
One-Sided Position-Dependent Smoothness-Increasing1

Accuracy-Conserving (SIAC) Filtering Over Uniform2

and Non-Uniform Meshes3

Jennifer K. Ryan§¶∗∗ Xiaozhou Li†¶ Robert M. Kirby‡‖4

Kees Vuik†5

October 31, 20146

Abstract7

In this paper, we introduce a new position-dependent Smoothness-Increasing8

Accuracy-Conserving (SIAC) filter that retains the benefits of position dependence9

as proposed in [20] while ameliorating some of its shortcomings. As in the previous10

position-dependent filter, our new filter can be applied near domain boundaries,11

near a discontinuity in the solution, or at the interface of different mesh sizes;12

and as before, in general, it numerically enhances the accuracy and increases the13

smoothness of approximations obtained using the discontinuous Galerkin (dG)14

method. However, the previously proposed position-dependent one-sided filter15

had two significant disadvantages: (1) increased computational cost (in terms of16

function evaluations), brought about by the use of 4k + 1 central B-splines near a17

boundary (leading to increased kernel support) and (2) increased numerical con-18

ditioning issues that necessitated the use of quadruple precision for polynomial19

degrees of k ≥ 3 for the reported accuracy benefits to be realizable numerically.20

Our new filter addresses both of these issues — maintaining the same support size21

and with similar function evaluation characteristics as the symmetric filter in a22

way that has better numerical conditioning — making it, unlike its predecessor,23

amenable for GPU computing. Our new filter was conceived by revisiting the24

original error analysis for superconvergence of SIAC filters and by examining the25

role of the B-splines and their weights in the SIAC filtering kernel. We demon-26

strate, in the uniform mesh case, that our new filter is globally superconvergent for27
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k = 1 and superconvergent in the interior (e.g., region excluding the boundary) for28

k ≥ 2. Furthermore, we present the first theoretical proof of superconvergence for29

postprocessing over smoothly varying meshes, and explain the accuracy-order con-30

serving nature of this new filter when applied to certain non-uniform meshes cases.31

We provide numerical examples supporting our theoretical results and demonstrat-32

ing that our new filter, in general, enhances the smoothness and accuracy of the33

solution. Numerical results are presented for solutions of both linear and nonlin-34

ear equation solved on both uniform and non-uniform one- and two-dimensional35

meshes.36

Index terms— discontinuous Galerkin method, post-processing, SIAC filtering,37

superconvergence, uniform meshes, smoothly-varying meshes, non-uniform meshes38

1 Introduction39

Computational considerations are always a concern when dealing with the implementa-40

tion of numerical methods that claim to have practical (engineering) value. The focus41

of this paper is the formerly introduced Smoothness-Increasing Accuracy-Conserving42

(SIAC) class of filters, a class of filters that exhibit superconvergence behavior when43

applied to discontinuous Galerkin (dG) solutions. Although the previously proposed44

position-dependent filter (which we will, henceforth, call the SRV filter) introduced in45

[20] met its stated goals of demonstrating superconvergence, it contained two deficiencies46

which often made it impractical for implementation and usage within engineering sce-47

narios. The first deficiency of the SRV filter was its reliance on 4k+ 1 central B-splines,48

which increased both the width of the stencil generated and increased the computational49

cost (in terms of functions evaluations) a disproportionate amount compared to the sym-50

metric SIAC filter. The second deficiency is one of numerical conditioning: the SRV filter51

requires the use of quadruple precision to obtain consistent and meaningful results, which52

makes it unsuitable for practical CPU-based computations and for GPU computing. In53

this paper, we introduce a position-dependent SIAC filter that, like the SRV filter, al-54

lows for one-sided post-processing to be used near boundaries and solution discontinuities55

and which exhibits superconvergent behavior; however, our new filter addresses the two56

stated deficiencies: it has a smaller spatial support with a reduced number of function57

evaluations, and it does not require extended precision for error reduction to be realized.58

To give context to what we will propose, let us review how we arrived at the cur-59

rently available and used one-sided filter given in [20]. The SIAC filter has its roots in60

the finite element superconvergence extraction technique for elliptic equations proposed61

by Bramble and Schatz [2], Mock and Lax [18], and Thomée [19]. The linear hyper-62

bolic system counterpart for discontinuous Galerkin (dG) methods was introduced by63

Cockburn, Luskin, Shu, and Süli [6]. The post-processing technique can enhance the64

accuracy order of dG approximations from k+1 to 2k+1 in the L2-norm. This symmet-65

ric post-processor uses 2k + 1 central B-splines of order k + 1. However, a limitation of66

this symmetric post-processor was that it required a symmetric amount of information67

around the location being post-processed. To overcome this problem, Ryan and Shu [14]68

used the same ideas in [6] to develop a one-sided post-processor that could be applied69

near boundaries and discontinuities in the exact solution. However, their results were70
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not very satisfactory as the errors had a stair-stepping-type structure, and the errors71

themselves were not reduced when the post-processor was applied to some dG solutions72

over coarse meshes. Later, van Slingerland, Ryan and Vuik [20] recast this formulation as73

a position-dependent SIAC filter by introducing a smooth shift function λ(x̄) that aided74

in redefining the filter nodes and helped to ease the errors from the stair-stepping-type75

structure. In an attempt to reduce the errors, the authors doubled to 4k+ 1 the number76

of central B-splines used in the filter when near a boundary. Further, they introduced a77

convex function that allowed for a smooth transition between boundary and symmetric78

regions.79

(a) Symmetric filter (b) Boundary filter

Figure 1.1: Comparison of (a) the symmetric filter centered around x = 0 when the kernel
is applied in the domain interior and (b) the position-dependent filter at the boundary
(represented by x = 0) before convolution with a quadratic approximation. Notice that
the boundary filter requires a larger spatial support, the amplitude is significantly larger
in magnitude and the filter does not emphasize the point x = 0, which is the point being
post-processed.

The results obtained with this strategy were good for linear hyperbolic equations80

over uniform meshes, but new challenges arose. Issues were manifest when the position-81

dependent filter was applied to equations whose solution lacked the (high) degree of82

regularity required for valid post-processing. In some cases, this filter applied to certain83

dG solutions gave worse results than when the original one-sided filter which used only84

2k + 1 central B-splines [14] was used. Furthermore, it was observed that in order for85

the superconvergence properties expressed in [20] to be fully realized, extended precision86

(beyond traditional double precision) had to be used. Lastly, the addition of more B-87

splines did not come without cost. Figure 1.1 shows the difference between the symmetric88

filter, which was introduced in [2, 6] and is applied in the domain interior, and the SRV89

filter when applied to the left boundary. The solution being filtered is at x = 0, and the90

filter extends into the domain. Upon examination, one sees that the position-dependent91

filter has a larger filter support and, by necessity, is not symmetric near the boundary.92

The vast discrepancy in spatial extent is due to the number of B-splines used: 2k + 193

in the symmetric case versus 4k + 1 in the one-sided case. The practical implication94

of this discrepancy is two-fold: (1) filtering at the boundary with the 4k + 1 filter is95

noticeably more costly (in terms of function evaluations) than filtering in the interior96

with the symmetric filter; and (2) the spatial extent of the one-sided filter forces one to97
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use the one-sided filter over a larger area/volume before being able to transition over to98

the symmetric filter.99

Recall that the SRV filter added two new features when attempting to improve the100

original Ryan and Shu one-sided filter: they added position-dependence to the filter and101

increased the number of B-splines used. In attempting to overcome the deficiencies of the102

filter in [20], we reverted to the 2k + 1 B-spline approach as in [14] but added position-103

dependence. Although going back to 2k + 1 B-splines does make the filter less costly104

in the function evaluation sense, unfortunately, this approach did not lead to a filter105

that reduced the errors in the way we had hoped (i.e. at least error-conserving, if not106

also superconvergent). We were forced to reconsider altogether how superconvergence is107

obtained in the SIAC filter context; we outline a sketch of our thinking chronologically108

in what follows.109

To conceive of a new one-sided filter containing all the benefits mentioned above with110

none of the deficiencies, we had to harken back to the fundamentals of SIAC filtering.111

We not only examined the filter itself (e.g., its construction, etc.), but also the error112

analysis in [6, 8]. From the analysis in [6, 8] we can conclude that the main source of113

the aforementioned conditioning issue (expressed in terms of the necessity for increased114

precision) is the constant term found in the expression for the error, which relies on the115

B-spline coefficients c
(2k+1,`)
γ in the SIAC filtering kernel116 ∑

γ

|c(2k+1,`)
γ |.

This quantity increases when the number of B-splines is increased. Further, the condition117

number of the system used to calculate c
(2k+1,`)
γ becomes quite large, on the order of 1024

118

for P4, increasing the possibility for round-off errors and thus requiring higher levels of119

precision and increasing inefficiency. As mentioned before, we attempted to still use120

2k + 1 position-dependent central B-splines, but this approach did not lead to error121

reduction. Indeed, the constant in the error term remains quite large at the boundaries.122

To reduce the error term, we concluded that one needed to add to the set of central B-123

splines the following: one non-central B-spline near the boundary. This general B-spline124

allows the filter to maintain the same spatial support throughout the domain, including125

boundary regions; it provides only a slight increase in computational cost as there are now126

2k+2 B-splines to evaluate as part of the filter; and possibly most importantly, it allows127

for error reduction. We note that our modifications to the previous filter (e.g., going128

beyond central B-splines) do come with a compromise: we must relax the assumption129

of obtaining superconvergence. Instead, we merely require a reduction in error and a130

smoother solution. This new filter remains globally superconvergent for k = 1.131

The new contributions of this paper are:132

• A new one-sided position-dependent SIAC filter that allows filtering up to bound-133

aries and that ameliorates the two principle deficiencies identified in the previous134

4k + 1 one-sided position-dependent filter, which we refer to as the SRV filter135

throughout this manuscript;136

• Examination and documentation of the reasoning concerning the constant term in137

the error analysis that led to the proposed work;138
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• Demonstration that for the linear polynomial case the filtered approximation is139

always superconvergent for a uniform mesh; and140

• Application of the scaled new filter to both smoothly-varying and non-uniform141

(random) meshes. In the smoothly-varying case, we prove and demonstrate that142

we obtain superconvergence. For the general non-unform case, we still observe143

significant improvement in the smoothness and an error reduction over the original144

dG solution, although full superconvergence is not always achieved. We show145

however that we remain accuracy-order conserving.146

These important results are presented as follows: first, as we present the SIAC filter in the147

context of discontinuous Galerkin approximations, we review the important properties148

of the dG method and the position-dependent SIAC filter in Section 2. In Section 3, we149

introduce the newly proposed filter and further establish some theoretical error estimates150

for the uniform and non-uniform (smoothly-varying) cases. We present the numerical151

results over uniform and non-uniform one-dimensional mesh structures in Section 4 and152

two-dimensional quadrilateral mesh structures in Section 5. Finally, conclusions are153

given in Section 6.154

2 Background155

In this section, we present the relevant background for understanding how to improve the156

Smoothness-Increasing Accuracy-Conserving filter, which includes the important prop-157

erties of the discontinuous Galerkin (dG) method that make the application of SIAC158

filtering attractive as well as the building blocks of SIAC filtering – B-splines and the159

symmetric filter.160

2.1 Important Properties of Discontinuous Galerkin Methods161

We frame the discussion of the properties of dG methods in the context of a one-162

dimensional problem as the ideas easily extend to multiple dimensions. Further details163

about the discontinuous Galerkin method can be found in [3, 4].164

Consider a one-dimensional hyperbolic equation such as

ut + a1ux + a0u = 0, x ∈ Ω = [xL, xR] (2.1)

u(x, 0) = u0(x). (2.2)

To obtain a dG approximation, we first decompose Ω as Ω =
⋃N
j=1 Ij where Ij =165

[xj− 1
2
, xj+ 1

2
] = [xj − 1

2
∆xj, xj + 1

2
∆xj]. Then Equation (2.1) is multiplied by a test166

function and integrated by parts. The test function is chosen from the same function167

space as the trial functions, a piecewise polynomial basis. The approximation can then168

be written as169

uh(x, t) =
k∑
`=0

u
(`)
j (t)ϕ

(`)
j (x), forx ∈ Ij.
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Herein, we choose the basis functions ϕ
(`)
j (x) = P (`)(2(x − xj)/∆xj), where P (`) is the170

Legendre polynomial of degree ` over [−1, 1]. For simplicity, throughout this paper we171

represent polynomials of degree less than or equal to ` by P`.172

In order to investigate the superconvergence property of the dG solution, it is impor-173

tant to look at the usual convergence rate of the dG method. By estimating the error174

of the dG solution, we obtain u − uh ∼ O(hk+1) in the L2-norm for sufficiently smooth175

initial data u0 [3]:176

‖u− uh‖0 ≤ C hk+1‖u0‖Hk+2 ,

where h is the measure of the elements, h = ∆x for a uniform mesh and h = max
j

∆xj for177

non-uniform meshes. Another useful property is the superconvergence of the dG solution178

in the negative-order norm [6], where we have179

‖∂αh (u− uh)‖−`,Ω ≤ C h2k+1 ‖∂αhu0‖k+1,Ω

for linear hyperbolic equations. This expression represents why accuracy enhancement180

through post-processing is possible. Unfortunately, this superconvergence property does181

not hold for non-uniform meshes when α ≥ 1, which makes extracting the supercon-182

vergence over non-uniform meshes challenging. However, we prove that, for certain183

non-uniform meshes containing smoothness in their construction (i.e. smoothly-varying184

meshes), the accuracy enhancement through the SIAC filtering is still possible.185

2.2 A Review of B-splines186

As the SIAC filter relies heavily on B-splines, here we review the definition of B-splines187

given by de Boor in [1] as well as central B-splines.188

Definition 2.1 (B-spline).189

Let t := (tj) be a nondecreasing sequence of real numbers that create a so-called knot190

sequence. The jth B-spline of order ` for the knot sequence t is denoted by Bj,`,t and191

is defined, for ` = 1, by the rule192

Bj,1,t(x) =

{
1, tj ≤ x < tj+1;
0, otherwise.

In particular, tj = tj+1 leads to Bj,1,t = 0. For ` > 1,

Bj,`,t(x) = ωj,l,tBj,`−1,t + (1− ωj+1,`,t)Bj+1,`−1,t, (2.3)

with193

ωj,`,t(x) =
x− tj

tj+`−1 − tj
.

This notation will be used to create a new kernel near the boundaries.194

The original symmetric filter [6, 15] relied on central B-splines of order ` whose knot
sequence was uniformly spaced and symmetrically distributed t = − `

2
,− `−2

2
, · · · , `−2

2
, `

2
.,

yielding the following recurrence relation for central B-splines:

ψ(1)(x) = χ[−1/2,1/2](x),

ψ(`+1)(x) = (ψ(1) ? ψ(`))(x) =
( `+1

2
+ x)ψ(`)(x+ 1

2
) + ( `+1

2
− x)ψ(`)(x− 1

2
)

`
, ` ≥ 1.

(2.4)
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For the purposes of this paper, it is convenient to relate the recurrence relation for195

central B-splines to the definition of general B-splines given in Definition 2.1. Relating196

the recurrence relation to the definition can be done by defining t = t0, . . . , t` to be197

a knot sequence, and denoting ψ
(`)
t (x) to be the 0th B-spline of order ` for the knot198

sequence t,199

ψ
(`)
t (x) = B0,`,t(x).

Note that the knot sequence t also represents the so-called breaks of the B-spline. The200

B-spline in the region [ti, ti+1), i = 0, . . . , ` − 1 is a polynomial of degree ` − 1, but201

in the entire support [t0, t`], the B-spline is a piecewise polynomial. When the knots202

(tj) are sampled in a symmetric and equidistant fashion, the B-spline is called a central203

B-spline. Notice that Definition (2.4) for a central B-spline is a subset of the general204

B-spline definition where the knots are equally-spaced. This new notation provides more205

flexibility than the previous central B-spline notation.206

2.3 Position-Dependent SIAC Filtering207

The original position-dependent Smoothness-Increasing Accuracy-Conserving filter is a208

convolution of the dG approximation with a central B-spline kernel209

u?(x̄) = (K
(2k+1,`)
h ? uh)(x̄). (2.5)

The convolution kernel is given by210

K(2k+1,`)(x) =
2k∑
γ=0

c(2k+1,`)
γ ψ(`)(x− xγ), (2.6)

where 2k+ 1 represents the number of central B-splines, ` the order of the B-splines and211

Kh = 1
h
K
(
x
h

)
. The coefficients c

(2k+1,`)
γ are obtained from the property that the kernel212

reproduces polynomials of degree ≤ 2k. For the symmetric central B-spline filter [6, 15],213

` = k + 1 and xγ = −k + γ, where k is the highest degree of the polynomial used in the214

dG approximation. More explicitly, the symmetric kernel is given by215

K(2k+1,`)(x) =
2k∑
γ=0

c(2k+1,`)
γ ψ(`)(x− (−k + γ)). (2.7)

Note that this kernel is by construction symmetric and uses an equal amount of in-216

formation from the neighborhood around the point being post-processed. While being217

symmetric is suitable in the interior domain when the function is smooth, it is not218

suitable for application near a boundary, or when the solution contains a discontinuity.219

The one-sided position-dependent SRV filter defined in [20] is named after its change220

of support according to the location of the point being post-processed. For example,221

near a boundary or discontinuity, a translation of the filter is done so that the support of222

the kernel remains inside the domain. Furthermore, in these regions, a greater number223

of central B-splines is required. Using more B-splines aids in improving the magnitude of224

the errors near the boundary, while allowing superconvergence. In addition, the authors225

in [20] increased the number of B-splines used in the construction of the kernel to be226
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4k + 1. The position-dependent (SRV) filter for elements near the boundaries can then227

be written as∗228

K(4k+1,`)(x) =
4k∑
γ=0

c(4k+1,`)
γ ψ(`)(x− xγ), (2.8)

where xγ depends on the location of the evaluation point x̄ used in Equation (2.5) and229

at the boundaries is given by230

xγ = −4k + γ + λ(x̄),

with231

λ(x̄) =

{
min{0,−4k+`

2
+ x̄−xL

h
}, x̄ ∈ [xL,

xL+xR

2
),

max{0, 4k+`
2

+ x̄−xR

h
}, x̄ ∈ [xL+xR

2
, xR].

(2.9)

Here xL and xR are the left and right boundaries, respectively.232

The authors chose 4k + 1 central B-splines because, in their experience, using fewer233

(central) B-splines was insufficient for enhancing the error. Furthermore, in order to234

provide a smooth transition from the boundary kernel to the interior kernel, a convex235

combination of the two kernels was used:236

u?h(x) = θ(x)
(
K

(2k+1,l)
h ? uh

)
(x) + (1− θ(x))

(
K

(4k+1,l)
h ? uh

)
(x), (2.10)

where θ(x) ∈ Ck−1 such that θ = 1 in the interior and θ = 0 in the boundary regions.237

This position-dependent filter demonstrated better behavior in terms of error than the238

original one-sided filter given by Ryan and Shu in [14]. Throughout the article, we will239

refer to the position-dependent filter using 4k + 1 central B-splines as the SRV filter.240

3 Proposed One-Sided Position-Dependent SIAC Fil-241

ter242

In this section, we propose a new one-sided position-depenent filter for application near243

boundaries. We first discuss the deficiencies in the current position-dependent SIAC244

filter. We then propose a new position dependent filter that ameliorates the deficiencies245

of the SRV filter; however, our new filter must make some compromises with regards246

to superconvergence (which will be discussed). Lastly, we prove that our new filter is247

globally superconvergent for k = 1 and superconvergent in the interior of the domain for248

k ≥ 2.249

3.1 Deficiencies of the Previous Position-Dependent SIAC Fil-250

ter251

The SRV filter was reported to reduce the errors when filtering near a boundary. How-252

ever, applying this filter to higher-order dG solutions (e.g., P4− or even P3−polynomials253

∗Note that the notation used in the current manuscript is slightly different from the notation used
in [20]. Instead of using r2 = 4k to denote the SRV filter we chose to use the number of B-splines
directly for the clarity of the discussion.
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in some cases) required using a multi-precision package (or at least quadruple precision)254

to reduce round-off error, leading to significantly increased computational time. Figure255

3.1 shows the significant round-off error near the boundaries when using double precision256

for post-processing the initial condition. The multi-precision requirement also makes the257

position-depdendent kernel [20], near the boundaries, unsuitable for GPU computing.258

(a) dG Error (b) Post-processed (SRV)

Figure 3.1: Comparison of the pointwise errors in log scale of the (a) original L2 projec-
tion solution, (b) the SRV filter in [20] for the 2D L2 projection using basis polynomials
of degree k = 4, mesh 80× 80. Double precision was used in these computations.

To discover why this challenge arises requires revisiting the foundations of the filter259

– in particular, the existing error estimates. The L2−error estimate given in [6],260

‖u− u?h‖0,Ω ≤ Ch2k+1, (3.1)

provides us insight into the cause of the issue by examining the constant C in more261

detail. The constant C depends on:262

κ(r+1,`) =
r∑

γ=0

|c(r+1,`)
γ |, (3.2)

where cγ denotes the kernel coefficients and the value of r depends on the number of263

B-splines used to construct the kernel. The kernel coefficients are obtained by ensuring264

that the kernel reproduces polynomials of degree r by the convolution:265

K(r+1,`)(x) ? (x)p = xp, p = 0, 1, . . . , r. (3.3)

We note that for the error estimates to hold, it is enough to ensure that the kernel266

reproduces polynomials up to degree 2k (for r ≥ 2k), although near the boundaries it267

was required that the kernel reproduces polynomials of degree 4k (r = 4k) in [8, 20].268

For filtering near the boundary, this value κ defined in Equation (3.2) is on the order269

of 105 for k = 3 and 107 for k = 4, as can be seen in Figure 3.3. This indicates one270

possible avenue (i.e., lowering κ) by which we might generate an improved filter. A271

second avenue is by investigating the round-off error stemming from the large condition272

number of the linear system generated to satisfy Equation (3.3) and solved to find the273

kernel coefficients. The condition number of the generated matrix is on the order of274

1024 for k = 4. This leads to significant round-off error (e.g., the rule of thumb in this275
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particular case being that 24 digits of accuracy are lost due to the conditioning of this276

system), hence requiring the use of high-precision / extended precision libraries for SIAC277

filtering to remain accurate (in both its construction and usage).278

The requirement of using extended precision in our computations increases the com-279

putational cost. In addition, the aforementioned discrepancy in the spatial extent of280

the filters due to the number of B-splines used – 2k + 1 in the symmetric case ver-281

sus 4k + 1 in the one-sided case – leads the boundary filter costing even more due to282

extra function evaluations. The extra computational cost has led us to reconsider the283

position-dependent filter and propose a better conditioned and less computationally in-284

tensive alternative.285

In order to apply SIAC filters near boundaries, we first no longer restrict ourselves to286

using only central B-splines. Secondly, we seek to maintain a constant support size for287

both the interior of the domain and the boundaries. The idea we propose is to add one288

general B-spline for boundary regions, which is located within the already defined sup-289

port size. Using general B-splines provides greater flexibility and improves the numerical290

conditions (eliminating the explicit need for precision beyond double precision). To intro-291

duce our new position-dependent one-sided SIAC filter, we discuss the one-dimensional292

case and how to modify the current definitions of the SIAC filter. Multi-dimensional293

SIAC filters are a tensor product of the one-dimensional case.294

3.2 The New Position-Dependent One-Sided Kernel295

Before we provide the definition of the new position-dependent one-sided kernel, we first296

introduce a new concept, that of a knot matrix. The definition of a knot matrix helps297

us to introduce the new position-dependent one-sided kernel in a concise and compact298

form. It also aids in demonstrating the differences between the new position-dependent299

kernel, the symmetric kernel and the SRV filter. Informally, the idea behind introducing300

a knot matrix is to exploit the definition of B-splines in terms of their corresponding301

knot sequence t := (tj), in the definition of the SIAC filter. In order to introduce a302

knot matrix, we will use the following notation: ψ
(`)
t (x) = B0,`,t(x).303

Definition 3.1 (Knot matrix).304

A knot matrix, T, is an n×m matrix such that the γ−th row, T(γ), of the matrix305

T is a knot sequence with ` + 1 elements (i.e., m = ` + 1) that are used to create the306

B-spline ψ
(`)
T(γ)(x). The number of rows n is specified based on the number of B-splines307

used to construct the kernel.308

To provide some context for needing the definition of a knot matrix, we first redefine309

some of the previous SIAC kernels discussed in terms of their knot matrices. Recall that310

the general definition of the SIAC kernel relies on r+1 central B-splines of order `. There-311

fore, we can use Definition 3.1 to rewrite the symmetric kernel given in Equation (2.7)312

in terms of a knot matrix as follows313

K
(2k+1,`)
Tsym

(x) =
2k∑
γ=0

c(2k+1,`)
γ ψ

(`)
Tsym(γ)(x), (3.4)

where Tsym in this relation is a (2k+ 1)× (`+ 1) matrix. Each row in Tsym corresponds314

to the knot sequence of one of the constituent B-splines in the symmetric kernel. More315
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specifically, the element of Tsym are defined as316

Tsym(i, j) = − `
2

+ j + i− k, i = 0, . . . , 2k; and j = 0, . . . , `.

For instance, for the first order symmetric SIAC kernel we have: ` = 2 and k = 1.317

Therefore, the corresponding knot matrix can be defined as318

Tsym =

 −2 −1 0
−1 0 1
0 1 2

 . (3.5)

The definition of a SIAC kernel in terms of a knot matrix can also be used to rewrite319

the original boundary filter [14], which uses only 2k + 1 central B-splines at the left320

boundary. The knot matrix Tone for this case is given by321

Tone =

 −4 −3 −2
−3 −2 −1
−2 −1 0

 . (3.6)

Now we can define our new position-dependent one-sided kernel by generating a knot322

matrix. The new position-dependent one-sided kernel consists of r + 1 = 2k + 1 central323

B-splines and one general B-spline, and hence the knot matrix is of size (2k+2)×(`+1).324

At a high-level, using the scaling of the kernel, the new position-dependent one-sided325

kernel can be written as326

K
(r+1,`)
hT (x) =

r+1∑
γ=0

c(r+1,`)
γ ψ

(`)
hT(γ)(x), (3.7)

where T(γ) represents the γ-th row of the knot matrix T, which is the knot sequence327

T (γ, 0), . . . , T (γ, `). For the central B-spline, γ = 0, . . . , 2k and328

ψ
(`)
hT(γ)(x) =

1

h
ψ

(`)
T(γ)

(x
h

)
.

The added B-spline is a monomial defined as329

ψ
(`)
hT(r+1)(x) =

1

h
x`−1

T(r+1)

(x
h

)
,

where330

x`−1
T(r+1) =

{
(x− T (r + 1, 0))`−1 , T (r + 1, 0) ≤ x ≤ T (r + 1, `);
0, otherwise.

Therefore near the left boundary, the kernel in Equation (3.7) can be rewritten as331

K
(r+1,`)
hT (x) =

r∑
γ=0

c(r+1,`)
γ ψ

(`)
hT(γ)(x)︸ ︷︷ ︸

Position-dependent kernel with r = 2k + 1 central B-splines

+ c
(r+1,`)
r+1 ψ

(`)
hT(r+1)(x)︸ ︷︷ ︸

General B-spline

. (3.8)
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The kernel coefficients, c
(r+1,`)
γ , γ = 0, . . . , r+ 1 are obtained through reproducing poly-332

nomials of degree up to r + 1. We have imposed further restrictions on the knot matrix333

for the definition of the new position-dependent one-sided kernel. First, for convenience334

we require335

T (γ, 0) ≤ T (γ, 1) ≤ · · · ≤ T (γ, `), for γ = 0, . . . , r,+1

and336

T (γ + 1, 0) ≤ T (γ, `), for γ = 0, . . . , r.

Second, the knot matrix, T, should satisfy337

T (0, 0) ≥ x̄− xR
h

and T (r, `) ≤ x̄− xL
h

,

where h is the element size in a uniform mesh. This requirement is derived from the338

support of the B-spline as well as the support needing to remain inside the domain.339

Recall that the support of the B-spline ψ
(`)
T(γ) is [T (γ, 0), T (γ, `)], and the support of the340

kernel is [T (0, 0), T (r, `)]. For any x̄ ∈ [xL, xR], the post-processed solution at point x̄341

can then be written as342

u?(x̄) =
(
K

(r+1,`)
hT ?uh

)
(x̄) =

∫ ∞
−∞

K
(r+1,`)
hT (x̄−ξ)uh(ξ)dξ =

∫ x̄−hT (0,0)

x̄−hT (r,`)

K
(r+1,`)
hT (x̄−ξ)uh(ξ)dξ,

(3.9)
where hT represents the scaled knot matrix. For the boundary regions, we force the343

interval [x̄ − hT (r, `), x̄ − hT (0, 0)] to be inside the domain Ω = [xL, xR]. This implies344

that345

xL ≤ x̄− hT (r, `), x̄− hT (0, 0) ≤ xR,

and hence the requirement of T (0, 0) ≥ x̄−xR

h
and T (r, `) ≤ x̄−xL

h
. Finally, we require

that the kernel remain as symmetric as possible. This means the knots should be chosen
as

Left : T ← T −
(
T (r, `)− x̄− xL

h

)
, for

x̄− xL
h

<
3k + 1

2
, (3.10)

Right : T ← T −
(
T (0, 0)− x̄− xR

h

)
, for

xR − x̄
h

<
3k + 1

2
, (3.11)

This shifting will increase the error and it is therefore still necessary to increase the346

number of B-splines used in the kernel.347

Because the symmetric filter yields superconvergence results, we wish to retain the348

original form of the kernel as much as possible. Near the boundary, where the symmetric349

filter cannot be applied, we keep the 2k + 1 shifted central B-splines and add only one350

general B-spline. To avoid increasing the spatial support of the filter, we will choose the351

knots of this general B-spline dependent upon the knots of the 2k + 1 central B-splines352

in the following way: near the left boundary, we let the first 2k + 1 B-splines be central353

B-splines whereas the last B-spline will be a general spline. The elements of the knot354

matrix are then given by355

T (i, j) =


−`− r + j + i+ x̄−xL

h
, 0 ≤ i ≤ r, 0 ≤ j ≤ `;

x̄−xL

h
− 1, i = r + 1, j = 0;

x̄−xL

h
, i = r + 1, j = 1, . . . , `.

(3.12)
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Similarly, we can design the new kernel near the right boundary, where the general356

B-spline is given by357

ψ
(`)
T(0)(x) = x`−1

T(0) =

{
(T (0, `)− x)`−1 , T (0, 0) ≤ x ≤ T (r + 1, `);

0, otherwise.

The elements of the knot matrix for the right boundary kernel are defined as358

T (i, j) =


x̄−xR

h
, i = 0, j = 0, . . . , `− 1;

x̄−xR

h
+ 1, i = 0, j = `;

j + i− 1 + x̄−xR

h
, 1 ≤ i ≤ r + 1, 0 ≤ j ≤ `,

(3.13)

and the form of the kernel is then359

K
(r+1,`)
hT (x) = c

(r+1,`)
0 ψ

(`)
hT(0)(x) +

r+1∑
γ=1

c(r+1,`)
γ ψ

(`)
hT(γ)(x). (3.14)

We note that this “extra” B-spline is only used when x̄−xL

h
< 3k+1

2
or xR−x̄

h
< 3k+1

2
,360

otherwise the symmetric central B-spline kernel is used.361

We present a concrete example for the P1 case with ` = 2. In this case, the knot362

matrices for our newly proposed filter at the left and right boundaries are363

TLeft =


−4 −3 −2
−3 −2 −1
−2 −1 0
−1 0 0

 , TRight =


0 0 1
0 1 2
1 2 3
2 3 4

 . (3.15)

These new knot matrices are 4 × 3 matrices where, in the case of the filter for the left364

boundary, the first three rows express the knots of the three central B-splines and the365

last row expresses the knots of the general B-spline. For the filter applied to the right366

boundary, the first row expresses the knots of the general B-spline and the last three367

rows express the knots of the central B-splines.368

If we use the same form of the knot matrix to express the SRV kernel introduced in369

[20] at the left boundary for k = 1, we would have370

TSRV =


−6 −5 −4
−5 −4 −3
−4 −3 −2
−3 −2 −1
−2 −1 0

 . (3.16)

Comparing the new knot matrix with the one used to obtain the SRV filter, we can see371

that they have the same number of columns, which indicates that they use the same372

order of B-splines. There are fewer rows in the new matrix (2k + 2) than the number373

of rows from the original position-dependent filter (4k+ 1). This indicates that the new374

filter uses fewer B-splines than the SRV filter.375

To compare the new filter and the SRV filter, we plot the kernels used at the left376

boundary for k = 2. Figure 3.2 illustrates that the new position-dependent SIAC kernel377
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places more weight on the evaluation point than the SRV kernel, and the SRV kernel378

has a significantly larger magnitude and support which we observed to cause problems,379

especially for higher-order polynomials (such as P3 or P4). For this example, using the380

filter for quadratic approximations, the scaling of the original position-dependent SIAC381

filter has a range from −150 to 150 versus −7.5 to 7.5 for the newly proposed filter.382

(a) Boundary Kernel (SRV) (b) Boundary Kernel (New)

Figure 3.2: Comparison of the two boundary filters before convolution. (a) The SRV
kernel and (b) the new kernel at the boundary with k = 2. The boundary is represented
by x = 0. The new filter has reduced support and magnitude.

3.3 Theoretical Results in the Uniform Case383

The previous section introduced a new filter to reduce the errors of dG approximations384

while attempting to ameliorate the issues concerning the old filter. In this section, we385

discuss the theoretical results for the newly defined boundary kernel. Specifically, for386

k = 1 it is globally superconvergent of order three. For higher degree polynomials, it is387

possible to obtain superconvergence only in the interior of the domain.388

Recall from Equation (3.7) that the new one-sided scaled kernel has the form389

K
(r+1,`)
hT (x) =

r+1∑
γ=0

c(r+1,`)
γ ψ

(`)
hT(γ)(x). (3.17)

In the interior of the domain the symmetric SIAC kernel is used which consists of 2k+ 1390

central B-splines391

K
(2k+1,`)
hT (x) =

2k∑
γ=0

c(2k+1,`)
γ ψ

(`)
hT(γ)(x), (3.18)

and, near the left boundary the new one-sided kernel can be written as392

K
(r+1,`)
hT (x) =

(
r∑

γ=0

c(r+1,`)
γ ψ

(`)
hT(γ)(x)

)
+ c

(r+1,`)
r+1 ψ

(`)
hT(r+1)(x), r = 2k

where 2k + 1 central B-splines are used together with one general B-spline. The scaled393

kernel K
(r+1,`)
hT has the property that the convolution K

(r+1,`)
hT ? uh only uses information394

inside the domain Ω.395
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Theorem 3.1. Let u be the exact solution to the linear hyperbolic equation

ut +
d∑
i=1

Aiuxi
+ A0u = 0, x ∈ Ω× (0, T ], (3.19)

u(x, 0) = u0(x), x ∈ Ω,

where the initial condition u0(x) is a sufficiently smooth function. Here, Ω ⊂ Rd. Let uh396

be the numerical solution to Equation (3.19), obtained using a discontinuous Galerkin397

scheme with an upwind flux over a uniform mesh with mesh spacing h. Let u?h(x̄) =398

(K
(r+1,`)
hT ? uh)(x̄) be the solution obtained by applying our newly proposed filter which399

uses r + 1 = 2k + 1 central B-splines of order ` = k + 1 and one general B-spline in400

boundary regions. Then the SIAC-filtered dG solution has the following properties:401

(i) ‖(u − u?h)(x̄)‖0,Ω ≤ C h3 for k = 1. That is, u?h(x̄) is globally superconvergent of402

order three for linear approximations.403

(ii) ‖(u−u?h)(x̄)‖0,Ω\supp{Ks} ≤ C hr+1 when r+1 ≤ 2k+1 central B-splines are used in404

the kernel. Here supp{Ks} represents the support of the symmetric kernel. Thus,405

u?h(x̄) is superconvergent in the interior of the domain.406

(iii) ‖(u− u?h)(x̄)‖0,Ω ≤ C hk+1 globally.407

Proof. We neglect the proof of properties (i) and (ii) as they are similar to the proofs in408

[6] and [8]. Instead we concentrate on ‖(u− u?h)(x̄)‖ ≤ Chk+1, which is rather straight-409

forward.410

Consider the one-dimensional case (d = 1). Then the error can be written as411

‖u−K(r+1,`)
hT ? uh‖0,Ω ≤ Θh,1 + Θh,2,

where412

Θh,1 = ‖u−K(r+1,`)
hT ? u‖0,Ω and Θh,2 = ‖K(r+1,`)

hT ? (u− uh)‖0,Ω.

The proof of higher order convergence for the first term, ΘH,1, is the same as in [6] as413

the requirement on KhT does not change (reproduction polynomials up to degree r+ 1).414

This means that415

Θh,1 ≤
hr+1

(r + 1)!
C1|u|r+1,Ω.

Now consider the second term, Θh,2. Without loss of generality, we consider the filter416

for the left boundary in order to estimate Θh,2. The proofs for the filter in the interior417

and right boundary are similar. We use the form of the kernel given in Equation (3.8),418

which decomposes the new filter into two parts: 2k+ 1 central B-splines and one general419

B-spline. That is, we write420

K
(r+1,`)
hT (x) =

(
r∑

γ=0

c(r+1,`)
γ ψ

(`)
hT(γ)(x)

)
︸ ︷︷ ︸

central B-splines

+ c
(r+1,`)
r+1 ψ

(`)
hT(r+1)(x)︸ ︷︷ ︸

general B-spline

.
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Setting e(x) = u(x)− uh(x), then

Θh,2 = ‖K(r+1,`)
hT ? e‖0,Ω1 ≤ ‖K

(r+1,`)
hT ‖L1‖e‖0 ≤ sup

x∈Ω

(
r∑

γ=0

|c(r+1,`)
γ |+

|c(r+1,`)
2k+1 |
`

)
‖e‖0.

Hence421

Θh,2 ≤ C sup
x∈Ω

(
r∑

γ=0

|c(r+1,`)
γ |+

|c(r+1,`)
2k+1 |
`

)
hk+1.

Remark 3.1. Note that in this analysis we steered away from the negative-order norm422

argument. Technically, the terms involving the central B-splines have a convergence rate423

of r+ 1 ≤ 2k+ 1 as given in [6, 8]. It is the new addition, the term involving the general424

B-spline that presents the limitation and reduces the convergence rate to that of the dG425

approximation itself (i.e. is accuracy-order conserving).426

To extend this to the multidimensional case (d > 1), given an arbitrary x = (x1, . . . , xd) ∈427

Rd, we set428

ψ
(`)
T(γ)(x) =

d∏
i=1

ψ
(`)
T(γ)(xi).

The filter for the multidimensional space considered is of the form429

K
(r+1,`)
hT (x) =

r+1∑
γ=0

c(r+1,`)
γ ψ

(`)
hT(γ)(x),

where the coefficients c
(`)
γ are tensor products of the one-dimensional coefficients. To430

emphasize the general B-spline used near the boundary, we assume, without loss of431

generality, that in the xk1 , . . . , xkd0
directions we need the general B-spline, where 0 ≤432

d0 ≤ d. Then433

ψ
(`)
hT(2k+1) =

d0∏
i=1

ψ
(`)
hT(2k+1)(xki

).

By applying the same idea we used for the one-dimensional case, the theorem is also434

true for multi-dimensional case.435

We note that the constant in the final estimation is a product of two other constants,436

one of them is determined by the filter (
r∑

γ=0

|c(r+1,`)
γ | +

|c(r+1,`)
r+1 |
`

) and the other one is437

determined by the dG approximation. To further illustrate the necessity of examining438

the constant in the error term which contributed by the filter, we provide Figure 3.3.439

This figure demonstrates the difference between
r∑

γ=0

|c(r+1,`)
γ | for the previously introduced440

filters and our new filter in which the constant gets modified to
r∑

γ=0

|c(r+1,`)
γ | + |c(r+1,`)

r+1 |
`

.441

In Figure 3.3, one can clearly see that by adding a general spline to the r + 1 central442

B-splines, we are able, in the boundary regions, to reduce the constant in the error term443

significantly.444
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(a) P3 (b) P4

Figure 3.3: Plots demonstrating the effect of the coefficients on the error estimate for (a)

P3− and (b) P4−polynomials. Shown is
r∑

γ=0

|c(r+1,`)
γ | using 2k+ 1 central B-splines (blue

dashed), using 4k + 1 central B-splines (green dash dot-dot) and
r∑

γ=0

|c(r+1,`)
γ | + |c(r+1,`)

r+1 |
`

for the new filter (red line).

3.4 Theoretical Results in the Non-Uniform (Smoothly-Varying)445

Case446

In this section, we give a theoretical interpretation to the computational results presented447

in [7]. This is done by using the newly proposed filter for non-uniform meshes and show-448

ing that the new position-dependent filter maintains the superconvergence property in449

the interior of the domain for smoothly-varying meshes and is accuracy order conserving450

near the boundaries for non-uniform meshes. We begin by defining what we mean by a451

smoothly-varying mesh.452

Definition 3.2 (Smoothly-Varying Mesh).453

Let ξ be a variable defined over a uniform mesh on domain Ω ⊂ R, then a smoothly-454

varying mesh defined over Ω is a non-uniform mesh whose variable x satisfies455

x = ξ + f(ξ), (3.20)

where f is a sufficiently smooth function and satisfies

f ′(ξ) > −1, ξ ∈ ∂Ω⇐⇒ ξ + f(ξ) ∈ ∂Ω.

For example, we can choose f(ξ) = 0.5 sin(ξ) over [0, 2π]. The multi-dimensional defi-456

nition can be defined in the same way.457

Lemma 3.2. Let u be the exact solution of a linear hyperbolic equation

ut +
d∑

n=1

Anuxn + A0u = 0, x ∈ Ω× (0, T ], (3.21)

with a smooth enough initial function and Ω ⊂ Rd. Let ξ be the variable for the uniform
mesh defined on Ω with size h, and x be the variable of a smoothly-varying mesh defined
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in (3.20). Let uh(ξ) be the numerical solution to Equation (3.21) over uniform mesh ξ,
and uh(x) be the approximation over smoothly-varying mesh x, both of them obtained by
using the discontinuous Galerkin scheme. Then the post-processed solution obtained by
applying SIAC filter Kh(ξ) for uh(ξ) and KH(x) for uh(x) with a proper scaling H, are
related by

‖u(x)−KH ? uh(x)‖0,Ω ≤ C‖u(ξ)−Kh ? uh(ξ)‖0,Ω.

Here, the filter K can be any filter we mentioned in the previous section (symmetric filter,458

the original position-dependent filter, and newly proposed position-dependent filter). Note459

that this means that we obtain the full 2k+ 1 superconvergence rate behavior for both the460

SRV and symmetric filters.461

Proof. The proof is straightforward. If the scaling H is properly chosen, a simple map-
ping can be done from the smoothly-varying mesh to the corresponding uniform mesh.
The result holds if the Jacobian is bounded (from the definition of smoothly-varying
mesh).

‖u(x)−KH ? uh(x)‖2
0,Ω =

∫
Ω

(u(x)−KH ? uh(x))2 dx

x→ξ
=

∫
Ω̃

(u(ξ)− u?h(ξ))
2 (1 + f ′(ξ))dξ ≤ ‖u(ξ)−Kh ? uh(ξ)‖2

0,Ω̃
·max |1 + f ′(ξ)|.

According to the definition of smoothly-varying mesh, Ω = Ω̃, we have

‖u(x)−KH ? uh(x)‖0,Ω ≤ C‖u(ξ)−Kh ? uh(ξ)‖0,Ω,

where C =
(

max
Ω
|1 + f ′|

) 1
2
.462

Remark 3.2. The proof seems obvious, but it is important to choose a proper scaling
for H in the computations. Due to the smoothness and computational cost requirements,
we need to keep H constant when treating points within the same element. Under this
condition, the natural choice is H = ∆xj when post-processing the element Ij. It is now
easy to see that there exists a c in the element Ij, such that

H = ∆xj = h(1 + f ′(c)).

Remark 3.3. Note that Theorem 3.1 (iii) still holds for generalized non-uniform meshes.463

This is due to the proof not relying on the properties (i.e. structure) of the mesh.464

We have now shown that superconvergence can be achieved for interior solutions over465

smoothly-varying meshes. In the subsequent sections, we present numerical results that466

confirm our results on uniform and non-uniform (smoothly-varying) meshes.467

4 Numerical Results for One Dimension468

The previous section introduced a new SIAC kernel by adding a general B-spline to a469

modified central B-spline kernel. The addition of a general B-spline helps to maintain a470

consistent support size for the kernel throughout the domain and eliminates the need for471
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a multi-precision package. This section illustrates the performance of the new position-472

dependent SIAC filter on one-dimensional uniform and non-uniform (smoothly-varying473

and random) meshes. We compare our results to the SRV filter [20]. In order to provide474

a fair comparison between the SRV and new filters, we mainly show the results using475

quadruple precision for a few one-dimensional cases. Furthermore, in order to reduce476

the computational cost of the filter that uses 4k + 1 central B-splines, we neglect to477

implement the convex combination described in Equation (2.10). This is not necessary478

for the new filter, and was implemented in the SRV filter to ensure the transition from479

the one-sided filter to the symmetric filter was smooth.480

This is the first time that the position-dependent filters have been tested on non-481

uniform meshes. Although tests were performed using scalings of H = ∆xj and H =482

max ∆xj, we only present the results using a scaling of H = ∆xj. This scaling provides483

better results in boundary regions, which is one of the motivations of this paper. We484

note that the errors produced using a scaling of H = max ∆xj are quite similar and often485

produce smoother errors in the interior of the domain for smoothly-varying meshes.486

Remark 4.1. The SRV filter requires using quadruple precision in the computations487

to eliminate round-off error, which typically involves more computational effort than488

natively-supported double precision. The new filter only requires double precision. In489

order to give a fair comparison between the SRV filter and the new filter, for the one-490

dimensional examples we have used quadruple precision to maintain a consistent compu-491

tational environment.492

4.1 Linear Transport Equation Over a Uniform Mesh493

The first equation that we consider is a linear hyperbolic equation with periodic boundary
conditions,

ut + ux = 0, (x, t) ∈ [0, 1]× (0, T ] (4.1)

u(x, 0) = sin(2πx), x ∈ [0, 1]. (4.2)

The exact solution is a periodic translation of the sine function,494

u(x, t) = sin(2π(x− t)).

For T = 0, this is simply the L2-projection of the initial condition. Here, we consider a495

final time of T = 1 and note that we expect similar results at later times.496

The discontinuous Galerkin approximation error and the position-dependent SIAC497

filtered error results are shown in Table 4.1 for both quadruple precision and double498

precision. Using quadruple precision, both filters reduce the errors in the post-processed499

solution, although the new filter has only a minor reduction in the quality of the error.500

However, using double precision only the new filter can maintain this error reduction501

for P3− and P4−polynomials. We note that we concentrate on the results for P3−502

and P4−polynomials as there is no noticeable difference between double and quadruple503

precision for P1− and P2−polynomials.504

The pointwise error plots are given in Figures 4.1 and 4.2. When using quadruple505

precision as in Figure 4.1, the SRV filter can reduce the error of the dG solution better506
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than the new filter for fine meshes. However, it uses 2k − 1 more B-splines than the507

newly generated filter. This difference is noticeable when using double precision, which508

is almost ten times faster than using quadruple precision for P3 and P4. For such examples509

the new filter performs better both computationally and numerically (in terms of error).510

Table 4.1 shows that the SRV filter can only reduce the error for fine meshes when using511

P4 piecewise polynomials. The new filter performs as good as when using quadruple512

precision and reduces the error magnitude at a reduced computational cost.513

Additionally, we point out that the accuracy of the SRV filter depends on (1) having514

higher regularity of C4k+1, (2) a well-resolved dG solution, and (3) a wide enough support515

(at least 5k + 1 elements). The same phenomenon will also be observed in the following516

tests such as for a nonlinear equation. For the new filter, the support size remains the517

same throughout the domain – 3k+ 1 elements – and a higher degree of regularity is not518

necessary.519

P3

dG Error Post-processed (SRV) Post-processed (New)

P4

Figure 4.1: Comparison of the pointwise errors in log scale of the original dG solution
(left column), the SRV filter (middle column) and the new filter (right column) for the
linear transport equation over uniform meshes using polynomials of degree k = 3, 4 (top
and bottom rows, respectively). Quadruple precision was used in the computations.

4.2 Non-Uniform Meshes520

We begin by defining three non-uniform meshes that are used in the numerical examples.521

The meshes tested are:522

Mesh 4.2. Smoothly-Varying Mesh with Periodicity. The first mesh is a simple smoothly-523

varying mesh. It is defined by x = ξ + b sin(ξ), where ξ is a uniform mesh variable and524

b = 0.5 as in [7]. We note that the tests were also performed for different values of b;525
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P3

dG Error Post-processed (SRV) Post-processed (New)

P4

Figure 4.2: Comparison of the pointwise errors in log scale of the original dG solution
(left column), the SRV filter (middle column) and the new filter (right column) for the
linear transport equation over uniform meshes using polynomials of degree k = 3, 4 (top
and bottom rows, respectively). Double precision was used in the computations.

similar results were attained in all cases. This mesh has the nice feature that it is a526

periodic mesh and that the elements near the boundaries have a larger element size.527

Mesh 4.3. Smooth Polynomial Mesh. The second mesh is also a smoothly-varying mesh528

but does not have a periodic structure. It is defined by x = ξ − 0.05(ξ − 2π)ξ. For this529

mesh, the size of elements gradually decrease from left to right.530

Mesh 4.4. Randomly-Varying Mesh. The third mesh is a mesh with randomly distributed531

elements. The element size varies between [0.8h, 1.2h], where h is the uniform mesh size.532

We will now present numerical results demonstrating the usefulness of the position-533

dependent SIAC filter in [20] and our new one-sided SIAC filter for the aforementioned534

meshes.535

4.3 Linear Transport Equation536

The first example that we consider is a linear transport equation,

ut + ux = 0, (x, t) ∈ [0, 2π]× (0, T ] (4.3)

u(x, 0) = sin(x),

with periodic boundary conditions and the errors calculated at T = 2π. We calculate537

the discontinuous Galerkin approximations for this equation over the three different538

non-uniform meshes (Mesh 4.2, Mesh 4.3 and Mesh 4.4). The approximation is then539
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Table 4.1: L2− and L∞−errors for the dG approximation together with the SRV and
new filters for the linear transport equation using polynomials of degree k = 1, . . . , 4
(quadruple precision) and k = 3, 4 (double precision) over uniform meshes.

dG SRV Filter New Filter
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

Quadruple precision
P1

20 4.02E-03 – 1.45E-02 – 1.98E-03 – 2.80E-03 – 1.98E-03 – 2.80E-03 –
40 1.02E-03 1.97 3.82E-03 1.92 2.44E-04 3.02 3.46E-04 3.02 2.44E-04 3.02 3.46E-04 3.02
80 2.58E-04 1.99 9.79E-04 1.96 3.02E-05 3.01 4.28E-05 3.01 3.03E-05 3.01 4.28E-05 3.01

P2

20 1.07E-04 – 3.67E-04 – 3.73E-06 – 5.82E-06 – 1.21E-05 – 8.27E-05 –
40 1.34E-05 3.00 4.62E-05 2.99 9.42E-08 5.31 1.34E-07 5.44 5.52E-07 4.45 5.31E-06 3.96
80 1.67E-06 3.00 5.78E-06 3.00 2.48E-09 5.24 3.52E-09 5.26 4.79E-08 3.53 6.19E-07 3.10

P3

20 2.06E-06 – 6.04E-06 – 1.53E-07 – 1.02E-06 – 2.30E-06 – 8.71E-06 –
40 1.29E-07 4.00 3.80E-07 3.99 2.70E-10 9.15 4.00E-10 11.32 4.14E-09 9.12 2.27E-08 8.58
80 8.07E-09 4.00 2.38E-08 4.00 1.22E-12 7.79 1.73E-12 7.85 8.18E-12 8.98 1.20E-10 7.56

P4

20 3.19E-08 – 7.02E-08 – 7.53E-03 – 7.33E-02 – 5.31E-07 – 1.99E-06 –
40 1.00E-09 4.99 2.25E-09 4.97 1.99E-12 31.82 3.12E-12 34.45 2.97E-10 10.80 1.58E-09 10.30
80 3.14E-11 5.00 7.14E-11 4.98 2.23E-15 9.80 3.19E-15 9.93 1.37E-13 11.08 1.55E-12 9.99

Double precision
P3

20 2.06E-06 – 6.04E-06 – 1.53E-07 – 1.02E-06 – 2.30E-06 – 8.71E-06 –
40 1.29E-07 4.00 3.80E-07 3.99 2.70E-10 9.15 4.00E-10 11.32 4.14E-09 9.12 2.27E-08 8.58
80 8.07E-09 4.00 2.38E-08 4.00 1.25E-12 7.75 3.85E-12 6.70 8.18E-12 8.98 1.20E-10 7.56

P4

20 3.19E-08 – 7.02E-08 – 7.53E-03 – 7.33E-02 – 5.31E-07 – 1.99E-06 –
40 1.00E-09 4.99 2.25E-09 4.97 3.97E-11 27.50 6.14E-10 26.83 2.97E-10 10.80 1.58E-09 10.30
80 3.14E-11 5.00 7.14E-11 4.98 1.48E-11 1.42 3.28E-10 0.90 1.37E-13 11.08 1.55E-12 9.99

post-processed at the final time in order to analyze the numerical errors. We note that540

although the boundary conditions for the equation are periodic, in the boundary regions541

we implement the one-sided filter in [20] as the SRV filter and compare them with the542

new filter presented above.543

The pointwise error plots for the periodically smoothly varying mesh are given in Fig-544

ure 4.3 with the corresponding errors presented in Table 4.2. In the boundary regions,545

the SRV filter behaves slightly better for coarse meshes than the new filter. However, we546

recall that this filter essentially doubles the support in the boundary regions. Addition-547

ally, we see that the new filter has a higher convergence rate than k + 1 which is better548

than the theoretically predicted convergence rate.549

For the smooth polynomial mesh 4.3 (without a periodic property), the results of550

using the scaling of H = ∆xj are presented in Figure 4.4 and Table 4.2. Unlike the551

previous example, without the periodic property, the SRV filter leads to significantly552

worse performance. The SRV filter no longer enhances the accuracy order and has larger553

errors near the boundaries. On the other hand, the new filter still improves accuracy554

when the mesh is sufficiently refined (N = 40). Numerically the new filter obtains555

higher accuracy order than k + 1. For higher order polynomials, P3 and P4, we see that556

it achieves accuracy order of 2k + 1, but this is not theoretically guaranteed.557

Lastly, the filters were applied to dG solutions over a randomly distributed mesh.558

For this randomly-varying mesh, the new filter again reduces the errors except for a very559
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dG Error Post-processed (SRV) Post-processed (New)

P3

P4

Figure 4.3: Comparison of the pointwise errors in log scale of the original dG solution
(left column), the SRV filter (middle column) and the new filter (right column) for
the linear transport equation (4.3) over smoothly-varying mesh (Mesh 4.2). The kernel
scaling H = ∆xj and quadruple precision was used in the computations.

coarse mesh (see Table 4.2). The accuracy order is decreasing compared to smoothly-560

varying mesh examples, but it is still higher than k + 1. Unlike the smoothly-varying561

mesh, there are more oscillations in the errors (Figure 4.5). However, the oscillations are562

still reduced compared to the dG solutions. Note that the SRV filter does not improve563

the errors from the dG solution at all, and are even worse. This suggests that the SRV564

filter may be only suitable for uniform meshes.565

4.4 Variable Coefficient Equation566

In this example, we consider the variable coefficient equation:

ut + (au)x = f, x ∈ [0, 2π]× (0, T ] (4.4)

a(x, t) = 2 + sin(x+ t),

u(x, 0) = sin(x),

at T = 2π. Similar to the previous constant coefficient equation (4.3), we also test this567

variable coefficient equation (4.4) over three different non-uniform meshes (Mesh 4.2,568

Mesh 4.3 and Mesh 4.4). Since the results are similar to the previous linear transport569

equation (4.3), here we do not re-describe the detail of the results. We only note that570

the results of variable coefficient equation have more wiggles than the constant coeffi-571

cient equation. This may be an important issue in extending these ideas to nonlinear572

equations. To save space, we only show the P3 and P4 results, P1 and P2 are similar to573

the previous examples.574
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dG Error Post-processed (SRV) Post-processed (New)
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P4

Figure 4.4: Comparison of the pointwise errors in log scale of the original dG solution
(left column), the SRV filter (middle column) and the new filter (right column) for the
linear transport equation (4.3) over smooth polynomial mesh (Mesh 4.3). The kernel
scaling H = ∆xj and quadruple precision was used in the computations.

Figure 4.6 shows the pointwise error plots for the dG and post-processed approx-575

imations over a smoothly-varying mesh. The corresponding errors are given in Table576

4.3. The results are similar to the linear transport equation. The two filters perform577

similarly, with the new filter being more computationally efficient.578

For the smooth polynomial mesh 4.3, we show the pointwise error plots in Figure579

4.7. The corresponding errors are given in Table 4.3. In this example we see that the580

new filter behaves better at the boundaries than the SRV filter. This may be due to the581

more compact kernel support size.582

Finally, we test the variable coefficient equation (4.4) over randomly-varying mesh583

4.4. Similar to the linear transport example, the pointwise errors plots (Figure 4.8) show584

more oscillations than the smoothly-varying mesh examples. We again see the new filter585

has better errors at the boundaries than the SRV filter.586
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dG Error Post-processed (SRV) Post-processed (New)
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Figure 4.5: Comparison of the pointwise errors in log scale of the original dG solution
(left column), the SRV filter (middle column) and the new filter (right column) for the
linear transport equation (4.3) over randomly-varying Mesh 4.4. The kernel scaling
H = ∆xj and quadruple precision was used in the computations.

5 Numerical Results for Two Dimensions587

5.1 Linear Transport Equation Over a Uniform Mesh588

To demonstrate the performance of the new filter in two-dimensions, we consider the
solution to a linear transport equation,

ut + ux + uy = 0, (x, y) ∈ [0, 2π]× [0, 2π], (5.1)

u(x, y, 0) = sin(x+ y) (5.2)

at T = 2π. Due to the computational cost to obtain the post-processed solution, we589

only present the 2D results using double precision. Table 5.1 shows that the accuracy is590

effected by the round-off error, especially for the previous one-sided position-dependent591

filter. Such significant round-off error appears to destroy the accuracy. Although the592

error magnitude near the boundaries is larger than the regions where a symmetric filter593

is used, the new filter reduces the error and improves smoothness of the dG solution.594

5.2 Linear Transport Equation Over a Non-Uniform Mesh595

For the 2D example, we consider the same linear transport equation as above, now over596

non-uniform meshes. The non-uniform meshes we consider are rectangular grids, which597

the tessellations on x− and y− directions are generated by the same way as the Mesh598

4.2, Mesh 4.3 and Mesh 4.4. Because of computational cost, we only use double precision599
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Figure 4.6: Comparison of the pointwise errors in log scale of the original dG solution
(left column), the SRV filter (middle column) and the new filter (right column) for the
variable coefficient equation (4.4) over smoothly-varying mesh (Mesh 4.2). The kernel
scaling H = ∆xj and quadruple precision was used in the computations.

in the two-dimensional computations. Unlike the one-dimensional example, the results600

of the SRV filter are significantly affected by the round-off error, especially near the601

four corners of the grids. This round-off error completely destroys the accuracy and602

smoothness near the boundaries. Compared to the SRV filter, the new filter performs603

much better. In the following examples, we can clearly see the improvement of the604

accuracy and smoothness compared to the original dG approximations. From all the605

tests we performed, it is easy to see that the new filter is more suitable than the SRV606

filter over non-uniform meshes, and the practical performance of the new filter is better607

than the theoretical prediction.608

For the P3 case, because of the periodicity, the SRV filter seems slightly better in609

L2 norm than the new filter. However, if we look at the L∞ norm, we can see the new610

filter still behaves better than the SRV filter (see Table 5.2). For the P4 case, we can611

see that even the ideal periodic property can not hide the fact that the SRV filter is not612

suitable for non-uniform meshes – the SRV filter is worse than the new filter and even613

the original dG solution. In Figure 5.2, the round-off error of the SRV filter is noticeably614

demonstrated. The new filter has better errors in L2 and L∞ norm when the mesh is615

sufficiently refined.616

Unlike the smoothly-varying mesh we used in the previous example, the smooth-617

polynomial mesh and the randomly-varying mesh do not have the nice periodic property618

which is exactly where a one-sided filter is needed. The deficiencies of the SRV filter619

become significant. The results near the boundaries are worse than the original dG solu-620

tion (Figures 5.3 and 5.4). The previous filters work well when all of their preconditions621
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Figure 4.7: Comparison of the pointwise errors in log scale of the original dG solution
(left column), the SRV filter (middle column) and the new filter (right column) for the
variable coefficient equation (4.4) over smooth polynomial mesh (Mesh 4.3). The kernel
scaling H = ∆xj and quadruple precision was used in the computations.

are met; however, if any one of its assumptions are violated, we may not obtain the full622

benefit of the filter. The new filter appears to still perform well in such circumstances.623

6 Conclusion624

In this paper, we have proposed a new position-dependent Smoothness-Increasing Accuracy-625

Conserving (SIAC) filter applied to discontinuous Galerkin approximations over uniform626

and non-uniform meshes. The new filter was devised as a consequence of analyzing the627

constant in the previous error estimates. This filter was created by introducing an extra628

general B-spline to a filter consisting of 2k+ 1 central B-splines. This strategy allows us629

to overcome two shortcomings of the SRV filter: we can now reliably use double-precision630

to both produce and use our filter, and our new filter has a smaller geometric footprint631

and hence costs less (in terms of operations) to evaluate. We have, for the first time,632

proved the accuracy-order conserving nature of the SIAC filter globally and shown that633

this boundary filter does not affect the interior superconvergence properties. Addition-634

ally, we are able, for the first time, to extend our proofs of superconvergence for our635

symmetric and SVR SIAC filters used over smoothly-varying meshes. We demonstrated636

the applicability of the position-dependent filter for non-uniform meshes by choosing a637

proper scaling, H, which is obtained by analyzing smoothly-varying meshes. Numerical638

results indicate that this scaling idea works, even in the random mesh case (although no639

proof exists to assert this). Future work will concentrate on extending these concepts to640

derivative filtering.641
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Figure 4.8: Comparison of the pointwise errors in log scale of the original dG solution
(left column), the SRV filter (middle column) and the new filter (right column) for the
variable coefficient equation (4.4) over randomly-varying mesh (Mesh 4.4). The kernel
scaling H = ∆xj and quadruple precision was used in the computations.

(a) dG Error (b) Post-processed (SRV) (c) Post-processed (New)

Figure 5.1: Comparison of the pointwise errors in log scale of the original dG solution
(left), the SRV filter (middle) and the new filter (right) for the 2D linear transport
equation using polynomials of degree k = 4 and a uniform 80 × 80 mesh. Double
precision was used in the computations.
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Figure 5.2: Comparison of the pointwise errors in log scale of the original dG solution
(left), the SRV filter (middle) and the new filter (right) for the 2D linear transport
equation (5.1) using polynomials of degree k = 3, 4 over a smoothly-varying 80 × 80
mesh (Mesh 4.3). The filters use the scaling of Hx = ∆xj in x-direction and Hy = ∆yj
in y-direction. Double precision was used in the computations.
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Figure 5.3: Comparison of the pointwise errors on a log scale between the SRV and
new filters for the 2D linear transport equation using polynomials of degree k = 3, 4. A
smooth-varying mesh defined by x = ξ − b(ξ − 2π)ξ, y = ξ − b(ξ − 2π)ξ with b = 0.05
was used. Filter scaling was based upon the local element size. Double precision was
used in the computations.
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Figure 5.4: Comparison of the pointwise errors in log scale of the original dG solution
(left), the SRV filter (middle) and the new filter (right) for the 2D linear transport
equation (5.1) using polynomials of degree k = 3, 4 over a randomly-varying 80 × 80
mesh. The filters use the scaling of Hx = ∆xj in x-direction and Hy = ∆yj in y-
direction. Double precision was used in the computations.
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Table 4.2: L2− and L∞−errors for the dG approximation together with the SRV and
the new filters for the linear transport equation (4.3) over the three meshes 4.2,4.3,4.4.
A scaling of H = ∆xj along with quadruple precision was used in the computations.

dG SRV Filter New Filter
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

Mesh 1: Smoothly-Varying Mesh
P1

20 7.13E-03 – 1.97E-02 – 3.57E-03 – 5.83E-03 – 3.54E-03 – 5.29E-03 –
40 1.65E-03 2.11 5.43E-03 1.86 4.35E-04 3.04 6.42E-04 3.18 4.34E-04 3.03 6.42E-04 3.04
80 4.04E-04 2.03 1.43E-03 1.93 5.37E-05 3.02 7.94E-05 3.02 5.37E-05 3.02 7.94E-05 3.02

P2

20 2.43E-04 – 1.22E-03 – 2.41E-04 – 1.51E-03 – 1.56E-04 – 7.32E-04 –
40 3.02E-05 3.01 1.55E-04 2.98 9.97E-07 7.92 9.73E-06 7.28 2.55E-06 5.94 2.29E-05 5.00
80 3.77E-06 3.00 1.95E-05 3.00 8.30E-09 6.91 1.34E-08 9.50 1.98E-07 3.68 2.13E-06 3.42

P3

20 5.45E-06 – 1.87E-05 – 6.43E-06 – 5.51E-05 – 6.36E-05 – 2.02E-04 –
40 3.39E-07 4.01 1.20E-06 3.96 3.11E-07 4.37 3.25E-06 4.09 1.72E-07 8.53 7.62E-07 8.05
80 2.12E-08 4.00 7.48E-08 4.01 1.45E-10 11.06 1.81E-09 10.81 2.81E-10 9.26 2.16E-09 8.46

P4

20 1.56E-07 – 5.20E-07 – 5.15E-07 – 4.11E-06 – 1.72E-05 – 5.41E-05 –
40 4.83E-09 5.01 1.66E-08 4.97 6.43E-09 6.32 6.56E-08 5.97 2.56E-08 9.39 1.12E-07 8.91
80 1.51E-10 5.00 5.22E-10 4.99 1.25E-11 9.01 1.80E-10 8.51 1.15E-11 11.13 7.77E-11 10.50

Mesh 2: Smooth Polynomial Mesh
P1

20 5.36E-03 – 1.68E-02 – 2.38E-03 – 3.48E-03 – 2.39E-03 – 3.48E-03 –
40 1.26E-03 2.10 4.69E-03 1.84 2.93E-04 3.02 4.37E-04 2.99 2.94E-04 3.03 4.37E-04 2.99
80 3.08E-04 2.03 1.23E-03 1.93 3.63E-05 3.01 5.43E-05 3.01 3.64E-05 3.01 5.43E-05 3.01

P2

20 1.43E-04 – 8.00E-04 – 2.88E-05 – 2.45E-04 – 4.62E-05 – 2.18E-04 –
40 1.80E-05 2.99 1.03E-04 2.95 2.24E-06 3.68 2.43E-05 3.33 1.22E-06 5.24 9.29E-06 4.55
80 2.25E-06 3.00 1.31E-05 2.99 3.91E-07 2.52 6.37E-06 1.93 9.79E-08 3.64 1.37E-06 2.76

P3

20 3.15E-06 – 1.25E-05 – 1.52E-05 – 1.75E-04 – 1.53E-05 – 7.35E-05 –
40 1.96E-07 4.01 8.05E-07 3.96 9.80E-08 7.27 1.50E-06 6.86 3.50E-08 8.77 2.34E-07 8.29
80 1.22E-08 4.00 4.97E-08 4.02 2.31E-09 5.40 3.77E-08 5.32 5.63E-11 9.28 8.26E-10 8.15

P4

20 6.25E-08 – 2.67E-07 – 6.79E-07 – 5.38E-06 – 4.45E-06 – 2.13E-05 –
40 1.96E-09 5.00 8.77E-09 4.93 2.13E-09 8.32 2.34E-08 7.85 4.12E-09 10.08 2.76E-08 9.59
80 6.14E-11 5.00 2.79E-10 4.97 3.03E-11 6.13 5.01E-10 5.54 1.74E-12 11.21 1.59E-11 10.76

Mesh 3: Randomly-Varying Mesh
P1

20 4.88E-03 – 1.49E-02 – 2.31E-03 – 6.73E-03 – 2.18E-03 – 3.83E-03 –
40 1.15E-03 2.09 4.45E-03 1.74 2.84E-04 3.02 8.11E-04 3.05 2.76E-04 2.98 6.41E-04 2.58
80 2.87E-04 2.00 1.20E-03 1.89 4.85E-05 2.55 1.60E-04 2.35 4.71E-05 2.55 1.37E-04 2.23

P2

20 1.17E-04 – 5.63E-04 – 3.78E-04 – 3.57E-03 – 2.23E-05 – 1.06E-04 –
40 1.52E-05 2.95 7.90E-05 2.83 3.35E-05 3.50 3.45E-04 3.37 9.58E-07 4.54 7.44E-06 3.83
80 1.93E-06 2.98 9.85E-06 3.00 8.04E-06 2.06 1.17E-04 1.56 1.27E-07 2.92 8.51E-07 3.13

P3

20 2.49E-06 – 1.06E-05 – 3.35E-05 – 3.61E-04 – 5.64E-06 – 2.90E-05 –
40 1.55E-07 4.00 7.46E-07 3.83 7.42E-07 5.50 9.11E-06 5.31 6.23E-09 9.82 3.80E-08 9.58
80 1.02E-08 3.93 4.67E-08 4.00 2.46E-08 4.91 4.57E-07 4.32 1.54E-10 5.34 8.71E-10 5.45

P4

20 4.03E-08 – 1.49E-07 – 1.40E-06 – 1.47E-05 – 1.52E-06 – 7.85E-06 –
40 1.37E-09 4.88 5.25E-09 4.83 1.42E-08 6.63 1.78E-07 6.36 3.20E-10 12.21 1.98E-09 11.95
80 4.40E-11 4.96 1.70E-10 4.95 4.03E-10 5.13 7.93E-09 4.49 3.68E-13 9.77 3.95E-12 8.97



33

Table 4.3: L2− and L∞−errors for the dG approximation together with the SRV and
the new filters for the variable coefficient equation (4.4) using a dG approximation of
polynomial degree k = 3, 4 over the three meshes 4.2,4.3,4.4. The filters are using scaling
H = ∆xj. Quadruple precision was used in the computations.

dG SRV Filter New Filter
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

Mesh 1: Smoothly-Varying Mesh
P3

20 5.54E-06 – 1.93E-05 – 4.40E-06 – 3.66E-05 – 6.36E-05 – 2.02E-04 –
40 3.41E-07 4.02 1.21E-06 4.00 3.14E-07 3.81 3.25E-06 3.49 1.72E-07 8.53 7.61E-07 8.05
80 2.12E-08 4.01 7.50E-08 4.01 1.45E-10 11.08 1.81E-09 10.81 2.78E-10 9.27 2.05E-09 8.53

P4

20 1.62E-07 – 5.69E-07 – 1.89E-05 – 1.44E-04 – 1.72E-05 – 5.41E-05 –
40 4.95E-09 5.03 1.77E-08 5.00 5.74E-09 11.68 5.82E-08 11.28 2.56E-08 9.39 1.12E-07 8.91
80 1.53E-10 5.01 5.48E-10 5.02 1.26E-11 8.83 1.76E-10 8.37 1.16E-11 11.11 7.26E-11 10.59

Mesh 2: Smooth Polynomial Mesh
P3

20 3.15E-06 – 1.27E-05 – 2.70E-05 – 3.05E-04 – 1.53E-05 – 7.36E-05 –
40 1.96E-07 4.01 8.06E-07 3.98 1.31E-07 7.69 1.54E-06 7.62 3.55E-08 8.75 2.38E-07 8.28
80 1.22E-08 4.00 4.98E-08 4.02 7.51E-09 4.13 1.27E-07 3.60 6.25E-11 9.15 7.84E-10 8.24

P4

20 6.40E-08 – 2.82E-07 – 2.95E-06 – 2.42E-05 – 4.45E-06 – 2.13E-05 –
40 1.98E-09 5.01 8.94E-09 4.98 6.84E-07 2.11 1.12E-05 1.10 4.12E-09 10.08 2.76E-08 9.60
80 6.18E-11 5.00 2.80E-10 5.00 1.51E-09 8.83 3.50E-08 8.33 1.59E-12 11.34 1.55E-11 10.80

Mesh 3: Randomly-Varying Mesh
P3

20 2.49E-06 – 9.61E-06 – 1.11E-04 – 8.98E-04 – 5.63E-06 – 2.90E-05 –
40 1.56E-07 4.00 7.18E-07 3.74 2.12E-06 5.71 2.55E-05 5.14 7.96E-09 9.47 4.31E-08 9.39
80 1.02E-08 3.93 4.72E-08 3.93 5.91E-08 5.17 1.06E-06 4.59 3.15E-10 4.66 1.91E-09 4.50

P4

20 4.07E-08 – 1.56E-07 – 2.45E-05 – 1.96E-04 – 1.52E-06 – 7.85E-06 –
40 1.37E-09 4.89 5.31E-09 4.87 4.48E-07 5.77 6.18E-06 4.99 2.98E-10 12.31 1.79E-09 12.09
80 4.41E-11 4.96 1.73E-10 4.94 1.26E-09 8.48 1.91E-08 8.33 2.64E-12 6.82 2.19E-11 6.35

Table 5.1: L2− and L∞−errors for the dG approximation together with the SRV and new
filters for a 2D linear transport equation using polynomials of degree k = 3, 4. Double
precision was used in the computations.

dG SRV Filter New Filter
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

P3

20× 20 3.30E-06 – 1.21E-05 – 2.60E-07 – 1.12E-04 – 2.39E-06 – 1.80E-05 –
40× 40 2.06E-07 4.00 7.60E-06 3.99 4.69E-10 9.11 3.11E-09 5.17 7.01E-09 8.41 5.11E-08 8.46
80× 80 1.29E-08 4.00 4.76E-08 4.00 1.74E-11 4.75 5.50E-09 -0.82 7.97E-11 6.46 1.02E-09 5.65

P4

20× 20 4.71E-08 – 1.41E-07 – 2.77E-08 – 1.35E-06 – 5.25E-07 – 3.77E-06 –
40× 40 1.46E-09 5.01 4.50E-09 4.97 2.55E-08 0.12 2.84E-06 -1.07 3.83E-10 10.42 3.40E-09 10.11
80× 80 4.44E-11 5.04 1.43E-10 4.98 2.73E-08 -0.10 7.86E-06 -1.47 3.00E-13 10.31 3.12E-12 10.09



34

Table 5.2: L2− and L∞−errors for the dG approximation together with the SRV and
new filters for the 2D linear transport equation (5.1) using polynomials of degree k = 3, 4
over the three meshes: Mesh 4.2, Mesh 4.3 and Mesh 4.4. The filters use the scaling of
Hx = ∆xj in x-direction and Hy = ∆yj in y-direction. Double precision was used in the
computations.

dG SRV Filter New Filter
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

Mesh 1: Smoothly-Varying Mesh
P3

20× 20 8.74E-06 – 5.39E-05 – 6.94E-06 – 1.10E-04 – 6.71E-05 – 4.04E-04 –
40× 40 5.45E-07 4.00 3.39E-06 4.00 3.68E-07 4.24 6.49E-06 4.08 2.09E-07 8.33 1.66E-06 7.93
80× 80 3.40E-08 4.00 2.06E-07 4.03 1.50E-10 11.76 9.01E-09 9.49 7.33E-10 8.16 7.76E-09 8.92

P4

20× 20 1.93E-07 – 1.05E-06 – 9.25E-07 – 8.56E-06 – 3.26E-05 – 1.12E-04 –
40× 40 6.00E-09 5.01 3.32E-08 4.98 3.38E-08 4.77 4.17E-06 1.04 2.67E-08 10.25 2.31E-07 8.92
80× 80 1.88E-10 5.00 1.04E-09 5.00 2.07E-08 0.71 9.13E-06 -1.13 1.90E-11 10.46 1.61E-10 10.49

Mesh 2: Smooth Polynomial Mesh
P3

20× 20 4.56E-06 – 3.03E-05 – 1.55E-05 – 3.49E-04 – 1.59E-05 – 1.38E-04 –
40× 40 2.85E-07 4.00 1.92E-06 3.98 1.23E-07 6.98 3.04E-06 6.84 4.67E-08 8.41 5.14E-07 8.67
80× 80 1.78E-08 4.00 1.20E-07 4.00 3.35E-09 5.20 8.01E-08 5.25 2.43E-10 7.59 4.61E-09 6.80

P4

20× 20 8.48E-08 – 3.27E-07 – 1.38E-06 – 1.48E-05 – 5.92E-06 – 3.27E-05 –
40× 40 2.65E-09 5.00 1.74E-08 4.92 3.21E-08 5.43 4.99E-06 1.57 4.65E-09 10.30 5.79E-08 9.14
80× 80 8.31E-11 5.00 5.58E-10 4.96 2.51E-08 0.35 6.88E-06 -0.46 3.29E-12 10.46 3.49E-11 10.27

Mesh 3: Randomly-Varying Mesh
P3

20× 20 3.47E-06 – 2.16E-05 – 3.46E-05 – 6.43E-04 – 3.90E-06 – 3.83E-05 –
40× 40 2.23E-07 3.96 1.52E-06 3.83 1.90E-06 4.19 3.59E-05 4.16 1.28E-08 8.25 1.25E-07 8.26
80× 80 1.41E-08 3.98 9.65E-08 3.98 9.94E-08 4.26 2.71E-06 3.73 2.97E-10 5.43 3.88E-09 5.01

P4

20× 20 5.83E-08 – 2.84E-07 – 3.06E-06 – 5.19E-05 – 1.06E-06 – 8.87E-05 –
40× 40 1.90E-09 4.94 1.04E-08 4.77 2.64E-08 6.86 2.64E-06 4.30 7.80E-10 10.41 1.01E-08 9.78
80× 80 6.06E-11 4.97 3.48E-10 4.90 1.46E-08 0.85 7.09E-06 -1.43 6.60E-13 10.20 7.85E-12 10.33


