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Abstract 

Solid-state cocrystallisation is of contemporary interest, because it offers an easy and efficient 

way to produce cocrystals, which are recognized as prospective pharmaceutical materials. Research 

explaining solid-state cocrystallisation mechanisms is important, but still too scarce to give a broad 

understanding of factors governing and limiting these reactions. Here we report an investigation of 

the mechanism and kinetics of isoniazid cocrystallisation with benzoic acid. This reaction is 

spontaneous; however its rate is greatly influenced by environmental conditions (humidity and 

temperature) and pre-treatment (milling) of the sample. The acceleration of cocrystallisation in the 

presence of moisture is demonstrated by kinetic studies at elevated humidity. The rate dependence 

on humidity stems from moisture facilitated rearrangements on the surface of isoniazid crystallites, 

which lead to cocrystallisation in the presence of benzoic acid vapour. Furthermore, pre-milling the 

mixture of the cocrystal ingredients eliminated the induction time of the reaction and considerably 

increased its rate.  

Keywords: Cocrystallisation; mechanochemistry; effect of spinning; spontaneous reactions; solid-

state kinetics. 

 

Introduction 

In recent years, pharmaceutical cocrystals have attracted the attention of scientists as 

prospective materials with tuneable properties. For example, cocrystals of active pharmaceutical 

ingredients (API) offer better stability,1,2 solubility3 and bioavailability4 compared to their parent 

drugs. However, before cocrystals are produced industrially, a sufficient understanding of the 

conditions governing their formation and decomposition into separate compounds must be acquired 

to evaluate their stability. Cocrystals can form spontaneously in physical mixtures of their 

compounds,5–8  but purposefully they are prepared  by crystallisation from solvent,9–15 from 



melt,16,17 by spray drying18,19 or by mechanical treatment.20–22 The latter method has gained 

recognition in scientific laboratories and is employed extensively to synthesize new polymorphs, 

cocrystals and salts. It is fast, easy to perform, requires minimal or no use of solvent23 and offers a 

pure product with a controlled polymorphic yield.22 In addition, mechanochemistry allows inter-

conversion between salts24 and cocrystals25 of different stoichiometry. However, a current drawback 

of this method is the large number of unknown parameters that can influence the outcome of the 

reaction. Such parameters are relative humidity,26 temperature rise and force distribution27 in the 

reaction vessel during milling. The mechanical force can act on the compounds by friction, shear 

and impact and each of these effects can lead to a different product.27 The mechanical treatment can 

introduce various changes in the crystalline material including crystal defects, strain and partial 

amorphisation, as well as a reduced size of crystallites,28,29 thereby increasing the reactivity of 

crystalline compounds. Mechanochemical reactions can proceed through different routes involving 

amorphisation30 or liquid phase (eutectic melt) formation.31 Experimental observations indicate that 

some systems undergo transitions only during milling32 and the reaction terminates on stopping the 

treatment, while other systems can continue to react after removing the mechanical impact.30,33  

Another parameter influencing the outcome of mechanosynthesis is relative humidity. High 

humidity can lead to moisture sorption which plays an important role in cocrystallisation 

reactions.5,7,34 The water uptake is enhanced when using hygroscopic cocrystal components8 or by 

the presence of deliquescent additives8 and amorphous phase.34 In most of the moisture facilitated 

reactions water has been shown to partially dissolve the compounds and to allow nucleation of 

cocrystal in the liquid phase.8,31,35    

Although valuable work towards understanding mechanochemical and spontaneous 

supramolecular reactions of organic compounds has already been performed,25,27,36–40 there are still 

several uncertainties left. Useful information about the mechanisms of cocrystallisation and 

environmental conditions governing cocrystal formation and decomposition into its compounds can 

be extracted from kinetic data. However, the interpretation of kinetics in terms of solid-state 



reaction mechanisms is not straightforward and often requires sets of additional measurements to 

confirm and to explain the proposed reaction mechanisms. This report aims to consider and to 

evaluate the experimental conditions influencing the rate of mechanochemical cocrystal formation. 

The antitubercular drug isoniazid was chosen as a model compound, since it is known to form 

cocrystals with acids41–52; and its cocrystals can be obtained mechanochemically.47,53 Furthermore, 

the isoniazid–benzoic acid cocrystal forms spontaneously and cocrystallisation is accelerated by 

pre-milling the reactant mixture. The rate of this reaction depends on the environmental conditions 

of storage and on pre-treatment of the sample. To discover the effect of these parameters on the rate 

of cocrystal formation, a series of experiments were carried out. Parameters such as relative 

humidity, temperature and the initial milling frequency were considered in the course of these 

experiments. In addition, we demonstrate the impact of the sample spinning speed under conditions 

of magic angle spinning (MAS) solid-state NMR analysis as one of the factors that substantially 

increases the rate of cocrystallisation.  

Experimental Section 

Materials. Benzoic acid and isoniazid were procured from commercial suppliers. 5 g of 

isoniazid and 5 g of benzoic acid were milled separately in the Retsch MM301 ball mill (10 mL 

stainless steel vials with one 1 cm stainless steel ball in each) for 15 minutes to reduce the particle 

size. The milled samples were annealed by keeping at ambient conditions for 2 weeks and sieved to 

obtain the fraction of 75 to 150 µm.  

Mechanochemical cocrystallisation. 0.2743 g of isoniazid and 0.2442 g of benzoic acid (1:1 

molar ratio) were gently blended together in a mortar with the pestle before co-milling to reduce the 

effect of composition inhomogeneity. Cocrystallisation was performed by milling the mixture of the 

starting compounds in a Retsch MM301 ball mill. Isoniazid and benzoic acid were milled in 5 mL 

stainless steel grinding jars with one 6 mm stainless steel ball in each milling jar. For kinetic 

experiments milling was performed with two 8 mm and three 6 mm stainless steel balls in each 

milling jar. Two different milling ball sizes were chosen after initial experiments, since they offered 

better data reproducibility compared to equally sized milling balls. Samples were ground at ambient 

conditions (45-55% relative humidity (RH) and 20-22 °C) for various time periods with a frequency 

of 20, 25 or 30 Hz. The average composition of the reaction mixture after milling was determined 



by removing the powder from the grinding jar and quickly mixing it in a mortar to homogenize the 

composition. The milling product was analysed by powder X-ray diffraction (PXRD) immediately 

after the experiment.   

Cocrystallisation kinetics in pre-milled isoniazid and benzoic acid 1:1 mixtures. The 

cocrystallisation kinetics in pre-milled isoniazid and benzoic acid 1:1 mixture (0.2743 g of isoniazid 

and 0.2442 g of benzoic acid) was investigated using in situ powder X-ray diffraction experiments 

at elevated temperature and relative humidity. The pre-milled mixtures were loaded into the 

humidity chamber and subsequent diffraction patterns were recorded until no further changes in the 

diffraction patterns were observed. Several sets of experiments were performed to evaluate the 

effect of relative humidity, temperature and the initial milling frequency. The effect of the 

temperature was studied by performing experiments at 35, 40, 45, 50 and 55 °C temperature and 

60% RH for samples that were pre-milled for 5 minutes at 20 Hz. The influence of the relative 

humidity was evaluated by acquiring the X-ray diffraction data at 60, 70 and 80 % RH and 40 °C 

for samples that were pre-milled for 5 minutes at 20 and 25 Hz. The influence of the pre-milling 

frequency was considered by performing the milling for 5 minutes with a frequency of 20, 25, 30 

Hz and recording the kinetic data of cocrystallisation at 60% RH and 40 °C.  

In-situ PXRD at controlled temperature and humidity. The cocrystallisation experiments 

of isoniazid and benzoic acid were performed using a Bruker AXS D8 Discover powder 

diffractometer (Bruker AXS GmbH, Germany) equipped with an MRI humidity chamber. Copper 

Kα radiation (λ=1.5418 Å) was used in the experiments. Data were collected using a flat sample 

(depth of 0.8 mm) holder in the Bragg–Brentano geometry. 

The X-ray diffraction measurements were performed at various temperatures (35, 40, 45, 50 

and 55 °C) and various RH (60, 70, 80%). Diffraction patterns were recorded with 0.02° step size 

and a scan speed of 0.1 s per step in the 2θ range from 3 to 30°.  

Spontaneous cocrystallisation kinetics in isoniazid and benzoic acid 1:1 physical 

mixtures. Physical mixtures (1:1) of isoniazid (0.0686 g) and benzoic acid (0.0611 g) were stored 

in desiccators with various relative humidity (38, 58, 75, 84 and 97 % RH) at 30 °C. Diffraction 

patterns were periodically recorded over a period of 27 days. The humidity in the desiccators was 

maintained using saturated salt solutions (NaI for 38% RH; NaBr for 58% RH; NaCl for 75 % RH; 

KCl for 84% RH and K2SO4 for 97% RH).54 

Cocrystallisation in pre-milled 1:1 mixtures of isoniazid and benzoic acid at elevated 

temperature and dry air. Pre-milled (20 Hz, 5 min) isoniazid and benzoic acid 1:1 mixtures were 

stored in desiccators containing P2O5 to ensure dry air. These desiccators were maintained at 30, 50 

and 70 °C temperature. The composition of the samples was monitored using PXRD analysis.  

Powder X-ray Diffraction (PXRD).  Powder X-ray diffraction analysis of the isoniazid and 



benzoic acid physical mixtures kept at various relative humidity and pre-milled mixtures kept at dry 

air was performed using a Bruker AXS D8 Advance powder diffractometer (Bruker AXS GmbH, 

Germany) equipped with a LynxEye position sensitive detector and Cu Kα radiation (λ=1.5418 Å), 

40 kV, 40 mA. Diffraction patterns were recorded with a 0.02° step size and a scan speed of 0.1 s 

per step in the 2θ range from 3 to 35°.  

Rietveld analysis. The quantitative Rietveld analysis of the X-ray diffraction data were 

performed using the Bruker Topas 4.2 software55 with the fundamental parameters (FP) approach. 

The crystal structures of isoniazid56 (CSD refcode INICAC01), benzoic acid57 (CSD refcode 

BENZAC01) and the isoniazid – benzoic acid cocrystal53 (CSD refcode SETRIU, 

10.5517/ccyw9jm) were obtained from the Cambridge Structural Database (CSD)58 and used in the 

calculations.  

A 3rd order Chebyschev polynomial was used to describe the background of the powder 

patterns. It was assumed that the sample is crystalline and does not contain an amorphous phase, as 

significant background changes were not observed during the experiments. The unit cell parameters 

were refined and the results were corrected for absorption and sample displacement. The average 

composition of the sample over the time period necessary to record the pattern was obtained and 

ascribed to the midpoint of the pattern recording time.  

Cocrystallisation in 1:1 unmilled and pre-milled mixtures of isoniazid and benzoic acid 

under conditions of Magic Angle Spinning (MAS) using solid-state NMR. Physical mixtures 

(1:1) and pre-milled mixtures (5 min, 20 Hz) of isoniazid (0.2743 g) and benzoic acid (0.2442 g) 

were prepared according to the procedure described in the previous sections immediately before 

solid-state NMR analysis. The materials were packed in zirconia rotors and placed in the NMR 

probe immediately after the sample preparation to avoid any impact of environmental changes.  1H-
13C CP (cross polarisation) MAS NMR spectra were acquired at 25 °C using spinning rates of 5 or 

10 kHz. Due to the long pulse delay (180 s) of the reacting compounds, spectra of sufficient quality 

could only be acquired over a period of 6 hours after 128 scans. Five or three experiments for each 

spinning rate were carried out over a period of 30 hours in the case of pre-milled materials and 18 

hours for physical mixtures, as no changes after this time were observed (Figs. S6 and S7 in 

Supporting Information). The resulting solid-state NMR spectra show the average pictures of the 

structural and dynamical processes taking place during cocrystallisation of isoniazid and benzoic 

acid in the six-hour time intervals. 

Solid-state NMR analysis. Solid-state NMR spectra were acquired using a Bruker AVANCE 

III spectrometer equipped with a 4 mm triple resonance probe at 400.23 MHz for 1H and 100.64 

MHz for 13C. The 1H-13C cross-polarization/magic angle spinning (CP/MAS) NMR spectra were 

acquired using a RAMP CP pulse sequence. The MAS rates were 5 or 10.0 kHz; 1H π/2 pulse 



length and pulse delay were optimized to 3.20 µs and 180.0 s, respectively. The contact time during 

CP was set to 2.0 ms and a SPINAL64 decoupling was applied during acquisition. The Hartmann-

Hahn conditions59 were set with hexamethylbenzene (HMB). 512 scans were acquired for pure 

crystalline compounds and 128 during cocrystallisation experiments. The 13C chemical shifts were 

recorded with respect to tetramethylsilane (TMS).  

Analysis of the cocrystallisation kinetics under MAS conditions. The spectra were de-

convoluted using a Gaussian-shape fitting function using Fityk 0.9.8.60 and integrated peak areas 

were compared for both MAS rates. Comparison of the cocrystallisation kinetics of isoniazid and 

benzoic acid at MAS rates of 5 and 10 kHz was based on the intensity of the peak at 172.3 ppm, 

which is attributed to the carbonyl group of benzoic acid.  

DVS analysis. The water vapour sorption–desorption isotherms of isoniazid and benzoic acid 

1:1 physical mixture were measured with a TA Q5000 SA instrument at 30, 40 and 50 °C. The 

relative humidity was increased with a step size of 5% from 5% to 95% RH and decreased to 5% 

RH again. The dwell time at each RH was 1 h. The sample was dried at 60 °C for 1 hour prior to 

analysis.  

Scanning electron microscopy (SEM). The particle size and morphology of isoniazid, 

benzoic acid and the cocrystal were analysed using scanning electron microscopy (SEM) using a 

JEOL JSM-5910 LV SEM Scanning Electron Microscope with an accelerating voltage of 20 kV. 

The working distance was 9 mm. The samples were sputtered with gold in an argon atmosphere at 

room temperature before examination.  

Hot stage microscopy (HSM). Formation of the isoniazid–benzoic acid cocrystal upon 

heating (at 90 °C) was followed using a Leica DM LS2 optical microscope, equipped with the 

Mettler Toledo FP 82 HT hot stage and FP 90 temperature controller. The microscope was also 

used to observe the sublimation of smaller benzoic acid crystals at ambient conditions (45–55% RH 

and 20–22 °C) for 20 hours.  

AFM analysis. The AFM height images (25 µm × 25 µm) and force measurements were 

recorded in QI mode (Quantitative Imaging mode61) at room temperature in air at a resolution of 

256 × 256 pixels using the NanoWizard 3 (JPK Instruments AG) AFM system. The maximum force 

determined by the vertical deflection of the cantilever (i.e., setpoint) was set to 0.7–1 nN, and the 

scan rates were automatically controlled by the Z length (1 µm), extension time (5 ms) and 

retraction time (5 ms). Soft cantilevers (NanoWorld Arrow-Cont) were used and the typical force 

constant of the cantilever was 0.2 N m-1. The force constant for each of the cantilevers was 

calibrated using the thermal noise method.62 For the in situ AFM humidity studies an enclosure was 

constructed and the humidity inside the enclosure was followed by a Fischer Scientific 

Humidity/Temperature Pen. For each change in humidity the sample was allowed to equilibrate for 



at least 48 hours. 

FTIR analysis. The FTIR spectra were recorded using a Perkin Elmer Spectrum BX 

instrument in the range 550–4000 cm–1 with a resolution of 2 cm−1. Each spectrum was generated 

by co-addition of 64 interferograms. 

Results and Discussion 

Our initial intention was to analyse the kinetics of the mechanochemical cocrystallisation of 

isoniazid and benzoic acid, however direct monitoring of the process was hampered by continuation 

of the reaction after stopping the milling. The kinetics of cocrystal formation in these pre-milled 

samples was found to depend on the milling frequency and on the conditions (temperature, 

humidity) of sample storage. These observations have important implications on the quality of 

kinetic data analysis, so cocrystallisation in pre-milled samples was studied at various temperatures 

and humidity; and the cocrystallisation rate in milled samples was compared to that in unmilled 

physical mixtures. The kinetics of cocrystallisation was followed using in-situ powder X-ray 

diffraction (PXRD) and complementary data were obtained by solid-state NMR and IR 

spectroscopy. In addition scanning electron microscopy (SEM), atomic force microscopy (AFM) 

and dynamic vapour sorption (DVS) were employed to obtain qualitative information about the 

mechanism of cocrystallisation and to understand the involvement of water vapour in this reaction.  

Structural considerations of the isoniazid–benzoic acid cocrystal. Cocrystallisation 

proceeds through the disintegration of the isoniazid and benzoic acid crystal structures, followed by 

the emergence of a cocrystal.  These processes were studied by structural characterisation methods, 

such as solid-state NMR, FTIR and XRD. The FTIR spectrum of the physical mixture of isoniazid 

and benzoic acid is a superposition of the individual component spectra, showing no interactions 

between these compounds (Figure 1a).  



 

Figure 1. FTIR spectra of isoniazid, benzoic acid, their physical mixture, the physical mixture 

after 5 h at 40 °C and ca. 97 % RH  and their cocrystal (a) and 1H- 13C CP MAS solid-state NMR 

spectra of isoniazid, benzoic acid, their physical mixture and cocrystal acquired at a MAS rate of 10 

kHz (b). The NMR peak assignments refer to labels in Figure 2.   

However, when the physical mixture was stored at elevated humidity, the FTIR bands 

characteristic to isoniazid and benzoic acid gradually disappeared and the new distinctive cocrystal 

bands appeared in the spectra (Figure S1 in Supporting Information).  

The most pronounced changes observed in these FTIR spectra are related to functional groups 

that are involved in hydrogen bonding: the carboxyl group of benzoic acid, the pyridine ring and the 

hydrazide group of isoniazid. These changes in interactions are illustrated by the comparison of the 

crystal structure of the isoniazid–benzoic acid cocrystal53 with the structures of its constituents 

(Figure S2 in Supporting Information). For example, the comparison of structures revealed that the 

C(3) hydrogen bonding chain between the hydrazide groups in isoniazid is retained in the crystal 

structure of the cocrystal. Meanwhile, the N─H···N hydrogen bonds between the hydrazide and 

pyridine groups in isoniazid are broken, allowing new hydrazide–hydrazide ��
�(10) synthons to 



form in the cocrystal.  The asymmetric unit of the cocrystal and the atom numbering scheme used 

throughout this account are given in Figure 2.  

 

Figure 2. Asymmetric unit and atom numbering scheme of isoniazid–benzoic acid cocrystal. 

Similarly to the FTIR results, the 1H-13C CP MAS solid-state NMR spectrum of the physical 

mixture of isoniazid and benzoic acid shows an overlay of the individual spectra of these 

compounds, while in the spectrum of the cocrystal considerable changes in the positions of peaks 

are observed (Figure 1b), implying changes in the molecular environment resulting from 

cocrystallisation. A detailed comparison of the FTIR and solid-state NMR spectra and the crystal 

structures of isoniazid, benzoic acid and their cocrystal is presented in the Supporting Information. 

Kinetics of the mechanochemical cocrystallisation of isoniazid and benzoic acid. The 

cocrystallisation of isoniazid and benzoic acid can easily be achieved through mechanochemical 

treatment. However, when mechanochemistry is used to obtain cocrystals, milling frequency 

becomes one of the most important factors determining the rate of the conversion32 and, 

consequently, the composition of the product. The influence of milling frequency on the 

mechanochemical cocrystallisation rate of isoniazid with benzoic acid was investigated via kinetic 

experiments at 20, 25 and 30 Hz. The milling was performed for various time periods and the 

composition of the product for each milling experiment (Figure 3) was determined using Rietveld 

analysis of the PXRD patterns.  



 

Figure 3. Conversion fraction wcocrystal as a function of time for isoniazid – benzoic acid 

mechanochemical cocrystallisation at 20, 25 and 30 Hz. 

The impact of the frequency is illustrated by several times faster cocrystallisation at 30 Hz 

compared to 20 Hz. The initial rate of cocrystal formation  
��

�	
 for milling at 30 Hz was about 4.1 % 

min-1, while for 20 Hz it was 0.7 % min-1. The accelerating effect of a higher milling frequency on 

the reaction rate has been shown before32 and is related to better mixing of the reactants and 

removal of the product from the reactant interface. Furthermore, milling with a higher frequency 

may introduce higher energy to the reaction system by creating crystal defects, strains and reducing 

the average particle size28,29. A higher density of defects in the crystallites would consequently lead 

to a larger amount of possible nucleation sites. The relevance of nucleation sites created during 

milling is also confirmed by the decrease of induction times with increasing milling frequency. The 

induction time (extrapolated intersection of the wcocrystal curve with the time axis) for the reaction at 

20 Hz was ca. 17 min, while at 25 Hz it was ca. 10 min and at 30 Hz – only about 2–3 min.   

In addition, milling in the ball mills creates a time dependent temperature gradient as a result 

of friction. The higher is the milling frequency, the higher temperature is achieved. For example, 

the temperature during milling at our typical experimental conditions for 200 min with 30 Hz 

reached 49−51°C while it reached only 33−34 °C during milling for 200 min at 20 Hz. The increase 



of the temperature during the reaction increases the vapour pressure of benzoic acid, which 

undergoes sublimation, therefore uniform experimental conditions are not maintained through the 

experiment. The vapour pressure of benzoic acid increases exponentially with the temperature.63 It 

proved difficult to achieve a complete conversion to a cocrystal and a loss of benzoic acid from the 

solid samples was observed. Both observations may be attributed to an equilibrium between solid 

and gas phase benzoic acid: 

 

Scheme 1. A schematic representation of the isoniazid – benzoic acid cocrystallisation 

reaction  

The effect of RH on the rate of cocrystallisation in pre-milled mixtures. Analysis of the 

milling products of isoniazid and benzoic acid showed that cocrystallisation in these samples 

continued after stopping the mechanical treatment and its rate depended on relative humidity. 

Samples milled for 5 minutes with 20 and 25 Hz frequency were chosen for further analysis, since 

no observable conversion to cocrystal occurred at these milling conditions (Figure 3). The impact of 

the humidity on the rate of cocrystallisation was investigated by storing such pre-milled samples at 

60%, 70% and 80% RH, 40 °C and recording sequential powder diffraction patterns. The amount of 

cocrystal in the sample as a function of time (Figure 4) was determined from the quantitative 

analysis of PXRD data. 



 

Figure 4. Conversion fraction wcocrystal as a function of time in a pre-milled (20 Hz and 25 Hz 

for 5 min) isoniazid and benzoic acid mixture at 40°C and 60%, 70% and 80% RH. 

The accelerating effect of increasing RH on the cocrystallisation kinetics implies that 

moisture facilitates the reaction. Since water is not included in the product crystal structure, it may 

serve as an intermediary solvent or as a plasticizer. At the early stages of the reaction the surface of 

the sample is readily available for the vapour and the reaction is facile and fast. However, the 

reaction slows down with an increasing amount of the product, which makes water access more 

difficult. Furthermore, as the amount of reactants in the sample decreases, the rate of cocrystal 

formation is reduced by the hampered migration of the reactants. 

Since PXRD does not provide information on water uptake by the sample, the DVS method 

was used to observe the moisture sorption by physical mixtures of isoniazid and benzoic acid 

(Figure 5).  The sorption–desorption isotherms at different temperatures (30, 40 and 50 ºC) do not 

show observable water sorption below RH=80%. However, even very small (undetectable by DVS) 

amounts of water can plasticize the surface of crystallites and promote reactions at their interfaces.  



 

Figure 5. The water sorption – desorption isotherms of isoniazid and benzoic acid physical 

mixtures at 30, 40 and 50 °C. The blue line shows the relative humidity programme, the other lines 

indicate the relative weight of the samples (w) in reference to their initial, dry weight. 

Interestingly, the DVS isotherms show a linear mass loss throughout the experiment resulting 

from the sublimation of benzoic acid even at temperatures as low as 30 ºC. The temperature 

dependent vaporisation of benzoic acid implies that heating results in a higher vapour pressure 

which can lead to a faster reaction involving a gas phase reactant. Later, however, the loss of 

benzoic acid from the solid sample causes decomposition of the cocrystal as has been shown by our 

previous experiments.53 

The surface reaction on isoniazid crystallites at elevated humidity. The DVS results 

indicate that moisture expedites the reaction by modifying surface properties rather than by partially 

dissolving the crystallites. In order to understand better the surface processes leading to 

cocrystallisation, the response of isoniazid surface to the presence of water and benzoic acid 

vapours was investigated using an atomic force microscope equipped with a custom-made humidity 

enclosure. Figure 6a shows AFM images of an isoniazid single crystal under ambient conditions 

(50% RH) and after storing the same crystal at 78% RH for two days, together with histograms of 

the height distributions for each image.  



 

Figure 6. AFM height (a) and adhesion (b) images and histograms of height and adhesion 

values in the image data, of isoniazid crystal surface at 50% and 78% RH. Scale bar in each case is 

2000 nm; z-scales in the images are 500 nm and 6 nN for the 50% RH images and 1000 nm and 12 

nN for the 78% RH images. Height (c) and adhesion (d) images and histograms of rough and 

smooth regions [corresponding to regions ‘r’ and ‘s’ in (a) and (b)] of the crystal surface after 

storage at 78% RH. Scale bar in each case is 1000 nm; z-scales are 500 nm and 12 nN. 

The height images show that the isoniazid crystal under ambient conditions presents a rough 

(mean height = 172 nm, r.m.s. roughness = 63 nm) surface with salient features. Since the salient 

formations were not displaced by the tip of the AFM cantilever they were assumed to be 

characteristic to the crystal surface. After storing the same crystal at 78% RH for two days, the 

AFM images show increased surface heterogeneity, with a greater overall roughness (mean height = 

310 nm, r.m.s. roughness = 190 nm), but including prominent areas where the surface is much 



smoother. It has been reported elsewhere64 that water adsorption at elevated humidity leads to 

reordering and smoothing of the crystal surface for cocrystal materials.  

Figure 6b shows adhesion maps obtained using the QI mode of the AFM for the same areas as 

presented in Figure 6a. These maps show that there is a significant increase in adhesion of the AFM 

probe to the crystal at higher humidity, with the mean adhesion increasing from 0.74 nN (r.m.s. 

adhesion = 0.66 nN) to 2.96 nN (r.m.s. adhesion = 2.57). Both height distribution and the adhesion 

distribution for the sample imaged at high humidity exhibits much greater heterogeneity, with 

regions having adhesion similar to the ambient case alongside regions with much higher adhesion. 

The regions of high adhesion appear to be those with decreased roughness. In the height and 

adhesion images of the high humidity sample we have labelled two regions ‘s’ and ‘r’ for ‘smooth’ 

and ‘rough’, and Figures 6c and 6d present height and adhesion maps of those areas. The 

histograms corroborate our initial observations and demonstrate that those are the smooth regions 

(mean height = 597 nm, r.m.s. roughness = 58 nm) that have high adhesion (mean adhesion = 5.71 

nN, r.m.s. adhesion = 3.23 nN), consistent with the interpretation that the smoothed regions are the 

result of water sorption by the crystal. 

To test if a surface reaction of isoniazid with benzoic acid vapour could take place, a crystal 

of benzoic acid was placed in a close proximity to an isoniazid crystal.  AFM images were 

recorded, after at least 48 h equilibration, for the isoniazid crystal at ambient conditions (50% RH, 

24 °C), low humidity (28% RH, 24 °C) and elevated humidity (83% RH, 26 °C).  The AFM images 

at ambient and low humidity do not show considerable differences in the isoniazid surface 

morphology (Figure 7) and the same features can be identified.  



 

Figure 7. AFM height (a) and adhesion (b) images and histograms of height and adhesion 

values in the image data of isoniazid crystal surface in the presence of benzoic acid at 50%, 28% 

and 83% RH. Scale bar in each case is 2000 nm; z-scales are 1000 nm and 6 nN. 

The height and adhesion values for measurements at these conditions were also similar (mean 

heights 416 and 389 nm, r.m.s. roughnesses 95 and 73 nm; mean adhesions 0.49 and 0.81 nN, r.m.s. 

adhesions 0.37 and 0.54 nN, respectively). At elevated humidity (83% RH), however, new more 

pronounced salient formations on the surface of isoniazid were observed. The adhesion of the 

surface in the high humidity experiment was found to be slightly higher (mean adhesion = 1.17, 

r.m.s. adhesion = 0.88 nN) compared to adhesion at low and ambient humidity.  These observations 



imply that at elevated humidity the adsorption of water promotes molecular rearrangements in the 

surface layer. In the absence of benzoic acid this results in recrystallization of the crystal surface. In 

the presence of benzoic acid, however, the moisture facilitates the reaction with benzoic acid as it 

vaporizes and is deposited on the surface of the isoniazid crystal. Therefore, a cocrystallisation of 

two compounds appears possible even without direct contact between their crystallites. Similar 

observations have been reported for halogen bonding systems, which formed cocrystals via physical 

vapour deposition.65   

Effect of temperature on the rate of isoniazid – benzoic acid cocrystallisation. Another 

parameter that can significantly influence the rate of cocrystal formation is temperature. In the case 

of the isoniazid and benzoic acid cocrystal, increasing temperature not only supplies more energy, 

but also raises the vapour pressure of benzoic acid. Both the reaction rate and the degree of 

vaporization can be deduced from variable temperature PXRD experiments. Kinetic data were 

acquired for pre-milled (5 min, 20 Hz) samples at 35, 40, 45, 50 and 55 ºC (Figure 8). 

 

Figure 8. Conversion fraction wcocrystal as a function of time for isoniazid–benzoic acid 

cocrystal formation from pre-milled mixtures (20 Hz, 5 min) at 35, 40, 45, 50 and 55 °C 

temperature and 60% RH. 



The kinetic data presented in Figure 8 confirm the significant effect of temperature on 

cocrystallisation kinetics and show that the initial rates (
��

�	
) increase exponentially with temperature 

(Figure S3 in Supporting Information). The vaporisation of benzoic acid during the reaction is 

confirmed by a lower crystalline acid content (mol %) compared to isoniazid in all cocrystallisation 

experiments (Figure S4 in Supporting Information, determined by PXRD). Isoniazid reacts with 

benzoic acid in the stoichiometric ratio of 1:1, so in the absence of benzoic acid vaporisation the 

amount of both compounds would decrease equally. The kinetic experiments discussed above were 

performed at RH=60%. To investigate if the formation of the cocrystal can take place without the 

assistance of water vapour, further experiments in dry air were performed. 

Pre-milled (20 Hz, 5 min) isoniazid and benzoic acid 1:1 mixtures were placed in desiccators 

with P2O5 at 30, 50 and 70 ºC temperature. It was found that the cocrystallisation takes place even 

at 0% RH, as shown by PXRD patterns recorded for pre-milled mixtures after keeping samples at 

these conditions for 24 h (Figure 9).  

 

Figure 9. PXRD patterns of isoniazid–benzoic acid 1:1 milled (20 Hz, 5 min) mixture before 

and after storing at 0% RH and 30 ºC, 50 ºC and 70 ºC temperature for 24 h. 

The cocrystal content in the sample after storage at 30 ºC for 24 h was 12% while at 50 ºC the 

cocrystal content in the sample reached 76%. At 70 ºC a full conversion was achieved. A small 

amount of excess isoniazid, however, was found to be present in the latter sample, because part of 



benzoic acid had vaporized. These experiments show that cocrystallisation is possible without the 

presence of water vapour; however, it is slow at ambient temperatures compared to reactions at 

elevated humidity. During longer storage periods (more than 1 week) a decrease in the amount of 

cocrystal was observed, indicating decomposition of the cocrystal at 50 ºC and 70 ºC. The presence 

of benzoic acid was not observed in the PXRD patterns of the decomposition product, suggesting 

that it vaporizes upon, or immediately after, decomposition. 

Since at elevated temperature cocrystallisation can occur through eutectic melting31, hot stage 

microscopy experiments were conducted to assess this possibility. The HSM micrographs in Figure 

10 show a stepwise depiction of the eutectic melting and the following cocrystallisation from melt. 

 

Figure 10. Cocrystal formation from the eutectic melt of isoniazid and benzoic acid at 90 ºC 

after (a) 0 min; (b) after 0.6 min; (c) after 1.4 min; (d) after 3.7 min; (e) after 6.15 min; (f) after 20 

min. 

At 90°C a rapid formation of liquid phase around the cocrystal components was observed. 

After the eutectic melting, a new cocrystal recrystallizes from the melt. Since the eutectic melting 



takes place only at 90 °C the cocrystallisation during milling or temperature assisted experiments is 

not expected to occur through melting.  

The effect of pre-milling frequency on the rate of isoniazid–benzoic acid 

cocrystallisation. The experiments conducted for pre-milled samples at elevated humidity showed 

that the frequency of pre-milling has a significant effect on the rate of cocrystallisation. The 

contribution of this parameter was investigated in detail by milling the reaction mixture for 5 

minutes with various frequencies (20, 25 and 30 Hz) and measuring the cocrystallisation rate in the 

milling products at 40 ºC and 60% RH (Figure 11).   

 

Figure 11. Conversion fraction wcocrystal as a function of time for isoniazid–benzoic acid 

cocrystal formation from mechanochemically activated compounds at 40 °C and 60% RH for 

various pre-milling frequencies (20, 25, 30 Hz). 

The cocrystallisation in mechanically activated mixtures proceeds without an apparent 

induction time (Figures 4 and 8) implying that the nucleation of the cocrystal is initiated by milling. 

PXRD analysis of the fresh samples milled at 20 or 25 Hz for 5 min does not show detectable 

amounts of cocrystal and the sample milled at 30 Hz contains ≈14% cocrystal (Figure 1). After 

storing pre-milled samples in the humidity chamber their composition rapidly changes as the 



cocrystal is formed; and the higher has been the milling frequency, the faster is the conversion. The 

accelerating effect of milling is a result of reduced particle size, crystal defects, strains and mixing 

of the compounds.28,29 The higher is the frequency of milling, the smaller particle size and larger 

surface area are achieved. The changes in particle size and morphology introduced by milling to 

isoniazid and benzoic acid crystallites were observed using scanning electron microscopy (Figure 

12).  

 

Figure 12. SEM images of (a) benzoic acid (75 – 150 µm fraction); (b) benzoic acid after 

milling (30 Hz, 5 min); (c) isoniazid (75 – 150 µm fraction); (d) isoniazid after milling (30 Hz, 5 

min). 

Although only the 75 – 150 µm fraction of sieved isoniazid and benzoic acid samples was 

used for all experiments, the particle size distribution of these samples varies in a wide range 

(Figure 12, a and c). As expected, milling reduces the average particle size in the sample (Figure 12, 

b and d). The crystallites no longer exhibit the distinct crystal habit characteristic to isoniazid and 

particle surfaces after milling appear rougher, indicating that surface defects may form during 

milling. A higher density of such defects after milling increases the sublimation rate66 of a 

compound. As benzoic acid tends to sublime, its vaporization behaviour after milling (30 Hz, 5 

min) was observed using an optical microscope (Figure S5 in Supporting Information). The smaller 



crystallites gradually disappeared from the milled sample even at room temperature and their 

disappearance became obvious in less than 2 hours.  

Cocrystallisation at elevated humidity without mechanical activation. Although a 

significant dependence of cocrystallisation rates on the pre-milling frequency was observed, it was 

not clear how fast these reactions were compared to the reaction in physical mixture. 

In order to estimate the reaction rate in unmilled samples, 1:1 physical mixtures of isoniazid 

and benzoic acid were stored and maintained at 30 °C and RH of 38%, 58%, 75%, 84% and 97%. 

Diffraction patterns of the samples were recorded periodically over a period of 27 days. Figure 13 

shows the conversion fraction in these samples as a function of storage time.  

 

Figure 13. Conversion fraction wcocrystal as a function of time for isoniazid–benzoic acid 

cocrystal formation in physical mixtures at various relative humidity (38%, 58%, 75%, 84% and 

97%) at 30 °C. 

The results of this experiment show that cocrystallisation without mechanical activation is 

considerably slower compared to cocrystal formation in a pre-milled mixture. Even at high RH 

values (above 84% RH, 30 °C), the cocrystallisation requires several days for the product yield to 

exceed 80%, while it takes only about 1 hour for mechanically activated reactants at 80% RH (at 



40 °C). A significant induction time (several days) for these experiments is observed at lower RH 

values (lower than 75% RH). The slow cocrystallisation and the long induction time confirm the 

importance of mechanochemical treatment to initiate cocrystallisation and to activate reactants by 

introducing additional energy in the form of crystal defects67 and larger surface area. The 

cocrystallisation in physical mixtures and its rate dependence on relative humidity concur with the 

results of AFM experiments and suggest that the new phase formed on the surface of isoniazid 

crystals at elevated humidity in the presence of benzoic acid vapour was the cocrystal.  

Kinetics of isoniazid–benzoic mechanochemical cocrystallisation under conditions of 

magic angle spinning. We used solid-state NMR to obtain molecular level details of 

cocrystallisation of isoniazid and benzoic acid. During these experiments an accelerating effect of 

magic angle spinning (MAS) on the cocrystallisation rate was observed. To estimate the extent of 

this effect, measurements at different MAS rates were performed and compared for both pre-milled 

and unmilled samples. The comparison was based on the intensity changes of the peak of the 

benzoic acid carboxyl group. This peak was selected, because the carbon of the carboxyl group does 

not have directly attached protons and therefore, intensities of the corresponding peaks are least 

affected by kinetics of the magnetization.68 The use of the MAS rate of 10 kHz for the acquisition of 

1H-13C CP/MAS NMR spectra of the mechanically activated mixture of benzoic acid and isoniazid 

lead to ca. 50% decrease of the amount of benzoic acid in the reacting mixture after 30 hours. The 

decrease of benzoic acid content at the MAS rate of 5 kHz was significantly lower – only 28% 

(Figure 14). These observations are corroborated by the increased intensity of the peaks attributable 

to the cocrystal and the decrease of isoniazid peak intensities (Figures S8 and S9, Tables S1 and S2 

in the Supporting Information). In contrast, the unmilled physical mixture of isoniazid and benzoic 

acid showed no conversion into the cocrystal under either 5 or 10 kHz MAS speed for over 18 hours 

(Figures S6 and S7 in Supporting Information).   



 

Figure 14. Comparison of the normalised peak intensity at 172.3 ppm attributable to benzoic 

acid during cocrystallisation under MAS conditions at 5 and 10 kHz spinning rates.    

The impact of humidity and temperature changes on the cocrystallisation rate under MAS 

conditions was practically eliminated as each sample was spun in dry compressed air (dew point –

80 °C) in tightly sealed rotors and the experimental temperature was maintained at 25 °C. Similarly 

to other results discussed before these experiments confirm the promotive effect of mechanical 

treatment on cocrystallisation. 

Conclusions 

We have demonstrated a spontaneous cocrystallisation with a volatile compound, as 

illustrated by the reaction between isoniazid and benzoic acid. This reaction is accelerated by 

environmental conditions, such as elevated relative humidity or temperature and by 

mechanochemical activation. The rate and the mechanism of cocrystallisation are also influenced by 

the vaporisation of benzoic acid, as it undergoes temperature dependent sublimation. The results 

indicate that volatile solid compounds can initiate a surface reaction by first being deposited on the 

crystallites of the other cocrystal former. Such surface reactions benefit from the presence of 

moisture, which facilitates molecular movements via the adsorption of small amounts of water. 

Cocrystallisation is also enhanced by mechanical activation of the reaction mixture. The long 



induction time characteristic to cocrystallisation in physical mixtures was not observed for pre-

milled samples, indicating that nucleation had taken place during the mechanical treatment. 

Therefore, an efficient method for the preparation of the isoniazid–benzoic acid cocrystal would 

include co-milling the cocrystal components (with an excess benzoic acid) and storing the product 

at elevated humidity for a short period of time to achieve complete conversion. The storage period 

should not exceed a couple of hours to avoid vaporisation of benzoic acid, which can lead to 

decomposition of the cocrystal.  

This study expands the current understanding of heterogeneous supramolecular reactions and 

contributes to a better understanding of cocrystal formation, stability and decomposition. These are 

important to the design of stable drug formulations, as unpredicted spontaneous cocrystallisation or 

cocrystal decomposition can lead to changes in product composition, followed by implications on 

patient health. Meanwhile, a comprehensive understanding of these processes allows optimizing the 

experimental conditions and technologies for cocrystal preparation. 
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