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We give certain properties which are satisfied by the descend-
ant set of a vertex in an infinite, primitive, distance transitive 
digraph of finite out-valency and provide a strong structure 
theory for digraphs satisfying these properties. In particular, 
we show that there are only countably many possibilities 
for the isomorphism type of such a descendant set, thereby 
confirming a conjecture of the first Author. As a partial 
converse, we show that certain related conditions on a 
countable digraph are sufficient for it to occur as the 
descendant set of a primitive, distance transitive digraph.
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1. Introduction

1.1. Background and main results

We begin with an overview of the paper. Most of the terminology is standard and 
definitions can be found in the next subsection.
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We are interested in the construction and classification of infinite, vertex transitive 
directed graphs of finite out-valency whose automorphism groups have additional tran-
sitivity properties, such as primitivity, distance transitivity or high arc transitivity. In 
contrast to the finite case where powerful tools from finite group theory are available, 
there is no possibility of a complete description of such digraphs. Instead, our results 
will focus on the structure of the descendant set of a vertex in such a digraph: this is 
the induced subdigraph on the set of vertices reachable from the given vertex by an 
outward-directed path. Much of the motivation for the work comes from questions of 
Peter M. Neumann on infinite permutation groups, and work on highly arc transitive 
digraphs originating in [6].

In [11], Neumann asked whether there exists a primitive permutation group having an 
infinite suborbit which is paired with a finite suborbit. This amounts to asking whether 
there is a digraph with infinite in-valency and finite out-valency whose automorphism 
group is transitive on edges and primitive on vertices. Countable digraphs of this sort 
were constructed in [8] using amalgamation methods developed in model theory (cf. [5]
for background on such methods). In these examples, the descendant sets are directed 
trees, and the resulting examples are also highly arc transitive. Similar methods were 
used in [7] to construct continuum-many non-isomorphic countable, primitive, highly arc 
transitive digraphs all with isomorphic descendant sets. So this suggests that a classifi-
cation of such digraphs is out of the question, even under the very strong assumption of 
high arc transitivity. Nevertheless, Neumann (private communication) suggested that a 
classification of the descendant sets in these digraphs might be possible, at least under 
stronger hypotheses on the automorphism group of the digraph.

Descendant sets in highly arc transitive digraphs of finite out-valency were studied 
by the first Author in [1,2], following on from results obtained by Möller for locally 
finite, highly arc transitive digraphs in [10]. This work isolates a small number of quite 
simple properties (essentially P0, P1, P3 of Section 3 here) satisfied by such descendant 
sets and shows that these properties have rather strong structural consequences. In 
particular, the descendant set admits a non-trivial, finite-to-one homomorphism onto a 
tree. Digraphs having the given properties, but which are not trees are constructed in 
[2,10]. Moreover (imprimitive) highly arc transitive digraphs having these as descendant 
sets are constructed in [2–4].

It was conjectured in [2] that there are only countably many directed graphs with 
the properties for a descendant set isolated in [2]. In Section 2 we reprove some of the 
results of [2] in a slightly wider context and prove the conjecture. In particular, we have 
the following (note that a highly arc transitive digraph is distance transitive).

Theorem 1.1. Suppose that D is a distance transitive digraph of finite out-valency. As-
sume either that D has infinite in-valency, or that it has no directed cycles. Let Γ = ΓD

be the descendant set of D. Then there are natural numbers k(Γ) and M(Γ) with the prop-
erty that if Γ≤M(Γ) denotes the induced subdigraph on the set of vertices in Γ which can 



JID:YJCTB AID:2909 /FLA [m1L; v1.149; Prn:30/03/2015; 18:59] P.3 (1-18)
D. Amato, D.M. Evans / Journal of Combinatorial Theory, Series B ••• (••••) •••–••• 3
be reached from the root by a directed path of length at most M(Γ), then Γ is determined 
up to isomorphism by k(Γ), M(Γ) and the finite digraph Γ≤M(Γ).

The proof of this is given at the end of Section 2. Together with Corollary 4.4 of [4], it 
gives a reasonable picture of the descendant sets in distance transitive digraphs of finite 
out-valency and infinite in-valency: conditions P0, P1, P3 are necessary and sufficient 
conditions for a digraph to be a descendant set in such a digraph, and there are only 
countably many digraphs satisfying these conditions.

In Section 3 we are interested in descendant sets under the additional assumption of 
primitivity. Then main result is:

Theorem 1.2. Suppose that a digraph Γ of finite out-valency satisfies conditions P0, 
P1, P2, P3. Then there is a countable primitive digraph DΓ of infinite in-valency with 
descendant set Γ.

The construction of DΓ is as in the paper [8], where the descendant set Γ is a tree. 
However, the proof of primitivity in the general case is much harder than in [8], and this 
is where the novelty lies in the above result. We do not know whether the condition P2 
on Γ is a necessary condition here, but it is satisfied by all of the examples constructed 
in Section 5 of [2]. So this gives new examples of descendant sets in primitive (and even 
highly arc transitive) digraphs of finite out-valency and infinite in-valency. It would of 
course be interesting to find necessary and sufficient conditions on the descendant set 
in a primitive distance transitive digraph of finite out-valency and infinite in-valency. 
It would be even more interesting to know whether anything can be said without the 
assumption of distance transitivity.

1.2. Notation and terminology

A digraph (D; E(D)) consists of a set D of vertices, and a set E(D) ⊆ D×D of ordered 
pairs of vertices, the (directed) edges. Our digraphs will have no loops and no multiple 
edges. We will think of a subset X of the set D of vertices as a digraph in its own right 
by considering the full induced subdigraph on X (so E(X) = E(D) ∩X2). Throughout 
this paper, ‘subdigraph’ will mean ‘full induced subdigraph’. Thus henceforth, we will 
not usually distinguish notationally between a digraph and its vertex set. In particular, 
we will usually refer to the digraph (D; E(D)) simply as ‘the digraph D’. Note that this 
is a different convention from the usual notation D = (V D; ED). Furthermore, we will 
use notation such as ‘α ∈ D’ to indicate that α is a vertex of the digraph D.

We denote the automorphism group of the digraph D by Aut(D). We say that D is 
transitive (respectively, edge transitive) if this is transitive on D (respectively, E(D)). 
We say that D is primitive if Aut(D) is primitive on D, that is, there are no non-trivial 
Aut(D)-invariant equivalence relations on D.
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The out-valency of a vertex α ∈ D is the size of the set {u ∈ D : (α, u) ∈ E(D)} of 
out-vertices of α; similarly, the in-valency of α is the size of the set {u ∈ D : (u, α) ∈
E(D)} of in-vertices. Let s ≥ 0 be an integer. An s-arc from u to v in D is a sequence 
u0u1 . . . us of s + 1 vertices such that u0 = u, us = v and (ui, ui+1) ∈ ED for 0 ≤ i < s

and ui−1 �= ui+1 for 0 < i < s. Usually our digraphs will be asymmetric, in which case 
this last condition is redundant. We denote by Ds(u) the set of vertices of D which are 
reachable by an s-arc from u. The descendant set D(u) (or desc(u)) of u is 

⋃
s≥0 D

s(u). 
Similarly the set anc(u) of ancestors of u is the set of vertices of which u is a descendant.

In particular, fix α ∈ D, and let Γ = D(α). If Aut(D) is transitive on the set of 
vertices of D, then D(u) ∼= Γ for all vertices u, and we shall speak of the digraph Γ as 
the descendant set of D.

We say that the digraph D is highly arc transitive if for each s ≥ 0, Aut(D) is transitive 
on the set of s-arcs in D. Following [9], we say that a digraph D is (directed)-distance 
transitive if for every s ≥ 0, Aut(D) is transitive on pairs (u, v) for which there is an s-arc 
from u to v, but no t-arc for t < s. Note that this implies vertex and edge transitivity, 
but is weaker than being highly arc transitive. We generally exclude the case of null 
digraphs, where there are no edges.

Henceforth, we shall be interested in the structure of a descendant set Γ = Γ(α) of a 
vertex α in some transitive digraph D with finite out-valency m. We will be considering 
this as a digraph with its full induced structure from D. We refer to α as the root of Γ
and write Γ = Γ(α) to indicate that any vertex of Γ is a descendant of α. Similarly, we 
write Γi instead of Γi(α) for the set of vertices reachable by an i-arc starting at α and 
if β ∈ Γ(α), then we write Γ(β) = desc(β) ⊆ Γ(α). It is clear that if D is highly arc 
transitive, then Aut(Γ(α)) is transitive on s-arcs in Γ(α) which start at α. Similarly, if 
D is distance transitive, then Aut(Γ(α)) is transitive on Γn(α) for each n ∈ N.

2. The structure of descendant sets

2.1. Preliminaries

We work with digraphs Γ having the following properties:

G0 Γ = Γ(α) is a rooted digraph with finite out-valency m > 0 and Γs(α) ∩ Γt(α) = ∅

whenever s �= t.
G1 Γ(u) ∼= Γ for all u ∈ Γ.
G2 For n ∈ N we have |Γn(α)| < |Γn+1(α)|.
G3 There is an integer k ≥ 1 such that if � ≥ k and x ∈ Γ�(α) and z ∈ Γ(x), then 

anc(z) ∩ Γ1(α) = anc(x) ∩ Γ1(α).

We shall see that conditions G0, G1, G3 hold when Γ is the descendant set in a 
distance transitive digraph of finite out-valency and infinite in-valency (Corollary 2.5). 
The minimum possible k in G3 is the parameter k(Γ) which appears in Theorem 1.1. If 
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k(Γ) = 1 then Γ is a directed tree, however Section 5 of [2] constructs digraphs Γ(Σ, t)
satisfying G0–G3 with arbitrary value for k(Γ(Σ, t)).

A priori there could be continuum-many isomorphism types of digraphs with these 
properties. Our main result in this section (Theorem 2.15) is that there are only countably 
many isomorphism types of digraph Γ which satisfy G0, G1 and G3. To establish this, 
we show that there is a natural equivalence relation ρ on Γ (refining the ‘layering’ of Γ
given by G0) such that the quotient digraph Γ/ρ is a directed tree. If G2 holds then this 
is not a directed line and the size of the layers Γn grows exponentially.

Lemma 2.1. Suppose D is a (non-null) digraph of finite out-valency which has no directed 
cycles and is distance transitive. Then any descendant set Γ(α) in D satisfies G0.

Proof. This is the same as the proof of Proposition 3.10 in [6], so we omit the details. �
Lemma 2.2. Suppose D is a digraph of finite out-valency with a directed cycle and whose 
automorphism group is either primitive on vertices or transitive on edges. Then D has 
finite in-valency.

Proof. First, suppose that D is edge-transitive. Then there is a K such that every edge 
of D is in a directed K-cycle. Let α ∈ D. Then every in-vertex β of α is in DK−1(α). 
But this set is finite, as D has finite out-valency.

Now suppose D is vertex-primitive. Consider the relation ∼ on D given by u ∼ v ⇔
u ∈ D(v) and v ∈ D(u). This is an Aut(D)-invariant equivalence relation on D and as 
D contains a directed cycle, its classes are not singletons. Thus, by primitivity u ∼ v for 
all u, v ∈ D. In particular, every edge of D is contained in a cycle. We can then argue 
as in the first case. �
Lemma 2.3. Suppose Γ satisfies G0, G1 and that for each i ∈ N the automorphism group 
Aut(Γ) is transitive on Γi. Then Γ satisfies G3.

Proof. For x ∈ Γi, let ti = |anc(x) ∩ Γ1|. By the transitivity assumption, this depends 
only on i. As anc(x) ∩ Γ1 ⊆ anc(z) ∩ Γ1 when z ∈ Γ(x), we have t1 ≤ t2 ≤ t3 ≤ . . . ≤ m. 
Choosing k so that tk is as large as possible, the result follows. �
Remark 2.4. Note that in the above if G2 also holds, then ti < m. Otherwise, for β ∈ Γ1

we have Γi−1(β) = Γi(α) and so |Γi−1| = |Γi| (by G1), contradicting G2.

Corollary 2.5. Suppose D is a distance transitive digraph of finite out-valency m > 0 and 
is either of infinite in-valency, or has no directed cycles. Then the descendant set Γ in 
D satisfies G0, G1, G3. If the automorphism group of D is also primitive on vertices, 
then m > 1 and Γ satisfies G2.
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Proof. By Lemma 2.2, if D has infinite in-valency then D has no directed cycles, so by 
Lemma 2.1, Γ satisfies G0. As D has transitive automorphism group, G1 holds. Distance 
transitivity implies that Aut(Γ) is transitive on each Γi, so G3 holds.

Suppose Aut(D) is primitive on vertices of D. If G2 does not hold for some n, then for 
β, β′ ∈ Γ1(α) we have Γn(β) = Γn+1(α) = Γn(β′). If m > 1, then this gives a non-trivial 
equivalence relation on the vertices of D which is preserved by Aut(D), and we have a 
contradiction to primitivity. So it remains to show that m > 1. But if m = 1, then the 
underlying (undirected) graph of D has no cycles. This contradicts primitivity of Aut(D), 
as it implies that being at even distance in the underlying graph is an equivalence relation 
on the vertices. �
2.2. Structure theory

Throughout this section we assume that Γ satisfies G0, G1, G3. We let k be an integer 
satisfying the condition in G3. The proofs in this section are all adapted from [2].

Lemma 2.6. Suppose n is a non-negative integer, β ∈ Γn(α), � ≥ k, x ∈ Γn+�(α) and 
z ∈ Γ(x) ∩ Γ(β). Then x ∈ Γ�(β).

Proof. This is by induction on n. The case n = 0 is trivial as then β = α. In general let 
γ ∈ Γn−1(α) be an ancestor of β. By induction hypothesis, x ∈ Γ�+1(γ). Now work with 
Γ(γ) ∼= Γ (by G1). As � ≥ k and z ∈ Γ(x) we have anc(z) ∩ Γ1(γ) = anc(x) ∩ Γ1(γ) (by 
G3 in Γ(γ)). So β ∈ anc(x), that is x ∈ Γ(β). As β ∈ Γn(α) and x ∈ Γn+�(α), it follows 
from G0 that x ∈ Γ�(β), as required. �
Definition 2.7.

(1) Suppose β ∈ Γ, x ∈ Γn(β) and s ≤ n. Define

Γ−s
β (x) = {w ∈ Γn−s(β) : x ∈ Γ(w)}.

(2) For � ≥ k and x, y ∈ Γ�(α) write ρ(x, y) iff

Γ−k+1
α (x) = Γ−k+1

α (y).

(Say that ρ(x, y) does not hold in all other cases.)

So for x, y ∈ Γ�(α) we have that ρ(x, y) holds iff x, y have the same ancestors in 
Γ�−k+1(α). Clearly ρ is an Aut(Γ)-invariant equivalence relation on 

⋃
�≥k Γ�.

Lemma 2.8. Suppose � ≥ k and x, y ∈ Γ�(α). If Γ(x) ∩ Γ(y) �= ∅, then ρ(x, y)
holds.



JID:YJCTB AID:2909 /FLA [m1L; v1.149; Prn:30/03/2015; 18:59] P.7 (1-18)
D. Amato, D.M. Evans / Journal of Combinatorial Theory, Series B ••• (••••) •••–••• 7
Proof. Note that the result holds for � = k by G3.
Suppose � = n + k with n ≥ 1 and that z ∈ Γ(x) ∩ Γ(y). Let B = {β ∈ Γn(α) : z ∈

Γ(β)}. If β ∈ B, then by Lemma 2.6, x, y ∈ Γk(β). Thus (by the case � = k in Γ(β)) 
we have anc(x) ∩ Γ1(β) = anc(y) ∩ Γ1(β). But Γ−k+1

α (x), Γ−k+1
α (y) ⊆

⋃
β∈B Γ1(β). Thus 

Γ−k+1
α (x) = Γ−k+1

α (y), so ρ(x, y). �
For � ≥ k and x ∈ Γl(α) we write [x]ρ for the ρ-equivalence class containing x. 

We use notation such as v, w etc. for such classes and write Γ(u) =
⋃

x∈u Γ(x) and 
Γs(u) =

⋃
x∈u Γs(x).

Lemma 2.9. Suppose � ≥ k and v ⊆ Γ�(α) is a ρ-class. Let w ∈ Γ(v). Then [w]ρ ⊆ Γ(v).

Proof. It suffices to prove this when w ∈ Γ�+1(α). So suppose that (v, w), (v′, w′)
are directed edges and ρ(w, w′) holds. We need to show that ρ(v, v′) holds. Let A =
Γ−1
α (w) and A′ = Γ−1

α (w′). By Lemma 2.8, A ⊆ [v]ρ and A′ ⊆ [v′]ρ. By definition, 
Γ−k+1
α (w) =

⋃
a∈A Γ−k+2

α (a) and Γ−k+1
α (w′) =

⋃
a′∈A′ Γ−k+2

α (a′). So 
⋃

a∈A Γ−k+2
α (a) =

⋃
a′∈A′ Γ−k+2

α (a′), as ρ(w, w′) holds. It follows (by taking ancestors one level back) that 
⋃

a∈A Γ−k+1
α (a) =

⋃
a′∈A′ Γ−k+1

α (a′). But as A ⊆ [v]ρ, the left hand side is equal to 
Γ−k+1
α (v) and similarly the right hand side is equal to Γ−k+1

α (v′). Thus ρ(v, v′) holds. �
Corollary 2.10. Suppose � ≥ k and v ∈ Γ�(α). Let v be the ρ-class containing v. Then 
the quotient digraph Γ(v)/ρ is a rooted directed tree with finite out-valencies.

Proof. The statement follows from Lemmas 2.8 and 2.9. �
Note that for β ∈ Γ(α) we can consider the equivalence relation ρ computed in both 

Γ(α) and Γ(β), where in the latter we only consider ancestors in Γ(β) when defining ρ: 
a priori this gives a coarser relation.

Lemma 2.11. Suppose β ∈ Γn(α) and x ∈ Γ�(β) with � ≥ 2k − 1. Then the ρ-class 
containing x is the same whether it is computed in Γ(α) or Γ(β).

Proof. Note that x ∈ Γn+�(α). First observe that if y ∈ [x]ρ (computed in Γ(α)) then 
x, y have the same ancestors in Γn+�−k+1(α) and so also in Γn(α): in particular y ∈ Γ(β). 
So to prove the statement, it suffices to show that Γ−k+1

β (x) = Γ−k+1
α (x). It is clear from 

the definition that Γ−k+1
β (x) ⊆ Γ−k+1

α (x). Conversely, suppose w ∈ Γ−k+1
α (x). Then 

w ∈ Γn+�−k+1(α) and by assumption n + � − k + 1 ≥ n + k. So by Lemma 2.6 we have 
w ∈ Γ(β) and therefore w ∈ Γ−k+1

β (x). �
Let � ≥ 2k − 1 and let v be a ρ-class in Γ�(α). Let T (v) be the structure consisting 

of the induced digraph on Γ(v) together with the equivalence relation induced by ρ
(coming from Γ(α)). Recall that by Lemma 2.9, T (v) is a union of ρ-classes in Γ(α). If w
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is another ρ-class (in 
⋃

�≥2k−1 Γl(α)) then by a ρ-isomorphism between T (v) and T (w)
we mean a digraph isomorphism which respects ρ.

Corollary 2.12. Suppose v is a ρ-class in Γ�(α) with l ≥ 2k − 1. Then there is a ρ-class 
w in Γ2k−1(α) and a ρ-isomorphism from T (w) to T (v).

Proof. Let v ∈ v and let β ∈ Γ�−2k+1(α) be an ancestor of v. So v ∈ Γ2k−1(β) and by 
Lemma 2.11 it follows that v ⊆ Γ(β). So T (v) ⊆ Γ(β) and the ρ-structure on T (v) is 
the same whether it is computed in Γ(α) or Γ(β). By G1 there is a digraph isomorphism 
from Γ(α) to Γ(β), and this induces a ρ-isomorphism between T (w), for some ρ-class 
w ⊆ Γ2k−1(α), and T (v) ⊆ Γ2k−1(β), as required. �

Thus to any digraph Γ satisfying G0, G1, G3, there are associated a finite number of 
ρ-isomorphism types of T (v). In particular, we can refine Corollary 2.10 to:

Corollary 2.13. Suppose � ≥ 2k−1 and v ⊆ Γ�(α) is a ρ-class. Then the quotient digraph 
T (v)/ρ is a rooted directed tree with a finite number of out-valencies. �
2.3. Counting isomorphism types

We let T be the class of structures T with the following properties

• T is a digraph of finite out-valency and T = T (u) for some finite set u ⊆ T .
• T s(u) ∩ T t(u) = ∅ whenever s �= t.
• There is an equivalence relation ρ on T such that each ρ-class is contained in a layer 

T s(u).
• The quotient digraph T/ρ is a directed forest.
• For every ρ-class w there is a ρ-class v ⊆ u and a ρ-isomorphism between T (v) and 

T (w).

We show:

Theorem 2.14. There are only countably many ρ-isomorphism types of structures in T .

Corollary 2.15. There are only countably many isomorphism types of digraph Γ which 
have properties G0, G1 and G3.

Proof. Fix such a Γ. Let T be the disjoint union of digraphs T (v) with the equivalence 
relation ρ as in the previous section, taking v to be a ρ-class in Γ2k−1. So in fact, 
T =

⋃
�≥2k−1 Γ�. Then T ∈ T , by Corollaries 2.13 and 2.12. Moreover we can recover 

Γ from T by looking at the descendant set of any vertex in T . Thus there are only 
countably many possibilities for Γ, by the above Theorem. �
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We now prove Theorem 2.14. Let T = T (u) ∈ T and let v1, . . . , vr be the ρ-classes in 
T 0 = u. We colour a ρ-class v in T with colour Ci if i is (as small as possible) such that 
T (v) is ρ-isomorphic to T (vi). If d ∈ N, then we denote by Bd

T the digraph on 
⋃

s≤d T
s

together with the structure given by the ρ-classes and the colouring on this set. Similarly 
if v is a ρ-class we denote by Bd

T (v) the corresponding structure on 
⋃

s≤d T
s(v).

In the following, by a ρ − C-isomorphism we mean a digraph isomorphism which 
preserves the relation ρ and the colouring.

Lemma 2.16. For T ∈ T there is a natural number N = NT with the property that if 
d ≥ N , v, v′ are ρ-classes in T and α′ : Bd

T (v) → Bd
T (v′) is a ρ − C-isomorphism, then 

there is a ρ − C-isomorphism α : T (v) → T (v′) with α(x) = α′(x) for all x ∈ v.

Proof. Let A0 be the group of permutations induced on T 0 by ρ −C-automorphisms of 
T which fix each ρ-class in T 0. Similarly for d ≥ 1 let Ad be the group of permutations 
induced on T 0 by ρ − C-automorphisms of Bd

T which fix each ρ-class in T 0. Then Ad ≥
Ad+1 and A0 =

⋂
d Ad, so there is a smallest integer N ≥ 1 with AN = A0. In particular, 

for any ρ-class v in T 0, and d ≥ N , any permutation of v which extends to a ρ −
C-automorphism of Bd

T (v) extends to an automorphism of T (v). The same is therefore 
true for any ρ-class in T .

We show that this N has the required property. So let v, v′, . . . be as in the statement. 
As v, v′ have the same colour, there is some ρ − C-isomorphism β : T (v) → T (v′). Let 
β′ be its restriction to Bd

T (v). Then α′, β′ both have image Bd
T (v′) and γ′ = (β′)−1 ◦ α′

is a ρ − C-automorphism of Bd
T (v). So as d ≥ N there is a ρ − C-automorphism γ of 

T (v) which agrees with γ′ on v. It is easy to check that α = β ◦γ is a ρ −C-isomorphism 
with the required properties. �
Proposition 2.17. Suppose T, S ∈ T and d > NS. If there is a ρ − C-isomorphism from 
Bd

T to Bd
S, then there is a ρ − C-isomorphism from Bd+1

T to Bd+1
S .

Proof. Let Φ : Bd
T → Bd

S be a ρ −C-isomorphism. Note that d ≥ 1. Let v1, . . . , vs be the 
ρ-classes in T 1 and wi = Φ(vi). So w1, . . . , ws are the ρ-classes in S1. For i ∈ {1, . . . , s}
there is a ρ-class ui in T 0 and a ρ − C-isomorphism fi : T (ui) → T (vi). Let zi = Φ(ui)
and α′

i : Bd−1
S (zi) → Bd−1

S (wi) be given by

α′
i(y) = Φ(fi(Φ−1(y))).

So α′
i is a ρ − C-isomorphism. As d − 1 ≥ NS it follows by Lemma 2.16 that there is a 

ρ − C-isomorphism αi : S(zi) → S(wi) which agrees with α′ on zi.
We define Ψ : Bd+1

T → Bd+1
S as follows. For x ∈ T 0 we let Ψ(x) = Φ(x). If x ∈

Bd+1
T \ T 0 then there is a unique i ≤ s with x ∈ Bd

T (vi) and in this case we define

Ψ(x) = αi(Φ(f−1
i (x))).
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It is easy to see that Ψ is a well-defined bijection between Bd+1
T and Bd+1

S . As fi, Φ
and αi all preserve ρ-classes and the colouring, the same is true of Ψ. So it remains to 
show that Ψ preserves edges and non-edges.

First we show that if x ∈ B1
T , then Ψ(x) = Φ(x). If x ∈ T 0 then this is by definition 

of Ψ. If x ∈ T 1 then x ∈ vi for some unique i ≤ s. So f−1
i (x) ∈ ui and Φ(f−1

i (x)) ∈ zi, 
whence

Ψ(x) = αiΦf−1
i (x) = α′

iΦf−1
i (x) = Φ(x).

Thus Ψ preserves edges and non-edges in B1
T .

If x, y ∈ Bd+1
T \ T 0 and (x, y) is an edge, then x, y ∈ Bd

T (vi) for some i. Then 
Ψ(x) = αiΦf−1

i (x) and Ψ(y) = αiΦf−1
i (y) and so, as αi, Φ and fi preserve edges, 

(Ψ(x), Ψ(y)) is an edge in Bd
S. By the same argument, if x, y ∈ Bd

T (vi) and (x, y) is a 
non-edge, then (Ψ(x), Ψ(y)) is a non-edge. Finally, if x, y lie in different Bd

T (vi) then 
Ψ(x), Ψ(y) lie in different Bd

S(wi), so (Ψ(x), Ψ(y)) is a non-edge. �
Corollary 2.18. Suppose T, S ∈ T and Bd

T , Bd
S are ρ − C-isomorphic for some d ≥ NS. 

Then T and S are ρ − C-isomorphic.

Proof. By assumption and Proposition 2.17, for n ≥ NS the set In of ρ −C-isomorphisms 
Bn

T → Bn
S is non-empty. Restriction gives a map In+1 → In and so, as each In is finite, 

König’s Lemma implies that there is a ρ − C-isomorphism T → S. �
Proof of Theorem 2.14. Suppose T ∈ T . As above, consider this with a colouring of the 
ρ-classes. Let N = NT be as in Lemma 2.16. Then by Corollary 2.18, the (coloured) 
ball BN+1

T determines T within T up to isomorphism. There are only countably many 
possibilities for this finite structure, hence the result. �

We now give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let D and Γ = ΓD be as in the statement of the theorem. First, 
we define the numbers k(Γ) and M(Γ). By Corollary 2.5, Γ satisfies G0, G1, G3. Let 
k = k(Γ) be the smallest value of k which satisfies G3 for Γ.

Let w be a ρ-class in Γ2k−1. By distance transitivity, Aut(Γ) is transitive on each Γ�, 
so if � ≥ 2k−1 and v is a ρ-class in Γ�, then there is a ρ-isomorphism from Γ(w) to Γ(v), 
by Corollary 2.12. Let TΓ ∈ T consist of Γ(w) together with its ρ-structure. Note that 
we have only one ‘colour’ Ci used here, so ρ-isomorphisms will be ρ − C-isomorphisms 
in what follows.

Let M(Γ) = 2k(Γ) +NTΓ , where NTΓ is as in Lemma 2.16 (chosen as small as possible). 
Thus, from the proof of Lemma 2.16, NTΓ is the smallest value of N such that any per-
mutation of w which extends to a ρ-automorphism of T≤N

Γ extends to a ρ-automorphism 
of TΓ.
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Now suppose that D1, D2 are distance transitive digraphs satisfying the hypotheses of 
the theorem. Let Γi = ΓDi

and suppose that k(Γ1) = k(Γ2) = k, M(Γ1) = M(Γ2) = M

and θ : Γ≤M
1 → Γ≤M

2 is an isomorphism. As k(Γ1) = k(Γ2), θ gives a ρ-isomorphism 
Γ�

1 → Γ�
2 for k ≤ � ≤ M .

Let wi ∈ Γ2k−1
i be ρ-classes, with θ(w1) = w2. Let Ti = Γi(wi), considered also with 

its ρ-structure. Then NT1 = NT2 = N and θ gives a ρ-isomorphism between the balls 
BN+1

T1
and BN+1

T2
. By Corollary 2.18 (and the above remark on colours) T1 and T2 are 

isomorphic. It then follows that Γ1 and Γ2 are isomorphic, as required. �
3. Constructions

In this section, we prove Theorem 1.2. The construction of the digraphs DΓ is as in 
[8] and we recall briefly some notation and terminology from there.

Suppose D is a digraph and A ⊆ D. We write A ≤ D if for every a ∈ A we have 
desc(a) ⊆ A. We say that A ≤ D is finitely generated (f.g.) if there is a finite X ⊆ A

with A =
⋃

a∈X desc(a), and say that X is a generating set for A.
We write A ≤+ D if A ≤ D and

(i) for every b ∈ D, if desc(b) \A is finite, then b ∈ A;
(ii) for all b ∈ D, desc(b) ∩A is finitely generated.

It is easy to check (cf. Lemma 2.2 of [8]) that if A ≤+ B ≤+ C then A ≤+ C (and 
similarly for ≤).

We work with a digraph Γ having the following properties:

P0 Γ = Γ(γ) is a rooted digraph with finite out-valency m > 0 and Γs(γ) ∩ Γt(γ) = ∅
whenever s �= t.

P1 Γ(u) ∼= Γ for all u ∈ Γ.
P2 For all a ∈ Γ we have desc(a) ≤+ Γ.
P3 For all natural numbers n, Aut(Γ) is transitive on Γn.

Of course, P0 and P1 are the same as G0, G1 and P3 implies G3 (as in Lemma 2.3). 
From Section 2.1, if Γ is the descendant set of a vertex in an infinite, distance transitive 
digraph D of finite out-valency and with no directed cycles then Γ satisfies P0, P1, 
P3. If D is primitive, then (as noted in [2] under the stronger assumption of high arc 
transitivity) Γ satisfies the following weaker version of P2:

P2′ For all a1, a2 ∈ Γ, if Γ(a1) \ Γ(a2) and Γ(a2) \ Γ(a1) are finite, then a1 = a2.

Note in particular that P2 implies that different vertices have different sets of out-
vertices.
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Section 5 of [2] gives examples Γ(Σ, k) which satisfy P0, P1, P2′, P3 and it can be 
checked that these examples also satisfy P2. In this section we prove that if Γ satisfies 
P0–P3, then there is a primitive digraph DΓ with Γ as its descendant set. If Γ has the 
property that Aut(Γ) is transitive on n-arcs from γ (as is the case with the Γ(Σ, k)
from [2]), then the DΓ which we construct will be highly arc transitive.

The construction of DΓ is essentially the same Fraïssé amalgamation class construction 
which was used in [8]. We will recall this briefly, making use of results from [4]. Once we 
have DΓ, the main work of the section will be in proving primitivity of Aut(DΓ).

So suppose Γ satisfies P0–P3. Let C̄Γ consist of the digraphs A with the property that 
for every a ∈ A, desc(a) ≤+ A and desc(a) ∼= Γ. Let CΓ be the finitely generated elements 
of C̄Γ. Note that Γ ∈ CΓ, so in particular, CΓ is non-empty.

If A, B ∈ C̄Γ a digraph embedding f : A → B is called a ≤+-embedding if f(A) ≤+ B. 
We say that ≤+-embeddings fi : A → Bi (for i = 1, 2) are isomorphic if there is a 
digraph isomorphism h : B1 → B2 with f2 = h ◦ f1.

Lemma 3.1. (Cf. 2.14 of [8].) Suppose Γ satisfies P0-P3. Then

(1) there are countably many isomorphism types of digraphs in CΓ;
(2) if A, B ∈ CΓ then there are countably many isomorphism types of ≤+-embeddings 

f : A → B.

Proof. This follows from results in Section 4 of [4]. The digraph Γ satisfies the conditions 
T1, T2, T3, T4 in Theorem 4.3 of [4] (the first three are just P0, P1, P3 and T4 follows 
from these as in Remark 4 of [4]). As in the proof of Corollary 4.4 of [4], it follows 
that Γ satisfies conditions (C1), (C2) of Theorem 4.1 of [4]. Under these conditions, 
Lemma 4.2 of [4] gives the stronger result that there are countably many isomorphism 
types of digraph embeddings f : A → B with A, B ∈ CΓ and f(A) ≤ B. (Note that CΓ
as defined here is a subset of the CΓ defined in Section 4.1 of [4].) The result we want 
follows: for (1), take A = ∅ and (2) is immediate. �

It is easy to show that CΓ is closed under free amalgamation over finitely generated 
≤+-subsets (as in Lemma 2.6 of [8]). More formally, if B1, B2 ∈ CΓ and A ≤+ Bi is f.g., 
then the digraph F which has vertices the disjoint union of B1 and B2 over A and whose 
edges are the edges of B1 and B2 is also in CΓ. Furthermore, B1, B2 ≤+ F . This gives 
the following ≤+-amalgamation property:

Lemma 3.2. Suppose A, B1, B2 ∈ CΓ and fi : A → Bi are ≤+-embeddings (for i =
1, 2). Then there exist F ∈ CΓ and ≤+-embeddings gi : Bi → F with the property that 
g1(f1(a)) = g2(f2(a)) for all a ∈ A. �

Note that if f1 is inclusion, then we can also take g1 to be inclusion here.
Once we have these lemmas, the following existence and uniqueness result is fairly 

standard and we omit some of the details of the proof.
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Theorem 3.3. There is a countable digraph DΓ with the properties:

(1) If a ∈ DΓ then desc(a) ≤+ DΓ and desc(a) ∼= Γ.
(2) If X ⊆ DΓ is finite, there is a f.g. A ≤+ DΓ with X ⊆ A ∈ CΓ.
(3) If A ≤+ DΓ is f.g. and f : A → B ∈ CΓ is such that f(A) ≤+ B then there is 

g : B → DΓ with gf(a) = a for all a ∈ A and g(B) ≤+ DΓ.

Moreover, DΓ is uniquely determined up to isomorphism by these conditions and is 
≤+-homogeneous, meaning that if A1, A2 ≤+ DΓ are f.g. and h : A1 → A2 is an isomor-
phism, then h extends to an automorphism of DΓ.

Proof. Note that (1) here follows from (2). For the existence part, we build a chain of 
digraphs Di ∈ CΓ

D1 ≤+ D2 ≤+ D3 ≤+ . . .

with the property:

(*) if A ≤+ Di is finitely generated and f : A → B is a ≤+-embedding with B ∈ CΓ, 
then there is some j ≥ i and a ≤+-embedding g : B → Dj such that g(f(a)) = a for 
all a ∈ A.

Once we have this, we let DΓ be the union 
⋃

n∈N
Dn. Then (2) follows as each Dn is 

in CΓ, and (3) follows from (*).
In order to obtain (*) we build the Dn inductively. During this process, there will 

be countably many ‘tasks’ to be performed: there are countably many choices of f.g. 
A in each Di and countably many isomorphism types of ≤+-embeddings f : A → B

with B ∈ CΓ (by Lemma 3.1). As we have countably many steps available during the 
construction, it will suffice to show how to complete one of these tasks: ensuring that 
they are all completed during some stage of the construction is then just a matter of 
organisation (see the proof of Theorem 2.8 of [7] for a formal way of doing this).

So suppose Dn has been constructed, A ≤+ Dn is f.g. and f : A → B is a 
≤+-embedding with B ∈ CΓ. Using amalgamation (Lemma 3.2) we can find Dn ≤+ Dn+1
and a ≤+-embedding g : B → Dn+1 with g(f(a)) = a for all a ∈ A, as required.

This completes the construction of some countable digraph DΓ with properties (1), (2), 
(3). For the ‘Moreover’ part, suppose D′

Γ is also a countable digraph with properties (1), 
(2), (3). Suppose A ≤+ DΓ and A′ ≤+ D′

Γ are f.g. and h : A → A′ is an isomorphism. 
It will suffice to prove that h extends to an isomorphism DΓ → D′

Γ. As DΓ, D′
Γ are 

countable, this follows by a back-and-forth argument (and symmetry) once we show:

Claim. If c ∈ DΓ there exist finitely generated B ≤+ DΓ and B′ ≤+ D′
Γ with A ≤+ B, 

A′ ≤+ B′ and c ∈ B and an isomorphism g : B → B′ extending h.
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Existence of B here follows from (2) in DΓ. Existence of g and B′ then follows from 
(3) in D′

Γ (applied to h−1 : A′ → B). �
It is clear that ≤+-homogeneity together with property (1) in Theorem 3.3 imply that 

Aut(DΓ) is transitive on vertices. Moreover, for every a ∈ DΓ, any automorphism of the 
descendent set DΓ(a) extends to an automorphism of DΓ (necessarily fixing a) and so 
by P3, Aut(DΓ/a) (the stabiliser of a) is transitive on Dn

Γ(a) (vertices reachable by an 
n-arc from a). Thus DΓ is distance transitive.

The remainder of this section is devoted to showing:

Theorem 3.4. With the above notation, Aut(DΓ) is primitive on the vertices of DΓ.

By the above remarks, Theorem 1.2 then follows.
The following lemma is a simple application of free amalgamation and the extension 

property (3) in Theorem 3.3, but we shall give the details.

Lemma 3.5. Suppose A ≤+ B ≤+ DΓ and A, B are finitely generated. Suppose h is an 
automorphism of A. Then h can be extended to g ∈ Aut(DΓ) so that B ∩ gB = A.

Proof. Let B′ be any set with B∩B′ = A and |B \A| = |B′ \A|. Extend h to a bijection 
s : B → B′. Let E be the set of directed edges in B and define a digraph relation E′ on 
B′ by (x, y) ∈ E′ ⇔ (s−1x, s−1y) ∈ E. As s restricted to A is h and this is a digraph 
isomorphism, we have E ∩ A2 = E′ ∩ A2. Clearly s is then a digraph isomorphism. Let 
F = B ∪ B′ with digraph relation E ∪ E′. So F is the free amalgam of B and B′ over 
A and B, B′ ≤+ F ∈ CΓ. By the extension property (Theorem 3.3(3)) over B, we can 
assume that F ≤+ DΓ. Then s : B → B′ extends to an automorphism g of DΓ (by the 
‘Moreover’ in Theorem 3.3), and this has the required properties. �

If a, b ∈ DΓ and a �= b, let Δ(a, b) be the orbital digraph which has (a, b) as an edge. 
So this is the digraph with vertex set DΓ and edge set the Aut(DΓ)-orbit which contains 
(a, b). By D.G. Higman’s criterion, to prove the primitivity, it will be enough to show 
that each such Δ(a, b) is connected (meaning that its underlying undirected graph is 
connected).

Lemma 3.6. If (a, b) and (a, b′) are in the same Aut(DΓ)-orbit, and Δ(b, b′) is connected, 
then Δ(a, b) is connected (of diameter at most twice that of Δ(b, b′)).

Proof. There is an (undirected) Δ(a, b)-path bab′ from b to b′. Thus if (b1, b2) is an edge 
in Δ(b, b′) there is a Δ(a, b)-path of length 2 from b1 to b2. As Δ(b, b′) is connected, if 
x, y ∈ DΓ there is a Δ(b, b′)-path from x to y, and therefore there is a Δ(a, b)-path from 
x to y with at most twice as many edges. �
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Lemma 3.7. If a, b ∈ DΓ are distinct vertices and desc(a) ∩ desc(b) = ∅, then Δ(a, b) is 
connected (of diameter at most 4).

Proof. First suppose that desc(a) ∪ desc(b) ≤+ DΓ. Given x1, x2 ∈ DΓ, by Theo-
rem 3.3(2) there is a finitely generated Z ≤+ DΓ with x1, x2 ∈ Z. Let X be the disjoint 
union of Z and a copy C of Γ. So X is the free amalgam of Z and C over the empty 
set and X ∈ CΓ. By Theorem 3.3(3) we may assume that X ≤+ DΓ. Let c ∈ DΓ be the 
generator of C. Then desc(c) ∩ desc(xi) = ∅ and desc(xi) ∪ desc(c) ≤+ DΓ (for i = 1, 2). 
It follows (using the ‘Moreover’ part of Theorem 3.3) that (c, x1) and (c, x2) are edges 
in Δ(a, b). So Δ(a, b) has diameter 2.

In general, there is b′ ∈ DΓ such that (a, b′) is an edge in Δ(a, b) and f.g. B, B′ ≤+ DΓ
with a, b ∈ B and a, b′ ∈ B′ satisfying B ∪B′ ≤+ DΓ and B ∩B′ = desc(a) (again, this 
uses free amalgamation and property (3) of DΓ; alternatively we can apply Lemma 3.5). 
Then b, b′ are as in the first part of the proof and so Δ(b, b′) has diameter 2. Therefore 
by Lemma 3.6, Δ(a, b) has diameter at most 4. �

The main work is in proving:

Proposition 3.8. Suppose a, b ∈ DΓ are distinct vertices and a /∈ desc(b) and b /∈ desc(a). 
Then there exist r ∈ N and g1, . . . , gr ∈ Aut(DΓ) such that, setting b0 = a, b1 = b and 
bi+1 = gibi for i ≥ 1, we have gi ∈ Aut(DΓ/bi−1) and desc(br) ∩ desc(br+1) = ∅.

We postpone the proof for now, and carry on with the proof of Theorem 3.4.

Lemma 3.9. Suppose a, b ∈ DΓ are distinct vertices and a /∈ desc(b) and b /∈ desc(a). 
Then Δ(a, b) is connected.

Proof. Let r, gi and bi be as in Proposition 3.8. By Lemma 3.7, Δ(br, br+1) is connected. 
So by Lemma 3.6, Δ(br−1, br) is connected. Proceeding in this way, we obtain that 
Δ(b0, b1) is connected. �

The remaining case to consider is:

Lemma 3.10. Suppose a ∈ desc(b) (and a �= b). Then Δ(a, b) is connected.

Proof. By Lemma 3.5, there exists g ∈ Aut(DΓ/a) with desc(b) ∩desc(gb) = desc(a). By 
Lemma 3.9, Δ(b, gb) is connected. So by Lemma 3.6, Δ(a, b) is connected. �

By D.G. Higman’s criterion, Lemmas 3.9 and 3.10 establish Theorem 3.4. Thus, it 
remains to prove Proposition 3.8. We first recall some definitions and results from Sec-
tion 2.

We tend to write Γ(a) for desc(a) in order to emphasise the isomorphism with Γ. We 
write Γn(a) for the descendants reachable by an n-arc, and say that b ∈ Γn(a) is at level
n with respect to a. Variations such as Γ≥n(a) (for 

⋃
m≥n Γm(a)) will also be used.
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For any x ∈ Γ� (with � ≥ 1) consider the number of ancestors of x in Γ1. By P3 this 
depends only on � and is non-decreasing as � increases. Thus there is some value k of �
for which it reaches a maximum size (which is necessarily less than q, the out-valency 
of Γ). Let K = 2k − 1.

Now we work in DΓ. For a, x, y ∈ DΓ with x, y ∈ Γ�(a) and � ≥ k, we write ρa(x, y)
to indicate that x, y have the same ancestors in Γ�−k+1(a). So this is the relation ρ on 
Γ(a) used in Section 2. This is an equivalence relation on Γ�(a) which is clearly invariant 
under the stabiliser Aut(DΓ/a). Denote the equivalence class containing x by ρa[x].

Lemma 3.11.

(1) If x ∈ Γ(a) and y ∈ Γ≥K(x) and ρa(z, y), then z ∈ Γ(x).
(2) If x ∈ Γm(a) and � ≥ K, then Γ(x) ∩ Γm+�(a) is a union of ρa-classes.
(3) If x, y ∈ Γ�(a) and � ≥ k and Γ(x) ∩ Γ(y) �= ∅ then ρa(x, y).

Proof. (1) This follows directly from Lemma 2.11.
(2) This follows immediately from (1).
(3) This is Lemma 2.8. �
Let � ≥ k and a ∈ DΓ. For x, y ∈ Γ�(a) write σ0

a(x, y) if Γ(x) ∩Γ(y) �= ∅ and let σa be 
the transitive closure of this relation. Note that this is an equivalence relation (on each 
Γ�(a)) which is clearly Aut(DΓ/a)-invariant. Moreover, by (3) above, σa(x, z) implies 
ρa(x, z). Write σa[x] for the σa-class containing x.

Remark 3.12. In the examples in [2], we have ρa = σa. It is not clear whether this holds 
for arbitrary Γ satisfying P0–P3.

Lemma 3.13. Suppose b, b′ ∈ DΓ are such that if x ∈ X = Γ(b) ∩ Γ(b′) then x ∈ Γ�(b) ⇔
x ∈ Γ�(b′) (so points in the intersection are at the same ‘level’ with respect to b and b′). 
Then there exists n ≥ K such that X = desc(X ∩ Γ≤n−K(b)). Moreover, for such an n, 
we have X ∩ Γn(b) = X ∩ Γn(b′) and if y ∈ X ∩ Γn(b), then σb[y] = σb′ [y].

Proof. As X is finitely generated, it will suffice to take n large enough so that Γ≤n−K

contains a generating set for X. For the rest, note first that if y ∈ X ∩ Γn(b), then by 
the opening assumption on levels, y ∈ X ∩Γn(b′). Moreover, the assumption on n means 
that there is x ∈ X such that y ∈ Γ≥K(x). So by Lemma 3.11(2), ρb[y] ⊆ X. Thus 
σb[y] ⊆ X. Similarly σb′ [y] ⊆ X. Now, if σ0

b (y, z) holds then z ∈ X and so (by definition 
of σ0) also σ0

b′(y, z) holds. The statement follows. �
Proof of Proposition 3.8. Let X = Γ(a) ∩ Γ(b). Clearly we may assume that X is 
non-empty. Then X ≤+ Γ(a) (as Γ(b) ≤+ DΓ) and X �= Γ(a). By free amalga-
mation (over Γ(a)) there is a copy b′ of b over Γ(a) with Γ(b) ∩ Γ(b′) = X. More 
precisely, apply Lemma 3.5 with A = Γ(a), h the identity on A, and B ≤+ DΓ
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finitely generated with a, b ∈ B. It follows that there is g1 in the pointwise stabiliser
Aut(DΓ/Γ(a)) of Γ(a) such that g1(B) ∩ B = Γ(a). Then, with b′ = g1b, we have 
X ⊆ Γ(b) ∩ Γ(b′) ⊆ Γ(b) ∩ B ∩ g1(B) = Γ(b) ∩ Γ(a) = X as g1 fixes all elements of X. 
Moreover, because g1 fixes all elements of X and sends b to b′, the points in X are at 
the same level with respect to b and b′, as in Lemma 3.13.

Let b0 = a, b1 = b and b2 = b′. Suppose, for i ≥ 2, that gi ∈ Aut(DΓ/bi−1) and 
bi+1 = gibi is such that Γ(bi+1) ∩ Γ(bi) ⊆ Γ(bi−1) and bi+1 �= bi (the existence of such gi
will be proved later on). We make a series of claims, refining the choice of the gi as we 
proceed. We may suppose Γ(b1) ∩ Γ(b2) �= ∅.

Claim 1. For i ≥ 1, if x ∈ Γ(bi) ∩ Γ(bi+1), then x is at the same level with respect to bi
and bi+1.

Proof. We prove this by induction, noting first that it holds for i = 1, by construction. By 
assumption on the gi, we have x ∈ Γ(bi−1) ∩Γ(bi) ∩Γ(bi+1). So by inductive assumption, x
has the same level with respect to bi−1 and bi. But Γ(bi−1) ∩Γ(bi+1) is gi(Γ(bi−1) ∩Γ(bi)), 
so a point in this intersection has the same level with respect to bi−1 and bi+1. Thus x
has the same level with respect to bi−1, bi and bi+1. �

Choose n ≥ K such that Y1 = Γ(b1) ∩ Γ(b2) is generated by its intersection with 
Γ≤n−K(b1). Let Z1 = Y1 ∩ Γn(b1) = Γn(b1) ∩ Γn(b2). By Lemma 3.13 we have:

Claim 2. Z1 is a union of sets which are simultaneously σb1-classes and σb2-classes.

Claim 3. For i ≥ 2, if Zi = Γn(bi) ∩ Γn(bi+1), then Zi is a union of sets which are 
simultaneously σbj -classes for all 1 ≤ j ≤ i + 1.

Proof. Note that Claim 1 and the fact that Γ(bi+1) ∩ Γ(bi) ⊆ Γ(bi−1) imply that Zi ⊆
Zi−1 ⊆ . . . ⊆ Z1. By Claim 2, we can assume inductively that Zi−1 is a union of subsets 
which are simultaneously σbj -classes for 1 ≤ j ≤ i. In particular, Zi−1 is a union of sets 
which are simultaneously σbi−1 and σbi-classes. As gi ∈ Aut(DΓ/bi−1) and gibi = bi+1 it 
follows that giZi−1 is a union of sets which are simultaneously σbi−1 and σbi+1-classes. 
Thus Zi = Zi−1 ∩ giZi−1 is a union of σbi−1-classes, and all of these classes are also 
σbj -classes for 1 ≤ j ≤ i and j = i + 1, as required. �
Claim 4. For i ≥ 1 we have that Yi = Γ(bi) ∩Γ(bi+1) is generated by its intersection with 
Γ≤n(bi).

Proof. For i = 1 this is by choice of n. So suppose i ≥ 2. Then we have Yi = Yi−1∩giYi−1

and Yi−1, giYi−1 ⊆ Γ(bi−1). Suppose y ∈ Yi is at level m > n in Γ(bi−1) (and therefore 
also in Γm(bi) and Γm(bi+1), by Claim 1). Then there exist x ∈ Yi−1 and x′ ∈ giYi−1
which are at level n (in Γ(bi−1)) and which are ancestors of y. Then, because of y, we have 
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that σbi−1(x, x′) holds. But x ∈ Zi−1 and Zi−1 is a union of σbi−1-classes, so x′ ∈ Zi−1
and therefore x′ ∈ Yi. So y has an ancestor in Zi, as required. �

Suppose now that we can choose the gi so that if Zi �= ∅ then giZi �= Zi, and therefore 
Zi+1 is a proper subset of Zi. As these sets are finite, for some r we must have Zr = ∅. 
It then follows from Claim 4 that Yr = ∅, as required by the proposition.

It remains to explain how to construct the gi, for i ≥ 2. We do this inductively, so 
suppose we have constructed up to gi−1 and have b1, . . . , bi with the required properties. 
Suppose Zi−1 �= ∅. We need to find gi ∈ Aut(DΓ/bi−1) such that (with the above 
notation) Yi ⊆ Γ(bi−1) and giZi−1 �= Zi−1. First, note that Zi−1 is a proper subset of 
Γn(bi−1). If not, then Γn(bi−1) ⊆ Γn(bi) and as these are finite sets of the same size, 
we obtain that Γn(bi−1) = Γn(bi). So bi−1 and bi have the same descendants in level n
and as bi−1 �= bi, this contradicts property (1) in the definition of DΓ in Theorem 3.3. 
It then follows by property P3 of Γ that there is an automorphism h of Γ(bi−1) with 
hZi−1 �= Zi−1. We claim that h extends to an automorphism gi of DΓ with the property 
that Γ(gibi) ∩ Γ(bi) ⊆ Γ(bi−1), and this will suffice.

To do this, let B ≤+ DΓ be finitely generated and contain bi−1, bi (by property (2) of 
DΓ in Theorem 3.3). Applying Lemma 3.5 (with the given h and A = Γ(bi−1)) gives the 
required gi. This completes the proof of Proposition 3.8. �
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