION REMARKS 

I. 
UNKNOWN 
PROTEINS   

1 Mtr.11271.1.S1_at 
PREDICTED: Cicer arietinum 
uncharacterized LOC101497077 
(LOC101497077), mRNA 

 

2 
Mtr.25607.1.S1_s_
at 

Cysteine rich protein of unknown 
function  

3 
Mtr.43814.1.S1_s_
at 

Medicago truncatula hypothetical 
protein (MTR_5g075400) mRNA, 
complete cds 

 

II. 
ELECTRON 
CHAIN   

4 Mtr.14172.1.S1_at 
Medicago truncatula Cytochrome 

P450 (MTR_7g092620) mRNA, 
complete cds 

 

5 
Mtr.15627.1.S1_s_
at 

Medicago truncatula Blue copper 
protein (MTR_7g086190) mRNA, 
complete cds 

Blue copper protein 
(MtBcp1b) 

6 Mtr.31863.1.S1_at 
 

Cytochrome b  

7 Mtr.51106.1.S1_at 
Medicago truncatula Blue copper 
protein (MTR_7g086100) mRNA, 
complete cds 

Blue copper protein 

III. LECTIN RELATED 
  

8 Mtr.45646.1.S1_at 

Medicago truncatula Lectin 
receptor-like kinase Tg-20 
(MTR_8g068050) mRNA, complete 
cds 
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9 Mtr.7279.1.S1_s_at 

Medicago truncatula Lectin 
receptor-like kinase Tg-20 
(MTR_8g068050) mRNA, complete 
cds 

 

10 Mtr.37152.1.S1_at 
Medicago truncatula lectin-like 
(Lec10) pseudogene mRNA, 
complete sequence 

 

11 Mtr.35524.1.S1_at 
Medicago truncatula Subtilisin-like 

protease (MTR_4g053780) mRNA, 
complete cds 

 

12 Mtr.40286.1.S1_at 

Medicago truncatula Serine 
carboxypeptidase II-3 
(MTR_3g079570) mRNA, complete 
cds 

 

IV. TRANSPORT 
  

13 Mtr.24353.1.S1_at 
PREDICTED: Cicer arietinum SPX 
domain-containing protein 2-like  

Vacuolar transporter 
chaperone 4 

14 Mtr.33871.1.S1_at 
PREDICTED: Cicer arietinum 
peptide transporter PTR1-like 

Peptide transport-like 
protein - Arabidopsis 
thaliana  

V. ENZYMES 
  

15 
Mtr.18066.1.S1_s_
at 

Medicago truncatula O-
methyltransferase 
(MTR_3g021440) mRNA, complete 
cds 

Chalcone-O-
methyltransferase 

16 Mtr.31229.1.S1_at 

Medicago truncatula 

Dehydrogenase/reductase SDR 
family member (MTR_4g097510) 
mRNA, complete cds 

 

17 
Mtr.49672.1.S1_s_
at 

Medicago truncatula 

Anthocyanidin 3-O-
glucosyltransferase 
(MTR_7g070860) mRNA 

Flavonol 3-O-
glucosyltransferase 

18 Mtr.43585.1.S1_at 
Medicago truncatula mRNA for 1-
deoxy-D-xylulose 5-phosphate 
synthase 2  

DXS2 gene 

19 Mtr.37912.1.S1_at 
PREDICTED: Cicer arietinum 
NADP-dependent alkenal double 
bond reductase P1-like 

Allyl alcohol 
dehydrogenase 

20 Mtr.38546.1.S1_at 
PREDICTED: Cicer arietinum UDP-
arabinopyranose mutase 3-like 

xylan 
glucuronosyltransferas
es 

21 Mtr.4797.1.S1_s_at 

PREDICTED: Cicer arietinum beta-
carotene isomerase D27, 
chloroplastic-like (LOC101489176), 
mRNA 

Carotenoid 
biosynthesis  

22 Mtr.11343.1.S1_at 

PREDICTED: Cicer arietinum beta-
carotene isomerase D27, 
chloroplastic-like (LOC101489176), 
mRNA 

 

VI. RECEPTOR 
  

23 Mtr.35414.1.S1_at 
PREDICTED: Cicer arietinum 
probable inactive receptor kinase 
At2g26730-like  

Receptor-like kinase  

 
Table 4.2: List of genes co-regulated with AMN1, AMN2, and AMN3 
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4.2.8 Promoter analyses of 2kb upstream region of the AMNs reveals 

putative hormone regulatory sites 

I identified cis regulatory elements controlling the coordinated expression of the 

three AMN genes using the Matinspector software and shortlisted the shared 

regulatory elements (Cartharius et al., 2005). As would be expected of symbiosis 

related genes, regulatory elements included the Nodulin consensus 1 and 2 found in 

promoters of leghaemoglobin genes (Ramlov, Laursen, Stougaard, & Marcker, 

1993). MYB and NAC transcription factor binding sites with a role in secondary wall 

development and sugar responsive motifs were also present among a total of 40 

common regulatory elements in the promoters of AMN1, AMN2, and AMN3. 

However, the most interesting group of regulatory elements included the hormone 

related transcription factor binding sites.  

In the AMNs an incomplete TGTCT auxin responsive element (AuxRE) sequence 

could be found but studies show that the last base pair is not strictly required for 

recognition by ARFs (Ulmasov et al., 1999). This finding is interesting for two 

reasons. Firstly, a suite of auxin signalling genes, which include MtIAA8, MtIAA9, 

MtARF16 and MtGH3.1 are all specifically induced in infected root hair cells similar 

to the AMNs and loss of ARF16a reduces rhizobial infection (Murray group, 

unpublished). Secondly, ABCBs including AtABCB1, and AtABCB19 have been 

shown to efflux auxin in Arabidopsis (Geisler et al., 2005; Noh et al., 2001). 

Although, classification into a sub-family is not criteria alone for assignment of a 

substrate, presence of AuxREs may suggest a regulatory role for auxin in control of 

the three AMNs. 

Perfect TAACAAA consensus sequence (GAMYB) found in promoters of some 

gibberellic acid (GA) responsive genes were found within 2kb upstream sequence of 

the start codon.  

The last three hormones which had conserved regulatory elements in the promoter 

of the AMNs are the three typical defense responsive hormones, salicylic acid, 

jasmonic acid and ethylene. All three of these hormones have negative effects on 

nodulation and both ET and JA inhibit calcium oscillations and therefore block the 

common symbiotic signalling pathway (Sun, Miwa, Downie, & Oldroyd, 2007). 

Presence of binding sites for WRKY transcription factors which are controlled by 
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these defense hormones further supports a role for these hormones in control of the 

AMNs. Although studies in Arabidopsis and other model systems for plant pathogen 

interactions evidence that ABC transporters in plant-microbe interactions are 

controlled by either of the three hormones, studies in mutualistic symbioses are 

lacking.  

4.2.9 Expression of AMN1, AMN2, and AMN3 is not affected by Indole 

acetic Acid 

Presence of AuxREs in the promoters of all three AMNs further implicated a role of 

Auxin in control of the AMNs. I therefore checked inducibility of the AMNs by IAA as 

a first indication, since several ABC transporters including the auxin efflux 

transporter AtABCB19 and AtABCB1 are auxin inducible. Treatment of 2 day old 

seedlings with 1 µM auxin failed to induce the AMNs (Figure 4.8 A) even though 

other auxin-regulated genes were induced (Appendix 1.7). Presence of AuxREs in 

the promoters of all three AMNs further implicated a role of Auxin in control of the 

AMNs. No statistically relevant increment in AMNs transcript levels were noted 

when 3 day old seedlings were treated with 1 µm IAA for three hours only (Figure 

4.9C). In addition, since I could also detect GA-MYB binding transcription factor 

binding sites in the promoters of all three AMNs, I also tested the inducibility upon 

treatment with GA. However as shown in Figure 4.9 C, the AMNs were not induced. 

In addition, since co-regulation analyses suggested that AMNs might be 

transporting the phenylpropanoid pathway derivatives flavonoids or isoflavonoids. I 

also used naringenin and liquiritigenin which are Nod-gene inducing flavonoids and 

isoflavonoids respectively. Neither naringenin nor liquritigenin could induce the 

AMNs (Figure 4.8 A).  
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4.2.10 AMN1, AMN2, and AMN3 are DMI3 dependent  

As the expression of the AMNs is symbiosis specific I hypothesized that these 

genes are controlled by the common symbiotic pathway. To test this hypothesis and 

place the AMNs relative to other genes in the pathway, I tested expression of the 

AMNs in different SYM gene mutants. These included mutants for the receptor for 

Nod Factor Perception (NFP), the central regulator of symbiosis signalling – CCaMK 

(Calcium and Calmodulin Kinase) or DMI3 (Doesn’t Make Infections), the three 

GRAS domain containing transcription factors NSP1, NSP2 (nodulation signalling 

pathway 1 and 2) and RAM1 (Reduced Arbuscular Mycorrhization), and the 

transcription factor NIN (Nodulation inception). DMI3 is the only gene amongst 

these required for colonization by both microbes. NSP1 and NSP2 are essential for 

nodulation (S. Hirsch & Oldroyd, 2009) but have also been shown to control 

strigolactone production hence exerting an effect on mycorrhization (Liu et al., 

2011). I used the same set of mutants to determine the regulation of the AMNs 

during symbiotic signalling. 

To determine their regulation during nodulation, I treated 3 day old seedlings with 10 

nM Nod-factors for 24 hours and assessed the changes in the transcript levels 

Figure 4.9: Candidate substrates for AMN1, AMN2, and AMN3 

A. Incomplete Auxin Response Elements could be found upstream of all three 

AMNs in both orientations as depicted. Perfect conservation of the GA MYB 

transcription factor binding site is also shown here. B. quantitative RT PCR 

expression comparing gene expression profiles of AMN1, AMN2, and AMN3 

upon treatment with IAA, the flavonoid Naringenin and the isoflavonoid 

liquiritigenin Data are representative of 3 biological replicates each comprised of 

8 seedlings. C. quantitative RT PCR expression comparing gene expression 

profiles of AMN1, AMN2 and AMN3 3 hours post treatment with IAA and GA. 

Concentrations are indicated in brackets. Fold change related to mock treated 

control. Data are representative of 3 biological replicates each comprised of 9 

seedlings. Error bars denote standard error of mean. A Student’s t-test was 

carried out to determine whether difference is statistically relevant. Primers used 

in the experiment AMN1 (P_5 and P_6), AMN2 (P_11 and P_12), AMN3 (P_17 

and P_18), Tip41 (P_43 and P_44), Ubiquitin (P_45 and P_46). 
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relative to the control. WT plants treated with Nod Factor showed an average 

induction of 3 fold, 8 fold and 4 fold increase in expression of AMN1, AMN2, and 

AMN3 respectively across three biological replicates (Figure 4.8 B). Absence of 

AMN2 induction in the nfp and dmi3 mutant backgrounds suggested that its 

expression is dependent on NFP and CCaMK. AMN1 and AMN3 were not 

statistically significant but showed the same trend. Mutations in the three GRAS 

domain transcription factors NSP1, NSP2 and RAM1 did not affect induction of the 

AMNs. The transcription factor NIN on the other hand caused a hyper induction of 

all three genes although only AMN1 was statistically significant. This is not 

surprising since positive feedback in the nin mutant affects several infection related 

genes including ENOD11 resulting in their up-regulation. This results in a wider 

zone of ENOD11 expression and hyper curling of root hairs containing infection 

pockets in the absence of nodule development (Schauser et al., 1999). As the use 

of high concentration of NF yielded variable expression I tested regulation in whole 

roots infected with S. meliloti at 3 dpi. Relative to the water treated controls, the 

hyper induction of all three AMNs was registered at a statistically relevant 90% 

confidence interval (Figure 4.9 C).  

Colonization of dmi3 and ram1 mutants by mycorrhizae is strongly compromised 

(Gobbato et al., 2012). Accordingly, all three AMNs failed to get induced in dmi3 and 

ram1 mutants infected with R.irregularis for 4 weeks, confirming their dependence 

on the regulatory kinase and the GRAS domain containing transcription factor. An 

ANOVA F-test across the mutants confirmed that the results were statistically 

significant (Figure 4.9 A).  

4.3 Conclusions 

This section explores the function and regulation of the three ABCB transporters 

called AMNs. To this end I isolated and characterized single mutants for their 

nodulation and mycorrhizal phenotypes. In the absence of any clear phenotypes, I 

generated double mutants and used RNAi technology to knockdown both AMN1 

and AMN2. This resulted in a 50% reduction of nodule number and 20% reduction 

in total percentage colonization upon mycorrhization. However, this phenotype was 

not consistent with the double mutant phenotypes suggesting that additional 

members of the ABCB family can compensate for the absence of AMN1 and AMN2. 

This is unlikely to be AMN3 since AMN1/AMN2 knockdown in the amn3 mutant did 

not further strengthen the phenotype. Seeds from the F1 generation of the triple 
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cross are now available and will be further phenotyped. However, constitutive 

expression of AMN2 in the epidermis blocked entry of the rhizobia into the outer 

cortex. This suggested that the AMN substrate is possibly detrimental to infection 

when present ectopically.  

I was able to bioinformatically determine that the AMNs are co-regulated with 

biosynthetic genes of the phenylpropanoid pathway and isoprenoid pathway. 

However, they were not induced by precursors of flavonoids and isoflavonoids i.e 

naringenin and liquiritigenin potentially eliminating at least these flavonoids as 

substrates. Auxin as a candidate substrate cannot be conclusively eliminated 

although IAA also failed to induce these transporters  

Importantly, I was able to show that induction of AMN1, AMN2, and AMN3 is 

DMI3/CCaMK dependent. This finding positions the AMNs downstream of the 

common symbiotic pathway but upstream of the nodulation regulator NIN. In 

addition, the GRAS domain transcription factor RAM1 is required for the expression 

of these genes during mycorrhization. This could be due to direct transcriptional 

regulation of the AMNs by RAM1 or could be a secondary consequence of reduced 

infection which was found to have a strong impact on AMN expression. Expression 

of the AMNs is higher in the nin mutant background as are other marker genes and 

Nod-factor responses in the epidermis of this transcription factor mutant.  

A modest phenotype in the amn2 amn3 double mutant upon mycorrhization 

suggests that the triple amn1 amn2 amn3 mutant might have a more severe 

phenotype. Identification and characterization of this line will be important for finding 

a function for the AMNs. In addition, screening of double mutants for sensitivity to 

various flavonoids and lignin pre-cursors would help move towards substrate 

identification.  

Another approach to studying transporter function is the use of heterologous 

systems such as E. coli or yeast and in the case of transporters it can be used to 

test potential substrates. For instance, AtABCB1, an auxin efflux transporter confers 

IAA resistance to the Saccharomyces cerevisea yap1-1 mutant that is sensitive to 

low concentrations of IAA (Geisler et al., 2005; Prusty, Grisafi, & Fink, 2004). 

AtABCB4 expressing yap1-1 on the other hand is more sensitive to IAA consistent 

with its auxin importer activity (Santelia et al., 2005). (Prusty et al., 2004). To further 

address this hypothesis, AMN2 can be expressed in yeast strains sensitive to IAA or 

its toxic analogue 5-Fluoroindole. 
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Figure 4.10: Expression of AMN1, AMN2, and AMN3 in different symbiotic 

pathway mutants. 

A. Fold change relative to uninfected control roots in Wild type M. truncatula 

compared to six SYM pathway mutants inoculated with R. irregularis four wpi. 

Comparable expression of the positive control MtPT4 in five mutants suggests 

colonization levels were similar between mutants and WT. Failure of dmi3 and 

ram1-1 mutants to get colonized correlated with an absence of induction for all 

four tested genes exhibiting a dependence on the said genes for full functional 

expression. B. Fold change relative to uninfected control roots in Wild type 

compared to six SYM pathway mutants treated with high concentrations (10 nM) 

of S meliloti 1021 nod factor in comparison to S. meliloti SL44. Induction of gene 

expression id dependent on nfp and dmi3 and negatively regulated by the 

transcription factor NIN C. Rhizobial inoculation of mutants mimics effects 

caused by 10 nM nod factor treatment.  

Data are representative of three biological replicates each comprised of 3 plants 

(mycorrhizal inoculation) or 10 seedlings (NF treatment and rhizobial 

inoculation). Asterisks indicate significance at the 90% confidence interval or 

higher using a Student’s t-test. *p<0.05. Error bars depict standard error of 

mean (S.E). Primers used in the experiment AMN1 (P_5 and P_6), AMN2 (P_11 

and P_12), AMN3 (P_17 and P_18), Tip41 (P_43 and P_44), Ubiquitin (P_45 

and P_46), MtPT4 (P_47 and P_48) 
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Chapter Five:  

A role for auxin transport in rhizobial Infection 
 

 

 

 

5.1 Introduction 

The phytohormone auxin plays diverse roles in plant development and its action is 

dependent on auxin levels within the cell. IAA itself can diffuse freely into a cell, 

wherein it dissociates into an anionic form which then cannot efflux out of the cell 

without using energy (Zazimalova, Murphy, Yang, Hoyerova, & Hosek, 2010). Auxin 

transport is mediated by efflux and influx carriers like the Arabidopsis AUX1 influx 

permease, PIN family of efflux transporters and ABCB transporters which are known 

to both efflux and influx auxin (Friml, 2003). Auxin transport inhibitors are routinely 

used to study the role of auxin in different physiological processes. 1-

Napthylthalamic acid (NPA) blocks efflux of auxin presumably by interacting with 

ABCBs (Bailly et al., 2008). Although 1-NOA (1-naphthoxyacetic acid) is considered 

to be a useful inhibitor of auxin influx (Parry et al., 2001), a recent study suggests it 

can inhibit both efflux and influx of IAA (Lankova et al., 2010). Given Auxin’s role in 

almost every aspect of plant growth, it is not unreasonable to hypothesize a role for 

auxin in symbiosis which involves development of a completely new organ - the 

nodule to house the invading rhizobia. In addition to nodule formation itself, root 

nodule symbiosis also involves a second developmental programme also likely to 

require auxin; rhizobial infection involves a re-direction of root hair growth to trap the 

rhizobia and subsequent formation of a tubular plasma-membrane enclosed cell 

wall structure called the infection thread are likely to involve auxin. Studies in 

symbiosis have primarily researched a role for auxin during organogenesis. 
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Noteworthy findings include the observation that high concentration of auxin 

transport inhibitors (ATIs) like (NPA) and 2,3,5-triiodobenzoic acid (TIBA) can 

induce formation of nodule-like structures called ‘pseudonodules’ in the absence of 

rhizobia (A. M. Hirsch et al., 1989; Rightmyer & Long, 2011). Knockdown of the 

pathways encoding endogenous ATIs i.e the flavonoids, blocks nodule formation, 

indicating an important role for the inhibition of auxin transport in initiation of nodules 

(Wasson et al., 2006; J. Zhang et al., 2009). A role for auxin transport is further 

supported by studies using the soybean GH3 promoter which shows a dynamic 

change in expression at the site of NF application (Mathesius et al., 1998). Auxins 

role in infection has also been studied during nodulation in non-legumes, specifically 

the Casuarina-Frankia symbiosis. Although, mechanisms of infection are vastly 

different between the symbiotic association of filamentous bacteria Frankia with its 

actinorhizal host Casuarina and that of the legume-rhizobia symbiosis; some 

components of the symbiotic signalling pathway are conserved in the host plants 

(Gherbi et al., 2008; Svistoonoff et al., 2013; Svistoonoff, Hocher, & Gherbi, 2014). 

Detection of auxins in infected cells of the actinorhizal nodule using antibodies along 

with expression of the auxin influx transporter CgAUX1 in infected cells including 

infected root hair cells is associative evidence for auxin’s role in infection during 

symbiosis (Peret et al., 2007; Perrine-Walker et al., 2010). Although, the decrease 

in nodule number in Casuarina glauca upon treatment with the auxin influx inhibitor 

2-NOA provides an indication that the auxin influx machinery might be involved in 

organogenesis, to date, no functional genetic evidence exists for its role in 

nodulation.  

To investigate a role for auxin in infection I used pharmacological and physiological 

assays and complemented them with molecular and genetic studies. The effects of 

external application of IAA and the efflux inhibitor, NPA have been recorded 

previously for nodule organogenesis in Medicago (Prayitno et al., 2006; van 

Noorden et al., 2006). I tested the effects of ATIs, both efflux and influx inhibitors, on 

infection frequency in M. truncatula seedlings. Removal of the shoot apical 

meristem has strong effects on auxin mediated physiological processes such as 

root growth which can be restored by addition of IAA (Fu & Harberd, 2003).  

In addition to endogenous auxin, plant growth is also responsive to auxin produced 

by bacteria. Since more than 80% of rhizospheric bacteria including rhizobia, can 

produce their own IAA (Sahasrabudhe, 2011) it is possible that they directly 

manipulate host auxin gradients to facilitate their entry. Previous reports using 
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rhizobial strains transformed with an auxin overproducing construct showed 

differences in nodule number which varied depending on the bacterial strain and 

plant host studied. In the M. truncatula- S. meliloti symbiosis the use of auxin 

overproducing bacteria increased the number of nodules while in the Phaseolus and 

Vicia symbiosis with R. leguminosarum the nodule numbers were lowered (Camerini 

et al., 2008; Pii, Crimi, Cremonese, Spena, & Pandolfini, 2007). To date, no mutant 

of S. meliloti has been identified which cannot synthesize IAA.  

Upon perception of auxin by the auxin receptor TIR1, AUX/IAA repressors are 

targeted for cellular degradation by ubiquitination (Calderon Villalobos et al., 2012; 

Gray, Kepinski, Rouse, Leyser, & Estelle, 2001). AUX/IAA proteins have four 

domains wherein domain III and IV are responsible for forming homodimers or 

inactive heterodimers with auxin transcription factors (ARFs) that mediate auxin 

responses. A point mutation in domain II of the AUX/IAA proteins inhibits binding to 

ubiquitin, which prevent de-repression of ARF activity. In Arabidopsis, root 

architecture and root hair length could be manipulated using a stabilized version of 

the AUX/IAA co-receptor, AtIAA17 (H. Li, Cheng, Murphy, Hagen, & Guilfoyle, 

2009). The Arabidopsis AXR3/IAA17 protein is involved in initiation and expansion 

of root hairs (Knox, Grierson, & Leyser, 2003). CaMV 35S driven IAA17 repressor 

lines (IAA17mImII repressor), containing a stabilizing mutation in domain II, have 

shorter roots and very few or no root hairs. This gain-of-function substitution in the 

domain II of IAA17 prevents targeting to the 26S proteasome thereby  enhancing its 

repressor activity leading to a block in root hair initiation and elongation (Knox et al., 

2003). Conversely, IAA17 fused to an N terminal VP16 activation domain (VP16-

IAA17mImII activator) results in an increase in root hair length (H. Li et al., 2009). 

The N terminus fusion of the VP16 activation domain was sufficient to confer 

properties of a stable transcriptional activator to the fusion. The authors utilized this 

ability to generate gene fusions that stably activated or repressed the DR5-GUS 

reporter promoter (H. Li et al., 2009; Tiwari, Hagen, & Guilfoyle, 2003). To test a 

role for auxin in infection I expressed the Arabidopsis IAA17 synthetic activator and 

repressor constructs under the ENOD11 promoter. The pENOD11 (early nodulin) 

promoter is an early marker of nodulin gene expression that is initially expressed in 

all root hairs that perceive rhizobially produced Nod factor and then gets restricted 

to root hair cells undergoing infection and is also expressed in young nodules 

(Journet et al., 2001). By driving the expression of these fusions using an infection 

responsive ENOD11 promoter I could bypass the changes in growth induced by 
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these constructs while testing the effects of repression and activation of auxin 

signalling on rhizobial infection.  

Auxin can bring about its effects by degradation, conjugation and activation of its 

signalling components. In addition auxin transport has been found to be crucial to its 

effects by the creation of localized maximas/minimas (Woodward and Bartel 2005). 

CgAUX1 plays a role in infection by the actinomycete Frankia of its 

symbiont Casuarina (Peret et al., 2007). P. sativum stable lines transformed with the 

AtAUX1 promoter, show GUS expression throughout the cortex in developing 

nodules but is restricted to the meristem in mature nodules (Simon A. Walker, 

Thesis 2000). Using expression data from infected root hairs I noted that none of 

the 10 PINS encoded in M. truncatula genome but the homologue of 

the AtAUX1 influx transporter, named MtLAX2 (Schnabel & Frugoli, 2004) is up-

regulated three days post inoculation. The following chapter describes the isolation 

of the MtLAX2 mutant along with an infection specific AUX/IAA gene MtIAA8 and 

characterization of their symbiotic phenotypes.  
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5.2 Results and Discussion  

5.2.1 Treatments with auxin efflux and influx inhibitors decrease the 

frequency of rhizobial infection but do not affect early symbiotic 

signalling 

To test for a role of auxin in infection, I first established concentrations of chemicals 

at which growth of root and root hair were affected but the seedlings were not 

severely stunted and no cellular toxicity was observed. Using 100 nM of NAA, 1 µM 

each of IAA, NPA, 10 µM CHPAA and 30 µM of 1-NOA, the root hair length 

changed (Figure 5.1 B) and recapitulated the trends seen in Arabidopsis root hairs 

(Rahman et al., 2002). None of the chemicals, at the concentrations used affected 

the growth of S. meliloti over a 48 hour time period (Figure 5.1 A). For the infection 

assay, seedlings were pre-treated with inhibitors for 24 hours prior to inoculation 

and then maintained on treatment plates for 7 days before being stained for LacZ 

activity. Both efflux (NPA) and influx (1-NOA) transport inhibitors reduced the 

number of micro-colonies, infection threads and nodules. The change in nodule 

number was consistent over two independent experiments and was statistically 

significant from control solvent treated plants. Seedlings treated with external IAA 

did not cause a change in infection frequency (Figure 5.1 C). Interestingly, external 

addition of IAA has been reported to reduce nodule number in M. truncatula 

seedlings at these concentrations (van Noorden et al., 2006) and the present study 

shows a similar trend although the differences were not significant. Auxin thus, 

might play differing roles in infection and organogenesis. However, we can conclude 

that perturbation of either efflux or influx transport is detrimental to both infection 

rates and nodule organogenesis.  

ENOD11 is routinely used as a marker for activation of early NF signalling. It 

encodes a secreted protein transcripts of which can be detected 30 minutes to 3 

hours after rhizobial infection or NF treatment (Journet et al., 2001). Interference 

with NF signalling affects the development of GUS expression in pENOD11-GUS 

transgenic lines and thus is used as a visual marker for activity of the symbiotic 

signalling pathway (G. E. Oldroyd, Engstrom, & Long, 2001). I pre-treated 2 day old 

seedlings for 24 hours using the inhibitor concentrations described above. 

Subsequent treatment of seedlings with additional 1 nM Nod factor did not affect 

development of pENOD11-GUS expression. Together with the observation that a 

synthetic auxin 2.4-D did not affect initial calcium spiking (Yiliang Ding, personal 
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communication) characteristic of activation of symbiotic signalling, we conclude that 

auxin does not affect the signalling events required to establish symbiosis but is 

required for downstream events. 

 

   



 

 

 

 

 

 

 

 

 

5.2.2 MtLAX2 expression is not associated with infection threads 

In a further attempt to provide genetic support for a role for auxin in infection or 

nodule organogenesis we chose to study a member of the LAX family of auxin influx 

transporters. A role for this family was suggested by the finding that a Casuarina 

glauca AUX1 homologue is expressed in infection containing cells including the 

infected root hair. Phylogenetic analysis revealed that the M. truncatula orthologue 

of the CgAUX1 and the AtAUX1 is MtLAX2 (Figure 5.2 A), named by (Schnabel & 

Frugoli, 2004). Of the 5 LAX family members in Medicago, MtLAX2 is 

transcriptionally induced in infected root hair cells (Figure 5.2 B) although the fold 

change is not statistically significant. I generated transgenic roots containing a 

pMtLAX2-GUS construct to analyse its spatial expression pattern during nodulation. 

In addition I re-examined a previously studied Pisum sativum stable lines 

transformed with the AtAUX1 promoter (Simon A. Walker, Allan Downie 

unpublished) for infection associated expression. This is consistent with microarray 

studies which show a progressive decrease in transcript levels of LAX2 in nodules 

over time, as the meristem stays a defined size and the nitrogen fixation zone 

continues to grow (Figure 5.2 C). However in both systems, I could not detect 

promoter activity in root hairs containing infection structures (supplementary figure 

5.1). An M. truncatula line transformed with a soybean GH3 has often been used as 

a marker for early responses of auxin to Nod factor and rhizobia (Mathesius et al., 

1998). Again no expression could be detected in infection containing root hair cells 

Figure 5. 1: Pharmacological dissection of auxin’s role in rhizobial 

infection of M. truncatula 

A. Growth curve of S. meliloti 1021 over 48 hours in media supplemented with 

IAA, NAA and other Auxin transport inhibitors (ATIs).  B. Average percentage 

change in root hair length of M. truncatula seedlings 7 days post treatments with 

IAA, NAA, NPA, 1-NOA, CHPAA over four different experiments. C. Bar graph 

showing average change in infection events in seedlings treated with 1 µM IAA 

(n=8), 1 µM NPA (n=9) and 30 µM NOA (n=10) on infection rates 7 days post 

infection with S. meliloti in comparison to solvent DMSO (n=9). Error bars 

represent standard error of mean (S.E). Student’s t-test was used to determine 

statistical significance *p<0.05 D. Representative roots showing pENOD11 

expression in the presence and absence of NF in 3 day old seedlings pre-treated 

with IAA and other ATIs.  
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(Supplementary Figure 5.1). Interestingly, I noticed isolated promoter activity of the 

AtAUX1/MtLAX2 in either plant system, just below root hairs on infected plants 

which was not always associated with curled root hairs. In Arabidopsis, activity of 

AUX1 in atrichoblast cells has been proposed to play a role in root hair elongation 

(Jones et al., 2009). Further experiments are required to investigate whether the 

promoter activity at the base of uninfected root hair cells is nod-factor dependent to 

find a role for LAX2 in infection induced root hair curling. Taken together, MtLAX2 

possibly plays a role in both rhizobial infection and organogenesis and is a good 

candidate for genetic dissection of a role for auxin during symbiosis 
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  Figure 5.2: Phylogenetic and Expression studies of M. truncatula LAX2  

A. Phylogenetic tree showing interrelations between five M. truncatula LAX family of influx 

transporters and AtAUX1 and CgAUX1. Numbers in red indicate bootstrap values B. 

Expression data for all five members of the M. truncatula LAX influx transporters in infected 

root hairs compared to root hairs infected with the non-Nod factor producing strain of S. 

meliloti (Murray lab, unpublished) MtLAX1 (Mtr.13440.1.S1_at) MtLAX2 

(Mtr.41246.1.S1_at) MtLAX3 (Mtr.8766.1.S1_at) MtLAX4 (Mtr.29499.1.S1_at) MtLAX5 

(Mtr.12078.1.S1_at). C. Expression of MtLAX2 in nodules of M. truncatula from 4 dpi upto 

28 days post infection with S. meliloti (Benedito et al., 2008) Denodulated root refers to the 

root after nodule excision.  

Values represent average of three biological replicates each. Error bars depict Standard 

error of mean (S.E). 
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5.2.3 The mtlax2 mutant has reduced nodule numbers 

To determine whether infection was affected by LAX2, I expressed the MtLAX2 

CDS under the EXPANSIN A7 promoter in M. truncatula hairy roots. No significant 

changes in nodule number were observed (Figure 5.3 C). To further investigate a 

role of MtLAX2 in nodulation, I isolated two Tnt1 insertion mutant alleles of MtLAX2 

with insertions in exon 4 (Figure 5.6 A). Sensitivity of root growth to auxin and 

nodulation phenotypes was tested. Growth of MtLax2-1 was insensitive to 1 µm IAA 

on plates similar to the effect of 0.1 µm 2,4-D on ataux1 (Figure 5.6 B also see 

Supplementary figure 5.5) (Bennett et al., 1996) suggesting a conserved function for 

this transporter in M. truncatula roots. Neither allele showed any apparent growth 

defects (5.3 F). At 10 dpi with Sm 1021 the number of nodules is reduced by ~40% 

in mtlax2-1. This can result from fewer nodules being initiated or delayed nodule 

development. At 3 wpi, both lax2-1 and lax2-2 show a consistent reduction in nodule 

number in comparison to WT. LAX2 is therefore required for nodule initiation or 

emergence or both. To gain insights into possible changes in the distribution of 

auxin signalling in the mutant I crossed lax2-1 to a DR5-GUS reporter containing 

transgenic line of Medicago and identified lines homozygous for the Tnt1 insertion. 

However, due to time restrictions I could not further characterize and compare 

responses in these lines during nodulation. In the lax2 mutants, although the 

infection structures develop normally (Supplementary Figure 5.1), a more detailed 

analysis is needed to determine if a decrease in the number of micro-colonies and 

elongating infection threads might indicate the cause for the higher number of 

uninfected white nodules observed.  

5.2.4 Mutation in an AUX/IAA gene MtIAA8 reduces nodule number  

Auxin transporters such as LAX2 generate auxin gradients which trigger 

morphogenetic events through the auxin signalling pathway. The AUX/IAA proteins 

form heterodimers with members of Auxin response factors (ARFs) and prevent 

them from activating the transcription of early auxin responsive genes.  Changes in 

root hair transcriptome upon infection with S. meliloti identified two homologous 

AUX/IAA genes MtIAA8 (Medtr5g067350) and MtIAA9 (Medtr8g67530) which are 

induced in infected root hairs. Along with other infection induced genes, MtIAA9 was 

confirmed to be IAA inducible (Supplementary Figure 5.2). Expression of MtIAA8 

was monitored by constructing pIAA8-GUS fusions which showed the characteristic 

expression of auxin responsive genes in the root tip (Figure 5.7 B v), lateral root 
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initials (Figure 5.7 B iv) and vascular bundle (Figure 5.7 B vi). In addition, MtIAA8 

expression was associated with infection thread containing root hairs (Figure 5.7 B 

i,ii). In mature nodules, expression was associated with the meristematic nodule tip 

(Figure 5.7 B iii) but was expressed throughout the primordia in developing nodules. 

A genetic role for the AUX/IAA gene was investigated by identification of a single 

allele of the gene iaa8-1. At 10 dpi a reduction of ~30% in nodule number was seen 

which increased at 3 wpi to ~50% (Figure 5.7 C). To assess auxin responses in the 

mutant background I crossed the iaa8-1 mutant to the DR5-GUS lines. The 

homozygous F2 progeny remain to be characterized. Expression of IAA8 in infected 

root hairs suggests a role in infection; therefore an infection thread count is 

necessary to complete the characterization of this mutant. 
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Figure 5.3: Characterization of lax2 mutants  

A. Diagram showing position of Tnt1 insertion alleles of lax2-1 and lax2-2 in 

MtLAX2. Black boxes represent exons. B. Growth of lax2-1 in media 

supplemented with 1 µm IAA (Also see Supplementary Figure 5.5) C. Bar graph 

comparing average nodule number in M. truncatula hairy roots transformed with 

control empty vector (n=15) and EXPANSIN A7 driven MtLAX2 (n= 12) D Bar 

graph comparing average nodule number between WT (n=21) and lax2-1 (n= 11) 

plants 10 dpi E and 3 wpi WT (n= 32) lax2-1 (n= 12) and lax2-2 (n= 11) with Sm 

1021 F. Representative plants of WT compared to lax2-1 and lax2-2 show no 

defects in plant growth 3 wpi with Sm 1021. Error bars represent standard error. 

Asterisks denote p <0.05 using Student’s t-test. 
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Figure 5.4: Characterization of iaa8 mutants  

A. Diagram showing position of Tnt1 insertion allele iaa8-1 in MtIAA8. Black 

boxes represent exons. B. Promoter-GUS analysis showing expression is 

associated with infected root hair cells Sm1021 LacZ stained with Magenta-Gal 

(i-iii) GUS expression in uninfected plants is associated with emerging lateral 

roots (iv) the root tip (v) and the vascular bundle (vi) C. Bar graph comparing 

average nodule number 2 wpi (n=16, n=19) 3 wpi (n=32, n=18) between WT 

and iaa8-1 plants respectively. Asterisks denote *p <0.05 using a Student’s t-

test. Error bars denote SEM.  
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Figure 5.5: Confirmation of tnt1 mutants described in this chapter  

Agarose gel image confirming presence of tnt1 insertions at predicted sites. A,C 

Semi-quantitative RT-PCR comparing lax2-1, lax2-2 mutants (A) and iaa8-1 mutant 

(C) with WT R108 control. RNA was extracted from 2-3 separate individual plants. 

Full-length transcript amplifies from WT but not from the mutants. Tnt1 inserts can 

be amplified from mutant lines but not WT. Amplicon sizes are indicated to the 

right. Multiple bands in C represent splice variants. Primers used MtLAX2 CDS 

(P_24 and P_25) Tnt1 insert (P_32 and P_25) MtIAA8 CDS (P_49 and P_50)Tnt1 

Insert (P_32 and P_50) Histone H3 (P_41 and P_42) B, D Gel images showing 

PCR amplified products using template DNA isolated from mutants and WT control 

R108 as indicated. Tnt1 insert amplifies from mutant lines but not in control plants. 

WT gene sequence amplifies from control but not mutant lines. Expected sizes are 

indicated on top of the bands. DNA marker represents 1 Kb ladder. Primers used 

MtLAX2 (P_22 and P_23) Tnt1 insert in lax2-1, lax2-2 (P_32 and P_23) MtIAA8 

(P_30 and P_31) Tnt1 Insert in iaa8-1 (P_32 and P_31). 
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5.2.5 Decapitation of the shoot apical meristem (SAM) reduces rhizobial 

infection frequency and this phenotype can be rescued by IAA 

Decapitation of Arabidopsis seedlings cause a reduction in root length which can be 

complemented by external addition of IAA at the shoot apical meristem (SAM) (Fu & 

Harberd, 2003). A more severe removal of the aerial auxin source as demonstrated 

by Swarup et al. showed that only early lateral root primordia could emerge in 

decapitated seedlings compared to control (Swarup et al., 2008). I therefore 

hypothesized that reduced auxin levels in the root resulting from shoot decapitation 

would reduce infection frequency if the hormone has a role in this process. 

Decapitation of Medicago seedlings produced the same effect as in Arabidopsis and 

provision of 0.5 µl of 1 ng/L IAA was sufficient to restore root length (Figure 5. 5 A).  

I then tested the effects of decapitation on infection and nodule formation with and 

without supplementation of IAA. Decapitation had a pronounced repressive effect on 

microcolony formation, but didn’t alter nodule number. Remarkably, IAA treatment 

was sufficient to restore the number of micro-colonies to WT levels (Figure 5.5 B). 

Together these results suggest a role for auxin during directional curling of the root 

hair around attached bacteria required for formation of an infection pocket.   

 

 

 

  

Figure 5.6: Effects of decapitation of the shoot apical meristem (SAM) on 

S. meliloti – M. truncatula interaction 

A. M. truncatula seedlings (from left to right) control seedling, decapitated 
seedling with shorter primary root and decapitated seedling supplemented with 
1 ng/L IAA showing full recovery of root length B. Bar graph comparing the 
average number of infection events in the three experimental sets of 8-10 
seedlings each. Error bars depict standard error (S.E). Infection events were 
scored 7 days post infection. Root length in centimetres. Asterisks denote 
*p<0.05 using Student’s t-test. 
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5.2.6 Introduction of a dominant negative copy of the Arabidopsis 

IAA17 does not affect infection structures or nodule number 

To test whether activation and repression of auxin signalling can mimic the effects 

caused by pharmacological experiments, I introduced the IAA17 repressor 

(IAA17mImII repressor), and IAA17 activator (VP16-IAA17mImII Activator) into M. 

truncatula using the hairy root transformation system. mII stands for a single bp 

mutation in domain II of the IAA17 transcript that stabilizes the protein and prevents 

ubiquitin mediated degradation. mI denotes a mutation in domain I that reduces the 

severity that the mII mutation has on protein degradation rates (Tiwari et al., 2003). 

The pENOD11 promoter which is highly expressed in infected root tissues was used 

to drive expression of the gene fusions as depicted in Figure 5.6 A. A version of the 

IAA17 repressor construct with deletions in domain II and III was used a control 

(IAA17mImII MscI digest Control). An HA tag was introduced in the N-terminal 

region of the repressor and control constructs in place of the VP16 activation 

domain in the activator construct. 

S. meliloti infection structures initiated normally as the root hair curled around the 

attached rhizobia to form infection pockets in all three sets of transformants. The 

infection threads elongated normally down the root hair and no abnormal structures 

were formed (Figure 5.6 B i-vi). At 3 wpi, the number of nodules was comparable 

across the different set of transformants even though there were very few lines 

(data not shown). Thus, infection induced modulation of AtIAA17 mediated auxin 

signalling did not qualitatively affect nodule formation or infection structures.  
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  Figure 5.7: Effects of Infection induced repression and activation of Auxin 

signalling on S. meliloti-M.truncatula interaction 

A. Diagram showing construct design for pENOD11 induced (i) VP16-IAA17mImII 

activator (ii) IAA17mImII repressor and (iii) IAA17mI control MScI digested vector 

control. Lines represent mutated base pair. mII refers to  the stabilizing mutation in 

domain II and mI refers to a single mutation in domain I which reduces severity of mII 

mutation. All vectors have a ds Red transformation marker B. Infection structures in 

hairy roots transformed with (i,ii) activator construct (iii,iv) repressor construct and (v,vi) 

vector control 7 days post infection with Sm 1021 are normal and do not show any 

aberrant morphology. Scale bars denote 100 um. 
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5.2.7 Enhancement of rhizobially produced auxin does not affect the number 

of infections but decreases nodule number   

To address the hypothesis that bacterially produced auxin might contribute to the 

rhizobial infection; I obtained a previously studied, auxin over producing construct 

and introduced it into Sm1021 carrying the pHemA-LacZ marker. This rolA-iaaM-

tms2 chimeric construct consists of the iaaM (tryptophan monooxygenase) gene 

from Pseudomonas syringae and tms2 (IAA hydrolase) gene from Agrobacterium 

tumefaciens, that convert tryptophan to indole acetamide and then to indole acetic 

acid in a two-step process. I generated a control plasmid with a large deletion 

spanning most of the iaaM-tms2 genes as described in the materials and methods. 

These plasmids were then introduced into strain S. meliloti 1021 and these strains 

not show any difference in growth rates in culture relative to WT (Figure 5.7 A, B). 

There was no change in the number of infection events between the WT S. meliloti 

strain and the IAA over-producing strain (Figure 5.7 D), consistent with the results 

from the addition of exogenous IAA described above (Figure 5.7 C). Infection with 

the IAA overproducing strain also caused a root shortening comparable to the 

addition of external IAA on plates (data not shown). However, I observed a ~50% 

reduction in nodule number upon infection by S. meliloti containing the auxin 

overexpressing plasmid (Figure 5.7 C) in contrast to previous studies using M. 

truncatula (Pii et al., 2007) which show a doubling of nodule number. We repeated 

the experiment in soil with the same concentration of inoculum but saw a reduction 

in nodule number.Other symbiotic hosts like Phaseolus vulgaris and Vicia hirsuta 

also show a decrease in nodule number upon infection by compatible rhizobial 

strains carrying this construct (Camerini et al., 2008; Pii et al., 2007). I confirmed the 

identity of the transformed plasmids by restriction digestion (data not shown) and 

physiological changes in root growth.  It is possible that the basal levels of IAA 

produced by the host strains differ from the original laboratory. Therefore a more 

informative experiment would involve an S. meliloti mutant defective in auxin 

production, which has not been described in literature so far. From my experiment I 

can therefore only conclude that, constitutive over-production of auxin by rhizobia 

does not affect the frequency or development of ITs and micro-colonies. 
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Figure 5.8: Effects of rhizobially produced auxin on infection  

A. Growth rates of Sm 1021 strains containing the pXLGD4 plasmid and the 

rolA-iaaM-tms2 construct and B. Growth rates of rolA-iaaM-tms2 transformed 

strain and an EcoRI digested vector control. Values represent average 

measured optical density of 6 technical replicates. Error bars represent 

standard error of the mean of six replicates at each time point C. Nodule 

number in M. truncatula seedlings infected with auxin overproducing strain 10 

days post infection. Values represent average nodule number of N=15-20 

plants. Error bars depict standard error. Asterisks represent ***p<0.001 D. Total 

number of infection events in seedlings infected with S. meliloti 1021 control 

and auxin overproducing strain 7 days post infection. 8-10 seedlings per 

rhizobial transformant were used for this experiment. 



5.3 Conclusion 

This study makes advances towards understanding of the role of the phytohormone 

auxins in rhizobial infection. Previous studies in this and other legume model 

systems have focussed on nodule organogenesis rather than infection. I was able to 

show that perturbing auxin transport by use of either efflux or influx inhibitors were 

sufficient to inhibit rhizobial infection. Since auxin exerts its influence on most 

development programs by creating gradients using its extensive transport 

machinery this result is not surprising. Furthermore, removal of the shoot apical 

meristem results in less auxin being transported to the roots which results in fewer 

infections. Previous studies in soybean have shown that removal of shoot apex 

lowers total nodule number without affecting nodule morphology or size (Delves, 

Higgins, & Gresshoff, 1992). Although a similar trend is seen in the present 

experiment, the difference in nodule number is not statistically significant, perhaps 

due to having used early time points and a small population size. Taken together we 

can conclude that the polar auxin transport machinery exerts a positive role on 

infection during symbiosis. 

Mt results supported earlier work showing that addition of IAA to the growth medium 

was detrimental to organogenesis (van Noorden et al., 2006). In contrast, I 

observed that external addition of IAA did not affect the number of infection events, 

namely infection pocket (microcolony) and infection thread formation. The 

seemingly independent responses of organogenesis and infection to manipulations 

of auxin in these experiments suggest that auxin has dual roles in both of these 

distinct developmental programmes. This is supported by the recent finding in our 

lab that an mtarf16 mutant has reduced number of infections but the number of 

nodules is the same as in WT (Breakspear et al., 2014). In natural soil conditions, 

external IAA can be contributed by rhizobia which produce their own IAA. 

Inoculation with an IAA overproducing rhizobial strain resulted in an increase in the 

number of nodules in M. truncatula but not in the Phaseolus vulgaris interaction with 

R. leguminosarum was reported. Pii et al. used same construct used to infect Vicia 

hirsuta which resulted in a lower number of nodules being formed. Different Sm 

1021 strains used between our lab and the published study having different basal 

levels of IAA production could explain this discrepancy. However, the authors also 

reported an increase in primary root length contrary to the decrease in root length 

observed in the present study. Since we know that external application of auxin 

causes root shortening on plates, bacterially produced IAA can also be expected to 

cause root shortening. Therefore, similar effects on infection rates by both IAA 
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addition to external medium and rhizobial overproduction of IAA using the present 

Sm 1021 strain suggests that bacterially produced auxin does not contribute to 

rhizobial infection. However we cannot rule out that rhizobially contribute auxin at 

the correct concentration has an effect on this interaction. The observation that NF 

alone can initiate organogenesis, it is likely that the inherent plant machinery is 

sufficient for nodule formation. However, it is very difficult to conclude in general 

about all symbioses because using Bradyrhizobium strains deficient in IAA 

production, lowers the number of nodules on its host plant (Fukuhara, Minakawa, 

Akao, & Minamisawa, 1994).  

Artificial simulation of constitutive activation and repression of auxin signalling in 

Medicago did not provide clear results about auxins role in symbiosis. No 

developmental defects were observed in the composite plants presumably due to 

the use of an infection inducible. Even though there were no differences in nodule 

number, the sample size was too small to conclusively eliminate a role in 

organogenesis. Moreover, results from the pharmacological and physiological 

experiments indicate that auxin might affect infection independently of 

organogenesis. This study was challenged by the difficulty in counting infections on 

hairy roots which can vary greatly in both their size and in the expression levels of 

the transgenes and in which the auxin-cytokinin balance has been altered by A. 

rhizogenes. An ideal experiment would thus involve stable transgenics expressing 

the constructs developed in this study. 

Using data from transcriptomic studies available in the lab, I noted that none of the 

10 M. truncatula PIN transporters were transcriptionally affected in root hairs upon 

infection, while MtLAX2 showed an induction although it was not statistically 

significant. The experiments described here show expression based association 

and genetic evidence for an involvement of MtLAX2 in nodule organogenesis. This 

finding is not surprising since nodules are believed to be modified lateral roots 

employing a similar subset of molecular players for initiation and emergence 

(Couzigou et al., 2012). ataux1 mutants have a reduced number of lateral roots and 

in the Arabidopsis double mutant aux1 lax3 lateral roots fail to emerge (Bennett et 

al., 1996; Marchant et al., 2002; Peret et al., 2007). In Medicago as well there is a 

reduction in nodule number at the two time points tested. iaa8-1 showed a 

comparable lowering of nodule number. MtIAA8 encoding a primary auxin response 

AUX/IAA protein is expected to act in relevant tissue. A role during infection was not 

investigated in the present study due to the limitation of time, but is an interesting 

avenue to explore considering the expression pattern of this gene and my data 
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suggesting a direct role for auxin in infection. In addition, a better understanding of 

the changes in auxin signalling resulting in reduced nodule number in these mutants 

can be explored by using the DR5-GUS lines generated during the course of this 

study. This study thus has set the stage and generated tools for exploring the role of 

auxin in rhizobial infection and nodule organogenesis.   
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Chapter Six:  

General Discussion 
 

 

 

6.1 AMNs are novel ABC transporters with conserved roles in rhizobial 

and mycorrhizal infection 

 

The work presented here describes the identification of three previously 

uncharacterized ABC transporters named AMNs for ABCB in Mycorrhization and 

Nodulation; which were chosen for this study based on their exclusivity of 

expression across more than 120 experimental microarray conditions 

(http://mtgea.noble.org/jic/). In light of the presently studied overlap between the two 

symbioses (Oldroyd, 2013), identification of these transporters involved in rhizobial 

and mycorrhizal infection promises revelation of hitherto unknown processes basal 

to development of either symbiosis. Of the 146 full and half molecule ABC 

transporters encoded in the M. truncatula genome for which expression data is 

presently available, these three are transcriptional induced in both symbioses. The 

absence of any obvious developmental defect in both single and double mutants 

suggests that the primary role of these transporters is symbiotic but a low level of 

expression in the vascular bundles, root apical meristem and lateral root initials 

found using promoter GUS analyses suggest they might have additional roles in 

root growth. On the other hand, a low level of expression in vascular bundles, root 

apical meristem and lateral root initials as detected by promoter-GUS fusions 

suggests they might have additional roles in root growth. Quantification of root 

length and lateral root numbers in double and triple mutants will help address these 

questions.  
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Upon infection, expression of the AMNs is induced in cells housing infection 

structures (infected root hair cells and arbusculated cells) (Chapter 3 Figure 3.8, 

3.9, 3.10, and 3.11).  This partly contradicts an earlier study that used microarray 

data from laser capture micro-dissected roots and promoter GUS analyses and 

found the expression of AMN3 in arbuscule containing cells as found in this study 

but also in adjacent cells (Gaude, Bortfeld, Duensing, Lohse, & Krajinski, 2012). The 

authors use 1 kb of the upstream region in contrast to the ~2.4 kb used in the 

present study which might offer an explanation for the differences observed. 

Another reason could be different staining times for the GUS assays or simply that 

an earlier infection time point was analysed in this study.  Further expression 

studies using qPCR over time reveals that expression of the AMNs is associated 

only with actively progressing mycorrhizal infection. Transfer to phosphorus-replete 

soil was enough to abolish the expression of these genes (Figure 3.3). This could 

indicate a role for the AMNs in development of infection structures or nutrient 

exchange.  The AMNs are the first ABC-B transporters in plants identified with a role 

in symbiotic infection, on which functional genetic studies have been carried out. 

AMN1 and AMN2 are the closest homologues of each other in the Medicago 

genome while AMN3 stands out among all ABCBs due to the presence of an extra 

stretch of hydrophilic residues at the N terminus.  

Conservation of the AMNs in diverse plant species emphasizes an evolutionarily 

important role in symbiosis. The presence of AMN2 and AMN3 in the actinorhizal 

plant Datisca which forms a root nodule symbiosis with filamentous Frankia bacteria 

and the absence of AMN gene induction during infections with root pathogens such 

as Phytopthora palmivora and Ralstonia solanacearum, suggests that these 

transporters are required for processes specific to symbiotic infection. The presence 

of the AMNs across all mycorrhizal angiosperms including monocots further 

corroborates their role in symbiotic infection. Interestingly, Lupinus as the only non-

mycorrhizal legume (Oba, Tawaray, & Wagatsuma, 2001) retained AMN2 

suggesting this gene is necessary for nodulation (Akiyama, Tanigawa, Kashihara, & 

Hayashi, 2010).  

A reverse genetic approach was followed during the course of this study to uncover 

a functional role for the AMNs in symbiosis. Although the number of pink or white 

nodules were not significantly reduced in the mutant alleles, a difference in ratios of 

the Pink/White nodules was found. This might suggest a slight delay in rhizobial 

progression down the infection thread (Gurich & Gonzalez, 2009). The apparent 

lack of a symbiotic phenotype in the amn1amn2 double mutants also raises the 
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possibility that other functionally redundant transporters are present in the genome 

which is complicated by the large size of the ABC transporter family and that 

sequence conservation does not always indicate transport of common substrate. 

The obvious candidate for a functional homologue as suggested by expression 

profiles is AMN3. A reduction in vesicle number in amn2 amn3 double mutants is 

the only mycorrhizal symbiotic phenotype observed in this study from the analysis of 

stable mutants, however further assessment of the second allelic combination and 

reproducibility of the observed phenotype are required before any conclusions can 

be drawn. Vesicles are primarily nutrient storage bodies of the fungus. It is possible 

that an inability to establish a functional beneficial interaction might cause a 

shortage in the stored food reserve in vesicles. The triple mutant generated during 

the course of this study will help overcome the apparent functional redundancy seen 

amongst the AMNs. Another transporter which could act redundantly is MtABCB4 

which is homologous to AMN3 and is expressed in root under low phosphate 

conditions. Expression of MtABCB4 (Medtr.3g093430.1) according to the M. 

truncatula gene expression atlas, is dramatically induced by mycorrhiza. Therefore 

we can expect a mild phenotype for the triple mutant. 

Localization of these transporters will also give clues as to the function of these 

transporters. Although, attempts to localize these transporters during the course of 

this study failed, the AMNs are predicted to be integral to the plasma membrane 

(PM) using Plant-mPLOC (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/). 

Additionally, all plant ABCB transporters whose localization has been studied are 

found in the PM (Rea, 2007). Similar to the MtPT4 phosphate transporter which 

localizes exclusively to the peri-arbuscular membrane (Pumplin, Zhang, Noar, & 

Harrison, 2012) the AMNs might be specifically localized to the infection thread or 

the peri-arbuscular membrane which are extensions of the main plasma membrane 

making possible a role in secretion into the Infection thread (IT) lumen or across the 

peri-arbuscular membrane.  

Lastly, attempts were made to identify the transported substrate of the AMNs. All 

three AMNs have at-least one auxin response element (AuxRE) in their promoter. IA 

transporting AtABCB1 and AtABCB19 are IAA inducible but the three AMNs are not 

at two different time points tested. This could indicate that the AMNs do not 

transport auxin. However further transport assays are required to confirm this 

hypothesis. A good experimental system would be the yap1-1 and gef-1 strains of 

S. cerevisea which have been established in previous studies to test transport ability 
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of ABCB transporters (Prusty, Grisafi, & Fink, 2004) (Takanashi, 2011), could be 

used.   

6.2 AMNs are dependent on the Common Symbiosis Signalling pathway 

for correct expression during either symbiosis 

Bacterial symbionts such as rhizobia and fungal symbionts such as mycorrhiza have 

vastly differing lifestyles. Nevertheless, these symbionts seem to respond to a 

similar set of plant signals (flavonoids), induce calcium spiking, and utilize a core set 

of signalling components (DMI1, DMI2, CCamK, CYCLOPS/IPD3) (Catoira et al., 

2000; Singh, Katzer, Lambert, Cerri, & Parniske, 2014)and structural genes 

downstream of the pathway such as VAPYRIN to establish a beneficial interaction 

(Murray et al., 2011). However, depending on the microbial signal perceived the 

developmental outputs are strikingly different. For instance, rhizobia induce the 

formation of macroscopic nodules containing giant cells that harbour thousands of 

nitrogen fixing bacteria, while mycorrhizae invade the root cortical cells to form 

nutrient exchange sites called arbuscules. In addition, autoactivation of the central 

regulator of symbiosis signalling, CCaMK induces the formation of nodule-like 

structures yet these structures (Gleason et al., 2006) do not develop when host 

plants are infected with mycorrhizae. These observations suggest that there exists a 

tight and finely tuned signalling pathway that discriminates between the incoming 

symbionts and then regulates the activity of downstream genes to bring about 

developmental changes specific to the needs of one symbiont while at the same 

time repressing genes involved in associations with the other. Given the existence 

of such an intricate signalling pathway, it is imperative to understand the regulation 

of genes which are involved in both rhizobial and mycorrhizal symbioses. The AMNs 

represent an interesting case, described in Chapter 4 I demonstrated that symbiotic 

induction of the AMNs is dependent on the Common symbiosis signalling pathway, 

using M. truncatula mutants of key transcriptional regulators.  

Perception of microbial signals such as Nod factors and Myc factors ultimately lead 

to signature peri-nuclear calcium spiking which are decoded by the kinase, 

CALCIUM AND CALMODULIN KINASE (CCamK). If  CCaMK is activated in the 

absence of these signals, nodule like structures and pre-penetration structures can 

still be initiated implying that CCamK acts as a master regulator controlling key 

genes of the symbiosis pathway. Understandably thus, my experiments show that 

the expression of the AMNs upon either rhizobial or mycorrhizal inoculation was 

completely abolished in the dmi3 (ccamk) mutant background (Figure 4.10). 
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Although a decrease in AMN1 transcript levels upon mycorrhizal colonization and 

not rhizobial inoculation or nod factor treatment was statistically significant, it shows 

a similar trend as both AMN2 and AMN3. It is therefore a reasonable statement to 

conclude that the induction in gene expression of AMN1, AMN2 and AMN3 is 

dependent on CCaMK. Since we know that the AMNs are associated with actively 

progressing infection (Figure 3.3), no change in AMN gene induction in the dmi3 

mutant background which is not colonized at all, might simply be reflecting the 

absence of infection structures.  

I also examined expression of the AMNs in the different symbiotic contexts using 

mutants of key transcriptional regulators. The specificity of the output from the 

common signalling pathway must depend on the transcriptional regulators acting 

downstream or parallel to CCaMK. This includes the GRAS transcription factors 

NSP1, NSP2 and RAM1 (Gobbato et al., 2012; Hirsch & Oldroyd, 2009). 

Knockdown of NSP1 or NSP2 alone can interfere with nodulation and slightly 

reduce mycorrhization while a mutation in RAM1 is sufficient to abolish mycorrhizal 

colonization but has no effect on mycorrhization. During mycorrhization, RAM1 is 

clearly required for the expression of the AMNs (Figure 4.10). Surprisingly, neither 

NSP1 nor NSP2 seemed to be required for induction of the AMNs during 

mycorrhization or by Nod factors alone. This contradicts the model that has been 

proposed, in which RAM2 and NSP2 may have analogous functions in the two 

symbioses and may compete for interactions with NSP1 (Gobbato et al. 2012). As 

the case with the regulation by CCaMK, the control of AMN expression by RAM1 

may not be direct. However, this could imply the presence of another GRAS 

transcription factor that control AMN expression during nodulation.  

Downstream of CCaMK, there are also two nodulation specific transcription factors 

NIN and ERN1, mutations in which can impede progression in rhizobial infection. 

Infection is blocked very early in the nin mutant where ITs do not progress beyond 

the micro-colony stage and root hairs are hyper curled. Higher transcript levels of 

the AMNs in the nin-1 mutant background could be explained by a negative 

regulation of the AMNs by NIN. Alternatively, the AMNs might be involved in 

processes such as root hair curling which is exaggerated in the nin-1 mutant 

background. Since many genes normally induced during infection including NIN 

itself are further upregulated in nin-1 during infection, it is likely due to loss of 

feedback regulation in the mutants which suggests that control of AMN expression 

is either upstream or parallel to NIN.  We conclude that, NIN is required for optimal 

expression of the AMNs.  
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My work has therefore shown that the AMNs are under the control of the Common 

Symbiotic signalling pathway and the induction of their expression during symbiosis 

is dependent on CCaMK. Specifically during mycorrhization but not during 

nodulation, AMNs require the GRAS transcription factor RAM1. Ultimately, the study 

of AMN gene induction will be useful to dissect the two branches of the signalling 

pathway and help us understand how one pathway can be used to control two 

symbioses. 

 

 

  
Figure 6.1: A schematic representation of the common symbiosis signalling 

pathways showing the position of the AMNs 

 AMN1, AMN2, AMN3 are predicted plasma-membrane ABC transporters that are 

dependent on components of this pathway. Genes controlling expression of the 

AMNs are highlighted in red. Dashed arrow represents hypothetical pathway as 

discussed in the text.  
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6.3 Auxin transport plays an important role in root nodule symbiosis 

 

Root nodule symbiosis can be genetically separated into two distinct developmental 

programmes – Infection thread development and nodule organogenesis. Although, 

auxin has been implicated in nodule organogenesis, at present there is no auxin 

signalling or transport mutant described in the literature, which shows defects in 

nodule development. Auxin is also thought to have a role associated with bacterial 

infection during symbiosis between the actinorhizal plant Casuarina and the 

actinomycete Frankia (Chapter 1). Our lab has provided the first genetic evidence 

for auxin’s involvement in rhizobial infection in the form of the mtarf16a mutant, 

which has reduced number of ITs but no change in nodule number (Breakspear Liu 

et al. 2014); however the molecular mechanism is not understood. My research 

made inroads towards addressing the role of auxin in both rhizobial infection and 

nodule organogenesis. 

I found that mutation in a single gene MtLAX2, the orthologue of AtAUX1, is 

sufficient to reduce the total nodule number in M. truncatula (Chapter 5). Since 

nodule organogenesis and lateral root development share many common themes, 

including the apparent requirement for an auxin influx transporter as shown here, 

The reduction in nodule number might also reflect a requirement of shoot derived 

auxin for nodule organogenesis (Marchant et al., 2002). This is therefore the first 

genetic evidence that auxin transport plays a major role in nodulation. This 

conclusion is also supported by pharmacological experiments (Figure 5.1) which 

show that both efflux and influx auxin transport inhibitors are sufficient to alter total 

nodule number. A reduction in nodule number can occur if there is a defect in 

nodule initiation, emergence or both. The total number of infections and hence the 

total nodule number is limited for any particular plant, controlled by the phenomenon 

of auto regulation of nodule number (AON) (Stougaard 2000); therefore a defect in 

nodule emergence would be hypothesized to be eventually overcome in symbiosis 

progression while a defect in nodule initiation would show a persistently lowered 

number of nodules. The severity of the MtLAX2 knockdown increases from 30% to 

50% over the course of infection indicating that initiation is defective in the mutant. 

To discriminate between the two, we first need to test whether lateral root 

phenotype is the same in Medicago lax2 alleles as this would be a starting point for 

extrapolating the results from experiments in Arabidopsis to Medicago. Next, to 

determine if the lax2 defect is in nodule initiation nodule count at an early timepoint 

coinciding with nodule initiation should be done on seedlings stained with a bacterial 
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visual marker like lacZ (necessary to distinguish between nodule and lateral root 

primordia). If a decrease in nodule primordia is noted even at this time point, lax2 

could be conclusively ascribed to have a defect in nodule initiation. In addition, 

nodule sections comparing cell size between WT and lax2 mutants would help 

determine if cell expansion is compromised in the mutant. Finally, the two lax2 

mutant alleles should be compared to WT plants for differences in total nodule 

number over time. This is important to ascertain whether the observed defect in total 

nodule number is sustained with increasing infections at later time points 

conclusively determining defective nodule initiation or emergence as the cause of 

reduced nodule numbers in the lax2 mutants. Developing nodule size could also be 

monitored to directly assess nodule growth. 

Although lax2 mutant alleles had normally developing ITs (Supplementary Figure 

5.2) and pMtLAX2 expression was not associated with IT progression, we cannot 

yet dismiss the possibility that auxin has a role in rhizobial infection based on results 

from pharmacological and physiological experiments. Use of both auxin influx and 

efflux transporter inhibitors decreased the number of infection threads and infection 

pockets (Figure 5.1). It could be that the increase auxin signalling in infected root 

hairs is not dependent on auxin influx, or is dependent on other AUX family 

members. Removal of the primary source of auxin, the shoot apical meristem, also 

resulted in decreased number of micro-colonies (Figure 5.4). Together, these 

results suggest that auxin, specifically auxin transport also influences rhizobial 

infection. Most rhizobia that produce IAA could act as a source of auxin in nature 

and therefore contribute to infection (Pii, Crimi, Cremonese, Spena, & Pandolfini, 

2007; Zahir, Shah, Naveed, & Akhter, 2010). Surprisingly, auxin supplemented 

directly to the medium in plates or via auxin overproducing rhizobia did not affect the 

number of infection threads at the concentrations used (Figure 5.10). This suggests 

that perturbation of endogenous auxin transport contributes to the frequency of 

infections and infection progression rather than the overall tissue auxin level. IAA 

biosynthetic mutants of S. meliloti, unidentified to date are needed, to investigate 

the role of bacterially produced auxin in rhizobial infection and nodule 

organogenesis.  

Of the five members of the LAX family of influx transporters MtLAX2 is the only one 

which responds transcriptionally to rhizobial infection in spot inoculated root 

segments of M. truncatula (Jodi Lilley, personal communication), with a presumed 

role of redistributing auxin to sites of nodule initiation. Changes in auxin 

concentration at these sites must thus bring about changes in downstream 
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signalling pathways (Leyser, 2006). Is it then possible that these transporters 

indirectly control the accumulation of transcription regulators such as ARFs, SAURs 

and AUX-IAAs which respond to changes in auxin concentrations within minutes. 

One such candidate supporting this hypothesis would be MtIAA8 described in 

Chapter 5 which shows strong expression in infected root hair cells with micro-

colonies and progressing ITs. A 30-50% reduction in nodule number is comparable 

to that seen it supports the earlier stated hypothesis that MtLAX2 controls local 

accumulation of these transcription regulators to affect nodule development (Figure 

6.2). This hypothesis can be tested by a simple qPCR experiment comparing 

expression of MtIAA8 in lax2-1 and lax2-2 mutants to the WT R-108 upon rhizobial 

infection. Together we will have conclusive proof that auxin controls both rhizobial 

infection and nodule organogenesis by manipulating its transport.  

The expression of MtIAA8 in infected root hair cells cannot be explained by LAX2 

activity. This warrants further investigation, in particular scoring the number of ITs in 

the mtiaa8 mutant. Possible functional redundancy of IAA8 function may exist with a 

close homologue, MtIAA9, which responds even more strongly to infection 

(Breakspear et al., 2014).  Therefore an iaa8 iaa9 double mutant might be needed. 

This could achieved either by transcript knock-down in hairy roots, or through 

isolation of an iaa9 Tnt1 mutant for crossing with iaa8. Together, these results 

present the first genetic evidence of a role for auxin in nodulation and put forward a 

mechanistic model connecting auxin transport and auxin signalling in nodule 

organogenesis.   

 

 

 
Figure 6.2: Hypothetical model of Auxin transport and its role in symbiotic 

nodule organogenesis  
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6.5 Conclusions 

Rhizobial infection causes major transcriptional changes in root hairs. The findings 

here show that some of the molecular machinery is also conserved in mycorrhizal 

infection. Genes which are shared between the two symbioses are just beginning to 

be identified and characterized in model legumes. In particular secretion and 

transport are important physiological processes active at or nearby the site of the 

interaction be it root hairs or hypodermal passage cells. AMN1 AMN2 and AMN3 

are three novel ABCB transporters involved in both rhizobial and mycorrhizal 

infection. The symbiotic induction of expression which is DMI3 dependent and their 

absence in non-symbiotic plants supports their role as symbiosis specific 

transporters while the control of their expression by RAM1 during mycorrhization 

promises insights into how two very different microbial symbioses are served by a 

single pathway. While expression and phylogenetic studies have revealed exciting 

features of these transporters genetic evidence for a functional role remains elusive, 

with no reduction in total nodule number or mycorrhizal colonization percentage in 

single mutants, and a modest reduction in vesicle formation in the amn2 amn3 

double mutant. A triple mutant has been generated and its characterization will 

provide insights into the symbiotic role of the transporters. Whether the AMNs can 

transport IAA like other ABCBs remains an open question.  

The work described here also successfully makes inroads into our present 

understanding of auxin and its role in nodulation. It shows for the first time, the 

requirement of an auxin transporter and a component of auxin signalling in nodule 

organogenesis, and reveals an apparent link between auxin signalling and rhizobial 

infection. The identification of the genetic components involved and the tools that 

have been developed should further contribute to the mechanistic understanding of 

auxin’s role in nodulation. 

  



150 
 

  



151 
 

 

Appendices 

Appendix 1.1 AMN1 sequence (As obtained from cDNA sequencing) 

atgggaaacaaaggtggatttttacgttatgcagatggtgttgacaagttgctattattctttggaactttgggttgcattgg

tgatggcatacaaactccactcactatgcttgttcttggcagtttgatagatgattatgctcgtggtggttctgaacatattgt

gtccattcataatatcaacaagtatgctctcaagctacttggtattgcccttggagttgctttttctgcttttattgttggagtat

gctggacaagaactgcagaaagacaaacttcgcggatgaggattgaatatctaaaatcaatcctaagacaagaa

gttggtttctttgacaagcaaactaactcttctacaaccttccaagtaattgccaccataacttctgatgctcaaacaatc

caagacaccatgtctgataaggttcctaattgtcttgttcatctctcagcatttttctctagctttatagtggcactcttcctctc

ctggagacttgcagtagctgcttttccattttcaattatgatgatcatgccagcactcatatttggaaatgctatgaaagag

ctgggtggtaaaatgaaggatgcattcggagttgctggtagcatagcagaacaagcaatctcatcggttcgaactgtt

tactcgtacgtaggtgagaagcaaacactgaagagattcagttctgctcttgaaacatgtatgcagcttggcataaag

caaggtcagacaaagggagtggttgttggaagttttgggttgttatatgctacctgggcattccaatcttgggttggaagt

gttctggttaggaccaaaggagaaaagggtggcaaggtgttttgtgctgaaatatgtattatttggggaggattgtctct

gatgagtgcactaccaaatctggcttccatattagaggcgacaatagcagctacgcggattttcgagatgattgacag

aaagccaaccataaactctacaaaagaaaaaggaaggattttgaagcatacaagaggagagattacatttaaag

atgttgagtttagttacccttcaaggccagataccctgattctccaaggactcaatcttaaagttcaggcatgtaaaaca

gtgggcctggttggaggaagtggttctggaaaatctactataatctctttgcttgaaagattctatgatcctacatgtggtg

agatattgcttgatggttttgacataaaaagactacaccttaagtggtttaggtccctgataggattggtaaatcaagag

ccaattctatttgcaacttccataagagagaacattctatttggaaaggaaggagcttcaatggaagatgtcataacc

gcagcaaaagcagcgaatgcacatgatttcattgtcaaacttccaaatggctatgaaactcaagtaggacaactag

gagctcaattgtctggaggacaaaaacaaaggattgctattgcaagggctttaataagagatcctaaaattctactac

ttgatgaagccaccagtgctttggattcacaatctgaaagagtggtacaagatgcacttgacttggcttctagaggtag

aacaacaatcatcatcgctcatcgcctttccacgattcgtaaggctgattcaatagtagttcttcaatcaggaagggtg

gttgaaagtggttctcacaatgagctactccaactgaacaatggacaaggtggggtttacaccgaaatgctaaatttg

cagcaaacaagtcaaaatgaaaatgcacagcatcaaataaacaagagccctcgtgcaatggaaaatccaataa

caagttcaaatccaagccggaaaagtactccaattcatcatgcatttagccctgcacaaccatttagtcccatatattc

aatcagtgttatcggctctagctttgatgatgactacagcagtgaaaacgtggagaaaccttacaaatcaaacatctct

cactggcgtttgctacaaatgaatgctcctgagtggaagtatgctttgtttggatgtttaggggccattggctcaggaata

tgccaaccattttattcctattgcttaggaatagttgcttctgtctatttcattgatgataatgctcggatcaaatcacaaatc

aggttgtactcaatcatcttctgctgcatatcggctgtgaacttcgtctcaggcctcattcagcatcacaatttttccatcat

gggagagcgtttgctgaaaagggtgcgagagaatttgctcgagaaagtgttaacctttgagataggatggtttgatca

agaggagaacacaagtgcagtaatctgtgcacgcttggcgaccgaagctaacttggttcgatccctcgttgcagaa

agaatgtcgttgttagttcaagtctccgttactgcattgctggcttttgtacttggtttaatcgttacatggagggtagctattg
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tcatgattgctatgcagcctttgatcatttcatgtctctattcaaaaaccgttctcatgaagagtatgtcaggaaaagcaa

aaaatgctcaaagagatgctagtcaattagcaatggaagctactaccaaccacaggactatcgccgcattctcatct

gagaaaaggatactaaatttgttcaaaactgctatggatggccctaagatggaaagcatcaagcaatcatggatttc

aggttccatattgtctatgtcacagttcataacaacagcatctatagctttgactttttggtacggaggcatattattaaatc

gtaaacaagtcgaatcaaagcaactcttgcaagttttcctcattttgatgggaactggtagacaaattgctgatacagg

aagcatgacttctgacatagctaaaagtggaaaagccattagttcagtatttgcaatactggataggaaaactcagat

tgaacctgaagatactagacacacaaagtttaaaaagagtatgaagggtgatataaaactgaaagatgtgtttttctc

atatcctgcaaggccagaccaaatgattctcaagggtctcagtcttgagattgaagccggcaaaacaattgcattagt

cggacaaagtggctcaggaaaatccaccatcattggcttaattgaaagattttatgaccctattaagggatccatattc

atagacaattgtgacatcaaagaacttcatttgaaaagtttgagatcacatattgcattggtgagtcaagagcctacac

tctttgctggaaccatacgcgacaacattgtatacgggaaggaagatgcatcagaggctgaaataagaaaagccg

cacgtcttgcaaatgctcatgactttataagtggaatgagagaagggtatgatacatactgtggagaaagaggagtg

cagctatcaggaggacagaagcaaaggatagcaatagctagagcaatgttgaagaatccaccaatacttctgtta

gatgaggcaacaagtgctcttgacagtgtatcagagaatcttgtacaagaagcattggagaaaatgatggttggaa

gaacatgtgtagttatagctcaccgtttgtcaacaatacaaagtgttgattccatagctgtgattaaaaatggaaaggtg

gtggaacaaggttctcattcacagttactgaatgatagatcaaatgggacttattactctttaattaggctacaacaaag

tcattcaacttga 

Appendix 1.2 AMN2 sequence (As obtained from cDNA sequencing)  

atggggagcaatagcatgtttcgttatgcagatggattcgataaattgttgatgttcttcgggactcttggaagtcttggtg

atggtctgcagaatcctctcatgatgtacattcttagtgatgtgatcaatgcttatggagataagaatagccgtttaaatc

aacatgatgtgaacaagtttgcattgaagctattatgtgttgcaattggagttggaatttcagcttttattgaaggaatatgt

tggaatagaacagcagagagacaggcttcaagaatgagagtggaatacctaaaatcagtcttaagacaagaagtt

ggtttctttgacacacaaactgctggttcttcaacaacataccaagttgtctcactcatctcctctgatgcaaatacagtc

caatctgccttgtgtgagaagataccagactgcttgacttacatgtcaacattctttttctgccacatctttgcatttgtacttt

catggagactggcattagcagctataccactctccatcatgttcattgtcccggcgcttgtatttggaaagatcatgttgg

atgtcacaatgaaaatgatagagtcttatggtgttgctggtgggattgcagagcaagcaatatcttcaataagaactgtt

ttctcttatgttggggagaatcaaacactaaaaagatttagcactgcacttgaaaaaactatggagtttggaataaagc

aaggttttgcaaaagggttgatgttaggaagtatgggagttatttatgtaagttggggttttcaagcttgggttggaactttt

ttgatatccgataaaggagagaaaggtggccatgtatttgtagctggctttaacatcttaatgggaggactgagcatttt

aagtgcacttccaaatttaactgccatcatggaggcaagttccgcggtcactcgcctttatgaaatgattgatagggtg

ccagttatagattctgaagagaagaaaggaaaggctttatcacatgtgagaggagaaattgaatttaaagacatata

cttctgttatccatctaggccagattcaccagtcttgcaggaattcaatctcattattccagcaggtaagaggataggtct

tgttgggggtagtggttcaggaaaatccactataattgcactgcttgaaaggttttatgaccctgtcgagggagaaatat

tattggacggtcacaagattaatagacttcaattgaaatggttgagatctaaccttggcttagtgaatcaagagcctgtt

ctttttgccacatccataaaagagaatatattgtttggaaaagaaggtgcttcaatggaaagtgtgataagtgcagcta

aatcagcaaatgcacatgatttcattgtcaaattaccagatggatatgaaactcaagttggacagtttggatttcaactg
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tctggtggacagaagcagcgaatcgccatagctagagctttacttagggatccaaaggttctcctgcttgatgaagca

acaagtgcactggattctcaatccgaaagagtggtacaggcagcgatcgatcaagcttcaaaaggaagaacaac

aatcattattgctcatcgactgtccacaataagaacagccgacactattgcagtgcttcaagcagggaaagtgattga

aacaggtagtcataatgtgctcatggaaatcaatggtggagaaggaggagagtacgctcgtatggtcaagttgcaa

caagtaacagctcagaatgatgaaatcaagcattccaatcttcaattagaaggaaagagctctcacaggatgagca

ttccacaaagtccaggaatgagtttcaaatcaagcacaccgggcactccaatgttgtatcccttcagccagggattttc

cattggcacgccttactcatattctatccagtatgatcatgatgatgatagttatgaagatgattttaaaagatcaaacca

tccagctccttcacagtggcgcttgctgaaaatgaatgcgcccgagtggggaagaggagtgttgggagtattggga

gcaataggctcaggagcagtacaacctataaatgcatattgtgttggattacttatatcagtttattttgaacctgatacct

ctaagatgaagtctaaagctagagcccttgccctcgttttcttaggaattggtgtttttaacttcttcacaagtattctccaa

cactacaattttgctgtcatgggagagaggttgactaaaagaattcgggagaaaatactagaaaaattgatgagtttt

gagataggatggtttgatcatgaagacaacacaagtgcagctatttgtgcaagattagcctctgaagccaacttggtc

cgttcactcgttggcgaccggatgtctcttctggctcaagcaatctttggatccatctttgcttacactgtaggacttgtgct

cacatggaggctttctcttgtgatgattgcagtacagccattagtcattggaagcttttatgcaagaagtgttttgatgaag

actatggcggaaaaaacccgtaaagcacaacgggaaggaagccaacttgcaagtgaagctgttataaaccaca

gaaccataactgcattcagttctcagaaaagaatgttggcactcttcaaagctacaatgacaggacctaaacagga

gagtattaggcagtcatggatttcaggttttggtcttttcagctcacaatttttcaacacttcatcaacagcattggcatattg

gtatggtgggagtctcctaataaaaggccaaatagaaccgacggaactcttccaagcatttttaatattgctcttcactg

catacatcattgcagaagctggaagcatgacttctgacatatctaaaggaagcaatgcagttggatcagttttcgctat

cctagacaggaaaagtgagattgatcctgaaaccttatggggagcagataaaaaaaggaaaataaggggcagg

gtggagcttaaaaatgtattctttgcttatccctctagacctgagcaaatggtattccagggtttgaatctcaaagttgag

gctggacgaacggtggcacttgtagggcacagtggttgcggtaaatccactatcattggtctgattgaaaggttttatg

atccaatcaagggaactgtatgcatagatgaacaagacatcaagacctataacttaagaatgttgaggtcacatatc

gctttagtaagccaggaaccaaccctttttagtggaaccattcgggaaaacatcgcatatggaaaagaaaacgcaa

ctgaatctgagataagaagggctgctaccgttgctaatgctcatgaattcataagtggaatgaatgaagggtatgaaa

cacactgtggagaaagaggagttcagctatcaggaggacagaaacaaagaatagccttagccagagctatacta

aagaatccagcaattcttcttctggatgaagctacaagtgcacttgatagtgcatcagaggttttagtccaagaagcac

ttgagaaaataatggttggaagaacatgtatagcagtggcacataggctatcaacaatacagaattcaaactccatt

gctgtgattaagaatgggaaagttgtggaacaaggttcacataatgaattgatttcacttggaagaaatggagcttatc

attctcttgttaaacttcaacatggtagctcccctaggtga 
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Appendix 1.3 ABC Domain containing genes encoded in M. truncatula 

 

Medicago Gene ID Arabidopsis  Gene Description (TAIR) 

ABCA   

Medtr7g091380.1 AT2G41700.1  (ABCA1) 

Half   

Medtr3g099990.1 AT3G47730.1  (ABCA2) 

Medtr4g108153.1 AT3G47780.1 (ABCA7) 

Medtr4g108163.1 AT3G47780.1  (ABCA7) 

Medtr4g108170.1 AT3G47780.1  (ABCA7) 

Medtr4g108240.1 AT3G47780.1  (ABCA7) 

Medtr4g108210.1 AT3G47780.1  ATATH6, ATH6 | ABC2  

ABCB   

Medtr1g025560.1 AT1G27940.1  (ABCB13) 

Medtr1g063170.1 AT2G36910.1  (ABCB1)  

Medtr1g086080.1 AT2G47000.1  (ABCB4)  

Medtr1g115430.1 AT3G55320.1 (ABCB20)  

Medtr2g018320.1 AT4G18050.1  (PGP9)  

Medtr3g080220.1 AT1G02520.1  (ABCB11)  

Medtr3g086430.1 AT3G28345.1  (ABCB15) 

Medtr3g093430.1 AT3G28860.1 (ABCB19) 

Medtr3g107800.1 AT1G02520.1  (ABCB11)  

Medtr4g077930.1 AT1G02520.1  (ABCB11)  

Medtr4g081190.1 AT3G28345.1  (ABCB15) 

Medtr4g123990.1 AT1G02520.1  (ABCB11)  

Medtr4g124000.1 AT1G02520.1  (ABCB11)  

Medtr4g124050.1 AT1G02520.1  (ABCB11)) 

Medtr5g029750.1 AT4G25960.1  (ABCB2) 

Medtr6g008800.1 AT3G28345.1 (ABCB15) 

Medtr6g008820.1 AT3G28345.1  (ABCB15) 

Medtr6g009030.1 AT3G28345.1  (ABCB15) 

Medtr6g011680.1 AT3G28860.1  (ABCB19) 

Medtr6g078080.1 AT4G18050.1  (ABCB9) 

Medtr7g023340.1 AT3G55320.1  (ABCB20)  

Medtr7g051100.1 AT3G28345.1  (ABCB15) 

Medtr8g022270.1 AT3G28860.1  (ABCB19)  

Medtr2g018530.1 AT4G18050.1  (ABCB9) 

Medtr1g086150.1 AT2G47000.1 MDR4, PGP4, ABCB4  
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Medtr2g018350.1 AT4G18050.1 PGP9  

Medtr4g124040.1 AT1G02520.1 PGP11  

Medtr7g102070.1 AT2G36910.1 ABCB1  

Medtr6g009070.1 AT3G28345.1  

Medtr6g009110.1 AT3G28345.1  

Medtr6g009150.1 AT3G28345.1  

Medtr6g009200.1 AT3G28345.1  

Medtr6g088670.1 AT3G28345.1  

Half   

Medtr1g059830.1 AT5G03910.1  (ABCB29) 

Medtr1g086095.1 AT1G02520.1  (ABCB11) 

Medtr4g109720.1 AT5G39040.1  (ABCB27) 

Medtr5g033080.1 AT1G70610.1  (ABCB26) 

Medtr5g075955.1 AT5G58270.1  (ABCB25) 

Medtr5g075960.1 AT5G58270.1  (ABCB25) 

Medtr6g009080.1 AT3G28345.1  (ABCB15) 

Medtr6g465300.1 AT4G25450.1  (ABCB28) 

Medtr7g033710.1 AT1G70610.1  (ABCB26) 

Medtr8g066710.1 AT4G25960.1 PGP2  

ABCC   

Medtr0196s0020.1 AT3G59140.1  (ABCC10) 

Medtr1g069450.1 AT1G04120.1  (ATABCC5) 

Medtr1g088680.1 AT2G47800.1  (ABCC4)  

Medtr1g099280.1 AT3G59140.1  (ABCC10) 

Medtr2g019020.1 AT2G34660.1  (AtABCC2)  

Medtr2g105190.1 AT2G07680.1  (ABCC13)  

Medtr2g436710.1 AT3G62700.1  (ABCC14)  

Medtr2g436730.1 AT3G62700.1  (ABCC14)  

Medtr3g011820.1 AT1G30400.2  (ABCC1)  

Medtr6g034220.1 AT3G59140.1  (ABCC10)  

Medtr6g034335.1 AT3G59140.1  (ABCC10)  

Medtr6g034350.1 AT3G59140.1  (ABCC10)  

Medtr6g084320.1 AT3G21250.1  (ABCC8) 

Medtr8g015970.1 AT3G21250.1  (ABCC8) 

Medtr8g016020.1 AT3G21250.1 (ABCC8) 

Medtr8g016070.1 AT3G21250.1  (ABCC8) 

Medtr8g040170.1 AT3G21250.1  (ABCC8) 

Medtr8g040620.1 AT3G21250.1 (ABCC8) 
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Medtr8g061970.1 AT2G47800.1  (ATMRP4) 

Medtr8g080050.1 AT3G13080.1  (ABCC3) 

Medtr7g098690.1 AT1G04120.1  (ABCC5)  

Medtr3g056675.1 AT3G13080.1  (MRP3) 

Medtr5g033030.1 AT3G13080.1  (MRP3) 

Medtr2g436680.1 AT3G62700.1 ATMRP10  

Medtr3g011840.1 AT1G30410.1 ATMRP13  

Medtr3g056700.1 AT3G13080.1 ATMRP3,  

Medtr5g033320.1 AT3G13080.1 ATMRP3,  

Medtr5g094810.1 AT3G13080.1 ATMRP3,  

Medtr5g094830.1 AT3G13080.1 ATMRP3,  

Medtr6g034230.1 AT3G59140.1 ATMRP14  

Medtr6g034265.1 AT3G59140.1 ATMRP14  

Medtr6g034270.1 AT3G59140.1 ATMRP14  

Medtr6g034310.1 AT3G59140.1 ATMRP14  

Medtr6g034755.1 AT3G59140.1 ATMRP14  

Medtr8g015980.1 AT3G21250.1 ATMRP6 

Half   

Medtr3g056645.1 AT3G13080.1  (ABCC3) 

ABCD   

Medtr3g087350.1 AT4G39850.1  (AtABCD1)  

Half   

Medtr2g062790.1 AT1G54350.1  (ABCD2) 

ABCE (HALF)   

Medtr4g007890.1 AT4G19210.1 (ATRLI2) 

Medtr1g024860.1 AT4G19210.1  (ABCE2) 

Medtr1g025075.1 AT4G19210.1  (ABCE2) 

Medtr1g114170.1 AT4G19210.1  (ABCE2) 

ABCF   

Medtr2g095440.1 AT5G60790.1  (ABCF1) 

Medtr3g080970.1 AT1G64550.1 (ABCF3) 

Medtr3g095010.1 AT5G64840.1 (ABCF5) 

Medtr4g057795.1 AT5G60790.1  (ABCF1) 

Medtr7g018380.1 AT3G54540.1  (ABCF4) 

Medtr8g075040.1 AT3G54540.1  (ABCF4) 

ABCG   

Medtr1g011650.1 AT1G15520.1 PDR12 
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Medtr2g102660.1 AT1G15520.1 PDR12 

Medtr2g102670.1 AT1G15520.1 PDR12 

Medtr4g011630.1 AT1G15520.1 PDR12 

Medtr4g011640.1 AT1G15520.1 PDR12 

Medtr7g098320.1 AT1G15520.1 PDR12 

Medtr7g098370.1 AT1G15520.1 PDR12 

Medtr7g098750.1 AT1G15520.1 PDR12 

Medtr7g098760.1 AT1G15520.1 PDR12 

Medtr7g098780.1 AT1G15520.1 PDR12 

Medtr7g098800.1 AT1G15520.1 PDR12 

Medtr7g104130.1 AT1G66950.1 PDR11 

Medtr7g104150.1 AT1G66950.1 PDR11 

Medtr1g011640.1 AT1G15520.1  (ATABCG40) 

Medtr1g050525.1 AT2G36380.1  (ABCG34) 

Medtr1g492950.1 AT2G36380.1  (ABCG34) 

Medtr2g078080.1 AT1G53270.1  (ABCG10) 

Medtr2g101090.1 AT1G59870.1  (ABCG36) 

Medtr2g102640.1 AT1G15520.1  (ATABCG40)  

Medtr3g107870.1 AT1G15520.1  (ATABCG40)  

Medtr3g463680.1 AT2G29940.1  (ABCG31) 

Medtr4g011620.1 AT1G15520.1  (ABCG31) 

Medtr4g113070.1 AT2G26910.1  (PDR4) 

Medtr4g123850.1 AT3G53480.1  (ABCG37)  

Medtr5g070320.1 AT2G29940.1  (ABCG31) 

Medtr7g098300.1 AT1G15520.1  (PDR12) 

Medtr7g098740.1 AT1G15520.1  (PDR12) 

Medtr7g104100.1 AT1G66950.1 (PDR11) 

Medtr8g014360.1 AT1G59870.1  (ABCG36)  

Half   

Medtr1g054935.1 AT5G06530.1  (ABCG22) 

Medtr1g054960.1 AT5G06530.1 ABCG G22 (ABCG22) 

Medtr1g093990.1 AT1G31770.1  (ABCG14) 

Medtr1g096580.1 AT1G71960.1  (ABCG25) 

Medtr1g099570.1 AT5G52860.1  (ABCG8) 

Medtr1g108340.1 AT2G01320.2 (ABCG7) 

Medtr1g115790.1 AT2G39350.1  (ABCG1) 

Medtr2g095390.1 AT2G28070.1  (ABCG3) 

Medtr3g096410.1 AT2G13610.1 (ABCG5) 

Medtr4g054020.1 AT1G17840.1 (ABCG11) 
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Medtr4g058000.1 AT5G60740.1 (ABCG28) 

Medtr4g076900.1 AT3G21090.1  (ABCG15) 

Medtr4g076940.1 AT3G21090.1 (ABCG15) 

Medtr4g076970.1 AT3G21090.1  (ABCG15) 

Medtr4g093845.1 AT1G17840.1  (ABCG11) 

Medtr4g094010.1 AT1G17840.1  (ABCG11) 

Medtr4g094050.1 AT1G17840.1  (ABCG11) 

Medtr4g094060.1 AT1G17840.1  (ABCG11) 

Medtr4g094090.1 AT1G17840.1  (ABCG11) 

Medtr5g025470.1 AT1G31770.1 (ABCG14) 

Medtr5g096390.1 AT3G13220.1 (ABCG26) 

Medtr6g066240.1 AT1G17840.1 (ABCG11) 

Medtr7g100120.1 AT2G37360.1  (ABCG2) 

Medtr7g106880.1 AT5G06530.1 (ABCG22) 

Medtr8g059150.1 AT4G27420.1  (ABCG9) 

Medtr8g093840.1 AT2G13610.1  (ABCG5) 

Medtr8g107450.1 AT3G55130.1 (ABCG19) 

Medtr4g116540.1 AT5G19410.1  ABC-2  

Medtr5g030910.1 AT3G55130.1 ATWBC19,  

Medtr3g040670.1 AT5G19410.1  (ABCG23) 

Medtr1g094660.1 AT1G53390.1  (ABCG24) 

ABCH   

None   

ABCI   

Medtr1567s0010.1 AT1G67940.1  (ABCI17) 

Medtr1g063920.1 AT2G37010.1  (NAP12) 

Medtr3g096300.1 AT4G33460.1 (ABCI10) 

Medtr4g131330.1 AT1G63270.1  (ABCI1) 

Medtr7g079540.1 AT1G65410.1  (ABCI13) 

Medtr7g101780.1 AT2G37010.1  (NAP12) 

Medtr8g101390.1 AT3G10670.1  (NAP7) 

Medtr8g107410.1 AT1G67940.1  (ABCI17) 

Medtr8g442660.1 AT4G33460.1  (ABCI10) 

 

  
Appendix Table S.1: M. truncatula ABC transporters and their closest 

Arabidopsis homologue, identified in this study 
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Appendix 1.4: Accession numbers of ABC transporters homologous to 

AMN1, AMN2, and AMN3 across dicots which can either nodulate or 

mycorrhize 

NAME SCIENTIFIC NAME ACCESSION NUMBER 

Cicer_AMN1 Cicer arietinum XP_004502504.1 

Citrus_AMN1 Citrus sinensis XP_006484330.1 

Cucumis_AMN1 Cucumis sativus XP_004135503.1 

Fragaria_AMN1 Fragaria vesca subsp. 
Vesca 

XP_004310162.1 

Medicago_AMN1 Medicago truncatula  

Morus_AMN1 Morus notabilis EXB82471.1 

Phaseolus_AMN1 Phaseolus vulgaris XP_007163694.1 

Prunus_AMN1 Prunus persica XP_007224599.1 

Ricinus_AMN1 Ricinus communis XP_002515049.1 

Solanum_AMN1 Solanum lycopersicum XP_004239490.1 

Theobroma_AMN1 Theobroma cacao XP_007044881.1 

Vitis_AMN1 Vitis vinifera XP_002282137.2 

Cicer_AMN2 Cicer arietinum XP_004505438.1 

Citrus_AMN2 Citrus sinensis XP_006475215.1 

Cucumis_AMN2 Cucumis sativus XP_004151954.1 

Datisca_AMN2 Datisca glomerata  

Fragaria_AMN2 Fragaria vesca subsp. 
Vesca 

XP_004295792.1 

Glycine_AMN2 Glycine max XP_003541009.2 

Glycine_AMN2 Glycine max XP_003526190.2 

Lotus_AMN2 Lotus japonicus chr3.CM1543.140.r2.m 

Lupin_AMN2 Lupinus  

Medicago_AMN2 Medicago truncatula XP_003607685.1 

Morus_AMN2 Morus notabilis EXC05113.1 

Cicer_AMN3 Cicer arietinum XP_004510541.1 

Cucumis_AMN3 Cucumis sativus XP_004155963.1 

Datisca_AMN3 Datisca   

Fagaria_AMN3 Fragaria vesca subsp. 
Vesca 

XP_004305767.1 

glycine_AMN3 Glycine max XP_003548375.1 

Lotus_AMN3 Lotus japonicus chr3.CM0416.610.r2.a 

Medicago_AMN3 Medicago truncatula XP_003627370.1 

Populus_AMN3 Populus trichocarpa XP_006369112.1 

Prunus_AMN3 Prunus persica XP_007216167.1 

Ricinus_AMN3 Ricinus communis XP_002529182.1 

Solanum_AMN3 Solanum lycopersicum XP_004236380.1 

Theobroma_AMN3 Theobroma cacao XP_007024714.1 

Vitis_AMN3 Vitis vinifera XP_003632759.1 

Arabidopsis Arabidopsis thaliana NP_189475.1 
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thaliana 

Oryza Oryza sativa Q6YUU5.1 

  
Appendix Table S.2: Accession numbers of all AMN1, AMN2 and AMN3 

homologues used to prepare the phylogenetic tree in Figure 3.3 
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Appendix 1.5: Putative Transcription factor binding sites common to 2 

kb Upstream region of AMN1, AMN2, and AMN3 

 TRANSCRIPTION 

FACTOR 

DESCRIPTION 

 HORMONE  

1 P$ARE.01 Auxin Response Element 

2 P$GAMYB.01 GA-regulated myb gene from barley 

3 P$TL1.01 Cis-element involved in SA (salicylic acid) induction of 

secretion-related genes via NPR1 

4 P$TEIL.01 Ethylene insensitive 3 like factors 

5 P$JARE.01 Jasmonate response element 

 SYMBIOSIS RELATED  

6 P$PHR1.01 Phosphate starvation response 1 

7 P$NCS1.01 Nodulin consensus sequence 1 

8 P$NCS2.01 Nodulin consensus sequence 2 

9 P$NRE.01 Nitrate-responsive element 

 SECONDARY CELL WALL  

10 P$SNBE.01 Secondary wall NAC binding elements (NAM, 

ATAF1/2, and CUC2) 

11 P$SMRE.01 Secondary wall MYB-responsive element, MYB46 and 

MYB83 binding sites 

12 P$CBNAC.02 Calmodulin-binding NAC protein 

13 P$TANAC69.03 Wheat NAC-domain DNA binding factor (DNA binding site II) 

 SUGAR  

14 P$STK.01 Storekeeper (STK), plant specific DNA binding protein 

important for tuber-specific and sucrose-inducible gene 

expression 

15 P$SUCROSE.01 Sucrose Box- Sequence motif from the promoters of different 

sugar-responsive genes 

 WRKY  

16 P$WRKY.01 WRKY plant specific zinc-finger-type factor associated with 

pathogen defence, W box 

17 P$WRKY11.01 Calmodulin binding WRKY transcription factor 11 

18 P$SP8BF.01 DNA-binding protein of sweet potato that binds to the SP8a 

(ACTGTGTA) and SP8b (TACTATT) sequences of sporamin 

and beta-amylase genes 

 LIGHT  
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19 P$GAP.01 Cis-element in the GAPDH promoters conferring light 

inducibility 

20 P$RAP22.01 RAP2.2, involved in carotenoid and tocopherol biosynthesis 

and in the expression of photosynthesis-related genes 

21 P$GAAA.01 GAAA motif involved in pollen specific transcriptional 

activation 

22 P$OCSL.01 Enhancer element first identified in the promoter of the 

octopine synthase gene (OCS) of the Agrobacterium 

tumefaciens T-DNA 

23 P$TERE.01 Tracheary-element-regulating cis-elements, conferring TE-

specific expression 

 DEVELOPMENT   

24 P$REVOLUTA.01 Homeobox-leucine zipper protein REVOLUTA (REV, IFL1) 

25 P$WUS.01 Homeodomain protein WUSCHEL 

26 P$RITA1.01 Rice transcription activator-1 (RITA), basic leucin zipper 

protein, highly expressed during seed development 

27 P$LFY.01 Plant specific floral meristem identity gene LEAFY (LFY) 

28 P$BLR.01 Transcriptional repressor BELLRINGER 

29 P$PIL5.01 Phytochrome interacting factor3-like 5 

30 P$AS1_AS2_II.01 AS1/AS2 repressor complex binding motif II 

31 P$SBP.01 SQUA promoter binding proteins 

32 P$ATHB5.01 HDZip class I protein ATHB5 

33 P$ATHB1.01 Arabidopsis thaliana homeo box protein 1 

34 P$FLC.01 Flowering locus C 

35 P$AP2.01 APETALA2 

36 P$ATML1.01 L1-specific homeodomain protein ATML1 (A. thaliana 

meristem layer 1) 

37 P$AG.01 Agamous, required for normal flower development, similarity 

to SRF (human) and MCM (yeast) proteins 

38 P$ATML1.02 Arabidopsis thaliana meristem layer 1 

39 P$AGL15.01 AGL15, Arabidopsis MADS-domain protein AGAMOUS-like 

15 

40 P$SOC1.01 Suppressor of overexpression of CO 1 (AGL20) 

 

 

 

Appendix Table S.3: List of Transcription factor binding sites common to the 2 

Kb region upstream of AMN1, AMN2 and AMN3 
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Appendix 1.6: Infection structures in AMN1/AMN2 RNAi lines upon 

nodulation and mycorrhization 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 4.1: Infection associated structures in RNAi 

Knockdown roots 

A. WT EV transformed roots develop elongated nodules which are fully 

colonized by bacteria (stained with SYTO13) B. RNAi Knockdown roots develop 

small misshapen nodules which get colonized normally C. WT EV transformed 

root infected with R. irregularis are colonized normally and arbuscules are 

visible in the cortex D. RNAi knockdown roots show fewer arbuscule structures 

E. Higher magnification of root sin D showing initiating arbuscule 

Scale bar represents 100 µm 
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Appendix 1.7 Infection structures on lax2 mutants and promoter-GUS 

analyses of auxin markers in M. truncatula 
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Appendix 1.8 Quantitative RT PCR showing auxin responsiveness of 

infection induced genes 

 

  Supplementary Figure 5.3: Quantitative RT-PCR validation of auxin 

responsiveness of infection induced genes  

Change in gene expression upon IAA treatment of M. truncatula roots relative to 

solvent treated controls. MtSAUR, MtARF16, MtGH3.1 were confirmed by 

promoter GUS experiment to be expressed in infection thread containing root hair 

cells. Values represent average of three biological replicates each consisting of 

10 seedlings each. Error bars depict standard error. Student’s t-test was carried 

out to determine statistical significance, **p<0.01All primers used were taken 

from (Breakspear, Liu et al. 2014). 

Supplementary Figure 5.2: M. truncatula roots showing expression of 

different marker genes  

 β-glucuronidase enzyme activity is visualized in blue. β-Galactosidase (LacZ) 

activity in magenta. i pLAX2 expression is not associated with infection thread 

containing root hair cells ii  pLAX2 expression is associated with the vascular 

bundle and lateral root in uninfected roots iii, iv expression of pLAX2 is 

associated with epidermal cells not responding to infection  3wpi v pAtAUX1 in 

P.sativum is expressed below curled root hair 7 dpi vi, vii Expression of soybean 

GH3 in M. truncatula stable lines is not associated with infection structures viii,ix 

Infection structures develop normally in lax2-2 and lax2-1 mutants of M. 

truncatula. LacZ expressing rhizobia stained in Blue. 
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Appendix 1.9 Quantitative RT PCR showing expression of AMN 

transcripts in their respective mutant backgrounds 
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Appendix 1.10 Sensitivity of lax2-1 and lax2-1 mutants to IAA compared 

to WT R108 Control 

 

 

 
 

 

 

 

 

 

 

 

 

 

Supplementary Figure 4.4: Quantitative RT-PCR determination of AMN 

transcript abundance in their respective mutant backgrounds  

Relative transcript abundance in WT R 108 and alleles of (a) amn1 (b) amn2 and 

(c) amn3 of Medicago truncatula. Values represent average of three technical 

replicates per line. Error bars represent standard error of the mean. Primers 

used AMN1 (P_5 and P_6) AMN2 (P_11 and P_12) and AMN3 (P_13 and P_14) 

Supplementary Figure 5.5: lax2-1 and lax2-1 mutant seedlings are sensitive 

to IAA compared to WT R108 Control  

A. Representative photograph showing longer root length of lax2-1 and lax2-1 

seedlings compared to WT R108 grown on 10 µm IAA 15 days post germination. 

B. Quantification of root lengths grown with and without 10 µm IAA on water 

agar plates 15 days post germination. Values represent average of mean (n=4-

6). Error bars depict the S.E *p<0.01 ***p<0.001 using a Student’s t-test 
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Appendix 1.11 Ratio of pink/white nodules in amn single mutants 
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** **

Supplementary Figure 5.6: Graph comparing average ratio of pink/white 

nodules per mutant  

Values represent average of ratios calculated for each individual (n=20-24). 

Error bars depict the S.E *p<0.05.  **p<0.01 using a Student’s t-test 
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