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PT -SYMMETRIC HAMILTONIANS AS COUPLINGS
OF DUAL PAIRS

Volodymyr Derkach, Philipp Schmitz, and Carsten Trunk

Dedicated to our friend and colleague Seppo Hassi on the occasion of his 60th birthday

1 Introduction

In the seminal paper (Bender & Boettcher, 1998) a new view of quantum mechanics was proposed.
This new view differs from the old one in that the restriction on the Hamiltonian to be Hermitian is
relaxed: now the Hamiltonian is PT -symmetric. Here P is parity and T is time reversal. Since 1998,
PT -symmetric Hamiltonians have been analyzed intensively by many authors. In Mostafazadeh
(2002) PT -symmetry was embedded into the more general mathematical framework of pseudo-
Hermiticity or, what is the same, self-adjoint operators in Kreı̆n spaces, see (Langer & Tretter, 2004;
Azizov & Trunk, 2012; Hassi & Kuzhel, 2013; Leben & Trunk, 2019). For a general introduction to
PT -symmetric quantum mechanics we refer to the overview paper of Mostafazadeh (2010) and to
the books of Moiseyev (2011) and Bender (2019).

A prominent class consists of the PT -symmetric Hamiltonians

H :=
1

2
p2 − (iz)N+2,

where N is a positive integer, see (Bender, Brody & Jones, 2002). The associated eigenvalue prob-
lem is defined on a contour Γ in the complex plane which is contained in a specific area in the
complex plane, the so-called Stokes wedges, see (Bender & Boettcher, 1998),

−y′′(z)− (iz)N+2y(z) = λy(z), z ∈ Γ, (1.1)

where λ ∈ C is the eigenvalue parameter. Recall that a Stokes wedge Sk, k = 0, . . . , N + 3, is an
open sector in the plane with vertex zero,

Sk :=

{
z ∈ C : − N + 2

2N + 8
π +

2k − 2

4 +N
π < arg(z) < − N + 2

2N + 8
π +

2k

4 +N
π

}
,

see (Bender et al., 2006). The boundary of Sk consists of two rays from the origin, the so-called
Stokes lines. PT -symmetry forces Γ to lie in two Stokes wedges, which are symmetric with respect
to the imaginary axis.

In Mostafazadeh (2005) the contour Γ in equation (1.1) was parameterized by a real parameter. In
Bender et al. (2006) and in Jones & Mateo (2006) this approach was extended to different parame-
terizations and contours. Here we choose, for simplicity, Γ to be a wedge-shaped contour,

Γ := {xeiφ sgn x : x ∈ R}, (1.2)

for some angle φ ∈ (−π/2, π/2), see Figure 1.
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Figure 1. The complex contour Γ.

Let z : R → C parameterize Γ via z(x) := xeiφ sgn x. Then y solves (1.1) for z 6= 0 if and only if
the pair of functions u+ and u−, given by u±(x) := y(z(x)), x ∈ R±, solves

a−[u−] = λu−, x ∈ R−, a+[u+] = λu+, x ∈ R+, (1.3)

where the differential expressions a± are given by

a±[u+] = −e∓2iφu′′
± − (ix)N+2e±i(N+2)φu±. (1.4)

In what follows we assume that Γ lies in Stokes wedges and then, by Leben & Trunk (2019), the
differential expressions a± are in the limit-point case at ±∞ according to the classification in Brown
et al. (1999), which is a refinement of the classification in Sims (1957). We mention, that the limit-
circle case can be treated in a similar way as in Azizov & Trunk (2010; 2012).

The theory of PT -symmetry claims that the main object, the Hamiltonian, commutes under the joint
action of the parity P and the time reversal T ,

(Pf)(x) := f(−x), (T f)(x) := f(x). (1.5)

The time reversal T applied to the differential expressions a± gives rise to new differential expres-
sions b± = T a±T defined on R±

b±[v±] = −e±2iφv′′± − (−ix)N+2e∓i(N+2)φv±. (1.6)

In Section 3 we introduce the minimal operators A± and B± associated with a± and b± in L2(R±)

and show that

〈A±f, g〉± = 〈f,B±g〉±, for all f ∈ dom A±, g ∈ dom B±. (1.7)

Here 〈., .〉± stands for the usual inner products in the Hilbert spaces L2(R±). Condition (1.7) shows
that the pairs (A+, B+) and (A−, B−) form dual pairs, see Section 2.1 for details. An extension the-
ory for dual pairs based on the boundary triple technique was developed by Malamud & Mogilevskiı̆
(2002). This is a generalization of the boundary triple approach to the extension theory of symmet-
ric operators which was developed by Calkin (1939); Kočhubeı̆ (1975); Gorbachuk & Gorbachuk
(1991); Derkach & Malamud (1991), and others. For recent developments of the method of bound-
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ary triples and its application to the extension theory of differential operators, see the monographs
by Derkach & Malamud (2017) and by Behrndt, Hassi, & de Snoo (2020).

Following this approach, we construct in Theorem 3.1 boundary triples for dual pairs (A+, B+)

and (A−, B−). As our interest is focused on the Hamiltonian in L2(R) and not on the differential
expressions a± and b±, which are defined on the semi-axes, we extend the coupling method for
symmetric operators from Derkach et al. (2000) to the case of dual pairs and create a new dual pair
(A,B) of operators defined on R. This dual pair (A,B) is called the coupling of the dual pairs
(A+, B+) and (A−, B−), see Theorem 2.5 and Definition 2.6 below.

We show that the operator PT intertwines the dual pairs (A+, B+) and (A−, B−), i.e.,

PT A+ = A−PT and PT B+ = B−PT .

Due to our construction of the coupling, these relations imply that the operator A is PT -symmetric

PT A = APT .

Moreover, the operator A turns out to be P-symmetric in the Kreı̆n space (H, [·, ·]) with the funda-
mental symmetry P in H = L2(R). In Leben & Trunk (2019) it was shown that the extension H0 of
A, defined as a restriction of the adjoint A+ to the domain

dom H0 =
{
u+ ⊕ u− ∈ dom A+ : u+(0)− u−(0) = e−2iφu′

+(0)− e2iφu′
−(0) = 0

}
,

is a PT -symmetric and P-selfadjoint operator in the Kreı̆n space (H, [·, ·]). Here A+ stands for the
adjoint with respect to the Kreı̆n space inner product [., .]. In Theorem 3.2 below, which is the main
result of this note, we find a one-parameter family {Hα}α∈R of PT -symmetric and P-selfadjoint
extensions of A in the Kreı̆n space (H, [·, ·]) with domain

dom Hα =
{
u+ ⊕ u− ∈ dom A+ : u+(0)− u−(0) = 0, e−2iφu′

+(0)− e2iφu′
−(0) = αu+(0)

}
.

Theorem 3.2 is based on the abstract construction of the coupling (A,B) of two dual pairs (A+, B+)

and (A−, B−) in Theorem 2.5 and the description of all PT -symmetric andP-selfadjoint extensions
of A given in Theorem 2.14.

Summing up, the results presented here promote the use of boundary triple techniques for dual pairs
and techniques from Sturm–Liouville theory for complex potentials in the study of PT -symmetric
quantum mechanics. This is in line with Leben & Trunk (2019) and it is, to some extent, a surprise
that in the physical literature the techniques presented here were never exploited. It is the aim
of this paper to recall those techniques and, hence, provide a mathematically sound setting of the
(nowadays) classical Bender–Boettcher-theory.

2 Coupling of dual pairs and parity

In this section we recall known facts about dual pairs of linear operators, their boundary triples and
corresponding Weyl functions, and coupling from Malamud & Mogilevskiı̆ (2002). However, our
notations differ slightly from that paper; we mainly follow the notations of Baidiuk, Derkach &
Hassi (2021).
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Moreover, throughout this paper we use the following notations. By R+ and R− we denote the set
of all positive and negative reals, respectively. For z ∈ C, z denotes the complex conjugate of z.
All operators in this paper are densely defined linear operators in some Hilbert spaces. For such
operators T , we use the common notation dom T , ran T , and kerT for the domain, the range, and
the null-space, respectively, of T . Moreover, as usual, ρ(T ), σ(T ), and σp(T ) stand for the resolvent
set, the spectrum, and the point spectrum, respectively, of T . The inner product in a Hilbert space
is usually denoted by 〈., .〉 and the adjoint of the operator T by T ∗. The set of all bounded and
everywhere defined operators in a Hilbert space H is denoted by L(H).

2.1 Dual pairs of linear operators and Weyl functions

Definition 2.1. A pair (A,B) of densely defined closed linear operators A and B in a Hilbert space
(H, 〈., .〉) is called a dual pair, if

〈Af, g〉 − 〈f,Bg〉 = 0 for all f ∈ dom A, g ∈ dom B. (2.1)

The equality (2.1) means that
A ⊂ B∗ and B ⊂ A∗.

Clearly, if (A,B) is a dual pair, then (B,A) is also a dual pair.

Definition 2.2. Let (A,B) be a dual pair in a Hilbert space H, let H1, H2 be auxiliary Hilbert
spaces, and let

ΓB =

(
ΓB
1

ΓB
2

)
: dom B∗ → H1 ×H2 and ΓA =

(
ΓA
1

ΓA
2

)
: dom A∗ → H1 ×H2 (2.2)

be linear operators. Then the triple (H1 ×H2,Γ
A,ΓB) is called a boundary triple for the dual pair

(A,B) if:

(1) the mappings ΓB and ΓA in (2.2) are surjective;

(2) the following identity holds for every f ∈ dom B∗, g ∈ dom A∗,

〈B∗f, g〉 − 〈f,A∗g〉 = 〈ΓB
1 f,Γ

A
1 g〉H1 − 〈ΓB

2 f,Γ
A
2 g〉H2 .

It is easily seen that if a triple (H1 × H2,Γ
A,ΓB) is a boundary triple for a dual pair (A,B), then

the following identity also holds

〈A∗g, f〉 − 〈g,B∗f〉 = 〈ΓA
2 g,Γ

B
2 f〉H2 − 〈ΓA

1 g,Γ
B
1 f〉H1 , f ∈ dom B∗, g ∈ dom A∗ (2.3)

and, hence, the triple

(H2 ×H1, (Γ
B)T , (ΓA)T ) :=

(
H2 ×H1,

(
ΓB
2

ΓB
1

)
,

(
ΓA
2

ΓA
1

))
(2.4)

is a boundary triple for the dual pair (B,A). The boundary triple (2.4) is called transposed with
respect to the boundary triple (H1 ×H2,Γ

A,ΓB).
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A linear operator Ã is called a proper extension of a dual pair (A,B) if

A ⊂ Ã ⊂ B∗.

The proper extension A2 of A is defined as the restriction of B∗ to the set

dom A2 = {f ∈ dom B∗ : ΓB
2 f = 0}. (2.5)

Similarly, the proper extension B1 of B is defined as the restriction of A∗ to the set

dom B1 = {f ∈ dom A∗ : ΓA
1 f = 0}. (2.6)

For every z ∈ ρ(A2) the following decomposition holds

dom B∗ = dom A2 ∔Nz(B
∗), where Nz(B

∗) := ker (B∗ − zI),

and, consequently, the mapping ΓB
2 |Nz(B∗) : Nz(B

∗) → H2 is boundedly invertible, see (Malamud
& Mogilevskiı̆, 2002) for details. In a similar way, for every z ∈ ρ(B1) the following decomposition
holds

dom A∗ = dom B1 ∔Nz(A
∗), where Nz(A

∗) := ker (A∗ − zI),

and, hence, the mapping ΓA
1 |Nz(A∗) : Nz(A

∗) → H1 is boundedly invertible for z ∈ ρ(B1).

Moreover, in light of (2.3), (2.5), and (2.6), one has that B1 = A∗
2 and, hence, in particular the

following identity holds
ρ(B1) = ρ(A2).

Definition 2.3. The operator functions

γ(z) := (ΓB
2 |Nz(B∗))

−1 and M(z) := ΓB
1 (Γ

B
2 |Nz(B∗))

−1, z ∈ ρ(A2),

are called the γ-field and the Weyl function, respectively, of the dual pair (A,B), corresponding to
the boundary triple Π = (H1 ×H2,Γ

A,ΓB).

Clearly, the operator functions

γT (z) := (ΓA
1 |Nz(A∗))

−1 and MT (z) := ΓA
2 (Γ

A
1 |Nz(A∗))

−1, z ∈ ρ(B1),

are the γ-field and the Weyl function, respectively, of the dual pair (B,A), corresponding to the
transposed boundary triple (H2 ×H1, (Γ

B)T , (ΓA)T ). Notice that

MT (z) = M(z̄)∗, z ∈ ρ(B1) = ρ(A2).

Let Θ be a linear relation from H1 to H2, i.e., a subspace of H1 × H2, see, e.g., Arens (1961).
Consider the restriction AΘ of B∗ to the subspace

dom AΘ = {f ∈ dom B∗ : ΓBf ∈ Θ}.

The following statement describes some spectral properties of the extension AΘ.

Lemma 2.4. Let (A,B) be a dual pair in a Hilbert space H, let (H1 ×H2,Γ
A,ΓB) be a boundary

triple for the dual pair (A,B), let M be the corresponding Weyl function, let Θ be a linear relation

from H1 to H2, and let z ∈ ρ(A2). Then the following statements hold:
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(i) A∗
Θ is the restriction of A∗ to

dom A∗
Θ = {f ∈ dom A∗ : ΓAf ∈ Θ∗}.

(ii) z ∈ σp(AΘ) if and only if 0 ∈ σp(IH2 −ΘM(z)). In this case

ker (AΘ − zI) = γ(z)ker (IH2 − ΘM(z)).

(iii) z ∈ ρ(AΘ) if and only if 0 ∈ ρ(IH2 −ΘM(z)).

2.2 Coupling of dual pairs

Theorem 2.5. Let (A+, B+) and (A−, B−) be dual pairs in Hilbert spaces H+ and H−, respec-

tively, let (H1 × H2,Γ
A± ,ΓB±) be a boundary triple for the dual pair (A±, B±), and let M± be

the corresponding Weyl function. Denote by A∗ and B∗ the restrictions of the operators A∗
+ ⊕ A∗

−

and B∗
+ ⊕B∗

− to the domains

dom A∗ = {g+ ⊕ g− : g± ∈ dom A∗
±, Γ

A+

1 g+ = Γ
A−

1 g−} (2.7)

and

dom B∗ = {f+ ⊕ f− : f± ∈ dom B∗
±, Γ

B+

2 f+ = Γ
B−

2 f−}, (2.8)

respectively. Then the following statements hold:

(i) The operators A := (A∗)∗ and B := (B∗)∗ are restrictions of the operators B∗ and A∗,

respectively, to the domains

dom A = {f+ ⊕ f− : f± ∈ dom B∗
±,Γ

B+

2 f+ = Γ
B−

2 f− = Γ
B+

1 f+ + Γ
B−

1 f− = 0}, (2.9)

dom B = {g+⊕g− : g± ∈ dom A∗
±,Γ

A+

1 g+ = Γ
A−

1 g− = Γ
A+

2 g++Γ
A−

2 g− = 0}, (2.10)

and (A,B) is a dual pair in H+ ⊕ H−.

(ii) The triple Π = (H1 ×H2,Γ
A,ΓB) with

ΓAg =

(
Γ
A+

1 g+

Γ
A+

2 g+ + Γ
A−

2 g−

)
and ΓBf =

(
Γ
B+

1 f+ + Γ
B−

1 f−

Γ
B+

2 f+

)
,

f ∈ dom B∗,

g ∈ dom A∗,

is a boundary triple for the dual pair (A,B).

(iii) The Weyl function M(z) corresponding to the boundary triple Π = (H1 × H2,Γ
A,ΓB) is

given by

M(z) = M+(z) +M−(z), z ∈ ρ(A2), (2.11)

where A2 is defined by (2.5).

Proof. The proof of this theorem consists of three parts: (i) and (ii) are established in (a) and (b),
and (iii) is proven in (c).
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(a) Let f = f+ ⊕ f− ∈ dom(B∗
+ ⊕ B∗

−), g = g+ ⊕ g− ∈ dom (A∗
+ ⊕ A∗

−). Then it follows from
the equalities

〈B∗
+f+, g+〉 − 〈f+, A∗

+g+〉 = 〈ΓB+

1 f+,Γ
A+

1 g+〉H1 − 〈ΓB+

2 f+,Γ
A+

2 g+〉H2 ,

〈B∗
−f−, g−〉 − 〈f−, A∗

−g−〉 = 〈ΓB−

1 f−,Γ
A−

1 g−〉H1 − 〈ΓB−

2 f−,Γ
A−

2 g−〉H2 ,

that

〈(B∗
+ ⊕B∗

−)f, g〉 − 〈f, (A∗
+ ⊕A∗

−)g〉 = 〈ΓB+

1 f+,Γ
A+

1 g+〉H1 − 〈ΓB+

2 f+,Γ
A+

2 g+〉H2

+ 〈ΓB−

1 f−,Γ
A−

1 g−〉H1 − 〈ΓB−

2 f−,Γ
A−

2 g−〉H2 .
(2.12)

The equality (2.9) follows from (2.12) since the mappings ΓA± : dom A∗
± → H1 ×H2 are surjec-

tive. Similarly, (2.10) follows from (2.12) since the mappings ΓB± : dom B∗
± → H1 × H2 are

surjective.

(b) Next, for f ∈ dom B∗ and g ∈ dom A∗ the equation (2.12) takes the form

〈B∗f, g〉 − 〈f, (A∗)g〉 = 〈ΓB+

1 f+ + Γ
B−

1 f−,Γ
A+

1 g+〉H1 − 〈ΓB+

2 f+,Γ
A+

2 g+ + Γ
A−

2 g−〉H2 .

This proves that (A,B) is a dual pair in H+ ⊕ H− and that (ii) holds.

(c) It follows from (2.8) that the γ-field of (A,B) corresponding to the boundary triple Π takes the
form

γ(z) = γ+(z)⊕ γ−(z),

where γ±(z) are γ-fields of (A±, B±) corresponding to the boundary triples (H1×H2,Γ
A± ,ΓB±).

Now formula (2.11) follows from the definition of the Weyl function, see Definition 2.3.

Definition 2.6. The dual pair (A,B) constructed in (2.9) and (2.10) is called the coupling of the

dual pairs (A+, B+) and (A−, B−) relative to the triples

(H1 ×H2,Γ
A+ ,ΓB+) and (H1 ×H2,Γ

A− ,ΓB−).

2.3 Real dual pairs and real boundary triples

Let T be a conjugation (time reversal) operator in a Hilbert space (H, 〈., .〉), i.e., T is antilinear,
T 2 = IH, and

〈T f, T g〉 = 〈g, f〉 for all f, g ∈ H.

In what follows, we suppose that H1 and H2 coincide: H1 = H2 = H.

Definition 2.7. Let T and jH be conjugations in H and H, respectively. A dual pair (A,B) in H is
called T -real if

T dom A = dom B and T A = BT . (2.13)

A boundary triple (H2,ΓA,ΓB) for (A,B) is called (jH, T )-real if

jHΓB
1 = ΓA

2 T and jHΓB
2 = ΓA

1 T .
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Observe that the conditions (2.13) are clearly equivalent to

T dom A∗ = dom B∗ and T A∗ = B∗T .

Lemma 2.8. Let (A,B) be a T -real dual pair and let (H2,ΓA,ΓB) be a (jH, T )-real boundary

triple for (A,B). Then the corresponding Weyl function M(z) satisfies the condition

M(z) = jHM(z)∗jH, z ∈ ρ(A2).

In what follows we consider a Hilbert space H decomposed into an orthogonal sum

H = H+ ⊕ H− (2.14)

of two subspaces H± with conjugations T± ∈ L(H±). Then the orthogonal sum

T = T+ ⊕ T− (2.15)

is a conjugation in H.

Theorem 2.9. Let a Hilbert space H and a conjugation T in H be such that (2.14) and (2.15)
hold. Moreover, let (A±, B±) be T±-real dual pairs in the Hilbert spaces H±. Finally, with jH a

conjugation in H, let (H2,ΓA± ,ΓB±) be (jH, T )-real boundary triples for (A±, B±), and let

A0 := A+ ⊕A− and B0 := B+ ⊕B−.

Then the following statements hold:

(i) The dual pair (A0, B0) is T -real and the boundary triple ((H⊕H)2,ΓA0 ,ΓB0) with

ΓA0 = ΓA+ ⊕ ΓA− and ΓB0 = ΓB+ ⊕ ΓB−

is (jH⊕H, T )-real, where jH⊕H := jH ⊕ jH.

(ii) The coupling (A,B) of the dual pairs (A+, B+) and (A−, B−), constructed in (2.9) and

(2.10) is T -real.

(iii) The boundary triple (H2,ΓA,ΓB) from Theorem 2.5 is (jH, T )-real.

2.4 Parity and P-selfadjoint operators

Definition 2.10. Let H± be Hilbert spaces and H = H+ ⊕ H−. An operator P ∈ L(H) will be
called an (abstract) parity operator if

P = P∗, P2 = IH, and PH± = H∓.

Now consider a Hilbert space H = H+ ⊕H− with a parity operator P and a conjugation T ∈ L(H),
such that

T P = PT and T H± = H±. (2.16)
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The conditions (2.16) mean that the operator T admits the representation as an orthogonal sum
T = T+ ⊕ T− of two conjugations T+ and T− in Hilbert spaces H+ and H−, respectively.

Lemma 2.11. Let P be a parity operator in H = H+ ⊕ H− and let T be a conjugation in H such

that (2.16) holds. Let (A±, B±) be T±-real dual pairs in the Hilbert spaces H±, such that

PA+ = B−P and PB+ = A−P . (2.17)

Then the following statements hold:

(i) PT dom A+ = dom A−, PT dom B+ = dom B−, and

PT A+ = A−PT , PT B+ = B−PT ; (2.18)

(ii) P dom A∗
+ = dom B∗

−, P dom B∗
+ = dom A∗

−, and

PA∗
+ = B∗

−P , PB∗
+ = A∗

−P .

Proof. (i) Since the dual pairs (A±, B±) are real with respect to T±, one has

T+A+ = B+T+, T−A− = B−T−. (2.19)

Let f+ ∈ dom A+. Then by (2.19) T f+ ∈ dom B+ and B+T f+ = T A+f+. Next by (2.17)

PT f+ ∈ dom A− and A−PT f+ = PB+T f+ = PT A+f+.

The proofs of the inclusionPT dom A− ⊆ dom A+ and of the second equality in (2.18) are similar.

(ii) Applying P to the left and right of the equalities in (2.17) and using the identity P2 = IH yields
A+P = PB− and B+P = PA−. From these identities the assertions in (ii) are immediate.

Definition 2.12. A closed linear operator A in H is said to be PT -symmetric if for all f ∈ dom A

we have
PT f ∈ dom A and PT Af = APT f.

Consider the Kreı̆n space (H, [·, ·]) with an indefinite inner product given by

[f, g] := 〈Pf, g〉H. (2.20)

For the definition of a Kreı̆n space we refer to the books of Azizov & Iokhvidov (1989) and Bognar
(1974). Recall that a densely defined linear operator A in H is called P-symmetric if

[Af, g] = [f,Ag] for all f, g ∈ dom A.

Denote by A+ the adjoint operator in (H, [·, ·]), i.e., A+ = PA∗P . For a P-symmetric operator A
one has A ⊆ A+. The operator A is called P-selfadjoint if A = A+. The following definition of a
boundary triple for the P-symmetric operator A was presented in Derkach (1995).

Definition 2.13. Let H be an auxiliary Hilbert space and let Γ1,Γ2 be linear operators from dom A+

to H. The triple (H,Γ1,Γ2) is called a boundary triple for the P-symmetric operator A if the
following conditions are satisfied:
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(i) the mapping Γ :=

(
Γ1

Γ2

)
from dom A+ to H2 is surjective;

(ii) the following identity holds for every f, g ∈ dom A+

[A+f, g]− [f,A+g] = 〈Γ1f,Γ2g〉H − 〈Γ2f,Γ1g〉H.

In the next theorem we show that the coupling operator A is P-symmetric and PT -symmetric, and
describe the set of all P-selfadjoint and PT -symmetric extensions of the operator A.

Theorem 2.14. Let P be a parity operator in H = H+ ⊕ H−, let T be a conjugation in H such

that (2.16) holds, and let (A±, B±) be T±-real dual pairs in the Hilbert spaces H± such that

(2.17) holds. With jH a conjugation in H, let (H2,ΓA± ,ΓB±) be (jH, T )-real boundary triples

for (A±, B±), such that

(
Γ
B+

1

Γ
B+

2

)
f+ =

(
Γ
A−

2

Γ
A−

1

)
Pf+ and

(
Γ
B−

1

Γ
B−

2

)
f− =

(
Γ
A+

2

Γ
A+

1

)
Pf−, f± ∈ dom B∗

±. (2.21)

Moreover, let (A,B) be the coupling of the dual pairs (A+, B+) and (A−, B−) given by (2.9),
(2.10), and let Θ be a linear relation in H. Then the following statements hold:

(i) The operator A is PT -symmetric, P-symmetric, and A+ = B∗.

(ii) The triple (H,ΓB
1 ,Γ

B
2 ) is a boundary triple for the P-symmetric operator A.

(iii) The extension AΘ of the operator A, given by

dom AΘ =

{
f ∈ dom B∗ :

(
Γ1f

Γ2f

)
∈ Θ

}
, AΘ = B∗|domAΘ ,

is P-selfadjoint if and only if Θ = Θ∗.

(iv) AΘ is PT -symmetric if and only if Θ = jHΘjH.

3 PT -symmetric Hamiltonians

Here we return to the investigation of the non-Hermitian PT -invariant Hamiltonians presented in
the introduction, that is, we study equation (1.1) on the wedge shaped contour Γ, cf. (1.2). By
substituting z(x) := xeiφ sgn x into (1.1) one obtains the two differential expressions given by (1.3)
and (1.4). Assume that the differential expressions a± in (1.4) are in the limit point case at ±∞. As
presented in Section 1, this is the case if and only if the angle φ of the wedge satisfies

φ 6= − N + 2

2N + 8
π +

2k

4 +N
π for k = 0, . . . , N + 3. (3.1)

Then by Leben & Trunk (2019: Lemma 1) the differential expressions b± in (1.6) are also in the
limit point case at ±∞. Define the operators A± and B± associated with a± and b± in L2(R±) as

A±f± := a±[f±] and B±g± := b±[g±] for f± ∈ dom A±, g± ∈ dom B±,
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respectively, with the domains

dom A± := {u± ∈ L2(R±) : a±[u±] ∈ L2(R±), u
′
± ∈ ACloc(R±), u±(0±) = u′

±(0±) = 0},

dom B± := {v± ∈ L2(R±) : b±[v±] ∈ L2(R±), v
′
± ∈ ACloc(R±), v±(0±) = v′±(0±) = 0}.

These operators are in some sense the minimal operators. It follows from Leben & Trunk (2019:
Proposition 1 & Theorem 3) that the (maximal) operators A∗

± and B∗
± are generated by differential

expressions in L2(R±) where the roles of a± and b± are switched in the sense that the differential
expressions a± are now related to B∗

± and the differential expressions b± are related to A∗
±:

B∗
±f± := a±[f±] and A∗

±g± := b±[g±] for f± ∈ dom B∗
±, g± ∈ dom A∗

±,

with
dom B∗

± := {u± ∈ L2(R±) : a±[u±] ∈ L2(R±), u
′
± ∈ ACloc(R±)},

dom A∗
± := {v± ∈ L2(R±) : b±[v±] ∈ L2(R±), v

′
± ∈ ACloc(R±)}.

Theorem 3.1. The pairs (A−, B−) and (A+, B+) are dual pairs. The triple (C2,ΓA+ ,ΓB+),

ΓB+u+ =

(
e−2iφu′

+(0)

u+(0)

)
and ΓA+v+ =

(
v+(0)

e2iφv′+(0)

)
,

u+ ∈ dom B∗
+,

v+ ∈ dom A∗
+,

is a boundary triple for the dual pair (A+, B+). The triple (C2,ΓA− ,ΓB−),

ΓB−u− =

(−e2iφu′
−(0)

u−(0)

)
and ΓA−v− =

(
v−(0)

−e−2iφv′−(0)

)
,

u− ∈ dom B∗
−,

v− ∈ dom A∗
−,

is a boundary triple for the dual pair (A−, B−).

Proof. Integration by parts and (Leben & Trunk, 2019: Proposition 1) show

〈A±u±, v±〉 = 〈u±, B±v±〉, u± ∈ dom A±, v± ∈ dom B±.

This proves the first statement. It follows from (Leben & Trunk, 2019: Proposition 1) that for
u+ ∈ dom B∗

+ and v+ ∈ dom A∗
+

〈B∗
+u+, v+〉 − 〈u+, A

∗
+v+〉 = −e−2iφ

∫ ∞

0

u′′
+(x)v+(x) dx+ e−2iφ

∫ ∞

0

u+(x)v′′+(x) dx

= e−2iφ(u′
+(0)v+(0)− u+(0)v′+(0)).

Hence, (C2,ΓA+ ,ΓB+) is a boundary triple for the dual pair (A+, B+). The statement for the dual
pair (A−, B−) is shown in the same way.

Recall that the coupling (A,B) of the dual pairs (A+, B+) and (A−, B−) consists of a pair of
operators A = (B∗

+ ⊕B∗
−)|dom A and B = (A∗

+ ⊕A∗
−)|dom B with the domains

dom A = {u+ ⊕ u− : u± ∈ dom B∗
±, u+(0) = u−(0) = e−2iφu′

+(0)− e2iφu′
−(0) = 0 }, (3.2)

dom B = {u+ ⊕ u− : u± ∈ dom A∗
±, u+(0) = u−(0) = e2iφu′

+(0)− e−2iφu′
−(0) = 0 }, (3.3)

see Theorem 2.5.
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We define the parity P and time reversal T as in (1.5). The parity P gives rise to a new inner
product [·, ·] = 〈P·, ·〉 (see also (2.20)), which was considered in many papers, we mention only
(Mostafazadeh, 2010). It is easy to see that the parity P and the time reversal T satisfy (2.16),
where H± := L2(R±). Due to Theorem 2.14, the operator A is PT -symmetric and P-symmetric
in the Kreı̆n space (L2(R), [·, ·]) = (L2(R−) ⊕ L2(R+), [·, ·]). The (Kreı̆n space) adjoint A+ of A
coincides with B∗ = (B∗

+ ⊕B∗
−)|domB∗ , where

dom B∗ = {u+ ⊕ u− : u± ∈ dom B∗
±, u+(0) = u−(0)}.

An application of Theorem 2.14 gives a one-parameter family {Hα}α∈R of PT -symmetric and
P-selfadjoint extensions of A in the Kreı̆n space (L2(R), [·, ·]). This is the main result of this note.

Theorem 3.2. Let the angle φ satisfies (3.1) and let A be the coupling operator constructed in (3.2).
Then the following statements are true:

(i) A boundary triple (C,Γ1,Γ2) for the P-symmetric operator A is given by

Γ1u = e−2iφu′
+(0)− e2iφu′

−(0) and Γ2u = u+(0), u = u+ ⊕ u− ∈ dom B∗.

(ii) The extension Hα of the operator A, defined as a restriction of A+ to the domain

dom Hα =
{
u+ ⊕ u− ∈ dom B∗ : e−2iφu′

+(0)− e2iφu′
−(0) = αu+(0)

}
,

is P-selfadjoint if and only if α ∈ R.

(iii) Hα is PT -symmetric if and only if α ∈ R.

Proof. By construction the dual pairs (A+, B+) and (A−, B−) are T±-real and the parity operator
P intertwines the operators A+, B− and A−, B+, that is, (2.17) holds. Moreover, the boundary
triples (C2,ΓA+ ,ΓB+) and (C2,ΓA− ,ΓB−) are also (jC, T )-real and satisfy the condition (2.21).
Here jC stands for the usual complex conjugation in C. Hence, all assumptions in Theorem 2.14 are
satisfied and the statements in Theorem 3.2 follow directly from Theorem 2.14.

In Leben & Trunk (2019) only the extension for the parameter value α = 0 was considered. More
precisely, there it was shown that H0 is an extension of A with domain

dom H0 =
{
u+ ⊕ u− : u± ∈ dom B∗

±, u+(0)− u−(0) = e−2iφu′
+(0)− e2iφu′

−(0) = 0
}

which is PT -symmetric and P-selfadjoint. The family Hα, α ∈ R, of extensions obtained in Theo-
rem 3.2 is in some sense an analog of the δ-interaction for the differential operation a.
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