
Mining Time-series Data using
Discriminative Subsequences

Jonathan Frederick Francis Hills

A Thesis Submitted for the

Degree of Doctor of Philosophy

University of East Anglia

School of Computing Sciences

September 2014

c©This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognise that its copyright rests with the author and that use of

any information derived there from must be in accordance with current UK Copyright

Law. In addition, any quotation or extract must include full attribution.

Abstract

Time-series data is abundant, and must be analysed to extract usable knowledge.

Local-shape-based methods offer improved performance for many problems, and a

comprehensible method of understanding both data and models.

For time-series classification, we transform the data into a local-shape space using

a shapelet transform. A shapelet is a time-series subsequence that is discriminative

of the class of the original series. We use a heterogeneous ensemble classifier on

the transformed data. The accuracy of our method is significantly better than the

time-series classification benchmark (1-nearest-neighbour with dynamic time-warping

distance), and significantly better than the previous best shapelet-based classifiers.

We use two methods to increase interpretability: first, we cluster the shapelets using

a novel, parameterless clustering method based on Minimum Description Length,

reducing dimensionality and removing duplicate shapelets. Second, we transform

the shapelet data into binary data reflecting the presence or absence of particular

shapelets, a representation that is straightforward to interpret and understand.

We supplement the ensemble classifier with partial classification. We generate

rule sets on the binary-shapelet data, improving performance on certain classes, and

revealing the relationship between the shapelets and the class label. To aid inter-

pretability, we use a novel algorithm, BruteSuppression, that can substantially re-

duce the size of a rule set without negatively affecting performance, leading to a more

compact, comprehensible model.

Finally, we propose three novel algorithms for unsupervised mining of approxi-

mately repeated patterns in time-series data, testing their performance in terms of

speed and accuracy on synthetic data, and on a real-world electricity-consumption

device-disambiguation problem. We show that individual devices can be found auto-

matically and in an unsupervised manner using a local-shape-based approach.

Table of Contents

1 Introduction 1

1.1 Research objectives . 3

1.1.1 Objectives . 3

1.1.2 Challenges . 4

1.2 Novel contributions . 5

1.2.1 Shapelet transform and ensemble classifier 5

1.2.2 Clustering shapelets and binary transformation 5

1.2.3 Partial classification of binary-shapelet data 6

1.2.4 BruteSuppression . 6

1.2.5 Interestingness measures for partial classification rules 7

1.2.6 Mining approximately repeated patterns 7

1.3 Thesis structure . 7

2 Time-series Classification and Rule Induction 9

2.1 Introduction . 10

2.2 Time-Series classification (TSC) . 11

2.2.1 Classification . 11

2.2.2 Time-series . 11

2.2.3 Similarity in shape . 13

2.3 Classifiers . 15

2.4 Dynamic time warping . 16

2.5 Ensemble classifiers . 17

2.6 Comparing classifiers . 18

2.6.1 Comparing two classifiers: the Wilcoxon Signed Rank test . . 18

2.6.2 Comparing multiple classifiers: the Friedman Test with post-

hoc Nemenyi test . 20

2.6.3 Critical-difference diagram . 22

2.7 Mining association rules . 23

2.8 Apriori . 25

2.9 Interestingness measures . 28

2.10 Selecting an appropriate interestingness measure 30

i

ii

2.10.1 Analysis . 34

2.11 Mining rules from time-series data . 35

2.12 Conclusions . 35

3 Representing Time Series with Localised Shapes 37

3.1 Shapelet definition . 39

3.1.1 Generating candidates . 40

3.1.2 Shapelet algorithm . 40

3.1.3 Shapelet distance . 42

3.1.4 Shapelet quality with Information Gain 43

3.2 Speed-up techniques for distance calculation 44

3.2.1 Early abandon of the shapelet 44

3.2.2 Speed improvement by reusing information 45

3.2.3 Speed improvements from distance calculations 48

3.2.4 Using the GPU . 51

3.2.5 Discrete shapelets . 52

3.2.6 Approximate shapelets . 53

3.3 Shapelet applications . 54

3.3.1 Image-outline classification . 54

3.3.2 Motion capture . 56

3.3.3 Spectrographs . 58

3.3.4 Other applications . 59

3.4 Extensions to the shapelet approach 59

3.4.1 Logical Shapelets . 60

3.4.2 Early classification . 60

3.4.3 Shapelets for clustering . 61

3.4.4 Alternative quality measures 62

3.4.5 Shapelet-like approaches . 62

3.5 Motifs . 63

3.5.1 Motif definition . 64

3.5.2 Trivial matches . 65

3.5.3 Mueen-Keogh (MK) best-matching pair algorithm 66

3.5.4 Algorithms for discovering motif sets 67

3.6 Conclusions . 68

4 Data 70

4.1 Introduction . 70

4.2 Summary of datasets . 70

4.2.1 Classification problems . 70

4.2.2 Unsupervised data mining . 73

4.3 UCR repository . 73

iii

4.4 Contributed datasets . 73

4.4.1 Classification problems . 74

4.4.2 Data for unsupervised data mining 74

4.4.3 Bone outlines . 74

4.4.4 Synthetic data . 76

4.4.5 MPEG-7 shapes . 78

4.4.6 Otoliths . 79

4.4.7 Powering the Nation . 79

4.4.8 Classifying mutant worms . 81

4.4.9 Synthetic data space for unsupervised data mining 83

4.4.10 Electricity-usage data for unsupervised data mining 84

4.5 Conclusions . 85

5 Time-series Classification using Shapelet-transformed Data 86

5.1 Introduction . 88

5.2 Shapelet transform . 89

5.2.1 Shapelet generation . 90

5.2.2 Length parameter approximation 91

5.2.3 F-statistic . 92

5.2.4 Data transformation . 94

5.2.5 Experimental parameters . 95

5.2.6 Classifier performance . 95

5.2.7 Shapelet ensemble classifier 97

5.3 Shapelet transform results . 98

5.3.1 Comparison with 1NNDTW 99

5.3.2 Comparison with Logical Shapelets 101

5.3.3 Comparison with Fast Shapelets 101

5.4 Interpretability and insight . 103

5.4.1 Classifying Caenorhabditis elegans locomotion 104

5.4.2 Classifying human motion: the GunPoint dataset 106

5.4.3 Image outline analysis: Beetle/Fly and Bird/Chicken 107

5.4.4 Interpretability . 109

5.5 Filtering the shapelet-transformed data using the F-stat 110

5.6 Clustering shapelets . 114

5.6.1 Hierarchical clustering with quality measure 115

5.6.2 Hierarchical Clustering via Minimum Description Length . . . 118

5.6.3 Hierarchical clustering using MDL 122

5.6.4 Hierarchical clustering based on sDist with MDL stopping cri-

terion . 124

5.6.5 Class enforcement for MDL techniques 125

5.7 Clustering results . 128

iv

5.7.1 Effects of class enforcement for MDL-based clustering 128

5.7.2 MDLStopCE vs MDLCE . 129

5.7.3 Comparison of clustering methods 129

5.8 Binary discretisation . 132

5.8.1 Standard binary transform . 133

5.8.2 Class transform . 134

5.8.3 Correlation filtering . 137

5.9 Binary results . 139

5.9.1 Comparison of standard binary transform to binary class trans-

form . 139

5.9.2 Comparison to clustered data 140

5.9.3 Analysis . 141

5.9.4 Comparison to 1NNDTW . 143

5.9.5 Comparison to Logical Shapelets 144

5.9.6 Comparison to Fast Shapelets 145

5.9.7 Assessment . 145

5.10 Conclusions . 146

6 Rule Induction from Binary Shapelets 147

6.1 Introduction . 148

6.2 Nugget discovery . 149

6.2.1 Motivation . 149

6.2.2 F1 . 151

6.2.3 Data . 152

6.2.4 Rule induction approach . 152

6.2.5 Rule set size . 155

6.2.6 Classification . 156

6.3 The BruteSuppression algorithm . 157

6.3.1 Redundancy of rules . 158

6.3.2 BruteSuppression . 159

6.4 Rule set size . 161

6.4.1 Initial maximum rule set size 164

6.5 Performance of nugget discovery . 165

6.5.1 Low-dimensionality experiments on poorly predicted classes . 166

6.5.2 Low-dimensionality experiments on all classes 168

6.5.3 Medium-dimensionality experiments 168

6.5.4 High-dimensionality experiments 174

6.6 Results: comparing suppressed rule sets to unsuppressed rule sets . . 175

6.6.1 Rule set performance . 175

6.6.2 Analysis . 177

v

6.7 Qualitative analysis of performance of BruteSuppression on different

data . 177

6.7.1 Assessing rule set character: novel interestingness measures . . 178

6.7.2 Methodology . 179

6.7.3 Comparing rule distribution using the chi-squared statistic . . 182

6.7.4 Visual analysis of rules from the Adult dataset 183

6.7.5 Assessment . 184

6.8 Conclusions . 186

7 Unsupervised Learning with Localised Shapes 188

7.1 Introduction . 188

7.2 Finding motif sets . 190

7.2.1 Scan MK . 190

7.2.2 Cluster MK . 191

7.2.3 Set Finder . 193

7.3 Synthetic data results . 193

7.3.1 Timing experiments . 193

7.3.2 Performance evaluation . 195

7.3.3 r value . 197

7.3.4 Problems with a single motif set 197

7.3.5 Problems with two motif sets 199

7.4 Electricity-usage data . 201

7.5 Conclusion . 203

8 Conclusions and Future Work 205

8.1 Evaluation . 206

8.2 Novel contributions . 207

8.3 Future directions . 208

8.3.1 Extending the shapelet transform 208

8.3.2 Extending shapelet clustering 209

8.3.3 Extending the partial classification framework 209

8.3.4 Extending motif discovery . 210

Bibliography 211

List of Algorithms

1 apriori(D, the set of all instances, minsup, the minimum support

parameter, minconf , the minimum confidence parameter) 26

2 generateCandidates(k, Lk−1, the set of all large k − 1-itemsets) . . . 27

3 generateRules(k, lk, a k-itemset, m, H, a set of consequents) 27

4 shapeletDiscovery (Dataset T, min,max) 41

5 buildShapeletTree(T,min,max) . 41

6 findDistance(Time series T , Shapelet S) 51

7 shapeletCachedSelection(T, min, max, k) 90

8 estimateMinAndMax(T) . 92

9 shapeletTransform(Shapelets S,T) 95

10 hierarchicalClusteringWithAssessment(S,T) 115

11 assessAccuracyCV(C,T) . 117

12 binaryTransformClass(D) . 135

13 simpleCorrelationFilter(S,D) . 138

14 checkCorrelation(i,j,D) . 139

15 classifyByRuleSet(Instance I, Rule set R) 156

16 bruteSuppression(R, D) . 161

17 scanMK(F, the set of all length n subsequences, r) 192

18 clusterMK(F, r) . 192

19 setFinder(F, r) . 193

vi

List of Publications

Publications as first author:

• J. Hills, L. Davis, A. Bagnall
Interestingness Measures for Fixed Consequent Rules
Proceedings of the 13th International Conference on Intelligent Data Engineer-
ing and Automated Learning, Lecture Notes in Computer Science, pages 68–75,
Springer-Verlag: 2012.

• J. Hills, A. Bagnall, B. De La Iglesia, and G. Richards
BruteSuppression: a Size Reduction Method for Apriori Rule Sets
Journal of Intelligent Information Systems 40 (3), pages 431–454, Springer:
2013.

• J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall
Classification of Time Series by Shapelet Transformation
Data Mining and Knowledge Discovery 28 (4), pages 851–881, Springer: 2014.

Publications as co-author:

• A. Bagnall, L. Davis, J. Hills, and J. Lines
Transformation Based Ensembles for Time Series Classification
Proceedings of the SIAM International Conference on Data Mining, 12, pages
307–318, SIAM: 2012.

• J. Lines, L. Davis, J. Hills, and A. Bagnall
A Shapelet Transform for Time Series Classification
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 289–297, ACM: 2012.

• A. Bagnall, J. Lines, J. Hills, and A. Bostrom
Time-Series Classification with COTE: The Collective of Transformation-
Based Ensembles

vii

viii

https://ueaeprints.uea.ac.uk/id/eprint/49614

This paper is currently under review.

Chapter 1

Introduction

There is an abundance of time-series data that must be analysed in order to derive

usable knowledge. Our hypothesis is that much of this analysis would benefit from

an approach based on local similarity of shape; that is, a methodology focused on

subsequences of the time series that are particularly informative.

Local similarity of shape can inform prediction and other tasks, but can also

enhance understanding of time-series data. Consider Figure 1.1. Examined as a

whole, there are long stretches of the series where they barely differ. In the middle

third, however, are local shapes that differ substantially from series to series. By

examining local-shape-based similarity, we can ensure that these differences are not

swamped by the general similarities, but are used to distinguish the series, exactly as

they are under intuitive visual inspection.

Local shapes are uniquely comprehensible aspects of time series. A very long

time series cannot be grasped intuitively, which makes systems based on global sim-

ilarity of shape uninformative. Data-mining techniques based on auto-correlation or

Fourier transformation can reduce comprehensibility, and make visual interpretation

very difficult, especially for non-specialists. Our hypothesis is that local similarity of

shape offers an intuitively comprehensible way of understanding long time series. In

addition to this, we believe that local similarity of shape can be used to improve the

1

2

quantitative aspects of time-series data mining.

Figure 1.1: Four ECG time series from the ECGFiveDays dataset. The beginning
third and final third of the series are very similar, differing only a little and seemingly
at random. The middle third, in contrast, has a number of local shapes that differ
substantially between the series.

We apply the subsequence-based approach to supervised data mining, showing

that time-series classification accuracy can be improved by transforming the data into

a space of local shapes, and that rule induction for partial classification of time series

can be fruitfully applied to the transformed data. We also investigate unsupervised

data mining, finding approximately repeated subsequences in time-series data that

can provide primitives for future data mining, and can aid in understanding and

analysing the data.

We make a number of novel research contributions to time-series classification,

3

clustering, rule induction, and repeated pattern mining over the course of this thesis;

these contributions are detailed in Section 1.2.

1.1 Research objectives

The overall objective of this thesis is to address the following question: how best can

we use methods based on local similarity of shape for mining time-series data? More

specifically, the question can be broken down into two sub-questions:

1. How can notions of local similarity of shape be used to create high-performing

approaches to existing time-series data-mining tasks?

2. How can the interpretability offered by methods based on local similarity of

shape be maximised without compromising performance?

1.1.1 Objectives

The objectives of the thesis, which address the research questions, are as follows:

1. Develop and test subsequence-based representations for time-series.

2. Create and refine algorithms and methods for discovering and extracting sub-

sequences to represent locally-similar features.

3. Implement and test approaches to make best use of the representations for

solving specific data-mining problems.

4. Design methods and representations that maximise interpretability without sub-

stantially diminishing performance.

4

1.1.2 Challenges

Achieving the objectives listed in the previous subsection, and hence satisfactorily

answering the research questions, requires surmounting three main challenges:

1. Existing methods for time-series classification, with which a large proportion of

this thesis is concerned, are well developed and highly accurate. The new meth-

ods proposed must offer substantial improvements above the existing methods,

either in terms of accuracy or interpretability. In terms of classification accu-

racy, benchmark approaches must be bettered, or at least equalled (if there is

some other advantage to using local similarity, e.g. increased interpretability).

This is challenging, because the benchmark level of accuracy is high.

2. One strength of the local-shape-based approach is interpretability. Interpretabil-

ity is inversely proportional to complexity; to maximise interpretability, com-

plexity must be minimised. Over simplification, however, is detrimental to

performance. A key challenge in answering the overriding research question of

this thesis is balancing interpretability with performance.

3. Discovering and extracting representative subsequences is a complex problem;

the time complexity of proposed algorithms must be reasonable enough that

they can be tested on a range of problems. The same is true of dimensionality-

reduction methods to improve interpretability: the time complexity of the

method must not be so high as to exclude reasonable applications. This is

partly so that the new methods can be deployed in a wide range of situations,

and partly to ensure that they can be tested on a large number of datasets to

ensure robust results.

In overcoming these challenges and answering the overriding research question, we

have made a number of novel contributions, listed in the next section.

5

1.2 Novel contributions

1.2.1 Shapelet transform and ensemble classifier

In Chapter 5, we propose and extensively test a shapelet transform, using heteroge-

neous ensemble classification, that provides significantly better classification accuracy

than the benchmark approach to time-series classification (1NN with DTW distance

and cross-validated warping window size). It is also significantly more accurate than

the leading shapelet-based approaches (Fast Shapelets and Logical Shapelets).

Work on the shapelet transform is published in [88]; legacy results are published

in [119]. Many of the results of our extensive experimentation with the up-to-date

version of the transform and the heterogeneous ensemble classifier are used in [9]

(currently under review), which combines a large number of different transforms,

distance measures, and classifiers to create a more accurate time-series classification

system than anything in the current literature. The shapelet transform with ensemble

classifier is one of the best-performing elements of the COTE ensemble [9].

1.2.2 Clustering shapelets and binary transformation

In Chapter 5, we propose and test a novel, parameterless approach to clustering

shapelets. Our method finds the correct number of shapelets for a given problem using

Minimum Description Length, maintaining classification accuracy while reducing the

number of shapelets to increase interpretability. This is a useful feature for reducing

the dimensionality of our shapelet-transformed datasets, but more importantly, shows

that clustering with MDL could be suitable in the more general case for correctly

clustering time-series subsequences.

The preliminary work on clustering shapelets is published in [88].

6

Following on from our clustering method in Chapter 5, we propose a binary trans-

form for shapelet data that we believe offers the most interpretable form of shapelet-

transformation. The binary-transformed data sacrifices a small amount of accuracy

for some (but not all) datasets, but delivers high interpretability, with each series of

the transformed data represented by binary values indicating the presence or absence

of each shapelet in that series. Models built on this data have the potential to be

comprehensible to end-users working in domains like medicine and finance, where

every decision must be justifiable.

1.2.3 Partial classification of binary-shapelet data

In Chapter 6, we propose a partial classification method based on association rules

that significantly improves upon the accuracy of our state-of-the-art classifier in cases

where the ensemble predicts poorly. It also offers highly interpretable insight into the

relationship between the data and the class in the form of association rules that hold

over binary shapelets.

Our approach is best used in one of two ways: as a supplement to the ensem-

ble classifier to improve performance for poorly-predicted classes of interest, or as a

general-use, highly interpretable approach to analysing the relationships between the

attributes of the data and the class label.

1.2.4 BruteSuppression

In Chapter 6, we propose BruteSuppression, a novel algorithm for reducing rule set

size that can dramatically decrease the number of rules in the rule set with no loss

of classification accuracy. This creates more compact and interpretable rule sets.

The BruteSuppression algorithm is published in [86], along with a large amount of

analysis into its effects on the distribution of rules in rule sets. Here, we restrict

our qualitative analysis to a single standard dataset (Adult [164]), and focus on the

7

quantitative effects of BruteSuppression on the size and predictive performance of

rule sets built on binary-shapelet data.

1.2.5 Interestingness measures for partial classification rules

In Chapter 2, we show that twelve commonly used interestingness measures impose

the same ordering on a partial classification rule set as confidence, making them

redundant as assessment tools for these rule sets. Many algorithms, including Apriori,

allow the user to select a measure other than confidence to use for rule induction, and

we require an interestingness measure for the BruteSuppression algorithm proposed

in Chapter 6. By proving that there is no tangible difference between these measures

in terms of partial classification, we justify our use of confidence as an interestingness

measure, and also clarify the choice of interestingness measure for partial classification

in the general case.

This work is published in [87].

1.2.6 Mining approximately repeated patterns

In Chapter 7, we propose three novel algorithms for finding approximately repeating

patterns in time series, testing them extensively on bespoke synthetic data, and on

a real-world electrical device disambiguation problem. We show that a subsequence-

based approach can be used to detect specific instances of distinct device usage,

suggesting that motifs could be suitable for similar problems in other domains where

approximately repeated patterns must be discovered in time series.

1.3 Thesis structure

The thesis is structured as follows:

• In Chapter 2, we discuss time-series classification and rule induction.

8

• In Chapter 3, we give an up-to-date overview of the shapelet approach and

motifs.

• Chapter 4 describes the datasets we have used for our experiments; we cover

existing time-series problems and our own contributed data.

• In Chapter 5, we propose and test a shapelet transform with an ensemble clas-

sifier that outperforms the benchmark time-series classification method and the

best published shapelet-based classifiers. We also create a novel parameter-

less clustering method for finding the ‘right’ number of shapelets for a given

problem, and a binary transform for shapelets that maximises interpretability.

• Chapter 6 describes a system for partial classification using binary-shapelet data

that can significantly improve upon the performance of the ensemble classifier

in certain cases, and which offers a highly interpretable model. We also propose

a novel algorithm that substantially reduces the size of association rule sets

without compromising partial classification or removing potentially interesting

rules.

• In Chapter 7, we propose three novel algorithms for finding approximately re-

peating patterns in time series, testing them extensively on bespoke synthetic

data, and on a real-world electrical device disambiguation problem.

• Chapter 8 presents our conclusions and suggests directions in which our work

could be extended.

Chapter 2

Time-series Classification and Rule
Induction

Section 2.10 of this chapter is based on a novel analysis of existing interestingness

measures published in the following paper:

J. Hills, L. Davis, A. Bagnall

Interestingness Measures for Fixed Consequent Rules

Proceedings of the 13th International Conference on Intelligent Data Engineering and

Automated Learning, Lecture Notes in Computer Science, pages 68–75, Springer-

Verlag: 2012.

9

10

2.1 Introduction

We focus our interest on three time-series data-mining tasks: time-series classification,

partial classification of time series with association rules, and the discovery of repeated

patterns in time series. We address the background of the final task in Chapter 3, as

our work is very dependent on the particular representation we use for the repeated

patterns, and the information is better presented in context. In the first half of

this chapter, we address time-series classification; the subject of the second half is

induction of partial classification rules.

In Section 2.2, we discuss time-series classification; we make novel contributions to

this area in Chapters 5 and 6. We discuss the classifiers we have used in Section 2.3,

and dynamic time warping, a benchmark approach in time-series classification, with

which we compare our method, in Section 2.4. We use an ensemble classifier; the

relevant background is given in Section 2.5. In Section 2.6, we discuss the two main

tests we use to compare classifiers: the Wilcoxon Signed Rank Test (Section 2.6.1)

and the Friedman Test with post-hoc Nemenyi test (Section 2.6.2). We also describe

the visual method we use to display our results: the critical-difference diagram (Sec-

tion 2.6.3).

In Section 2.7, we shift focus from classification to partial classification with as-

sociation rules, a field to which we make a novel contribution in Chapter 6. We

describe the association rule algorithm we use, Apriori, in Section 2.8. In Section 2.9,

we discuss interestingness measures. Which interestingness measures to use in Chap-

ter 6 is an important design choice, motivated by the theoretical assessment given in

Section 2.10.

We close our discussion with conclusions in Section 2.12.

11

2.2 Time-Series classification (TSC)

2.2.1 Classification

In classification, a learner uses labelled training examples to search its hypothesis

space for a classifier. The classifier generalises from the training examples to predict

labels for new examples. Different learners use different strategies to search their

hypothesis space; the hypothesis space itself varies from learner to learner.

A size N dataset D is a set of instances {D1, D2, . . . , DN}, where each instance

Di = {< xi,1, xi,2, . . . , xi,m >, ci} consists of a set of m attribute values and a class

label. The order of the attributes is unimportant, and interaction between variables

is considered to be independent of their relative positions. D is split into a training

set Dtrain and a test set Dtest, such that Dtrain ∪Dtest = D and Dtrain ∩Dtest = ∅.

A classifier is trained by inputting Dtrain to the learner. The algorithm uses

the labelled examples to infer the relationship between the attributes and the class

label. Given an instance, the trained classifier produces a prediction based on the

attributes of the instance. The accuracy of the classifier’s predictions on unseen data

(often the instances in Dtest) is calculated to provide an estimate of how well the

classifier represents the relationship between the attributes and the class label.

We focus on a sub-problem within classification: time-series classification (TSC).

2.2.2 Time-series

A time series is a sequence of data that is typically recorded in temporal order at

fixed intervals. Suppose we have a set of N time series T = {T1, T2, . . . , TN}, where

each time series Ti has m real-valued ordered readings Ti =< ti,1, ti,2, ..., ti,m >, and

a class label ci. We assume that all series in T are of length m, but this is not a

requirement (see [91] for discussion of this issue). Given a dataset T, the time-series

classification problem is to find a function that maps from the space of possible time

12

1 512

Figure 2.1: Top: a time series representing electrical activity in the heart. Middle:
a 1-D series (left) representing the outline of an image (right). Bottom: an ordered
series representing a spectrograph of a sample of beef.

series to the space of possible class labels.

In TSC, a class label is applied to an unlabelled set of data. The attributes of

time-series objects represent ordered data, typically the same quality measured over

time. Data need not be ordered temporally to be treated as a time series, however.

Examples of sequence data include temporally-ordered data, such as recordings of

electrical activity in the heart (Figure 2.1 top), spatially-ordered data, e.g. images

(Figure 2.1 middle), and other ordered data, for example spectrographs (Figure 2.1

bottom). For time-series data, the order of the variables is often crucial for finding

the best discriminating features.

TSC problems occur in a variety of domains, including image processing [143],

robotics [166], healthcare [146], and gesture recognition [122].

Various algorithms are used for TSC, including tree-based classifiers (e.g. C4.5),

lazy classifiers (e.g. k-nearest neighbour (kNN)), and probabilistic classifiers (e.g.

13

Naive Bayes). TSC research has focused on alternative distance measures for kNN

classifiers, based on either the raw data, or on compressed or smoothed data (see [51]

for a comprehensive summary). This idea has propagated through current research.

For example, Batista et al. state that “there is a plethora of classification algorithms

that can be applied to time series; however, all of the current empirical evidence sug-

gests that simple nearest neighbor classification is very difficult to beat” [12]. Recently,

several alternative approaches have been proposed, such as weighted dynamic time

warping [99], support vector machines built on variable intervals [150], tree-based en-

sembles constructed on summary statistics [46], and a fusion of alternative distance

measures [29].

There are three general types of within-class similarity that may be relevant to

TSC: similarity in time, similarity in change, and similarity in shape.

Similarity in time encompasses time series that are observations of variation of a

common curve in the time dimension. kNN classifiers with elastic distance measures

perform well when classes are distinguished by this kind of similarity [51, 7]. Similarity

in change occurs when series of the same class have a similar form of autocorrelation.

A common approach used for TSC with this kind of similarity is to fit an Auto-

regressive Moving Average (ARMA) model and base classification on differences in

the model parameters [8]. Our interest is focused on similarity in shape.

2.2.3 Similarity in shape

Similarity in shape is a feature of time series that are distinguished by some phase-

independent sub-shape that may appear at any point in the series. A global sub-shape

is one that approaches the length of the series. A local sub-shape is one that is short

relative to the length of the series, and may appear anywhere in the series.

If a global common sub-shape is phase-shifted to a large degree within instances of

14

Figure 2.2: Globally similar sine waves. Top: noise in measurement. Middle: noise
in indexing. Bottom: noise in measurement and indexing.

the same class, transformation into the frequency domain is likely to be fruitful [173,

98, 30, 7].

If a global common sub-shape is found within instances of the same class and

there is little phase shift, kNN classifiers with elastic distance measures will perform

well [51, 7]. Variation around the underlying shape is caused by noise in observation,

and also by noise in indexing, which may cause a slight phase shift. Consider two

series produced by the same sine function. Noise in measurement alters values in the

series; noise in indexing offsets the sine wave (Fig. 2.2).

A standard example of this global similarity of shape with little phase shift is the

Cylinder-Bell-Funnel artificial dataset, where there is noise around the underlying

shape and in the index where the shape transitions (see Figure 2.3).

Locally-similar series have common sub-shapes that are short relative to the se-

ries. Local similarity can be obscured by noise in measurement; in addition, if the

similar subshapes appear at very different indexes, they will be difficult to detect

15

0 20 40 60 80 100 120 140
Time

Cylinder

0 20 40 60 80 100 120 140
Time

Bell

0 20 40 60 80 100 120 140
Time

Funnel

Figure 2.3: Series from the Cylinder-Bell-Funnel dataset. Each series represents a
noisy, offset instance of a particular curve, specific to one of the three types. From
left to right: Cylinder, Bell, Funnel.

Class 0

Class 1

Class 0

Class 1

Figure 2.4: Time series of two different classes. A global approach will pair the series
incorrectly, due to the offset in the time dimension. A local approach will pair the
instances correctly, as the subsequences are exact matches.

with global approaches (Fig. 2.4). Transformation into the frequency domain and

kNN with elastic distance measures might not discriminate well between the classes.

The shapelet approach is tailored to discriminate on local similarity (see Chapters 3

and 5).

2.3 Classifiers

We make use of a number of standard classifiers: C4.5, kNN, Naive Bayes, Bayesian

Network, Random Forest, Rotation Forest, and two Support Vector Machines. We

choose these classifiers as they are widely used, are diverse in their operation, and are

all implemented in the WEKA machine learning tool kit [78].

For brevity, we exclude descriptions of the simpler classifiers - C4.5, kNN, and

16

Naive Bayes - referring the reader to [79]. The more complex classifiers operate as

follows. A Bayesian network is an acyclic directed graph with associated probability

distributions [63]. It predicts class labels without assuming independence between

variables. The Random Forest algorithm classifies examples by generating a large

number of decision trees with controlled variation, and taking the modal classification

decision [24]. The Rotation Forest algorithm trains a number of decision trees by

applying principal components analysis on a random subset of attributes [151]. A

support vector machine finds the best separating hyperplane for a set of data by

selecting the margin that maximises the distance between the nearest examples of

each class [38]. It can also transform the data into a higher dimension to make it

linearly separable.

2.4 Dynamic time warping

Dynamic Time Warping (DTW) distance is used with kNN classifiers in TSC to miti-

gate problems caused by distortion in the time axis [18, 144]. Measuring the DTW dis-

tance between two length m series, t =< t1, t2, . . . , tm >, and s =< s1, s2, . . . , sm >,

involves computing the m×m distance matrix M, where Mi,j = (ti − sj)2.

A warping path, P , is a set of points that defines a traversal of M, where e and

f are row and column indices respectively:

P =< (e1, f1), . . . , (em, fm) > .

The Euclidean distance, for example, is the path that follows the diagonal of M,

P =< (e1, f1), (e2, f2), . . . , (em−1, fm−1), (em, fm) >. All warping paths must begin at

point (1, 1) and end at point (m,m), and satisfy the conditions (ei+1 − ei) ∈ {0, 1}

and (fi+1 − fi) ∈ {0, 1}.

Other constraints can be placed on the warping paths. One common additional

constraint restricts the warping window by defining a value, r, which determines

17

the maximum allowable distance between any pair of indexes in the warping path.

This reduces computation time, and may prevent some pathological warping paths,

for example paths that map many points in one series to the same point in the

other. Setting the warping window through cross validation significantly improves

the accuracy of 1NN with DTW distance [144, 117].

The DTW distance between two series is defined as the total distance covered

by the shortest warping path. The optimal path is found using dynamic program-

ming [144]. Extensions to DTW have been proposed in [101, 99, 74].

Extensive experimentation has led to 1NN with DTW distance (and cross valida-

tion to select the size of the warping window) being regarded as the benchmark for

TSC [51, 117]. The evidence [51, 152, 174] suggests that, for smaller datasets, elastic

similarity measures such as DTW outperform simple Euclidean distance. However,

as the number of series increases, “the accuracy of elastic measures converges with

that of Euclidean distance” [51].

2.5 Ensemble classifiers

An ensemble of classifiers combines a set of base classifiers by fusing the individual

predictions to classify new examples [50, 127]. Majority vote fusion [106] is an in-

tuitive approach; for alternative fusion schemes see [104]. Beyond simple accuracy

comparison, there are three common approaches to analyse ensemble performance:

diversity measures [105, 162], margin theory [127, 145], and Bias-Variance decompo-

sition [13, 23, 60, 97, 163, 167]. These have all been linked [162, 52].

The key concept in ensemble design is the requirement that the ensemble be

diverse [50, 70, 76, 80, 123, 154]. Diversity can be achieved in the following ways:

• Employing different classification algorithms to train each base classifier to form

a heterogeneous ensemble.

18

• Changing the training data for each base classifier through a sampling scheme

or by directed weighting of instances [22, 24, 59, 170].

• Selecting different attributes to train each classifier [24, 89, 151].

• Modifying each classifier internally, either through re-weighting the training

data or through inherent randomization [57, 59].

Ensembles have been applied to time-series data-mining problems, and have shown

promising results [29, 46, 150]. For example, Deng et al. propose a version of random

forest [24] that uses the mean, slope, and variance of subseries as the attribute space,

offering better accuracy than random forest used on the raw data [46]. Buza [29],

and Lines and Bagnall [117], use ensembles of different distance measures to improve

TSC accuracy.

2.6 Comparing classifiers

Demšar [45] discusses tests for comparing classifiers over multiple datasets. He argues

that the appropriate test for comparing two classifiers over multiple datasets is the

Wilcoxon Signed Rank test; for comparing multiple classifiers over multiple datasets,

he advocates the Friedman test with post-hoc Nemenyi test.

2.6.1 Comparing two classifiers: the Wilcoxon Signed Rank
test

Demšar [45] recommends using the Wilcoxon Signed Rank test to compare two clas-

sifiers over multiple datasets for three reasons. First, the Wilcoxon Signed Rank

test does not require that classfication accuracies across different problem domains

be commensurable. Accuracies can be wildly different across problems; using ranks

prevents ten differences of 0.01 being balanced by a single difference of 0.1. Second,

19

Table 2.1: Left: accuracies for two classifiers over 28 datasets with differences. Right:
differences sorted by absolute value, ranks, and W+ and W− statistics.

Dataset Classifier A Classifier B Difference

1 0.537 0.537 0.000
2 0.468 0.531 -0.063
3 0.530 0.530 0.000
4 0.700 0.700 0.000
5 0.274 0.077 0.197
6 0.662 0.622 0.041
7 0.496 0.000 0.496
8 0.358 0.394 -0.037
9 0.357 0.417 -0.060
10 0.251 0.050 0.201
11 0.282 0.154 0.127
12 0.365 0.255 0.110
13 0.446 0.151 0.295
14 0.441 0.182 0.259
15 0.347 0.264 0.083
16 0.183 0.057 0.126
17 0.346 0.342 0.004
18 0.417 0.371 0.046
19 0.179 0.069 0.110
20 0.204 0.146 0.058
21 0.342 0.146 0.196
22 0.308 0.204 0.104
23 0.453 0.454 -0.001
24 0.382 0.271 0.112
25 0.032 0.273 -0.241
26 0.208 0.227 -0.019
27 0.255 0.241 0.014
28 0.430 0.326 0.104

Sorted Absolute Ranks W+ W−
Difference Difference

0.000 0.000 0 0 0
0.000 0.000 0 0 0
0.000 0.000 0 0 0
-0.001 0.001 1 0 1
0.004 0.004 2 2 0
0.014 0.014 3 3 0
-0.019 0.019 4 0 4
-0.037 0.037 5 0 5
0.041 0.041 6 6 0
0.046 0.046 7 7 0
0.058 0.058 8 8 0
-0.060 0.060 9 0 9
-0.063 0.063 10 0 10
0.083 0.083 11 11 0
0.104 0.104 12 12 0
0.104 0.104 13 13 0
0.110 0.110 14 14 0
0.110 0.110 15 15 0
0.112 0.112 16 16 0
0.126 0.126 17 17 0
0.127 0.127 18 18 0
0.196 0.196 19 19 0
0.197 0.197 20 20 0
0.201 0.201 21 21 0
-0.241 0.241 22 0 22
0.259 0.259 23 23 0
0.295 0.295 24 24 0
0.496 0.496 25 25 0

Sum 325 274 51

the Wilcoxon Signed Rank test does not assume normality for the distribution of the

accuracies; this is appropriate, as we cannot rely on this assumption. Third, because

it uses ranks, the Wilcoxon Signed Rank test is not badly affected by outliers. For

these reasons, we perform all pairwise comparisons of classifiers over multiple datasets

using the Wilcoxon Signed Rank test.

The Wilcoxon Signed Rank test [172] is a non-parametric test. We use it to

compare the accuracies of two classifiers over a number of different datasets (for

example, Table 2.1). The difference is computed for each pair of accuracies. The

list of differences is sorted by absolute value. The non-zero absolute differences are

ranked in ascending order of absolute value (Table 2.1). The test statistics are created

by summing the ranks for positive differences (W+) and negative differences (W−).

20

We take Nr to be the highest rank (in Table 2.1, 25). If Nr ≥ 15, the distribution

of W+ or W− (we concentrate on W+, but W− can be substituted mutatis mutandis)

approaches the normal distribution where:

µW+ =
Nr(Nr + 1)

4
, (2.6.1)

σW+ =

√
Nr(Nr + 1)(2Nr + 1)

24
. (2.6.2)

Hence, the statistic:

Z =
W+ − µW+

σW+

(2.6.3)

can be used to test for significant difference where Nr ≥ 15 (for cases where Nr < 15,

a statistical table can be used to find critical values, see for example [168]).

In our example (Table 2.1), Nr = 25, W+ = 274, µW+ = 162.5, and σW+ =

37.165. Hence, Z = 274−162.5
37.165

= 3; there is a statistically significant difference between

Classifier A and Classifier B at a significance level of 0.01.

Where we compare two classifiers over multiple datasets, we use the Wilcoxon

Signed Rank test with a significance level of 0.01.

2.6.2 Comparing multiple classifiers: the Friedman Test with
post-hoc Nemenyi test

Demšar [45] argues that a Friedman test [61, 62] with post-hoc Nemenyi test [133]

is the best way to compare multiple classifiers over multiple datasets. The Friedman

test does not rely on the same assumptions as the repeated measures ANOVA, which

include the assumption that the samples (i.e. the accuracies) are drawn from a normal

distribution, and the assumption of sphericity, which requires that the variances of the

differences between all possible pairs of groups are equal. When comparing classifiers,

there is no guarantee that these assumptions will not be violated. Hence, we prefer

the Friedman test to the Anova for multiple comparisons.

21

The Friedman test ranks each classifier separately on its performance on each

dataset, assigning ranks in ascending order (rank 1 for the best classifier, average

ranks where classifiers tie). rji is the rank of the jth of k classifiers on the ith of N

datasets, and Rj = 1
N

∑
i r
j
i , the average ranks of the algorithms. The Friedman

statistic:

χ2
F =

12N

k(k + 1)

[∑
j

R2
j −

k(k + 1)

4

]
(2.6.4)

is used to compute:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

, (2.6.5)

which follows an F-distribution with k−1 and (k−1)(N −1) degrees of freedom. We

use the FF statistic to determine whether there is a significant difference between the

classifiers, testing the null hypothesis (that there is no difference) at a significance

level of 0.01.

If the Friedman test allows us to reject the null hypothesis (i.e. there is a significant

difference between the classifiers), we perform a post-hoc Nemenyi test. In a Nemenyi

test, the performance of two classifiers is significantly different if the average ranks of

the two classifiers differ by at least the critical difference:

CD = qα

√
k(k + 1)

6N
(2.6.6)

The critical values qα are based on the Studentized range statistic divided by
√

2 (see,

for example, [168], for statistical tables). If the difference in average rank between

two classifiers (where we have rejected the null hypothesis using the Friedman test)

exceeds the critical difference, we take the classifiers to be significantly different.

Where we compare multiple classifiers over multiple datasets, we use the Friedman

test with post-hoc Nemenyi test at a significance level of 0.01.

22

2.6.3 Critical-difference diagram

When comparing multiple classifiers over multiple datasets, we present our results

perspicuously using a critical-difference diagram [45]. An example critical-difference

diagram is shown in Figure 2.5.

CD

5 4 3 2 1

2.24
A

2.61
B

2.77
C

3.52
D

3.86
E

Figure 2.5: Example critical-difference diagram comparing five classifiers over multi-
ple datasets. A pair of classifiers is significantly different if they do not belong to the
same clique, represented by the black bars.

In Figure 2.5, each classifier is aligned along the axis based on its average rank over

the datasets. The black bars show the cliques. If two classifiers belong to the same

clique, there is no significant difference between their performances on the datasets.

In Figure 2.5, classifiers A, B, and C all belong to the same clique, meaning there

is no significant difference between their performances on the datasets. There is a

significant difference between classifier E and classifiers A, B, and C, as they do not

belong to the same clique.

Where we compare multiple classifiers over multiple datasets, we will present the

results using critical-difference diagrams.

23

2.7 Mining association rules

The previous sections have focused on classification. The second half of this chapter is

focused on partial classification (nugget discovery) through association rules, which

is the method we employ to make the novel contribution in Chapter 6. The goal

of partial classification is to discover association rules that reveal characteristics of

some pre-defined class(es); such rules need not cover all classes or all records in the

dataset [4, 44, 43]. Rule induction algorithms (e.g. [2]) can be used to generate a set

of partial classification rules. Partial classification rules provide a comprehensible set

of predictors for certain outcomes. We are interested in partial classification rules

with a single, fixed consequent, i.e. rules for a single class. As well as as their

use for partial classification, association rules can provide insight into the data [2].

Association rules allow the end-user to achieve an understanding of the data that

may not be forthcoming from other models (e.g. neural network approaches, which

provide predictive power without an immediately comprehensible model, see [14]).

The problem of discovering association rules from large datasets is formulated

in [2] as the market basket problem: given a large set of transactions, how can we

efficiently discover the associations that hold between various items? Their approach

was not targeted at discovering associations with a particular class label; rather, all

associations were discovered.

The general problem of association rule mining for partial classification is as fol-

lows. Given a labelled dataset and one class label from that dataset (designated the

target), find all associations (subject to certain constraints) that hold between other

attributes and the target class label.

Association rules take the form:

Antecedent⇒ Consequent

24

where the antecedent and consequent of the rule are some conjunction of Attribute

Tests (AT s). An AT (see, e.g. [149]) takes the form: < ATT,OP, V AL >, where

ATT is one of the attributes of the records in the dataset, OP is one member of the

set {<,≤, >,≥,=} and VAL is a permissible value for the attribute. In Chapter 6,

we use Apriori on binary data. Hence, each AT is of the form: < ATT,=, {0, 1} >;

an example AT is {Shapelet1} = {0}. An example rule is: {Shapelet1} = {0} ⇒

{Class} = 1. The class attribute is the only non-binary attribute in the data we use

for rule induction in Chapter 6.

We use N(A) to indicate the number of records in the dataset that satisfy the

antecedent of a given rule, and N(C) for the number of records that satisfy the

consequent of the rule. N(U) is used to represent the size of the dataset. The

propositional connectives ∧, ∨, and ¬ are used to indicate conjunction, disjunction,

and negation. For example, N(A∨¬C) represents the number of records that satisfy

the antecedent or the negation of the consequent.

For any association rule R = A ⇒ C (where A and C are conjunctions of ATs

representing the antecedent and consequent of the rule respectively), the support of

the rule (Sup(R)) is calculated as follows:

Sup(R) = N(A ∧ C) (2.7.1)

which is the number of records in the dataset that satisfy both the antecedent and

the consequent of the rule. The confidence of R (denoted Conf(R)) is:

Conf(R) =
N(A ∧ C)

N(A)
. (2.7.2)

The confidence of a rule is the support of the rule divided by the support of the

antecedent. The coverage [124] of R (Cov(R)) is calculated as:

Cov(R) =
N(A ∧ C)

N(C)
. (2.7.3)

25

The coverage of a rule is the support for the rule divided by the support for the

consequent, and represents the proportion of records satisfying the consequent that

are correctly covered by the rule.

For any dataset that is not trivially small, there will be a large number of potential

rules, and it is necessary to have an efficient algorithm to mine the data. There are

many different algorithms for mining association rules, for example [3, 14, 112, 36,

149]. We use the Apriori algorithm [3] in Chapter 6; the algorithm is described in the

next section.

2.8 Apriori

We use the Apriori [3] association rule discovery algorithm to generate rule sets for

our experiments (see Algorithm 1). The Apriori algorithm operates on itemsets. An

itemset is a combination of items, where each item is an AT. Itemsets are arbitrarily

ordered (this ordering is used in the generateCandidates procedure). We denote the

kth AT as Ik. The algorithm first determines which itemsets are large (above the

minimum support constraint) and their support (it is common to use a proportion or

percentage for the minimum support parameter; in Algorithm 1, minsup is assumed

to be a count, so proportions, for example, need to be multiplied by the number of

records). To determine the large itemsets, Apriori establishes which pairs of items

have support above the minimum; these items are retained for the next pass, which

finds the sets of three items that have support above the minimum, and so on, un-

til no itemsets have sufficient support (or the maximum number of items has been

reached). The maximum support of any itemset containing n items {I1, I2, ..., In}

is Min(Sup(I1), Sup(I2), ..., Sup(In)), so this approach is computationally more ef-

ficient than assessing every possible itemset. Itemsets are pruned if they have any

subset that has not appeared in a previous pass, further reducing the final set of large

26

itemsets, denoted LTot.

The generateCandidates procedure produces candidate itemsets (Ck) of k items

from the set Lk−1 (Algorithm 2). In the join stage, any k − 1 itemsets that differ

only in their k − 1th item are combined to form a k itemset including the k − 1th

item of both itemsets. In the prune stage, any itemset generated in the join stage

that includes a k− 1 itemset not included in the set Lk−1 is removed from the set Ck.

The set is returned, the support is calculated, and the set of large k-itemsets, Lk is

formed from those candidate itemsets exceeding the minimum support [3].

Algorithm 1 apriori(D, the set of all instances, minsup, the minimum support
parameter, minconf , the minimum confidence parameter)

L1 ← {large 1-itemsets} // Generate all large 1-itemsets
k ← 2
while Lk−1 6= ∅ do
Ck ← generateCandidates(k, Lk − 1) // New candidate itemsets
for all candidate itemsets c ∈ Ck do
c.count← 0

for all instances t ∈ D do
Ct ← Ck ∩ P (t) // Candidate itemsets that are subsets of t
for all candidate itemsets c ∈ Ct do
c.count+ +

Lk ← {c ∈ Ck : c.count ≥ minsup}
k + +

LTot ←
⋃
k Lk

RS = ∅; // Generate rule set
for all large k itemsets lk ∈ LTot where k ≥ 2 do
H ← {consequents of rules derived from lk with one item in the consequent}
RS ← RS ∪ generateRules(k, lk, 1, H)

return RS

Once the set LTot is established, rules are generated by the procedure generateRules

(Algorithm 3). For each large itemset (lk), every subset a produces a rule a⇒ l−{a},

which is added to the rule set (RGR) if the confidence of the rule exceeds the minconf

parameter. The algorithm shown here will generate all association rules above the

minimum support and confidence thresholds. To generate association rules with a

27

Algorithm 2 generateCandidates(k, Lk−1, the set of all large k − 1-itemsets)

Ck ← ∅
for all X ∈ Lk−1, Y ∈ Lk−1 do

if (X − {Xk−1} = Y − {Yk−1}) ∧ (Xk−1 6= Yk−1) then
c← X ∪ Y
Ck ← Ck ∪ {c}

for all c ∈ Ck do
for all k − 1 subsets of c, s do

if s /∈ Lk−1 then
Ck ← Ck − {c}

return Ck

fixed, single AT consequent, we generate only itemsets that contain the consequent,

and replace the generateRules procedure with an assessment of the confidence of

the rule R = I − {c} ⇒ c, where I is the itemset and c is the item representing the

fixed consequent.

Algorithm 3 generateRules(k, lk, a k-itemset, m, H, a set of consequents)

RGR← ∅
if k > m then
m+ +
for all h ∈ H do
conf ← support(lk)/support(lk − h)
if conf ≥ minconf then
r ←< rule, conf,support(lk) >, where rule = (lk − {h})⇒ h
RGR← RGR ∪ {r}

else
H ← H − {h}

H ← generateCandidates(H)
RGR← RGR ∪ generateRules(k, lk,m,H)

return RGR

The minimum support and minimum confidence parameters are used to reduce

the size of the rule set, eliminating rules on the basis of counts from the dataset.

28

2.9 Interestingness measures

Rule set quality is assessed in terms of the quality of the individual rules in the set.

The term typically used in the literature for the quality of a rule is interestingness, and

we shall adopt this convention. The rules generated by algorithms may be interesting

or not. Objective interestingness measures are used to assess how interesting an

association rule might be from the structure of the dataset. Support and confidence

are two common measures by which the interestingness of a rule is assessed, and form

the basis of most objective interestingness measures.

Blanchard et al. [20], following [138], define a rule interestingness measure as a

function from a rule onto the real numbers, which increases with N(A ∧ C) and de-

creases with N(A) when all other parameters are fixed. Piatetsky-Shapiro and Fraw-

ley [138] suggest that a good measure should decrease with N(C). This is restrictive,

however; interestingness measures should not have any determined behaviour with

regard to N(C) and N(U) [20].

In [20], rules are represented as ordered quadruples of the form:

R =< N(A ∧ C), N(A), N(C), N(U) > . (2.9.1)

For an association rule with a fixed consequent, N(C) andN(U) are constants. Hence,

only the N(A) and N(A ∧C) values of rules in a rule set vary. This greatly restricts

the usefulness of this kind of interestingness measure. For example, [20], demonstrate

that the orderings imposed by the confidence and lift measures on a rule set are not

the same. However, the example in their proof uses different values for N(C) between

rules. With a fixed consequent, it can be proved that lift and confidence impose the

same ordering [15]. Thus, for association rules with a fixed consequent, the scope for

objective interestingness measures to differentiate rules is greatly diminished.

Many measures of rule interestingness have been proposed. These include support,

29

confidence, and coverage (see Section 2.7), novelty [109], relative risk [4], chi-square

[72, 129], gain [65], k-measure [136], entropy [35, 129], Laplace accuracy [35], in-

terest/lift [95, 26], conviction [26, 14], and Gini [129]. Comprehensive surveys of

interestingness measures can be found in [161, 33, 135].

The majority of interestingness measures are based on counts, such that differ-

ent rules that happen to have the same counts have the same value. Over 100 of

these measures are documented; however, in [15], the authors demonstrate that many

different measures impose the same partial ordering on a rule set. In Section 2.10,

we apply a similar line of argument to the type of rule we are interested in: partial

classification rules with fixed consequent.

Subjective interestingness is a measure of how interesting the discovered rule is to a

domain expert. Researchers have tested the assumption that objective and subjective

interestingness are correlated [136, 33, 111, 135]. The experiments involve ranking

rules based on various objective measures and on interestingness to domain experts.

The performance of certain objective measures, such as relative risk [4], uncovered

negative [66], and accuracy [109], was reasonable on the medical datasets studied

in [135]. The effectiveness of any individual interestingness measure for a given rule

set is highly correlated to the dataset in question, suggesting that this approach is

unlikely to yield any projectible insight; we do not believe that the measures that

performed best in the study would perform best given rule sets created from different

data.

As an approach, data mining is most useful when finding rules that are difficult to

find by manual analysis, and this suggests an alternative method to discover poten-

tially interesting rules. We may assume that general statistical analysis reveals good

single predictors of the class of interest. Instances where the combination of predic-

tors produces a surprising result (poor predictors combining to form a good rule, or

30

predicted classes changing with the addition of predictors to a rule, see [32, 139]) are

of particular interest because they are unlikely to be revealed by such analysis. This

is particularly evident in cases where the number of predictors is high and the dataset

is very large. In Chapter 6, we propose two novel interestingness measures that as-

sess this quality of a rule, and use them as a supplement to count-based measures for

assessing rule quality.

2.10 Selecting an appropriate interestingness mea-

sure

We wish to select a count-based interestingness measure to use in our assessment

of partial classification rules. In this section, we examine a number of commonly

used interestingness measures, and show that, under conditions that hold for our

particular area of interest, they all impose the same ordering as confidence. This is a

novel analysis of existing interestingness measures that shows they are not fit for our

purpose.

We focus on partial classification rules with a fixed consequent, derived from a

fixed dataset. Hence, we make the following assumptions:

1. The dataset is fixed. That is, N(U) is a constant. We do not compare rules

across datasets.

2. The consequent of the rule is fixed. That is, N(C) is a constant, as is N(¬C).

Under these assumptions, we prove theoretically that twelve interestingness mea-

sures proposed in the literature are monotonic with respect to confidence. Several of

the proofs rely on the following equivalence:

N(A ∧ ¬C)

N(A)
= 1− N(A ∧ C)

N(A)
= 1− Conf. (2.10.1)

31

Satisfaction

The formula for Satisfaction [109] is:

N(¬C)×N(A)−N(A ∧ ¬C)×N(U)

N(C)×N(A)
. (2.10.2)

The formula can be rearranged to give:

N(¬C)

N(C)
− N(A ∧ ¬C)

N(A)
× N(U)

N(C)
(2.10.3)

(cancelling N(A) in the first term). The first and third terms are constants, and the

second term is equal to 1−Confidence, so satisfaction is proportional to Confidence.

Ohsaki’s Conviction

Ohsaki’s Conviction [136] is calculated as:

N(A)×N(¬C)2

N(A ∧ ¬C)×N(U)2
. (2.10.4)

The formula can be rearranged as:

N(A)

N(A ∧ ¬C)
× N(¬C)2

N(U)2
. (2.10.5)

By dividing both the numerator and denominator of the first term by N(A), we have:

1/
N(A ∧ ¬C)

N(A)

which is equal to 1/(1−Confidence); the second term is a constant. Hence, Ohsaki’s

conviction is proportional to Confidence.

Added Value

The formula for the Added Value measure [179] is:

N(A ∧ C)

N(A)
− N(C)

N(U)
. (2.10.6)

As the second term is a constant, this measure is proportional to Confidence.

32

Brin’s Interest/Lift/Strength

Brin’s Interest/Lift/Strength [26, 14, 48] is calculated as:

N(A ∧ C)

N(A)
× N(U)

N(C)
. (2.10.7)

The second term is fixed, so this measure is proportional to Confidence.

Brin’s Conviction

Brin’s Conviction [26] is:

N(A)×N(¬C)

N(U)×N(A ∧ ¬C)
. (2.10.8)

As shown in [15], the formula can be rearranged by dividing both the numerator and

the denominator by N(A), giving

N(¬C)

N(U)×N(A ∧ ¬C)/N(A)
. (2.10.9)

N(A∧¬C)
N(A)

is equal to 1−Confidence. N(U) and N(¬C) are fixed, so Brin’s Conviction

is monotonic with respect to Confidence.

Certainty Factor/Loevinger

The formula for Certainty Factor/Loevinger [161, 110] is:(
N(A ∧ C)

N(A)
× N(U)

N(¬C)

)
− N(C)

N(¬C)
. (2.10.10)

Both N(U)
N(¬C)

and N(C)
N(¬C)

are constants, so Certainty Factor/Loevinger is proportional

to Confidence.

Mutual Information

The Mutual Information measure [161] is:

log2

(
N(A ∧ C)

N(A)
× N(U)

N(C)

)
. (2.10.11)

The log2 function is monotonic, and N(U)
N(C)

is a constant, so mutual information is

proportional to Confidence.

33

Interestingness

Interestingness [178] is calculated as follows:

N(A ∧ C)

N(A)
× log2

(
N(A ∧ C)

N(A)
× N(U)

N(C)

)
. (2.10.12)

Interestingness is Confidence multiplied by the Mutual Information measure. Hence,

it is monotonic with respect to Confidence.

Sebag-Schonauer

The Sebag-Schonauer measure [155] is:

N(A ∧ C)

N(A ∧ ¬C)
. (2.10.13)

By dividing both the numerator and the denominator by N(A), we see that the for-

mula is equivalent to Confidence/(1 − Confidence), which is proportional to Con-

fidence. This measure is proportional to Confidence even if we relax the assumption

that the consequent is fixed.

Ganascia Index

The Ganascia index [67] for a rule is:

N(A ∧ C)−N(A ∧ ¬C)

N(A)
. (2.10.14)

N(A ∧ ¬C) = N(A)−N(A ∧ C), so the numerator is equal to:

N(A ∧ C)−N(A) +N(A ∧ C) = 2N(A ∧ C)−N(A). (2.10.15)

Hence, the formula can be rearranged as 2N(A∧C)
N(A)

− N(A)
N(A)

, which is proportional to

Confidence. Like Sebag-Schonauer, Ganascia Index is proportional to Confidence

even if we relax our assumption of fixed consequent.

34

Odd Multiplier

Odd Multiplier [69] is calculated as:

N(A ∧ C)×N(¬C)

N(C)×N(A ∧ ¬C)
. (2.10.16)

We rearrange the formula as:

N(A ∧ C)

N(A ∧ ¬C)
× N(¬C)

N(C)
. (2.10.17)

The second term is a constant, and the first term is the Sebag-Shonauer measure,

which is proportional to Confidence. Hence, odd multiplier is proportional to Confi-

dence.

Example/counter-example Rate

We calculate the Example/counter-example Rate [94] as:

N(A ∧ C)−N(A ∧ ¬C)

N(A ∧ C)
. (2.10.18)

The formula can be rearranged as:

N(A ∧ C)

N(A ∧ C)
− N(A ∧ ¬C)

N(A ∧ C)
. (2.10.19)

By dividing both the numerator and the denominator of the second term byN(A), and

cancelling N(A∧C) in the first term, we have 1− 1−Confidence
Confidence

, which is proportional

to Confidence. This measure is proportional to Confidence without the assumption

that the consequent is fixed.

2.10.1 Analysis

We have shown that a large number of commonly-used interestingness measures im-

pose the same ordering on a set of partial classification rules with a fixed consequent

as confidence. On the basis of this, we proceed with the view that confidence is an

35

appropriate interestingness measure for rule induction tasks of the type we are inter-

ested in, and that there is little benefit to be gained by employing any of the other

measures we have examined in detail.

2.11 Mining rules from time-series data

Mining association rules from time-series data using a market-basket approach re-

quires transforming the time-series into a representation that is compatible with

Apriori (or other market-basket association rule algorithms). One canonical ap-

proach is [39], where repeated patterns are discovered in time series; the patterns

are the input used for finding association rules. Keogh and Lin [100] criticise the

approach in [39], and similar approaches, on the grounds that the discovered patterns

are meaningless because no account has been taken of overlapping subsequences. We

discuss this point in greater length in Chapters 3 and 5.

Our own contribution to the problem of finding repeated patterns in time-series

can be found in Chapter 7. Our interest does not lie in discovering rules in long time

series, however; we wish to discover partial classification rules that can be used for

(partial) TSC. We do this by transforming the data (Chapter 5) before building rule

sets (Chapter 6). Our rule induction from time series is much more closely aligned

with the type of rule discovery discussed in this chapter, and with TSC, than is the

approach in, for example, [39].

2.12 Conclusions

In this chapter, we describe two areas of data mining that are key to our novel

contributions: TSC and partial classification using association rules.

In the first half of the chapter, we discuss classification, time-series, TSC, and

our particular interest in classifying time-series by similarity in shape. Specifically

36

to support Chapter 5, we outline the classifiers that we use and 1NN with DTW

distance (a benchmark to which we compare our method), and review ensembling,

which we employ to improve accuracy. We also describe the statistical tests we use

when comparing our methods with other approaches in Chapters 5 and 6.

In the second half of the chapter, we discuss partial classification with association

rules, the focus of Chapter 6. We describe the algorithm we use, Apriori, and how

we select interestingness measures for the algorithms and assessment methods in that

chapter.

The next chapter focuses on a particular aspect of TSC that is key to our novel

contributions: local similarity of shape.

Chapter 3

Representing Time Series with
Localised Shapes

A shapelet is a time-series subsequence that can be used as a primitive for TSC

based on local, phase-independent similarity in shape (Figure 3.1). Shapelet-based

classification involves measuring the similarity between a shapelet and each series,

then using this similarity as a discriminatory feature for classification.

In Section 3.1, we define shapelets and shapelet candidates, present a generic

algorithm for shapelet discovery, and define two central concepts: shapelet distance

and shapelet quality. In Section 3.2, we present and analyse a number of techniques

from the literature for speeding up the shapelet search. In Section 3.3, we discuss

a number of different domains where shapelets have been successfully applied to

classification problems, including image outlines, motion capture, and spectrographs.

In Section 3.4, we examine some extensions to the shapelet approach that have been

suggested in the literature. Finally, in Section 3.5, we discuss an unsupervised use of

local-shape-based similarity, where repeated patterns, called motifs, are mined from

time-series data.

37

38

0 100 200 300 400 500
Time

Series of class 0.0

0 100 200 300 400 500
Time

Series of class 0.0

0 100 200 300 400 500
Time

Series of class 1.0

0 100 200 300 400 500
Time

Series of class 1.0

Figure 3.1: Four series from our simulated dataset (see Chapter 4). The shapelets for
class 0 are highlighted in black, for class 1 in red. The simulated data demonstrates
the utility of shapelets for detecting phase-independent local similarity of shape in
noisy data.

39

3.1 Shapelet definition

A time-series dataset T = {T1, T2, ..., Tn} is a set of n time series. A length m

time series Ti =< ti,1, ti,2, ..., ti,m > is an ordered set of m real numbers. A length l

subsequence of Ti is an ordered set of l contiguous values from Ti. Ti has a set Wi,l

of (m− l) + 1 subsequences of length l. Each subsequence w =< tj, tj+1, ..., tj+l > in

Wi,l is a time series of length l where 1 ≤ j < m− l.

A shapelet is a subsequence of one time series in a dataset T (see [180, 181]) that is

discriminative of the class of the series. A good shapelet is a subsequence found only

in series of a particular class (this is for the binary case. For multi-class problems,

good shapelets may appear in more than one class - the important feature is that they

appear in some and not in others). Whether or not a shapelet is considered to be

present in a series is determined by a distance calculation (see Section 3.1.3). Every

subsequence of every series in T is a candidate - a potential shapelet. Shapelets are

found via an exhaustive search of every candidate of length min to max. Shapelets

are normalised; since we are interested in detecting localised shape similarity, they

must be invariant to scale and offset, and it is insufficient to normalise the series as

a whole [140].

Ye and Keogh introduce shapelets in [180], and expand upon the research in [181].

They use a decision tree to classify with shapelets. Mueen, Keogh, and Young [130]

propose an extension from shapelets to logical shapelets. The authors also provide a

method to speed up the shapelet search by reusing information from distance calcula-

tions. McGovern et al. [125] apply the shapelet approach to weather prediction. Much

of the research into shapelets has focused on methods to speed up the shapelet search.

Chang et al. implement the shapelet search in parallel on the GPU [34]. In [73], the

authors propose a randomised search for shapelets. He et al. experiment with speed-

ing up the search by restricting the number of candidates that are examined [84].

40

There has also been an expansion in applications of the shapelet approach; examples

include gait recognition [157], early classification [176, 71], and clustering [183]. The

shapelet-discovery algorithm is extended with alternate quality measures [116], disso-

ciation from the tree classifier [119], and modification into a faster system for finding

approximate shapelets [141].

3.1.1 Generating candidates

A time series Ti of length m contains (m− l)+1 distinct candidate shapelets of length

l. We denote the set of all normalised subsequences of length l of series Ti as Wi,l.

Typically, a range of values will be used for l, from min to max. Wi, the set of all

sets of shapelet candidates from Ti is:

Wi = {Wi,min,Wi,min+1, · · · ,Wi,max}.

Wi contains each set of shapelet candidates from Ti. The size of Wi is O(m2)

where m is the series length; for a dataset of size n, there are O(m2n) shapelet

candidates.

3.1.2 Shapelet algorithm

Algorithm 4 is a generic algorithm for finding the best shapelet [119]. Shapelet

discovery has three main components: candidate generation, a similarity measure

between a shapelet and a time series, and some measure of shapelet quality.

The generateCandidates method creates the set of sets of normalised subse-

quence of length from min to max of one time series, Ti (Wi). The findDistances

method returns the set of shapelet distances between the candidate and the series in

T. The assessCandidate method assigns a value to each subsequence. If, for exam-

ple, the Information Gain (Section 3.1.4) measure is used, assessCandidate finds the

optimum split point, and the Information Gain of the shapelet for that split point.

41

Algorithm 4 shapeletDiscovery (Dataset T, min,max)

1: best← 0
2: bestShapelet← ∅
3: for all series Ti in T do
4: Wi ← generateCandidates(Ti,min,max)
5: for all Wi,l in Wi do
6: for all candidates S in Wi,l do
7: DS ← findDistances(S,T)
8: quality ← assessCandidate(S,DS)
9: if quality > best then

10: best← quality
11: bestShapelet← S
12: return bestShapelet

The candidates are checked in turn; the best candidate is retained as the shapelet.

The best shapelet is the combination of subsequence and distance threshold that best

distinguishes between classes. Our implementation of the shapeletDiscovery algo-

rithm does not create the set Wi; instead, the candidates are created as needed from

the original series. We feel that referring to the set Wi in the pseudo-code makes the

algorithm more transparent than it would be if it followed our implementation.

In [180, 181, 130], the authors classify data by embedding the shapelet search

within a decision-tree classfier (Algorithm 5).

Algorithm 5 buildShapeletTree(T,min,max)

1: if pureClass(T) then
2: return < T >
3: else
4: S ← shapeletDiscovery(T,min,max)
5: sp← findSplitPoint(S,T)
6: Ta ← ∅
7: Tb ← ∅
8: for all Records T in T do
9: if sDist(S, T) < sp then

10: Ta ← Ta

⋃
{T}

11: else
12: Tb ← Tb

⋃
{T}

13: return < buildShapeletTree(Ta), buildShapeletTree(Tb) >

42

The pureClass method returns true if and only if the class labels of dataset T

are all the same (Algorithm 5 is for a decision tree with no pruning - see [25]). The

algorithm finds the shapelet in the initial case, and after each split, and splits the

data using the shapelet, just as a standard decision tree splits on attributes values,

until each node is pure. A pure node is designated a leaf, and terminates that branch

of the algorithm.

Integrating the classification with the shapelet search has a number of disadvan-

tages. First, the classification accuracy can suffer compared to alternative classifi-

cation algorithms. In Chapter 5, we show that decision tree implementations of the

shapelet approach are less accurate classifiers than our method. The second disad-

vantage of embedding the shapelet search within a decision tree is that it requires

the search to be performed at every branch of the tree. Searching for shapelets is

time intensive, and a deep decision tree will require many searches. The third disad-

vantage is one of interpretability. Decision trees with multiple layers can be difficult

to interpret, as they entail a hierarchy of binary splits, with each subsequent split

conditional on the splits above it. This diminishes the interpretability of the process,

which is one of the intended qualities of the shapelet approach.

3.1.3 Shapelet distance

The squared Euclidean distance between two subsequences S and R, where both are

of length l, is defined as:

dist(S,R) =
l∑

i=1

(si − ri)2. (3.1.1)

For a shapelet S of length l, and a time series T , the shapelet distance (sDist)

is the minimum squared Euclidean distance between the shapelet and any length l

subsequence of T , where the set of length l subsequences of T is Wl:

sDist(S, T) = min
w∈Wl

(dist(s, w)). (3.1.2)

43

For any shapelet and series, the sDist is the squared Euclidean distance between the

shapelet and the closest subsequence of the series of the same length as the shapelet.

3.1.4 Shapelet quality with Information Gain

The method assessCandidate in Algorithm 4 assesses shapelet quality. Shapelet

quality is based on how well the class values are separated by the set of distances

between the shapelet and the series in T. The standard approach [180, 181, 130] is

to use Information Gain (IG) [158] to determine the quality of a shapelet. The IG of

a split is the difference between the entropy of the whole dataset, and the sum of the

entropies of the two halves of the split, weighted by the amount of data in each split.

The entropy, H, of a set of objects, T, is:

H(T) = −p(A) log(p(A))− p(B) log(p(B)), (3.1.3)

where p(X) is the proportion of objects of class X in the set (this definition is for

two-class problems, and is trivial to extend to multi-class problems).

A splitting strategy, in this case a shapelet and a distance threshold, divides T

into two disjoint subsets, Ta and Tb, where Ta ∩ Tb = ∅ and Ta ∪ Tb = T. For

shapelet S, distance threshold sp, and series Ti, Ti is assigned to Ta if and only if

sDist(S, Ti) < sp. If sDist(S, Ti) ≥ sp, then Ti is assigned to Tb.

The weighted average entropy, Ĥ, of a split (a shapelet and distance threshold),

SD, is:

Ĥ(SD) =
|Ta|
|T|

H(Ta) +
|Tb|
|T|

H(Tb). (3.1.4)

The total Information Gain for a split SD on dataset T is:

IG(SD) = H(T)− Ĥ(SD). (3.1.5)

The IG quality measure of a shapelet, S, is the highest IG of any split point, SD,

44

in the set of possible splits, SD:

IG(S) = max
SD∈SD

IG(SD). (3.1.6)

The IG calculation requires sorting the set of distances and then evaluating all split

points. This introduces a time overhead of O(n log n) for each shapelet, although this

is generally trivial in comparison to the time taken to calculate the set of distances,

which is O(nml).

3.2 Speed-up techniques for distance calculation

The major weakness of the shapelet approach is the time required to find shapelets.

The exhaustive search requires each subsequence of each series of each length to be

compared to each subsequence of that length of every other series in the training set.

There are n(m− l+ 1) candidates for any given shapelet length l. Finding the set

of distances for a single candidate requires a scan along every series, performing O(m)

distance function calls, each of which requires O(l) pointwise operations. Hence, the

complexity for a single shapelet is O(nml), and the full search is O(n2m4). Clearly,

this is untenable for even moderately large datasets.

In this section, we review a number of different methods to increase the speed of

the shapelet search.

3.2.1 Early abandon of the shapelet

An early abandon of the shapelet assessment, entropy pruning, is proposed in [180,

181]. After the calculation of each distance between the shapelet and a series, an

upper bound on the IG is found by assuming the most optimistic future assignment.

If this upper bound falls below the best found so far, the candidate shapelet can be

abandoned. This modification offers a potentially huge speed up at a small extra

45

overhead for calculating the best split and upper bound for each new distance. En-

tropy pruning can reduce the time taken to find a shapelet by more than two orders of

magnitude [180]. This is an empirical finding; it may not hold for all cases. One dis-

advantage is that, for multi-class problems, a correct upper bound can be found only

through enumerating split assignments for all possible classes, which can dramatically

increase the overhead.

� � � � � � � � � �� �� �� �� �� �� �� ��

�

�

�

�

�

�

�

��

��

��

.������,����� �	����	�
��#�����(�)�
���3��	��1'

�9��(�3��)�3	�	�

�9��(�)�3	�	�

�������

-
�

�
�

��
��

�
��
�

,
�

	
��
	

��
�

+
�

	
�

�

Figure 3.2: Graph of speed up offered by early abandon of the candidate shapelet on
17 UCR datasets. Graph taken from [11].

Experiments performed by our research group [11] found that early abandon of

the shapelet candidate delivered a 68% speed up on finding the shapelet on the set

of UCR datasets with four classes or fewer (Fig. 3.2). With more than four classes,

the speed up diminished, as the overhead for calculating the optimistic split with IG

increases with the number of classes.

3.2.2 Speed improvement by reusing information

Mueen et al. [130] offer two contributions to improve the speed of shapelet algorithms:

a method to reduce the time complexity of normalised Euclidean distance calculations

by storing summary statistics, and a form of candidate pruning that uses existing

calculated values.

46

Reusing information can decrease the time complexity of the shapelet search; be-

cause every subsequence is compared to every other, there is duplication in the calcu-

lations. For example, when the subsequence starting at position a is compared to the

subsequence at position b, many of the calculations that were previously performed in

comparing the subsequence starting at position a− 1 to the one starting at b− 1 are

duplicated. A method involving trading memory for speed is proposed in [130]. For

each pair of series Ti, Tj, cumulative sum, squared sum, and cross products of Ti and

Tj are precalculated. With these statistics, the distance between subsequences can be

calculated in constant time, making the shaplet-discovery algorithm O(n2m3). How-

ever, precalculating of the cross products between all series prior to shapelet discovery

requires O(n2m2) memory, which is infeasible for most problems. Instead, [130] pro-

pose calculating these statistics prior to the start of the scan of each series, reducing

the requirement to O(nm2) memory, but increasing the time overhead.

The normalised Euclidean distance between two series, X and Y is calculated

in amortised constant time by storing five statistics;
∑
X,
∑
Y,
∑
X2,

∑
Y 2, and∑

XY . The stored statistics allow computations to be reused, exchanging time com-

plexity for space requirements. If X and Y are of length m, the mean of X, X̄,

is:

X̄ =
1

m

∑
X, (3.2.1)

and the variance, s2
X (the square of the standard deviation, sX), is:

s2
X =

1

m

∑
X2 − X̄2. (3.2.2)

The same is true for Y , respectively. The positive correlation:

C(X, Y) =

∑
XY −mX̄Ȳ
msXsY

, (3.2.3)

is used to compute the normalised Euclidean distance as follows:

dist(X, Y) =
√

2(1− C(X, Y)). (3.2.4)

47

The best distance between a subsequence, x, and a time series, Y is the subsequence

distance:

sDist(x, Y) =
√

2(1− Cs(x, Y)) (3.2.5)

where:

Cs(x, Y) = min
0≤v≤n−l

∑l−1
i=0 xiYi+v − lx̄ȳ

lsxsy
, (3.2.6)

x is a length l candidate shapelet taken from X beginning at index u, Y is a length

n time series, y is a length l subsequence of Y starting at index v, l ≤ n, and

x is offset relative to Y by v. ȳ and sy denote the mean and standard deviation

of y, a subsequence representing l consecutive values from Y starting at position

v. Changing the offset v in the min function is equivalent to sliding the candidate

shapelet x against the series Y .

For every pair of points, five arrays are computed, saving the cumulative sums

for X and Y (SX ,SY), the cumulative sums of X2 and Y 2 (S2
X ,S2

Y), and a 2D array

that stores the sum of the product of X and Y for different subsequences (M). The

mean, variance, and sum of products for any two length l subsequences x and y can

be calculated as:

x̄ =
SX [u+ l − 1]− SX [u− 1]

l
(3.2.7)

ȳ =
SY [v + l − 1]− SY [v − 1]

l
(3.2.8)

s2
x =

S2
X [u+ l − 1]− S2

X [u− 1]

l
− x̄2 (3.2.9)

s2
y =

S2
Y [v + l − 1]− S2

Y [v − 1]

l
− ȳ2 (3.2.10)

l−1∑
i=0

Xu+iYv+i = M[u+ l − 1, v + l − 1]−M[u− 1, v − 1], (3.2.11)

where the starting index of x in relation to X is u (fixed for a given candidate

shapelet), and the starting index of y in relation to Y is v (dependent on the offset).

48

From these values, the normalised Euclidean distance can be calculated in constant

time, speeding up the search by a factor of m.

Mueen et al. [130] also propose candidate pruning with reused calculations, based

on the intuition that, if a candidate is a poor shapelet, any similar subsequence can

be abandoned. This is exact; no good shapelet candidate will be abandoned. Let

the distance between Si and Si+1 be R. By the triangle inequality, the distance

between Si+1 and some subsequence Dk is sdist(Si, Dk) − R ≤ sdist(Si+i, Dk) ≤

sdist(Si, Dk) + R. The points on the order line for the original shapelet are shifted

optimistically by R in either direction, giving the best possible information gain for

the new candidate. This optimistic IG can be used to prune shapelets that are worse

than the best-so-far.

The findDistances method in line six of Algorithm 4 can be modified to incor-

porate the use of pre-calculated statistics, reducing the complexity of the shapelet

search from O(n2m4) to O(n2m3). The space complexity can be as high as O(nm2),

however. This is an untenable memory footprint for large datasets.

Research performed by our group on the UCR datasets (see Figure 3.3) found

that using pre-calculated statistics offers an average speed up of 88% for finding the

first shapelet [11].

3.2.3 Speed improvements from distance calculations

sDist(S, Ti) is the minimum of the m − l + 1 subsequence distances between S and

Ti. Hence, individual calculations can be abandoned if they are larger than the best

found so far. Empirically, this has been shown to reduce the time taken by a constant

factor of two [180].

Rakthanmanon et al. propose a method to speed up the indexing and querying

of time-series databases. They achieve this speed up by normalising subsequences

49

�

�

�

�

�

�

�

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��
�

�

�

��

��

��

.������,�	���� �	������	�
��#�����(�)�
��

�����

��	
�	���	��������������	�

������	+�������+�+(�	�

�������

-
�

�
�

��
��

�
��
�

,
�

	
��
	

��
�

+
�

	
�

�

Figure 3.3: Graph comparing speed up offered by reusing information to that offered
by improving the distance calculation. Graph taken from [11].

during the distance calculation, and by reordering the query sequence to compare

the largest values first [140]. We modify their approach and apply it to the shapelet

search, with the query subsequence replaced with the shapelet candidate. This is a

novel application of their methods.

Algorithm 6 includes these speed ups, and is incorporated into the shapelet search

(Algorithm 4) at line six, as part of the findDistances method (findDistances finds

all sDists for a shapelet and set of time series).

Rakthanmanon et al. [140] z-normalise candidates and subsequences during the

search, using summary statistics, rather than as a batch prior to the search. As

the z-normalisation is incrementally computed, the Euclidean distance can also be

computed. Thus, if the distance calculation is abandoned, the z-normalisation can

be abandoned, reducing the number of calculations performed (see Algorithm 6).

It takes only one scan of the sample to calculate the mean (x̄) and variance (s2
x):

x̄ =
1

m

∑
xj (3.2.12)

s2
x =

1

m

∑
x2
j − x̄2. (3.2.13)

The values and the squares of the values are summed, the mean is computed from

50

the sum of the xj terms, and the variance from the sum of x2
j and the mean. For

subsequences, we store the cumulative sum of the values for each point in the series,

and the cumulative sum of the squares of the values. This requires linear space in m,

the total length.

Every subsequence must be normalised before comparison; the mean of the sub-

sequence can be obtained by keeping two running sums of the long time series with a

lag of k values, where k is the subsequence length. The variance of the subsequence

can also be computed in this manner:

x̄sub =
1

k

(
i+k−1∑
j=0

xj −
i−1∑
j=0

xj

)
(3.2.14)

s2
sub =

1

k

(
i+k−1∑
j=0

x2
j −

i−1∑
j=0

x2
j

)
− x̄2

sub. (3.2.15)

If i is the initial index of a subsequence of length k, the subsequence mean is computed

as the cumulative sum at i+ k − 1 minus the cumulative sum at i− 1, divided by k.

The variance is the cumulative sum of squares at i+ k− 1 minus the cumulative sum

of squares at i− 1, divided by k, minus the square of the subsequence mean.

For each point in the subsequence, we normalise, then add the normalised length,

abandoning if the best-so-far is exceeded. Hence, the normalisation is abandoned as

well as the distance calculation.

Rather than compute the distance point-by-point left to right, Rakthanmanon et

al. [140] propose that the distances are computed in order of the absolute value of

the original normalised subsequence (see Algorithm 6). The reasoning behind this is

as follows. Sorting the indexes is a cheap operation; because the other subsequences

are normalised with a mean of zero, large values are more likely to produce large

differences, and cause the calculation to be abandoned. The authors support their

claim by comparing the true best ordering (found by brute force) with their ordering

over a million subsequences taken from the ECG dataset and compared with a query

51

subsequence. They found a 0.999 rank correlation between their ordering and the best

ordering. On average, reordering the distance calculation allows distance calculations

to be abandoned earlier.

Rakthanmanon et al. [140] report a time reduction for the shapelet search on the

FaceFour dataset from 18.9 minutes to 12.5 minutes. Our group [11] has performed

extensive experiments on the UCR dataset, finding an average speed increase of 63%

for finding the first shapelet (see Fig. 3.3).

Algorithm 6 findDistance(Time series T , Shapelet S)

1: S ′ ← normalise(S, 1, l)
2: A← sortIndexes(S ′) {Ai is the index of the ith largest absolute value in S ′}
3: F ← normalise(T, 1, l)
4: p← 0, q ← l {p stores the running sum, q the running sum of squares}
5: b← dist(S, F) {Find first distance, set to best so far, b}
6: {Scan through all subseries}
7: for i← 1 to m− l do
8: p← p− ti {Update running sums}
9: q ← q − t2i

10: p← p+ ti+l
11: q ← q + t2i+l
12: x̄← p

l

13: s← q
l
− x̄2

14: j ← 1, d← 0
15: {Distance between S and < ti+1 . . . ti+l+1 > with early abandon}
16: while j ≤ l & d < b do

17: d← d+
(
SAj
− ti+Aj

−x̄
s

)2

{Reordered online normalisation}
18: j ← j + 1
19: if j = l & d < b then
20: b← d
21: return b

3.2.4 Using the GPU

Chang et al. [34] propose an algorithm that parallelises the shapelet search on the

GPU, and they report that the GPU implementation is one to two orders of magnitude

faster than the CPU implementation.

52

Using the GPU for shapelet discovery may be useful for very large datasets. Al-

gorithmic methods, however, such as those in [140], and approximate methods such

as in [73], offer speed improvements that make searching very large datasets tenable,

without using the GPU. Our shapelet transform, discussed in Chapter 5, is embar-

rassingly parallel, such that using the GPU, or any parallel system, is trivial. Many

of our experiments on large datasets make use of this feature.

3.2.5 Discrete shapelets

Discretising the shapelet search decreases the time complexity by reducing the number

of distance calculations. There is no guarantee that the best shapelets will be found,

however. Rakthanmanon and Keogh [141] propose an algorithm to discover discrete

approximate shapelets that offers two to three orders of magnitude speed improvement

over the exact brute-force algorithm, with no substantial loss of accuracy. McGovern

et al. [125] discretise the entire set of series prior to the shapelet search. We focus on

the discretisation used in the first approach; the discretisation used by McGovern et

al. applies the Symbolic Aggregate Approximation (SAX) technique to whole time

series, and is much simpler to implement.

The time complexity of the algorithm proposed in [141] is O(nm2). The series are

represented discretely, using the SAX ([171, 115]) method. Each series is transformed

into a number of SAX words; each SAX word is masked at random points, referred

to as a random projection [28]. For each random projection, a small portion of the

SAX word is masked. The results are hashed for multiple different random masks,

and the collisions are summed by class. There is a very strong correlation between

the best SAX words and the best shapelets.

The best SAX words are checked in the original data space as shapelet candidates.

The number of iterations and the number of candidates promoted has a strong effect

53

on the running time, but not on the accuracy, so should be kept low.

Rakthanmanon and Keogh also employ a cross-validation technique from [152] to

estimate whether the shapelet approach is likely to be useful. Their results are pre-

liminary, but look promising, although the cross-validation fold used is large enough

to be a significant time factor.

3.2.6 Approximate shapelets

Shapelets can be found by random searching, possibly combined with a hill-climbing

approach. Gordon et al. [73] propose a method for finding shapelets through a

randomised algorithm called SALSA-R; their results show that the algorithm finds

shapelets that offer comparable accuracy to those found by exhaustive search, and

that they are discovered orders of magnitude more quickly.

The accuracy of a shapelet classifier does not increase monotonically with the

number of shapelets examined; rather, there is a point after which accuracy begins

to decrease [34, 73], possibly because the shapelet model begins to overfit the data.

Hence, a random search can attain equal or greater accuracy than an exhaustive

search. Random sampling works particularly well because good shapelets are tightly

clustered in the shapelet space. Finding a shapelet in a cluster yields a good shapelet;

the rest of the space is almost empty, so the search time is wasted.

The SALSA-R algorithm searches the shapelet space at random; the search is

terminated when shapelet quality fails to improve by a specified amount over a given

number of iterations. The distances searched in building the root node of the tree

are saved to disk, and only the candidates already searched are used to build the

remaining nodes. This reduces the search space for the child nodes. SALSA-R cannot

use any pruning method that abandons distance calculations because of this.

For six of seven datasets, the accuracy of SALSA-R is within 2% of the shapelet

54

tree from [130], and for three, it outperforms it. For most datasets, the minimum

accuracy is within 10% of the final accuracy, suggesting that the algorithm does not

produce poor models very often. The standard deviation of the accuracies is also

small, indicating that there is little likelihood of generating a poor model. SALSA-R

examines several orders of magnitude fewer shapelets than the exhaustive search, and

this is reflected in the search speed. The advantage is greater for larger datasets.

Hartman et al. [82] use an evolutionary algorithm that finds prototypes (shapelets,

see Section 3.4.5) with, on average, more than 95% of the maximal target function

score, while searching only 5% of the full target space. The maximal target function

score is equivalent to a shapelet quality measure. Hence, their algorithm offers a large

increase in speed in exchange for a small loss in shapelet quality. The algorithm begins

with five randomly-selected candidates, which are randomly permuted to produce

children. The best five shapelets are selected from the set of ten as the next generation.

This is iterated over a large number of generations to find approximate shapelets.

Approximate approaches appear to offer an avenue by which to scale shapelet

classification to very large datasets.

3.3 Shapelet applications

Applications for shapelets include image-outlines, motion-capture data, and spectro-

graphs, among others. In this section, we review a number of these applications.

3.3.1 Image-outline classification

Intuitively, shapelets are suited to image classification based on outlines. Image out-

lines are often distinguished by local features, and may have large intraclass variation

due to different rotation, zoom, and light intensity between images.

Image outlines are converted into 1D series by measuring the distance between a

55

Figure 3.4: A beetle outline unfolded into a 1D series. The area highlighted in
blue, and the corresponding subsequence of the series, is the best shapelet for the
Beetle/Fly dataset.

central point and each point on the outline; see Fig. 3.4. The number of points used

to form the series determines the granularity of the representation.

There are a number of image-outline-classification examples in the literature. Ye

and Keogh [180] classify leaf outlines, and, in [141], researchers from the same group

use shapelets to classify skull outlines. The problems are contrived, but suggest an ap-

plication area. Ye and Keogh also apply shapelets to two genuine image-classification

problems: classifying arrowheads, and classifying heraldic shields from historical doc-

uments [180]. For these two problems, the shapelet tree is more accurate than 1NN,

the next best classifier. The heraldic shield problem is especially interesting because

it has clear applications to image mining heterogeneous data.

We apply the shapelet approach to a number of image-outline-classification prob-

lems, including classifying image outlines of bones in the hand, the MPEG-7 image

56

dataset, and fish type (see Chapter 4 for information on these problems, and Chap-

ter 5 for our experiments and results).

3.3.2 Motion capture

Shapelets have been applied to motion-capture data. For gesture recognition [81, 82],

movement analysis [180, 119], or gait recognition [157, 181], it is likely that local

movements will be better discriminative features than the whole series, which can be

noisy, with unclear start and end points, and large intraclass variation.

The Gun/No Gun problem is based on motion-capture data. Each series repre-

sents the movement of an actor drawing a gun. The classification problem is to distin-

guish whether the actor is holding a prop. The task is difficult because there is large

intraclass variation, and noise in measurement and indexing. The shapelet tree [180]

is over 93% accurate, beating 1NN with DTW. The top shapelet reveals interpretable

information. Actors without props ‘overshoot’ the holster position. Lines et al. [119]

also discuss this problem, and the work is extended in Chapter 5. Figure 3.5 shows

the best two shapelets from the Gun/No Gun problem. The best shapelet represents

overshoot when the prop is absent, the second best the extra movement required to

lift the gun when the prop is present.

Shapelets are applied to gait analysis in [181, 157]. The work in [157] is prelimi-

nary, but they anticipate using shapelets to distinguish individuals by their gait. Ye

and Keogh [181] analyse data from the CMU Graphics Lab Motion Capture Database

(http://mocap.cs.cmu.edu/). By aligning two time series, they generate sets of 2D

shapelets, where a pair of subsequences is the candidate. Ye and Keogh’s shapelet

classifier has much better accuracy than rotation-invariant kNN, unless intricate seg-

mentation is performed on the data, in which case the two classifiers converge. Such

segmentation is not scalable, making the shapelet tree preferable for large datasets.

57

Best Shapelet

2nd Best Shapelet

Figure 3.5: The best two shapelets from the GunPoint dataset. The best shapelet
(blue) demonstrates overshoot: the hand is lowered too far at the end of the movement
because there is no prop. The other shapelet shows the extra movement required to
lift the gun when the prop is present.

Hartmann et al. and Hartmann and Link [82, 81] apply a shapelet variant to

gesture recognition. They refer to their shapelets as representative prototypes, and

use DTW distance, rather than Euclidean, with flexible start and end points for

the warping path. Their prototypes tolerate noise in indexing and focus on local

similarity.

Appropriate prototypes are chosen based on minimising intraclass distance (dis-

tance to members of the same class) and maximising interclass distance (distance

to members of other classes). The authors use a number of functions to measure

this; they show that the most effective are the simple Minimal Interclass to Maximal

Intraclass Distance (min max):

min max = minj,k(DTW (Copt, T
′
j,k))−maxi(DTW (Copt, C

′
i)), (3.3.1)

and the complex Error Function Integral (erf int). min max is the shortest distance

to a time series of the non-target class minus the longest distance to a time series

of the target class. The distance threshold used for a given prototype is the mean

distance to the target class members plus two standard deviations.

58

The authors use range normalisation:

Anorm =
A−min(A)

max(A)−min(A)
, (3.3.2)

rather than z-normalisation. Range normalisation normalises to the [0,1] range; the

min and max values are restricted by training set evaluation to prevent extreme

scaling.

Edgcomb and Vahid [55] use shapelets to detect falls in privacy-enhanced video -

video where the appearance of the subject is obscured. They achieve similar accuracies

on the privacy-enhanced video as on the raw video using the shapelet classifier.

3.3.3 Spectrographs

Shapelets are effective for classifying spectrographs. Spectrography involves the mea-

surement of radiated light from a sample. The light is radiated at different frequen-

cies, and can be used to determine the nature of the sample. For example, different

varieties of coffee can be distinguished by their spectrographs.

Ye and Keogh [180] demonstrate that the shapelet tree is considerably more ac-

curate than 1NN on the wheat-spectrography dataset. In the follow-up paper [181],

they show that the shapelet tree has perfect accuracy on the coffee-spectrography

dataset, even when very little training data is used.

In Chapter 5, we show that classifying with shapelet-transformed data increases

accuracy over classifying with untransformed data for the Beef- and Coffee-spectrography

datasets. Using shapelets to classify spectrographs merits more research, as the pre-

liminary results have been excellent, and there are applications in, for example, food

testing.

59

3.3.4 Other applications

Ye and Keogh [180] test their shapelet tree on synthetic data, beating 1NN Euclidean

when 2% or more of the data are examined. The shapelet tree is also more robust to

noise, and a faster classifier once training is complete. On the Mallat dataset, Ye and

Keogh [180] show that using 2/15 of the data to train a shapelet tree yields better

results than a CART tree trained with 1/3 of the data. This is significant because

the shapelet tree can be trained more quickly with a smaller dataset.

McGovern et al. [125] use multi-dimensional shapelets on discretised time series

for tornado prediction. They define a multi-dimensional shapelet as a set of single-

dimensional shapelets, where the i + 1th 1D shapelet begins after or simultaneously

with the ith 1D shapelet. This is a looser definition than is used for motion-capture

data in [181]; the 2D shapelets used there represent a special case of the shapelets

defined in [125].

The algorithm they use to find multi-dimensional shapelets involves finding single-

dimensional shapelets meeting certain criteria (for example, the ratio of true posi-

tives to false positives). The algorithm searches across dimensions for other single-

dimensional shapelets to add to the multi-dimensional shapelet. As each shapelet is

a good predictor, the conjunction of shapelets should be a better predictor (but may

cover fewer cases).

It is an open problem to extend the shapelet approach to multiple dimensions for

non-discretised series. The main issue is retaining scalability. Speed-up techniques

(discussed in Section 3.2) offer the most likely solution to this problem.

3.4 Extensions to the shapelet approach

Most research into shapelets has concentrated on time-series classification with the

shapelet tree of [180, 181]. There are other methods that make use of the shapelet

60

intuition; they are addressed in this section.

3.4.1 Logical Shapelets

Mueen et al. [130] propose a method to improve the descriptive power of shapelets

by using conjunctions and disjunctions of shapelets. Effectively, the recursive search

at each node of the tree is the same as that of [180, 181], but performed multiple

times until one class in the data is partitioned wholly into one side of the binary split.

Logical Shapelets improves the power of the shapelet tree on three datasets.

3.4.2 Early classification

Xing et al. [175] use shapelets for early classification, where predictions are made

before the whole series is examined. Problems that benefit from early classification

include [77], where sepsis in infants is detected early by observing ECG data, or [17],

who show that the traffic flow of a TCP connection can be classified by observing

only the first five packages.

Xing et al. use shapelets because early classification must be interpretable if

professionals are to trust the system, and because shapelets capture local similarity,

which is necessary for early classification. Earliest match length (EML) is a measure

of the utility of a shapelet for early classification:

EML(f, t) = min
len(s)≤i≤len(t)

dist(t[i− len(s) + 1, i], s) ≤ δ, (3.4.1)

where f = (s, δ, c), s is a shapelet, δ is the distance threshold associated with the

shapelet, and c is the class label associated with that shapelet. EML is the first index

of the first subsequence in t that is within the threshold for f . This measure could

be incorporated easily into our shapelet transform, creating an early classifier.

61

In [71], Ghalwash et al. use multivariate shapelets for early classification of med-

ical time series. They focus on producing results that can be used by medical profes-

sionals, who may be uncomfortable with uninterpretable, black-box methods. They

present the task of finding multivariate shapelets as one of optimisation, from a start-

ing point of having extracted all shapelets from each dimension.

3.4.3 Shapelets for clustering

Zakaria et al. [183] perform clustering using shapelets, and show that it can be more

effective than clustering using the whole series. An unsupervised shapelet (u-shapelet)

is a subsequence of a time series for which the distances between the subsequence and

one group of time series are much smaller than those to another group of time series.

The algorithm searches for a u-shapelet that can separate a subset of the data,

which is then removed for the next iteration, until no data remain to be separated.

The u-shapelets are found by a greedy search aimed at maximising the gap between

two subsets of the data:

gap = x̄B − sB − (x̄A + sA), (3.4.2)

where x̄ is the mean distance between the u-shapelet and the members of subset X,

and sX is the standard deviation of the distances between the members of subset X

and the u-shapelet. All subsequences of the time series are candidates, and have their

distance vectors computed. The vector represents an orderline, which is searched to

find the optimum split point that maximises the gap function. DA is the set of points

to the left of the split, DB the set of points to the right. Pathological splits (e.g.

splits with all cases except a single outlier in one group) are prevented by checking

that the ratio of DA to DB is within the range

1

k
<
|DA|
|DB|

<

(
1− 1

k

)
, (3.4.3)

62

where k is the total number of clusters. The optimum split point for an orderline is

the point that minimises the distance to DA while maximising the distance to DB.

The u-shapelet candidate giving the split point with the best gap value is selected as

the u-shapelet.

After a u-shapelet is selected, time series containing similar subsequences to the

u-shapelet are removed from the dataset. A time series is considered to contain a

similar subsequence if the distance between the subsequence and the u-shapelet is

less than the mean distance to DA plus one standard deviation. Zakaria et al. show

that, for clustering of rock spectral signatures, synthetic data, electrical devices, and

ECG data, u-shapelets generally find better clusters than if whole series are used.

3.4.4 Alternative quality measures

Lines and Bagnall [116] propose two quality measures as alternatives to using In-

formation Gain for the shapelet-tree classifier. They show that their measures offer

equivalent accuracy and increased speed. More measures are tested in [88]; the F-stat

measure is found to be faster to calculate and more accurate than the other shapelet

quality measures.

3.4.5 Shapelet-like approaches

The following papers present work that is intuitively similar to the shapelet approach,

though not close enough to be considered shapelet research.

In [113], the authors apply a shapelet-like approach to the problem of detecting

friendship relationships in time-series GPS data. For this problem, local similarity is

more important than global similarity; proximity on a weekday is less predictive than

proximity on a Saturday. The position in the time series is the most important factor.

Hence, instead of searching for local shapes that are discriminative, they search for

the most discriminative time interval, almost the converse of the shapelet approach.

63

Di Fatta et al. [49] aim to detect faults in software by mining tree structures

that represent successful or failed executions. Their methodology is similar to the

shapelet approach, but uses a different representation. Rather than search a set of

1D series for the most discriminative subsequence, they search a set of trees for the

most discriminative sub trees. Their method is interpretable: the sub tree that best

discriminates failed executions is likely to contain sub routines that cause failures.

In [102], Ko et al. use time-series classification for context recognition, where

data from multiple sensors are fused into a representation of a situation. Unlike time-

series classification with shapelets, they use full series, and employ DTW distance

to accommodate noise in indexing. Class prototypes are used in the same way as

shapelets; new examples are classified by assigning the class of the closest prototype.

Hartman et al. [82] apply a shapelet-like approach to gesture recognition. There

are two main differences between their algorithm and the algorithm in [180]. First,

they use DTW, rather than Euclidean distance. Second, they use their own quality

measures, rather than Information Gain, to evaluate prototypes, see Section 3.3.2.

These differences are minor; [82] might be considered part of the shapelet literature;

we examine another paper from the same research group [81] in Section 3.3.

3.5 Motifs

In this section, we move away from the supervised task of classification, and focus

on applying the shapelet intuition to the unsupervised task of finding approximately

repeated patterns in time series. The central insight of the shapelet approach is that,

for many problems, local similarity of shape can provide more accurate classification

than global similarity of shape. Data mining by extracting local features from time

series is not limited to classification. By extracting repeated subsequences from longer

time series, we can examine them in ways that may prove more fruitful than examining

64

the entire series. Repeated subsequences may represent significant events (such as

heartbeats embedded in an ECG series), or help to distinguish genuine events from

noise. Repeated subsequences can be used as primitives for data-mining tasks such

as clustering or rule discovery. There are substantial similarities between a shapelet

and a repeated time-series subsequence, which we refer to as a motif.

A time-series motif is a pattern that approximately recurs in a time series [114].

A motif set is the set of subsequences deemed to be instances of a given motif.

The problem of finding motifs is analogous to the computational biology problem of

finding repeated patterns in discrete DNA sequences [54, 28]. Motifs can be used

to characterise the typical behaviour of a time series for classification or anomaly

detection (e.g. [114]), or as a primitive in, for example, association rule mining (e.g.

[39, 90]) or clustering [56]. Areas of application include medicine [114, 126], image

processing [114], information retrieval [107], and robotics [134].

The key contributions to the study of motifs are presented in [114, 131, 132].

The motif-discovery algorithm described in [114] involves compressing the series with

a piecewise aggregate approximation transform, then discretising the series into a

fixed alphabet size, before finding motifs through matrix approximation and using an

approximate distance map. We adopt many of the definitions from [114], but focus

our interest on finding exact motifs; we do not discretise the data, instead searching

the real-valued series. Hence, we concentrate on the work in [131, 132], discussed

in Section 3.5.3. Before discussing algorithms for motif discovery, we examine motif

definitions and the problem of trivial matching.

3.5.1 Motif definition

There is variation in the literature over the definition of a motif and the nature of

the association between a motif and other subsequences. We use the term motif to

65

refer to a single subsequence (which can be a concrete instance, or the average of the

members of its motif set), and the term motif set to mean the set of subsequences that

are associated with a given motif. In [114], the 1-motif is defined as the subsequence

with the largest count of non-trivial matches, and the K-motif is the subsequence

with the Kth largest count of non-trivial matches, subject to the constraint that the

K-motif is at least 2r distance away from the previous K − 1 motifs, and where two

series match if the distance between them is less than some threshold parameter, r,

and the match is non-trivial. In [131, 132], the nearest equivalent definition to the

motif set is the range motif. The range motif with range r is the maximal set of

time series that have the property that the maximum distance between them is less

than 2r. The actual motif for the range motif is not, in fact, a subsequence of the

original series. Rather, it is the average of all members of the motif set. In clustering

parlance, the motif is the centroid of the motif set.

3.5.2 Trivial matches

A key aspect to successful motif discovery is avoiding trivial matches. Failing to pre-

vent trivial matching renders motif detection meaningless [100]. Informally, trivial

matches are those matches where the similarity is the result of the series overlapping,

and therefore sharing a common subsequence. Formally, there are alternative defi-

nitions of a trivial match. In [114], a match between two subsequences Sa and Sb

(where a < b) is defined to be a trivial match if every series beginning from a+ 1 to

b−1 is also a match with Sa. This allows overlapping matches, as long as there is one

series in the overlap section that is not a match. Conversely, non-overlapping series

may be considered trivial matches. This removes the matching of, for example, long

periods of no change in the series. However, it is somewhat counter intuitive, and

in [131], a simpler definition is employed. For MK pair matching, two matching series

66

are trivially matched if their starting points are within w places (i.e. b − a < w).

This approach introduces a new parameter into the algorithm; hence, we adopt the

definition used in [100], and take it that two matched series are trivially matched if

they overlap, i.e. if b− a < n, where n is the length of the series. This is equivalent

to the definition used in [131] for the case where w = n.

3.5.3 Mueen-Keogh (MK) best-matching pair algorithm

MK finds exact matches between time-series subsequences using a form of early aban-

don that dramatically speeds up the matching process in the average case. A formal

description of MK is given in [131]. We restrict ourselves to an overview of the

algorithm. The core lower-bounding routine is as follows:

1. A random subsequence is selected.

2. The distance between this reference subsequence and all other subsequences

is calculated, and the subsequences are ordered by this distance to give a list

< S1, S2, . . . , Sm−(n−1) >. The best-so-far distance d is set to d(S1, S2).

3. When forming the sorted list, the distance between adjacent pairs is calculated

and stored. This key step allows MK to exploit the triangle inequality; the

relative distance between two points in relation to the reference point is a lower

bound on the true distance between them.

4. A linear scan across the list is conducted, and the true distance between adjacent

points d(Si, Si+1) for i = 2 to (p−1) is calculated, the lower bounds are updated

and the best-so-far adjusted if necessary (ignoring trivial matches).

5. The enumerative search can then proceed, but distance calculations are avoided

for all proposed pairs where the lower bound is worse than the current best-so-

far.

67

Figure 3.6: A simulation of an electricity demand profile, with three motif sets. The
red pattern represents a period of no usage, the blue pattern approximates the usage
pattern of a dishwasher, and the green pattern approximates the usage pattern of an
immersion heater.

The algorithm is further enhanced by the selection of q multiple reference se-

quences. The distance from each of these selected subsequences and the rest of the

subsequences is calculated, and the reference subsequences are sorted by their dis-

tance standard deviation. When the enumerative search begins, the lower bound can

be checked against each reference sequence.

3.5.4 Algorithms for discovering motif sets

In [114], the 1-motif is found through enumerating the search space. Finding the

K-motifs requires that we enforce a separation of at least 2r between each motif and

the previous K − 1 motifs. The obvious solution is to remove matches to each motif

found before continuing the search; in Chapter 7 we describe our approach to this

problem.

MK finds closest matches between time-series subsequences using a form of early

abandon that dramatically speeds up the matching process in the average case. Find-

ing best-matching pairs is of less interest to us than detecting repeated patterns. This

is an important point because the members of the best-matching pair are not nec-

essarily members of a high-cardinality motif set; for example, in Fig. 3.6, the red

subsequences form the best-matching pair, but the blue and green motif sets have

higher cardinality.

The method proposed in [132] for finding the the range motif (broadly equivalent

68

to our motif set), involves finding the best-matching pair with MK, then performing

a linear scan of the series to find all subsequences within 2r of the pair. This set is

then “trivially condensed” to find the range motif.

In Chapter 7, we propose a novel extension of this process, generalised for finding

the K-motif sets, called the Scan MK algorithm.

3.6 Conclusions

Shapelets are time-series subsequences that represent the class of the series. They

have been used for classification in a range of domains, with promising results. The

shapelet search is very slow; speed-up techniques based on early abandon, re-using

information, discretisation, and greedy search have been used to make the search

tenable.

Most uses of shapelets have focused on embedding the shapelet search within

a decision tree, which requires a shapelet search at each node, increasing the time

complexity, reduces interpretability because of the hierarchical nature of decision

trees, and yields relatively poor classification accuracy compared to other classifiers.

In Chapter 5, we extend the shapelet approach, making several novel contributions to

the field, including our shapelet transform, which dissociates the shapelet search from

the decision tree, allowing more accurate classifiers to be used and replacing multiple

calls to the shapelet discovery algorithm with a single pass through the data. Our

contribution to research into shapelets is in Chapter 5.

Data mining with local-shape-based similarity is not limited to classification with

shapelets. The unsupervised equivalent of a shapelet is a motif. The interesting

problem in motif discovery is to find sets of approximately repeated patterns within

a time series, while avoiding trivial matches (matches that overlap) and enforcing a

distance-based separation between motif sets. We contribute to research into motifs

69

in Chapter 7.

Chapter 4

Data

4.1 Introduction

In this chapter, we discuss the datasets we use for the experiments in Chapters 5, 6,

and 7. We have attempted to experiment with every commonly used TSC dataset,

and have contributed a number of new datasets that our local-shape based approach

is suitable for.

4.2 Summary of datasets

4.2.1 Classification problems

We experiment on 75 time-series datasets. We use every dataset from the UCR

Time-series Classification/Clustering page [165] except the broken ECG200 dataset

(see [7]), and also contribute a number of new datasets. The datasets we use, and

the relevant parameters associated with them, are shown in Tables 4.1 - 4.5.

The datasets are partitioned into training and testing sets. Shapelet selection,

model selection, and classifier training are performed exclusively on the training set;

the test set is used only with the final trained classifier. We report the accuracy on

the test set. The datasets we use that are not included on the UCR page can be

found at [85].

70

71

Table 4.1: Summary of image-outline datasets.
Orig. Size Size Number of

Dataset length train test Classes

Adiac 176 390 391 37
ArrowHead 251 36 175 3
BeetleFly 512 20 20 2

BirdChicken 512 20 20 2
DiatomSizeReduction 345 16 306 4

DistalPhalanxOutlineAgeGroup 80 400 139 3
DistalPhalanxOutlineCorrect 80 600 276 2

DistalPhalanxTW 80 400 139 6
FaceAll 131 560 1690 14

FaceFour 350 24 88 4
FacesUCR 131 200 2050 14
fiftywords 270 450 455 50

fish 463 175 175 7
Herrings 512 64 64 2

MedicalImages 99 381 760 10
MiddlePhalanxOutlineAgeGroup 80 400 154 3

MiddlePhalanxOutlineCorrect 80 600 291 2
MiddlePhalanxTW 80 399 154 6

OSULeaf 427 200 242 6
PhalangesOutlinesCorrect 80 1800 858 2

ProximalPhalanxOutlineAgeGroup 80 400 205 3
ProximalPhalanxOutlineCorrect 80 600 291 2

ProximalPhalanxTW 80 400 205 6
SwedishLeaf 128 500 625 15

Symbols 398 25 995 6
WordSynonyms 270 267 638 25

yoga 426 300 3000 2

We have divided the datasets into five different problem types:

1. Image-outline problems (Table 4.1).

2. Motion classification problems (Table 4.2).

3. Sensor reading classification problems (Table 4.3).

4. Human sensor reading classification problems (Table 4.4).

5. Simulated classification problems (Table 4.5)

Each of these problem types should lend itself to a greater or lesser degree to

classification by local similarity in shape. In Chapter 5, we break down our findings

by problem type to gain additional insight into the applicability of our method.

We do not use every dataset for every experiment. We will indicate in the appro-

priate sections where we have used a subset of the 75 datasets. Our motivation for

72

Table 4.2: Summary of motion-classification datasets.
Orig. Size Size Number of

Dataset length train test Classes

Cricket X 300 390 390 12
Cricket Y 300 390 390 12
Cricket Z 300 390 390 12
GunPoint 150 50 150 2
Haptics 1092 155 308 5

InlineSkate 1882 100 550 7
ToeSegmentation1 277 40 228 2
ToeSegmentation2 343 36 130 2

UWaveGestureLibrary X 315 896 3582 8
UWaveGestureLibrary Y 315 896 3582 8
UWaveGestureLibrary Z 315 896 3582 8

Worms 900 181 77 5
WormsTwoClass 900 181 77 2

Table 4.3: Summary of sensor-reading datasets.
Orig. Size Size Number of

Dataset length train test Classes

Beef 470 30 30 5
Car 577 60 60 4

ChlorineConcentration 166 467 3840 3
Coffee 286 28 28 2

Computers 720 250 250 2
Earthquakes 512 322 139 2

FordA 500 3601 1320 2
FordB 500 3636 810 2

ItalyPowerDemand 24 67 1029 2
LargeKitchenAppliances 720 375 375 3

Lightning2 637 60 61 2
Lightning7 319 70 73 7
MoteStrain 84 20 1252 2

OliveOil 570 30 30 4
Plane 144 105 105 7

PtNDeviceGroups 720 1750 1750 5
PtNDevices 720 1750 1750 14

RefrigerationDevices 720 375 375 3
ScreenType 720 375 375 3

SmallKitchenAppliances 720 375 375 3
SonyAIBORobotSurface 70 20 601 2

SonyAIBORobotSurfaceII 65 27 953 2
StarLightCurves 1024 1000 8236 3

Trace 275 100 100 4
wafer 152 1000 6164 2

Table 4.4: Summary of human sensor-reading datasets.
Orig. Size Size Number of

Dataset length train test Classes

CinC ECG torso 1639 40 1380 4
ECGFiveDays 136 23 861 2

NonInvasiveFatalECG Thorax1 750 1800 1965 42
NonInvasiveFatalECG Thorax2 750 1800 1965 42

TwoLeadECG 82 23 1139 2

73

Table 4.5: Summary of simulated datasets.
Orig. Size Size Number of

Dataset length train test Classes

CBF 128 30 900 3
MALLAT 1024 55 2345 8

SimulatedSet 500 100 1000 2
SyntheticControl 60 300 300 6

TwoPatterns 128 1000 4000 4

restricting the experiments to these datasets is usually one of speed: the full shapelet

transform with ensemble classifier (see Chapter 5) is slow to transform and train,

and we restrict ourselves to 50 tractable datasets, while searching for methods that

will allow us to use the larger datasets (for example, dimensionality reduction, see

Chapter 5).

4.2.2 Unsupervised data mining

In Chapter 7, we consider the problem of finding approximately repeated patterns

in longer time series. For these experiments, we use data described in Sections 4.4.9

and 4.4.10.

4.3 UCR repository

Most of the datasets we experiment upon can be found on the UCR Time-series Clas-

sification/Clustering Page [165]. They are standard benchmark time-series datasets

used in the literature, and where possible, we compare our methods to rival methods

on these datasets. We use the existing train/test splits, and do not clean or modify

the data in any way prior to shapelet transformation.

4.4 Contributed datasets

We provide a number of new datasets that we make freely available to researchers.

We have selected these datasets to study because we feel they will lend themselves

74

well to data mining using local-shape-based similarity. The datasets are available

from [85].

4.4.1 Classification problems

We provide 13 new image-outline problems: ten bone-outline classification problems,

(Section 4.4.3), two image-processing outline-classification problems derived from the

MPEG-7 dataset [21] (Section 4.4.5), and an outline-classification problem involv-

ing classifying herring based on their otoliths (Section 4.4.6). We also provide seven

datasets derived from sensor readings used for electrical device profiling, derived from

the Powering the Nation project (Section 4.4.7), and two motion classification prob-

lems from behavioural genetics involving classifying worm movements (Section 4.4.8).

Finally, we provide a novel simulated dataset designed to be optimal for the shapelet

approach (Section 4.4.4).

4.4.2 Data for unsupervised data mining

We provide two novel datasets for unsupervised mining of approximately repeated

patterns: a synthetic problem designed to test the efficacy of pattern-discovery algo-

rithms (Section 4.4.9), and an electrical device disambiguation problem derived from

smart-metering systems (Section 4.4.10).

4.4.3 Bone outlines

The bone datasets (DistalPhalanxOutlineAgeGroup, DistalPhalanxOutlineCorrect,

DistalPhalanxTW, MiddlePhalanxOutlineAgeGroup, MiddlePhalanxOutlineCorrect,

MiddlePhalanxTW, PhalangesOutlinesCorrect, ProximalPhalanxOutlineAgeGroup,

ProximalPhalanxOutlineCorrect, and ProximalPhalanxTW) consist of image outlines

from hand x-rays, where the three bones from the middle finger have been converted

into 1D series by measuring the distance to each point on the outline from the centre

75

point of the phalanx/epiphysis (Figure 4.1). The original images can be found at [96].

The distal, middle, and proximal phalanges are three different bones of the finger

(Fig. 4.1 Left). There are three classification problems for each finger bone, forming

nine datasets, and one more dataset formed from the full set of bones.

Distal Phalanx

Middle Phalanx

Proximal Phalanx

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

1−D Series

E
u

c
li
d

e
a
n

 D
is

ta
n
c
e

Figure 4.1: Left: a hand x-ray from [96], annotated to show the three bones of interest.
Middle: a bone outline with mapping. Right: bone outline rendered as 1D series.
Middle and right images from [6].

The ‘Correct’ problems are two class, corresponding to the following: 0 - bad

segmentation, 1 - good segmentation (Figure 4.2). A hand x-ray has been segmented

well if the different bones have been picked out correctly.

Correct Segmentation Incorrect Segmentation

Figure 4.2: Left: an example of correct bone outline segmentation from the Distal-
PhalanxOutlineCorrect dataset. Right: an example of incorrect bone outline segmen-
tation from the DistalPhalanxOutlineCorrect dataset.

The ‘Age Group’ problems are three class, corresponding to the following groups:

76

Table 4.6: Bone-outline dataset class labels.

Problem Class labels
DistalPhalanxOutlineAgeGroup 0-6 (1), 7-12 (2), 13-19 (3)

DistalPhalanxOutlineCorrect Bad segmentation (0), Good segmentation (1)
DistalPhalanxTW 3, 4, 5, 6, 7, 8

MiddlePhalanxOutlineAgeGroup 0-6 (1), 7-12 (2), 13-19 (3)
MiddlePhalanxOutlineCorrect Bad segmentation (0), Good segmentation (1)

MiddlePhalanxTW 3, 4, 5, 6, 7, 8
ProximalPhalanxOutlineAgeGroup 0-6 (1), 7-12 (2), 13-19 (3)

ProximalPhalanxOutlineCorrect Bad segmentation (0), Good segmentation (1)
ProximalPhalanxTW 3, 4, 5, 6, 7, 8

PhalangesOutlineCorrect Bad segmentation (0), Good segmentation (1)

0-6 years old, 7-12 years old, and 13-19 years old (Figure 4.3). The task is to predict

the age group of the patient at the time of the x-ray given just the bone outline.

Age Group = 1 (0 - 6), Tanner-Whitehouse = 3 Age Group = 2 (7 - 12), Tanner-Whitehouse = 4 Age Group = 3 (13 - 19), Tanner-Whitehouse = 8

Figure 4.3: Example 1D bone image outlines from the DistalPhalanxOutlineAge-
Group and DistalPhalanxTW datasets. From left to right: Age group 0 - 6, TW 3;
Age group 7 - 12, TW 4; Age group 13 - 19, TW 8.

The ‘TW’ problems are eight class, corresponding to the Tanner-Whitehouse bone

age classification system (Figure 4.3).

The PhalangesOutlineCorrect problem is a much larger (1800 instances) two-class

problem; the task is to classify whether the bones have been segmented correctly.

A list of the class labels for each problem is given in Table 4.6. For more infor-

mation, see [41, 42, 40].

4.4.4 Synthetic data

Our synthetic dataset is intended to be optimal for classification using shapelets. The

SimulatedSet dataset consists of 100 training series and 1000 test series. The series

77

are divided into two classes. Series of class 0 are designated Spike series. Series of

class 1 are designated Triangle series. The training and tests sets are evenly split into

Spike series and Triangle series.

The basis of each series is normally-distributed (N (0, 1)) random noise of length

500, to which we add one of two shapes (see Fig. 4.4). For each Spike series, we select

a random location in the range [0,471] and add a spike shape to the white noise.

For each Triangle series, we select a random location in the range [0,471] and add a

triangle shape to the white noise. The shapes are of length 29 (a value selected to

be small enough that the shape does not dominate the series), with an underlying

amplitude of 4, and a minimum value of -2.

We define a triangle shape as an ordered set of 29 real values, Triangle = <-2,

-1.714, -1.429, -1.143, -0.857, -0.571, -0.286, 0, 0.286, 0.571, 0.857, 1.143, 1.429, 1.714,

2, 1.714, 1.429, 1.143, 0.857, 0.571, 0.286, 0, -0.286, -0.571, -0.857, -1.143, -1.429, -

1.714, -2>. The triangle shape begins at point -2, increases in equal increments to

a value of 2 at the central point, then decreases in equal intervals to -2 at the end

point.

We define a spike shape as an ordered set of 29 real values, Spike = <0, -0.286,

-0.571, -0.857, -1.143, -1.429, -1.714, -2, -1.714, -1.429, -1.143, -0.857, -0.571, -0.286,

0, 0.286, 0.571, 0.857, 1.143, 1.429, 1.714, 2, 1.714, 1.429, 1.143, 0.857, 0.571, 0.286,

0>. The spike shape begins at 0, decreases in equal increments to -2 before increasing

in equal increments to 0 at the central index. It then increases in equal increments

to 2, before decreasing in equal increments back to 0.

The SimulatedSet dataset is difficult to classify because the discriminating features

are small relative to the lengths of the series, the features are very noisy (see Fig. 4.4),

and the features occur at random places in the series. Such data should show great

improvements in accuracy over standard time-domain classifiers when classified using

78

4

3

2

1

0

1

2

3

4

3

2

1

0

1

2

3

Figure 4.4: Left: the spike shape in green, and an example of the spike shape as it
would appear in a series of the SimulatedSet dataset, in blue. Right: the triangle
shape in green, and an example of the triangle shape as it would appear in a series
of the SimulatedSet dataset, in blue.

shapelets.

4.4.5 MPEG-7 shapes

MPEG-7 CE Shape-1 Part B [21] is a database of binary images developed for testing

MPEG-7 shape descriptors, and is available free online. It is used for testing con-

tour/image and skeleton-based descriptors [108]. Classes of images vary broadly, and

include classes that are similar in shape to one another. There are 20 instances of

each class, and 60 classes in total. We have extracted the outlines of these images and

mapped them into 1D series. We have created two time-series classification problems

from the series, Beetle/Fly and Bird/Chicken. Figure 4.5 shows some of the images

from the two problems. Figure 4.6 shows a beetle image rendered as a 1D series.

Figure 4.5: Five beetle images (top left) and five fly images (top right) from the
Beetle/Fly problem. Five bird images (bottom left) and five chicken images (bottom
right) from the Bird/Chicken problem. There is considerable intra-class variation, as
well as inconsistent size and rotation.

79

Figure 4.6: A beetle image outline rendered as a 1D series.

4.4.6 Otoliths

Otoliths are calcium carbonate structures present in many vertebrates, found within

the sacculus of the pars inferior. Otoliths vary markedly in shape and size between

species, but are of similar shape to other stocks of the same species (Figure 4.7).

Otoliths contain information that can be used by ‘expert readers’ to determine several

key factors important in managing fish stock. Analysis of otolith boundaries may

allow estimation of stock composition, including whether the samples are from one

stock or multiple stocks [53, 31, 47], allowing management decisions to be made [159].

We consider the problem of classifying herring stock (either North Sea or Thames)

based on a 1D series derived from the image outline (Figure 4.8).

4.4.7 Powering the Nation

The seven PtN datasets (Computers, LargeKitchenAppliances, PtNDeviceGroups,

PtNDevices, RefrigerationDevices, ScreenType, and SmallKitchenAppliances) are elec-

tricity consumption classification problems. The datasets are derived from domestic

80

Figure 4.7: Otoliths from North-Sea Herring (a), Thames Herring (b) and two distinct
populations of Plaice (c and d).

1 512

Figure 4.8: A 1D time-series representation of the herring otolith shown in Fig. 4.7.

electricity consumption within the United Kingdom, as part of government sponsored

study [137] to help reduce the UK’s carbon footprint.

The data were created by smart meters as part of an £11.1 billion project to reduce

consumer energy consumption by alerting people to their real-time spending [137].

The original data are readings from 251 households, sampled in two-minute intervals

over a month.

The classification problem for each PtN dataset in Table 4.7 is to classify each

series as an example of the use of a particular device (see Figure 4.9). For the five

datasets listed in Table 4.7, there are two distinct types of problem: problems with

similar usage patterns (RefrigerationDevices, Computers, and ScreenType) and prob-

lems with dissimilar usage patterns (SmallKitchenAppliances and LargeKitchenAp-

pliances).

Electricity consumption patterns, such as those shown in Figure 4.9, can appear

81

Table 4.7: PtN dataset class labels.

Problem Class labels
Computers Desktop, laptop

Large Kitchen Appliances Dishwasher, tumble dryer, washing machine
Refrigeration Fridge/freezer, refrigerator, upright freezer

Screen CRT TV, LCD TV, computer monitor
Small Kitchen Appliances Kettle, microwave, toaster

at any point in a single series of that class, and can appear at multiple points. They

are not identical across households, and are unlikely to be identical across different

uses of the same device (for example, the power used by a kettle will vary depending

on how recently it has been boiled). Further, they are short compared to the length

of a series.

The device types for the five datasets are shown in Table 4.7. The two remaining

datasets, PtNDevices and PtNDeviceGroups, contain each series from the the other

five datasets. The classification problem for PtNDevices is to classify by the class

labels given in Table 4.7; the classification problem for PtNDeviceGroups is to classify

each example by the dataset it is drawn from.

Figure 4.9: From left to right, electricity consumption time series for a dishwasher,
monitor, and tumble drier.

4.4.8 Classifying mutant worms

The two worm datasets (Worms and WormsTwoClass) are classification problems

based on data from behavioural genetics. Caenorhabditis elegans is a roundworm

used as a model organism in behavioural genetics. Brown et al. [27] describe a system

82

for measuring the motion of worms on an agar plate in terms of a range of human-

defined features [182]. The space of shapes Caenorhabditis elegans adopts can be

represented by combinations of four base shapes, or eigenworms. Once the worm

outline is extracted, each frame of worm motion can be captured by four scalars

representing the amplitudes along each dimension when the shape is projected onto

the four eigenworms (see Figure 4.10).

Figure 4.10: (A) a worm on an agar plate. (B) four representative eigenworms. (C)
example time series. Images from [27].

Using data collected by Brown et al. [27] and extracted from the C. elegans be-

havioural database [1], we create two classification problems by generating 1D series

based on the first eigenworm, down-sampled to second-long intervals. Each worm is

labelled as either wild-type (the N2 reference strain - 109 cases) or one of four mutant

types: goa-1 (44 cases), unc-1 (35 cases), unc-38 (45 cases), and unc-63 (25 cases).

The classification problem for the Worms dataset is to classify each series as com-

ing from a wild-type worm or a specific type of mutant. The problem for the WormsT-

woClass dataset is to classify each series as coming from a wild-type or mutant (any

83

type) worm.

Wild-type Mutant

Figure 4.11: Left: a time series representing the movement of a wild-type worm.
Right: a time series representing the movement of a mutant worm.

Figure 4.11 shows one time series derived from the movements of a wild-type worm

(left) and one time series derived from a mutant worm (right).

4.4.9 Synthetic data space for unsupervised data mining

For the synthetic data, we specify a parameterised data space from which datasets

are drawn, and randomly generate independent datasets for a given set of parameters.

The simulated data is white noise (observations of i.i.d. normally-distributed random

variables with µ = 0 and σ = 1) with shapes added to the noise at random intervals.

Figure 4.12 shows the five shapes used to create the datasets.

The minimum and maximum time series length, number of distinct shapes, and

instances of each shape, are fixed parameters of the data, as are the length and

amplitude of each instance. To generate a dataset, we randomly select one or two

different shapes, and a number of instances for each shape. The shapes are added to

the white noise at random locations, and do not overlap. An example of this distorted

motif data is shown in Figure 4.13.

The dataset SimulatedSet (Section 4.4.4) contains instances drawn from this pa-

rameterised data space.

84

(a) Triangle (b) Wave (c) Spikes (d) Head and Shoulders (e) Step

Figure 4.12: The five shapes inserted into our synthetic datasets. They are: (a)
Triangle, (b) Wave, (c) Spikes, (d) Head and Shoulders, (e) Step. The shapes are
shown here undistorted; in the synthetic data, they have added noise.

Spike

Step

Spike

Step Step

Spike

Step

Spike

Figure 4.13: An example simulated motif problem, with two motif sets, a Spike set
(highlighted in red), and a Step set (highlighted in green).

4.4.10 Electricity-usage data for unsupervised data mining

The electrical device data originates from a trial of smart meters in 187 homes across

the United Kingdom (see [118, 7]). Smart meters were used to monitor the electricity

consumption of each household in Watt Hours (Wh) at 15-minute intervals. Each

series corresponds to the entire consumption of a household over the duration of

the trial. The UK government has mandated that all households must be equipped

with smart metering equipment by 2020. As a consequence, there will be very large

quantities of data that must be processed in an efficient manner. Figure 4.14 shows

the typical consumption of a number of device types.

One confounding factor is that devices of a similar nature have very similar usage

profiles. Devices such as fridges and freezers, or computers and televisions, are very

difficult to distinguish. In addition, the device-specific data is user-orientated. There

is no central control over the devices that are monitored; the consumers have direct

access to the monitoring equipment and all device labels are user-specified. Hence,

labelling is potentially unreliable. Because of these confounding factors, it would be

85

Computer

Oven/Cooker

Washing Machine

Immersion Heater

Dishwasher

Fridge/Freezer

Kettle

Figure 4.14: Example electricity-usage data for a single house over one day. The graph
on the left shows household consumption; the graph on the right is decomposed by
device.

beneficial to have a reliable, automated method of detecting and identifying specific

device use. The algorithms we propose in Chapter 7 are a first step in this direction.

4.5 Conclusions

We have discussed 75 classification datasets that will be used for experimentation in

Chapters 5 and 6, and a synthetic data space and electricity-usage profiles that will

be used for unsupervised mining of approximately repeated patterns in Chapter 7.

We begin our experiments in the next chapter.

Chapter 5

Time-series Classification using
Shapelet-transformed Data

The work in this chapter is published in a number of papers.

Results from the preliminary implementation of the shapelet transform were pub-

lished in:

J. Lines, L. Davis, J. Hills, and A. Bagnall

A Shapelet Transform for Time Series Classification

Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pages 289–297, ACM: 2012.

The results from this paper are not in included in this thesis, as they were created

using a legacy version of the shapelet transform implemented by the lead author

of [119].

The accuracy results in this thesis for the shapelet transform with 10N shapelets

are to be published in:

A. Bagnall, J. Lines, J. Hills, and A. Bostrom

86

87

Time-Series Classification with COTE: The Collective of Transformation-

Based Ensembles

https://ueaeprints.uea.ac.uk/id/eprint/49614

This paper is currently under review; all shapelet-related work in the paper is my

own.

Some of the work on extensions to the shapelet transform, and some of the results

and analysis, is published in:

J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall

Classification of Time Series by Shapelet Transformation

Data Mining and Knowledge Discovery 28 (4), pages 851–881, Springer: 2014.

As lead author, I made the largest contribution to this paper, modifying the

original implementation of the shapelet transform, running experiments, extending

the transform, analysing results, and writing the paper.

88

5.1 Introduction

Shapelets are time-series subsequences used for classification. They are intended to

provide accurate classification and insight into the problem domain. Our novel con-

tribution to the field is the shapelet transform. The shapelet transform (Section 5.2)

improves upon both the accuracy and insight aspects of the shapelet approach.

We improve classification accuracy by dissociating the shapelet-discovery algo-

rithm from the classification algorithm; we use the discovered shapelets to transform

the original data into a space of shapelet features. Rather than being anchored to a

decision tree (the standard format, see Chapter 3), we employ a diverse ensemble of

classifiers on the shapelet-transformed data. Our accuracy results (Section 5.3) are

significantly better than any other shapelet-based approach, and significantly better

than using 1NN with DTW distance, which is a benchmark for time-series classifica-

tion [51].

Shapelets can offer considerable insight into the problem domain (see Section 5.4).

We aim to optimise the shapelet approach for providing insight along with classifica-

tion accuracy.

We improve upon the ability of shapelets to offer insight into the problem domain

in a number of ways. First, we eliminate the tree classifier, and its difficult to interpret

hierarchy of binary splits on shapelets. Second, we focus on increasing interpretability

by reducing dimensionality through filtering (Section 5.5) and clustering (Section 5.6)

the shapelets. We compare a number of different hierarchical clustering methods to

a novel form of clustering based on using the Minimum Description Length measure

as a parameterless stopping criterion for the clustering. Our third contribution is

to discretise the clustered shapelet data into a set of binary features representing

the presence or absence of a particular shapelet in a given series. Combined with a

dictionary of shapelets, this approach is entirely interpretable, and could be deployed

89

in environments such as medicine or finance, where professionals must be able to

justify the decisions they make to their customers and stakeholders (we explore this

issue in more detail in Chapter 6).

The shapelet transform improves accuracy and interpretability over rival TSC

algorithms, offering a solution to TSC problems that is both effective and compre-

hensible to non-experts.

5.2 Shapelet transform

The shapelet transform finds the best k shapelets in a dataset, then transforms each

series into a set of features that represent the distances between the shapelets and

the series. The intuition behind the shapelet transform is that classification and

representation are two different stages of the TSC process, which can be separated

to improve classification accuracy. Bagnall et al. [7] demonstrate the importance of

separating the transformation from the classification algorithm with an ensemble ap-

proach, where each member of the ensemble is constructed on a different transform of

the original data. They show two things: first, on problems where the discriminatory

features are not in the time domain, operating in a different data space produces

greater performance improvement than designing a more complex classifier. Second,

a basic ensemble on transformed datasets can significantly improve simple classifiers.

We apply this intuition to shapelets, and separate the transformation from the clas-

sifier.

Our transformation processes shapelets in two distinct stages. First, the algorithm

performs a single scan of the data to extract the best k shapelets. k is a cut-off value

for the maximum number of shapelets to store, and has no effect on the quality of the

individual shapelets that are extracted. Second, a new transformed dataset is created,

where each attribute represents a shapelet, and the value of the attribute is the

90

distance between the shapelet and the original series. Transforming the data in this

way disassociates finding the shapelets from classification, allowing the transformed

dataset to be used in conjunction with any classifier.

5.2.1 Shapelet generation

The process to extract the best k shapelets is defined in Algorithm 7.

Algorithm 7 shapeletCachedSelection(T, min, max, k)

1: kShapelets← ∅
2: for all series Ti in T do
3: shapelets← ∅
4: Wi = generateCandidates(Ti,min,max)
5: for all Wi,l in Wi do
6: for all candidates S in Wi,l do
7: DS ← findDistances(S,T)
8: quality ← assessCandidate(S,DS)
9: shapelets← shapelets ∪ < S, quality >

10: shapelets← sortByQuality(shapelets)
11: shapelets← removeSelfSimilar(shapelets)
12: kShapelets← merge(k, kShapelets, shapelets)
13: return kShapelets

The algorithm processes data in a manner similar to the original shapelet algo-

rithm [181] (See Algorithm 4; we retain the notation from that chapter). For each

series in the dataset, all subsequences of lengths between min and max are examined.

Unlike Algorithm 4, however, where all candidates are assessed and the best is stored,

our caching algorithm stores all candidates for a given time series, along with their

associated quality measures (line 9). Once all candidates of a series have been as-

sessed, they are sorted by quality, and self-similar shapelets are removed. Self-similar

shapelets are taken from the same series and have overlapping indices. We merge

the set of non-self-similar shapelets from a series with the current best shapelets and

retain the top k, iterating through the data until all series have been processed. We

do not store all candidates indefinitely; after processing each series, we retain only

91

those that belong to the best k so far, and discard all other shapelets. Thus, we avoid

the large space overhead required to retain all candidates.

When handling self-similarity between candidates, it is necessary to store tem-

porarily and evaluate all candidates from a single series before removing self-similar

shapelets. This prevents shapelets being rejected incorrectly. For example, in a given

series, candidate A may be added to the k-best-so-far. If candidate B overlaps with

A and has higher quality, A will be rejected. If a third candidate of higher quality,

C, is identified that is self-similar to B, but not to A, C would replace B, and the

deleted A would be a valid candidate for the k-best. We overcome this issue by eval-

uating all candidates for a given series before deleting those that are self-similar (line

9 in Algorithm 7). Once all candidates for a given series have been assessed, they

are sorted into descending order of quality (line 10). The sorted set of candidates

can then be assessed for self-similarity in order of quality (line 11), so that the best

candidates are always retained, and self-similar candidates are safely removed.

5.2.2 Length parameter approximation

Both the original algorithm and our caching algorithm require two length parameters,

min and max. These values define the range of candidate shapelet lengths. Smaller

ranges improve speed, but may compromise accuracy if they prevent the most infor-

mative subsequences from being considered. To accommodate running the shapelet

filter on a range of datasets without any specialised knowledge of the data, we define

a simple algorithm for estimating the min and max parameters.

The procedure described in Algorithm 8 [119] randomly selects ten series from

dataset T and uses Algorithm 7 to find the best ten shapelets in this subset of the

data. For this search, min = 3 and max is set to m, the length of the series in T.

The selection and search procedure is repeated ten times in total, yielding a set of 100

92

Algorithm 8 estimateMinAndMax(T)

1: shapelets← ∅
2: m← T1.length
3: for i← 1 to 10 do
4: T← randomiseOrder(T)
5: T′ ← {T1, T2, ..., T10}
6: currentShapelets← shapeletCachedSelection(T′, 3, m, 10)
7: shapelets← shapelets ∪ currentShapelets
8: shapelets← orderByLength(shapelets)
9: min← shapelets25.length

10: max← shapelets75.length
11: return min, max

shapelets. The shapelets are sorted by length, with the length of the 25th shapelet

returned as min and the length of the 75th shapelet returned as max. While this

does not necessarily result in the optimal parameters, it does provide an automatic

approach to approximate min and max across a number of datasets. Table 5.1 shows

the minimum and maximum shapelet lengths we used to create shapelet transforms

for all 75 datasets.

5.2.3 F-statistic

Unlike the shapelet tree, our shapelet transform does not require an explicit split

point to be found by the quality measure. IG introduces extra time overhead and

may not be optimal for multi-class problems, since it is restricted to binary splits.

In [88], we investigate alternative shapelet quality measures based on hypothesis tests

of differences in distribution of distances between class populations. We look at three

alternative ways of quantifying how well the classes can be split by the list of distances

DS: Kruskal-Wallis [103], F-statistic (F-Stat), and Mood’s Median [128]. We find

that classification on shapelet data transformed using the F-Stat is significantly more

accurate on synthetic data, and has the most wins of any measure over 29 datasets,

though the difference is not significant. We also find the F-Stat to be faster on average

93

Table 5.1: Minimum and maximum length parameters for 75 datasets, found using
Algorithm 8, and used to create all of our shapelet transforms.

Min. Max. Min. Max.
Dataset Length length Dataset Length length
Adiac 3 10 MiddlePhalanxOutlineCorrect 5 12

ArrowHead 17 90 MiddlePhalanxTW 7 31
Beef 8 30 MoteStrain 16 31

BeetleFly 30 101 NonInvasiveFatalECG Thorax1 5 61
BirdChicken 30 101 NonInvasiveFatalECG Thorax2 12 58

Car 16 57 OliveOil 8 27
CBF 46 90 OSULeaf 141 330

ChlorineConcentration 7 20 PhalangesOutlinesCorrect 5 14
CinC ECG torso 697 814 Plane 18 109

Coffee 18 30 ProximalPhalanxOutlineAgeGroup 7 31
Computers 15 267 ProximalPhalanxOutlineCorrect 5 12
Cricket X 120 255 ProximalPhalanxTW 9 31
Cricket Y 132 262 PtNDeviceGroups 51 261
Cricket Z 118 257 PtNDevices 100 310

DiatomSizeReduction 7 16 RefrigerationDevices 13 65
DistalPhalanxOutlineAgeGroup 7 31 ScreenType 11 131

DistalPhalanxOutlineCorrect 6 16 SimulatedSet 25 35
DistalPhalanxTW 17 31 SmallKitchenAppliances 31 443

Earthquakes 24 112 SonyAIBORobotSurface 15 36
ECGFiveDays 24 76 SonyAIBORobotSurfaceII 22 57

FaceAll 70 128 StarLightCurves 68 650
FaceFour 20 120 SwedishLeaf 11 45

FacesUCR 47 128 Symbols 52 155
fiftywords 170 247 SyntheticControl 20 56

fish 22 60 ToeSegmentation1 39 153
FordA 50 298 ToeSegmentation2 100 248
FordB 38 212 Trace 62 232

GunPoint 24 55 TwoLeadECG 7 13
Haptics 21 103 TwoPatterns 20 71
Herrings 30 101 UWaveGestureLibrary X 113 263

InlineSkate 750 896 UWaveGestureLibrary Y 122 273
ItalyPowerDemand 7 14 UWaveGestureLibrary Z 135 238

LargeKitchenAppliances 13 374 wafer 29 152
Lightning2 47 160 WordSynonyms 137 238
Lightning7 20 80 Worms 93 382
MALLAT 52 154 WormsTwoClass 46 377

MedicalImages 9 35 yoga 12 132
MiddlePhalanxOutlineAgeGroup 8 31

94

than the other measures, and significantly faster than Kruskal-Wallis or IG. Hence,

we use the F-Stat, rather than IG, as our shapelet quality measure.

The F-Stat for analysis of variance is used to test the hypothesis of difference in

means between a set of C samples. The null hypothesis is that the population mean

from each sample is the same. The test statistic for this hypothesis is the ratio of

the variability between the groups to the variability within the groups. The higher

the value, the greater the between-group variability compared to the within-group

variability. A high-quality shapelet has small distances to members of one class and

large distances to members of other classes; hence, a high-quality shapelet yields a

high F-stat. To assess a list of distances D =< d1, d2, . . . , dn >, we first split them

by class membership, so that Di contains the distances of the candidate shapelet to

time series of class i. The F-Stat shapelet quality measure is:

F =

∑
i(D̄i − D̄)2/(C − 1)∑C

i=1

∑
dj∈Di

(dj − D̄i)2/(n− C)
, (5.2.1)

where C is the number of classes, n is the number of series, D̄i is the average of

distances to series of class i and D̄ is the overall mean of D.

5.2.4 Data transformation

The main motivation for our shapelet transform is to allow shapelets to be used

with a diverse range of classification algorithms, rather than the decision tree used in

previous research. Our algorithm uses shapelets to transform instances of data into

a new feature space; the transformed data can be viewed as a generic classification

problem. The transformation process is defined in Algorithm 9.

The transformation is carried out using the subsequence distance calculation de-

scribed in Chapter 3. A set of k shapelets, S, is generated from the training data. For

each instance of data Ti in the full dataset, T, the subsequence distance is computed

between Ti and shapelet S. The resulting k distances are used to form a new instance

95

Algorithm 9 shapeletTransform(Shapelets S,T)

1: T′ ← ∅
2: for all T in T do
3: T ′ ←<>
4: for all shapelets S in S do
5: dist← sDist(S, T)
6: T ′ ← append(T ′, dist)
7: T ′ ← append(T ′, T.class)
8: T′ ← T′ ∪ T ′
9: return T′

of transformed data, where each attribute corresponds to the distance between a

shapelet and the original time series. When using data partitioned into training and

test sets, the shapelet extraction is carried out on the training data to avoid bias.

5.2.5 Experimental parameters

For all of our experiments, we set the value of k, the maximum number of shapelets to

cache, equal to 10N , where N is the size of the training set. We aim to create as varied

a set of shapelets as possible. In many cases, it is not possible to generate the full set

of 10N shapelets, because the time series are relatively short compared to the shapelet

lengths, or compared to the number of series, and self-similar (overlapping) shapelets

are discarded. Table 8.4 (see appendix) shows, for each dataset, the maximum number

of shapelets searched for, and the number found and used for the shapelet transform.

5.2.6 Classifier performance

In [88], we test the shapelet transform on a small number of datasets. Our find-

ings are summarised in Figure 5.1, which shows the difference in accuracy of seven

classifiers trained on the raw data against the same classifiers trained on the shapelet-

transformed data. A positive value indicates that the classifier is more accurate on

the transformed data, a negative value the converse.

As can be seen, the change in accuracy is strongly indexed to the dataset, as well

96

as to the classifier. Some datasets, for example Adiac, are classified less accurately

when transformed into the shapelet space. Others, like Beef and Coffee, are classified

more accurately. These differences occur because not all classification problems are

best classified using local similarity of shape. Such data might better be classified

using models based on autocorrelation or the Fourier transform.

The best way to judge suitability of a dataset for a shapelet-based approach is

by calculating a cross-validation accuracy on the training data and comparing it to

the cross-validation accuracies of the other approaches (see, for example [141]). If

the cross-validation accuracy is much worse in the shapelet space than in the original

space, it suggests that using global similarity is a more appropriate way to classify

the data. Similarly, if the cross-validation accuracy of a classifier trained on the auto-

correlation space is much greater than that of a classifier trained on the shapelet

space, it suggests that similarity in change is the appropriate paradigm in which to

classify the data.

As well as using cross-validation accuracy, visual inspection of a few instances of

different classes of the data can aid in the selection of an appropriate transform. It

may be obvious for certain datasets that classification based on local shapes would

be ineffective, but transformation into the Fourier space would be beneficial. In most

cases, however, visual inspection is unlikely to show definitively which transforma-

tion will allow for the most accurate classification. Perhaps the best way to ensure

good classification accuracy is to ensemble different transforms, a method explored

at length in [7, 9].

There are broad similarities between the accuracies of the different classifiers on

each dataset, but there are cases, such as Rotation Forest on the FaceFour dataset,

where the change in accuracy is very different to that of the other classifiers. We

conclude from this that an ensemble approach could benefit classification accuracy,

97

as the different classifiers vary considerably in their predictions for particular datasets;

rather than using a single classifier to asses the performance of the shapelet transform,

we use an ensemble of classifiers. We discuss the ensemble in the next section, and in

Section 5.3.2, we report experimental results for the ensemble classifier on 75 datasets,

comparing it to accuracies reported by other leading approaches.

Adiac

MedicalImages

ItalyPD DiatomSR

Motestrain

Symbols
Lighting7

ChlorineConc.

SyntheticControl

SonyARS

Otoliths

DP_Thumb

GP

MP_Little Trace

PP_Thumb

ECGFiveDays
DP_Little

MP_Middle

PP_Middle

TwoLeadECG

PP_Little
B/C

B/F

FaceFour

DP_Middle

SynthData

Beef

Coffee

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

+0.1

+0.2

+0.3

+0.4

+0.5

+0.6

+0.7

C
h

an
ge

 in
 A

cc
u

ra
cy

 f
ro

m
 S

h
ap

e
le

t
Tr

an
sf

o
rm

at
io

n

Classifier better on
shapelet-transformed
data here

Figure 5.1: Change in classification accuracy between raw data and shapelet-
transformed data. Each point is the median difference in accuracy of 7 classifiers;
the bar shows the minimum and maximum change in classifier accuracy for that
dataset. The figure is taken from [88].

5.2.7 Shapelet ensemble classifier

In [119], we show that the C4.5 decision tree used on the shapelet space has the

same accuracy as the original shapelet decision tree from [181]. Several classifiers are

significantly stronger than C4.5 on problems transformed into the shapelet space [88].

We can take advantage of the dissociation of transform and classifier to maximise the

98

accuracy of our classification by ensembling a set of classifiers. In general, an ensemble

of classifiers will outperform a single classifier [19].

We ensemble eight classifiers: C4.5, kNN with Euclidean distance (k is set using

cross-validation, with 50 as the maximum value), Naive Bayes, Bayesian network,

Random Forest with 200 trees, Rotation Forest with 10 forests, and two support vec-

tor machines, one with a linear kernel, the other with a quadratic kernel. This gives

us a variety of different types of classifiers: three tree-based classifiers (C4.5, Random

Forest, Rotation Forest), two probabilistic classifiers (Naive Bayes and Bayesian Net-

work), and three instance-based classifiers (kNN and the linear and quadratic support

vector machines). Ensembling a variety of different types of classifier maximises the

performance of the ensemble [19]. All eight classifiers are implemented in the WEKA

machine learning tool kit [78], which makes ensembling them straightforward.

In our ensemble, each classifier is given a weighted vote for each test set instance,

based on the classifier’s cross-validation accuracy on the training set. Each of the eight

classifiers makes a prediction, the weighted votes are summed, and the prediction with

the highest sum is returned as the prediction of the ensemble classifier.

In the next sections we report the accuracy of the ensemble classifier on 75

datasets, and compare it to other leading TSC approaches.

5.3 Shapelet transform results

We compare the accuracy of the ensemble classifier to the accuracy of the bench-

mark TSC algorithm, 1NN with dynamic time warping distance (1NNDTW), over

75 datasets. We also compare our approach to the previous best shapelet-based al-

gorithms.

The previous state-of-the-art shapelet algorithms are the Fast Shapelet algo-

rithm [141] and the Logical Shapelets algorithm [130]. The major weakness of both

99

is that they are limited to an embedded decision-tree classifier (see Chapter 3 for

discussion of the shapelet decision tree. In theory, the Fast Shapelets approach could

be implemented as a transform; as it stands, it exists only as a tree classifier).

5.3.1 Comparison with 1NNDTW

The 1NNDTW algorithm has proved to be effective at accurately classifying time-

series data [51]. Time series are classified significantly more accurately by 1NNDTW

than by 1NN with Euclidean distance [117], assuming that the width of the warping

window, R, is set using cross validation.

Our first experiment compares the ensemble classifier on shapelet-transformed

data to 1NNDTW on the raw data. We set R, the width of the DTW warping

window, using cross validation. We compare accuracies over all 75 datasets, and test

the differences using a Wilcoxon Signed Rank test at a significance level of 0.01.

The results of our test show that the ensemble classifier on shapelet-transformed

data is significantly more accurate than 1NNDTW. The p value is 3.92 × 10−3. Ta-

ble 8.1 in the appendix presents the complete set of results. The accuracy results are

displayed graphically in Figure 5.2.

Table 5.2 shows the results broken down by problem type. For all problem types

but Image, the ensemble classifier on shapelet-transformed data strongly outperforms

1NNDTW. On the Image problems, 1NNDTW marginally outperforms the ensemble,

but the difference is not statistically significant. It seems plausible that this is a case

of 1NNDTW performing better on Image problems than it does on the other problem

types, rather than the ensemble classifier in the shapelet space performing worse.

Intuitively, 1NNDTW is well suited to the Image problems we use, as the start and

end points of the series are fixed in most cases, and the unrestricted warping window

100

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy Ensemble Classifier on Shapelet-transformed Data

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy
 D

T
W

_R
n
_1

N
N

DTW_Rn_1NN better here

Ensemble Classifier on Shapelet-transformed Data better here

Figure 5.2: Comparison of accuracy over 75 datasets between ensemble classifier on
shapelet-transformed data and 1NN with DTW distance, warping window size set by
cross validation. The ensemble classifier on shapelet-transformed data is better on 44
datasets, 1NN with DTW is better on 27.

can correct for rotation in the other cases (at least to some extent). The image-

outline datasets we use also tend to be less noisy and involve less variation than, for

example, the motion-classification datasets. The motion-classification datasets have

noise in both indexing and in measurement, and have greater variation between series

of the same class. These factors diminish the classification accuracy of the 1NNDTW

classifier much more than they affect the accuracy of the ensemble classifier in the

shapelet space, as the shapelet space intrinsically corrects for noise in indexing, is

more robust to noise in measurement (because the local features are shorter, and

therefore have less total noise than the whole series), and is less affected by global

within-class variation. Hence, the performance of 1NNDTW on image-classification

problems is comparable to that of the ensemble classifier on the shapelet space because

those problems have fewer of the factors that diminish the accuracy of the 1NNDTW

classifier.

101

Table 5.2: Counts of wins broken down by problem type for ensemble classifier on
shapelet-transformed data and 1NNDTW with warping window size set by cross
validation.

Problem type Wins shapelet Wins DTW Total
Image 12 15 27
Motion 8 4 12
Sensor 17 6 23

Human sensor 4 1 5
Simulated 3 1 4

Total 44 27 71

5.3.2 Comparison with Logical Shapelets

The Logical Shapelets algorithm [130] is the current best-performing shapelet-based

classifier. It finds exact shapelets and deploys them in a more sophisticated variant of

the shapelet tree. We compare the accuracies of the ensemble classifier on shapelet-

transformed data to that of the Logical Shapelets algorithm on raw data.

We compare over the 31 datasets used in [141]. We have used every dataset

from [141], except for ECG200 and Cricket(Small). Cricket(Small) is not in the UCR

Repository [165], and ECG200 is a broken dataset that should no longer be included

in such comparisons [7]. The datasets, and the accuracies and ranks, are shown in

Table 8.5 (see appendix).

We test the differences in accuracy using a Wilcoxon Signed Rank test at a sig-

nificance level of 0.01. The test shows that the ensemble classifier is significantly

more accurate than the Logical Shapelets algorithm. The p value is 1.875 × 10−6.

Figure 5.3 displays the results graphically.

5.3.3 Comparison with Fast Shapelets

The Fast Shapelets algorithm [141] is a development of the original shapelet algo-

rithm [181] that speeds up the shapelet extraction process by discretising the time

102

0.5 0.6 0.7 0.8 0.9 1.0
Accuracy Ensemble Classifier on Shapelet-transformed Data

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy
 L

o
g
ic

a
l
S
h
a
p
e
le

ts

Logical Shapelets better here

Ensemble Classifier on Shapelet-transformed Data better here

Figure 5.3: Comparison of accuracy over 31 datasets between ensemble classifier on
shapelet-transformed data and Logical Shapelets. The ensemble classifier on shapelet-
transformed data is better on 28 datasets, Logical Shapelets is better on 3.

series using Symbolic Aggregate Approximation (SAX) [115]. The Fast Shapelets al-

gorithm, in contrast to the Logical Shapelets algorithm, does not find exact shapelets.

This results in a large increase in speed, which makes experiments with the Fast

Shapelets algorithm more tractable than with Logical Shapelets; hence, accuracy

results are available on a wider variety of datasets.

We compare the accuracy of the ensemble classifier on shapelet-transformed data

to that of the Fast Shapelets algorithm on raw data over 44 datasets. The datasets,

accuracies, and ranks are listed in Table 8.6 (see appendix). We test the differences

in accuracy using a Wilcoxon Signed Rank test at a significance level of 0.01. The

test shows that the ensemble classifier is significantly more accurate than the Fast

Shapelets algorithm. The p value is 4.522×10−8. The results are displayed graphically

in Figure 5.4.

103

0.5 0.6 0.7 0.8 0.9 1.0
Accuracy Ensemble Classifier on Shapelet-transformed Data

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy
 F

a
st

 S
h
a
p
e
le

ts

Fast Shapelets better here

Ensemble Classifier on Shapelet-transformed Data better here

Figure 5.4: Comparison of accuracy over 44 datasets between ensemble classifier on
shapelet-transformed data and Fast Shapelets. The ensemble classifier on shapelet-
transformed data is better on 39 datasets, Fast Shapelets is better on 5.

5.4 Interpretability and insight

As we have seen in the previous sections, the ensemble classifier on shapelet-transformed

data is a more accurate way to classify time-series data than any of the other leading

approaches. For many TSC problems, however, accuracy must be accompanied by

interpretability. For example, medical professionals may be reluctant to deploy and

take ownership of systems they do not fully understand or cannot interpret. Similarly,

in finance, fund managers responsible for large accounts must be able to understand

and explain the models they use. Machine-learning techniques can solve problems in

industry, but only if they are deployed and trusted by professionals.

Interpretability is one of the key reasons for the initial proposal of shapelets [180].

Shape-based approaches are intuitive, and can offer insight into the problem domain

that goes beyond their use in accurate classification. In this section, we offer quali-

tative examples of this insight, drawn from the fields of behavioural genetics, motion

104

analysis, and image processing.

5.4.1 Classifying Caenorhabditis elegans locomotion

In Chapter 4, we described two worm movement problems: Worms and WormsT-

woClass. In each case, the problem is to classify the type of worm using a time-series

representing its movements on an agar plate. We focus here not on the accuracy of

this classification, but on the insight into the problem domain that can be extracted

as a by-product of the shapelet transformation.

1 51 101 151 201 251 301

Time (seconds)

1 11 21 31 41 51 61 71 81 91

Time (seconds)

Figure 5.5: Best shapelets for wild-type (left) and mutant worms (right) for the
WormsTwoClass dataset.

Figure 5.5 shows the top wild-type shapelet (left) and the top mutant shapelet

(right) from the WormsTwoClass problem. A non-expert can immediately see the

difference between the two shapelets: the wild-type worm’s movement is highly regu-

lar, approximating a sine wave (this is referred to as the eigenworm1 shape, see [27]).

The mutant worm’s movement is much more erratic. It still roughly approximates

a wave-like motion, but there are multiple, apparently random deviations that make

the shapelet appear more random.

Figure 5.6 shows the best shapelet for each of the five classes (wild type and four

mutant types). The shapelets representing the four types of mutant worm are very

different under visual inspection, both from one another, and from the regular pattern

of the wild-type worm. The shapelets give us an interpretable, visually meaningful,

and immediate insight into the problem domain.

105

1 51 101 151 201 251 301 351

Wild Type

1 51 101 151

Mutant Type goa-1

1 51 101

Mutant Type unc-1

1 51 101 151 201

Mutant Type unc-38

1 51 101

Mutant Type unc-63

Figure 5.6: Best shapelets for the Worms dataset.

106

5.4.2 Classifying human motion: the GunPoint dataset

The GunPoint dataset consists of time series representing an actor appearing to draw

a gun; the classification problem is to determine whether or not the actor is holding

a prop (the Gun/NoGun problem). In [180], the authors identify that the most

important shapelet for classification occurs when the actor’s arm is lowered; if there

is no gun, a phenomenon called ‘overshoot’ occurs, and causes a dip in the time-series

data. This is summarised in Figure 5.7, taken from [180].

Figure 5.7: An illustration of the Gun/NoGun problem taken from [180]. The
shapelet that they extract is highlighted at the end of the series.

The shapelet decision tree trained in [180] contains a single shapelet at the end

of the series corresponding to the arm being lowered. We shapelet transform the

GunPoint dataset using the length parameters specified in the [180]. The top five

shapelets are shown in Figure 5.8, along with the shapelet reported in [180].

Figure 5.8 shows that each of the top five shapelets from our transform is closely

matched with the shapelet from [180]. Figure 5.9 shows that the best ten shapelets

form two distinct clusters. The shapelets to the right of the figure correspond to

the moments where the arm is lifted, and are instances where there is a gun. These

shapelets correspond to the subtle extra movements required to lift the prop, provid-

ing insight into the problem domain.

As a proof of concept, and to explore our findings further, we hierarchically clus-

ter the shapelets extracted from the GunPoint dataset. We cluster by merging the

shapelets that are most similar in terms of sDist, terminating the clustering when

107

0 10 20 30 40

Shapelet Length

Best

2nd Best

3rd Best

4th Best

5th Best

Ye and
Keogh
Shapelet

0 10 20 30 40
Shapelet Length

Figure 5.8: An illustration of the five best shapelets extracted by our filter and the
shapelet found by Ye and Keogh. The graph to the right shows how closely they
match.

-3

-2

-1

0

1

2

3

4

0 10 20 30 40

Shapelet Length

Shapelets 1 - 6

-3

-2

-1

0

1

2

3

4

0 10 20 30 40

Shapelet Length

Shapelets 7 - 10

Figure 5.9: The 10 best shapelets for the Gun/NoGun problem. The shapelets form
two distinct clusters. The graph on the left shows shapelets 1-6. They represent the
‘overshoot’ motion identified in [180]. The graph on the right shows shapelets 7-10.
They represent the extra movement necessary to lift the prop gun when the arm is
raised.

five clusters remain (the value is arbitrary; we explore clustering in more detail in

Section 5.6). The main benefit of clustering the shapelets is improved interpretabil-

ity. The top shapelets in the GunPoint dataset form two distinct clusters (Fig. 5.9).

When we cluster the shapelets into 5 clusters, we find that the best shapelets in each

of the top two clusters represent the two shapelets we found by visual inspection

of the full set. This is an encouraging result for clustering as a means to improve

interpretability.

5.4.3 Image outline analysis: Beetle/Fly and Bird/Chicken

We apply the simple clustering method we used on the GunPoint dataset to the

Beetle/Fly and Bird/Chicken problems. Figure 5.10 shows the top five clustered

108

shapelets from the Beetle/Fly dataset.

Figure 5.10: The five best clustered shapelets from the Beetle/Fly dataset. The
shapelets are highlighted on the outline in blue.

In Figure 5.10, the first two shapelets distinguish members of the beetle class,

and the remaining three distinguish members of the fly class. By clustering down to

five shapelets, we gain insight into the problem that would be less obvious from the

original 256 shapelets. The beetle class is distinguished by a relatively simple angle

between the legs and body; the only feature is a knee joint on the leg. The fly class

is distinguished by a more complex shapelet, related to the more intricate features of

the fly images.

Figure 5.11 shows the top five clustered shapelets for the Bird/Chicken dataset.

As is the case with the shapelets from the Beetle/Fly data, it is not obvious a priori

that the clustered shapelets we have found are the distinguishing features of the two

images. Hence, we have discovered something about the problem that would not

have been known prior to the shapelet transform. Both Beetle/Fly and Bird/Chicken

are toy problems, but the clustered shapelets show how useful the approach could

be for analysing image outlines. Shapelets have the potential to provide accurate

classification, but also surprising insights into the problem domain. Hence, having

demonstrated superior classification accuracy, we shift our focus to improving inter-

pretability.

109

Figure 5.11: The five best clustered shapelets from the Bird/Chicken dataset. The
shapelets are highlighted on the outline in blue.

5.4.4 Interpretability

The main difficulty with attempting to gain insight into the problem domain via

examining shapelets is the sheer quantity of shapelets. Many shapelets in a set will

be matching instances of the same underlying shape; what we are interested in are the

underlying shapes that are associated with series of a given class. Finding these shapes

manually can involve a long process of visual examination of different shapelets. The

two shapelet transforms for the NonInvasiveFetalECG Thorax datasets, for example,

both have 18000 shapelets; examining this number of shapelets manually would be

extremely time-consuming, and also very difficult, as the analyst would have to pick

out the shapelets that represent repeated instances of the same shape.

We propose an automated system for increasing the insight that can be gleaned

from the shapelet transform. The first part of this process involves reducing dimen-

sionality. We do this in two stages. First, we remove any poor shapelets using a filter

based on the statistical F test. This is described in Section 5.5. The second stage

involves clustering the shapelets (Section 5.6). We cluster with two related aims: we

aim to reduce dimensionality, making it easier to inspect the shapelets visually, and

we aim to combine shapelets that are instances of the same underlying shape, again

making the task of gleaning insight from shapelets easier.

110

The second part of the process for increasing interpretability involves transforming

the shapelet distances into more interpretable binary features, where each binary

feature indicates the presence or absence of a shapelet. We see this as the optimum

in interpretable shapelet-based classification, see Section 5.8.

5.5 Filtering the shapelet-transformed data using

the F-stat

We generate a large number of shapelets to ensure that a varied set is produced (see

Table 8.4 in the appendix). Generating 10 shapelets for every series in the training

set has the potential to produce very poor shapelets, which are retained because of

the high value of k. Such shapelets do not necessarily reduce classification accuracy;

rather, they reduce interpretability by increasing the number of shapelets without

adding information. Our solution to this problem is to use the F-stat to filter poor

shapelets.

We have established a good case for using the F-stat quality measure for assessing

shapelets (Section 5.2.3). The measure is faster to compute than IG, particularly

on multi-class problems, and is no less accurate. Using the F-stat quality measure

has another advantage: shapelets with poor F-stat values can be eliminated using a

statistical test.

The basis of the F-stat quality measure for shapelets (see [88]) is the statistical F

test. The F-stat quality measure, as noted in Section 5.2.3, is calculated as follows:

F =

∑
i(D̄i − D̄)2/(C − 1)∑C

i=1

∑
dj∈Di

(dj − D̄i)2/(n− C)
, (5.5.1)

where C is the number of classes, n is the number of series, D̄i is the average of

distances to series of class i and D̄ is the overall mean of D, the set of distances.

We can use the F distribution to assess whether a given shapelet divides the

111

dataset into classes better than randomly. A good shapelet will have a high F-

stat, indicating that it divides the dataset into the different classes very well. A poor

shapelet will have a low F-stat, and it is these shapelets we aim to remove by filtering.

Poor shapelets add little to the classification accuracy, and hinder interpretability by

increasing the dimensionality of the transformed data.

Under the null hypothesis, the F-stat follows an F distribution with C − 1 and

N −C degrees of freedom (C is the number of classes and N the size of the training

set). We consider a shapelet to have a low F-stat if the CDF of the F distribution for

the shapelet’s F-stat value is lower than 0.9.

Shapelets that fall below the threshold are removed from the transform, on the

grounds that their separation of the classes is no better than a random split. The

threshold is set low to avoid removing potentially good shapelets, but other values

could be used to make the filter more or less exacting.

Figure 5.12 shows the change in accuracy for the ensemble classifier if it is trained

on filtered, rather than unfiltered, data. The filtered datasets are no less accurate than

the original shapelet transformed datasets, where difference is tested using a Wilcoxon

Signed Rank Test. The average reduction in the number of shapelets is approximately

4%, with no loss of accuracy; the datasets that have lost the greatest number of

shapelets (WormsTwoClass, TwoLeadECG, MoteStrain, and CinC ECG torso) show

only marginal losses in accuracy (less than 2% for Cin C ECG torso, and less than

a tenth of a percent for MoteStrain) or increased accuracy (approximately 2% for

WormsTwoClass and approximately a tenth of a percent for TwoLeadECG) despite

the removal of between 15% and 20% of the shapelets in the transform. These datasets

contain many poor shapelets by our F-Stat criteria, and as such, have reaped the most

benefit from filtering in terms of the number of shapelets removed. Table 8.2 (see

appendix) presents accuracies for the filtered datasets; the number of shapelets in the

112

0

2

4

6

8

10

12

14

16

18

< -0.016 [-0.016, 0) 0 (0, +0.017] (+0.017, +0.033] > +0.033

C
o

u
n

t

Accuracy change from F-stat filtering

Figure 5.12: Histogram of difference in accuracy for the ensemble classifier before
and after F-stat filtering (filtered accuracy - unfiltered accuracy). A positive value
indicates that the ensemble is more accurate on filtered data.

113

filtered datasets is shown in Table 8.7.

114

5.6 Clustering shapelets

By definition, a shapelet that discriminates well between classes will be similar to a

set of subsequences from other instances of the same class. A given shapelet has a

high quality value because it has numerous matches throughout the set of instances

of the same class. If the limit on the number of shapelets to find (k) is set to a high

enough value, the transform will find all of these matches. It is very common for a

given transform to include multiple shapelets that match one another. Each shapelet

is an instance of the same underlying shape, a shape that occurs across different series

of the same class. In terms of insight, what we care about is how a given shapelet

represents the underlying shape, and about the shape itself, and what it tells us about

the problem domain.

The maximum number of shapelets found using the transform is restricted to

10N , where N is the number of instances in the training set. Clustering the shapelets

offers a number of potential benefits. First, reducing the dimensionality of a dataset

allows for faster classification, and may make tractable some techniques that do not

scale well. Second, if the clustering sufficiently reduces the number of shapelets,

interpretability is greatly increased. For example, a clustering that does not reduce

accuracy and yields one shapelet per class provides highly interpretable data. This

is the case when we cluster the FaceFour dataset, which goes from 174 shapelets

to 4 shapelets with no loss of accuracy (see appendix, Tables 8.2 and 8.7). Third,

clustering removes duplicate shapelets, and close duplicates decrease interpretability,

as they are treated as different shapelets despite intuitively representing different

instances of the same shapelet.

Hierarchical clustering based on shapelet distance (sDist) is an intuitive approach

to selecting the best shapelets from a large initial set. Shapelets are defined in terms of

their visual similarity, so it makes sense to use sDist to cluster them. The shapelets

115

are formed into clusters by combining the shapelets that are the most similar in

terms of sDist. The most important design choice is choosing where to stop the

clustering. We test four different methods, two that hierarchically cluster the set of

shapelets by sDist down to a single cluster and select the clustering that maximise

some value (silhouette or cross-validation accuracy), one that clusters shapelets by

creating clusters and adding shapelets to them using Minimum Description Length

(MDL; this method does not use sDist), and another method that clusters shapelets

hierarchically using sDist, but stops the clustering when there is no longer a saving

to be made, judged using MDL.

5.6.1 Hierarchical clustering with quality measure

We use the form of clustering shown in Algorithm 10 to find clusters hierarchically,

using the cross-validation accuracy or the silhouette clustering metric to find the

optimum number of clusters. The algorithm is designed to find the clustering with

the best value of the given metric, choosing fewer clusters where values are equal.

The clusters are stored as a set of sets, C, where the original cardinality of C is equal

to the size of the original shapelet set S.

Algorithm 10 hierarchicalClusteringWithAssessment(S,T)

1: C = {{S1}, {S2}, ..., {Sk}}
2: bestAccuracy = assessAccuracy(C)
3: bestClustering = C
4: M = createDistanceMap(C)
5: while |C| > 1 do
6: closestPair = searchDistanceMap(M)
7: C = cluster(C, closestPair)
8: accuracy = assessAccuracy(C,T)
9: M = createDistanceMap(C)

10: if accuracy ≥ bestAccuracy then
11: bestAccuracy = accuracy
12: bestClustering = C
13: return convertClustersToShapelets(bestClustering)

116

The createDistanceMap method takes a set of clustered shapelets, C, as input

and returns a |C| × |C| matrix of the distances between the clusters in C. We take

the distance between two clusters of shapelets to be the average sDist between the

members of those clusters (average linkage). searchDistanceMap takes a distance

map as an input and returns the indexes of the pair of clusters with the smallest

average sDist between them. The cluster method takes the set of clusters, C, and

the indexes of the closest pair of clusters as input, merges the members of the closest

pair into a new cluster, adds the new cluster to C, deletes the clusters that formed the

closest pair, and returns C. convertClustersToShapelets takes a set of clusters, C,

as an input, and returns a set of shapelets of the same cardinality, where each cluster

in C is represented by the best shapelet in that cluster (judged by the appropriate

shapelet quality measure). We exclude full algorithmic descriptions of these methods.

We implement two different versions of the assessAccuracy method, one which uses

cross-validation accuracy, the other the silhouette clustering metric.

Hierarchical clustering using cross-validation accuracy

For this type of clustering, we implement the assessAccuracy function (line 8 of

Algorithm 10) by measuring the leave-one-out-cross-validation accuracy of a 1NN

classifier with Euclidean distance on the training set. The procedure is shown in

Algorithm 11.

This method will select the clustering with the best cross-validation accuracy on

the training set. In practice, we do not perform the shapelet transform at line 2

of Algorithm 11; rather, we select the fields from the full transformed dataset that

correspond to the shapelets in S. The main weakness of this method is that it is time

consuming, particularly if the training set is large, as the time complexity will be in

the order of O(|S|2|T|2) where |T| is the size of the training set and |S| is the size of

the set of shapelets in the original transformed dataset.

117

Algorithm 11 assessAccuracyCV(C,T)

1: S = convertClustersToShapelets(C)
2: TS = shapeletTransform(S,T)
3: totalCorrect = 0
4: for all Records T in TS do
5: build1NNClassifier(TS − T)
6: prediction = classifyInstance(T)
7: if prediction = T.classV alue then
8: totalCorrect++
9: accuracy = totalCorrect/|TS|

10: return accuracy

Hierarchical clustering using silhouette

The silhouette measure of the quality of a clustering is defined as the mean S(i) over

all data where:

S(i) =
b(i)− a(i)

max(a(i), b(i))
. (5.6.1)

a(i) is the average distance (we use sDist, which is already computed as part of

the clustering process) between data point i and the other data in its cluster. b(i)

is the average distance between data point i and the data points that belong to i’s

neighbouring cluster. The neighbouring cluster for any data point is the cluster with

the lowest average distance to that data point other than the cluster to which the

data point belongs. For any clustering, −1 ≤ S(i) ≤ 1.

Silhouette is a standard measure of quality for clustering (see, for example, [169]).

Using the silhouette measure is less time consuming than using the cross-validation

accuracy, with a time complexity of O(|S|3) where |S| is the set of shapelets in the

original transformed dataset. It is still necessary to check every clustering from |S| −

1 clusters to 1, meaning that every use of the algorithm has the worst-case time

complexity.

118

5.6.2 Hierarchical Clustering via Minimum Description Length

Clustering using silhouette or cross-validation accuracy is time consuming because it

requires every clustering to be assessed. A more efficient method would be to stop

the clustering at some estimated optimum number of clusters, mitigating the need to

examine the clusterings beyond that point.

The Minimum Description Length(MDL) framework can be used to cluster time

series [142], for dimensionality reduction [92], and for stopping in semi-supervised

clustering [16].

Clustering by MDL is described in detail in [142]. The technique used is aimed

at clustering time-series subsequences from a streaming time series. Their algorithm

inspects each pair of subsequences and stores the bit save made by clustering the pair

together. A bit save is the saving made by reducing the number of bits necessary

to store the data. If two subsequences are similar, it should be possible to make a

saving, judged in terms of MDL, by storing the centroid and the difference vectors

of the two series (in fact, one series in every cluster need not be stored, as it can be

recovered from the centroid and the other difference vectors). If the subsequences in

the cluster are all similar to the centroid (as they should be in a good cluster) then

the difference vectors will be close to straight lines with gradient 0. This is very cheap

to store in terms of MDL, and hence represents a substantial saving over storing the

subsequences separately.

The method proposed in [142] is for unsupervised clustering of time-series sub-

sequences from a streaming time series. It is not designed for clustering shapelets,

which have an associated class, and must visually resemble one another to be consid-

ered a good match. We make a number of modifications to Rakthanmanon et. al ’s

method to optimise the approach for clustering shapelets (see Sections 5.6.3 to 5.6.5).

The first stage in using MDL for clustering shapelets is to discretise the shapelets

119

to six-bit precision. Six bits is an arbitrary level of precision; experiments performed

by Hu et al. [92] on the UCR datasets showed that transforming to six-bit precision

from double precision made no substantial difference to classification accuracy. Once

the shapelets are clustered, we use the original shapelets, not the discretised shapelets,

further minimising any impact the discretisation might have.

We perform the discretisation using the procedure outlined in [92]. The minimum

and maximum values are found by examining every shapelet. The following formula

is used to discretise the series:

Discretisationb(T) = round

(
T −min
max−min

· (2b − 1)

)
− 2b−1. (5.6.2)

max and min are found over the entire set of shapelets, rather than found separately

for the individual shapelets; b is the number of bits we discretise the series to, in this

case, six.

Once the shapelets are discretised, we can define the description length of a

shapelet. The entropy of a time series is a lower bound on the average code length

from any encoding of that series [142]. Hence, we can use the entropy of the shapelet

as its description length.

To calculate the entropy of a discretised shapelet, S, we create the set of unique

values that occur in that shapelet, VS = {v : v is the value of a point in S}. Using VS

and S, we can define a probability, P (v) for each value v in VS. P (v) is the probability

that a point, s in the shapelet S, takes the value v; it is calculated as follows:

P (v) =
|{s : s ∈ S ∧ s = v}|

|S|
. (5.6.3)

For each value v in the set VS, we calculate P (v). This allows us to calculate the

entropy, H(S), of the discretised shapelet S:

H(S) = −
∑
v∈VS

P (v) · log2 P (v). (5.6.4)

120

We define the description length for a length m Shapelet S as follows [142]:

DL(S) = m ·H(S). (5.6.5)

In order to cluster shapelets using MDL, we must define the description length

of a cluster. To do this, we calculate the description length of the centroid of the

cluster using the formula above. For each member of the cluster, we create a differ-

ence vector, which is equal to the difference between each point in the member and

the centroid. The total description length of the cluster is equal to the description

length of the centroid plus the sum of the description lengths of the difference vectors

of the members, minus the difference vector of the member with the largest descrip-

tion length (as this information can be recovered from the centroid and the other

members). For a cluster, C, with a centroid, Ccent, we denote the difference vector

between a member of the cluster, c, and the centroid as Ccent−c. The description

length is calculated as follows:

DL(C) = DL(Ccent) +

(∑
c∈C

DL(Ccent−c)

)
−max

c∈C
(DL(Ccent−c)). (5.6.6)

The shapelets we cluster may be of different lengths, which means that the centroid

cannot be a simple point-by-point average. In [142], the authors allow any possible

offset between the centroid and the members of the cluster. Figure 5.13 shows an

example of this, using different offsets of shapelets from the GunPoint dataset. The

approach in [142] makes sense for unsupervised clustering of subsequences from a

streaming time series; it is possible for the algorithm to identify two separate parts of

a longer series. For shapelets, however, the approach makes less sense. In Figure 5.13,

only the centroid at offset = 0 closely resembles the members of the cluster. Given

that matching shapelets are, by definition, visually similar, we should not allow such

centroids to be created. Hence, we restrict the length of the centroid to the length

121

of the longest member, and select the offset by sliding the shorter shapelet along the

longer shapelet.

When two shapelets are clustered (or a shapelet is added to an existing cluster,

or two clusters are merged), all allowable offsets of the shapelets (or centroids for

existing clusters) are tested, and the offset giving the smallest total description length

is selected. For two shapelets, Si and Sj, of lengths Li and Lj respectively, where

Li ≥ Lj, the possible offsets range from 0 to i − j, where 0 indicates that the first

indexes of the shapelets are aligned, and a positive integer indicates the index of Si

aligned with the first point in Sj.

Offset = -26

Offset = -13
Offset = 0

Offset = 13
Offset = 27

Figure 5.13: The effect of different offset values on the centroid formed by clustering
two shapelets from the GunPoint dataset. The shapelets (blue and yellow) and the
centroid (green) are offset on the z-axis for ease of presentation. Because the shapelets
represent two instances that belong to the same cluster, the centroid is very similar
to the members of the cluster at offset=0. As the offset moves away from zero in
either direction, the centroid becomes less like the members of the cluster. This is
accompanied by an increase in the description length of the cluster, allowing the
algorithm to select the appropriate offset.

A good cluster will contain members that are very similar to one another, and

122

hence very similar to the centroid. If all members of a cluster are very similar to

the centroid of that cluster, the difference vectors will approximate straight lines of

0 gradient. In this situation, the total description length of the cluster will be small,

as the difference vectors will have very small description lengths.

A bit save is achieved when storing shapelets in a cluster results in a smaller total

description length than storing the shapelets individually.

We adopt the basic MDL framework, and use it to create two novel shapelet

clustering methods.

5.6.3 Hierarchical clustering using MDL

Our first MDL-based clustering method uses the greedy algorithm described in [142]

to cluster the shapelets exactly as time-series subsequences are clustered in that paper

(barring our restrictions on offsets). The algorithm operates as follows:

• Each shapelet and cluster is tested against every other shapelet and cluster.

The best bit save is recorded.

• If the best bit save is greater than 0, the operation with that bit save is carried

out: two shapelets are merged to form a new cluster, a shapelet is merged into

an existing cluster, or two clusters are merged. After performing the operation,

the algorithm returns to the previous step. If the best bit save is 0 or less, the

algorithm terminates.

One issue with using this form of clustering for shapelets is that the centroid need

not be visually similar to the members of the cluster for the clustering to achieve

a high bit save. Consider Fig 5.14 left, which shows two shapelets from the Italy-

PowerDemand dataset that are clustered together by MDL clustering. Visually, they

are opposites. The blue shapelet has a local maximum in the middle, whereas the

123

yellow shapelet has a local minimum. The centroid, which is the average of the two

shapelets, has a horizontal line in the same position; it resembles neither member of

the cluster. This is a problem, because shapelets that match are different instances

of the same shape, and should, therefore, be similar under visual inspection. The

following example demonstrates how such pathological clusterings can occur during

the first stage of the algorithm.

Offset = 0
Offset = 0

Figure 5.14: Left: two shapelets from the ItalyPowerDemand dataset. The blue and
yellow shapelets are inverses in the middle third, resulting in a cheap-to-store flat line
in the centroid and an incorrect clustering. Right: an extreme example showing two
completely opposite shapelets that create a large bit save when clustered because the
centroid is a horizontal line.

Suppose we test the bit save offered by merging two shapelets, S1 and S2, into a

cluster C. They are a perfect match, so the centroid will be identical to the two

shapelets; because of this, DL(Ccent) = DL(S1) = DL(S2). The shapelets are

identical to the centroid, meaning the difference vectors are horizontal lines; hence

DL(Ccent−S1) = DL(Ccent−S2) = 0. The overall bit save offered by clustering S1 and

S2 is:

DL(S1) +DL(S2)−DL(Ccent)−DL(Ccent−S1)−DL(Ccent−S2) + max
i=1,2

(DL(Ccent−Si
)),

(5.6.7)

which is equal to the description length of one of the shapelets, or that of the centroid.

124

Now suppose we test the bit save offered by merging S1 with its mirror opposite,

Sinv. DL(Sinv) = DL(S1) as they are mirror opposites. Ccent will be a horizontal line;

DL(Ccent) = 0. Because the centroid stores no information, the difference vectors

must store the entire shapelet, and DL(Ccent−S1) = DL(Ccent−Sinv
) = DL(S1) =

DL(Sinv). In this case, the bit save is:

DL(S1) +DL(Sinv)−DL(Ccent)−DL(Ccent−S1)−DL(Ccent−S2)

+ max(DL(Ccent−S1 , DL(Ccent−Sinv
)).

(5.6.8)

Here we find exactly the same bit save as in the previous example; the bit save of-

fered by clustering mirror opposites is the same as that offered by clustering perfect

matches. The same is true for approximate matches and approximate mirror oppo-

sites.

We conclude that the clustering proposed in [142] can produce clusters that are not

appropriate for shapelets, which require visual similarity to be considered a match.

We aim to mitigate this problem by proposing a different form of clustering that

makes use of MDL as a stopping criterion, but does not use it for the clustering.

5.6.4 Hierarchical clustering based on sDist with MDL stop-
ping criterion

To mitigate the problems that may occur from using the clustering by MDL method

presented in [142] to cluster shapelets, while keeping the key intuition that MDL is a

principled way to select the correct number of clusters, we modify the algorithm to

create a new form of clustering, MDLStop.

MDLStop proceeds in the same fashion as the hierarchical clustering proposed

in Section 5.6.1. The distance map of the sDists between each pair of shapelets or

cluster of shapelets is searched, and the shapelet or cluster with the smallest (average)

distance to another shapelet or cluster is tested. The test ascertains the bit save made

from merging the shapelets or clusters in question. If the bit save is positive, the merge

125

is enacted, and the algorithm loops and resumes. If the bit save is zero or less, the

algorithm terminates.

The time complexity of MDLStop in the worst case is O(L2|S|), where L is the

shapelet length and |S| is the size of the set of shapelets. In the best case, the

algorithm will terminate after a single check requiring O(L) operations. In contrast,

both the silhouette and CV assessment methods have the same time complexity in

every case: silhouette is O(|S|3) where |S| is the size of the set of shapelets, and the CV

method is O(|S|2|T|2) where |T| is the size of the training set. Hence, in the average

case, MDLStop is faster than the other two methods. In the worst case, MDLStop and

silhouette are both of cubic complexity; however, the number of shapelets is less than

the maximum shapelet length in only 8 out of 75 datasets, and the difference is an

order of magnitude in only one (Cin C ECG torso). For the majority of datasets, the

number of shapelets is much larger than the maximum shapelet length, meaning that

MDLStop will be faster than silhouette, even in the worst case. We conclude that, in

the vast majority of cases, MDLStop offers a substantial speed up over the silhouette

and CV assessment methods. Our experience of using the different clustering methods

confirms this, as MDLStopCE is able to complete on all 75 datasets; the silhouette and

cross-validation methods would not finish for the largest datasets within a reasonable

period of time (five days, which is the default limit on the high-performance computing

facility we use for our experiments).

5.6.5 Class enforcement for MDL techniques

The MDL-based clustering proposed in [142] is intended for the unsupervised task of

finding repeated time-series patterns in a long time series; MDL provides a parameter-

free method for clustering similar subsequences. A pair of subsequences (or a subse-

quence and a centroid) may be clustered if doing so offers a positive bit save. This

126

creates a problem when we use bit save as a stopping criterion for hierarchical clus-

tering of shapelets: clustering will continue for as long as a positive bit save can

be found. If the shapelets of different classes are sufficiently similar, they will be

clustered.

Consider the shapelets shown in Fig. 5.15. The shapelets of different classes are

distinguishable only by minor differences. Such differences are enough to prevent them

being clustered together until very late in the clustering process. With silhouette or

CV as the assessment measure, there will be a sharp drop in the relevant metric when

the clustering begins to merge shapelets of different classes, enabling us to select an

earlier clustering in the hierarchy. If MDL is used, however, we may still achieve

a positive bit save, resulting in a very poor clustering. Dissimilarities between the

shapelets of different classes may be pronounced in terms of sDist, but small enough

to allow the bit save from clustering them to be positive.

To mitigate this problem, we further adapt MDL-based clustering for shapelets

by allowing two shapelets to be clustered only if they come from series of the same

class. In the next section, we test whether class enforcement significantly improves the

accuracy of the ensemble on data clustered using the MDL and MDLStop clustering

methods.

127

Figure 5.15: Shapelets from the filtered SonyAIBORobotSurfaceII dataset, arranged
on the x-axis by where they appear in their respective series, and on the y-axis by
the ID of the series they are taken from. The quality of the shapelet is indicated by
the thickness of the lines, the class by the colour.

128

5.7 Clustering results

We compare the different clustering methods over 50 time-series datasets in terms of

the accuracy of the ensemble on that data. First, we show that class enforcement

significantly improves our novel clustering approach, MDLStop. Then we show that

MDLStop with class enforcement is superior to the MDL clustering with class enforce-

ment. Finally, we show that MDLStop with class enforcement produces datasets on

which the ensemble is no less accurate than on the unclustered data. The acronyms

we use are shown in Table 5.3.

5.7.1 Effects of class enforcement for MDL-based clustering

Our first experiment is a pairwise test of the effect of class enforcement on the MDL-

based clustering methods. We hypothesise that enforcing the class distinction for

the MDL and MDLStop clustering methods will improve their accuracy. We use a

Wilcoxon Signed Rank test with a significance level of 0.01 on the accuracies of the

ensemble on fifty datasets.

For MDL clustering, we find that there is no significant difference between MDL

and MDLCE. Class enforcement has a strong effect on MDLStop, however; the

shapelet ensemble is significantly more accurate on shapelet-transformed data clus-

tered with MDLStopCE than that clustered with MDLStop. The p-value is 5.55 ×

10−5. Table 8.3 (see appendix) presents the full set of results.

Table 5.3: Acronyms used for clustering methods.
Acronym Full name
Unclustered Ensemble classifier on shapelet-transformed data.
CV Hierarchical clustering with assessment by cross-validation accuracy.
Sil Hierarchical clustering with assessment by silhouette.
MDL Hierarchical clustering based on bit save with MDL-based stopping criterion.
MDLStop Hierarchical clustering based on sDist with MDL-based stopping criterion.
MDLCE MDL with class enforcement.
MDLStopCE MDLStop with class enforcement.

129

We select the class-enforced versions of the MDL-based clustering methods. Class

enforcement makes no significant difference to the performance of MDL clustering,

so we do no harm to the method by using it, and offers a significant improvement

for MDLStop clustering. We feel that enforcing class is sensible with regard to the

way shapelets are found and used, and that it represents a move away from the

unsupervised roots of MDL-based clustering, and toward the supervised task of time-

series classification, which is our area of interest.

5.7.2 MDLStopCE vs MDLCE

Our next experiment is a pairwise comparison of the two MDL-based clustering meth-

ods. We test the differences using a Wilcoxon Signed Rank test with a significance

level of 0.01 on the accuracies of the ensemble classifier on 50 datasets.

Our experiment shows that the ensemble classifier is more accurate on shapelet-

transformed data clustered using MDLStopCE. The p-value is 2.138 × 10−3. We

display these results graphically in Figure 5.16.

MDLStopCE is, therefore, our preferred MDL-based clustering method. This re-

sult makes intuitive sense, as MDLStopCE is engineered for the shapelet approach,

and is very different to the original method proposed in [142] for unsupervised clus-

tering of subsequences from streaming time series.

5.7.3 Comparison of clustering methods

We compare the three clustering methods (silhouette, cross-validation, and MDL-

StopCE) to the unclustered shapelet-transformed data by measuring the accuracy of

the ensemble classifier over 50 datasets transformed using each method. The results

are presented in the form of a critical-difference diagram in Figure 5.17, which is

based on the Friedman test.

As can be seen from Figure 5.17, there is no significant difference in the ensemble’s

130

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy MDLStopCE

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy
 M

D
LC

E

MDLCE better here

MDLStopCE better here

Figure 5.16: Comparison of accuracy over 50 datasets between the ensemble clas-
sifier on MDLCE-clustered shapelet-transformed data and MDLStopCE-clustered
shapelet-transformed data. MDLStopCE is better on 28 datasets, MDLCE is better
on 14.

accuracy between the unclustered shapelet sets, those where the number of clusters

have been selected using cross-validation, and those where the number of clusters have

been selected by MDLStopCE, as all three belong to the same clique. The ensemble

is significantly less accurate if the number of clusters is selected using the silhouette

method.

Classification using MDLStopCE-clustered data is no less accurate than classifica-

tion on the unclustered shapelet-transformed data or the CV-clustered data. MDL-

StopCE also offers faster clustering than using CV, and better interpretability than

using the unclustered shapelet-transformed data.

The time complexity of MDLStopCE (O(L2|S|) in the worst case; much faster in

the average case) is better than that of cross validation (O(|S|2|T|2) in every case).

MDLStopCE is viable on all 75 datasets, whereas the cross-validation method cannot

be used on the largest datasets in a reasonable time frame.

131

CD

4 3 2 1

2.04
Unclustered

2.31
CV

2.41
MDLStopCE

3.24
Sil

Figure 5.17: Critical-difference diagram of ranked differences in accuracy of the
ensemble between the different clustering methods and the unclustered shapelet-
transformed data on 50 datasets.

MDLStopCE-clustered datasets are also more interpretable than those with 10N

shapelets, as, in the general case, there are fewer shapelets, and fewer repeated in-

stances of the same shaplet. An example of this increase in interpretability comes

from SimulatedSet, our data created to be optimal for the shapelet approach (see

Chapter 4). The shapelet transform finds 1000 shapelets in SimulatedSet. Using the

full 1000, the accuracy of the ensemble is 0.913. After clustering with MDLStopCE,

only two shapelets remain (Figure 5.18), and the accuracy of the ensemble is 0.88.

There is an enormous reduction in dimensionality, and the data are much more in-

terpretable, as each series is represented by two distances, one to each shapelet; the

only cost is a small reduction in accuracy.

Table 8.7 (see appendix), shows the number of shapelets in each dataset before

and after MDLStopCE clustering.

Our next step in increasing the interpretability of shapelet-transformed data is to

replace the distances that make up the features of the transformed data with binary

values reflecting the presence or absence of a given shapelet.

132

Figure 5.18: The two shapelets selected from the SimulatedSet shapelet transform by
MDLStopCE clustering. Left: a spike from class 0. Right: a triangle from class 1.
These shapelets are the highest-quality members of their clusters.

5.8 Binary discretisation

Shapelet-transformed data, including the data we create using the MDLStopCE clus-

tered shapelets, encodes each instance of a time-series dataset as a set of real-valued

distances. These distances are the sDist between each shapelet and the instance in

question, with a smaller distance indicating a closer match between the series and the

shapelet. The intuition is that, given the shapelets have been selected from the train-

ing set to be maximally discriminative of class, those instances with smaller sDist to

a shapelet from a training instance of class c1 are more likely to be of class c1.

We use IG to find the optimum distance at which a given shapelet splits the

training data by class, then transform each set of shapelet-transformed data into

binary data by assessing whether a given sDist is lower or higher than the optimum

splitting distance. For instance i and shapelet S, if the information gain optimum

splitting point of S is found to be Ssp on the training data, and Si < Ssp, in the

binary-transformed data, the equivalent attribute, Bi, will be given the value 0. If

Si ≥ Ssp, Bi will be given the value 1.

Bi =

{
0 if Si < Ssp

1 if Si ≥ Ssp

133

The benefits offered by binary-transformed data include increased interpretability

and faster classification. Interpretability is increased because each value indicates the

presence or absence of the shapelet in the series, rather than a real-valued distance.

Classification is faster because calculations are faster on binary values than on real

values.

We would expect the accuracy of our ensemble classifier to decrease, as the clas-

sifiers have less information available after the binary transformation. The results

of our experiments to assess this effect are shown in Section 5.9. We compare two

different methods of performing the binary transform, a method based on finding the

best binary split point, and a novel method that transforms the class labels before

finding the split, motivated by the idea that a shapelet discriminates only a single

class from the other classes.

5.8.1 Standard binary transform

We refer to the straightforward identification of a binary splitting point for each

shapelet as the Standard Binary Transform.

The weakness of this approach is evident when we consider multi-class problems.

A given shapelet is selected because it discriminates one class from every other class.

When we find the split point for a shapelet in a dataset with more than two classes,

the split can end up in what is intuitively the wrong place for that shapelet.

Consider Figure 5.19, which shows data from the CBF training set, plotted by

distance from shapelet 0 (x-axis) and shapelet 1 (y-axis). Shapelet 0 best discrim-

inates instances of class 1, and shapelet 1 best discriminates instances of class 2.

The optimum splitting point for each shapelet is represented with a dotted line along

the appropriate axis (vertical for shapelet 0, Fig. 5.19 left, horizontal for shapelet 1,

Fig. 5.19 right).

134

Intuitively, we can see from Fig. 5.19 right that the correct splitting point has

been selected for shapelet 1. The blue points, which represent instances of class 2,

have been cleanly delimited from the other points. Fig. 5.19 left, however, shows that

the optimum splitting point for shapelet 0 does not match our intuition. Shapelet 0 is

the shapelet that best discriminates training instances of class 1, represented by the

red points, from those of classes 2 and 3 (blue and green points respectively). The

optimum splitting point does not linearly separate the red points from the others.

Instead, it separates the blue points from the other points. This occurs because the

information gain method for selecting a binary split will find the optimum split to

be the one that gives the highest information gain. In this case, a clean split can be

made between the blue points and the other points, giving a greater information gain

to an incorrect (as we would see it intuitively) split, especially as instances of class 2

are slightly more numerous in the training data.

The optimum splitting point for shapelet 2 (excluded to avoid redundancy) also

separates the blue points from the other points. Hence, from a starting point of

having three shapelets after clustering, we are left with three binary shapelets that

all split the data in the same way, which results in three attributes that are perfectly

correlated. Not only is the incorrect to visual inspection, it also destroys information,

as all three shapelets become capable only of distinguishing class 2 from classes 1

and 3. This greatly decreases the predictive power of the shapelets. We address this

problem in the next section.

5.8.2 Class transform

To mitigate this weakness we transform the class labels prior to searching for the

optimum split point. This process is detailed in Algorithm 12.

For each shapelet, Algorithm 12 uses the training set to estimate which class the

135

Algorithm 12 binaryTransformClass(D)

1: listOfSplits←<>
2: for all Shapelets S in D do
3: bestRank ←∞
4: bestClass← ∅
5: Dcopy ← sort(D, S)
6: for all Classes C in D do
7: rank ← rank avg test(D, S, C)
8: if rank < bestRank then
9: bestRank ← rank

10: bestClass← C
11: for all Instances I in Dcopy do
12: if I.class← bestClass then
13: I.class← 0
14: else
15: I.class← 1
16: bestGain← −∞
17: bestSplit← null

18: for i← 2 to |Ds| do
19: split← (Ds,i + Ds,i−1)/2
20: gain← calculateGain(Ds, split)
21: if gain > bestGain then
22: bestGain← gain
23: bestSplit← split
24: listOfSplits.add(bestSplit)
25: return listOfSplits

136

Distance to shapelet 0

D
is

ta
n
ce

 t
o
 s

h
a
p
e
le

t
1

Distance to shapelet 0

D
is

ta
n
ce

 t
o
 s

h
a
p
e
le

t
1

Figure 5.19: Data from the CBF training set, distributed by sDist from shapelets 0
and 1. The different coloured points represent the three classes of data; the dotted
line shows the optimum splitting point by IG. The left graph shows the optimum
splitting point for shapelet 0. The right graph shows the optimum splitting point for
shapelet 1.

shapelet discriminates using a rank average test. This is performed as follows. The

class labels of the training set are sorted by the distance between the corresponding

instance and the shapelet, from smallest to largest. The average position of each

set of class labels is calculated, and the class label with the lowest average rank is

taken to be the class label that particular shapelet discriminates. Instances of that

class have their label transformed into 0; all other instances have their class label

transformed into 1 (this is only for the purposes of finding the appropriate splitting

point).

The intuition behind transforming the data in this way prior to finding the split

point is that shapelets discriminate one class from the other classes. They do not

necessarily make a multi-class split. By emphasising the target class and pooling the

data in the non-target classes, we should find a split that better reflects the way the

shapelet divides the data.

Referring back to the graphical example given in Section 5.8.1, on the CBF dataset,

finding the split points using the naive method results in each shapelet having the

137

same splitting point relative to the data, as the (marginally) larger class 2 is split

from classes 1 and 3. By performing the class transform, we find that each shapelet

now splits the data in a way that is both more congruent with our intuitions about

the data, and that gives us three different splits. The optimum splitting points for

shapelets 0 and 1, found using the class transform method, are shown in Fig. 5.20.

In each of the two graphs, the instances identified as being of the target class by the

class transform algorithm are shown in red, while all other points are shown in blue.

As can be seen from Fig. 5.20, the split for shapelet 1 (Fig. 5.20 right) is the same

as that found using the naive method. The split for shapelet 0, however, now matches

where we would place the split intuitively, as it separates the red points (those of class

1) from all but one of the points of other classes (we exclude the graph for shapelet

2; it shows that the splitting point is different to that found by the standard method,

and distinguishes the instances of class 3).

The class transform algorithm allows us to find optimum splitting points that

more closely match our intuitions, and that take advantage of the innate structure of

the shapelet space (i.e. that shapelets distinguish one class only).

We compare the two methods of transforming the data against one another in

Section 5.9. Before we test them, we use a simple filter to remove attributes that are

highly correlated after being transformed into binary data. This filter is described in

the next section.

5.8.3 Correlation filtering

After performing the binary transform, we use a simple filter to remove shapelets (i.e.

attributes) that are entirely positively or negatively correlated. Such correlations

occur because the binary transform can smooth out differences between shapelets.

Correlated attributes can result in less accurate classification, depending on the type

138

Distance to shapelet 0

D
is

ta
n
ce

 t
o
 s

h
a
p
e
le

t
1

Distance to shapelet 0

D
is

ta
n
ce

 t
o
 s

h
a
p
e
le

t
1

Figure 5.20: Data from the CBF training set, distributed by sDist from shapelets
0 and 1. The different coloured points represent the newly transformed two classes
of data. The dotted line shows the optimum splitting point by IG, using the class
transform algorithm. The left graph shows the optimum splitting point for shapelet
0 (points of class 1 are shown in red, points not of class 1 in blue). The right graph
shows the optimum splitting point for shapelet 1 (points of class 2 are shown in red,
points not of class 2 in blue).

of classifier. The process used to filter binary-shapelet-transformed data is shown in

Algorithm 13.

Algorithm 13 simpleCorrelationFilter(S,D)

1: for i← 1 to |S| do
2: for j ← i+ 1 to |S| do
3: if checkCorrelation(i, j,D) then
4: S← S− Sj

5: j −−
6: return S

We remove only those attributes that have an entirely positive correlation (1)

or entirely negative correlation (-1). Such attributes add no information, and can

lower classification accuracy. Once the training set has been transformed, our filter-

ing algorithm searches the attributes in order, removing attributes that are entirely

correlated with an earlier attribute. For many of the datasets we use, the training set

is much smaller than the test set. This suggests that it could compromise accuracy if

139

Algorithm 14 checkCorrelation(i,j,D)

1: positive← FALSE

2: negative← FALSE

3: for all Records r in D do
4: if ri = rj then
5: positive← TRUE

6: else
7: negative← TRUE

8: if positive ∧ negative then
9: return FALSE

10: return TRUE

we removed attributes that have any correlation other than 1 or -1. A difference in a

single record in the training set could be much more prevalent in the test set; hence,

we restrict correlation filtering to perfect positive and negative correlations.

Table 8.7 (see appendix) shows the number of shapelets for each dataset and each

transform.

5.9 Binary results

For the first two experiments, we use the same fifty datasets we use for the clustering

experiments. For the remaining experiments in this chapter, we use the same datasets

used in the initial testing of the shapelet transform (Section 5.3).

5.9.1 Comparison of standard binary transform to binary
class transform

Our first experiment is a pairwise comparison of the accuracy of the ensemble classifier

on binary shapelet data transformed with either the standard binary transform or the

binary class transform. Our alternative hypothesis is that the ensemble’s accuracy

will be higher on the class-transformed data. We test the hypothesis using a Wilcoxon

Signed Rank test at a significance level of 0.01 on the accuracies of the ensemble over

fifty datasets.

140

The results of the test show that the ensemble is significantly more accurate on

the class-transformed binary data than on the standard binary data. The p value

is 0.00828. We proceed using the class-transformed data. Figure 5.21 displays the

results graphically.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy Binary Class Transform

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy
 S

ta
n
d
a
rd

 B
in

a
ry

 T
ra

n
sf

o
rm

Standard Binary Transform better here

Binary Class Transform better here

Figure 5.21: Comparison of accuracy over 50 datasets between ensemble classifier on
binary-class-transformed shapelet data and standard binary-transformed data. The
ensemble on binary-class-transformed shapelet data wins 21 times, the ensemble on
standard binary-shapelet data 9 times.

5.9.2 Comparison to clustered data

Our next experiment compares the ensemble’s performance on the class-transformed

binary data to its performance on the MDLStopCE clustered data. We use a Wilcoxon

Signed Rank test at a significance level of 0.01 on the accuracies of the ensemble over

fifty datasets.

The p-value is 0.00272; the ensemble’s accuracy is significantly worse on the binary

data than on the clustered data.

141

5.9.3 Analysis

Examining the differences in the ensemble’s accuracy on the two types of data reveals

that for 40 of the 50 datasets, the difference in accuracy is 0.1 or less. We summarise

these results in Figure 5.22. For these datasets, the differences in accuracy are rela-

tively small; the ensemble appears to be slightly more accurate on the clustered data,

but the effect is not a strong one.

0

2

4

6

8

10

12

14

16

18

[-0.1, -0.06] (-0.06, -0.02] (-0.02, 0.02) [0.02, 0.06) [0.06, 0.1]

Accuracy Difference

Figure 5.22: Difference in accuracy of the ensemble classifier on forty datasets before
and after transformation using the binary-class transform. Positive differences indi-
cate that accuracy was higher before transformation, negative differences that it was
higher after transformation.

The problem for the binary data arises with the remaining ten datasets, where

the binary transform has caused a large reduction in the ensemble’s accuracy. This

suggests that there are certain problems for which the binary transform is unsuitable.

We believe there are three main reasons why the binary transform may be unsuitable

for a dataset.

142

First, it may be the case that the binary transform smooths away some important

differences, destroying information. This can be detected using the correlation filter;

if a large number of shapelets are being removed, it suggests that information that was

preserved over clustering is being destroyed. An example of this is the Bird/Chicken

dataset, which loses over forty percent of its shapelets in the correlation filter (note

that the information is lost over the binary transform, not during correlation filtering

- the filter merely removes redundant shapelets).

Second, if the training set is very much smaller than test set, then the small

amount of information lost over the binary transform may scale up to a large loss of

accuracy on the test set. The CBF training set is 30 instances; the test set is 900

instances. By sacrificing a small amount of information to increase interpretability,

we greatly reduce accuracy on the much larger test set.

The third reason that the binary transform may be unsuitable for a dataset is

if there are a large number of classes. There is a strong correlation between the

datasets where the accuracy loss has been large and those with a large number of

classes (Figure 5.23). Out of fifty datasets, ten suffer from severe accuracy loss after

binary transformation. Seven of these ten are members of the ten datasets with the

highest number of classes. The binary transform is not unsuitable for all problems

with numerous classes: three of the top ten do not show large accuracy losses, in-

cluding the datasets with the first and third highest number of classes (fiftywords

and SwedishLeaf). There is a correlation, however; in Chapter 6, we explore nugget

discovery as a way to improve accuracy on problems with poorly predicted classes.

We believe that the binary transform can reduce the accuracy of the ensemble in cases

with many classes because it destroys information that can be used by the classifiers

to distinguish more than one class from a single shapelet. The greater the number

143

of classes in a dataset, the more likely it is that the shapelet distances will inter-

act in complex ways to identify the different classes. When we perform the binary

transform, we destroy any multi-class features that may have been present in the

shapelet distances. The facility to make use of such information is a strength of the

shapelet transform; care is needed when deciding whether to use the binary transform

on problems with many classes.

2 4 6 8 10 12 14 16
Number of Classes

0.1

0.0

0.1

0.2

0.3

Lo
ss

 o
f

A
cc

u
ra

cy
 (

C
lu

st
e
re

d
 -

 B
in

a
ry

)

Figure 5.23: Loss of accuracy from binary transformation by number of classes. Two
points are excluded from the graph to aid visual comprehension: (25,0.155) and
(50,0.0527).

5.9.4 Comparison to 1NNDTW

1NNDTW is the benchmark for TSC; as such we compare the accuracy of the en-

semble on binary-class-transformed data to that of 1NNDTW on the raw data over

75 datasets. We use a Wilcoxon Signed Rank test at a significance level of 0.01.

According to the test, there is no significant difference in accuracy between the two

144

classification methods. This result is shown graphically in Figure 5.24.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy Ensemble Classifier on Binary-transformed Shapelet Data

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy
 D

T
W

_R
n
_1

N
N

DTW_Rn_1NN better here

Ensemble Classifier on Binary-transformed Shapelet Data better here

Figure 5.24: Comparison of accuracy over 75 datasets between ensemble classifier on
binary-class-transformed shapelet data and 1NNDTW. 1NNDTW wins 41 times, the
ensemble classifier 31 times.

Discretising the shapelet-transformed data reduces classification accuracy, but the

ensemble is still as accurate as the benchmark method, as well as providing highly

interpretable results.

5.9.5 Comparison to Logical Shapelets

We compare the accuracy of the ensemble on binary-class-transformed data to the the

accuracy of the Logical Shapelets algorithm over 31 datasets using a Wilcoxon Signed

Rank test at a significance level of 0.01. The ensemble on binary-class-transformed

data is significantly more accurate than the Logical Shapelets algorithm. The p value

is 6.60× 10−3.

Despite the loss of accuracy that occurs when the shapelet data is discretised, the

ensemble is still more accurate than the Logical Shapelets algorithm. This result is

shown graphically in Figure 5.25.

145

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy Ensemble Classifier on Binary-transformed Shapelet Data

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy
 L

o
g
ic

a
l
S
h
a
p
e
le

ts

Logical Shapelets better here

Ensemble Classifier on Binary-transformed Shapelet Data better here

Figure 5.25: Comparison of accuracy over 31 datasets between ensemble classifier on
binary-class-transformed shapelet data and Logical Shapelets. The ensemble wins on
22 datasets, Logical shapelets on 8.

5.9.6 Comparison to Fast Shapelets

We compare the accuracy of the ensemble on binary-class-transformed data to the

accuracy of the Fast Shapelets algorithm over 44 datasets. We test for significant

difference using a Wilcoxon Signed Rank test at a significance level of 0.01. The test

reveals that there is no significant difference in accuracy between the two methods.

5.9.7 Assessment

The appropriate transform depends on the goal of the data-mining project. If accu-

racy is the only concern, we recommend using the shapelet transform with filtered

data. If a blend of accuracy and interpretability is required, MDLStopClustered data

is the preferred option. If interpretability is the prime goal, we recommend using

binary-class transformed data; the analyst must be careful when applying this to

problems with very small training sets, with a very large number of classes (though

this can be mitigated with nugget discovery, see Chapter 6), or where the correlation

146

filter removes many shapelets. In these cases, you may lose a lot of classification

accuracy; however, the approach is no less accurate than two other leading TSC algo-

rithms, 1NNDTW and Fast Shapelets, and is more accurate than Logical Shapelets.

The accuracy of the ensemble on binary data is low only when compared to its highly

accurate performance on the clustered and unclustered shapelet-transformed data.

5.10 Conclusions

We have made several novel contributions to TSC. The shapelet transform uses

shapelets in a way that allows for more accurate classification than previous shapelet-

based algorithms, and which is significantly more accurate than the benchmark algo-

rithm, 1NNDTW. We have proposed a novel method for parameterless clustering of

shapelets, which uses MDL as a stopping criterion for hierarchical clustering based

on sDist. The ensemble is no less accurate on this data, and many datasets show a

substantial reduction in the number of duplicate shapelets, in some cases down to one

shapelet per class, which makes them highly interpretable. Our third contribution

maximises the interpretability of the shapelet-transformed data by using a bespoke

algorithm to discretise the data into a series of binary features indicating the presence

or absence of a given shapelet. We have identified the types of problems for which the

binary data might not be suitable. The binary-shapelet-transformed data is highly

interpretable, and can provide insight into the problem domain while still offering

good accuracy on most datasets.

Other research groups have referenced the shapelet transform in recently published

papers, including [75, 5, 83].

Chapter 6

Rule Induction from Binary
Shapelets

The work presented in this chapter on the BruteSuppression algorithm is published in:

J. Hills, A. Bagnall, B. De La Iglesia, and G. Richards

BruteSuppression: a Size Reduction Method for Apriori Rule Sets

Journal of Intelligent Information Systems 40 (3), pages 431–454, Springer: 2013.

147

148

6.1 Introduction

The ensemble classifier on shapelet-transformed data is the most accurate way of

using the shapelet approach. It is also competitive with the best approaches to

TSC. One weakness, however, is that it can often perform poorly for certain classes

on multi-class problems. This is not a weakness specific to our ensemble classifier

on shapelet-transformed data, but one that afflicts classification in general. Our

proposed solution is tailored to the shapelet approach, and involves using association

rules to improve classification accuracy on poorly predicted classes.

We use Apriori [3], to discover association rules between shapelets that target a

particular class of interest. This process is called nugget discovery or partial classifi-

cation [43]. We focus on predicting classes on which the ensemble performs poorly.

Association rules are highly interpretable, and can also predict the occurrence of

a class of interest with significantly better accuracy (measured using F1) than the

ensemble, in cases where the ensemble performs poorly on a particular class.

Rule sets can contain tens of thousands of rules. This makes the rule sets in-

comprehensible, and can also be detrimental to classification accuracy. We propose

a novel algorithm, BruteSuppression, that reduces the size of rule sets by deleting

overlapping rules (Section 6.3). We show that using BruteSuppression can greatly re-

duce the number of rules in a rule set (Section 6.3) without compromising predictive

accuracy (Section 6.5), or removing potentially interesting rules (Section 6.7).

Apriori is exponentially complex in the number of shapelets, which necessitates

some form of dimensionality reduction, even after the clustering described in Chap-

ter 5. We test a variety of different methods to reduce the dimensionality of the

data. Dimensionality reduction decreases the effectiveness of nugget discovery. This

suggests that the number of shapelets found using MDLStopCE clustering is approx-

imately correct for that data, as reducing the size substantially reduces accuracy.

149

We conclude (Section 6.8) that nugget discovery significantly increases accuracy

for shapelet data with twenty or fewer shapelets, for classes where the ensemble has

performed very poorly. It can be used for higher-dimensional data, but the accuracy

improvement is dependent on the dataset; it is best used where the accuracy of

the ensemble is very low. It can also be used for exploratory data analysis, as the

suppressed rule sets are generally small enough to be comprehensible.

6.2 Nugget discovery

The ensemble classifier performs well on the various shapelet-transformed datasets.

One weakness of the approach can be seen by examining the confusion matrices

for some multi-class problems. For example, consider Table 6.1, which shows the

confusion matrix for the ensemble classifier on the Cricket Y dataset. For some

classes, the count of instances for which predicted = actual (the diagonal, shown in

bold) approaches the total number of instances of that class, for example class 1, where

26 of the 31 instances are predicted correctly. The performance for some other classes

is much worse; for example class 5, where only 4 of the 33 instances are predicted

correctly. Situations like this are fairly common for multi-class classification.

This is potentially a problem for data-mining tasks that focus on one particular

class of interest, or where we require accurate prediction of all instances. We mitigate

this problem using rule-based nugget discovery. Nugget discovery is the discovery of

classification rules that apply to a single target class [43].

6.2.1 Motivation

Nugget discovery involves mining association rules that concern one particular class

of interest, then using those rules to classify the test data. Nugget discovery is partic-

ularly suited for shapelet-transformed data for two reasons. First, nugget discovery

150

Table 6.1: Confusion matrix for the ensemble classifier on Cricket Y dataset. The
diagonal values (in bold) show the counts for each class where the predicted class
matches the actual class.

Predicted Class
Actual Class 0 1 2 3 4 5 6 7 8 9 10 11 Total

0 14 0 0 0 0 0 0 4 13 1 1 4 37
1 0 26 1 0 0 1 0 0 0 0 0 3 31
2 0 7 15 0 0 0 0 0 0 0 0 7 29
3 0 0 0 27 1 0 2 1 1 1 2 0 35
4 0 0 0 0 20 0 2 0 0 0 0 7 29
5 0 1 0 0 0 4 2 3 0 0 1 22 33
6 0 0 0 18 0 0 7 2 0 6 0 0 33
7 0 0 0 13 0 1 2 8 4 3 1 0 32
8 9 0 0 1 0 0 0 1 11 3 1 8 34
9 0 0 0 24 0 0 0 2 2 4 1 0 33
10 2 2 1 0 0 1 4 5 6 2 7 3 33
11 1 1 2 0 0 4 1 1 1 0 0 20 31

Total 26 37 19 83 21 11 20 27 38 20 14 74 390

allows us to use the existing shapelets to target the class of interest, as shapelets

are class specific. Rule discovery in time-series data (e.g. [39]) generally requires

that the time series be represented in terms of their subsequences (the success of

this approach, particularly with regard to a failure to prevent trivial matching, is

discussed in [100]). The shapelet transform already represents time series in terms of

subsequences, negating any need for pre-processing before rule induction.

The second reason that nugget discover is suited to shapelet-transformed data

is interpretability. Rule-based approaches are interpretable, which coheres well with

the shapelet approach, and with our highly interpretable shapelet-transformed binary

data. If...then rules that operate on binary shapelet data are highly comprehensible

to non-experts.

An alternative approach to improve performance on a given class would involve

transforming the data into a two-class problem where the instances of the class of

interest are distinguished from the other instances. This approach has a number of

weaknesses. First, it requires the shapelet transform to be applied for each class of

interest. To ensure that each class in a multi-class problem is classified accurately,

151

we may have to perform the transform many times, greatly increasing the time com-

plexity of the classification process. This effect is magnified if we use the ensemble,

as each new problem requires all eight classifiers to be trained, and cross-validation

accuracies to be obtained. The time overhead for this may be feasible in cases where

we know in advance that we are only interested in one class, but if we aim to improve

accuracy on poorly predicted classes post classification, it is much more time efficient

to use rule-based nugget discovery with the existing shapelets. The second weakness

is that minority classes may still be predicted poorly by the ensemble classifier, es-

pecially very small minority classes. Such classes are common among those that are

difficult to predict.

6.2.2 F1

We calculate classification performance for individual classes using the F1 measure.

F1 = 2× precision× recall
precision+ recall

, (6.2.1)

where

Precision =
TP

TP + FP
(6.2.2)

Recall =
TP

TP + FN
(6.2.3)

0000 1111

0000 TP FP

1111 FN TN

Predicted

Actual

Figure 6.1: Confusion matrix for class 0; TP, FP, FN and TN stand for true positive,
false positive, false negative, and true negative respectively.

152

Precision and recall are calculated via a confusion matrix (Figure 6.1). We assign

class 0 to our class of interest, and class 1 to all other classes, and sum the predictions

that fall in each of the four sections of the matrix. Where the number of true positives

is zero, we take F1 to be zero.

We use F1 rather than accuracy because it can provide a nuanced assessment of

the performance of a classifier on a single class. F1 takes into account false positives

as well as false negatives. False positives can be a serious problem for certain tasks,

especially if only one class is of interest.

6.2.3 Data

Table 6.2 shows the datasets and classes we use for nugget discovery. We select those

classes for which the highly accurate ensemble classifier on shapelet-transformed data

performs relatively poorly. We calculate the F1 score of the ensemble for each class,

and then select the classes where F1 is low relative to the best F1 of the ensemble on

any class of that dataset, and to the overall F1 of the ensemble on that dataset. Two of

the classes we select, ToeSegmentation2 class 1 and MiddlePhalanxOutlineAgeGroup

class 2, are not minority classes. The ensemble performs poorly on these classes,

however, so we include them in our experiments.

We recognise that our selection is biased; however, we consider it to be a more

accurate representation of how nugget discovery should be used: as a support routine

alongside the ensemble classifier. For completeness, we also examine the performance

of nugget discovery over all classes of the lower-dimensionality data.

6.2.4 Rule induction approach

Our nuggest-discovery approach uses the Apriori association rule algorithm [2]. We

generate rule sets with a minimum confidence equal to the incidence of the class of

interest in the training data, a minimum support of one record, and a fixed consequent

153

Table 6.2: Datasets and classes used for nugget discovery with F1 score of ensemble
for that class, and the proportion of records of that class in the dataset.

Target Proportion
Dataset Class F1 in

training set
ToeSegmentation2 1 0.537 0.500
WormsTwoClass 0 0.531 0.420

CBF 2 0.530 0.267
FaceFour 2 0.700 0.125
OSULeaf 5 0.077 0.075

SyntheticControl 2 0.622 0.167
MALLAT 7 0.000 0.127
MALLAT 0 0.394 0.109
MALLAT 2 0.417 0.109

UWaveGestureLibrary X 5 0.050 0.124
UWaveGestureLibrary X 4 0.154 0.142
UWaveGestureLibrary X 0 0.255 0.136

Cricket Y 9 0.151 0.082
Cricket Y 5 0.182 0.082
Cricket Y 6 0.264 0.082
Cricket Z 5 0.057 0.092
Cricket Z 11 0.342 0.092
Cricket Z 9 0.371 0.079
Cricket X 0 0.069 0.097
Cricket X 5 0.146 0.087
Cricket X 11 0.146 0.082
FacesUCR 10 0.204 0.020
FacesUCR 3 0.454 0.110

FaceAll 5 0.271 0.071
FaceAll 10 0.273 0.071
FaceAll 12 0.227 0.071

UWaveGestureLibrary Y 5 0.241 0.124
UWaveGestureLibrary Y 3 0.326 0.123

CinC ECG torso 0 0.604 0.125
Symbols 3 0.727 0.120
OliveOil 2 0.667 0.133

UWaveGestureLibrary Z 3 0.380 0.123
Beef 2 0.667 0.200
Beef 3 0.667 0.200

Worms 3 0.333 0.177
Lightning7 0 0.571 0.114
PtNDevices 10 0.178 0.071
PtNDevices 9 0.187 0.071

Herrings 0 0.465 0.391
Car 3 0.667 0.283

PtNDeviceGroups 0 0.489 0.143
DistalPhalanxTW 1 0.154 0.070
DistalPhalanxTW 4 0.182 0.045

InlineSkate 6 0.203 0.110
RefrigerationDevices 2 0.486 0.333

Haptics 0 0.268 0.116
MiddlePhalanxOutlineAgeGroup 2 0.389 0.593

ProximalPhalanxTW 0 0.000 0.040
ProximalPhalanxTW 4 0.000 0.043

154

Table 6.2: Datasets and classes used for nugget discovery with F1 score of ensemble
for that class, and the proportion of records of that class in the dataset.

Target Proportion
Dataset Class F1 in

training set
DistalPhalanxOutlineAgeGroup 0 0.200 0.075

MiddlePhalanxTW 4 0.000 0.063
MiddlePhalanxTW 3 0.167 0.075

ProximalPhalanxOutlineAgeGroup 0 0.500 0.180
MedicalImages 7 0.000 0.016
MedicalImages 3 0.057 0.042
Earthquakes 1 0.054 0.180
SwedishLeaf 0 0.681 0.058

ChlorineConcentration 1 0.420 0.195
PhalangesOutlinesCorrect 0 0.604 0.349

WordSynonyms 6 0.000 0.015
WordSynonyms 10 0.000 0.022
WordSynonyms 14 0.000 0.015
WordSynonyms 19 0.000 0.026

NonInvasiveFatalECG Thorax1 2 0.474 0.025
NonInvasiveFatalECG Thorax2 16 0.333 0.029

Adiac 30 0.000 0.023
Adiac 21 0.000 0.026
Adiac 4 0.000 0.010

fiftywords 49 0.000 0.004
fiftywords 48 0.000 0.004
fiftywords 47 0.000 0.011
fiftywords 43 0.000 0.013
fiftywords 42 0.000 0.009
fiftywords 41 0.000 0.004
fiftywords 40 0.000 0.002
fiftywords 34 0.000 0.013
fiftywords 29 0.000 0.013
fiftywords 24 0.000 0.004
fiftywords 20 0.000 0.016
fiftywords 16 0.000 0.016

155

of the class of interest. We assess the performance of the rule sets in terms of F1. A

rule set has a number of different rules that have been found on the training set, and

a target class, which is the class of interest.

Figure 6.2: Left: Shapelet2 from the CBF clustered shapelet set. Right: Shapelet2
superimposed (offset on the y-axis) over three series of class 3.

As an example, the following rule is found by using Apriori on the CBF dataset,

with class 3 as the target class: IF Shapelet2 = {True} THEN Class = {3}. Figure 6.2

shows Shapelet2 alongside three series from CBF of class 3. As indicated by the rule

above, the presence of Shapelet2 is a predictor of membership in class 3.

6.2.5 Rule set size

A major weakness of Apriori is that it generates rule sets that may contain hundreds,

thousands, or even tens of thousands of rules. A rule set of this size is difficult to

interpret, and interpretability is a key feature of our approach. There can also be

significant overlap between rules, which may compromise classification accuracy for

a large rule set. It is important, therefore, to minimise the size of the rule sets where

it can be done without a deterioration in performance.

The standard approach to reducing association rule set size (for example [3])

involves eliminating rules with parameter values (such as support and confidence)

156

that are below certain thresholds. This form of rule set size reduction has two major

drawbacks. First, deleting rules purely because, for example, they do not cover enough

instances, can mean that interesting rules describing niches in the space of possible

cases are removed. The second disadvantage is that the structure of the rule set is

highly dependent on the parameter thresholds, and the user has no a priori guidance

on which values to choose. Recent research has focused on finding other methods

to reduce rule set size, either by adjusting the rule induction algorithm [156, 177],

incorporating new interestingness measures [153], or by pruning the rule set [120]. We

propose and test an algorithm, BruteSuppression (Section 6.3), for reducing rule set

size by eliminating overlapping rules. By using BruteSuppression on our rule sets, we

aim to increase interpretability and improve the performance of our nugget discovery.

6.2.6 Classification

Algorithm 15 classifyByRuleSet(Instance I, Rule set R)

fired← 0
unfired← 0
for all rules R in R do

if R.fires(I) then
fired← fired+R.conf

else
unfired← unfired+R.conf

if fired > unfired then
return True

else
return False

Algorithm 15 shows the procedure by which we classify an instance using a rule

set. For each rule in the rule set, we test whether the rule fires for that instance. A

rule, R, fires for an instance, I, if the antecedent conditions of the rule are satisfied

by the instance, that is, if the conjunction of attribute tests in the antecedent of R is

true of the instance I.

157

If R fires for I, the confidence of the rule is added to the variable fired. If R does

not fire, the confidence is added to unfired. If the value of fired is greater than the

value of unfired, the algorithm returns true, indicating that the instance is of the

class that the rule set targets. Otherwise, it returns false, indicating that the instance

is not of the target class.

6.3 The BruteSuppression algorithm

We propose a novel algorithm for reducing the size of rule sets by deleting rules that

overlap with other rules. The intuition is that if two rules are very similar in the cases

they cover, then it is safe to delete one of them. In contrast, a rule that uniquely

covers a set of cases is worth retaining even if it has lower support and confidence

than other rules in the rule set.

We assess the overlap between rules using a measure based on suppression [68]. We

construct the reduced rule set through a specifically tailored comparative enumeration

of the rules in the original set.

We evaluate our algorithm in three stages. First, we show that BruteSuppression

substantially reduces rule set size for rule sets generated on a wide variety of problems

and with a wide range of sizes. Second, we apply the algorithm to the rule sets we use

for nugget discovery, and compare the performance of the suppressed sets to that of

the original sets (Section 6.6). Finally, to demonstrate that the approach is applicable

to a variety of cases, we use qualitative analysis to show that using BruteSuppression

to reduce rule set size yields a rule set much more similar to the original, larger rule

set than if the confidence or support parameter settings are used.

158

6.3.1 Redundancy of rules

Our algorithm requires a measure to assess the redundancy of a rule. Trivially, if

A⇒ C and A∧B ⇒ C have the same confidence, the second rule is redundant with

relation to confidence, as the extra AT adds no predictive power to the rule. Equally

(see [10]), the rule A∧B ⇒ C is redundant with respect to rule A⇒ B ∧C and also

rule A∧B ⇒ C∧D (assuming equivalent levels of confidence). Apriori allows the user

to set minimum support and minimum confidence thresholds; rules that fall below

these thresholds do not appear in the rule set. This form of rule set size reduction

does not take into account any information about the records that the rules cover,

only the support and confidence counts for each rule. Hence, rules covering a unique

set of records may be eliminated, while rules that cover very similar sets of records

may be retained.

Here, we take redundant rules to be those rules that overlap to a large degree,

in terms of the records they cover, with rules of greater confidence. That is, if two

rules cover the same records (to some specified degree), then the rule with lower

confidence is redundant. This is an instance-based form of redundancy, in contrast

to the count-based method used to eliminate rules in Apriori. There are a number

of measures proposed in the literature to calculate this form of redundancy; see, for

example, [68, 37, 147]. An intuitive measure of the overlap of two rules (R and Q) in

terms of the records they cover (DR and DQ) is:

O(R,Q) =
|DR ∩DQ|
|DR ∪DQ|

. (6.3.1)

This represents the size of the intersection of the two sets of records divided by the

size of the union of the two sets.

The suppression function [68] calculates whether one rule is redundant relative to

159

another rule. Rule R suppresses rule Q if:

V (Q) < (1 + ε)× [S(R,Q)]× V (R). (6.3.2)

The function requires some measure of rule interestingness (denoted V), a parameter

for determining the intensity of the suppression (denoted as ε), and some affinity

function (denoted S(R,Q)) to measure the similarity of the rules. We use 0.1 for

ε (this is the most intense suppression recommended in [68]), and O(R,Q) as our

affinity function, as we wish to measure similarity in terms of overlapping coverage

of records. We use confidence for V, as it is the standard measure of the quality of

a rule (see Section 2.10). Our suppression function is as follows. Rule R suppresses

rule Q if:

Conf(Q) < (1 + 0.1)× |DR ∩DQ|
|DR ∪DQ|

× Conf(R), (6.3.3)

where |DR ∩ DQ| is the number of records covered by both rule R and rule Q, and

|DR ∪DQ| is the number of records covered by either rule R or rule Q.

The algorithm we use to apply the suppression function and indicate redundant

rules is given in the next section. Although we test the algorithm on rule sets gener-

ated by Apriori, it can be adapted to other association rule mining algorithms such

as Dense Miner ([14]) and All Rules Algorithm ([148]).

6.3.2 BruteSuppression

The BruteSuppression algorithm is shown below as Algorithm 2. The algorithm

iterates through a rule set, testing pairs of rules with the suppression function and re-

moving rules deemed to be redundant. Due to the nature of the suppression function,

a given rule need only be checked against unsuppressed rules of higher confidence.

Hence, the sooner a given rule is suppressed, the fewer total comparisons are required.

It is important for efficiency to suppress redundant rules as early as possible. In the

160

worst case, where no rules are suppressed, a rule set of n rules requires n(n−1)
2

com-

parisons (this is lower than the computational complexity of the Apriori algorithm

itself). As rules are not tested against suppressed rules, however, in many cases far

fewer comparisons are required than in the worst case. In practice, we may achieve a

high level of suppression (e.g. 90+% of the rules are suppressed in most cases, see Ta-

ble 6.3); we have implemented the algorithm to maximise the saving from suppressed

rules. This is achieved as follows. The BruteSuppression algorithm iterates through

a rule set ordered by confidence, beginning at rule r2, and comparing each ri against

rule ri−1, then ri−2, and so on, until ri is suppressed or has been compared to r1. At

this point the algorithm moves to the rule after the current rule. If ri is suppressed,

it will be removed from the rule set; the indexing updates accordingly.

Our implementation checks whether ri is suppressed, rather than what ri sup-

presses, on the following grounds. Empirically, we have observed that rules in Apriori

rule sets are most often suppressed by the rules immediately preceding them in the

confidence ordering, as overlapping rules tend to have very similar confidence values.

It is more common for ri to be suppressed by, say, ri−3, than for it to be suppressed

by ri−200. If the overlapping rules in a rule set are distributed randomly, there is no

benefit to any specific ordering. However, for the rule sets we have observed, there is

a clear reduction in the number of comparisons if the rules immediately preceding a

rule in the confidence ordering are the first rules to which that rule is compared.

Consider the following illustrative example. Assume we have a rule set with 50%

suppression, where rule 1 suppresses rule 2, rule 3 suppresses rule 4, etc. If there

are ten rules in the rule set, our approach requires 15 comparisons; testing the rules

in descending order of confidence against ri requires 25 comparisons (with no sup-

pression, 45 comparisons are required). This reduction in the number of comparisons

scales to larger rule sets where the overlapping rules cluster together, resulting in a

161

substantial saving.

Algorithm 16 bruteSuppression(R, D)

i← 2 // Begin the process from the second rule
ε← 0.1
while i ≤ |R| do
j ← i− 1 // The first rule compared to rule i is the previous unsuppressed rule
suppress← FALSE

while j > 0 & !suppress do
if Confidence(rj)· |Drj∩Dri|

|Drj∪Dri| · (1 + ε) ≥Confidence(ri) then

R← R− ri // Rule i is removed from the rule set
suppress← TRUE

j −−
if !suppress then
i+ + // The index is increased only if the previous rule was not suppressed

return R

6.4 Rule set size

We begin by assessing the effect of BruteSuppression on rule sets generated from

binary-shapelet data. We do this in two ways. In this section, we assess how strongly

BruteSuppression reduces rule set size. In Section 6.6, we test how well the suppressed

sets have retained the predictive power of the original rule sets by measuring their

performance at nugget discovery.

To assess how strongly BruteSuppression reduces rule set size for rule sets built

on binary shapelet data, we suppress rule sets of a number of different sizes: 10 rules,

100 rules, 1,000 rules, and 10,000 rules. The results are shown in Table 6.3.

The results for datasets such as WormsTwoClass, ToeSegmentation2, and CBF

do not vary as the maximum rule set size increases because Apriori cannot discover

more than 10 rules regardless of the maximum size parameter. Hence, there is the

same degree of suppression in each column. This is also the case for other datasets,

for example FaceFour and OSULeaf, where the number of rules that can be generated

162

Table 6.3: Proportion of rules suppressed for each class of interest over variation in
the maximum number of rules.

Dataset Class 10 Rules 100 Rules 1,000 Rules 10,000 Rules
ToeSegmentation2 1 0.25 0.25 0.25 0.25
WormsTwoClass 0 0 0 0 0

CBF 2 0.4444 0.4444 0.4444 0.4444
FaceFour 2 0.7 0.4667 0.4667 0.4667
OSULeaf 5 0.1 0.59 0.4569 0.4569

SyntheticControl 2 0.9 0.8481 0.8481 0.8481
MALLAT 7 0.9 0.89 0.7618 0.7618
MALLAT 0 0.4 0.75 0.8195 0.8195
MALLAT 2 0.7 0.77 0.8517 0.8517

UWaveGestureLibrary X 5 0 0.41 0.7117 0.7117
UWaveGestureLibrary X 4 0.5 0.58 0.8676 0.8676
UWaveGestureLibrary X 0 0 0 0.6747 0.6747

Cricket Y 9 0.9 0.86 0.863 0.9853
Cricket Y 5 0.7 0.7 0.573 0.887
Cricket Y 6 0.7 0.84 0.854 0.9844
Cricket Z 5 0.7 0.64 0.997 0.9736
Cricket Z 11 0.7 0.82 0.77 0.9328
Cricket Z 9 0.7 0.75 0.997 0.9542
Cricket X 0 0.7 0.68 0.582 0.9857
Cricket X 5 0.8 0.84 0.544 0.9195
Cricket X 11 0.8 0.83 0.456 0.9654
FacesUCR 10 0.9 0.99 0.999 0.9619
FacesUCR 3 0.8 0.82 0.831 0.6246

FaceAll 5 0.5 0.71 0.707 0.6305
FaceAll 10 0.7 0.66 0.673 0.9955
FaceAll 12 0.9 0.86 0.779 0.9368

UWaveGestureLibrary Y 5 0.6 0.99 0.998 0.9971
UWaveGestureLibrary Y 3 0.9 0.94 0.926 0.9979

CinC ECG torso 0 0.9 0.99 0.999 0.9999
Symbols 3 0.9 0.99 0.999 0.9999
OliveOil 2 0.9 0.99 0.999 0.9999

UWaveGestureLibrary Z 3 0 0.5 0.618 -
Beef 2 0.8 0.98 0.932 0.9999
Beef 3 0.9 0.97 0.977 0.9967

Worms 3 0.9 0.99 0.998 0.998
Lightning7 0 0.9 0.99 0.999 0.9996
PtNDevices 10 0.8 0.92 0.627 0.4652
PtNDevices 9 0.2 0.89 0.637 0.4889

Herrings 0 0.1 0.55 0.523 0.978
Car 3 0.9 0.99 0.999 0.9999

163

Table 6.3: Proportion of rules suppressed for each class of interest over variation in
the maximum number of rules.

Dataset Class 10 Rules 100 Rules 1,000 Rules 10,000 Rules
PtNDeviceGroups 0 0.4 0.53 0.571 0.4985
DistalPhalanxTW 1 0.9 0.99 0.999 0.9996
DistalPhalanxTW 4 0.9 0.99 0.999 0.9999

InlineSkate 6 0.7 0.96 0.964 0.9885
RefrigerationDevices 2 0.2 0.81 0.94 0.997

Haptics 0 0.9 0.99 0.999 0.9999
MiddlePhalanxOutlineAgeGroup 2 0.8 0.98 0.998 0.9998

ProximalPhalanxTW 0 0.9 0.99 0.999 0.9999
ProximalPhalanxTW 4 0.9 0.99 0.999 0.9999

DistalPhalanxOutlineAgeGroup 0 0.9 0.99 0.999 0.9999
MiddlePhalanxTW 4 0.8 0.94 0.994 0.9994
MiddlePhalanxTW 3 0.9 0.99 0.999 0.9999

ProximalPhalanxOutlineAgeGroup 0 0.9 0.99 0.994 0.996
MedicalImages 7 0.9 0.99 0.998 0.9998
MedicalImages 3 0.9 0.99 0.999 0.9999
Earthquakes 1 0 0 0.018 0.8008
SwedishLeaf 0 0.9 0.99 0.993 0.9747

ChlorineConcentration 1 0.9 0.99 0.995 0.9975
PhalangesOutlinesCorrect 0 0.1 0.99 0.996 0.999

WordSynonyms 6 0.9 0.99 0.999 0.9999
WordSynonyms 10 0.9 0.99 0.999 0.9999
WordSynonyms 14 0.9 0.99 0.999 0.9999
WordSynonyms 19 0.9 0.99 0.999 0.9999

NonInvasiveFatalECG Thorax1 2 0.9 0.99 0.999 0.9999
NonInvasiveFatalECG Thorax2 16 0.9 0.99 0.999 0.9997

Adiac 30 0.9 0.99 0.999 0.9999
Adiac 21 0.9 0.99 0.993 0.9993
Adiac 4 0.9 0.99 0.999 0.9999

fiftywords 49 0.9 0.99 0.999 0.9999
fiftywords 48 0.9 0.99 0.999 0.9999
fiftywords 47 0.9 0.99 0.999 0.9997
fiftywords 43 0.9 0.99 0.999 0.9999
fiftywords 42 0.9 0.99 0.999 0.9999
fiftywords 41 0.9 0.99 0.999 0.9999
fiftywords 40 0.9 0.99 0.999 0.9999
fiftywords 34 0.9 0.99 0.999 0.9999
fiftywords 29 0.9 0.99 0.999 0.9999
fiftywords 24 0.9 0.99 0.999 0.9999
fiftywords 20 0.9 0.99 0.998 0.9998
fiftywords 16 0.8 0.98 0.998 0.9998

164

is greater than ten but less than 100 for FaceFour, or 1,000 for OSULeaf, causing the

suppression values to stabilise at that point. UWaveGestureLibrary Z has no value

where the maximum rule set size is 10,000 due to insufficient RAM. A particular

characteristic of that dataset is that many, many rules can be generated when the

parameter is set to a high value. We believe the missing value would be in line with

the other results, as the proportion of suppressed rules increases with each increase

in maximum rule set size.

The BruteSuppression algorithm generally performs consistently across different

sizes of rule set. In most cases, it removes at least 90% of the rules in a rule set; for

the larger sets, this reduction is much greater. We conclude that BruteSuppression

is useful for reducing rule set size where rule sets have been found in binary-shapelet

data.

6.4.1 Initial maximum rule set size

Before proceeding to analyse the effectiveness of nugget discovery, we must make a

design decision: how many rules should be included in the original rule set. The

issue is that Apriori discovers rules by lowering the support threshold until it reaches

the maximum number of rules. The rules, however, are sorted by confidence, rather

than support. Rules with higher support and lower confidence can be eliminated in

large rule sets if lowering the support threshold creates many more rules than the

maximum number. Hence, the larger rule sets tend to contain many rules with low

support, whereas the smaller rule sets contain rules with higher support.

From our initial investigations, it appears that smaller rule sets with higher sup-

port rules are more predictive. This is not necessarily surprising; a rule with higher

support is more likely to generalise than one with low support. The other problem

for the larger rule sets is that they tend to make fewer positive predictions, simply

165

because there are very many rules all picking out different specific niches. Hence, it

is unlikely that any case will cause enough rules to fire to allow for a positive classi-

fication. For example, half of the rule sets containing 10,000 rules make no positive

predictions for the 28 low-dimensionality datasets (see Section 6.5.1). In contrast,

the rule sets with only ten rules make positive predictions for all 28 datasets (and

provide very good accuracy, see Section 6.5.1).

The problems presented by the large rule sets are almost entirely mitigated by

using BruteSuppression. For the large rule sets, the suppressed rule sets easily out-

perform the unsuppressed rule sets, as well as being very much smaller and far more

interpretable. While it would be easy for us to use the larger rule sets to make a

strong case for BruteSuppression, we feel this would be misleading, as someone using

our method would simply reduce the rule set size until the sets performed well. Any

comparison of the suppressed rule sets to the large rule sets would not reflect how

the tools we have developed would be deployed. We use the best-performing rule

sets, the sets with ten rules, for our experiments, though these are the rule sets for

which BruteSuppression adds the least value. The suppressed sets tend to perform

very similarly, regardless of the initial number of rules, and this way, we get a fair

comparison against the original rule sets.

6.5 Performance of nugget discovery

We present the results for a number of different experiments, divided into two stages:

first, testing the effectiveness of nugget discovery; second, testing the effect of using

BruteSuppression to reduce rule set size.

We begin by comparing the performance of the rule set against the performance

of the ensemble classifier on poorly predicted classes, for datasets where there are 20

or fewer shapelets (we refer to these datasets as low-dimensionality datasets). We

166

then present results for all classes of these datasets.

Our next experiment compares three different methods of reducing dimensionality

for problems with more than twenty shapelets. We compare truncation, clustering,

and class-specific truncation, and conclude that, for poorly-predicted classes, there is

no significant difference between the methods. We select truncation as it is simpler.

We compare the performance of the rule set on truncated data against that of

the ensemble on poorly predicted classes, and conclude that there is no significant

difference, though nugget discovery can offer substantial improvements in some cases.

Finally, we compare our nugget-discovery approach to the ensemble on poorly-

predicted classes for datasets with more than twenty classes, using a modified form of

truncation to reduce the dimensionality. We find that there is no significant difference.

For the second stage of our experiments, we compare the rule sets we have used

for the previous experiments with rule sets that have been suppressed using Brute-

Suppression. We compare the suppressed rule sets to the original rule sets on: low-

dimensionality data poorly predicted classes, low-dimensionality data all classes, trun-

cated data poorly predicted classes, and high-dimensionality data poorly predicted

classes. We find no significant differences between the suppressed rule sets and the

unsuppressed rule sets, and conclude that suppression can be used to reduce rule set

size substantially without compromising performance.

6.5.1 Low-dimensionality experiments on poorly predicted
classes

Our first experiment compares the performance of the rule set against that of the en-

semble for those classes where the ensemble predicts poorly. This is the most obvious

use of nugget discovery - it performs a supplemental role to the overall classifier in

cases where the classifier performs poorly for some class of interest. We restrict our

investigation to datasets with twenty or fewer shapelets in the binary-transformed,

167

correlation-filtered datasets. We experiment with higher-dimensionality data in Sec-

tions 6.5.3 and 6.5.4.

We test the difference in F1 score between the ensemble and the rule set using a

Wilcoxon Signed Rank test at a significance level of 0.01; there are 28 poorly predicted

classes with 20 or fewer shapelets.

Our test shows that nugget discovery is significantly better than the ensemble, in

terms of F1, for poorly predicted classes. The p value is 1.349× 10−3. Where one or

more classes have lower F1 than the other classes with the ensemble classifier, and

there are twenty or fewer shapelets, nugget discovery is significantly better than the

ensemble. We illustrate this in Figure 6.3.

0.0 0.2 0.4 0.6 0.8 1.0
F1 ensemble

0.0

0.2

0.4

0.6

0.8

1.0

F1
 r

u
le

 s
e
t

F1 rule set better here

F1 ensemble better here

Figure 6.3: Comparison of F1 score between rule set and ensemble on poorly predicted
classes. Points above the dotted line represent classes where the rule set outperforms
the ensemble. Points below the dotted line represent classes where the ensemble
outperforms the rule set. The rule set is better on 19 classes, the ensemble is better
on 6.

168

6.5.2 Low-dimensionality experiments on all classes

Our second experiment examines the performance of nugget discovery over all classes

of the low-dimensionality data, rather than just those on which the ensemble predicts

poorly. Nugget discovery is generally used to improve predictive accuracy on specific

classes where predictions have been poor, but for completeness, it is worthwhile to

examine the general performance of the rules against the ensemble classifier.

We use a Wilcoxon Signed Rank test with a significance level of 0.01 to test the

differences in F1 between the ensemble and the rule set over all classes of all datasets

with 20 or fewer shapelets.

The test shows that there is no significant difference between the F1 scores

of the ensemble classifier and the rule set, considered over every class of the low-

dimensionality data. This is an interesting discovery; as the accuracy of the nugget

discovery is not significantly worse than the ensemble, the rule sets discovered for any

class may be useful, interpretable ways of understanding how to predict that class.

Figure 6.4 displays this result graphically.

The main problem with the Apriori-based nugget-discovery approach is that it

is intractable for high-dimensionality data; the Apriori algorithm is exponentially

complex in the attribute space. In the next section, we explore ways to reduce di-

mensionality to make the datasets with more than 20 shapelets tractable.

6.5.3 Medium-dimensionality experiments

For this set of experiments, we focus on poorly predicted classes for datasets with

twenty or fewer classes but more than twenty shapelets. The reason for restricting

our interest to datasets with twenty or fewer classes is the relationship between the

number of shapelets and the number of classes. With twenty or fewer classes, we

can retain at least one shapelet from each class, whereas we must lose shapelets

169

0.0 0.2 0.4 0.6 0.8 1.0
F1 Rule set

0.0

0.2

0.4

0.6

0.8

1.0

F1
 E

n
se

m
b
le

 C
la

ss
if
ie

r

Ensemble Classifier better here

Rule set better here

Figure 6.4: Comparison of F1 score between rule set and ensemble classifier on all
classes of low-dimensionality data. The ensemble is better on 59 of the 100 classes,
the rule set is better on 41.

representing some classes if there are more than twenty classes. We examine such

cases in Section 6.5.4.

The traditional way to make Apriori tractable on larger datasets is to increase the

minimum confidence and support constraints. We use a single record as the minimum

support, and the base incidence rate of the class of interest in the training set as the

minimum confidence. As shown in Section 6.7, using a higher minimum confidence

and support alters the character of the rule set, and can eliminate rules that may

be of interest, such as high confidence, low support exception rules. Such rules are

particularly important for nugget discovery, as rules that target a minority class are

very likely to be exception rules, simply because the number of records of that class is

low. Prima facie, this method does not seem appropriate for our approach, as we are

interested in classes that are difficult to predict. By using higher minimum support

and confidence values, we may miss the rules we are looking for (see Section 6.7).

Regardless, as a comparison method, we attempt to use the built-in constraints of

170

Apriori to create rule sets on higher-dimensional data by adjusting the parameter

settings.

The first problem we encounter is that there appears to be no principled way to

set a minimum support value, beyond trying a range of values. Different datasets

have different itemsets for different classes; a support value that works for one class

of a dataset may not work for another. Finding parameter settings that work is a

time-consuming process, and one that may not result in the best rule set.

The second problem is that there is very little difference between parameter set-

tings that will create an empty rule set, and settings that will deliver an explosion in

time or space usage by the algorithm. Apriori was not designed to work with very

high-dimensionality data, and small changes in the minimum support can have large

effects on how the algorithm operates. For example, the DistalPhalanxTW dataset

has 912 shapelets. If the minimum support is set to 19 records, no rules are gener-

ated. If the minimum support is decreased by one record, the smallest granularity

possible, there is an explosion in the space requirement, and the software crashes due

to inadequate RAM. This is the case even when the minimum confidence is set to 1.

It may be possible to produce a rule set on the DistalPhalanxTW dataset by tak-

ing advantage of high-performance computing facilities with much greater quantities

of RAM, but it seems likely that time would be a factor even with sufficient space.

This is a consequence of the Apriori algorithm being exponentially complex in the

attribute space.

Because of these problems, we do not make use of Apriori’s built-in constraints

to deal with high-dimensionality data. Instead, we experiment with three methods

of reducing the dimensionality of the data: truncation, class-specific truncation, and

clustering. For each of these methods, we reduce the dimensionality to 20 shapelets,

a size that is tractable for every problem we use.

171

The first dimensionality-reduction method is based on truncating the shapelet

data to the first 20 shapelets. The attributes in the binary shapelet data are ordered,

with the first shapelet being the most discriminative. To create the truncated data,

we first ensure that at least one shapelet from each class is included. Then we add

those shapelets that are higher in the order until 20 shapelets have been included.

The second dimensionality-reduction method we test involves keeping only those

shapelets that correspond to the class we are attempting to predict. Again, we restrict

the data to 20 shapelets.

The final approach we try uses our existing clustering method to reduce the di-

mensionality of the data. The datasets are clustered using MDLStopCE clustering

(see Section 5.6.2), a method that does not require any parameters. To reduce the

dimensionality of the datasets with more than 20 shapelets, we enforce hierarchical

clustering until there are twenty clusters, and select the best shapelet from each clus-

ter to represent the cluster. We perform the binary transform on the data using the

class transform approach, and use the correlation filter to remove any attributes that

are entirely positively or negatively correlated.

We compare the three dimensionality-reduction methods using a Friedman test at

a significance level of 0.01. The results are shown in Figure 6.5. There is no signif-

icant difference between the three methods of reducing dimensionality. We continue

our experiments and evaluation using truncation, as it is the simplest of the three

methods.

We test the performance of nugget discovery on truncated data by comparing the

F1 values with those of the ensemble (the classes we use are all poorly predicted by

the ensemble). We use a Wilcoxon Signed Rank test with a significance level of 0.01.

The test shows that there is no significant difference between the performance of the

ensemble and the performance of the rule set.

172

CD

3 2 1

1.7258
Truncated

2.0645
Class Specific

2.2097
Clustered

Figure 6.5: Critical-difference diagram comparing three methods of reducing dimen-
sionality in terms of the F1 score of the ensemble on the medium-dimensionality
datasets reduced using each method. There is no significant difference between the
methods.

Figure 6.6 shows the differences sorted by the original F1 score of the ensemble on

that class. We see that nugget discovery performs better than the ensemble (indicated

by negative values) where the initial F1 score is very poor. As the performance

of the ensemble increases, the performance of nugget discovery on truncated data

decreases. Interestingly, the relationship is stronger when the absolute performance

of the ensemble is considered, rather than the performance of the ensemble relative

to the base incidence of the class in the training data.

These findings suggest that nugget discovery on truncated data, despite not being

significantly better than the ensemble, may still be useful in situations where perfor-

mance is especially poor. A good example of this is the Earthquakes dataset, where

the ensemble performs very poorly on class 1, achieving an F1 score of only 0.0541,

while nugget discovery performs very well, scoring 0.444. In cases like this, nugget

discovery may be a useful way to improve predictive accuracy on a minority class,

even where the dimensionality of the shapelet data has been severely restricted (in

the case of Earthquakes, from 2807 shapelets to 20).

The best course of action for using nugget discovery for medium-dimensionality

173

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
F1 of Ensemble

0.4

0.2

0.0

0.2

0.4

0.6

D
if
fe

re
n
ce

 i
n
 F

1
 b

e
tw

e
e
n
 E

n
se

m
b
le

 a
n
d
 R

u
le

 S
e
t

Figure 6.6: Differences in F1 between ensemble and nugget discovery on poorly pre-
dicted classes of medium-dimensionality data, sorted by the F1 of the ensemble on
that class.

shapelet data is to restrict it to cases where the performance of the ensemble is very

poor in absolute terms, as nugget discovery is unlikely to offer any greater accuracy

than the ensemble if the accuracy is not very low, even if the ensemble is performing

poorly relative to the incidence of the class in the training data. For the datasets

we examine, no classes on which the ensemble has an F1 greater than 0.5 benefit

from nugget discovery, and the general trend is an increasing improvement offered by

nugget discovery as the ensemble F1 score decreases.

174

6.5.4 High-dimensionality experiments

Our final nugget discovery experiment targets those datasets with more than twenty

classes. The MDLStopCE clustered data has a minimum number of shapelets equal

to the number of classes in the data. Five datasets have more than 20 classes (see

Chapter 4), which means that we cannot retain a shapelet of every class and still have

the data tractable to Apriori. For these datasets, we adapt the truncation method.

We truncate the data first by selecting the best shapelet from each class, as determined

by quality measure. The weakest shapelets are eliminated until 20 shapelets remain.

The shapelet from the class of interest is excluded from the elimination.

Truncation yields mixed results. For the WordSynonyms dataset, which has only

25 shapelets in MDLStopCE clustered form, nugget discovery offers an improvement

over the ensemble for every class we examine. It seems likely that this success stems

from the low number of shapelets that have been eliminated. Almost all of the in-

formation has been retained, and that is reflected in the performance of the rule set.

On the fitywords dataset, only two of the 12 classes show improvement from nugget

discovery. Fiftywords has over 350 shapelets in the clustered data, so many shapelets

have been eliminated that might have benefited the nugget discovery process. The

results are even worse for the other three datasets: nugget discovery offers no im-

provement in these cases. A huge number of shapelets have been eliminated, making

nugget discovery very difficult. This trend is much less evident with the truncated

data with fewer than 20 classes. This may be because, where there is a wide variety of

shapelets for each class, as is the case for the larger datasets, eliminating whole classes

makes discrimination much more difficult. We are forced to eliminate shapelets of

some classes, and they might be necessary to distinguish instances of our class of

interest from instances of another class, especially if we have multiple shapelets for

each class that are no longer included in the data.

175

One conclusion we may draw from our investigation into nugget discovery is that

MDLStopCE clustering is latching onto some feature of the data for its parameterless

shapelet clustering. In many cases, nugget discovery performs poorly where there are

many shapelets, and the dimensionality of the data must be reduced further to make

Apriori tractable. It performs very well in cases where the number of shapelets nat-

urally clusters (according to MDLStopCE) to fewer than 20 shapelets. This suggests

that MDLStopCE clustering is finding an appropriate number of clusters without

requiring parameterisation.

6.6 Results: comparing suppressed rule sets to un-

suppressed rule sets

Our final experiments compare the performance of the rule set to the performance of

the same rule set after it has been suppressed using the BruteSuppression algorithm.

6.6.1 Rule set performance

We perform four experiments to measure the effects of suppression on F1. The

experiments mirror those used in the previous section to compare the performance of

nugget discovery to that of the ensemble. The experiments are as follows:

1. Comparison of F1 between original rule set and suppressed rule set on poorly

predicted classes from datasets with 20 or fewer shapelets.

2. Comparison of F1 between original rule set and suppressed rule set on all classes

from datasets with 20 or fewer shapelets.

3. Comparison of F1 between original rule set and suppressed rule set on poorly

predicted classes from truncated datasets where the original number of shapelets

is greater than 20, and the number of classes is fewer than 20.

176

4. Comparison of F1 between original rule set and suppressed rule set on poorly

predicted classes from truncated datasets where the number of classes is greater

than 20.

For each experiment, we compare the F1 values using a Wilcoxon Signed Rank

test at a significance level of 0.01. The four tests all have the same result: there is

no significant difference in F1 score between the suppressed rule sets and the original

rule sets. We illustrate this in Figure 6.7. The suppressed rule sets perform almost

identically to the original rule sets, despite the large reduction in the number of rules

(Table 6.3).

0.0 0.2 0.4 0.6 0.8 1.0
F1 original rule set

0.0

0.2

0.4

0.6

0.8

1.0

F1
 s

u
p
p
re

ss
e
d
 r

u
le

 s
e
t

F1 suppressed rule set better here

F1 original rule set better here

Figure 6.7: Comparison of F1 score between original rule set and suppressed rule
set on all classes of low-dimensionality data. Points above the dotted line represent
classes where the suppressed rule set outperforms the original rule set. Points below
the dotted line represent classes where the original rule set outperforms the suppressed
rule set.

177

6.6.2 Analysis

The BruteSuppression algorithm produces rule sets that are very much smaller than

the original rule sets (see Table 6.3), and hence more interpretable and comprehensi-

ble. This reduction in size causes no loss in F1. The greater the size of the original

rule set, the more marked the reduction in size (Table 6.3). The results shown in this

section compare the suppressed rule sets to the best performing original rule sets,

those with ten rules. As the maximum number of rules in the rule set increases, the

performance of the original rule sets deteriorates; the performance of the suppressed

rule sets remains consistent. We conclude the using BruteSuppression to reduce rule

set size is a worthwhile step in the nugget discovery process, particularly if the original

rule sets are very large.

In the next section, we show that BruteSuppression can be applied effectively

to rule sets other than our binary-shapelet transformed data. Rather than assess

the performance of BruteSuppression in terms of F1, we take a broader view, show-

ing qualitatively that BruteSuppression can reduce rule set size without negatively

affecting the distribution of the rules in the rule set.

6.7 Qualitative analysis of performance of Brute-

Suppression on different data

In this section, we perform detailed qualitative analysis of the performance of Brute-

Suppression on data other than our binary-shapelet transformed data. We show that

BruteSuppression can be applied to the general problem of reducing rule set size

without negatively affecting particular types of rule by examining in detail how the

algorithm affects the Adult [164] dataset.

We analyse rule sets discovered from the Adult dataset, which represents United

States census data. We use Adult because it is a large, well-known dataset that has

178

been studied extensively in machine learning (details are available at [164]), and use

it to demonstrate that our method to reduce the size of rule sets is applicable in the

general case, not just to rule sets discovered from binary shapelet data. We have

performed similar analysis with three other datasets; the results are very similar, and

we exclude them for brevity. Details can be found in [86].

We analyse the rule sets in terms of confidence, support, and two novel interesting-

ness measures, swing, and swing surprisingness. We show that suppression removes

only redundant rules, leaving the intrinsic structure of the rule set intact.

6.7.1 Assessing rule set character: novel interestingness mea-
sures

For our qualitative analysis of the effects of using BruteSuppression, we propose

two novel interestingness measures: swing (an adaptation of relative surprisingness

[93] and confidence gain [160]) and swing surprisingness (an adaptation of attribute

surprisingness [58]).

For any rule R, let ATi ⇒ C be the rule where the antecedent is the ith AT of R,

and the consequent (C) is the consequent of R.

We define swing as follows:

Swing(R) =
Conf(R)× n∑n

i=1Conf(ATi ⇒ C)
, (6.7.1)

where rule R has n ATs. Swing focuses on the difference in confidence between the

ATs in the antecedent taken singly and the rule taken as a whole.

We define swing surprisingness, SS, as follows:

SS(R) =
n∑n

i=1Conf(ATi ⇒ C)
, (6.7.2)

where rule R has n ATs. Swing surprisingness is inversely proportional to the mean

confidence of the ATs that make up the antecedent of the rule. The measure assigns

179

rules a higher value if they have less predictive ATs, irrespective of the confidence of

the rule.

Swing and swing surprisingness are closely related measures; as can be seen,

Swing(R) = SS(R) × Conf(R). Hence, a rule of moderate confidence will have

lower swing than a more confident rule composed of equivalently good predictors.

This is not the case with swing surprisingness.

The particular intuition we wish to capture with these measures is that good

rules are rules that improve on the individual predictive power of the ATs in their an-

tecedent. If such rules are being eliminated, then we know that the BruteSuppression

algorithm is not working to preserve the predictive power of the rule set, regardless

of its effect on confidence and support.

We use these measures because BruteSuppression uses confidence as a measure of

rule quality; as we demonstrate in Chapter 2, many commonly used interestingness

measures are monotonic with respect to confidence, so there is no benefit in using

any of them rather than confidence. We want to ensure, however, that we are not

eliminating rules that may have other qualities useful for prediction.

We do not test the effects of suppression merely in terms of confidence or support,

as this is a relatively narrow definition of interestingness that may not capture what

makes a rule predictive. We examine the effect of suppression with confidence and

support, and also in terms of swing and swing surprisingness; our aim is to identify

whether BruteSuppression deletes rules that may be interesting or predictive in a way

that might not be obvious in terms of count-based interestingness measures.

6.7.2 Methodology

We compare three reduced rule sets with the original rule set generated from the Adult

dataset (for brevity, we focus on Adult; see [86] for qualitative analysis of a number

180

of other datasets). We reduce them to approximately the same size using either the

minimum confidence parameter, the minimum antecedent support parameter, or the

BruteSuppression algorithm. The effects of reduction are assessed in two ways. First,

we compare the distribution of rules using a chi-squared test. We take it that a

reduced rule set should have a similar distribution of rules to the original set, as this

suggests that no particular classes of potentially predictive rules are being removed.

Second, we examine the distribution of rules visually. This enables us to discover

which rules are being eliminated when the rule set is reduced. We take it that a good

reduction should leave the same shaped distribution but with fewer rules, rather than

a completely different shaped distribution.

The Adult dataset has 30,162 records in the training set and 12,435 records in the

test set. It has 14 attributes, of which six are continuous. The target class is > 50K;

the base incidence rate of this class is 0.249 in the training data and 0.236 in the test

data. We generate the original rule set using a minimum support of 2% and minimum

confidence of 0.25. The minimum confidence is the base incidence rate of the target

class (we assume that rules with lower confidence than this are uninteresting). The

minimum support is selected to allow Apriori to generate the rule set in a reasonable

time frame. We feel that this has not compromised the results, as the setting is what a

user might select, giving us a more realistic idea of the effectiveness of our algorithm.

We have tested the algorithm on a single unconstrained rule set with similar results

to the constrained rule sets.

We select the parameter settings for the increased minimum confidence and in-

creased minimum antecedent support rule sets to produce rule sets similar in size to

the suppressed set. This way, a fair comparison can be made between the effects of

the BruteSuppression algorithm and the effects of the same degree of reduction from

181

the parameter settings. We use a minimum confidence of 0.69 for the increased min-

imum confidence rule set, and a minimum support of 8% for the increased minimum

support rule set (in each case, the other parameter remains unchanged). All of the

rule sets are assessed on previously unencountered test sets; the various measures we

use are assessed on the rules’ performance on the test set, rather than the training

set.

We initially investigate the effect of the reduction methods on the distribution

of rules in a rule set using the chi-squared statistic. If two sets of values are drawn

from the same distribution, the chi-squared statistic obtained by comparing them is

likely to be small. Large chi-squared values are indicative of the rule sets having

different distributions of the qualities in question. We rank the different methods

by their chi-squared values (see Table 6.4) for rule confidence, coverage, swing, and

swing surprisingness.

We also visually examine how suppression affects the distribution of rules in terms

of coverage (see Chapter 2), confidence, swing, and swing surprisingness. In particu-

lar, we are interested in whether certain classes of rules are eliminated by suppression.

We can divide rules into four classes: strong (high coverage and high confidence),

general (high coverage, low confidence), exception (low coverage, high confidence, see

[121, 93]), and weak (low coverage, low confidence). We do not discuss the effect of

suppression on weak rules, as these are unlikely to be of interest, but the other three

classes should be reduced equally to yield a rule set that is likely to be predictive. We

are also interested in rules with high swing/swing surprisingness; eliminating these

rules is likely to compromise the predictiveness of the rule set.

182

Table 6.4: Chi-squared values for the suppressed rule set, rule set reduced using
increased minimum confidence, and rule set reduced using increased minimum an-
tecedent support. A lower chi-squared value indicates a more similar distribution of
rules relative to the original rule set.

Measure Suppressed Min. Min. Antecedent
Confidence Support

Confidence 43.643 (1) 360.815 (3) 105.867 (2)
Coverage 9.133 (1) 66.599 (2) 234.239 (3)

Swing 5.098 (1) 309.183 (3) 63.489 (2)
Swing Surprisingness 24.653 (2) 150.697 (3) 18.431 (1)

Avg. Rank 1.25 2.75 2

6.7.3 Comparing rule distribution using the chi-squared statis-
tic

A summary of the results of our chi-squared distribution tests is shown in Table 6.4.

For each reduced rule set, we generate a chi-squared statistic for each of the four

properties by comparing the reduced rule set to the original set. The lower the

chi-squared statistic (for a given original rule set), the more closely the distribution

of rules in the reduced set matches that of the rules in the original set for that

property. For each original set, we ranked the three reduced rule sets by their chi-

squared statistic, assigning rank one to the reduced rule set with the lowest chi-

squared statistic, and hence the greatest resemblance to the original rule set. Table

6.4 shows the number of instances in which each type of reduced rule set is ranked

first, second, and third, and the average rank.

As can be seen in Table 6.4, the suppressed rule sets have consistently lower chi-

squared values when compared to the original rule set than rule sets reduced by the

other two methods. In the single case where the suppressed rule set does not have

the lowest chi-squared statistic (swing surprisingness), the value is very close to the

lowest value. We take this as good evidence that suppressed rule sets retain the

distribution of the original rule sets. To expand on this analysis, we visually examine

183

the distribution of rules in the next section.

6.7.4 Visual analysis of rules from the Adult dataset

Coverage/confidence distribution

The suppressed rule set has maintained the shape of the original distribution (see

Figure 6.8). The rule set constrained with increased minimum confidence has lost

every general rule and a large number of exception rules, changing the distribution

substantially. The rule set constrained with increased minimum antecedent support

has lost all of the higher confidence rules (both exception rules and strong rules). The

coverage/confidence distributions suggest that increasing the minimum confidence or

antecedent support parameters to constrain rule set size negatively affects the rule

set, relative to a suppressed set of similar size.

Confidence/swing distribution

The suppressed rule set maintains the shape of the confidence/swing distribution to

a high degree (see Figure 6.9). This suggests that swing is unlikely to be negatively

affected by suppression.

Neither of the sets constrained with the Apriori parameters have maintained the

shape of the confidence/swing distribution. Many rules with high swing relative to

their confidence have been eliminated, suggesting that the rule sets are compromised

in terms of swing relative to the original set and the suppressed set.

Confidence/swing surprisingness

The suppressed rule set generated on Adult maintains the shape of the confidence/swing

surprisingness distribution of the original rule set (Figure 6.10). The rule set con-

strained with increased minimum confidence has many rules of high swing surpris-

ingness missing, relative to the original set. The rule set constrained with increased

184

Figure 6.8: Coverage/confidence rule distribution for rule sets generated from Adult.

minimum antecedent support is more similar to the original rule set, but has still lost

many rules that have been retained in the suppressed rule set. This shows that using

these measures to constrain rule set size may adversely affect rule sets.

6.7.5 Assessment

We have shown that BruteSuppression can be used to reduce rule set size without

altering the distribution of the rule set in terms of a number of different interestingness

measures. In contrast, using the minimum confidence or minimum antecedent support

185

Figure 6.9: Confidence/swing rule distribution for rule sets generated from Adult.

parameters built into Apriori changes the distribution of the rules considerably. We

take this as evidence that BruteSuppression is applicable to the general problem of

reducing rule set size, as well as to the specific problem of reducing the size of our

rule sets without harming the partial classification performance of the rule set.

186

Figure 6.10: Confidence/swing surprisingness rule distribution for rule sets generated
from Adult.

6.8 Conclusions

Nugget discovery can be used to improve classification accuracy on a given class, as

well as providing interpretable rules that can provide insight into the problem domain.

It combines well with binary-shapelet data, which is designed to be interpretable.

We make two novel contributions: the use of nugget discovery with binary shapelet

data to yield accurate, interpretable partial classification for classes where the ensem-

ble performs poorly, and BruteSuppression, an algorithm for reducing rule set size

187

to improve interpretability while retaining both the character of the rule set and

classification performance.

We show that nugget discovery outperforms the ensemble on poorly predicted

classes for shapelet data with 20 or fewer shapelets. Where there are more than 20

shapelets, there is no significant difference in accuracy, though in individual cases

the rule sets may provide considerable increases in accuracy. We also show that

there is no significant difference in accuracy between a suppressed rule set and an

unsuppressed rule set, though in general the suppressed sets are very much smaller.

As rule set size increases, performance of the suppressed sets remains constant, while

performance of the unsuppressed rule sets degrades. Finally, we show qualitatively

that BruteSuppression can be applied more generally as a method to reduce rule set

size without affecting the character of the rule set.

We conclude that nugget discovery with BruteSuppression can be used to increase

accuracy where dimensionality is low and the ensemble has performed poorly. We

recommend its use as a supplement to the ensemble classifier. As well as accuracy,

the suppressed rule sets combine well with the binary shapelet data to offer compre-

hensible partial classification that could provide insight into the problem domain.

Chapter 7

Unsupervised Learning with
Localised Shapes

7.1 Introduction

Finding motifs (approximately recurring subsequences) in time series is an unsuper-

vised data-mining problem that mirrors the supervised shapelet approach. Rather

than finding the subsequences that are most discriminative of classes by mining a la-

belled dataset, the problem is to find sets of subsequences that approximately match

in a longer time series. This represents a different application of the idea of local-

shape-based similarity.

Two significant papers on exact discovery of motifs are [131, 132]. Their emphasis

is on finding best-matching pairs of subsequences. Our contribution is directed at

exact discovery of frequently occurring subsequences, rather than best-matching pairs.

We propose three algorithms for this purpose. Scan MK and Cluster MK (Sections

7.2.1 and 7.2.2 respectively) use the Mueen-Keogh (MK) pair-matching algorithm

(Section 3.5.3) as a subroutine (although any pair-finding algorithm could be used)

for building motif sets, either by scanning and condensing the subsequences around

the matching pairs (Scan MK), or by hierarchically clustering the subsequences and

centroids. Our third algorithm, Set Finder, finds motif sets based on whole set quality,

188

189

Figure 7.1: A simulation of an electricity demand profile, with three motif sets. The
red pattern represents a period of no usage, the blue pattern approximates the usage
pattern of a dishwasher, and the green pattern approximates the usage pattern of an
immersion heater.

rather than pair matching (Section 7.2.3). We assess their performance on both real

and synthetic data, described in Chapter 4.

The real-world problem we study is finding motifs in household electricity-usage

profiles. The problem is as follows: given a time series of household electricity usage,

taken at 15-minute intervals over the study period, find repeating patterns of usage

and relate these patterns to devices. If we can solve this problem, we can use the

motifs in further analysis. For example, we can attempt to deconstruct the household

usage into its constituent parts, disaggregating the data in terms of devices [64], or

use the devices detected within a household to profile and cluster customers. Figure

7.1 shows a manufactured example of the type of time series in which we wish to find

motifs.

The results, presented in Section 7.3, show that Set Finder and Cluster MK find

motif sets more accurately than Scan MK on the synthetic data; however, Cluster MK

is more sensitive to parameter settings and much slower than the other two algorithms.

Scan MK and Cluster MK are faster than Set Finder on the electricity data. Our

qualitative analysis, however (see Section 7.4), shows that Set Finder produces motif

sets with more meaning in relation to the problem domain. In Section 7.5, we conclude

that, for the type of problem we have studied, Scan MK does not find motif sets as

accurately as Set Finder, although it is much faster on smoother data; the more

190

sophisticated approach of Cluster MK is promising in terms of accuracy, but is not

suitable for noisy data in terms of speed.

7.2 Finding motif sets

7.2.1 Scan MK

Mueen et al. [132] define frequently occurring patterns as range motifs, and claim

that once the best-matching pair is found with MK, finding the range motif is trivial

through a linear scan. The process is not trivial, however, because of the necessity of

avoiding trivial matching and ensuring that members of the motif set are a minimum

distance apart. The linear scan discovers every matching subsequence to the original

pair; the real difficulty lies in selecting the appropriate subsequences from that set to

give the best motif set while satisfying the constraints.

Our contribution to solving this problem is extending the method for finding the

range motif outlined in [132] to find approximate K-motif sets. We iterate the process

of finding closest pairs and their matches, adding them to a motif set and removing

members and their trivial matches from the list of candidates after each iteration.

The algorithm is described in Algorithm 17. We assume a distance function d(Si, Sj)

is defined (we use Euclidean distance for all experiments). r is approximately the

cluster radius; for Scan MK, 2r is the maximum distance permitted between two

members of the same cluster.

MK is used to find the best-matching pair of subsequences in S (line 6); if the

distance between them is greater than 2r, the algorithm terminates. Otherwise, the

best-matching pair is added to a motif set, the trivial matches of the best-matching

pair are removed from S (lines 12-15), and the remaining subsequences are scanned.

Any subsequences within 2r of both members of the best-matching pair are added to

the motif set (lines 16-22).

191

The condense function operates as follows. For each set of contiguously-indexed

subsequences, the non-trivial match is taken to be the subsequence with the smallest

total distance between it and each of the members of the motif set. The contiguously-

indexed subsequences are taken to be trivial matches, and are excluded from the motif

set. The motif set is further condensed by removing one subsequence of any pair whose

members are more than 2r apart. We choose which subsequence to exclude based on

the number of clashes. For example, if a subsequence that clashes with three others is

greater than 2r from a subsequence that clashes with two others, the first subsequence

is removed, maximising the cardinality of the set. Ties are decided based on average

linkage; the subsequence with the shortest total distance to the other members of

the set is retained. Once the motif set is established, its members and their trivial

matches are removed from the candidate set, and the process is repeated until no

more subsequences are within 2r of each other.

7.2.2 Cluster MK

The second algorithm we propose is based on hierarchical clustering of best-matching

pairs. Hierarchical clustering is a widely used clustering approach (see, for example,

[100]), based on finding best-matching pairs of series. We use MK to find the pairs,

and an adapted form of bottom-up hierarchical clustering described in Algorithm 18.

We find the closest pair of subsequences, then merge this pair to form a new cluster

(motif set). The cluster is represented by a new subsequence found by averaging the

input subsequences, weighted by the number of subsequences that have already been

combined. This ensures the cluster centre accurately reflects the members of the

cluster. The process is repeated until the distance between the best-matching pair is

greater than r. At this point the subsequence set S will contain the motifs, and the

motif sets can be recovered from the clustering data structure.

192

Algorithm 17 scanMK(F, the set of all length n subsequences, r)

1: M ← ∅
2: S ← F
3: k ← 0
4: while end = FALSE do
5: end← TRUE

6: {L1, L2} ← MK(S) {L1 and L2 are indexes in F}
7: if d(FL1 ,FL2) ≤ 2r then
8: end← FALSE

9: k ← k + 1
10: Mk ← {FL1 ,FL2}
11: D ← ∅
12: for i← 1 to |S| do
13: if trivialMatch(FL1 , Si) ∨ trivialMatch(FL2 , Si) then
14: D ← D ∪ Si
15: S ← S −D
16: for i← 1 to |S| do
17: if d(FL1 , Si) ≤ 2r ∧ d(FL2 , Si) ≤ 2r ∧ Si /∈ D then
18: Mk ←Mk ∪ Si
19: for j ← 1 to |S| do
20: if trivialMatch(Si, Sj) then
21: D ← D ∪ Sj
22: S ← S −D
23: Mk ← condense(Mk, r)
24: if k > 0 then
25: M ← {M1, ...,Mk}
26: sort(M)
27: return M

Algorithm 18 clusterMK(F, r)

1: S ← F
2: while end = FALSE do
3: end← TRUE

4: {L1, L2} ← MK(S)
5: if d(FL1 ,FL2) ≤ r then
6: end← FALSE

7: S ← S − {FL1 ,FL2}
8: c← merge(FL1 ,FL2)
9: S ← S ∪ c

10: return S

193

7.2.3 Set Finder

We propose an algorithm to find the K-motif sets directly, based on counting and

separating (Algorithm 19). Each subsequence is compared to every other subsequence,

and the non-trivial matches are counted. The set of counts is sorted. The sorted set is

then input to the function separate, which checks each subsequence with a non-zero

count in order to ensure that it is at least 2r apart from subsequences with a greater

number of matches. Subsequences that fail the test are removed from the set. An

early abandon based on the value of r is built into the distance function to speed up

the algorithm.

Algorithm 19 setFinder(F, r)

1: C ←< 0, . . . , 0 >
{C is counts vector of length |F| initialised to 0}

2: for i← 1 to |F| do
3: for j ← i+ 1 to |F| do
4: if d(Fi,Fj) ≤ r ∧ trivialMatch(Fi,Fj)= FALSE then
5: Ci ← Ci + 1
6: Cj ← Cj + 1
7: sort(C,F)
8: M ← separate(C,F)
9: return M

The storing and recovery of the motif sets is omitted for clarity, but is easily

achieved by retaining references to subsequences in addition to count data.

7.3 Synthetic data results

7.3.1 Timing experiments

Our primary aim is to assess how accurately the algorithms discover motif sets; for

completeness, we also include timing comparisons. As can be seen in Figure 7.2, Clus-

ter MK performs very poorly on the synthetic data; its times increase exponentially

with the range parameter r. There is a relatively small difference between Set Finder

194

0.01

0.02

0.03

0.04

0.05

5 10 15 20 25

T
im

e

r

Scan MK

Set Finder

0

0.5

1

1.5

2

2.5

3

3.5

5 10 15 20 25

T
im

e

r

Cluster

MK

Scan MK

Set Finder

Figure 7.2: Time in seconds averaged over 100 runs for Set Finder, Scan MK, and
Cluster MK for varying values of r on synthetic data (left, Set Finder and Scan MK,
right, all three algorithms).

and Scan MK, with noticeable increases in time taken by the latter when the MK

algorithm must be called multiple times. The time taken by Set Finder increases lin-

early with the value of r (this is true for both the synthetic and the electricity data),

while the time taken by Scan MK remains constant until the increase in r causes

additional calls to the MK algorithm. It should be noted that the synthetic data we

have used is a worst-case scenario for MK; we attribute the performance of Set Finder

on this data to the aggressive early abandon it employs and that it performs only one

pass through the data. Since the other two algorithms must call MK multiple times

for higher values of r, they perform more slowly.

For the electricity data (Figure 7.3), Scan MK and Cluster MK are much more

impressive. This data is well suited to the MK algorithm, and the times for both

195

0

0.005

0.01

0.015

0.02

0.025

0.5 1 1.5

T
im

e

r

Set Finder

Cluster MK

Scan MK

Figure 7.3: Time in seconds averaged over 100 runs for Set Finder, Scan MK, and
Cluster MK for varying values of r on electricity data.

remain fairly constant, and lower than Set Finder, across all r values. Scan MK is

very fast on this data. Set Finder performs adequately, but is clearly the slowest of

the three algorithms.

From our timing experiments, we conclude that Cluster MK may be infeasibly slow

for large, noisy datasets; Scan MK and Set Finder take a roughly equivalent amount

of time for this type of data, assuming the value of r is not too high. Cluster MK

is a better choice for smoother datasets such as our electricity-usage data; Scan MK

is very fast and may be the best choice for very large, smooth datasets. Set Finder

is the slowest of the three algorithms on this data, but its speed is more robust to

increasing noise than that of the other two algorithms.

7.3.2 Performance evaluation

To assess performance, we measure how well the algorithms find labelled motif sets.

The performance of the algorithms is assessed on two criteria: the proportion of the

discovered motif set that is correct (precision) and the proportion of the labelled motif

sets that are found by the algorithm (sensitivity). We calculate these as follows. An

196

index to a subsequence returned by an algorithm is considered a true positive (TP)

if it is within n
2

of the index of the shape in the data. It is considered a false positive

(FP) if it is not within n
2

of the index of any shape in the data. A false negative (FN)

is any shape contained in the data with an index that is not within n
2

of any index

returned by the algorithm. We calculate two measures of accuracy:

Precision =
TP

TP+FP
, (7.3.1)

and

Sensitivity =
TP

TP+FN
. (7.3.2)

For synthetic data containing two motif sets, the sets of indexes generated by

the algorithm are paired with the indexes of the motif sets in the data, giving a

combination we refer to as a matching. A score is calculated for each matching as

follows. Each index that is not paired with another index adds the value of n (the

length of the shape in the data) to the score. In our experiments, n is fixed at

29. For each pair of indexes, the absolute value of the difference between the two is

calculated, with a ceiling fixed at the value of n. Hence, pairing an index of 13 with

an index of 21 gives a score of 8. The scores are tallied for each possible combination

of indexes within sets, and of matchings between sets. Our measure rewards close

matches, and punishes false negatives and false positives equally. Thus, if the data

contain two shapes, A and B, with the associated index sets A = {13, 240, 500}

and B = {456, 708, 865}, and the algorithm has returned a single set of indexes

ALGO = {447, 700, 870}, we tally scores for each of the two possible pairings of

sets {A,ALGO} and {B,ALGO}, by scoring each of the ways of pairing the indexes

within those sets. The lowest score is the best match, and is returned as the score of

the algorithm on that data.

To assess significance for differences between algorithms at a given value of r, we

perform a two-sample T-test with an alpha value of 0.05.

197

We compare the algorithms on two problems: finding a single set of shapes inserted

into random noise, and finding two sets of shapes inserted into random noise. The

second problem is more complex, and more representative of real-life applications.

We use a range of r values for two reasons. First, we are interested in discovering

the value of r that is appropriate for various situations. Second, we are interested in

how the algorithms compare to one another over a range of values; if we used a single

value for r, our results might be misleading.

7.3.3 r value

For the synthetic data, all algorithms perform best when r is around n
2

for motif

length n. We speculate that the high level of noise in the data prevents successful

discovery of motifs with smaller values of r. For noisy data, we recommend setting r

at this level as a heuristic. If r is higher than n
2

on our synthetic data, performance

begins to degrade.

The electricity data is much less noisy than the synthetic data. On that data, we

achieve good results with r = n
8
. This equates to an r value of 3.6 for the synthetic

data, a value at which the sensitivity is 0. The synthetic data is too noisy to tolerate

such a low value of r. As a general rule, we suggest indexing r to n, and decreasing

the value of r as the level of noise in the data decreases.

7.3.4 Problems with a single motif set

We find the precision and sensitivity for a range of values of r. In the limit, we would

expect precision to approach unity as r decreases, and sensitivity to approach unity

as r increases (for example, an algorithm returning the indexes of all subsequences

would have sensitivity 1 and precision approaching 0).

For the experiments using a single shape, we tested the three algorithms over

1000 datasets containing three to five instances of the shape, using different values

198

0

0.25

0.5

0.75

1

5 10 15 20 25

S
e
n
si
ti
v
it
y

r

Cluster

MK

Set Finder

Scan MK

0

0.25

0.5

0.75

1

5 10 15 20 25

P
r
e
c
is
io
n

r

Set Finder

Scan MK

Cluster MK

Figure 7.4: The mean sensitivity (left) and precision (right), with standard error,
over a random sample of 1000 instances of the single shape datasets for Scan MK,
Cluster MK, and Set Finder, with values of r in the range 5 to 25.

of r in the range r = [5, 25]. Figure 7.4 shows the results of these experiments. The

statistically significant differences are listed below.

In terms of sensitivity, the Set Finder algorithm outperforms the Scan MK al-

gorithm significantly in the range r = [10, 20]. Cluster MK has better sensitivity

than either of the other algorithms in the range r = [9, 17]. The sensitivity score for

Cluster MK is the worst for values of r greater than 20, suggesting that the algorithm

requires accurate tuning to return useful results. For values of r greater than 22,

Scan MK outperforms Set Finder. However, this appears to be because the Scan

MK algorithm returns many more results for r in this range, and consequently has a

greater number of both true and false positives, an inference that is supported by the

precision results. For values of r above 15, the Set Finder algorithm has significantly

better precision than the Scan MK or Cluster MK algorithms. The precision of the

199

Scan MK algorithm diminishes more quickly than that of Set Finder because the al-

gorithm generates more false positives for higher values of r. The precision of Cluster

MK is the worst for values of r greater than 16; although the algorithm generates

many false positives, it also has low sensitivity at high values of r because it misses

true positives. Again, this is suggestive of a need for careful parameter setting when

using Cluster MK.

We conclude that Cluster MK and Set Finder are more accurate than Scan MK;

Cluster MK is better for finding motifs, and Set Finder is better for avoiding false

positives. Cluster MK has the disadvantage that it is very sensitive to the value of

r, and its performance degrades quickly outside of the optimum range. Scan MK is

significantly more sensitive at high values of r, but the concomitant loss of precision

suggests that it will give many false positives in this range, which may be unsuitable

for certain tasks.

7.3.5 Problems with two motif sets

Finding multiple motif sets is more complex, not least because the algorithms must

distinguish between the subsequences that belong to different sets (see Section 7.3.2).

For the single shape problem, we permit multiple sets to be aggregated; for the two-

shape problem, each set returned by the algorithm is assigned to at most one of the

motif sets in the data. Hence, an output of a single set containing all of the instances

of both shapes is rewarded only for finding one motif set, and punished for missing

the other set and for false positives. Equally, if the algorithm finds all instances of

both motif sets, but splits them into many different sets, it is punished accordingly.

The results of the two-shape experiments are shown in Figure 7.5.

The Set Finder algorithm performs significantly better than the Scan MK algo-

rithm in the range r = [11, 15]. Outside of this range, there is no significant difference

200

120

140

160

180

200

220

240

5 6 7 8 9 10 11 12 13 14 15 16 17 18

S
c
o
r
e

r

Scan MK

Set Finder

Cluster MK

Figure 7.5: The mean match score (as defined in Section 7.3.2) and standard error
over a random sample of 100 instances of the two shape datasets for Scan MK, Cluster
MK, and Set Finder with values of r in the range 5 to 18. Lower scores indicate better
performance.

between the two algorithms. For values of r greater than 14, Set Finder outperforms

Cluster MK; at lower values, there is no significant difference in performance. In

the range r = [9, 12], Cluster MK outperforms Scan MK; this result is reversed in

the range r = [16, 18], where Cluster MK has the worst performance of the three

algorithms. In accordance with the results of the single-shape problem, it seems that

Cluster MK is more sensitive to the value of r than the other two algorithms. The best

values for all of the algorithms occur in the range r = [14, 16]. This is also approx-

imately the optimal range for precision and sensitivity in the single-motif problem.

It is our opinion that experiments performed with a greater number of datasets (say,

1000, rather than 100) would show Set Finder to be significantly better over a greater

range of values, but would also show Cluster MK to be superior at lower values of r.

Our results suggest that Set Finder is the most accurate algorithm when r is

approximately n
2
, which we suggest is an appropriate value for noisy data. Once

again, Cluster MK is very sensitive to the value of r, which is a weakness of the

algorithm, as small differences in r (which is difficult to estimate precisely), can cause

the algorithm’s performance to deteriorate.

201

7.4 Electricity-usage data
1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

2
0
1

2
0
6

2
1
1

2
1
6

2
2
1

2
2
6

2
3
1

Figure 7.6: A household electricity-usage profile; the subsequences returned by the
Set Finder algorithm as members of the two-motif set are highlighted in red, and
represent the washing machine device.

In this section, we present qualitative analysis on the performance of Set Finder

and Scan MK on household electricity-usage data. We use a window size of 4, as this

represents one hour. Our results show that analysis in terms of motif sets is likely to

be fruitful for profiling device usage.

We first analyse the performance of the Set Finder algorithm on a usage profile.

The usage profile contains usage instances of three devices: a dishwasher, a washing

machine, and an oven. Using the values r = 0.5 and n = 4, the algorithm returns two

sets of indexes. Unsurprisingly, the larger set contains all instances of four consecutive

zeros, representing the instances of no device usage. More interestingly, the other set

consists of indexes that closely resemble the usage profile of the washing machine.

Figure 7.6 shows the usage profile with the discovered motif set highlighted in red.

The indexes are shown in Table 7.1. The 2-motif set found by the algorithm correctly

identifies all instances of the washing machine in this usage profile, and no other

devices.

The precision is 1 (no false positives), and for the washing machine device, sensi-

tivity is also 1 (no false negatives). The sensitivity measured over all devices is 0.21;

while this may appear to be fairly poor, it is better than some of the results obtained

on the synthetic data.

The electricity-usage problem has an added level of complexity because the motif

202

Table 7.1: Indexes for the 2-motif, returned by the Set Finder algorithm on the data
shown in figure 7.6, and the starting positions of the washing machine device.

Indexes
2-Motif: {19, 57, 132, 157, 195, 228}

Washing machine: {13, 56, 131, 156, 195, 226}

sets representing different devices contain subsequences of different lengths; this ne-

cessitates variation in the values of n and r, and explains why the algorithm found

one device perfectly, while missing the others. An appropriate approach for such data

would involve producing output for many values of n and r, and post-processing the

discovered motif sets to find the set of devices in the data.

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

2
0
1

2
0
6

2
1
1

2
1
6

2
2
1

2
2
6

2
3
1

Figure 7.7: A household electricity-usage profile; the subsequences returned by the
Scan MK algorithm are highlighted as follows: 4-motif set (red) and 5-motif set
(green), are instances of the dishwasher device. The 6-motif set (purple) is two
instances of the oven device.

We turn now to the performance of the Scan MK algorithm. Again, we use fixed

values of n = 4 and r = 0.5. As identified by the algorithm, the 1-motif set is largely 0

elements. As with the Set Finder algorithm, we disregard this set. We also disregard

the 2-motif set and 3-motif set, as they contains very similar data that would be

post-processed as belonging with the 1-motif set. The other sets of indexes returned

by the algorithm (see Table 7.2) are interpretable as follows. The algorithm has

been reasonably successful at finding the dishwasher device, although post-processing

would be required to combine the 4-motif set (highlighted in red on Figure 7.7) and

the 5-motif set (highlighted on Figure 7.7 in green). The precision of the combined

set is 1 (no false positives); the sensitivity for the dishwasher is 0.56. The overall

203

Table 7.2: Indexes for the sets returned by the Scan MK algorithm on the data shown
in figure 7.7, and the starting positions of the dishwasher device.

Indexes
4-Motif: {37, 81, 209}

5-Motif: {4, 111}
6-Motif: {73, 177}

Dishwasher:{4, 37, 64, 82, 112, 141, 165, 186, 209}

sensitivity is 0.24; this value includes the two oven devices identified as the 6-motif

set (highlighted in purple in Figure 7.7). It should be noted that the device-specific

sensitivity of Scan MK was lower than that of Set Finder, even though Scan MK

benefited from generous post-processing.

7.5 Conclusion

Finding motif sets in time series is essentially a form of clustering, and it is necessary

to define a heuristic search technique to find motif sets, as the problem is NP-complete.

We have proposed and compared three such algorithms for motif-set discovery: Scan

MK, Cluster MK, and Set Finder. Extensive experimentation shows that Set Finder

is significantly more accurate than Scan MK on synthetic data containing one and

two shapes, for the values of the range parameter r for which the algorithms perform

best. Cluster MK is competitive providing that appropriate values of r are used;

however, it is very sensitive to the value of r.

We have extended our experiments to investigate the problem of profiling device

usage from household electricity-consumption data. We found the motif set approach

showed promise for identifying specific devices from data; we can reasonably expect to

improve this performance dramatically on less aggregated data, and by using varying

values of n and r followed by post-processing.

Our goal is to investigate the appropriateness of a representation based on local

similarity of shape for analysis of repeated patterns in time series. We show the

204

effectiveness of such a representation for the supervised tasks of classification and

partial classification; an extension to unsupervised clustering of patterns is a logical

progression. There is considerable overlap in the techniques required to use local

similarity of shape in either context. For example, eliminating self-similar shapelets is

closely related to avoiding trivially matched motifs. We consider shapelets and motifs

to be two examples of the same conceptual insight applied to data-mining problems:

that of features based on local similarity of shape. They involve overcoming many of

the same difficulties, and, we argue, represent two separate applications of the same

methodology.

Chapter 8

Conclusions and Future Work

We show that time-series data mining using local similarity of shape offers both

improved performance for data-mining tasks, and highly interpretable models.

We discuss several methods for mining time-series data using an approach based

on local similarity of shape. We show that classification using local similarity of

shape, through our shapelet transform, offers improved accuracy over the benchmark

method, 1NNDTW. This accuracy is improved for certain classes by using partial

classification based on association rules mined from the shapelet-transformed data.

Approximately repeated patterns can be mined from time-series data using a similar

intuition to our shapelet approach, one that focuses on subsequences of the data.

Throughout the thesis, we focus not only on quantitative measures like accuracy,

but also on improving the interpretability of our models, something that, for time-

series data, is best offered by local similarity of shape. We cluster shapelets to reduce

dimensionality, transform the clustered data into binary data to aid comprehension,

and reduce rule set size to offer the most compact and interpretable model possible.

205

206

8.1 Evaluation

In Section 1.1, we pose the overall objective of the thesis in terms of the following

question: how best can we use methods based on local similarity of shape for min-

ing time-series data? We answer this question in terms of the objectives listed in

Section 1.1.1:

1. Develop and test subsequence-based representations for time-series. We have

developed and tested two subsequence-based representations for time series: a

shapelet transform for time series classification, and a representation based on

frequently-recurring subsequences (motifs) for unsupervised mining of patterns

from time series.

2. Create and refine algorithms and methods for discovering and extracting subse-

quences to represent locally-similar features. We make a number of refinements

to the shapelet transform, and create and test three algorithms for extracting

motifs from time-series data.

3. Implement and test approaches to make best use of the representations for solv-

ing specific data-mining problems. We propose and thoroughly test an ensemble

classifier that provides highly accurate classification of time-series data, and im-

prove it with the addition of partial classification for poorly predicted classes.

We also compare our three motif-finding algorithms in terms of speed and per-

formance on both synthetic and real data.

4. Design methods and representations that maximise interpretability without sub-

stantially diminishing performance. We propose, implement, and test dimensionality-

reduction methods, including filtering shapelets, clustering shapelets, and Brute-

Suppression of rule sets, that improve interpretability without compromising

207

accuracy. We also propose a representation, binary shapelets, that maximises

interpretability with only minor loss of accuracy in most cases. Our partial

classification rule-based approach offers a highly comprehensible model that

is no less accurate than the ensemble classifier for predicting membership of

individual classes for low-dimensionality problems.

In achieving the objectives of the thesis, we overcome the three challenges de-

scribed in Section 1.1.2; our new methods offer improved accuracy (Challenge 1; for

example, shapelet transform with ensemble classifier, partial classification, Set Finder

algorithm), improved interpretability (Challenge 2; for example, MDLStopCE cluster-

ing, binary shapelets, BruteSuppression, partial classification), and acceptable time

complexity (Challenge 3; for example, shapelet transform with ensemble classifier,

MDLStopCE clustering, BruteSuppression).

In answering the overriding research question, we make a number of novel contri-

butions, listed in the next section.

8.2 Novel contributions

We have made a number of novel contributions to time-series data mining using

local-shape-based similarity:

• We have proposed and extensively tested a state-of-the-art ensemble classifier on

shapelet-transformed data, which provides better accuracy than the benchmark

for TSC (1NNDTW), and existing methods that use the shapelet approach.

• We have proposed and tested a novel, parameterless method of clustering shapelets,

MDLStopCE, that reduces the dimensionality of shapelet-transformed data

without compromising accuracy.

208

• We have proposed a binary transform for shapelet-transformed data to enhance

interpretability.

• We have used association rules for partial classification of shapelet-transformed

data, improving accuracy for poorly predicted classes of lower-dimensionality

data, and providing a highly interpretable model.

• We have shown that twelve commonly used interestingness measures are redun-

dant for partial classification, as they impose the same ordering on a rule set as

confidence.

• We have proposed and tested an algorithm, BruteSuppression, that substan-

tially reduces the size of partial classification rule sets without negatively af-

fecting the performance of the rule set, or causing large alterations in the dis-

tribution of rules in the rule set.

• We have described three novel algorithms for mining sets of approximately

repeated patterns in time-series data, and tested them on synthetic data and

on a real-world device disambiguation problem from electricity-consumption

data.

8.3 Future directions

8.3.1 Extending the shapelet transform

There are a number of extensions that could be made to the shapelet transform. For

example, k, the maximum number of shapelets used, could be indexed to the training

data. The algorithm could also be modified to ensure that it delivers shapelets taken

from each class; the proportion of shapelets from a given class could be weighted to the

base incidence rate in the training data, or selected depending on other considerations

209

(a particular class of interest could be allotted a greater proportion of the shapelets,

for example). Approximate shapelets are another area that might offer considerable

improvement; combining the shapelet transform with a bespoke search method for

discovering good (but not optimal) shapelets could grant enormous speed increases

without being overly detrimental to accuracy.

8.3.2 Extending shapelet clustering

Our MDL-based approach for clustering finds, we claim, the correct number of shapelets

for a dataset. We feel that this clustering method could be extended to other time-

series clustering problems, perhaps in conjunction with a repeated pattern mining

approach. It is applicable to any problem where time series are clustered, and would

be interesting to compare to existing time-series clustering methods.

8.3.3 Extending the partial classification framework

We have shown that partial classification with association rules can improve accuracy

on poorly predicted classes and provide a comprehensible model of the relationship

between the binary shapelets and the class label. The major weakness of the approach

is that Apriori cannot be used easily with high-dimensionality data, and removing

large numbers of shapelets is detrimental to performance. Hence, one direction in

which the approach could be improved is by testing different rule induction algorithms

with better time complexity in the attribute space, or developing a bespoke algorithm

for use with shapelet-transformed data. We suspect that the results found on the

low-dimensionality data could be extended productively to all shapelet-transformed

datasets.

Another useful extension to the approach would be to employ an implementation of

Apriori, or any rule induction algorithm, that could use real-valued data. This would

sacrifice some interpretability; the interesting question is whether the performance of

210

the partial classification would be improved by the additional information contained

in the data.

8.3.4 Extending motif discovery

There are two directions in which the motif discovery research we have conducted

could be extended. One extension would be to make use of the motifs as primitives

in some other process, and use the results of that process to assess how well the

algorithms are finding motifs. For example, after finding the motifs in a time series,

rule induction could be used on the motifs to predict future behaviour.

Another potential extension would be to apply the algorithms to real data from a

wider variety of domains. Noise makes an enormous difference to the relative speeds of

the algorithms, and it would be interesting to examine this effect further. In addition,

a wider variety of problems would allow us to extend what we found on synthetic data

to real-world data, and see if the differences between the algorithms are similar for

the different types of problem.

Bibliography

[1] C. elegans behavioural database. http://wormbehavior.mrc-lmb.cam.ac.uk/.

[2] R. Agrawal, T. Imieliński, and A. Swami. Mining Association Rules between

Sets of Items in Large Databases. In ACM SIGMOD Record, volume 22, pages

207–216. ACM, 1993.

[3] R. Agrawal, R. Srikant, et al. Fast Algorithms for Mining Association Rules.

In Proc. 20th Int. Conf. Very Large Data Bases, VLDB, volume 1215, pages

487–499, 1994.

[4] K. Ali, S. Manganaris, and R. Srikant. Partial Classification using Association

Rules. In Proceedings of the Third International Conference on Knowledge

Discovery and Data Mining, pages 115–118, 1997.

[5] M. Alonso, S. González, J. Villar, J. Sedano, J. Terán, E. Ordax, and M. Coma.

Data Analysis for Detecting a Temporary Breath Inability Episode. In Intelli-

gent Data Engineering and Automated Learning–IDEAL 2014, pages 126–133.

Springer, 2014.

[6] A. Bagnall and L. Davis. Predictive Modelling of Bone Age through Classifica-

tion and Regression of Bone Shapes. arXiv preprint arXiv:1406.4781, 2014.

[7] A. Bagnall, L. Davis, J. Hills, and J. Lines. Transformation based ensembles

for time series classification. In SDM, volume 12, pages 307–318. SIAM, 2012.

[8] A. Bagnall and G. Janacek. Clustering Time Series from ARMA Models with

Clipped Data. In Proceedings of the Tenth ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, pages 49–58. ACM, 2004.

211

212

[9] A. Bagnall, J. Lines, J. Hills, and A. Bostrom. Time-Series Classi-

fication with COTE: The Collective of Transformation-Based Ensembles.

https://ueaeprints.uea.ac.uk/id/eprint/49614.

[10] J.L. Balcazar. Confidence Width: An Objective Measure for Association Rule

Novelty. In Workshop on Quality Issues, Measures of Interestingness and Eval-

uation of Data Mining Models QIMIE, volume 9, pages 5–16, 2009.

[11] E. Baranauskas and P. Maginde. Time Series Classification Problems from

Smart Metering Devices. Master’s thesis, School of Computing Sciences, Uni-

versity of East Anglia, 2013.

[12] G. Batista, X. Wang, and E. Keogh. A complexity-invariant distance measure

for time series. In SDM, volume 11, pages 699–710. SIAM, 2011.

[13] E. Bauer and R. Kohavi. An Empirical Comparison of Voting Classification

Algorithms: Bagging, Boosting, and Variants. Machine Learning, 36(1-2):105–

139, 1999.

[14] R.J. Bayardo, R. Agrawal, and D. Gunopulos. Constraint-based Rule Mining in

Large, Dense Databases. Data Mining and Knowledge Discovery, 4(2):217–240,

2000.

[15] R.J. Bayardo Jr and R. Agrawal. Mining the Most Interesting Rules. In Pro-

ceedings of the Fifth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 145–154. ACM, 1999.

[16] N. Begum, B. Hu, T. Rakthanmanon, and E. Keogh. Towards a Minimum

Description Length Based Stopping Criterion for Semi-supervised Time Series

Classification. In Information Reuse and Integration (IRI), 2013 IEEE 14th

International Conference on, pages 333–340. IEEE, 2013.

[17] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian. Traffic

Classification on the Fly. ACM SIGCOMM Computer Communication Review,

36(2):23–26, 2006.

213

[18] D. Berndt and J. Clifford. Using Dynamic Time Warping to Find Patterns in

Time Series. In KDD Workshop, volume 10, pages 359–370. Seattle, WA, 1994.

[19] S. Bian and W. Wang. On Diversity and Accuracy of Homogeneous and Het-

erogeneous Ensembles. International Journal of Hybrid Intelligent Systems,

4(2):103–128, 2007.

[20] J. Blanchard, F. Guillet, and P. Kuntz. Semantics-based Classification of Rule

Interestingness Measures. Post-mining of Association Rules: Techniques for

Effective Knowledge Extraction, page 56, 2009.

[21] M. Bober. MPEG-7 Visual Shape Descriptors. Circuits and Systems for Video

Technology, IEEE Transactions on, 11(6):716–719, 2001.

[22] L. Breiman. Bagging Predictors. Machine learning, 24(2):123–140, 1996.

[23] L. Breiman. Bias, Variance, and Arcing Classifiers. Tech. Rep. 460, Statistics

Department, University of California, Berkeley, CA, USA, 1996.

[24] L. Breiman. Random Forests. Machine learning, 45(1):5–32, 2001.

[25] L. Breiman, J. Friedman, C. Stone, and R. Olshen. Classification and Regression

Trees. CRC press, 1984.

[26] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic Itemset Counting

and Implication Rules for Market Basket Data. In ACM SIGMOD Record,

volume 26, pages 255–264. ACM, 1997.

[27] A. Brown, E. Yemini, L. Grundy, T. Jucikas, and W. Schafer. A Dictionary of

Behavioral Motifs Reveals Clusters of Genes Affecting Caenorhabditis elegans

Locomotion. Proceedings of the National Academy of Sciences of the United

States of America (PNAS), 10(2):791–796, 2013.

[28] J. Buhler and M. Tompa. Finding Motifs using Random Projections. Journal

of Computational Biology, 9(2):225–242, 2002.

214

[29] K. Buza. Fusion Methods for Time-Series Classification. PhD thesis, University

of Hildesheim, Germany, 2011.

[30] J. Caiado, N. Crato, and D. Peña. A Periodogram-based Metric for Time Series

Classification. Computational Statistics & Data Analysis, 50(10):2668–2684,

2006.

[31] S.E. Campana and J.M. Casselman. Stock Discrimination using Otolith Shape

Analysis. Canadian Journal of Fisheries and Aquatic Sciences, 50(5):1062–

1083, 1993.

[32] D. Carvalho, A. Freitas, and N. Ebecken. A Critical Review of Rule Surprising-

ness Measures. In Proc. Data Mining IV-Int. Conf. on Data Mining, volume 7,

pages 545–556. WIT Press, 2003.

[33] D. Carvalho, A. Freitas, and N. Ebecken. Evaluating the Correlation between

Objective Rule Interestingness Measures and Real Human Interest. Knowledge

Discovery in Databases: PKDD 2005, pages 453–461, 2005.

[34] K.W. Chang, B. Deka, W.M. Hwu, and D. Roth. Efficient Pattern-Based Time

Series Classification on GPU. In Data Mining (ICDM), 2012 IEEE 12th Inter-

national Conference on, pages 131–140. IEEE, 2012.

[35] P. Clark and R. Boswell. Rule Induction with CN2: Some Recent Improvements.

In Machine learning–EWSL–91, pages 151–163. Springer, 1991.

[36] F. Coenen, G. Goulbourne, and P. Leng. Tree Structures for Mining Association

Rules. Data Mining and Knowledge Discovery, 8(1):25–51, 2004.

[37] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J.D. Ull-

man, and C. Yang. Finding Interesting Associations without Support Pruning.

Knowledge and Data Engineering, IEEE Transactions on, 13(1):64–78, 2001.

[38] C. Cortes and V. Vapnik. Support-vector Networks. Machine Learning,

20(3):273–297, 1995.

215

[39] G. Das, K.I. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule Discovery

from Time Series. Knowledge Discovery and Data Mining, pages 16–22, 1998.

[40] L. Davis, B.J. Theobald, and A. Bagnall. Automated Bone Age Assessment

using Feature Extraction. In Intelligent Data Engineering and Automated

Learning-IDEAL 2012, pages 43–51. Springer, 2012.

[41] L. Davis, B.J. Theobald, J. Lines, A. Toms, and A. Bagnall. On the Segmenta-

tion and Classification of Hand Radiographs. International Journal of Neural

Systems, 22(05):1250020–1 – 1250020–16, 2012.

[42] L. Davis, B.J. Theobald, A. Toms, and A. Bagnall. On the Extraction and

Classification of Hand Outlines. In Proceedings of the 12th International Con-

ference on Intelligent Data Engineering and Automated Learning, pages 92–99.

Springer-Verlag, 2011.

[43] B. De La Iglesia, M. Philpott, A. Bagnall, and V. Rayward-Smith. Data Mining

Rules using Multi-objective Evolutionary Algorithms. In Evolutionary Com-

putation, 2003. CEC’03. The 2003 Congress on, volume 3, pages 1552–1559.

IEEE, 2003.

[44] B. De La Iglesia, G. Richards, M. Philpott, and V. Rayward-Smith. The Ap-

plication and Effectiveness of a Multi-objective Metaheuristic Algorithm for

Partial Classification. European Journal of Operational Research, 169(3):898–

917, 2006.

[45] J. Demšar. Statistical Comparisons of Classifiers over Multiple Data Sets. The

Journal of Machine Learning Research, 7:1–30, 2006.

[46] H. Deng, G. Runger, E. Tuv, and M. Vladimir. A Time Series Forest for

Classification and Feature Extraction. Information Sciences, 239:142–153, 2013.

[47] D.A. DeVries, C.B. Grimes, and M.H. Prager. Using Otolith Shape Analysis to

Distinguish Eastern Gulf of Mexico and Atlantic Ocean Stocks of King Mackerel.

Fisheries Research, 57(1):51–62, 2002.

216

[48] V. Dhar and A. Tuzhilin. Abstract-driven Pattern Discovery in Databases.

IEEE Transactions on Knowledge and Data Engineering, pages 926–938, 1993.

[49] G. Di Fatta, S. Leue, and E. Stegantova. Discriminative Pattern Mining in

Software Fault Detection. In Proceedings of the 3rd International Workshop on

Software Quality Assurance, pages 62–69. ACM, 2006.

[50] T. Dietterich. An Experimental Comparison of Three Methods for Constructing

Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Machine

Learning, 40(2):139–157, 2000.

[51] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying

and Mining of Time Series Data: Experimental Comparison of Representations

and Distance Measures. Proceedings of the VLDB Endowment, 1(2):1542–1552,

2008.

[52] P. Domingos. A Unified Bias-variance Decomposition for Zero-one and Squared

loss. AAAI/IAAI, 2000:564–569, 2000.

[53] P. Duarte-Neto, R. Lessa, B. Stosic, and E. Morize. The Use of Sagittal Otoliths

in Discriminating Stocks of Common Dolphinfish (Coryphaena hippurus) off

Northeastern Brazil using Multishape Descriptors. ICES Journal of Marine

Science: Journal du Conseil, 65(7):1144–1152, 2008.

[54] R. Durbin. Biological Sequence Analysis: Probabilistic Models of Proteins and

Nucleic Acids. Cambridge University Press, 1998.

[55] A. Edgcomb and F. Vahid. Automated Fall Detection on Privacy-enhanced

Video. In Engineering in Medicine and Biology Society (EMBC), 2012 Annual

International Conference of the IEEE, pages 252–255. IEEE, 2012.

[56] U. Fayyad, C. Reina, and P.S. Bradley. Initialization of Iterative Refinement

Clustering Algorithms. In Proceedings of the Fourth International Conference

on Knowledge Discovery and Data Mining, pages 194–198, 1998.

217

[57] A. Frank, A. Asuncion, et al. UCI Machine Learning Repository. 2010.

[58] A. Freitas. On Rule Interestingness Measures. Knowledge-based Systems, 12(5-

6):309–315, 1999.

[59] Y. Freund and R. Schapire. Experiments with a New Boosting Algorithm. In

ICML, volume 96, pages 148–156, 1996.

[60] J. Friedman. On Bias, Variance, 0/1 Loss, and the Curse-of-Dimensionality.

Data Mining and Knowledge Discovery, 1(1):55–77, 1997.

[61] M. Friedman. The Use of Ranks to Avoid the Assumption of Normality Implicit

in the Analysis of Variance. Journal of the American Statistical Association,

32(1):675–701, 1937.

[62] M. Friedman. A Comparison of Alternative Tests of Significance for the Problem

of m Rankings. The Annals of Mathematical Statistics, 11(1):86–92, 1940.

[63] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian Network Classifiers.

Machine Learning, 29(2-3):131–163, 1997.

[64] J. Froehlich, E. Larson, S. Gupta, G. Cohn, M. Reynolds, and S. Patel. Dis-

aggregated End-use Energy Sensing for the Smart Grid. IEEE Pervasive Com-

puting, 10(1):28–39, 2011.

[65] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data Mining us-

ing Two-dimensional Optimized Association Rules: Scheme, Algorithms, and

Visualization. In ACM SIGMOD Record, volume 25, pages 13–23. ACM, 1996.

[66] J. Furnkranz and P.A. Flach. Roc ’n’ Rule Learning – Towards a Better Un-

derstanding of Covering Algorithms. Machine Learning, 58(1):39–77, 2005.

[67] J.G. Ganascia. Deriving the Learning Bias from Rule Properties. In Machine

intelligence 12, pages 151–167. Clarendon Press, 1991.

[68] F. Gebhardt. Choosing among Competing Generalizations. Knowledge Acqui-

sition, 3(4):361–380, 1991.

218

[69] L. Geng and H.J. Hamilton. Interestingness Measures for Data Mining: A

Survey. ACM Computing Surveys (CSUR), 38(3):9, 2006.

[70] P. Geurts, D. Ernst, and L. Wehenkel. Extremely Randomized Trees. Machine

Learning, 63(1):3–42, 2006.

[71] M. Ghalwash, V. Radosavljevic, and Z. Obradovic. Extraction of Interpretable

Multivariate Patterns for Early Diagnostics. In Data Mining (ICDM), 2013

IEEE 13th International Conference on, pages 201–210. IEEE, 2013.

[72] L.A. Goodman and W.H. Kruskal. Measures of Association for Cross Clas-

sifications. Journal of the American Statistical Association, 49(268):732–764,

1954.

[73] D. Gordon, D. Hendler, and L. Rokach. Fast Randomized Model Generation

for Shapelet-Based Time Series Classification. arXiv preprint arXiv:1209.5038,

2012.

[74] T. Górecki and M. Luczak. Using Derivatives in Time Series Classification.

Data Mining and Knowledge Discovery, 26(2):310–331, 2013.

[75] J. Grabocka and L. Schmidt-Thieme. Invariant Time-series Factorization. Data

Mining and Knowledge Discovery, pages 1–25, 2014.

[76] Y. Grandvalet, S. Canu, and S. Boucheron. Noise Injection: Theoretical

Prospects. Neural Computation, 9(5):1093–1108, 1997.

[77] M.P. Griffin and J.R. Moorman. Toward the Early Diagnosis of Neonatal Sepsis

and Sepsis-like Illness using Novel Heart Rate Analysis. Pediatrics, 107(1):97–

104, 2001.

[78] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten.

The WEKA Data Mining Software: an Update. ACM SIGKDD Explorations

Newsletter, 11(1):10–18, 2009.

219

[79] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan

Kaufmann, 2006.

[80] L. Hansen and P. Salamon. Neural Network Ensembles. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 12(10):993–1001, 1990.

[81] B. Hartmann and N. Link. Gesture Recognition with Inertial Sensors and

Optimized DTW Prototypes. In Systems Man and Cybernetics (SMC), 2010

IEEE International Conference on, pages 2102–2109. IEEE, 2010.

[82] B. Hartmann, I. Schwab, and N. Link. Prototype Optimization for Temporarily

and Spatially Distorted Time Series. In The AAAI Spring Symposia, pages 15–

20.

[83] G. He, Y. Duan, R. Peng, X. Jing, T. Qian, and L. Wang. Early Classification

on Multivariate Time Series. Neurocomputing, pages 777–787, 2014.

[84] Q. He, Z. Dong, F. Zhuang, T. Shang, and Z. Shi. Fast Time Series Classifi-

cation Based on Infrequent Shapelets. In Machine Learning and Applications

(ICMLA), 2012 11th International Conference on, volume 1, pages 215–219.

IEEE, 2012.

[85] J. Hills. https://sites.google.com/site/miningtimeseriesdata/.

[86] J. Hills, A. Bagnall, B. De La Iglesia, and G. Richards. BruteSuppression: a

Size Reduction Method for Apriori Rule Sets. Journal of Intelligent Information

Systems, 40:431–454, 2013.

[87] J. Hills, L. Davis, and A. Bagnall. Interestingness Measures for Fixed Conse-

quent Rules. In Proceedings of the 13th international conference on Intelligent

Data Engineering and Automated Learning, pages 68–75. Springer-Verlag, 2012.

[88] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. Classification of

Time Series by Shapelet Transformation. Data Mining and Knowledge Discov-

ery, 28(4):851–881, 2014.

220

[89] T. Ho. The Random Subspace Method for Constructing Decision Forests. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on, 20(8):832–844,

1998.

[90] F. Höppner. Discovery of Temporal Patterns. Principles of Data Mining and

Knowledge Discovery, pages 192–203, 2001.

[91] B. Hu, Y. Chen, and E. Keogh. Time series classification under more realistic

assumptions. pages 578–586, 2013.

[92] B. Hu, T. Rakthanmanon, Y. Hao, S. Evans, S. Lonardi, and E. Keogh. Us-

ing the Minimum Description Length to Discover the Intrinsic Cardinality and

Dimensionality of Time Series. Data Mining and Knowledge Discovery, pages

1–42, 2014.

[93] F. Hussain, H. Liu, E. Suzuki, and H. Lu. Exception Rule Mining with a Rela-

tive Interestingness Measure. Knowledge Discovery and Data Mining. Current

Issues and New Applications, pages 86–97, 2000.

[94] X.H. Huynh, F. Guillet, and H. Briand. Evaluating Interestingness Measures

with Linear Correlation Graph. Advances in Applied Artificial Intelligence,

pages 312–321, 2006.

[95] I.B.M. IBM Intelligent Miner User’s Guide, Version 1 Release 1. Technical

report, SH12-6213-00 edition, July 1996, 1996.

[96] Image Processing and Informatics Lab, University of Southern California. The

Digital Hand Atlas Database System. http://www.ipilab.org/BAAweb/.

[97] G. James. Variance and Bias for General Loss Functions. Machine Learning,

51(2):115–135, 2003.

[98] G. Janacek, A. Bagnall, and M. Powell. A likelihood ratio distance measure

for the similarity between the fourier transform of time series. In Advances in

Knowledge Discovery and Data Mining, pages 737–743. Springer, 2005.

221

[99] S. Jeong, M. Jeong, and O. Omitaomu. Weighted Dynamic Time Warping for

Time Series Classification. Pattern Recognition, 44(9):2231–2240, 2011.

[100] E. Keogh and J. Lin. Clustering of Time-series Subsequences is Meaningless:

Implications for Previous and Future Research. Knowledge and Information

Systems, 8(2):154–177, 2005.

[101] E. Keogh and M. Pazzani. Derivative Dynamic Time Warping. In SDM, vol-

ume 1, pages 5–7. SIAM, 2001.

[102] M.H. Ko, G. West, S. Venkatesh, and M. Kumar. Online Context Recognition

in Multisensor Systems using Dynamic Time Warping. In Intelligent Sensors,

Sensor Networks and Information Processing Conference, 2005. Proceedings of

the 2005 International Conference on, pages 283–288. IEEE, 2005.

[103] W.H. Kruskal. A Nonparametric Test for the Several Sample Problem. The

Annals of Mathematical Statistics, 23(4):525–540, 1952.

[104] L. Kuncheva. A Theoretical Study on Six Classifier Fusion Strategies. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24(2):281–286,

2002.

[105] L. Kuncheva. Diversity in Multiple Classifier Systems. Information fusion,

6(1):3–4, 2005.

[106] L. Kuncheva, C. Whitaker, C. Shipp, and R. Duin. Limits on the Majority

Vote Accuracy in Classifier Fusion. Pattern Analysis & Applications, 6(1):22–

31, 2003.

[107] D. Lagun, M.l Ageev, Q. Guo, and E. Agichtein. Discovering Common Motifs

in Cursor Movement Data for Improving Web Search. In Proceedings of the

7th ACM International Conference on Web Search and Data Mining, pages

183–192. ACM, 2014.

222

[108] L.J. Latecki, R. Lakamper, and T. Eckhardt. Shape Descriptors for Non-rigid

Shapes with a Single Closed Contour. In Computer Vision and Pattern Recogni-

tion, 2000. Proceedings. IEEE Conference on, volume 1, pages 424–429. IEEE,

2000.

[109] N. Lavrač, P. Flach, and B. Zupan. Rule Evaluation Measures: a Unifying

View. Inductive Logic Programming, pages 174–185, 1999.

[110] P. Lenca, P. Meyer, B. Vaillant, and S. Lallich. On Selecting Interestingness

Measures for Association Rules: User Oriented Description and Multiple Cri-

teria Decision Aid. European Journal of Operational Research, 184(2):610–626,

2008.

[111] P. Lenca, B. Vaillant, P. Meyer, and S. Lallich. Association Rule Interestingness

Measures: Experimental and Theoretical Studies. Quality Measures in Data

Mining, pages 51–76, 2007.

[112] W. Li, J. Han, and J. Pei. CMAR: Accurate and Efficient Classification Based

on Multiple Class-association Rules. In Data Mining, 2001. ICDM 2001, Pro-

ceedings IEEE International Conference on, pages 369–376. IEEE, 2001.

[113] Z. Li, C. Lin, B. Ding, and J. Han. Mining Significant Time Intervals for

Relationship Detection. Advances in Spatial and Temporal Databases, pages

386–403, 2011.

[114] J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding Motifs in Time Series. Proc.

of the 2nd Workshop on Temporal Data Mining, pages 53–68, 2002.

[115] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing SAX: a Novel Sym-

bolic Representation of Time Series. Data Mining and Knowledge Discovery,

15(2):107–144, 2007.

[116] J. Lines and A. Bagnall. Alternative Quality Measures for Time Series

Shapelets. In Intelligent Data Engineering and Automated Learning (IDEAL),

volume 7435 of Lecture Notes in Computer Science, pages 475–483. 2012.

223

[117] J. Lines and A. Bagnall. Time Series Classification with Ensembles of Elastic

Distance Measures. Data Mining and Knowledge Discovery, pages 1–28, 2014.

[118] J. Lines, A. Bagnall, P. Caiger-Smith, and S. Anderson. Classification of House-

hold Devices by Electricity Usage Profiles. In Intelligent Data Engineering and

Automated Learning-IDEAL 2011, pages 403–412. Springer, 2011.

[119] J. Lines, L Davis, J. Hills, and A. Bagnall. A Shapelet Transform for Time

Series Classification. In Proceedings of the 18th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 289–297. ACM,

2012.

[120] H. Liu, L. Liu, and H. Zhang. A Fast Pruning Redundant Rule Method using

Galois Connection. Applied Soft Computing, 11(1):130–137, 2011.

[121] H. Liu, H. Lu, L. Feng, and F. Hussain. Efficient Search of Reliable Exceptions.

Methodologies for Knowledge Discovery and Data Mining, pages 194–204, 1999.

[122] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan. uWave:

Accelerometer-based Personalized Gesture Recognition and its Applications.

Pervasive and Mobile Computing, 5(6):657–675, 2009.

[123] R. Maclin and D. Opitz. Popular Ensemble Methods: an Empirical Study.

arXiv preprint arXiv:1106.0257, 2011.

[124] J.A. Major and J.J. Mangano. Selecting among Rules Induced from a Hurricane

Database. Journal of Intelligent Information Systems, 4(1):39–52, 1995.

[125] A. McGovern, D.H. Rosendahl, R.A. Brown, and K.K. Droegemeier. Identify-

ing Predictive Multi-dimensional Time Series Motifs: an Application to Severe

Weather Prediction. Data Mining and Knowledge Discovery, 22(1):232–258,

2011.

[126] S. McMillan, C. Chia, A. Van Esbroeck, I. Rubinfeld, and Z. Syed. ICU Mortal-

ity Prediction using Time Series Motifs. Computing in Cardiology 2012 Krakow,

Poland, 39:265–268, 2012.

224

[127] R. Meir and G. Rätsch. An Introduction to Boosting and Leveraging. In

Advanced Lectures on Machine Learning, pages 118–183. Springer, 2003.

[128] A.M.F. Mood. Introduction to the Theory of Statistics. 1950.

[129] Y. Morimoto, T. Fukuda, H. Matsuzawa, T. Tokuyama, and K. Yoda. Algo-

rithms for Mining Association Rules for Binary Segmentations of Huge Categor-

ical Databases. In Proceedings of the International Conference on Very Large

Data Bases, pages 380–391. Citeseer, 1998.

[130] A. Mueen, E. Keogh, and N. Young. Logical-shapelets: an Expressive Primitive

for Time Series Classification. In Proceedings of the 17th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining, pages 1154–

1162. ACM, 2011.

[131] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and B. Westover. Exact Discovery of

Time Series Motifs. In Proceedings of the SIAM International Conference on

Data Mining, pages 473–484. Citeseer, 2009.

[132] A. Mueen, E. Keogh, Q. Zhu, S.S. Cash, M.B. Westover, and N. Bigdely-

Shamlo. A Disk-aware Algorithm for Time Series Motif Discovery. Data Mining

and Knowledge Discovery, 22(1):73–105, 2011.

[133] P. Nemenyi. Distribution-free Multiple Comparisons. In Biometrics, volume 18,

page 263. International Biometric Society, 1962.

[134] T. Oates, M. Schmill, and P. Cohen. A Method for Clustering the Experiences

of a Mobile Robot that Accords with Human Judgments. In AAAI/IAAI, pages

846–851, 2000.

[135] M. Ohsaki, H. Abe, S. Tsumoto, H. Yokoi, and T. Yamaguchi. Evaluation of

Rule Interestingness Measures in Medical Knowledge Discovery in Databases.

Artificial Intelligence in Medicine, 41(3):177–196, 2007.

225

[136] M. Ohsaki, S. Kitaguchi, K. Okamoto, H. Yokoi, and T. Yamaguchi. Evalu-

ation of Rule Interestingness Measures with a Clinical Dataset on Hepatitis.

Knowledge Discovery in Databases: PKDD 2004, pages 362–373, 2004.

[137] P. Owen. Powering the Nation; Household electricity-using habits revealed.

A report by the Energy Saving Trust, the Department of Energy and Climate

Change (DECC), and the Department for Environment. Food and Rural Affairs

(Defra), 2012.

[138] G. Piatetsky-Shapiro and W. Frawley. Knowledge Discovery in Databases.

AAAI press, 1991.

[139] F.J. Provost and J.M. Aronis. Scaling up Inductive Learning with Massive

Parallelism. Machine Learning, 23(1):33–46, 1996.

[140] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu,

J. Zakaria, and E. Keogh. Searching and Mining Trillions of Time Series Sub-

sequences under Dynamic Time Warping. In Proceedings of the 18th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 262–270. ACM, 2012.

[141] T. Rakthanmanon and E. Keogh. Fast Shapelets: a Scalable Algorithm for

Discovering Time Series Shapelets. Proc. 13th SDM, pages 668–676, 2013.

[142] T. Rakthanmanon, E. Keogh, S. Lonardi, and S. Evans. Time Series Epenthesis:

Clustering Time Series Streams Requires Ignoring Some Data. In Data Mining

(ICDM), 2011 IEEE 11th International Conference on, pages 547–556. IEEE,

2011.

[143] T. Rakthanmanon, Q. Zhu, and E. Keogh. Mining Historical Documents for

Near-Duplicate Figures. In Data Mining (ICDM), 2011 IEEE 11th Interna-

tional Conference on, pages 557–566. IEEE, 2011.

226

[144] C. Ratanamahatana and E. Keogh. Three Myths about Dynamic Time Warping

Data Mining. In Proceedings of SIAM International Conference on Data Mining

(SDM05), pages 506–510. SIAM, 2005.

[145] G. Rätsch, T. Onoda, and K.R. Müller. Soft Margins for AdaBoost. Machine

Learning, 42(3):287–320, 2001.

[146] A. Reiss, M. Weber, and D. Stricker. Exploring and Extending the Boundaries

of Physical Activity Recognition. In Systems, Man, and Cybernetics (SMC),

2011 IEEE International Conference on, pages 46–50. IEEE, 2011.

[147] A. Reynolds and B. De La Iglesia. Rule induction using Multi-objective Meta-

heuristics: Encouraging Rule Diversity. In Neural Networks, 2006. IJCNN’06.

International Joint Conference on, pages 3343–3350. IEEE, 2006.

[148] G. Richards and V. Rayward-Smith. Discovery of Association Rules in Tabular

Data. In Proceedings of the IEEE International Conference on Data Mining,

page 465. IEEE Computer Society, 2001.

[149] G. Richards and V. Rayward-Smith. The Discovery of Association Rules from

Tabular Databases Comprising Nominal and Ordinal Attributes. Intelligent

Data Analysis, 9(3):289–307, 2005.

[150] J. Rodriguez and C. Alonso. Support vector machines of interval-based features

for time series classification. Knowledge-Based Systems, 18(4):171–178, 2005.

[151] J. Rodriguez, L. Kuncheva, and C. Alonso. Rotation Forest: a New Classifier

Ensemble Method. Pattern Analysis and Machine Intelligence, IEEE Transac-

tions on, 28(10):1619–1630, 2006.

[152] S.L. Salzberg. On Comparing Classifiers: Pitfalls to Avoid and a Recommended

Approach. Data mining and Knowledge Discovery, 1(3):317–328, 1997.

[153] P.K.D. Sarma and A.K. Mahanta. Reduction of number of association rules

with inter itemset distance in transaction databases. International Journal of

Database Management Systems, 4(5):61–82, 2012.

227

[154] R. Schapire. Theoretical Views of Boosting and Applications. In Algorithmic

Learning Theory, pages 13–25. Springer, 1999.

[155] M. Sebag and M. Schoenauer. Generation of Rules with Certainty and Con-

fidence Factors from Incomplete and Incoherent Learning Bases. In Proc. of

EKAW, volume 88, pages 1–28, 1988.

[156] I.N.M. Shaharanee, F. Hadzic, and T.S. Dillon. Interestingness Measures for

Association Rules Based on Statistical Validity. Knowledge-based Systems,

24(3):386–392, 2011.

[157] T. Shajina and P.B. Sivakumar. Human Gait Recognition and Classification

Using Time Series Shapelets. In Advances in Computing and Communications

(ICACC), 2012 International Conference on, pages 31–34. IEEE, 2012.

[158] C.E. Shannon, W. Weaver, R.E. Blahut, and B. Hajek. The Mathematical

Theory of Communication. University of Illinois press Urbana, 1949.

[159] C. Stransky. Geographic Variation of Golden Redfish (Sebastes marinus) and

Deep-sea Redfish (S. mentella) in the North Atlantic Based on Otolith Shape

Analysis. ICES Journal of Marine Science: Journal du Conseil, 62(8):1691–

1698, 2005.

[160] R. Tamir and Y. Singer. On a Confidence Gain Measure for Association Rule

Discovery and Scoring. The VLDB Journal, 15(1):40–52, 2006.

[161] P.N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness

Measure for Association Patterns. In Proceedings of the Eighth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 32–

41. ACM, 2002.

[162] E.K. Tang, P.N. Suganthan, and X. Yao. An Analysis of Diversity Measures.

Machine Learning, 65(1):247–271, 2006.

228

[163] R. Tibshirani. Bias, Variance and Prediction Error for Classification Rules.

Citeseer, 1996.

[164] UCI Machine Learning Repository.

http://archive.ics.uci.edu/ml/datasets.html.

[165] UCR Time-series Classification/Clustering Page.

http://www.cs.ucr.edu/ eamonn/time series data/.

[166] D. Vail and M. Veloso. Learning from Accelerometer Data on a Legged Robot.

In Proceedings of the 5th IFAC/EURON Symposium on Intelligent Autonomous

Vehicles, 2004.

[167] G. Valentini and T. Dietterich. Bias-variance Analysis of Support Vector Ma-

chines for the Development of SVM-based Ensemble Methods. The Journal of

Machine Learning Research, 5:725–775, 2004.

[168] R. Walpole, R. Myers, S. Myers, and K. Ye. Probability and Statistics for

Engineers and Scientists. Macmillan New York, 1993.

[169] L. Warren. Clustering of Time Series Data - a Survey. Pattern Recognition,

38(11):1857–1874, 2005.

[170] G. Webb. Multiboosting: a Technique for Combining Boosting and Wagging.

Machine Learning, 40(2):159–196, 2000.

[171] L. Wei, E. Keogh, and X. Xi. SAXually Explicit Images: Finding Unusual

Shapes. In Data Mining, 2006. ICDM’06. Sixth International Conference on,

pages 711–720. IEEE, 2006.

[172] F. Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics Bul-

letin, pages 80–83, 1945.

[173] Y. Wu, D. Agrawal, and A. El Abbadi. A Comparison of DFT and DTW Based

Similarity Search in Time-series Databases. In Proc. 9th ACM CIKM, pages

488–495, 2000.

229

[174] X. Xi, E. Keogh, C. Shelton, L. Wei, and C.A. Ratanamahatana. Fast Time

Series Classification using Numerosity Reduction. pages 1033–1040, 2006.

[175] Z. Xing, J. Pei, P. Yu, and K. Wang. Extracting Interpretable Features for

Early Classification on Time Series. the Proceedings of SDM, pages 247–258,

2011.

[176] Z. Xing, J. Pei, and P.S. Yu. Early Classification on Time Series. Knowledge

and Information Systems, 31(1):105–127, 2012.

[177] Y. Xu, Y. Li, and G. Shaw. Reliable Representations for Association Rules.

Data & Knowledge Engineering, 70(6):555–575, 2011.

[178] J. Yao and H. Liu. Searching Multiple Databases for Interesting Complexes.

KDD: Techniques and Applications, World Scientific, Singapore, 482:484–485,

1997.

[179] Y. Yao and N. Zhong. An Analysis of Quantitative Measures Associated with

Rules. Methodologies for Knowledge Discovery and Data Mining, pages 479–

488, 1999.

[180] L. Ye and E. Keogh. Time Series Shapelets: a New Primitive for Data Mining. In

Proceedings of the 15th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 947–956. ACM, 2009.

[181] L. Ye and E. Keogh. Time Series Shapelets: a Novel Technique that Allows

Accurate, Interpretable and Fast Classification. Data Mining and Knowledge

Discovery, 22(1):149–182, 2011.

[182] E. Yemini, T. Jucikas, L. Grundy, A. Brown, and W. Schafer. A Database of

Caenorhabditis elegans Behavioral Phenotypes. Nature Methods, 10:877–879,

2013.

[183] J. Zakaria, A. Mueen, and E. Keogh. Clustering Time Series using

Unsupervised-shapelets. In Data Mining (ICDM), 2012 IEEE 12th Interna-

tional Conference on, pages 785–794. IEEE, 2012.

Appendix

230

231

Table 8.1: Accuracies of ensemble classifier on shapelet-transformed data and
1NNDTW with warping window set by cross-validation on raw data, over 75 datasets.

Dataset Ensemble classifier on 1NNDTW
shapelet-transformed data

Adiac 0.565 0.611
ArrowHead 0.771 0.783

Beef 0.833 0.667
BeetleFly 0.750 0.650

BirdChicken 0.750 0.650
Car 0.733 0.767
CBF 0.997 0.994

ChlorineConcentration 0.700 0.625
CinC ECG torso 0.846 0.929

Coffee 1.000 1.000
Computers 0.700 0.876
Cricket X 0.782 0.754
Cricket Y 0.764 0.795
Cricket Z 0.772 0.823

DiatomSizeReduction 0.876 0.925
DistalPhalanxOutlineAgeGroup 0.741 0.799

DistalPhalanxOutlineCorrect 0.736 0.746
DistalPhalanxTW 0.633 0.662

Earthquakes 0.734 0.691
ECGFiveDays 0.999 0.800

FaceAll 0.737 0.808
FaceFour 0.943 0.898

FacesUCR 0.913 0.909
fiftywords 0.719 0.765

fish 0.977 0.834
FordA 0.927 0.794
FordB 0.789 0.670

GunPoint 0.980 0.913
Haptics 0.477 0.406
Herrings 0.672 0.656

InlineSkate 0.385 0.385
ItalyPowerDemand 0.952 0.961

LargeKitchenAppliances 0.883 0.736
Lightning2 0.656 0.869
Lightning7 0.740 0.712
MALLAT 0.940 0.910

MedicalImages 0.604 0.739
MiddlePhalanxOutlineAgeGroup 0.630 0.461

232

Table 8.1: Accuracies of ensemble classifier on shapelet-transformed data and
1NNDTW with warping window set by cross-validation on raw data, over 75 datasets.

Dataset Ensemble classifier on 1NNDTW
shapelet-transformed data

MiddlePhalanxOutlineCorrect 0.725 0.801
MiddlePhalanxTW 0.539 0.494

MoteStrain 0.891 0.866
NonInvasiveFatalECG Thorax1 0.900 0.804
NonInvasiveFatalECG Thorax2 0.903 0.868

OliveOil 0.900 0.867
OSULeaf 0.715 0.599

PhalangesOutlinesCorrect 0.748 0.772
Plane 1.000 1.000

ProximalPhalanxOutlineAgeGroup 0.854 0.873
ProximalPhalanxOutlineCorrect 0.900 0.804

ProximalPhalanxTW 0.771 0.683
PtNDeviceGroups 0.798 0.554

PtNDevices 0.524 0.519
RefrigerationDevices 0.557 0.485

ScreenType 0.533 0.555
SimulatedSet 0.919 0.672

SmallKitchenAppliances 0.773 0.744
SonyAIBORobotSurface 0.933 0.699

SonyAIBORobotSurfaceII 0.885 0.857
StarLightCurves 0.976 0.903

SwedishLeaf 0.907 0.846
Symbols 0.886 0.931

SyntheticControl 0.983 0.983
ToeSegmentation1 0.956 0.899
ToeSegmentation2 0.854 0.892

Trace 0.980 0.990
TwoLeadECG 0.996 0.851
TwoPatterns 0.941 0.999

UWaveGestureLibrary X 0.784 0.774
UWaveGestureLibrary Y 0.697 0.698
UWaveGestureLibrary Z 0.727 0.673

wafer 0.998 0.996
WordSynonyms 0.597 0.740

Worms 0.701 0.532
WormsTwoClass 0.766 0.584

yoga 0.805 0.843

233

Table 8.2: Accuracies of ensemble classifier on shapelet-transformed data, filtered
shapelet-transformed data, and MDLStopCE clustered shapelet-transformed data,
over 50 datasets.

Dataset Shapelet Transform Filtered data MDLStopCE
ArrowHead 0.771 0.789 0.737

Beef 0.833 0.833 0.833
BeetleFly 0.750 0.750 0.750

BirdChicken 0.750 0.800 0.800
Car 0.733 0.733 0.750
CBF 0.997 0.996 0.976

CinC ECG torso 0.846 0.833 0.833
Coffee 1.000 1.000 1.000

Computers 0.700 0.716 0.716
Cricket X 0.782 0.785 0.659
Cricket Y 0.764 0.767 0.585
Cricket Z 0.772 0.772 0.687

DiatomSizeReduction 0.876 0.876 0.876
DistalPhalanxTW 0.633 0.647 0.640

ECGFiveDays 0.999 0.992 0.995
FaceAll 0.737 0.740 0.688

FaceFour 0.943 0.932 0.989
FacesUCR 0.913 0.918 0.839
fiftywords 0.719 0.710 0.708

fish 0.977 0.971 0.971
GunPoint 0.980 0.980 0.953
Haptics 0.477 0.451 0.461
Herrings 0.672 0.688 0.672

InlineSkate 0.385 0.385 0.373
ItalyPowerDemand 0.952 0.957 0.951

Lightning2 0.656 0.623 0.623
Lightning7 0.740 0.726 0.740
MALLAT 0.940 0.933 0.828

MedicalImages 0.604 0.609 0.624
MiddlePhalanxOutlineAgeGroup 0.630 0.623 0.623

MiddlePhalanxTW 0.539 0.532 0.532
MoteStrain 0.891 0.887 0.866

OliveOil 0.900 0.900 0.900
OSULeaf 0.715 0.707 0.595

Plane 1.000 1.000 1.000
ProximalPhalanxOutlineAgeGroup 0.854 0.863 0.863

ProximalPhalanxTW 0.771 0.785 0.785
SimulatedSet 0.919 0.913 0.880

SonyAIBORobotSurface 0.933 0.938 0.943
SonyAIBORobotSurfaceII 0.885 0.880 0.887

SwedishLeaf 0.907 0.894 0.910
Symbols 0.886 0.884 0.884

SyntheticControl 0.983 0.980 0.903
ToeSegmentation1 0.956 0.952 0.930
ToeSegmentation2 0.854 0.838 0.815

Trace 0.980 0.980 0.980
TwoLeadECG 0.996 0.997 0.997

WordSynonyms 0.597 0.605 0.553
Worms 0.701 0.727 0.727

WormsTwoClass 0.766 0.792 0.688

234

Table 8.3: Accuracies of ensemble classifier on shapelet-transformed data clustered
using MDL, MDLCE, MDLStop, and MDLStopCE, over 50 datasets.

Dataset MDL MDLCE MDLStop MDLStopCE
ArrowHead 0.737 0.731 0.777 0.737

Beef 0.733 0.800 0.833 0.833
BeetleFly 0.800 0.800 0.750 0.750

BirdChicken 0.750 0.700 0.800 0.800
Car 0.667 0.683 0.717 0.750
CBF 0.948 0.981 0.899 0.976

CinC ECG torso 0.696 0.689 0.833 0.833
Coffee 1.000 1.000 1.000 1.000

Computers 0.716 0.720 0.708 0.716
Cricket X 0.303 0.646 0.241 0.659
Cricket Y 0.385 0.582 0.246 0.585
Cricket Z 0.244 0.692 0.244 0.687

DiatomSizeReduction 0.889 0.869 0.876 0.876
DistalPhalanxTW 0.669 0.633 0.640 0.640

ECGFiveDays 0.995 0.991 0.990 0.995
FaceAll 0.682 0.699 0.240 0.688

FaceFour 0.705 0.761 0.614 0.989
FacesUCR 0.735 0.860 0.310 0.839

fish 0.926 0.886 0.971 0.971
fiftywords 0.448 0.686 0.211 0.708
GunPoint 1.000 0.953 0.960 0.953
Haptics 0.347 0.305 0.263 0.461
Herrings 0.688 0.641 0.672 0.672

InlineSkate 0.265 0.260 0.215 0.373
ItalyPowerDemand 0.949 0.952 0.948 0.951

Lightning2 0.656 0.623 0.623 0.623
Lightning7 0.712 0.658 0.726 0.740
MALLAT 0.786 0.863 0.342 0.828

MedicalImages 0.612 0.611 0.611 0.624
MiddlePhalanxOutlineAgeGroup 0.591 0.610 0.617 0.623

MiddlePhalanxTW 0.552 0.532 0.532 0.532
MoteStrain 0.875 0.877 0.839 0.866

OliveOil 0.900 0.900 0.900 0.900
OSULeaf 0.397 0.587 0.397 0.595

Plane 1.000 1.000 1.000 1.000
ProximalPhalanxOutlineAgeGroup 0.844 0.849 0.854 0.863

ProximalPhalanxTW 0.776 0.761 0.761 0.785
SimulatedSet 0.933 0.931 0.816 0.880

SonyAIBORobotSurface 0.932 0.940 0.953 0.943
SonyAIBORobotSurfaceII 0.887 0.880 0.884 0.887

SwedishLeaf 0.880 0.883 0.899 0.910
Symbols 0.744 0.872 0.884 0.884

SyntheticControl 0.927 0.913 0.833 0.903
ToeSegmentation1 0.952 0.952 0.934 0.930
ToeSegmentation2 0.892 0.815 0.892 0.815

Trace 0.980 0.980 0.980 0.980
TwoLeadECG 0.993 0.998 0.998 0.997

WordSynonyms 0.324 0.560 0.292 0.553
Worms 0.623 0.623 0.494 0.727

WormsTwoClass 0.727 0.649 0.727 0.688

235

Table 8.4: Value of k (maximum number of shapelets to cache) and number of
shapelets found for each dataset.

Max. Num. Max. Num.
Dataset Shapelets shapelets Dataset Shapelets shapelets

found found
Adiac 3900 3900 MiddlePhalanxOutlineCorrect 6000 6000

ArrowHead 360 258 MiddlePhalanxTW 3990 2329
Beef 300 300 MoteStrain 200 69

BeetleFly 200 200 NonInvasiveFatalECG Thorax1 18000 18000
BirdChicken 200 200 NonInvasiveFatalECG Thorax2 18000 18000

Car 600 600 OliveOil 300 300
CBF 300 55 OSULeaf 2000 376

ChlorineConcentration 4670 4670 PhalangesOutlinesCorrect 18000 16993
CinC ECG torso 400 78 Plane 1050 346

Coffee 280 280 ProximalPhalanxOutlineAgeGroup 4000 2358
Computers 2500 2218 ProximalPhalanxOutlineCorrect 6000 5648
Cricket X 3900 582 ProximalPhalanxTW 4000 1977
Cricket Y 3900 515 PtNDeviceGroups 17500 1357
Cricket Z 3900 612 PtNDevices 17500 760

DiatomSizeReduction 160 160 RefrigerationDevices 3750 3750
DistalPhalanxOutlineAgeGroup 4000 2083 ScreenType 3750 3750

DistalPhalanxOutlineCorrect 6000 4890 SimulatedSet 1000 1000
DistalPhalanxTW 4000 1203 SmallKitchenAppliances 3750 2946

Earthquakes 3220 3220 SonyAIBORobotSurface 200 56
ECGFiveDays 230 74 SonyAIBORobotSurfaceII 270 42

FaceAll 5600 560 StarLightCurves 10000 342
FaceFour 240 173 SwedishLeaf 5000 3642

FacesUCR 2000 268 Symbols 250 92
fiftywords 4500 450 SyntheticControl 3000 355

fish 1750 1750 ToeSegmentation1 400 164
FordA 36010 2252 ToeSegmentation2 360 69
FordB 36360 3099 Trace 1000 266

GunPoint 500 183 TwoLeadECG 230 164
Haptics 1550 1550 TwoPatterns 10000 3664
Herrings 640 612 UWaveGestureLibrary X 8960 912

InlineSkate 1000 995 UWaveGestureLibrary Y 8960 902
ItalyPowerDemand 670 141 UWaveGestureLibrary Z 8960 900

LargeKitchenAppliances 3750 3750 wafer 10000 3054
Lightning2 600 430 WordSynonyms 2670 267
Lightning7 700 491 Worms 1810 835
MALLAT 550 548 WormsTwoClass 1810 1612

MedicalImages 3810 2683 yoga 3000 3000
MiddlePhalanxOutlineAgeGroup 4000 2124

236

Table 8.5: Accuracies of our classifier ensemble on shapelet-transformed data and
Logical Shapelets [130] on raw data, over 31 datasets.

Ensemble classifier on Logical
Dataset shapelet-transformed Shapelets

data on raw data
Adiac 0.565 (2) 0.586 (1)
Beef 0.833 (1) 0.567 (2)
CBF 0.997 (1) 0.886 (2)

ChlorineConcentration 0.700 (1) 0.618 (2)
CinC ECG torso 0.846 (1) 0.699 (2)

Coffee 1.000 (1) 0.964 (2)
DiatomSizeReduction 0.876 (1) 0.801 (2)

ECGFiveDays 0.999 (1) 0.994 (2)
FaceAll 0.737 (1) 0.659 (2)

FaceFour 0.943 (1) 0.489 (2)
FacesUCR 0.913 (1) 0.662 (2)

fish 0.977 (1) 0.777 (2)
GunPoint 0.980 (1) 0.893 (2)

ItalyPowerDemand 0.952 (1) 0.936 (2)
Lightning2 0.656 (1) 0.426 (2)
Lightning7 0.740 (1) 0.548 (2)
MALLAT 0.940 (1) 0.656 (2)

MedicalImages 0.604 (1) 0.587 (2)
MoteStrain 0.891 (1) 0.832 (2)

OliveOil 0.900 (1) 0.833 (2)
OSULeaf 0.715 (1) 0.686 (2)

SonyAIBORobotSurface 0.933 (1) 0.860 (2)
SonyAIBORobotSurfaceII 0.885 (1) 0.846 (2)

SwedishLeaf 0.907 (1) 0.813 (2)
Symbols 0.886 (1) 0.643 (2)

SyntheticControl 0.983 (1) 0.470 (2)
Trace 0.980 (2) 1.000 (1)

TwoLeadECG 0.996 (1) 0.856 (2)
TwoPatterns 0.941 (1) 0.539 (2)

wafer 0.998 (2) 0.999 (1)
yoga 0.805 (1) 0.740 (2)
Wins 28 3

237

Table 8.6: Accuracies of our classifier ensemble on shapelet-transformed data and
Fast Shapelets [141] on raw data, over 44 datasets.

Ensemble classifier on Fast Shapelets
Dataset shapelet-transformed on raw

data data
Adiac 0.565 (1) 0.486 (2)
Beef 0.833 (1) 0.553 (2)
CBF 0.997 (1) 0.947 (2)

ChlorineConcentration 0.700 (1) 0.583 (2)
CinC ECG torso 0.846 (1) 0.826 (2)

Coffee 1.000 (1) 0.932 (2)
Cricket X 0.782 (1) 0.472 (2)
Cricket Y 0.764 (1) 0.480 (2)
Cricket Z 0.772 (1) 0.438 (2)

DiatomSizeReduction 0.876 (2) 0.883 (1)
ECGFiveDays 0.999 (1) 0.996 (2)

FaceAll 0.737 (1) 0.589 (2)
FaceFour 0.943 (1) 0.910 (2)

FacesUCR 0.913 (1) 0.672 (2)
fiftywords 0.719 (1) 0.511 (2)

fish 0.977 (1) 0.803 (2)
GunPoint 0.980 (1) 0.939 (2)
Haptics 0.477 (1) 0.376 (2)

InlineSkate 0.385 (1) 0.266 (2)
ItalyPowerDemand 0.952 (1) 0.905 (2)

Lightning2 0.656 (2) 0.705 (1)
Lightning7 0.740 (1) 0.597 (2)
MALLAT 0.940 (2) 0.967 (1)

MedicalImages 0.604 (1) 0.567 (2)
MoteStrain 0.891 (1) 0.783 (2)

NonInvasiveFatalECG Thorax1 0.900 (1) 0.766 (2)
NonInvasiveFatalECG Thorax2 0.903 (1) 0.802 (2)

OliveOil 0.900 (1) 0.787 (2)
OSULeaf 0.715 (1) 0.641 (2)

SonyAIBORobotSurface 0.933 (1) 0.686 (2)
SonyAIBORobotSurfaceII 0.885 (1) 0.785 (2)

StarLightCurves 0.976 (1) 0.942 (2)
SwedishLeaf 0.907 (1) 0.731 (2)

Symbols 0.886 (2) 0.932 (1)
SyntheticControl 0.983 (1) 0.919 (2)

Trace 0.980 (2) 0.998 (1)
TwoLeadECG 0.996 (1) 0.910 (2)
TwoPatterns 0.941 (1) 0.887 (2)

UWaveGestureLibrary X 0.784 (1) 0.707 (2)
UWaveGestureLibrary Y 0.697 (1) 0.608 (2)
UWaveGestureLibrary Z 0.727 (1) 0.627 (2)

wafer 0.998 (1) 0.996 (2)
WordSynonyms 0.597 (1) 0.437 (2)

yoga 0.805 (1) 0.751 (2)
Wins 39 5

238

Table 8.7: Numbers of shapelets for all datasets using all methods.

Shapelet After F-stat MDLStopCE Binary with
Dataset Transform Filtering Clustered Correlation

Filtering
Adiac 3900 3900 3895 3866

ArrowHead 258 244 234 194
Beef 300 300 300 273

BeetleFly 200 186 186 82
BirdChicken 200 182 182 104

Car 600 600 595 590
CBF 55 51 3 3

ChlorineConcentration 4670 4670 4670 4518
CinC ECG torso 78 63 63 50

Coffee 280 280 267 155
Computers 2218 2176 2176 1149
Cricket X 582 582 12 12
Cricket Y 515 515 12 12
Cricket Z 612 612 12 12

DiatomSizeReduction 160 160 160 70
DistalPhalanxOutlineAgeGroup 2083 2077 2077 1779

DistalPhalanxOutlineCorrect 4890 4834 4834 3499
DistalPhalanxTW 1203 1202 1197 912

Earthquakes 3220 3220 3220 2807
ECGFiveDays 74 66 2 1

FaceAll 560 560 14 14
FaceFour 173 164 4 4

FacesUCR 268 268 14 14
fiftywords 450 450 355 352

fish 1750 1750 1750 1743
FordA 2252 2166 2 2
FordB 3099 3023 2 2

GunPoint 183 171 2 2
Haptics 1550 1550 1542 1276
Herrings 612 542 537 533

InlineSkate 995 995 979 937
ItalyPowerDemand 141 137 133 122

LargeKitchenAppliances 3750 3750 3750 1431
Lightning2 430 341 341 318
Lightning7 491 451 439 383
MALLAT 548 533 8 8

MedicalImages 2683 2680 2667 2523
MiddlePhalanxOutlineAgeGroup 2124 2092 2092 1369

MiddlePhalanxOutlineCorrect 6000 5908 5907 4230
MiddlePhalanxTW 2329 2229 2228 1842

MoteStrain 69 58 2 1
NonInvasiveFatalECG Thorax1 18000 18000 17941 17906
NonInvasiveFatalECG Thorax2 18000 18000 17960 17954

OliveOil 300 300 300 244
OSULeaf 376 376 6 6

PhalangesOutlinesCorrect 16993 16619 16619 11256
Plane 346 346 342 201

ProximalPhalanxOutlineAgeGroup 2358 2345 2338 2048
ProximalPhalanxOutlineCorrect 5648 5272 5272 3751

ProximalPhalanxTW 1977 1960 1960 1684

239

Table 8.7: Numbers of shapelets for all datasets using all methods.

Shapelet After F-stat MDLStopCE Binary with
Dataset Transform Filtering Clustered Correlation

Filtering
PtNDeviceGroups 1357 1357 1357 735

PtNDevices 760 760 760 448
RefrigerationDevices 3750 3750 3750 1128

ScreenType 3750 3750 3742 870
SimulatedSet 1000 1000 2 2

SmallKitchenAppliances 2946 2942 2942 726
SonyAIBORobotSurface 56 53 2 2

SonyAIBORobotSurfaceII 42 41 2 2
StarLightCurves 342 340 285 272

SwedishLeaf 3642 3642 3626 3623
Symbols 92 92 92 57

SyntheticControl 355 355 6 6
ToeSegmentation1 164 155 2 2
ToeSegmentation2 69 67 2 2

Trace 266 264 142 59
TwoLeadECG 164 132 128 107
TwoPatterns 3664 3617 3617 3569

UWaveGestureLibrary X 912 912 8 8
UWaveGestureLibrary Y 902 902 19 19
UWaveGestureLibrary Z 900 900 261 261

wafer 3054 3019 3019 2311
WordSynonyms 267 267 25 25

Worms 835 822 479 349
WormsTwoClass 1612 1319 2 2

yoga 3000 3000 2996 2980

