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Abstract—Semi-supervised learning involves constructing pre-
dictive models with both labelled and unlabelled training data.
The need for semi-supervised learning is driven by the fact that
unlabelled data are often easy and cheap to obtain, whereas
labelling data requires costly and time consuming human inter-
vention and expertise. Semi-supervised methods commonly use
self training, which involves using the labelled data to predict
the unlabelled data, then iteratively reconstructing classifiers
using the predicted labels. Our aim is to determine whether
self training classifiers actually improves performance. Expec-
tation maximization is a commonly used self training scheme.
We investigate whether an expectation maximization scheme
improves a naı̈ve Bayes classifier through experimentation with 30
discrete and 20 continuous real world benchmark UCI datasets.
Rather surprisingly, we find that in practice the self training
actually makes the classifier worse. The cause for this detrimental
affect on performance could either be with the self training
scheme itself, or how self training works in conjunction with
the classifier. Our hypothesis is that it is the latter cause, and the
violation of the naı̈ve Bayes model assumption of independence
of attributes means predictive errors propagate through the self
training scheme. To test whether this is the case, we generate
simulated data with the same attribute distribution as the UCI
data, but where the attributes are independent. Experiments with
this data demonstrate that semi-supervised learning does improve
performance, leading to significantly more accurate classifiers.
These results demonstrate that semi-supervised learning cannot
be applied blindly without considering the nature of the classifier,
because the assumptions implicit in the classifier may result in a
degradation in performance.

I. INTRODUCTION

Supervised machine learning methods usually require large
amounts of labelled data to achieve good classification per-
formance. However, situations where unlabelled data are easy
and cheap to obtain, but labelling data is costly and time
consuming are observed in many fields, such as social net-
work and micro array analysis. The field of semi-supervised
learning [1] involves developing techniques that can leverage
useful predictive information from the unlabelled data.

Semi-supervised learning involves constructing predictive
models with both labelled and unlabelled training data. Semi-
supervised methods commonly use self training, which in-
volves using the labelled data to predict the unlabelled data,
then iteratively reconstructing classifiers using the predicted
labels. Our aim is to determine whether self training classifiers
actually improves performance in order to determine under

what circumstances semi-supervised learning is useful. Previ-
ous research has claimed that using unlabeled data can improve
naı̈ve Bayes classification performance [2]. However, it has
also been shown that unlabelled data can degrade classification
performance [3], [4]. We experimentally evaluate the effect on
a naı̈ve Bayes classifier of using expectation maximization as a
self training mechanism. We perform two sets of experiments
with 30 discrete and 20 continuous real world benchmark UCI
datasets. We find that self training significantly decreases the
accuracy of a naı̈ve Bayes classifier. This demonstrates that the
blind application of semi-supervised learning is not guaranteed
to improve performance, and that understanding the nature of
the classifier is crucial in using it correctly. The reason for the
detrimental affect on performance of semi-supervised learning
on naı̈ve Bayes could be caused by the self training scheme or
the interaction of the expectation maximization algorithm and
the classifier. Our hypothesis is that it is the latter cause. Naı̈ve
Bayes makes the assumption of independence of attributes, and
we believe that this extreme assumption will means predictive
errors caused by early iterations of expectation maximization
will propagate through the self training scheme.

To test whether this is the case, we generate simulated
data based on the UCI data. We do this by fitting a naı̈ve
Bayes classifier to the original data, then using the model
attribute distribution estimates to generate simulated data.
This means the simulated data maintains the characteristics
of the original data and will fulfill the assumptions of the
naı̈ve Bayes classifier. Experiments with this data demonstrate
that semi-supervised learning does improve performance, lead-
ing to significantly more accurate classifiers. These results
demonstrate that semi-supervised learning cannot be applied
blindly without considering the nature of the classifier, because
the assumptions implicit in the classifier may result in a
degradation in performance.

Following the discussion of learning methods in section II,
we present the result of extensive experiments on different real
and synthetic benchmark datasets in sections III and conclude
in section IV.

II. BACKGROUND

We start with an overview of Naı̈ve Bayes (NB) [5]
in section II-A, and then introduce Semi-Supervised Naı̈ve
Bayes (SSNB) that uses the Expectation-Maximization (EM)
algorithm [6], in section II-B.
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A. The Naı̈ve Bayes Classifier

In a supervised classification setting, assume we are given
labelled training data, D = {(x(i), y(i))}li=1, where x(i) ∈
X ⊆ Rd is a feature vector describing the ith example with
class label y(i) ∈ {1, 2, . . . , C}. Each example (xi, y(i)) from
the training data (that is assumed to be an independent, identi-
cally distributed (iid) sample drawn from a fixed distribution)
are used to obtain estimates of the model parameters, denoted
by θ̂.
The task of the NB classifier is the prediction of class labels
(y) for a new pattern (x) by modelling the class conditional
probability p(x|y; θ) and the prior probability p(y; θ), where
θ are the model parameters, and then using Bayes’ rule to
estimate the posterior probability of class membership for all
classes p(y|x; θ) after parameter estimation [7] [8].

p(y = c|x; θ) =
p(y; θ) p(x|y; θ)∑C

k=1 p(y = k; θ) p(x|y = k; θ)

The summation in the denominator is over all class labels k.
The test pattern (x) is classified as a single class by select-
ing the maximum posterior probability of class membership
according to the classification rule.

ŷ = arg max
c

p(y = c|x; θ)

One common way to find optimal model parameters, θ̂, is the
maximum likelihood estimate (MLE)

θ̂ = arg max
θ

log p(D; θ)

The NB assumption can be used to reduce complexity for
learning the Bayesian classifier by making the strong as-
sumption that the input attributes are independent of each
other. The independence assumption is often unrealistic in the
real world but it simplifies the estimation p(x|y; θ) from the
training samples. Therefore, it is particularly suitable when the
dimensionality of the input attributes is so high that a large
number of parameters must be estimated [9].

p(x|y; θ) = p(x1, x2, ..., xd|y; θ)

= p(x1|y; θ) . p(x2|y; θ) ... p(xd|y; θ)

=

d∏
j=1

p(xj |y; θ)

As we assumed the training data comprise an iid sample, the
likelihood given as follows

p(D; θ) =

l∏
i=1

p(x
(i)
j , y(i); θ)

=

l∏
i=1

(
p(y(i); θ)

d∏
j=1

p(x
(i)
j |y

(i); θ)

)

Instead of maximising the likelihood p(D; θ) we work with

the log-likelihood (log p(D; θ)).

log p(D; θ) =

l∑
i=1

log

(
p(y(i); θ)

d∏
j=1

p(x
(i)
j |y

(i); θ)

)

=

l∑
i=1

log p(y(i); θ) +

l∑
i=1

d∑
j=1

log p(x
(i)
j |y

(i); θ)

(1)

1) Maximum likelihood Estimation for Categorical Distri-
bution: The categorical distribution is the discrete distribution
for handling nominal data. Suppose the attributes come from
categorical distribution that each attribute, xj , has (Sj) possi-
ble values (states), xj ∈ {1, 2, . . . , Sj}. So, the ith example
indicates one of the (Sj) value x(i)j = s.
The likelihood of observing a state x

(i)
j = s is denoted by

θjsc = p(x
(i)
j = s|y(i) = c) which is the probability of

attribute value x(i)j = s in class c where
∑S
s=1 θ

j
sc = 1 and

πc = p(y = c) is the class prior probabilty for class c where∑C
c=1 πc = 1. If xj ∼ cat(θ) then equation (1) can be written

more explicitly in terms of the parameters.

log p(D;π, θ) =

l∑
i=1

C∑
c=1

φ(y(i) = c) log πc

+

l∑
i=1

d∑
j=1

S∑
s=1

C∑
c=1

log cat(x
(i)
j |y

(i); θjsc)

=

l∑
i=1

C∑
c=1

φ(y(i) = c) log πc

+

l∑
i=1

d∑
j=1

S∑
s=1

C∑
c=1

φ(x
(i)
j = s ∧ y(i) = c) log θjsc

φ(z) = 1 where z is true, and φ(z) = 0 otherwise.
The log-likelihood can be maximised with respect to the
parameters (θjsc, πc) using Lagrange multiplers (α, βjc ) to en-
force the constraints that the class priors and class-conditional
probabilities must sum to one [10]. The log-likelihood with
Lagrangian terms is given as follows.

Λ(π, θ, α, β) =

l∑
i=1

C∑
c=1

φ(y(i) = c) log πc

+

l∑
i=1

d∑
j=1

S∑
s=1

C∑
c=1

φ(x
(i)
j = s ∧ y(i) = c) log θjsc

−α
( C∑
c=1

πc − 1

)
−

C∑
c=1

d∑
j=1

βjc

( S∑
s=1

θjsc − 1

)
(2)

In order to obtain the maximum likelihood solution for the pa-
rameters, the partial derivatives can be computed for equation
(2) with respect to all the parameters, and setting each partial



derivative to zero.

∂Λ

∂α
= 0⇒

C∑
c=1

πc = 1

∂Λ

∂βjc
= 0⇒

S∑
s=1

θjsc = 1

∂Λ

∂πc
= 0⇒

πc =

∑l
i=1 φ(y(i) = c)∑C

k=1

∑l
i=1 φ(y(i) = k)

∂Λ

∂θjsc
= 0⇒

θjsc =

∑l
i=1 φ(x

(i)
j = s ∧ y(i) = c)∑S

m=1

∑l
i=1 φ(x

(i)
j = m ∧ y(i) = c)

In some cases the probability estimation suffers from zero
probability values when there are not enough training samples.
So, a small-sample corrections can be added into all probabili-
ties to prevent zero probability values. This technique is know
as Laplace correction [11].

πc =

∑l
i=1 φ(y(i) = c) + 1∑C

k=1

∑l
i=1 φ(y(i) = k) + C

θjsc =

∑l
i=1 φ(x

(i)
j = s ∧ y(i) = c) + 1∑S

m=1

∑l
i=1 φ(x

(i)
j = m ∧ y(i) = c) + Sj

2) Maximum likelihood Estimation for Gaussian Distri-
bution: Suppose xj are drawn from a Gaussian distrbution,
xj ∼ N (µ, σ2), with unkown model parameters (mean µ
and variance σ2). The difference between Gaussian log-
likelihood and Categorical log-likelihood distrbution is in the
p(x

(i)
j |y(i); θ), because the estimating of the class prior for

all distribution are same. Then the log-likelihood equation (1)
without class prior probabilty for Gaussian distrbution can be
written as follows.

log p(D;µ, σ2) =

l∑
i=1

C∑
c=1

d∑
j=1

logN
(
x
(i)
j |y

(i);µjc, σ
2
jc

)
=

l∑
i=1

C∑
c=1

d∑
j=1

log

(
1

(2π)
1
2 |σ2

jc|
1
2

exp (− 1

2

(x
(i)
j − µjc)2

(σ2
jc)

)

)
(3)

To obtain the maximum likelihood estimate in closed form
the partial derivatives can be computed for equation (3), with
respect to all the parameters(µjc, σ2

jc), and then each partial
derivative to zero is set to zero.

∂Λ

∂µjc
= 0⇒ µjc =

∑l
i=1 x

(i)
j

lc

∂Λ

∂σ2
jc

= 0⇒ σ2
jc =

∑l
i=1(x

(i)
j − µjc)2

lc

where lc =
∑l
i=1 φ(y(i) = c) is number of patterns in class

(c).

B. The Semi-supervised Naı̈ve Bayes Classifier

In section II-A, the supervised NB classifier with fully
labelled data was described. However, in some cases the
training data D consists of both labelled, Dl, and unlabelled,
Du instances, D = Dl ∪ Du. Applying NB with both types
of data is called semi-supervised learning. Consider that the
labelled data Dl =

{
(x(i), y(i))

}l
i=1

and unlabelled data is

Du =
{

(x(i))
}l+u
i=l+1

where x(i) ∈ X ⊆ Rd represents a
feature vector describing the ith example and it corresponding
class label y(i) ∈ {1, 2, . . . , C} in the labelled data. Then, the
likelihood function is defined as:

p(D; θ) = p(Dl; θ) × p(Du; θ)

=

l∏
i=1

(
p(y(i); θ)

d∏
j=1

p(x
(i)
j |y

(i); θ)

)

×
l+u∏
i=l+1

d∏
j=1

p(x
(i)
j ; θ)

The likelihood for unlabeled data is the essential difference
between supervised and semi-supervised log likelihood. The
likelihood for unlabeled data is the marginal probability
p(x

(i)
j ; θ) as we do not know which classes they belong to.

Here, to address this problem we add the latent variable z(i)
where i = l + 1, l + 2, ..., l + u for unlabelled data and try to
maximise semi-supervised likelihood.

p(D; θ) =

l∏
i=1

(
p(y(i)|θ)

d∏
j=1

p(x
(i)
j |y

(i); θ)

)

×
l+u∏
i=l+1

( C∑
c=1

p(z(i) = c; θ)

d∏
j=1

p(x
(i)
j |z

(i) = c; θ)

)

Instead of maximising the likelihood p(D; θ) we work with
log-likelihood log p(D; θ).

log p(D; θ) =

l∑
i=1

log

(
p(y(i); θ)

d∏
j=1

p(x
(i)
j |y

(i); θ)

)

+

l+u∑
i=l+1

log

( C∑
c=1

p(z(i) = c; θ)

d∏
j=1

p(x
(i)
j |z

(i) = c; θ)

)
(4)

When there are latent variables (no labels for unlabelled data)
in the training data, it is no longer possible to find a closed
form solution for the MLE, because the summation inside the
log which hard to maximise by setting partial derivatives to
zero. Therefore, we use an iterative statistical technique known
as the Expectation Maximisation (EM) algorithm. This algo-
rithm overcomes this problem; it can find a local maximum of
the likelihood by maximizing a lower bound on the likelihood
for unlabeled data instead of maximizing likelihood itself.
The EM algorithm starts with an estimate for the initial vector
of parameters, using the labelled data only, via the standard



NB, and then iterates over the following two steps until it
converges to a stable solution and set of labels for the data. The
EM algorithm first estimates the expectations of the missing
labels (latent variables) for the unlabelled instances in the E-
step qic = p(z(i) = c|x(i)j ; θ) where i = (l + 1, ..., l + u) and
0 ≤ qic ≤ 1 and assigns probabilistic labels to the unlabelled
data.

qic =
p(z(i) = c; θ)

∏d
j=1 p(x

(i)
j |z(i) = c; θ)∑C

k=1 p(z
(i) = k; θ)

∏d
j=1 p(x

(i)
j |z(i) = k; θ)

Note that for the labeled data we already know to which class
each pattern belongs then qic = 1 if y(i) = c and qic = 0
otherwise. In addition, the qic satisfy the summation constraint∑C
c=1 qic = 1.

In order to obtain the lower bound for unlabeled data we
multiply and divide log p(Du; θ) by qic.

log p(Du; θ) =
l+u∑
i=l+1

log

(
p(z(i) = c; θ)

d∏
j=1

p(x
(i)
j |z

(i) = c; θ)

)
qic
qic

=

l+u∑
i=l+1

log

C∑
c=1

qic

(
p(z(i) = c; θ)

∏d
j=1 p(x

(i)
j |z(i) = c; θ)

qic

)

=

l+u∑
i=l+1

logEqic

{
p(z(i) = c; θ)

∏d
j=1 p(x

(i)
j |z(i) = c; θ)

qic

}

The lower bound for unlabeled data is obtained via Jensens
inequality [12] E[log(X)] ≤ log(E[X]).

l+u∑
i=l+1

logEqic

{
p(z(i) = c; θ)

∏d
j=1 p(x

(i)
j |z(i) = c; θ)

qic

}

≥
l+u∑
i=l+1

Eqic

{
log

p(z(i) = c; θ)
∏d
j=1 p(x

(i)
j |z(i) = c; θ)

qic

}
(5)

we substitute the right hand side for above expression 5 instead
the second term in the equation 4 and denote by ψ(θ)

ψ(θ) =

l∑
i=1

log

(
p(y(i); θ)

d∏
j=1

p(x
(i)
j |y

(i); θ))

)

+

l+u∑
i=l+1

Eqic

{
log

p(z(i) = c; θ)
∏d
j=1 p(x

(i)
j |z(i) = c; θ)

qic

}

=

l∑
i=1

qic log

(
p(y(i); θ)

d∏
j=1

p(x
(i)
j |y

(i); θ)

)

+

l+u∑
i=l+1

C∑
c=1

qic log

(
p(z(i) = c; θ)

∏d
j=1 p(x

(i)
j |z(i) = c; θ)

qic

)

=

l∑
i=1

qic log

(
p(y(i); θ)

d∏
j=1

p(x
(i)
j |y

(i); θ)

)

+

l+u∑
i=l+1

C∑
c=1

qic log

(
p(z(i) = c; θ)

d∏
j=1

p(x
(i)
j |z

(i) = c; θ)

)

−
l+u∑
i=l+1

C∑
c=1

qic log qic

=

l+u∑
i=1

C∑
c=1

qic log

(
p(y(i) = c; θ)

d∏
j=1

p(x
(i)
j |y

(i) = c; θ)

)

−
l+u∑
i=l+1

C∑
c=1

qic log qic

(6)

where

y(i) =

{
y(i) : i = 1, ..., l
z(i) : i = l + 1, ..., l + u

The M-step estimates the new model parameters by partial
derivatives for equation 6 using all of the labelled and unla-
belled data, and treats the expected values of the latent variable
that calculated in the E-step as the true class labels for the
unlabelled data. We can show how estimate the new model
parameters as follows.

1) Maximum likelihood Estimation for Categorical Distri-
bution: If xj ∼ cat(θ) then equation (6) can be written in
terms of the parameters with Lagrangian term.

Λ(π, θ, α, β) =

l+u∑
i=1

C∑
c=1

qic log πc

+

l+u∑
i=1

d∑
j=1

S∑
s=1

C∑
c=1

qicφ(x
(i)
j = s) log θjsc

−
l+u∑
i=l+1

C∑
c=1

qic log qic − α
( C∑
c=1

πc − 1

)

−
C∑
c=1

d∑
j=1

βjc

( S∑
s=1

θjsc − 1

)
(7)

To obtain the maximum likelihood estimate the partial deriva-
tives can be computed for equation (7) with respect to all
the parameters (πc, α, βjc ) and set to zero. For α same as
supervised NB.

∂Λ

∂πc
= 0⇒

πc =

∑l+u
i=1 qic∑C

k=1

∑l+u
i=1 qik

∂Λ

∂θjsc
= 0⇒

θjsc =

∑l+u
i=1 qicφ(x

(i)
j = s)∑S

m=1

∑l+u
i=1 qicφ(x

(i)
j = m)

Where the summation in the denominator is over all possible
values (states) m for each attribute xj . The Laplace correction



for the parameters, (θjsc, πc), are shown as follows:

πc =

∑l+u
i=1 qic + 1∑C

k=1

∑l+u
i=1 qik + C

θjsc =

∑l+u
i=1 qicφ(x

(i)
j = s) + 1∑S

m=1

∑l+u
i=1 qicφ(x

(i)
j = m) + Sj

2) Maximum likelihood Estimation for Gaussian Distribu-
tion: Then the log-likelihood equation (6) without class prior
probability for Gaussian distribution in SSNB can be written
as follows if X ∼ N (µ, σ2), because the only difference with
Categorical log-likelihood in p(x(i)j |y(i); θ).

log p(D;µ, σ2) =

l+u∑
i=l+1

C∑
c=1

d∑
j=1

qic log

(
1

(2π)
1
2 |σ2

jc| 12
exp

(− 1

2
(x

(i)
j − µjc)

2(σ2
jc)

−1)

)
−

l+u∑
i=l+1

C∑
c=1

qic log qic

(8)

The closed form maximum likelihood estimate can be obtained
by computing the partial derivatives for equation (8) with
respect to all the parameters (µjc, σ

2
jc), and then setting each

partial derivative to zero.

∂Λ

∂µjc
= 0⇒ µjc =

∑l+u
i=1 qic x

(i)
j∑l+u

i=1 qic

∂Λ

∂σ2
jc

= 0⇒ σ2
jc =

∑l+u
i=1 qic(x

(i)
j − µjc)2∑l+u

i=1 qic

III. EXPERIMENTS

A. UCI benchmark datasets

1) Datasets and experimental design: In order to evaluate
the performance of NB compared to the SSNB classifier, we
performed two sets of experiments for discrete and continuous
attributes respectively. The first experiment used 30 discrete
data sets, the second experiment used the 20 continuous
benchmark datasets. All datasets were taken from the UCI
machine-learning repository [13], and the SGI1 repository.
Across both of the experiments, the following steps were taken
for all datasets at the pre-processing stage: The categorical
and ordinal variables were encoded using discrete values from
1-to-n. For each feature, whether discrete or continuous, the
instances where any attribute value is missing are discarded.
All experiments consisted of 100 trials, with random partition-
ing of the datasets into training and test sets in each trial. For
each dataset, 75% was used for training and 25% was held-
out as a test set, used only to evaluate the classification error
rate during the experiments. The number of labelled instances
is gradually increased up to the number of training sample
on a logarithmic scale, and the remaining training data were
used as unlabelled data. This procedure was repeated until

1https://www.sgi.com/tech/mlc/db/

all the training instances were used as labelled data. During
the training stage, at least two training patterns were selected
from each class for Gaussian NB in order to avoid having zero
variance. If any attribute has zero variance, it is omitted from
the analysis.
The learning curve provides from the error rate value for all
the examples. The error rate was calculated as the mean error
rate measured over the 100 replications and the correspond-
ing standard error. The area under learning curve error rate
(AULC) plot was computed in each replication to evaluate the
error rate performance. The ranking score was obtained by
normalising the AULC, to give the global score.

globalscore =
AULC − min(A)

max(A) − min(A)
(9)

where max(A) is the maximum possible area under curve
and min(A) is the minimum possible area under curve that
always zero. The idea of computing global score is similar
[14], but the only difference is that they found a global score
for the Area Under ROC curve (AUC) while we found a
global score for error rate learning curve. The average global
score over 100 error rate learning curves was calculated
in order to compare the prediction performance between
classifiers for each dataset. The Wilcoxon signed rank test
[15] was used to determine the statistical significance of
the difference between the SSNB and the NB over multiple
datasets in terms of the global score.

2) Results for UCI benchmark datasets: Our first exper-
iments found that use of the unlabeled dataset does not
generally reduce the classification error rate. Table I shows
the results for 36 discrete benchmark datasets. NB was best
on 25 out of 36 benchmark datasets, the SSNB best on only
10. The result for the Wilcoxon signed rank test shows that the
NB is statistically superior at the 95% level of significance.
From table II it can be seen that the global score for AULC of
the SSNB is statistically better than the NB only for the (iris,
new-thyroid, and, wine) continuous datasets. However,
the global score for AULC for NB was best on most of the
datasets. There is statistical significant difference according to
Wilcoxon signed rank test at the 95% level of significance over
all datasets.
In these experiments, we concluded that the performance of

the SSNB was inferior to that the NB for both discrete and
continuous input attributes.

B. Why is the naı̈ve Bayes classifier significantly better on
average than the semi-supervised naı̈ve Bayes classifier?

The most obvious explanation for this result is that NB is
unable to utilise the unlabelled data correctly. The key charac-
teristic of NB is that it makes the assumption of independence
between attributes. This assumption is usually false and NB
often produces inaccurate probability estimates, but fairly good
classifications. EM relies on the probability estimates, so may
be over compensating. To test this hypothesis, we generate
simulated data that satisfies the NB assumption. A simple
synthetic dataset is generated from two classes with univariate
Gaussian distributions when an infinite amount of labelled and
unlabelled data is available for training and testing. The model
parameters mean and variance for the two Gaussian is (µ1=-1,
µ2=+1, σ1 = σ2 =1) respectively as shown in figure 1.



TABLE I. GLOBAL SCORE FOR AULC FOR THE NB AND SSNB OVER
36 DISCRETE DATASETS FROM UCI REPOSITORY. THE RESULTS FOR EACH

AULC CLASSIFIER ARE PRESENTED IN THE FORM OF THE MEAN AND
STANDARD ERROR OVER TEST DATA FOR 100 REALISATIONS OF EACH

DATASET. THE BOLDFACE FONT INDICATES THAT THE GLOBAL SCORE FOR
ONE OF THE CLASSIFIERS IS BETTER THAN THE OTHER CLASSIFIER.

# Dataset NB SSNB
1 audiology 0.480±0.0050 0.534± 0.0052
2 balance-scale 0.160±0.0022 0.167± 0.0023
3 blogger 0.305±0.0060 0.337±0.0057
4 breast-cancer 0.298±0.0033 0.306± 0.0037
5 breastw 0.033±0.0010 0.026± 0.0010
6 car 0.177±0.0019 0.211± 0.0021
7 DNA 0.077±0.0008 0.076± 0.0009
8 flare1 0.371±0.0042 0.382± 0.0042
9 flare2 0.272±0.0021 0.279± 0.0022
10 hayes-roth 0.320±0.0057 0.373± 0.0055
11 house-votes 0.106±0.0023 0.113± 0.0022
12 kr-vs-kp 0.140±0.0013 0.273± 0.0016
13 led7 0.271±0.0012 0.270± 0.0012
14 led24 0.299±0.0011 0.292± 0.0012
15 lung-cancer 0.541±0.0101 0.512± 0.0101
16 lymphography 0.211±0.0050 0.234± 0.0048
17 marketing 0.686±0.0008 0.714± 0.0007
18 monk1-corrupt 0.346±0.0032 0.347± 0.0032
19 monk1-cross 0.034±0.0010 0.046± 0.0015
20 monk1-local 0.299±0.0033 0.316± 0.0039
21 monk1 0.287±0.0029 0.279± 0.0031
22 monk3-cross 0.055±0.0017 0.156± 0.0031
23 monk3-local 0.054±0.0014 0.114± 0.0025
24 monk3 0.052±0.0016 0.065± 0.0017
25 mushroom 0.055±0.0006 0.089± 0.0005
26 nursery 0.103±0.0006 0.119± 0.0007
27 primary-tumor 0.586±0.0034 0.588± 0.0036
28 promoters 0.168±0.0047 0.141± 0.0049
29 shuttle-l&ing-control 0.083±0.0025 0.079± 0.0025
30 soybean-small 0.085±0.0052 0.060± 0.0045
31 soybean-large 0.554±0.0024 0.577± 0.0025
32 splice 0.066±0.0007 0.064± 0.0007
33 threeOf9 0.225±0.0026 0.231± 0.0025
34 titanic 0.225±0.0016 0.228± 0.0017
35 xd6 0.224±0.0026 0.229± 0.0029
36 zoo 0.134±0.0051 0.134± 0.0053

TABLE II. GLOBAL SCORE FOR AULC FOR THE NB AND SSNB OVER
20 CONTINUOUS DATASETS FROM UCI REPOSITORY. THE RESULTS FOR
EACH AULC CLASSIFIER ARE PRESENTED IN THE FORM OF THE MEAN

AND STANDARD ERROR OVER TEST DATA FOR 100 REALISATIONS OF EACH
DATASET.THE BOLDFACE FONT INDICATES THAT THE GLOBAL SCORE FOR

ONE OF THE CLASSIFIERS IS BETTER THAN THE OTHER CLASSIFIER.

# Dataset NB SSNB
1 banknote 0.156±0.0021 0.244± 0.0020
2 Blood-transfusion 0.252±0.0025 0.290±0.0035
3 breast-cancerw-continuous 0.040±0.0013 0.040±0.0014
4 Climate-Mode-Simulation-Crashes 0.067±0.0017 0.070±0.0017
5 glass 0.483±0.0049 0.554±0.0041
6 haberman 0.259±0.0040 0.279±0.0052
7 ionosphere 0.180±0.0044 0.237±0.0042
8 iris 0.063±0.0032 0.061±0.0031
9 letter 0.370±0.0006 0.508±0.0006
10 liver-disorder 0.442±0.0040 0.490±0.0043
11 magic04 0.274±0.0006 0.334±0.0006
12 musk1 0.283±0.0041 0.395±0.0035
13 new-thyroid 0.044±0.0022 0.034±0.0022
14 pendigits 0.155±0.0006 0.180±0.0008
15 sleep 0.341±0.0003 0.438± 0.0004
16 vehicle 0.539±0.0027 0.600±0.0022
17 vowel 0.396±0.0031 0.488±0.0026
18 waveform-noise 0.202±0.0011 0.226±0.0010
19 waveform 0.232±0.0010 0.265±0.0011
20 wine 0.063±0.0023 0.041±0.0024
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Fig. 1. Two class classification problem for the synthetic dataset

This experiment consisted of 10,000 trials of random
partitioning of the datasets (67584 patterns) into training and
test sets, that 2048 patterns were used for training and 65536
patterns were held-out as a test set used to evaluate the
classification error rate performance during the experiments.
The experimental design exactly same as section III-A1. Figure
2 shows the error rate learning curve for both the semi-
supervised Gaussian classifier and the Gaussian classifier. It
is clearly seen that the semi-supervised Gaussian classifier
performs better than the Gaussian classifier, especially when
very few labeled data were used for training, and rapidly
converges in the number of labelled samples.
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Fig. 2. The learning curve for two class classification problem in Gaussian
distribution for synthetic dataset

C. Synthetic benchmark dataset

1) Generating synthetic dataset and experimental design:
The results from the previous section III-B indicate that
the violation of the independence assumption of NB mode,
might be a reason for the lack of increased performance for
the SSNB. It is possible that the SSNB is sensitive to the
correctness of the model’s assumptions. To investigate this
further, we generate simulated data from the UCI sets that
will satisfy the independence assumption. To do this, we first
fit a NB model to each data set, then use the model estimates
of the attribute distributions to generate simulated data with
independent features. The synthetic datasets are similar in
character to the original datasets but the model’s assumption
of the independence of attributes is valid.



TABLE III. GLOBAL SCORE FOR AULC FOR THE NB AND SSNB
OVER 36 SYNTHETIC DATASETS FROM UCI. THE RESULTS FOR EACH
AULC CLASSIFIER ARE PRESENTED IN THE FORM OF THE MEAN AND
STANDARD ERROR OVER TEST DATA FOR 100 REALISATIONS OF EACH

DATASET.THE BOLDFACE FONT INDICATES THAT THE GLOBAL SCORE FOR
ONE OF THE CLASSIFIERS IS BETTER THAN THE OTHER CLASSIFIER.

# Dataset NB SSNB
1 audiology 0.436±0.0055 0.437±0.0049
2 balance-scale 0.270±0.0026 0.268±0.0028
3 blogger 0.287±0.0062 0.284±0.0058
4 breast-cancer 0.267±0.0037 0.269±0.0037
5 breastw 0.004±0.0002 0.000±0.0000
6 car 0.247±0.0016 0.244±0.0017
7 DNA 0.033±0.0005 0.022±0.0005
8 flare1 0.298±0.0040 0.283±0.0039
9 flare2 0.201±0.0020 0.198±0.0020
10 hayes-roth 0.329±0.0054 0.314±0.0051
11 house-votes 0.001±0.0001 0.000±0.0000
12 kr-vs-kp 0.175±0.0013 0.168±0.0013
13 led7 0.271±0.0015 0.269±0.0015
14 led24 0.288±0.0012 0.277±0.0012
15 lung-cancer 0.187±0.0085 0.167±0.0090
16 lymphography 0.104±0.0032 0.066±0.0030
17 marketing 0.589±0.0007 0.586±0.0007
18 monk1-corrupt 0.287±0.0029 0.280±0.0031
19 monk1-cross 0.107± 0.0021 0.086±0.0021
20 monk1-local 0.318±0.0031 0.310±0.0035
21 monk1 0.320±0.0030 0.320±0.0031
22 monk3-cross 0.090±0.0022 0.076±0.0023
23 monk3-local 0.122±0.0021 0.107±0.0020
24 monk3 0.116±0.0022 0.106±0.0024
25 mushroom 0.001±0.0001 0.001±0.0001
26 nursery 0.156±0.0006 0.15 ±0.0006
27 primary-tumor 0.560±0.0037 0.560±0.0038
28 promoters 0.063±0.0024 0.009±0.0015
29 shuttle-landing-control 0.101±0.0028 0.093±0.0029
30 soybean-small 0.067 ±0.0046 0.049±0.0045
31 soybean-large 0.451±0.0027 0.460±0.0027
32 splice 0.048±0.0005 0.032±0.0006
33 threeOf9 0.280±0.0032 0.270±0.0033
34 titanic 0.227±0.0015 0.226±0.0015
35 xd6 0.229±0.0029 0.219±0.0029
36 zoo 0.087±0.0042 0.081±0.0044

2) Result for synthetic benchmark datasets: Table III shows
that the SSNB performs well compared to the NB for the 30
synthetic benchmark datasets. The SSNB also was best on 19
of the continuous synthetic datasets, shown in Table IV,thus
the SSNB better than the NB in the current experiment.There
is a statistical significant difference between the average rank
of the SSNB and NB global scores for AULC according to
the Wilcoxon signed rank test at the 95% level of confidence
over multiple synthetic benchmark datasets. This suggest that
SSNB is sensitive to conformance to its assumption of the
independence between attributes.

D. Exploratory Data Analysis

The results for UCI benchmark datasets experiments
suggest that a few datasets are always likely
to have better performance for SSNB, such as
(breastw, DNA, led7, led24, lung-cancer,
promoters, shuttle-landing-control, splice,
soybean-small) in discrete and (iris, new-thyroid,
wine) in continuous benchmark datasets. The details of this
performance can be seen by examing the learning curve. We
can show learning curve only for a few datasets due to space
limitation. Figure 3 shows the learning curve for one of the
discrete datasets splice and new-thyroid which is the
continuous datasets.
Interestingly, most of the benchmark datasets show improved

classification performance for the SSNB in the synthetic

TABLE IV. GLOBAL SCORE FOR AULC FOR THE NB AND SSNB
OVER 20 SYNTHETIC DATASETS FROM UCI. THE RESULTS FOR EACH
AULC CLASSIFIER ARE PRESENTED IN THE FORM OF THE MEAN AND
STANDARD ERROR OVER TEST DATA FOR 100 REALISATIONS OF EACH

DATASET. THE BOLDFACE FONT INDICATES THAT THE GLOBAL SCORE FOR
ONE OF THE CLASSIFIERS IS BETTER THAN THE OTHER CLASSIFIER.

# Dataset NB SSNB
1 banknote 0.201±0.0016 0.197± 0.0018
2 Blood-transfusion 0.093 ±0.0017 0.087±0.0018
3 breast-cancerw-continuous 0.002 ±0.0002 0.000±0.0001
4 Climate-Mode-Simulation-Crashes 0.008 ±0.0006 0.004±0.0004
5 glass 0.126±0.0033 0.105±0.0033
6 haberman 0.184±0.0041 0.175±0.0042
7 ionosphere 0.008±0.0005 0.002±0.0003
8 iris 0.004±0.0008 0.001±0.0005
9 letter 0.236±0.0005 0.223±0.0006
10 liver-disorder 0.217±0.0033 0.198±0.0035
11 magic04 0.006±0.0001 0.006±0.0001
12 musk1 0.014±0.0008 0.007±0.0006
13 new-thyroid 0.006±0.0006 0.001±0.0005
14 pendigits 0.065±0.0003 0.059±0.0003
15 sleep 0.128±0.0002 0.127±0.0002
16 vehicle 0.247±0.0020 0.241±0.0020
17 vowel 0.108±0.0017 0.071±0.0017
18 waveform-noise 0.020±0.0003 0.017±0.0003
19 waveform 0.052±0.0005 0.049±0.0005
20 wine 0.010±0.0008 0.003±0.0006
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Fig. 3. The average learning curve for NB and SSNB of the UCI and synthetic
(splice, newthyroid) datasets

datasets. Figure 4 shows the learning curve for nursery
and waveform datasets which are discrete and continuous
respectively. However, learning curve for (audiology,
breast-cancer, monk1, mushroom, primary-tumor,
soybean-large) in discrete datasets and (magic04) in
continuous datasets show that SSNB does not help in all
experiments, as we can see learning curve for one of them in
figure 5.
The learning curve results across all experiments shows
that if the model assumption is correct the unlableled data
might help to improving performance, especially when a
few lableled data used as a training set, but if the model
assumption is violated, the classififcation performance could
degrade as adding more unlableled to the training set.



100
0

0.2

0.4

0.6

0.8
nursery data

er
ro

r r
at

e

 

 
NB
SSNB

100
0

0.2

0.4

0.6

0.8
nursery synthetic data

er
ro

r r
at

e

102
0

0.2

0.4

0.6

0.8
waveform data

Labeled set size

er
ro

r r
at

e

102
0

0.2

0.4

0.6

0.8
waveform synthetic data

Labeled set size

er
ro

r r
at

e

Fig. 4. The average learning curve for the NB and SSNB of the UCI and
synthetic (nursery, waveform) datasets
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Fig. 5. The average learning curve for the NB and SSNB of the UCI and
synthetic audiology datasets

IV. CONCLUSION

The contribution of this paper is an empirical evaluation
of NB and SSNB on binary and multi-class classification
problems with continuous and discrete attributes. We wish
to address the question of whether using unlabelled data
will improve classification accuracy. This will clearly be
dictated by our choice of classifier and semi-supervised
learning scheme. We evaluate a naı̈ve Bayes classifier used
in conjunction with an Expectation-Maximization algorithm
that iteratively uses NB to predict the unlabelled instances.
We found that using the unlabelled data made the classifier
significantly less accurate. To understand why this may
be so, we assessed the performance of NB and SSNB on
synthetic data for which the NB assumption of independent
attributes is true. We found that SSNB was significantly
more accurate on these data. We conclude that if a classifier
is not suitable for a data set, then using unlabelled data
in a self training scheme is likely to make it worse. This
implies that effort should be applied in finding a classifier
suitable for a problem before using unlabelled data to self train.
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