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Abstract 

Photonic mesh lattices combined with the time-multiplexing technique provide a rich 

ground to explore complex physical phenomena that rely on the wave theory of light due to 

ease of resembling and experimental accessibility. It stems from the fact that high-speed 

photonic devices connected in such loops allow for precise and fast manipulation of 

amplitude and phase of optical pulses, and high stability of corresponding interferences at 

their network nodes. In addition to innumerous possibilities of measurements, time-

multiplexing through long-range interaction extends the dimensionality of a complex network 

to two transverse dimensions and opens up new possibilities for research and experiments. 

The first and introductory section of the dissertation presents the working principle of a 

one- and two-dimensional photonic mesh lattice based on the time-multiplexing technique. 

The basis of a random walk interrelated to the corresponding light and quantum walk is 

comprehensively discussed as well. Further, the experimental schemes and operational 

arrangements of amplitude and phase modulation are described in detail for both sets of 

photonic mesh lattices.  

The second part of the dissertation consists of three experiments on a one-dimensional 

photonic mesh lattice. Firstly, the Kapitza-based guiding light project models the Kapitza 

potential as a continuous Pauli-Schrödinger-like equation and presents an experimental 

observation of light localization when the transverse modulation is bell-shaped but with a 

vanishing average along the propagation direction. Secondly, the optical thermodynamics 

project experimentally demonstrates for the first time that any given initial modal occupancy 

reaches thermal equilibrium by following a Rayleigh-Jeans distribution when propagates 

through a multimodal photonic mesh lattice with weak nonlinearity. Remarkably, the final 

modal occupancy possesses a unique temperature and chemical potential that have nothing to 

do with the actual thermal environment. Finally, the quantum interference project discusses 

an experimental all-optical architecture based on a coupled-fiber loop for generating and 

processing time-bin entangled single-photon pairs. Besides, it shows coincidence-to-

accidental ratio and quantum interference measurements relying on the phase modulation of 

those time bins.  

The third part of the dissertation comprises two experiments on a two-dimensional 

photonic mesh lattice. The first project discusses the experimental realization of a two-

dimensional mesh lattice employing short- and long-range interaction. Besides, it shows the 

collapse of a broad initial field distribution around a single lattice site caused by the action of 
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a cubic nonlinearity, which corresponds to a pulse compression scheme working at mW-

power levels. To some extent, the second project presents a nonconservative system based on 

a two-dimensional photonic mesh lattice exploiting parity-time (PT) symmetry. By 

appropriately modulating the gain/loss contrast as well as the pertinent phase, it 

experimentally demonstrates the impulse response of this system under both conservative and 

pseudo-Hermitian conditions where the PT symmetry is broken or unbroken. Besides, it 

presents a non-Hermitian nonlinear localization of broad Gaussian-like field distribution and, 

in contrast to what one could expect from a Hermitian system, nonconservative PT solitons 

display an effective energy growth −a process that makes them more unstable and rapidly 

induces a collapse event. For higher input power levels, a family of non-Hermitian solitons is 

also experimentally observed that tends to self-accelerate and move during the collapse. 
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Zusammenfassung 

Photonische Maschengitter in Verbindung mit der Zeitmultiplextechnik bieten einen 

reichen Grund, um komplexe physikalische Phänomene zu erforschen, die sich auf die 

Wellentheorie des Lichts stützen, da sie leicht zu ähneln und experimentell zugänglich sind. 

Sie beruht auf der Tatsache, dass in solchen Schleifen verbundene photonische 

Hochgeschwindigkeitsvorrichtungen eine präzise und schnelle Manipulation von Amplitude 

und Phase der optischen Pulse und eine hohe Stabilität der entsprechenden Interferenzen an 

ihren Netzwerkknoten ermöglichen. Neben unzähligen Messmöglichkeiten erweitert das 

Zeitmultiplexen durch weiträumige Wechselwirkung die Dimensionalität eines komplexen 

Netzwerks auf zwei transversale Dimensionen und eröffnet neue Möglichkeiten der 

Forschung und Experimente. 

Im ersten und einführenden Teil der Dissertation wird das Funktionsprinzip eines ein- 

und zweidimensionalen photonischen Netzgitters vorgestellt, das auf der 

Zeitmultiplextechnik basiert. Die Grundlage eines Random-Walks, der mit dem 

entsprechenden Licht- und Quanten-Walk verbunden ist, wird ebenfalls umfassend diskutiert. 

Weiterhin werden die experimentellen Schemata und Betriebsanordnungen der Amplituden- 

und Phasenmodulation für beide Sätze photonischer Maschengitter ausführlich beschrieben.  

Der zweite Teil der Dissertation besteht aus drei Experimenten an einem 

eindimensionalen photonischen Maschengitter. Erstens modelliert das auf Kapitza basierende 

Leitlichtprojekt das Kapitza-Potential als eine kontinuierliche Pauli-Schrödinger-ähnliche 

Gleichung und präsentiert eine experimentelle Beobachtung der Lichtlokalisierung, wenn die 

Transversalmodulation glockenförmig ist, aber mit verschwindendem Mittelwert entlang der 

Ausbreitungsrichtung. Zweitens demonstriert das Projekt der optischen Thermodynamik zum 

ersten Mal experimentell, dass eine gegebene modale Anfangsbelegung das thermische 

Gleichgewicht erreicht, indem sie einer Rayleigh-Jeans-Verteilung folgt, wenn sie sich durch 

ein multimodales photonisches Maschengitter mit schwacher Nichtlinearität ausbreitet. 

Bemerkenswert ist, dass die endgültige modale Besetzung ein einzigartiges Temperatur- und 

chemisches Potential besitzt, das nichts mit der tatsächlichen thermischen Umgebung zu tun 

hat. Schließlich diskutiert das Quanten-Walk-Projekt eine experimentelle volloptische 

Architektur, die auf einer Koppel-Faserschleife zur Erzeugung und Verarbeitung von 

verschränkten Einzelphotonenpaaren mit Zeitverzögerung basiert. Darüber hinaus zeigt es 

Koinzidenz-zu-Zufalls-Verhältnis und Quanteninterferenzmessungen, die sich auf die 

Phasenmodulation dieser Zeitbins stützen.  
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Der dritte Teil der Dissertation besteht aus zwei Experimenten an einem 

zweidimensionalen photonischen Maschengitter. Im ersten Projekt wird die experimentelle 

Realisierung eines zweidimensionalen Maschengitters unter Verwendung von Kurz- und 

Langstreckenwechselwirkung diskutiert. Außerdem zeigt es den Kollaps einer breiten 

anfänglichen Feldverteilung um einen einzelnen Gitterplatz, der durch die Wirkung einer 

kubischen Nichtlinearität verursacht wird, was einem Impulskompressionsschema entspricht, 

das bei mW-Leistungspegeln arbeitet. In gewisser Weise stellt das zweite Projekt ein 

nichtkonservatives System dar, das auf einem zweidimensionalen photonischen 

Maschengitter basiert, das die parity-time (PT)-Symmetrie ausnutzt. Durch geeignete 

Modulation des Verstärkungs-/Verlustkontrasts sowie der zugehörigen Phase wird die 

Impulsantwort dieses Systems sowohl unter konservativen als auch unter pseudo-

Hermitischen Bedingungen, bei denen die PT-Symmetrie gebrochen oder ungebrochen ist, 

experimentell nachgewiesen. Darüber hinaus zeigt es eine nicht-Hermitische nichtlineare 

Lokalisierung einer breiten gaußähnlichen Feldverteilung, und im Gegensatz zu dem, was 

man von einem Hermitischen System erwarten könnte, zeigen nicht-konservative PT-

Solitonen ein effektives Energiewachstum −ein Prozess, der sie instabiler macht und schnell 

ein Kollapsereignis auslöst. Bei höheren Eingangsleistungsniveaus wird experimentell auch 

eine Familie von nicht-eremitischen Solitonen beobachtet, die dazu neigt, sich während des 

Kollaps selbst zu beschleunigen und zu bewegen. 
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1. Photonic Mesh Lattices 

1.1. From Light Walk to Synthetic Dimensions 

Random events and stochastic processes are commonly present in our daily-basis life 

[1], [2]. A coin tossed into the air and fluctuating prices in the stock market seems not to be 

interrelated, but their probabilities can be described by a unique mathematical object, namely 

a random walk. In particular, a random walk process has applications in many scientific 

areas, such as engineering [3], [4], physics [5], economics [6], computer science [7], [8], 

chemistry [4], [9] as well as biology [10]. A classical random walk (CRW) consists of a 

sequence of random steps for which a walker randomly moves to neighbor positions at every 

discrete time 𝑚 with a certain probability 𝑝 [11]. A remarkable example of CRW is the 

Galton board of classical particles, in which several one-dimensional (1D) walkers go to the 

left or right at 50% probability. As a collection of particles takes individually either one 

direction or another at every discrete time step 𝑚, their quantity at each position 𝑛 is summed 

up following a normal distribution (𝑚 ≫ 1) due to binomial distribution throughout 

subsequent time steps [12] (see Figure 1(a)). A two-dimensional (2D) random walk 

analogously follows the 1D version with an additional degree of freedom of walking onto 𝑦 

and 𝑥 coordinates.  

Contrary to classical particles, a walker as a wave physically splits into two identical 

fractions of its original one and occupies both neighbor positions [13]. Surprisingly, each 

position on this random walk is now not governed by incoherent addition of particles, but by 

interference effects. For this circumstance, a random walk is replaced by a quantum walk 

(QW) provided that its walker is a particle that follows a quantum mechanical description, 

such as a trapped ion [14] or a single photon [15]. In a quantum walk measurement, one or 

multiple quantum particles (walker) evolve on multiple series of two unitary transformations 

sequentially applied to the walker: “coin” and “step” operations. The first transformation acts 

on the particle degrees of freedom which describes its internal state, such as up-down spin in 

trapped ions [14], or horizontal/vertical polarization [16], idler/signal frequency [17], and 

discrete arrival times [18], [19] in optics. Next, a “step” transformation performs a 

conditional translation on the walker based on its internal state. On the other hand, light walk 

(LW) measurements employ a classical description of light as an electromagnetic wave [19], 

[20] by using an initial walker as a monotone continuous wave (CW) signal [21] or a bright 

pulse [22]. As a result, the intensity distribution at a given time step is fully equivalent to a 

probability distribution for its quantum counterpart [18], [23]. Random walk models with 
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wave propagation opened up a new mark in science for quantum search algorithms [24], [25], 

quantum computation [26], modeling of diffusion processes [4], [27], complex networks [28], 

[29], to mention just a few.  

Historically, the first prominent LW experiment employed a spatially organized 

pyramid of beam splitters (BS) for mimicking, in an ingenious way, its classical counterpart 

(see Figure 1(b)) [30]. As a result, a beam splitter (see Figure 1(c)) reproduces a “coin” 

operator, meaningfully splitting photons at its transmitted and reflected output by a 50/50 

ratio [31]. That portion of the light that undergoes the reflected port acquires a phase shift of 

𝜋 2⁄ . Consequently, two coincident light beams experience constructive or destructive 

interference (or anything in between) based on their relative phase [13]. On the condition that 

external phase fluctuations do not influence the LW process, a completely distinct 

distribution resembles at the end in contrast to its classical counterpart (see Figure 1(d)). 

Whereas particles in CRW spread at a diffusive rate (standard deviation ∝ √𝑚), light spreads 

with ballistic speed ∝ 𝑚, thus reaching farther positions 𝑛 away from its initial point [7], 

[25]. However, the pyramid of optical free-space beam splitters is experimentally challenging 

since the number of components (photodetectors and beam splitters) exponentially increases 

with the number of time steps. 

 

 

Figure 1: (a) Classical random walk (CRW) described by a Galton board. (b) Light walk (LW) experiment 

realized by a spatially-organized pyramid of beam splitters (BS). (c) Working principle of a 50/50 splitting ratio 

BS with input (A and B) and output (A’ and B’). (d) Comparison of the final distribution of a classical random 

walk and a light walk.  
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To solve this difficulty, new approaches have been reported exploiting degrees of 

freedom of light, such as polarization [30], [32], frequency [17], [33], [34], and arrival time 

[35]–[37]. The latter utilizes the well-known technique of time-division multiplexing (TDM) 

of telecommunication channels, which encodes information (amplitude and phase of the 

optical pulses) into a single channel (an optical fiber) as well as discretizes the time domain 

into temporal packages (TP) (see gray boxes in Figure 2(b) and Figure 3(b)) [38]. 

Importantly, each TP in a coupled-fiber loop corresponds to a time step 𝑚 of the pyramid of 

beam splitters and each loop stands for the synthetic transverse coordinate [22], [39]. The 

present thesis focuses on the time-multiplexing approach as a framework for investigating 

physical phenomena in 1D and 2D photonic mesh lattices.  

Recently, the concept of synthetic dimension has been broadly used as a framework for 

researching unexploited complex physical phenomena that are experimentally challenging or 

practically impossible in the physical world conditions [39]. The physics of a photonic 

structure is mostly described by its apparent geometric dimensionalities, such as 1D photonic 

crystals [40], [41], 2D graphene layers [42], or 3D metamaterials [43]. However, it is possible 

to explore physics in a space with a dimensionality that is higher as compared to the apparent 

geometrical dimensionality of its structure [39], [44], such as 1D optical fiber resembling a 

2D photonic mesh lattice by time-multiplexing technique [36], [45].  

 

 

Figure 2: 1D mesh lattice realized by coupled-fiber loops and time-multiplexing technique. (a) Two slightly 

dissimilar fiber loops are connected by an optical coupler. (b) Arrival times of a chain of pulses in the loop 𝒗 

and 𝒖 and corresponding temporal packages representing time steps 𝒎 (gray boxes). (c) The arrow of time is 

wisely organized into equivalent mesh lattices, featuring a synthetic transverse dimension 𝒙. (d) Correspondent 

1D mesh lattice. The unit cell of the mesh lattice is depicted in a gray box.  
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The synthetic dimension is thus determined by the nature of coupling, where multiple 

states in a mesh lattice are able to “walk” according to its dimensionality [39]. In this thesis, 

the notation ascribed to the lattice position 𝑛 in previous works [22], [35], [37], [46], [47] is 

changed now to the Cartesian coordinate notation 𝑥𝑦 for simplicity.  

For tailoring 1D photonic mesh lattices, the time-multiplexing technique produces a 

periodic temporal system based on two slightly dissimilar coupled-fiber loops (see Figure 

2(a)). An optical coupler connecting the fiber loops resembles an identical outcome of that 

pyramid of BS. The temporal sequence of pulses is reordered into an equivalent spatial mesh 

lattice (see Figure 2(b) and (c)). In this configuration, optical pulses are represented by their 

intensities in a photonic mesh lattice and the whole system thus resembles the light dynamics 

in a waveguide array with lumped coupling [22] (see Figure 2(d)). Similarly, a 2D 

arrangement employs two pairs of fiber loops, each standing for one synthetic transverse 

dimension (see Figure 3(a)). The 2D time-multiplexing technique produces a similar periodic 

temporal system as the 1D case, but now the inner loop inserts a shorter time delay than the 

outer loop, thus providing an additional means of coupling known as short- and long-range 

interaction [36], [45], [48] (see Figure 3(b)). The one-dimensional sequence of pulses in the 

time domain is mapped onto a 2D photonic mesh lattice (see Figure 3(c)), exhibiting pulse 

intensities every roundtrip on 𝑥𝑦-axes (see Figure 3(d)). 

The feasibility of using the coupled-fiber loop method enables only one (two) optical 

coupler and two (four) photodetectors to simulate a 1D (2D) photonic mesh lattice, regardless 

of the number of roundtrips. In addition, since always the same components are passed, any 

phase disturbance with a time scale smaller than the measurement time influences all pulses 

in the same way, and, therefore, the system acts as a self-aligning interferometer. An even 

richer ground is expected by using in-fiber and commercially available high-speed 

telecommunication devices, such as amplitude (AM) and phase (PM) modulators, variable 

couplers (VC), and Erbium-doped fiber amplifiers (EDFA), in order to fully control and 

manipulate optical pulses. All experiments in the present dissertation are performed with 

bright pulses from a coherent laser source (except quantum interferences in Section 2.4), thus 

approaching the classical description of light as an electromagnetic wave. The concept 

developed here for 1D and 2D photonic mesh lattices is primarily based on the original ideas 

of discrete-time quantum walks published in [18], [23], [31], [32], [36], [49], [50].  
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Figure 3: 2D mesh lattice realized by coupled-fiber loop and time-multiplexing technique. (a) Four slightly 

dissimilar fiber paths are connected by two optical couplers to form two fiber loops. (b) Arrival time of a chain 

of pulses in loop 𝑨, 𝑩, 𝑪 and, 𝑫 and correspondent temporal packages representing short- and long-range 

interaction and time steps 𝒎 (gray boxes). (c) The arrow of time is wisely organized into an equivalent mesh 

lattice, featuring two synthetic transverse dimensions in 𝒙𝒚-axes. (d) Correspondent 2D mesh lattice. The unit 

cell of the mesh lattice is depicted in a gray box.   

 

1.2. Experimental setup: 1D Photonic Mesh Lattice  

The experimental setup consists of two main parts: a pulse generation module (see 

Figure 4) and a coupled fiber-based loop set-up (see Figure 5). In the pulse generation part, a 

CW signal at carrier wavelength 𝜆 = 1550 𝑛𝑚, emitted by a high-coherent laser diode, is cut 

into a train of rectangular pulses of 22 ns temporal width by using a Mach-Zehnder 

modulator (MZM).  

 

Figure 4: Pulse generation module of the experimental setup. PC: polarization controller; MZM: Mach-Zehnder 

modulator; EDFA: erbium-doped fiber amplifier; AOM: acousto-optic modulator; BPF: bandpass filter; VOA: 

variable optical attenuator.  
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The pulse sequence is amplified by two EDFAs. Afterward, another MZM is employed 

to eliminate the amplified background noise between adjacent pulses and thus to reach a 

higher extinction ratio. A tunable optical bandpass filter (BPF) placed thereafter spectrally 

purifies the pulses by removing the out-of-band amplified spontaneous emission (ASE) 

originating from the amplifier. The peak power of the resulting pulses is coarsely controlled 

by the variable optical attenuator (VOA), whereas a fine-tuning of the peak power is carried 

out by an acousto-optic modulator (AOM) with a variable transmission ratio. The AOM is 

also used for performing an automatized control over different power levels.  

The generated 22 ns long pulse is injected into loop 𝑣 by an optical switcher acting as a 

gate, allowing only one seed pulse per measurement session to enter the fiber-coupled loop 

system, as shown in Figure 5. The experimental platform is built up of two slightly different 

fiber loops, connected via an optical coupler or VC. Each path comprises of a standard 

single-mode fiber (SSMF) of few meters long (nonlinear coefficient γ ≈ 1.1 (W. km)−1 [51]) 

combined with approximately 4 km of dispersion-compensating fiber (DCF, type: OFS-

HSDK, nonlinear coefficient γ ≈ 7 (W. km)−1 [52]) to ensure an additional boost of 

nonlinearity due to the higher nonlinear coefficient. During one roundtrip, pulses which 

propagate through the longer (𝑣) or shorter loop (𝑢) result in a total travel length of about 𝐿 ≈

4 km or a roundtrip time of  𝑇 ≈ 20 µs. However, due to the different fiber lengths (Δ𝐿 ≈

20 m), pulses arrive after one roundtrip at different time slots, which encodes the traveled 

distance and creates discrete arrival times (Δ𝑇 ≈ 50 ns) being equivalent to synthetic 

positions 𝑥 − 1 (loop 𝑢) or 𝑥 + 1 (loop 𝑣) in the effective spatial domain, respectively. After 

one roundtrip, 𝑚 increases by one and the process starts again. For any 𝑚 roundtrips, pulses 

arrive in the photodetectors (see Figure 6(a)) at different arrival times as 

𝑇arrival(𝑚, 𝑥) = 𝑚 (
𝑇𝑣 + 𝑇𝑢
2

)
⏟      

�̅�

+ (
𝑇𝑣 − 𝑇𝑢
2

)
⏟      

Δ𝑇

𝑥 (1) 

where 𝑥 stands for the effective spatial position. In this experiment, pulse energies are 

measured with a photodetector, the signal of which is sampled electronically by an offline 

digital signal processing software, as shown in Figure 6(b)-(d).  

The size of the synthetic lattice and the maximum number of roundtrips are limited by 

the used fiber lengths. Provided that the initial light distribution is always spreading, e.g. 1D 

LW depicted in Figure 6(e), the earliest pulse from the roundtrip 𝑚 + 1 will overlap with the 

latest pulse from roundtrip 𝑚 [32]. Therefore, the maximum number of positions along the 
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transverse direction is given by 𝑥max ≈ 𝑇/Δ𝑇. Besides, to reduce noise and to improve the 

measurement quality of the photodetected pulse sequence, we always average over 100 

subsequent single runs of the experiment, each requiring about ~30 ms. 

Additionally, each path possesses an EDFA amplifier, which compensates for energy 

losses accumulated in every roundtrip from the passive and active optical components 

depicted in the scheme as well as from the pulse propagation through SSMF and DCF fibers 

(see Figure 5). Effective gain factors of the EDFAs are controlled by tuning the power of a 

corresponding pilot CW laser, which operates at a blue-shifted wavelength of 𝜆 = 1536 nm. 

This pilot signal is combined with the pulses via a wavelength division multiplexer (WDM) 

in front of the respective EDFAs and removed afterward by tunable BPFs placed directly 

behind the amplifiers. Next, PM and MZM, control phase and amplitude of the pulses within 

the loops, respectively. The polarization state of the signal is controlled by an additional 

photodetector coupled via polarizing beam splitters (PBS) in each of the loops. Minimizing 

the signals at these photodetectors ensures a fixed and well-controlled polarization state of all 

pulses at the optical coupler to ensure interference and to guarantee proper operation of all 

polarization-maintaining components, such as optical coupler, PMs, and MZMs. The optical 

coupler, which connects both loops, is described by the following 2×2 matrix   

𝐶 = (
𝑡 𝑖𝑟
𝑖𝑟 𝑡

), (2) 

where t and r denote real-valued transmission and reflection coefficients (𝑡2 + 𝑟2 = 1). 

During linear propagation through an optical fiber, pulses of width 𝑇0 stretch to √2𝑇0 after 

the so-called dispersion length 𝐿𝐷 given by 

 𝐿𝐷 =
𝑇0
2

|𝛽2|
, (3) 

where 𝛽2 denotes the group velocity dispersion with a value of ~105 fs²/km for DCF at 1550 

nm. Given the initial optical pulse is 22 ns long in the experiment, the dispersion length 𝐿𝐷 is 

approximately 2.5 ∙ 106 km and, as that loop length (𝐿) is 4 km, a single optical pulse in the 

system can propagate up to 62.5 ∙ 104 round trips (𝑚) without experiencing significant 

spreading in time. Since only ~600 roundtrips are utilized in the experiments, dispersion 

effects can be safely neglected or, in other words, pulses can be modeled as monochromatic 

under these experimental conditions. 
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Figure 5: Coupled fiber loop connected via a variable coupler. A pulse is created and injected into the loop v. 

Each fiber path comprises an erbium-doped fiber amplifier (EDFA) for loss compensation and 𝟒 km of optical 

fiber. Mach-Zehnder modulators (MZM) and phase modulators (PM) allow for amplitude and phase modulation. 

Polarization-maintaining single-mode fiber and standard single-mode fiber are depicted as red and black lines, 

respectively. BPF: bandpass filter; WDM: wavelength division multiplexer; gate: optical switcher; SMF: single-

mode fiber; DCF: dispersion-compensating fiber; PD: photodetector; PBS: polarizing beam splitter. 

Therefore, pulse dynamics is effectively described in terms of amplitudes and carrier-

envelope phases, altogether encoded in the complex amplitudes 𝑢𝑥
𝑚 and 𝑣𝑥

𝑚 during 𝑚 

roundtrips (or coupling length) at position 𝑥  

𝑢𝑥
𝑚+1 = (𝑡𝑥−1

𝑚 𝑢𝑥−1
𝑚 + 𝑖𝑟𝑥−1

𝑚 𝑣𝑥−1
𝑚 ) exp(𝑖χ|𝑡𝑥−1

𝑚 𝑢𝑥−1
𝑚 + 𝑖𝑟𝑥−1

𝑚 𝑣𝑥−1
𝑚 |2)exp(𝑖𝜑𝑢), (4) 

𝑣𝑥
𝑚+1 = (𝑡𝑥+1

𝑚 𝑣𝑥+1
𝑚 + 𝑖𝑟𝑥+1

𝑚 𝑢𝑥+1
𝑚 ) exp(𝑖χ|𝑡𝑥+1

𝑚 𝑣𝑥+1
𝑚 + 𝑖𝑟𝑥+1

𝑚 𝑢𝑥+1
𝑚 |2) exp(𝑖𝜑𝑣), (5) 

where 𝑡𝑥
𝑚 and 𝑟𝑥

𝑚 are the splitting ratio (𝑡2 + 𝑟2 = 1) of the optical coupler from Equation 

(2). In this model, χ denotes an effective nonlinearity, in which optical pulses acquire a 

nonlinear phase shift proportional to their power (see Section 1.6). The last term in Equations 

(4) and (5) denote an external phase modulation protocol in loop 𝑣 (𝜑𝑣 ) and 𝑢 (𝜑𝑢) for 

tuning the band structure of the system (see Section 1.4) or creating an effective phase 

potential.  
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Figure 6: (a) During each round trip, each pulse splits and interferes into the 50/50 couplers and arrives with 

different arrival times at the photodetectors. (b)-(d) Arriving pulses are photodetected (blue line), sampled 

electronically (black dashed line) by computer software and (e) mapped onto a 1D spatially 𝒙 representation 

(loop 𝒗; 1D Light walk for 𝝋𝒖,𝒗 = 𝟎). 

 

1.3. Experimental setup: 2D Photonic Mesh Lattice 

In the 2D photonic mesh lattice, the initial 22 ns long pulse is generated similarly to the 

1D case (see Figure 4) and injected into loop 𝐶 by an optical switcher, as shown in Figure 7. 

The experimental platform is built up of four paths of slightly different fiber lengths, 

arranged as inner and outer loops connected by two 50/50 couplers. Each path comprises of 

an SSMF of 30 km long (nonlinear coefficient 𝛾 ≈ 1.1 (W. km)−1 [51], [53]) combined with 

approximately 4 km of DCF fiber (type: OFS-HSDK, nonlinear coefficient 𝛾 ≈ 7 (W. km)−1 

[52]) to ensure an additional boost of nonlinearity due to the higher nonlinear coefficient.  

In addition, each path possesses an EDFA amplifier, which compensates for energy 

losses accumulated in every roundtrip from the passive and active optical components 

depicted in the scheme as well as from the pulse propagation through SSMF and DCF fibers. 

Effective gain factors of the EDFAs are controlled by tuning the power of a corresponding 

pilot CW laser, which operates at a blue-shifted wavelength of 𝜆 = 1536 nm. This pilot 

signal is combined with the pulses via a wavelength division multiplexer (WDM) in front of 
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the respective EDFAs and removed afterward by tunable BPFs placed directly behind the 

amplifiers. Next, PM and amplitude modulators (AOM and MZM) control the phase and 

amplitude of the pulses within the loops, respectively. The polarization state of the signal is 

controlled by an additional photodetector coupled via polarizing beam splitters (PBS) in each 

of the loops. Minimizing the signals (�̅� and �̅�) at these photodetectors ensures a fixed and 

well-controlled polarization state of all pulses at the optical coupler to ensure interference and 

to guarantee proper operation of all polarization-maintaining components, such as optical 

coupler, PMs, and MZMs.  

As depicted in Figure 7, AOMs are placed at the beginning of the inner loop, but 

MZMs in the outer ones. The AOMs provide a higher suppression ratio and require only an 

RF signal. Although having longer switching times compared to MZMs, they are still fast 

enough for amplitude modulation on time scales in the order of microseconds. Additionally, 

the performance of the AOMs does not depend on the state of polarization, which simplifies 

the setup considerably. Likewise, MZMs in the outer loop provide much faster control of 

pulses in the nanoseconds range but require DC bias control and polarization stability. The 

mechanism used to implement a 2D photonic mesh lattice relies on the pulse arrival time 

(similarly to the 1D scheme [22]) and results in a straightforward mapping from the temporal 

evolution through the fiber loops onto an equivalent 2D spatial mesh lattice (see Figure 8(a)). 

 

Figure 7: Two pairs of fibers are connected via 50/50 couplers (see upper panel). A pulse is created and injected 

into the outer left path. Each fiber path has 𝟑𝟎 km of optical fiber and an erbium-doped fiber amplifier (EDFA) 

for loss compensation. Acousto-optic modulators (AOM) in the inner and Mach-Zehnder modulators (MZM) in 

the outer pair allow for amplitude modulation. Additionally, phase modulators (PM) are placed in both inner and 

outer loops. Polarization-maintaining single-mode fiber and standard single-mode fiber are shown in red and 

black colors, respectively. BPF: bandpass filter; WDM: wavelength division multiplexer; gate: optical switcher; 

SMF: single-mode fiber; DCF: dispersion-compensating fiber; PD: photodetector; PBS: polarizing beam 

splitter. 
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All fiber patches shown in Figure 7 are approximately 30 km long, where the two inner 

ones (𝐴 and 𝐵) differ by Δ𝐿inner = 𝐿𝐴 − 𝐿𝐵 ≈ 600 m (Δ𝑇inner = 3 μs), while the two outer 

ones (𝐶 and 𝐷) differ by Δ𝐿outer = 𝐿𝐶 − 𝐿𝐷 ≈ 6 m (Δ𝑇outer = 30 ns). During one roundtrip, 

the pulses which propagate through the inner and outer loops result in a total travel length of 

about 60 km or a roundtrip time of 𝑇 = 300 µs. However, due to the different fiber lengths, 

pulses arrive after one roundtrip at different time slots, which encodes the traveled distance 

(see Figure 8(b)). After one roundtrip, the pulse that took the shorter inner and/or outer path 

arrives first, whereas the pulse that propagated through the longer inner and/or outer path is 

delayed. Thus, the arrival time 

𝑇arrival = 𝑚(
𝑇𝐴 + 𝑇𝐵
2

+
𝑇𝐶 + 𝑇𝐷
2

)
⏟            

𝑇

+ (
𝑇𝐴 − 𝑇𝐵
2

)
⏟      
Δ𝑇inner

𝑥 + (
𝑇𝐶 − 𝑇𝐷
2

)
⏟      
Δ𝑇outer

𝑦 
(6) 

is given by a linear combination of the roundtrip time 𝑇 and the length differences Δ𝑇inner and 

Δ𝑇outer. In this model, 𝑥, 𝑦, and 𝑚 are integer numbers, where 𝑚 counts the number of 

roundtrips and 𝑥, 𝑦 are increased or decreased by 1 after each roundtrip through the longer or 

shorter patch of the inner and outer paths.  

Based on Equation (6), the earliest pulse taking the shorter inner and outer paths arrives 

at 𝑇arrival = 𝑇𝐵 + 𝑇𝐷 and thus 𝑥 = −1 and 𝑦 = −1, which is equal to a step to the left bottom 

on the 2D lattice. The latest pulse arrives at 𝑇arrival = 𝑇𝐴 + 𝑇𝐶, which corresponds to 𝑥 = 1 

and 𝑦 = 1 (right top on the lattice). Taking the inner short and outer long paths lead to a 

delay of 𝑇arrival = 𝑇𝐵 + 𝑇𝐶, which means 𝑥 = −1 and 𝑦 = 1 (left top). The last case, i.e. a 

roundtrip through the inner long and outer short paths, results in 𝑇arrival = 𝑇𝐴 + 𝑇𝐷 (𝑥 = 1 and 

𝑦 = −1, or right bottom of the 2D lattice). Therefore, the 2D lattice can be created by time 

multiplexing as depicted in Figure 8. This mesh lattice displayed in Figure 3(d) and Figure 

8(a), is for instance equivalent to a 2D waveguide array and both 50/50 couplers resemble the 

effect of wave coupling to neighboring waveguides in the horizontal or vertical direction. 

Consequently, each roundtrip 𝑚 in this system can be considered as a propagation step by 

one coupling length in a 2D waveguide array [36], [45]. 
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Figure 8: (a) Pulse arrival by time multiplexing mapped onto a 2D lattice. (b) During each roundtrip, each pulse 

splits and interferes into the 50/50 couplers and arrives with different arrival times at the photodetectors. The 

pulse amplitudes are photodetected (blue line), sampled electronically (black dashed line) by computer software, 

and mapped onto a 2D spatially 𝒙-𝒚 representation. 

The size of the mesh lattice and its maximum number of roundtrips are limited by the 

used fiber lengths, provided that the initial light distribution, e.g. 2D Light Walk as shown in 

Figure 9,  is always spreading [18], [45]. At some roundtrip 𝑚 of the propagation, the earliest 

pulse from the roundtrip 𝑚 + 1 will overlap with the latest pulse from roundtrip 𝑚. 

Therefore, the maximum number of positions along the horizontal direction is given by 

𝑥max ≈ 𝑇/Δ𝑇inner. Analogously, time-multiplexing fails if, during one roundtrip, two pulses 

from adjacent timeslots overlap. This results in a maximum vertical lattice size 𝑦max ≈

Δ𝑇inner/Δ𝑇outer. Interestingly, there are different pathways and sequences through the loops 

that some pulses can acquire the same time delay and, consequently, being interfered with 

since only pulses arriving at the same timeslot in a 50/50 coupler can interact. For example, 

pulses propagating first through the shorter inner and outer paths and afterward through the 

longer inner and outer long paths arrive at the same time as the pulses that first took the 

longer inner and outer paths and then the shorter inner and outer patches. Hence, these pulses 

finally arrive at the same lattice point but following different trajectories. Since pulses travel 



 

 13 

always through the same fiber pieces and components, they acquire the same time delays and 

phases over subsequent roundtrips at least within the time scales below those of fiber length 

fluctuations, taking place due to acoustic noise and temperature changes. Hence, the system 

acts as a self-aligning interferometer and allows for coherent light evolution through a 

considerable number of roundtrips. 

Given an initial 22 ns long pulse, pulse dispersion is negligible (see Equation (3)) and 

the dynamics in this system are well described by the complex amplitudes 𝑎𝑥,𝑦
𝑚  / 𝑏𝑥,𝑦

𝑚  and 𝑐𝑥,𝑦
𝑚  

/ 𝑑𝑥,𝑦
𝑚  of the pulses traveling through 𝐴 and 𝐵 loop (short/long inner loops) and 𝐶 and 𝐷 loop 

(short/long outer loops), respectively. By interpreting the number of roundtrips 𝑚 as a 

discretized time variable and the subscripts (𝑥, 𝑦) as the Cartesian position on the mesh 

lattice displayed in Figure 8, the pulse evolution in the inner loops can then be described by 

the following equations 

𝑎𝑥,𝑦
𝑚 =

1

√2
(𝑐𝑥+1,𝑦
𝑚−1 + 𝑖𝑑𝑥+1,𝑦

𝑚−1 ) exp (𝑖
1

2
χ|𝑐𝑥+1,𝑦

𝑚−1 + 𝑖𝑑𝑥+1,𝑦
𝑚−1 |

2
) exp(𝑖𝜑𝑎), (7) 

𝑏𝑥,𝑦
𝑚 =

1

√2
(𝑑𝑥−1,𝑦

𝑚−1 + 𝑖𝑐𝑥−1,𝑦
𝑚−1 ) exp (𝑖

1

2
χ|𝑑𝑥−1,𝑦

𝑚−1 + 𝑖𝑐𝑥−1,𝑦
𝑚−1 |

2
) exp(𝑖𝜑𝑏), 

(8) 

while in the outer loops by  

𝑐𝑥,𝑦
𝑚 =

1

√2
(𝑎𝑥,𝑦+1
𝑚 + 𝑖𝑏𝑥,𝑦+1

𝑚 ) exp (𝑖
1

2
χ|𝑎𝑥,𝑦+1

𝑚 + 𝑖𝑏𝑥,𝑦+1
𝑚 |

2
) exp(𝑖𝜑𝑐), (9) 

𝑑𝑥,𝑦
𝑚 =

1

√2
(𝑏𝑥,𝑦−1
𝑚 + 𝑖𝑎𝑥,𝑦−1

𝑚 ) exp (𝑖
1

2
χ|𝑏𝑥,𝑦−1

𝑚 + 𝑖𝑎𝑥,𝑦−1
𝑚 |

2
) exp(𝑖𝜑𝑑). 

(10) 

New pulses are formed by interference inside the 50/50 couplers as reflected by the first 

term of Equations (7)-(10). Nonlinear phase modulation is induced by the action of the Kerr 

nonlinearity in the optical fiber, which is represented by an effective factor χ (see Section 

1.6). The third term represents an external phase modulation 𝜑a, 𝜑b, 𝜑c, and 𝜑d imprinted by 

phase modulators in order to tune the band structure of the system (see Section 1.4) or ensure 

2D PT symmetry (see Section 3.3). Following a 2D quantum walk dynamics [36], [50], an 

initial single pulse (see Figure 9(a)) injected into the left outer loop (on the center of the 

lattice 𝑥 = 0, 𝑦 = 0, see  Figure 9(c)) results in a one-dimensional stream of arrival pulses 

(see Figure 9(b)).  
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Figure 9: Experimental realization of a 2D light walk for vanishing phase modulation 𝝋𝟎 = 𝟎. (a) Photodetected 

signal of the first time step 𝒎, at which a single pulse is inserted into the left outer loop. (b) Oscilloscope trace 

of time step 𝒎 = 𝟑𝟓. (c)-(f) 2D Light walk for different propagation steps 𝒎. 

Consequently, those pulses perform a 2D light walk (φa,b,c,d = 0), which are sampled 

and attributed to the corresponding 2D mesh lattice positions (see Figure 9(c)-(f)). Note that 

the expanded inset of Figure 9(a) and (b) (dotted red square) represents all values displayed 

on the x-axis for y = 0, according to Equation (6). This successful emulation of further 

synthetic dimensions by using a genuine 1D fiber is based on the combination of long- and 

short-range coupling caused by the inner and outer loop pairs, respectively. 

 

1.4. 1D and 2D Photonic Band Structure  

The 1D and 2D photonic mesh lattices created by a coupled-fiber loop scheme exhibit a 

periodic unit cell (see Figure 2 and Figure 3) and, consequently, eigen-energies of the system 

yield a dispersion relation based on the Bloch wave theory [54]–[58]. In the linear (𝜒 = 0) 

and conservative 1D case, the lattice periodicity is two in the transverse and propagation 

direction (see Figure 2) and Equations (4)-(5) depicts a generalized double time step 

evolution as  

𝑢𝑥
𝑚+2 = (𝑡𝑥−1

𝑚+1(𝑡𝑥−2
𝑚 𝑢𝑥−2

𝑚 + 𝑖𝑟𝑥−2
𝑚 𝑣𝑥−2

𝑚 )𝑒𝑖𝜑𝑢(𝑚)

+ 𝑖𝑟𝑥−1
𝑚+1(𝑡𝑥

𝑚𝑣𝑥
𝑚 + 𝑖𝑟𝑥

𝑚𝑢𝑥
𝑚)𝑒𝑖𝜑𝑣(𝑚))𝑒𝑖𝜑𝑢(𝑚+1), 

(11) 

𝑣𝑥
𝑚+2 = (𝑡𝑥+1

𝑚+1(𝑡𝑥
𝑚𝑣𝑥

𝑚 + 𝑖𝑟𝑥
𝑚𝑢𝑥

𝑚)𝑒𝑖𝜑𝑣(𝑚)

+ 𝑖𝑟𝑥+1
𝑚+1(𝑡𝑥+2

𝑚 𝑢𝑥+2
𝑚 + 𝑖𝑟𝑥+2

𝑚 𝑣𝑥+2
𝑚 )𝑒𝑖𝜑𝑢(𝑚))𝑒𝑖𝜑𝑣(𝑚+1), 

(12) 
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where transmission and reflection coefficients (𝑡𝑥
𝑚 and 𝑟𝑥

𝑚) and phase modulation (𝜑𝑣 and 

𝜑𝑢) are considered. First, let consider a Floquet-Bloch ansatz in the form 

(
𝑣𝑥
𝑚

𝑢𝑥
𝑚) = (

𝑉
𝑈
) 𝑒𝑖𝑥

𝑘𝑥
2 𝑒𝑖𝑚

𝜃
2 , (13) 

where (𝑉, 𝑈)𝑡 is the eigenvector consisting of two components (amplitude and phase relation 

between loops 𝑣 and 𝑢), 𝜃 is the propagation constant and  𝑘𝑥 is the Bloch momentum, 

inserted into Equations (11)-(12) [22], [47], a dispersion relation yields1  

cos 𝜃 = 𝐶 cos 𝑘𝑥 − (1 − 𝐶) sin𝜑0, (14) 

where 𝐶 stands for the splitter ratio of that optical coupler (𝐶 = 𝑡2 = 1 − 𝑟2), and 𝜑0 denotes 

the intensity of a phase modulation applied to the mesh lattice as follows 

𝜑𝑣(𝑚) = {
−
𝜑0

2⁄ , odd 𝑚

+
𝜑0

2⁄ , even 𝑚
       and 

(15) 

𝜑𝑢(𝑚) = {
+
𝜑0

2⁄ , odd 𝑚

−
𝜑0

2⁄ , even 𝑚
. 

For the passive case (𝜑0 = 0) and 50/50 splitting ratio (𝐶 = 0.5), Equation (14) 

displays a Dirac cone at the edges of the Brillouin zone (𝑘𝑥 = ±𝜋), however for any non-

vanishing 𝜑0 the degeneracy is lifted and a gap opens up. A new Dirac cone is formed in the 

center of the Brillouin zone for  𝜑0 = ±𝜋, as shown in Figure 10. In addition, Figure 10(b) 

exhibits the tuning band structure as a function of splitting ratio 0 ≤ 𝐶 ≤ 1 for phase 

modulation  𝜑0 = 0.25𝜋. Furthermore, due to the Floquet-Bloch nature of the system, the 

passive band structure repeats itself with respect to 𝜃 for multiples of 2𝜋 [59]. Additionally, 

the eigenstate (𝑉, 𝑈)𝑡 can be manipulated2 in order to probe a narrow momentum spread 

excitation, e.g. a broad Gaussian distribution, onto the lower, upper or superposition of both 

band structure 𝜃(𝑘𝑥) [35], [37], [47], [60].  

                                                 
1 See Appendix A. 
2 See Appendix A.  
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Figure 10: 1D band structure as a function of (a) phase modulation (𝝋𝟎) and (b) splitting ratio (𝑪). 

The same analogy applies to a 2D photonic mesh lattice, yet it requires a simplification 

in Equations (7)-(10) to reduce them into two iteration equations. As 𝑎𝑥,𝑦
𝑚  and 𝑏𝑥,𝑦

𝑚  are 

uniquely determined by 𝑐𝑥,𝑦
𝑚−1 and 𝑑𝑥,𝑦

𝑚−1 and those depend on 𝑎𝑥,𝑦
𝑚−1 and 𝑏𝑥,𝑦

𝑚−1 only, it is 

possible to replace 𝑐𝑥,𝑦
𝑚−1 and 𝑑𝑥,𝑦

𝑚−1 as  

𝑎𝑥,𝑦
𝑚+1 =

1

2
(𝑎𝑥−1,𝑦−1

𝑚 + 𝑖𝑏𝑥−1,𝑦−1
𝑚 + (𝑖𝑏𝑥−1,𝑦+1

𝑚 − 𝑎𝑥−1,𝑦+1
𝑚 )exp(𝑖(−1)𝑚−1𝜑0)), (16) 

𝑏𝑥,𝑦
𝑚+1 =

1

2
((𝑏𝑥+1,𝑦+1

𝑚 + 𝑖𝑎𝑥+1,𝑦+1
𝑚 )exp(𝑖(−1)𝑚−1𝜑0) + 𝑖𝑎𝑥+1,𝑦−1

𝑚 − 𝑏𝑥+1,𝑦−1
𝑚 ), 

(17) 

where optical couplers are set to a 50/50 splitting ratio and 𝜑𝑎 = 𝜑𝑐 = 0, while 𝜑𝑏 and 𝜑𝑑 

consist of a phase modulation as follows 

𝜑𝑏,𝑑(𝑚) = {
−𝜑0, odd 𝑚
+𝜑0, even 𝑚

. (18) 

Furthermore, as in the 1D counterpart, the band structure is calculated by a Floquet-

Bloch ansatz [35], [37], [45], [47], [60] 

(
𝑎𝑥,𝑦
𝑚

𝑏𝑥,𝑦
𝑚 ) = (

𝐴
𝐵
) 𝑒𝑖(𝑘x𝑥+𝑘y𝑦−𝜃𝑚)/2, (19) 

where 𝑘x and 𝑘y stand for Bloch momenta in 𝑥 and 𝑦 directions, and 𝜃 is the propagation 

constant. In Equation (19), (𝐴, 𝐵)t is the eigenvector consisting of two components, which 
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describe the amplitude and phase relation between loops 𝐴 and 𝐵 from Equations (16) and 

(17). The structure of the ansatz accounts for the double periodicity of the lattice −i.e. a unit 

cell contains two points in each direction and two roundtrips are required to reproduce the 

lattice. Inserting the ansatz into a double-step of the evolution in Equations (16) and (17) 

produces a dispersion relation3 

cos(𝜃) = ±
1

2
(−
1

2
−
1

2
cos(2𝜑0) − cos(𝜑0) cos(𝑘𝑥) − cos(𝜑) cos(𝑘𝑦)

+ cos(𝑘𝑥) cos(𝑘𝑦)). 

(20) 

For any non-vanishing (𝜑0 ≠ 0) phase modulation, the degeneracy at the Dirac cone at 

the edge of the Brillouin zone is lifted and a gap opens up as shown in Figure 11(b)-(f). A 

new Dirac cone is formed in the center of the Brillouin zone for φ0 = ±π (Figure 11(g)). 

Similarly, due to the Floquet-Bloch nature of the system, the band structure repeats itself with 

respect to 𝜃 for multiples of 2𝜋.   

 

    

(a) 𝝋𝟎  =  𝟎 (b) 𝝋𝟎  =  𝝅/𝟔 (c) 𝝋𝟎  =  𝝅/𝟑 (d) 𝝋𝟎  =  𝝅/𝟐 

 
   

(e) 𝝋𝟎  =  𝟐𝝅/𝟑 (f) 𝝋𝟎  =  𝟓𝝅/𝟔 (g) 𝝋𝟎  =  𝝅 

Figure 11: 2D band structure as a function of the phase modulation 𝝋𝟎. 

 

                                                 
3 See Appendix B. 
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1.5. Amplitude, Phase, and Coupling Modulation 

Amplitude modulators, such as MZM and AOM, allocated in the 1D and 2D 

experimental set-up allows for generating broad Gaussian distribution (see Sections 2.1 and 

3.1) and gain/loss modulation (see Section 0 and 3.3). They are controlled by a radio 

frequency (RF) signal from function waveform generators (FWG), in which the transmission 

ratio (𝛶) from AMs varies from 0 (0%) to 1 (100%) according to their characteristic voltage 

curve [53]. Provided that AMs are set to an idle transmission coefficient of 𝛶 = 𝜉 (0 < 𝜉 <

1), a global attenuation is introduced into the fiber paths by √𝜉 and it is only compensated by 

an EDFA afterwards in order to restore the quasi-conservative nature of the system. 

Subsequently, by coarsely varying 𝛶 in the time domain, optical pulses can be amplified 

(𝛶𝑥
𝑚 > 𝜉) or attenuated (𝛶𝑥

𝑚 < 𝜉) every roundtrip, from which the maximum gain 𝐺MAX =

1 √𝜉⁄   is limited by setting 𝛶𝑥
𝑚 = 1.  

Similarly, phase modulators enable a variety of physical effects in the photonic mesh 

lattice [22], [33], [61], such as Kapitza confinement (see Section 0), multimodal photonic 

mesh lattice (see Section 0), PT symmetry (see Section 3.3), as well as breaking the 

degeneracy of the system for opening up a bandgap (see Sections 1.4). In each loop, a PM 

allows for a linear phase shift (𝜑0) based on its characteristic voltage curve [53], in which it 

is also controlled by an electrical RF signal generated by an FWG.  

Additionally, optical couplers which connect the fiber-coupled loops can consist of a 

fixed splitting ratio, such as 50/50 ratio, or a mechanism of modulating the coupling ratio in 

order to vary its transmission (𝑡) and reflection (𝑟) coefficients (𝑡2 + 𝑟2 = 1) in the time 

domain. A variable coupler structurally has an RF input port, similarly to PM and AM, in 

which the splitting ratio 𝐶 (𝐶 = 𝑡2 = 1 − 𝑟2) coarsely vary as a function of the input voltage 

signal. Normally, VCs commercially available in the market do not present high-speed 

modulation (~1 MHz) compared to high-speed MZM and PM (~40 GHz), yet it is possible 

to modulate them in the order of roundtrips (~𝜇𝑠), but not in the range of individual pulse 

positions. 

 

1.6. Fiber Nonlinearity in 1D and 2D Photonic Mesh Lattices 

In the experiment, a nonlinear power-dependent phase shift is acquired by the optical 

pulses propagating through DCF fibers (type: OFS-HSDK [52]) and SSMF. The long length 

interaction and the high field concentration in the fiber’s core enable significant nonlinear 
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phase shifts at mW power levels [51]. As silica is inversion-symmetric, its optical 

nonlinearity is dominated by the third-order susceptibility 𝜒(3). The experimental parameters 

were chosen such that they can exclude the influence of any additional nonlinear material 

response like Raman and Brillouin scattering or acoustic resonance effects on the observed 

propagation patterns. The power-dependent phase shift is thus a consequence of self-phase 

modulation in the optical fibers [51].  

In the 1D scheme, the nonlinear phase contribution of SSMF is negligible since it has 

smaller 𝛾 and only a few meters are used in the experiments compared to DCF fiber (~4 km). 

In particular, provided that each path has a fiber spool of DCF, the power-induced nonlinear 

phase shift is written as  

𝜑𝑁𝐿(1D) = 𝑃0(𝛾𝐷𝐶𝐹𝐿𝐷𝐶𝐹
𝑒𝑓𝑓

). (21) 

𝐿𝑒𝑓𝑓 =
1 − 𝑒−0.23𝛼𝐿

0.23𝛼
, 

(22) 

where 𝐿𝑒𝑓𝑓 and 𝛼 are the effective lengths and absorption coefficients, where the latter is 

multiplied by a factor 0.23 in Equation (22) to convert it from dB/km into 1/km [52], [53]. 

𝑃0 is the power taken within the loop at a certain time step 𝑚 by the squared absolute value 

of the pulse amplitude |𝑎𝑥,𝑦
𝑚 |

2
. On the other hand, 2D experiments include the nonlinear 

phase contribution of SSMF because now the fiber spools consist of ~30 km of SSMF and 

~4 km DCF fiber. Despite SSMF has 𝛾 smaller (1.1 (W. km)−1) than that of the DCF 

(7 (W. km)−1), its cumulative effect should be taken into account due to considerable 

propagation distances [51]. Therefore, provided that each path has, in sequence, a fiber spool 

of DCF and SSMF, the power-induced nonlinear phase shift is written as 

𝜑𝑁𝐿(2D) = 𝑃0(𝛾𝐷𝐶𝐹𝐿𝐷𝐶𝐹
𝑒𝑓𝑓

+ 𝛾𝑆𝑀𝐹𝐿𝑆𝑀𝐹
𝑒𝑓𝑓

𝑒−𝛼𝐷𝐶𝐹𝐿𝐷𝐶𝐹). (23) 

The absorption coefficient (𝛼𝐷𝐶𝐹 = 0.6 dB/km and 𝛼𝑆𝑀𝐹 = 0.2 dB/km) and the 

nonlinear parameter 𝛾 = 2𝜋𝑛2 𝐴eff𝜆⁄  are fiber-specific parameters [51]. Here, 𝐴eff is the 

effective mode area of the fiber and 𝑛2 is the nonlinear index coefficient. By inserting the 

fiber parameters used in the experiment into Equations (21)-(23), a nonlinear phase shift of 

2𝜋 is accumulated at a peak power of about: ~290 mW (1D) and ~157 mW (2D). In 

numerical simulations, the iteration equations in Equations (4),(5),(7)-(10) consider the 

nonlinearity as 𝑒𝑖𝜒|𝑎
2|, where 𝜒 = 𝛾𝐿𝑒𝑓𝑓. In addition, according to numerical simulations, the 
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pulse dynamics are insensitive to a small difference of nonlinearities 𝛾 between the loops, 

which occurs due to experimental imperfections (splice losses, fiber parameters, etc.) 

Therefore, the evolution equation using in this dissertation, as well as numerical simulations, 

make the approximation that the effective nonlinearities are equal in both loops [35], [45]. 

 

1.7. Coupled-fiber Loop: Historical Milestones 

Following previous works in our group [22], [35], [37], [47], [60]–[62], 1D light walk 

measurement based on the time-multiplexing technique has been improved in several 

different aspects. Initially, the first investigation in the field was developed by Benjamin 

Hinrichs in his diploma thesis “Feldausbreitung in photonischen Netzwerken” [63], which 

demonstrated a feasible number of 40 roundtrips possible for propagating through a coupled-

fiber loop. Further improvements on the experimental platform accomplished by Alois 

Regensburger [22], [37], [62], [64] enabled pulse propagation up to 200 roundtrips by using 

semiconductor optical amplifiers (SOA). Remarkably, telecommunication devices, such as 

amplitude and phase modulators, were also employed in the system for developing complex 

fiber networks, such as parity-time symmetric mesh lattice [22], [37], and defect states [62]. 

Alternatively to SOA, Martin Wimmer proposed a new amplification method in his master 

thesis “Nichtlineare Pulsausbreitung in einem optischen Fasernetzwerk” [65] based on 

EDFA combined with a co-propagation pump at blue-shifted wavelength. As a result, the 

maximum number of time steps increased to 1,600 roundtrips. Higher amplification and the 

resulting peak power combined with nonlinearity enabled the formation of 1D parity-time 

symmetric solitons [35], Bloch oscillation under parity-time symmetry [66], and optical 

diametric drive acceleration [61]. M. Wimmer also contributed to Berry curvature 

measurement from anomalous transport [47] and time-reversed light propagation [67]. 

Additionally, Arstan Bisianov investigated topological effects in 1D photonic mesh lattice 

with nonlinearity [68]. 

To some extent, the present dissertation discusses novel physical phenomena in 1D 

photonic mesh lattices and an extended scheme for increasing the dimensionality to a 2D 

photonic mesh lattice. Additional improvements, at this point, on the combination of high-

coherent optical pulses and state-of-the-art EDFAs contributed not only to better resolution of 

pulse interferences at high peak power but also for increasing the synthetic dimensionality of 

the system and minimizing temperature and polarization drifts during longer data acquisition 

measurements. This work contributes to 1D Kapitza light confinement [69], optical 
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thermodynamics in a 1D multimodal photonic mesh lattice, 1D quantum walk with entangled 

photon-pairs, nonlinear dynamics in 2D photonic mesh lattice [45], and parity-time symmetry 

in 2D photonic mesh lattice [70]. 

 

1.8. Experimental Performance on Coupled-fiber Loops 

In this section, two experimental issues, such as acoustic noise and pulse coherence, are 

discussed and technical solutions to minimize them at an acceptable level are demonstrated. 

In the 1D experiment, the fiber spools in each loop do not require a long fiber length (𝐿 ≈

4 km) to synthesize its spatial dimension. However, the extended 2D approach requires 

approximately 9-times longer fiber spools (𝐿 ≈ 35 km) for tailoring an additional synthetic 

transverse coordinate (𝑥𝑦-axes). Because the majority of the optical fiber is maintained 

wrapped in a spool, the acoustic waves can vibrate them in such a way that its length slightly 

varies in time [71], resulting in considerably small phase variation between optical pulses.  

As an illustration, let consider a monotone acoustic tone with a period of 1 𝑓ac⁄  applied 

on two different scenarios of measurements in the coupled-fiber loop having a fiber length of 

𝐿1 and 𝐿2 (𝐿1 ≪ 𝐿2) (see Figure 12(a)). The measurement time of the first case (𝑚MAX.
𝑛𝐿1

𝑐
=

𝑚MAX. 𝑇1, where 𝑐 is the speed of light and 𝑛 is the refraction index of silica) is not 

influenced by external noise oscillations since all pulses practically experience the same noise 

intensity, whereas the second one (𝑚MAX. 𝑇2) suffers the entire period of that oscillation and 

thus a train of pulses propagating through this fiber loop receives phase oscillations ∝ 1 𝑓ac⁄ .  

To experimentally illustrate this idea, two cases of a 1D LW are considered in the 

experiment, of which each loop has: a fiber spool of (1) 4 km (original 1D fiber length) and 

(2) 34 km (original 2D fiber length). For the first scenario, the phase disturbance is 

practically imperceptible due to measurement time is smaller than that acoustic noise period, 

thus all pulses are influenced in the same way during the whole measurement time (see 

Figure 12(b)). On the other hand, a fiber spool of 34 km results in a longer measurement 

time, and the chain of pulses experience throughout the experiment the entire phase 

turbulence (see Figure 12(c)). Therefore, it is used as the latter scenario for optimizing 2D 

experiments against vibration and acoustic noise. Even though we placed the fiber spools 

within wooden boxes for both mentioned cases, the latter case demonstrated a poor quality of 

isolation.  
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Figure 12: Experimental performance and improvements of a fiber-coupled loop. (a) Two scenarios of 

measurement time and phase disturbance. (b) 1D light walk without acoustic vibrations. (c) 1D light walk under 

the influence of phase disturbance caused by acoustic noise. (d) An extreme case of phase disturbance by 

knocking the fiber spools. (e) Worsening of pulse coherence (interferences) due to poor quality laser source and 

highly nonlinear phase modulation (indicated by a white arrow). (f) Example of poor pulse coherence (indicated 

by a grey arrow) at high input power case of a 2D wave collapse. (g) Enhancement of pulse coherence 

(indicated by a grey arrow) by a high coherent pulse source at high input power case of a 2D wave collapse.  

Additionally, to demonstrate an extreme case, if the optical table was knocked/shacked 

during measurements, high vibrational components distorted the signal so that the phase 

information between pulses was completely destroyed (see Figure 12(d)). The most feasible 

technical approach our group used for solving this issue was covering those four fiber spools 

in wooden boxes and shielding them on soundproofing 3-cm thick acoustic panels (inside and 

outside) and lining those boxes on the optical table with adhesive low-frequency acoustic 

foam panels.  

Next, pulse coherence was also another technical problem either in 1D and 2D cases. It 

was first realized in the 1D system [35], from which increasing input power a soliton tends to 
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form and propagates vertically through the mesh lattice in the ideal case. However, due to the 

poor coherent time of the initial pulse, this solitonic state was practically destroyed after a 

few roundtrips (see Figure 12(e)). Similarly, in the 2D case, we recognized the same problem 

at high input power excitation, in which pulses tend to collapse into a single lattice site and 

form a bright spike pulse (see Section 0). In this case, provided that pulse coherence is low, 

nonlinear phase shift combined with a sequence of interferences (at longer time steps) 

resulted in distorted pulses and poor quality results (see 2D measurements with distorted 

pulses in the synthetic coordinate 𝑥 for 𝑦 = 0 in Figure 12(f)). Instead of using a diode laser 

which has not significant time coherence, our group solved this issue by employing a high-

quality laser source (NKT-Photonics Koheras BASIK E15) with narrower linewidth (< 100 

Hz) and low phase-noise (3.2 𝜇rad/√Hz/m @ 100Hz) (see results in Figure 12(g) and 

compare to that previous one in Figure 12(f)). 
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2. One-dimensional Photonic Mesh Lattice Projects 

2.1. Generation of 1D Gaussian Wave Packet as an Initial Distribution 

There are two procedures for generating an initial broad distribution: either from an 

external pulse generator or from an internal phase/amplitude protocol. On one hand, inserting 

an externally generated wave packet by cutting pulses from a CW signal allows for 

flexibility, but requires active interferometry stabilization due to mutual phase decoherence. 

The pulse distance within the chain requires to match the loop difference ∆𝑇, in which 

inaccuracy in the order of the wavelength has to be compensated by a phase modulator. On 

the other hand, an amplitude/phase protocol can be used for preparing a broad distribution 

from an initial seed pulse. This protocol consumes a considerable number of time steps and 

restricts the amplitude distribution (e.g. exponentially decaying tails of a Gaussian envelope), 

but it ensures a flat phase distribution and high coherence between pulses since the system 

acts as a self-aligning interferometer and allows for coherent light evolution. This work 

focused on creating an initial distribution from a sequence of pulses internally generated by a 

protocol in order to circumvent technical challenges, such as phase decoherence.  

2.1.1. Amplitude Modulation Protocol 

Given an initial seed pulse injected into loop 𝑣, an alternating amplitude modulation 

generates a Gaussian distribution by blocking one of the two fiber loops every second 

roundtrip, which is described by a set of diffusive equations:  

2𝑣𝑥
𝑚+2 = (𝑣𝑥+2

𝑚⏟
=0

+ 𝑖𝑢𝑥+2
𝑚 + 𝑖𝑢𝑥

𝑚 + 𝑣𝑥
𝑚⏟
=0

) = 𝑖(𝑣𝑥+2
𝑚 + 𝑣𝑥

𝑚), (24) 

2𝑢𝑥
𝑚+2 = (𝑢𝑥−2

𝑚 + 𝑖𝑣𝑥−2
𝑚 + 𝑖𝑣𝑥

𝑚⏟        
=0

+ 𝑢𝑥
𝑚) = 𝑣𝑥−2

𝑚 − 𝑣𝑥
𝑚 , (25) 

which ensures a vanishing phase after every second roundtrip and forms a Gaussian 

distribution [64] 

𝑣𝑥
𝑚 ≈

𝑖𝑚

√𝜋2𝑚

𝑒
−
𝑥2

2𝑤2 , 
(26) 

provided that 𝑚 ≫ 1. The width of the distribution 𝑤 using amplitude modulation protocol 

grows proportionally to √𝑚 since it follows a classical diffusive process [47]. Although its 
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intensity presents an exponential decay of 𝑒−𝛼𝑚 due to alternating amplitude modulation, a 

small amount of amplification in both loops during this process compensates that 

precipitating loss and yields total power roughly constant [35].    

2.1.2. Phase Modulation Protocol 

The working principle of generating a broad distribution by phase modulation is based 

on the fact that compensating the phase difference between loop 𝑣 and 𝑢, every time step 𝑚, 

produces a discretized diffusive equation:  

𝑣𝑥
𝑚+1 =

1

√2
(𝑣𝑥+1
𝑚 + 𝑖𝑢𝑥+1

𝑚 )𝑒𝑖Φ𝑣(𝑚,𝑥) =
1

√2
(𝑣𝑥+1

𝑚 + 𝑖⏟
=1

𝑢𝑥+1
𝑚 ), (27) 

𝑢𝑥
𝑚+1 =

1

√2
(𝑢𝑥−1
𝑚 + 𝑖𝑣𝑥−1

𝑚 )𝑒𝑖Φ𝑢(𝑚,𝑥) =
1

√2
(𝑢𝑥+1

𝑚 + 𝑖⏟
=1

𝑣𝑥+1
𝑚 ),  (28) 

where 𝛷𝑢(𝑚, 𝑥) and 𝛷𝑣(𝑚, 𝑥) denote a spatially-dependent phase profile. Therefore, by 

numerical simulation, a phase modulation protocol ensures that every time step 𝑚, pulses in 

loop 𝑣 and 𝑢 arrive at the optical coupler with zero phase difference 

𝛷u(m, x) =  − tan
−1 (

ℑ[ux
m]

ℜ[uxm]
), (29) 

𝛷v(m, x) =  − tan
−1 (

ℑ[vx
m]

ℜ[vxm]
), 

(30) 

where ℑ[∙] and ℜ[∙] represent the imaginary and real parts of the complex vector. As an 

illustration, a seed pulse injected initially into loop 𝑣 (𝑣𝑥=0
𝑚=0 = 1) splits into two pulses 

(𝑢𝑥=−1
𝑚=1 = 𝑖

1

√2
 and 𝑣𝑥=1

𝑚=1 =
1

√2
), in which a phase modulator compensates the phase shift of 

that first time step, as shown in Figure 13(a) (a circle and star symbol). Subsequently, at 

every roundtrip 𝑚, a phase modulation is applied to loop 𝑣 and 𝑢, following the pattern 

displayed in Equations (29) and (30) and Figure 13(a) and (b). Provided that 𝑚 ≫ 1, a broad 

distribution having a Gaussian envelope is formed (see Figure 13(d)) 

𝑣𝑥
𝑚 ≈

1

√𝜋𝑚
𝑒
−
𝑥2

2𝑤2 , (31) 
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in which the width of the distribution 𝑤 grows ∝ √2𝑚 (see Figure 13c) and thus √2 faster 

than that amplitude modulation protocol since the modulation period is reduced by 2. In 

special, by reducing the coupling ratio 𝐶 of that optical coupler during this process, wider 

Gaussian-like distribution is formed   

𝑣𝑥
𝑚 ≈

1

√2𝑚𝜌
𝐶

𝑒
−
𝑥2

2𝑤2 , (32) 

where 𝜌 ≈ |𝜃(𝑘𝑥 = 0)| = cos
−1(2𝐶 − 1) provided that 𝑚 ≫ 1 (see Figure 13(c)).  

 

Figure 13: Phase modulation protocol for preparing a wave packet having a Gaussian distribution from an initial 

seed pulse injected into loop 𝒗. (a) Phase intensities applied to loop 𝒗 and 𝒖 for time steps 𝒎 =
𝟏, 𝟏𝟎, 𝟐𝟎, 𝟑𝟎, 𝟒𝟎, 𝟓𝟎 and 𝟔𝟎. (b) Height of the phase modulation protocol as a function of synthetic transverse 

direction 𝒙 and time step 𝒎 up to 60. (c) Width of a Gaussian envelope increases as a function of time steps 𝒎, 

where the dashed black lines represent a Gaussian fit curve. AM: amplitude modulator, PM: phase modulation. 

(d) Normalized amplitude of a Gaussian wave packet at the time step 𝒎 = 𝟔𝟎 prepared by using the phase 

modulation protocol. (e) 2D image of normalized intensities of a Gaussian wave packet prepared by using the 

phase modulation protocol. 
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The analytical approximation of Equation (32) is only valid provided that 0.1 ≤ C ≤

0.5 so that the width of the distribution 𝑤 rapidly increases ∝ √𝑚𝜌/𝐶, as shown in dashed 

black lines in Figure 13(c). Both techniques (amplitude and phase protocols) exploit diffusive 

processes accessible in the system from its inherent characteristics. Whereas amplitude 

protocol produces a Gaussian distribution having a width ∝ √𝑚 (see brown curve in Figure 

13(c)), the phase modulation protocol generates a broader distribution in a shorter period of 

roundtrips, or even broader if the parameter 𝐶 is reduced. However, the phase modulation 

protocol is quite sensible to high input power due to additional phase shift acquired by self-

phase modulation since Equations (29) and (30) primarily do not consider nonlinear phase 

increments. 
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2.2. Light Confinement via Kapitza Potential  

2.2.1. Theoretical Model 

In 1951, Kapitza predicted that a classical pendulum pointing upward can be in a stable 

position when subject to a periodic external torque [72]. Also referred to as a dynamic 

stabilization effect, Kapitza oscillating potential is an alternative approach of trapping 

classical or quantum particles that cannot be easily captured by static potentials [73]. 

Mathematically speaking, the Kapitza effect arises from the influence of fast scales on slow 

ones, a phenomenon for instance exploited in the Paul trap for particles [74], [75]. The 

emergence of an effective potential is not restricted to classical dynamics but is also observed 

in quantum mechanics −i.e. for waves 𝜓 satisfying the Schrödinger equation [76], [77] 

𝑖ℏ
𝜕

𝜕𝑡
𝜓 = −

ℏ2

2𝑀

𝜕2

𝜕𝑥2
𝜓 + 𝒰(𝑥)𝑓(𝑡)𝜓, (33) 

with 𝑓(𝑡 + 𝑇) = 𝑓(𝑡). In this case, the Kapitza potential is given by [78] 

𝒰Kap(𝑥) =
𝑇2

2𝑀
(
𝜕𝒰

𝜕𝑥
)
2

∑
|𝑓𝑛|

2𝑛2𝜋2
𝑛≠0

, (34) 

where 𝑓𝑛 are the coefficients of the Fourier series of 𝑓(𝑡). In the literature, the Kapitza effect 

has been theoretically predicted in waveguide arrays [73], multilayer stacks [79], periodically 

modulated waveguides [78], optical resonators [80], twisted anisotropic materials [81], and 

high-harmonic generation [82]. In special, Kapitza potential was predicted also in photonic 

structures periodically modulated along the propagation distance 𝑧, provided that 

electromagnetic fields in the paraxial approximation obey the Schrödinger equation with a 

photonic potential given by 𝑉 = −𝑘0∆𝑛 and an effective mass of 𝑘0𝑛0, where 𝑘0 denotes the 

vacuum wavenumber and ∆𝑛 = 𝑛 − 𝑛0 is a small deviation from an average refractive index 

𝑛0 [83].  

By using 1D photonic mesh lattice, this project models the Kapitza potential like a 

continuous Pauli-Schrödinger-like equation and experimentally confirms that when the 

transverse modulation is bell-shaped but with vanishing average along the propagation 

direction, light undergoes transverse localization, in agreement with the Kapitza stabilization 

effect [69]. First, let consider the 1D evolution equations in Equations (4) and (5) for a fixed 

50/50 splitting ratio (𝐶 = 0.5). A phase modulation, in agreement with Equation (34), is 

applied to loop 𝑣 and 𝑢 in the form of 𝜙(𝑚, 𝑥) = 𝑓(𝑚)𝛷(𝑥), which consists of a sinusoidal 
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modulation along the propagation direction 𝑚 and a Gaussian profile along the transverse 

direction 𝑥, written as  

𝑓(𝑚) = cos(2𝜋𝑚 𝑇′⁄ ), 

(35) 

𝛷(𝑥) = 𝐴𝑒
(− 𝑥2

2𝜎2
)
, 

where 𝑇′, 𝐴 and 𝜎 stands for oscillation period, height, and width of the potential, 

respectively (see Figure 14). The discrete set of Equations (4) and (5) in the absence of any 

phase modulation (i.e. 𝜙(𝑚, 𝑥)  =  0) results in pseudo-spinors 𝜓𝑥
𝑚 = (𝑣𝑥

𝑚; 𝑢𝑥
𝑚) decomposed 

into eigenstates as 𝜓𝑥
𝑚 = 𝜓mode𝑒

−𝑖(𝜃𝑚−𝑘𝑥). As demonstrated in Equation (14), respective 

eigenvalues or quasi-energies 𝜃 are arranged in two mirror-symmetric bands separated by a 

gap given by cos(𝜃) = cos(𝑘𝑥) √2⁄  (see Figure 10(a)). In the case of the band edges, i.e. 

for 𝑘𝑥 = 0, the two modes 𝜓mode = 𝜓± = (1;±1) √2⁄  correspond to diagonal and anti-

diagonal pseudo-polarizations. To apply Kapitza’s concept, Equations (4) and (5) are 

modeled with the continuous Schrödinger equation in Equation (33). To this end, it is 

assumed a broad excitation of a single band with flat phase 𝜓x
m = 𝜓(𝑚, 𝑥)𝜓± (see Section 

2.1), resulting in a spectrum centered on the Γ point (𝑘𝑥 = 0). For such excitation, it restricts 

the model to an expansion of the band structure up to the second-order, such as 

𝜃(𝑘𝑥) = ±(
𝜋

4
+
𝑘𝑥
2

2
), (36) 

where the signs are determined by the chosen dispersion band −i.e. lower (defocusing) or 

upper (focusing) bands.  

 

Figure 14: Sketch of the external oscillating phase modulation 𝝋(𝒎, 𝒙) for light confinement as a continuous 

function of space (𝒙) and propagation coordinate (𝒎), featuring three free parameters 𝑨, 𝝈 and 𝑻′. 
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Importantly, assuming that variations between subsequent roundtrips in Equation (35) 

are small, 𝑚 and 𝑥 are now regarded as continuous quasi-time and space, respectively.Still, a 

respective evolution equation must reproduce the band structure approximated by Equation 

(36) and in case of smooth changes of modulation should induce a phase evolution similar to 

that in Equations (4) and (5), defined as 

𝑖
𝜕

𝜕𝑚
𝜓 = ±(

𝜋

4
−
1

2

𝜕2

𝜕𝑥2
)𝜓 + 𝑓(𝑚)𝛷(𝑥)𝜓. (37) 

The constant quasi-energy of ±𝜋/4 in Equation (37) has no significant effect except for 

a trivial phase shift. A change of sign in front of the transverse derivative with respect to 𝑥 

caused by a band dependent effective mass, which is compensated by the complex 

conjugation of the whole Equation (37) and a sign flip of the effective potential 𝑓(𝑚)𝛷(𝑥). 

Based on these considerations, a comparison between Equation (37) and Equation (33) allows 

for identifying the effective Kapitza potential by setting ℏ and 𝑀 to 1 as 

𝛷Kap(𝑥) =
𝑇′2

16𝜋2
(
𝜕𝛷(𝑥)

𝜕𝑥
)

2

. (38) 

The effective Kapitza potential 𝛷Kap(𝑥) for the phase modulation provided by 

Equation (35) is depicted in Figure 15 (dashed blue lines) for two different sets of parameters. 

The shape of 𝛷Kap(𝑥) is an inverted W and, given that we are following the quantum 

mechanical convention in accordance with Equation (33), the field is attracted by regions 

where the potential is lower. Strictly speaking, no bound states are supported by this effective 

potential because its minimum value is equal to lim
|𝑥|→∞

𝛷Kap(𝑥) = 0 [84], but for realistic 

propagation distances the two potential walls are high enough to confine the field. Interesting 

to note that Equation (38) is independent of the sign of the original potential and as well as of 

the chosen band. We can thus expect similar effects including spatial confinement for both 

bands having opposite effective masses [61], which would not be possible for a conventional 

potential. Although the stationary component of the quasi-mode is governed by the 

longitudinally constant potential given by Equation (38), minor differences arise when the 

higher harmonics of the field are considered [78], [85].  
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Figure 15: Simulated quasi-mode propagation for 𝑻’ = 𝟐𝟎. Left column: profile of the effective potential given 

by Equation (38) (blue dashed line) and the corresponding quasi-mode (orange solid line) versus synthetic 

coordinate x. Right column: optical propagation computed via Equations (4) and (5) when the quasi-mode 

showed in the left column is launched at 𝒎 = 𝟎. White, magenta, and red solid lines are the instantaneous 

potential 𝜱 versus 𝒙, the beam width for vanishing phase modulation 𝝋 = 𝟎 versus 𝒎, and the instantaneous 

potential variation versus m, respectively. The parameters of the potential are (𝑨 = 𝟐𝝅, 𝝈 = 𝟏𝟓) and (𝑨 =
𝟒𝝅, 𝝈 = 𝟏𝟎) for top and bottom rows, respectively. 

The numerical simulation depicts the propagation of quasi-modes for the original 

discrete system ruled by Equations (4) and (5) stemming from the effective potential in 

Equation (38) (dashed blue lines in Figure 15). The inverted W-shaped potential computed 

from Equation (38) supports only leaky modes −i.e. trapped modes undergoing decay along 

propagation due to the coupling with radiation modes [84]. To compute the leaky modes of 

this structure, it is considered only the central lobe of the potential, artificially flattening the 

potential for |𝑥| larger than the positions corresponding to the potential maxima [78]. Such an 

approximation is accurate if the calculated quasi-mode is confined between the two lobes. 

Otherwise, the leaky mode will be subject to strong losses, inhibiting field trapping along the 

synthetic coordinate 𝑥 [78]. Figure 15 shows the computed quasi-modes for two sets of 

parameters where this approximation holds valid −e.i. quasi-guided modes exist. Next, 

computed profiles are used as the initial condition for the discrete field (𝑢, 𝑣) propagating 

according to Equations (4) and (5). As shown in Figure 15, the beam is trapped around 𝑥 = 0 

as predicted, with minimal losses occurring both at the input interface and during 

propagation. Furthermore, the confined beam propagating is breathing synchronously with 

the phase modulation, in agreement with the Bloch-Floquet theory. 
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2.2.2. Experimental Results 

First, let us consider a broad excitation by promoting a selective population within the center 

(𝑘𝑥 = 0) of the upper band. For this particular project, a broad Gaussian distribution is 

generated by using an amplitude modulation protocol (see Section 2.1.1). Given a Gaussian 

envelope 𝜓(𝑚 = 0, 𝑥) = 𝐺0exp (−
𝑥2

2𝑤0
2) (see green dotted curve in Figure 16(b)), where both 

the field amplitude (𝐺0) and width along 𝑥 (𝑤0, defined via the 1/e drop in intensity) can be 

tuned.  

Without any phase modulation (see Figure 16(a)), a Gaussian wave packet 

experiences linear diffraction, and its width 𝑤0 is doubled after a certain number of 

roundtrips given by the effective Rayleigh distance 𝐿𝐷 ≈ 𝑤0
2. For a proper periodical 

modulation, diffraction is suppressed and the field at 𝑚 = 200 has still the same size as the 

input distribution, see Figure 16(b). Light confinement can be clearly observed in Figure 

16(c), where the beam width does not increase along propagation due to the Kapitza effect. In 

Figure 16, the field confinement is demonstrated for one periodic potential, after fixing the 

width 𝜎 and the amplitude 𝐴.  

 

 

Figure 16: Light confinement via the Kapitza effect. (a) Simulation and experimental results of the propagation 

of a wave packet without (i and iii) and with (ii and iv) the periodic phase potential 𝝓 given by Equation (35), 

with 𝑻’ = 𝟐𝟔, 𝑨 = 𝝅, and 𝝈 = 𝟏𝟖. The plots are in algorithmic scale, with the intensity being normalized with 

respect to the actual maximum. (b) Profile |𝝍(𝒎, 𝒙)| (peak normalized to unity, linear scale) versus 𝒙 for the 

initial field distribution (green dashed line, 𝝍𝒎=𝟏), and for fields at 𝒎 = 𝟐𝟎𝟎 without potential (red line, 

𝝍𝒎=𝟐𝟎𝟎) or in the presence of a confining potential (blue line, 𝝍𝒎=𝟐𝟎𝟎
(𝒌)

). (c) Wave transverse width versus m 

without (red line, pure diffraction) and with (blue dotted line, confined field) the periodic potential 𝝓. 
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Next, numerical simulation computes which values of the parameters in Equation (35) 

Kapitza confinement will occur. Systematically, two main requirements have to be fulfilled to 

achieve light confinement utilizing a periodic phase modulation [78]. First, the period 𝑇′ of 

the temporal modulation (i.e. along propagation direction  𝑚)  has to be smaller than the 

diffraction length 𝐿𝐷 of a given wave packet: if this condition is not satisfied, higher-order 

terms in the Floquet expansion of the quasi-mode cannot be neglected anymore. Physically 

speaking, the field spreading during the repelling half-period of the instantaneous potential is 

too strong to be compensated during the following half period where the potential is 

confining. Second, the potential width 𝜎 should not be too small: in fact, too narrow central 

lobes imply a significant spatial overlap between the quasi-mode and the lateral lobes, thus 

inhibiting confinement due to the high radiation losses.  

To quantitatively investigate the confinement degree as a function of 𝐴, 𝜎 and 𝑇′, we 

determined the amount of guided power 𝑃𝑐 remaining after 200 steps of propagation as the 

integral of the intensity over a region of 4𝑤0 around 𝑥 =  0. Consequently, a guiding 

efficiency 𝜂 = 𝑃𝑐 𝑃in⁄   is determined as the ratio between the guided power 𝑃𝑐 and the 

launched power 𝑃in in that region as  

𝜂 =
𝑃𝑐
𝑃in

=
∑ (|𝑢𝑥

𝑚=200|2 + |𝑣𝑥
𝑚=200|2)2𝑤0

𝑥=−2𝑤0

∑ (|𝑢𝑥
𝑚=1|2 + |𝑣𝑥

𝑚=1|2)2𝑤0
𝑥=−2𝑤0

, (39) 

where 𝜂 = 1 means that all the power is confined around 𝑥 = 0. The numerically computed 𝜂 

is plotted in the logarithmic scale in Figure 17. A Gaussian wave packet with a width 𝑤0 ≈ 7 

(𝐿𝐷 ≈ 49) is considered as initial input. In agreement with the first requirement, the field 

confinement worsens as the modulation period 𝑇′ becomes comparable with the Rayleigh 

distance of the input beam (compare Figure 17(a)-(d)). Concerning the second condition, 𝑃𝑐 

increases as the potential becomes wider: in fact, in each panel 𝜂 tends to unity moving from 

left to right −i.e. when 𝜎 increases.  

Furthermore, Figure 17(a)-(d) shows how larger amplitudes of the potential 𝐴 improve 

the confinement, in accordance with Equation (38). For instance, when 𝑇′ = 26 (see Figure 

17(a)) for weak (𝐴 < 𝜋) but wide (𝜎 > 20) phase modulation, the wave packet experiences 

weak confinement and power is radiated away, yielding linear spreading (see Figure 17 inset 

(i)). In contrast, for 𝛷(𝑥) stronger (large 𝐴) and narrower (smaller 𝜎), the wave is strongly 

focused owing to the mismatch between the input waist and the width of the fundamental 

mode, resulting in a strong width variation along 𝑚 (see Figure 17 inset (iii)).  
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Figure 17: Numerically determined regions of light confinement as a function of 𝑨 and 𝝈 for oscillation periods 

𝑻′ of (a) 26, (b) 32, (c) 42, and (d) 50, computed via Equations (3),(4). The input is a Gaussian pulse with 𝑾𝟎 =
𝟕. 𝑷 𝒊𝒏 is the total initial power. Dotted lines encircle the parameter region where a quasi-shape-preserving beam 

is excited; in these regions, the variation of the amplitude and width of the field distribution are lower than 10%. 

Bottom row: experimental verification of light propagation when (i) no confinement occurs, (ii) mono-modal 

quasi-guiding is achieved, and (iii) the multi-modal regime (parameters correspond to red stars in (a)) is 

reached. 

Thus, although the power is localized around the origin, the field can undergo strong 

variations while propagating. In fact, the effective potential can be multimodal when the 

central lobe is deep enough and not too narrow −i.e. for large 𝐴 and for 𝜎 larger than the 

fundamental mode itself. Accordingly, the simultaneous presence of more than one mode 

yields additional breathing due to intermodal interference. To address intermodal 

interference, in Figure 17(a)-(d) the regions where the localized field (specifically, its width 𝜎 

and amplitude 𝐴) barely varies with respect to the initial input are bound by the dotted black 

lines. To confirm the experimental results, light propagation is tested in three different points, 

each of them corresponding to a different propagation regime. It is selected a potential too 

weak to induce confinement (Figure 17 inset (i)), nearly-invariant propagation in the mono-
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modal regime (Figure 17 inset (ii)), and confinement in the presence of multiple quasi-modes 

(Figure 17 inset (iii)). 
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2.3. Optical Thermodynamics in Nonlinear 1D Multimodal Mesh Lattice 

Recently, there has been a resurgence of interest in nonlinear multimode optical 

systems [86]–[91]. While the role of thermodynamics in optics has a long and rich history, it 

has so far been primarily confined to black-body settings and other open systems, which 

allows for heat exchange with their surroundings [92]. Quite recently, the prospect of 

observing an intriguing class of all-optical thermodynamic phenomena based solely on 

photon-photon multimodal interactions has been put forward [87], where the complex 

nonlinear response of highly multimode optical systems has attracted considerable attention 

[93], [94]. To an extent, what has motivated this interest is a quest for high-power optical 

sources that have been enabled by a sequence of new developments in multimode 

technologies related to both guided-wave structures [95], [96] and photonic cavities [97], 

[98]. As lately indicated in several studies, the action of nonlinearity in such multimodal 

arrangements can lead to a host of novel effects that have no counterpart whatsoever in 

single-mode settings [99]–[101]. Possible examples include geometric parametric instabilities 

[100], [102], spatiotemporal mode-locking [103], [104], new Cherenkov dispersive wave 

lines [105] and supercontinuum generation [106], [107], to mention a few.  

At the same time, a new set of theoretical challenges has been arisen in terms of 

understanding and predicting the complex nonlinear response of such systems −especially 

when hundreds or thousands of modes are involved [108]. Clearly, to harness this class of 

configurations, one has to address firstly several crucial issues associated with the power 

distribution and exchange among all possible modes [91], [109]. Lately, a self-consistent 

optical thermodynamic theory has been considered capable of describing such complex 

phenomena utilizing thermodynamics [86], [91]. By deploying entropic arguments, this 

formalism can predict several intriguing processes that are uniquely relevant to such large-

scale nonlinear optical multimodal systems. Among these processes is the thermalization 

towards a Rayleigh-Jeans distribution that explains the effect of beam self-cleaning [93], [94] 

−a process that has been so far remained poorly understood. Resulting quasi-thermal 

distributions are uniquely characterized by chemical potentials 𝜇 and temperatures 𝑇, which 

in principle can be either positive or negative [86], [87]. In addition, this theory suggests the 

prospect of isentropic (adiabatic) expansions/compressions [87] along with irreversible Joule 

expansions. These elementary mechanisms can, in turn, be judiciously leveraged to 

implement thermodynamic Carnot cycles [87] for either heating or cooling an optical system 

[86] –i.e. aspects that could be useful for improving the brightness of optical sources. Yet, as 
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of now, there has been no experimental confirmation of such unusual behavior in the optical 

domain. 

Here, we demonstrate, for the first time, a set of archetypical optical thermodynamic 

processes in a nonlinear multimodal photonic mesh lattice – all unfolding at temperatures that 

have nothing to do with the actual thermal environment [110]. These include optical 

thermalization at both positive and negative temperatures, isentropic expansions and 

compressions as well as Joule photon-gas expansion. In addition to shedding light on 

fundamental issues associated with the physics of complex nonlinear highly multimode 

systems, these results also open up new perspectives to realize a novel class of all-optical 

thermal engines based on entropic principles.  

 

2.3.1. Thermodynamic Conditions  

In general, nonlinear multimode optical waveguides support a finite number of 𝑀 

bound states, called modes, which propagate along the axial direction 𝑧. Relevant 

configurations can be continuous, such as a strip of an extended layer confined between 

cladding ones [111], or discrete, such as multicore optical fibers [112] or waveguide arrays 

[95]. Despite modeling differences, all configurations present eigenmodes associated with a 

particular propagation constant, determined via the solution of an eigenvalue problem [96]. In 

the lossless case, optical power (𝑃) is conserved, and also the system’s Hamiltonian remains 

constant provided that system parameters do not change. The latter one consists of linear (𝐻L) 

and nonlinear (𝐻NL) components, which continuously exchange their energies during a 

nonlinear propagation (𝐻 = 𝐻L + 𝐻NL). Here, we assume optical thermodynamic effects 

utilizing weak nonlinearities causing an adiabatic exchange of power between modes. In this 

case, the Hamiltonian is dominated by the linear contribution (𝐻 ≈ 𝐻L) and the conserved 

internal energy (𝑈) of a multimodal system is defined as 𝑈 =  −𝐻L. This approximation is 

analogous to a “diluted gas of particles approach” whose internal energy is dominated by its 

kinetic part [87], [91]. In contrast, high nonlinearity enables solitonic structures to form, a 

situation for which this approximation is not valid anymore.  

The system’s eigenmodes are described by their occupation |𝑐𝑘|
2, where 𝑐𝑘 stands for 

the complex coefficients of the field distribution, and propagation constants 𝜃𝑘. Additionally, 

as a conserved system, total power and internal energy are completely determined by initial 

excitation conditions and thus they are written as 𝑃 = ∑|𝑐𝑘|
2 and 𝑈 = −∑𝜃𝑘|𝑐𝑘|

2, 

respectively. These thermodynamical variables, such as 𝑃, 𝑈, 𝑀, and the 𝜃𝑘 are connected 
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with each other by the optical temperature 𝑇 and the chemical potential 𝜇 associated to the 

system [91] by the relation  

𝑈 − 𝜇𝑃 = 𝑀𝑇, (40) 

which involves the number of modes 𝑀 and their propagation constants 𝜃𝑘, and thus 

Equation (40) is analogous to that of an ideal gas [87] −e.g. 𝑝𝑉 = 𝑁𝑘B𝑇 [110]. The 

extensive variables in Equation (40) can be used to determine both 𝑇 and 𝜇 of a nonlinear 

multimodal system at a thermal equilibrium since 𝑃 and 𝑈 are initially specified. In such an 

arrangement, the system reaches thermal equilibrium by maximizing its entropy and forcing 

its modal occupancy to follow a Rayleigh-Jeans distribution  

|𝑐𝑘|
2 = −

𝛼𝑇

𝜃𝑘 + 𝜇
   , (41) 

where 𝛼 is simply a coefficient used for convenience. 

 

2.3.2. 1D multimodal Mesh Lattice and Initial State Excitation 

Similar to Equations (4) and (5), a 1D photonic mesh lattice with finite positions can be 

modeled, in the linear (χ ≈ 0) case, by the following set of equations:   

𝑢𝑥
𝑚+1 = (𝑡𝑥

𝑚𝑢𝑥
𝑚 + 𝑖𝑟𝑥

𝑚𝑣𝑥
𝑚) exp(𝑖𝜑0), (42) 

𝑣𝑥
𝑚+1 = (𝑡𝑥−1

𝑚 𝑣𝑥−1
𝑚 + 𝑖𝑟𝑥−1

𝑚 𝑢𝑥−1
𝑚 ), (43) 

𝑢𝑥
𝑚+2 = (𝑡𝑥+1

𝑚+1𝑢𝑥+1
𝑚+1 + 𝑖𝑟𝑥+1

𝑚+1𝑣𝑥+1
𝑚+1) exp(−𝑖𝜑0), (44) 

𝑣𝑥
𝑚+2 = (𝑡𝑥

𝑚+1𝑣𝑥
𝑚+1 + 𝑖𝑟𝑥

𝑚+1𝑢𝑥
𝑚+1), (45) 

where 𝜑0 is the phase shift applied by phase modulators, and 𝑡 and 𝑟 are transmission and 

reflection coefficients of the optical coupler from Equation (2). Given that the periodicity of 

the mesh lattice is two, a pulse only returns to its starting point after two roundtrips and, 

consequently, a full period of mode evolution requires two roundtrips.  

A finite number of modes 𝑀 in the system is achieved by truncating the mesh lattice in 

Equations (42)-(45) at predefined reflective boundaries (𝑟 = 1; 𝑡 = 0). Therefore, the first 

and last elements is set to 𝑡
𝑥=−

𝑁

2

= 𝑡
𝑥=

𝑁

2

= 0 and 𝑟
𝑥=−

𝑁

2

= 𝑟
𝑥=

𝑁

2

= 1 in order to reflect pulses 

back to the mesh lattice, where 𝑁 represents the lattice size. Altogether, the matrix of 
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eigenmodes 𝛹 (2𝑁 + 2 elements) of a given lattice configuration based on 𝜑0 and 𝑡/𝑟 is 

determined by calculating the eigenvalues of the propagating matrix ℳ of Equations (42)-

(45) from time step 𝑚 to 𝑚 + 2  

[𝛹𝑘, 𝜃𝑘] = eig (ℳ̂(𝜑0, 𝐶)), (46) 

where 𝐶 is the splitting ratio of the optical coupler (𝐶 = 𝑡2 = 1 − 𝑟2) and 𝜃𝑘 is the 

propagation constant from which each eigenmode is occupied. Therefore, each eigenmode is 

composed of a set of complex vector (𝑉, 𝑈)−1 denoting a stationary field distribution in loop 

𝑣 (𝑉) and 𝑢 (𝑈) and it replicates itself after two roundtrips except for a trivial phase (𝑒𝑖𝜃𝑘). 

Figure 18 shows the distribution of eigenvalues 𝜃𝑘 as a function of phase modulation 

(𝜑0) and splitting ratio (𝐶). Each eigenmode derived from Equation (46) possesses a 

propagation constant, which converges to a Floquet band structure for an infinite system (see 

Section 1.2 and Figure 10). In addition to phase modulation, 𝐶 can be tuned by reducing or 

increasing in the coupling strength, resulting in compressing or extending of the eigenmodes 

over the propagation constant 𝜃 span (compare Figure 18(a) for 𝐶 = 0.5 (purple), 0.3 

(yellow) and 0.1 (green) for 𝜑0 = 𝜋). Additionally, the number of system’s eigenmodes is 

directly proportional to the mesh lattice size (see Figure 18(b) for 𝑁 = 10 and 20).  

 

Figure 18: (a) Eigenmodes distribution as a function of phase modulation 𝝋𝟎 and coupling ratio 𝑪 for a finite 

mesh lattice of 𝟐𝟏 positions. (b) Mode distribution in case of increasing the number of lattice positions of 𝟐𝟏 

(blue) to 𝟒𝟏 (red). 

 

 



 

 40 

In such a system, the modal occupancy |𝑐𝑘|
2 is obtained via 

|𝑐𝑘
𝑚|2 = |𝛹𝑘

−1 ∗ 𝜓𝑚|2. (47) 

where 𝜓𝑚 denotes the complex amplitude distribution in loop 𝑣 and 𝑢 at the time step 𝑚 

𝜓𝑚 = [𝑣𝑥=−𝑁
2

𝑚 ⋯ 𝑣𝑥=0
𝑚 ⋯ 𝑣

𝑥=
𝑁
2

𝑚 𝑢
𝑥=−

𝑁
2

𝑚 ⋯ 𝑢𝑥=0
𝑚 ⋯ 𝑢

𝑥=
𝑁
2

𝑚
]
−1
. (48) 

Since Equation (46) yields the eigenmodes of the system, it is possible to select each 

one individually or assemble them in a multimodal arrangement for propagating through the 

photonic mesh lattice. In order to prepare the initial state, let consider an initial state 𝜓𝑚=1 as 

a superposition of a given set of eigenmodes of Equation (48) as follows 

𝜓𝑚=1 = ∑ 𝑠𝑘𝛹𝑘

2𝑁+2

𝑘=1

= (𝑉′
𝑈′
), (49) 

where 𝑠𝑘 denotes a complex number with an absolute value of either 0 or 1 (mode empty or 

occupied) and a random phase 𝑒𝑖2𝜋𝑅, in which 𝑅 is a uniformly distributed pseudorandom 

number on the open interval [0,1].  

Experimentally, the initial state 𝜓𝑚=1 reproduced in Equation (49) is prepared inside 

the fiber-coupled loop for avoiding any phase decoherence between optical pulses (see 

Section 2.1). First, a broad Gaussian distribution with a flat phase is generated by using the 

phase modulation protocol (see Section 2.1.2) during 60 roundtrips. At 𝑚 = 60, the prepared 

Gaussian distribution (see red dashed line in Figure 19(a)) is truncated to finite positions (i.e. 

𝑁 + 1) and shaped to the initial distribution 𝜓𝑚=1 by judiciously amplifying or attenuating 

(see Figure 19(b)) each pulse in loop v (𝑉′) and u (𝑈′) 

𝛬𝑣(𝑥) =
|𝑉′|𝑥
|𝑣|𝑥

𝑚=60  and 
(50) 

𝛬𝑢(𝑥) =
|𝑈′|𝑥
|𝑢|𝑥

𝑚=60. (51) 

However, the amount of amplification accessible in the experiments relies on the idle 

transmission ratio (Υ) from AMs (see Section 1.5). For lower values of Υ, a net gain 𝛬𝑣,𝑢 is 

bigger but requires a higher amount of EDFA amplification for restoring the conservative 

quasi-energy of the system. Usually, the EDFAs produce more ASE noise for higher 
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amplification rates, which worsens the signal-to-noise ratio (SNR). Consequently, Υ is chosen 

at the best value of 0.5 [35], in which EDFA compensates its 3dB loss at a reasonable noise 

figure whereas maximum net gain 𝛬𝑣,𝑢 goes up to 2.  

Please, note that it is hard to generate modes that have high amplitudes on their edges 

due to the exponentially decaying tails of a Gaussian distribution and 𝛬𝑣,𝑢 is practically 

limited to a certain value. Thus, a pre-selection of mode distributions, which can be generated 

in the experiments, is evaluated as 

𝜓𝑚=1 is valid if {
0 < Λ𝑣(𝑥) < √2

0 < Λ𝑢(𝑥) < √2
 . (52) 

As an illustration, the blue curve in Figure 19(a) depicts a specific mode 𝜓𝑚=1 in loop 

𝑣 to be excited in the mesh lattice. The amplitude modulation 𝛬𝑣 required to amplify or 

attenuate each position 𝑥 is shown in Figure 19(b), where an amplification and attenuation, 

for instance, of 1.4 and 0.5 are applied to the positions 𝑥 = −8 and 0, respectively. 

Afterward, a phase modulation is applied to match the complex amplitudes of 𝜓𝑚=1 (see 

Figure 19(c)). By numerical simulation, a large number of 𝜓𝑚=1 was randomly generated 

(𝑛 ≈ 100,000 ensembles) from Equation (49) (with the same modal occupancy) and 

analyzed by Equation (50)-(52), from which a few 𝜓𝑚=1 were selected for the set of 

measurement ensembles to be used in the experiments (𝑛 ≈ 50). 

 

 

Figure 19: Initial excitation prepared from a Gaussian distribution. (a) Truncated Gaussian distribution (red 

dashed line) generated in the experiments (𝒘 ≈ 𝟔) and an example of a resulting mode distribution 𝝍𝒎=𝟏(blue 

color; only loop v is displayed). (b) Amplitude and (c) phase modulation applied to that Gaussian to generate the 

𝝍𝒎=𝟏 selected to the measurement set. 
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2.3.3. Nonlinear Interaction, Hamiltonian and Entropy 

In the linear case (𝜒 ≈ 0), modes propagate through the mesh lattice without exchanging 

energy, and the initial modal occupancy |𝑐𝑘
𝑚=1|2 is preserved for any time step 𝑚. On the 

other hand, a weakly nonlinear regime (𝜒 > 0) allows for the adiabatic exchange of energy 

between modes. Following Equations (4) and (5), we introduce a power-dependent nonlinear 

phase shift 𝜑NL = 𝑒
𝑖𝜒|𝜓𝑚|2. For a weak nonlinearity, 𝐻NL ≈ 0 and the internal energy 𝑈 is 

still determined by the linear Hamiltonian as 

𝑈(𝑚) ≈ −𝐻L(𝑚) = − ∑ (𝜃𝑘 ∗ |𝑐𝑘
𝑚|2)

2𝑁+2

𝑘=1

. (53) 

Additionally, the entropy Ω of the system is estimated as 

Ω(𝑚) = ∑ 𝑙𝑛 (|𝑐𝑘
𝑚|

2̅̅ ̅̅ ̅̅ ̅
)

2𝑁+2

𝑘=1

, (54) 

where |𝑐𝑘
𝑚|
2̅̅ ̅̅ ̅̅ ̅
 is the mean value of |𝑐𝑘

𝑚|2 determined by evaluating 𝑛 measurement ensembles. 

Thus, 𝑈 and Ω are used as indicators to verify if the initial modal occupancy reached its 

thermodynamic equilibrium [86], [87]. At this point, Ω reaches its maximum value [90] since 

it is analogously governed by the second law of thermodynamics [110]. 

 

2.3.4. Nonlinearity Estimation and Phase Recovery 

In numerical simulations, the total power 𝐸𝑇(𝑚) = ∑(|𝑐𝑘
𝑚|2) = ∑(|𝑣𝑥

𝑚|2 + |𝑢𝑥
𝑚|2) is 

fixed to unity and nonlinearity 𝜒 is a variable unconstrained. On the other hand, in the 

experiments, 𝜒 has a fixed value and is based on the system’s fiber nonlinearity (see Section 

1.6), whereas the only quantity accessible to tune the system from quasi-linear (𝜑𝑁𝐿 ≈ 0) to 

nonlinear (𝜑𝑁𝐿 > 0) is the initial optical power [35].  

From Equation (49), each eigenmode of the system comprises a vector (𝑉, 𝑈)−1 of 

complex numbers (i.e. by an absolute value (|𝑣𝑥| and |𝑢𝑥|) and angle argument (exp(𝑖𝜙𝑣) 

and exp(𝑖𝜙𝑢)). In the experiments, optical pulses are quantified by their intensities after 

photodetection in loops 𝑣 and 𝑢. Hence, the phase information exp(𝑖𝜙𝑣,𝑢) has to be 

estimated by a post-processing algorithm to measure the modal occupancy in Equation (47).  

First, the photodetected optical intensities are organized in matrices as follows 

https://en.wikipedia.org/wiki/Thermodynamic_equilibrium
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𝐼𝑣(𝑚, 𝑥) = |𝑣𝑥
𝑚|2,  

(55) 

𝐼𝑢(𝑚, 𝑥) = |𝑢𝑥
𝑚|2, 

where |𝑣𝑥
𝑚|2 and |𝑢𝑥

𝑚|2 represent the intensity of an optical pulse photodetected in loop v and 

u at time step 𝑚 and position 𝑥, according to Equation (1). Thus, 𝐼𝑣 and 𝐼𝑢 are normalized by 

the total input power as 

𝐼𝑣
′(𝑚, 𝑥) =

𝐼𝑣(𝑚, 𝑥)

∑ (|𝑣𝑥
𝑚=1|2 + |𝑢𝑥

𝑚=1|2)𝑁/2
𝑥=−𝑁/2

, 

𝐼𝑢
′ (𝑚, 𝑥) =

𝐼𝑢(𝑚, 𝑥)

∑ (|𝑣𝑥
𝑚=1|2 + |𝑢𝑥

𝑚=1|2)𝑁/2
𝑥=−𝑁/2

, 

(56) 

resulting in a sum of scaled intensities ∑ (𝐼𝑣
′(𝑚, 𝑥) + 𝐼𝑢

′ (𝑚, 𝑥))𝑥  of approximately 1, at any 

time step m, with a deviation of ±10% due to ASE noise from amplifiers. The normalization 

given in Equation (56) is realized to convert the experimental results into comparable data for 

the numerical simulations, where initial power is set to unity and 𝜒 is kept unconstrained. 

Furthermore, given an error vector computed by 

EV(𝜒) = ∑ ∑ (|𝐼𝑣
′(𝑚, 𝑥) − 𝐼𝑣

NS(𝑚, 𝑥, 𝜒)| + |𝐼𝑢
′ (𝑚, 𝑥) − 𝐼𝑢

NS(𝑚, 𝑥, 𝜒)|)

𝑁

𝑥=−𝑁

𝑚𝑀𝐴𝑋

𝑚=0

|

𝜒=[0:𝜋]

, (57) 

where 𝑚𝑀𝐴𝑋 denotes the maximum measurement roundtrip and 𝐼𝑣
NS and 𝐼𝑢

NS are the intensity 

matrices from the numerical simulations by using the same 𝜓𝑚=1, and identical phase and 

coupling modulation from Equations (42)-(45). Thus, the nonlinear coefficient in the 

experiments 𝜒𝐸𝑋𝑃 is estimated at the minimum point of EV(𝜒) as follows 

𝜒𝐸𝑋𝑃 = min(EV(𝜒)) (58) 

since EV(𝜒) present a parabola-shaped curve at its minimum centered at χEXP (see Figure 

20). Essentially, the minimum point of EV(𝜒) tends to zero at χEXP and that minimum 

accumulative error appears due to ASE noise.  
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Figure 20: Experimental estimation of nonlinearity 𝝌 based on an error vector computed by numerical 

simulations (each color displayed in the chart is a measurement ensemble 𝒏).  

According to Equation (42)-(45), and provided that the system works as a self-aligning 

interferometer, one can state that the phase dynamics at each time step 𝑚 is completely 

deterministic in the linear regime due to phase coherence of the optical components used in 

the experiments (see Figure 5), regardless of the initial amplitude and phase distribution. 

However, the nonlinear phase dynamics are not deterministic since the additional nonlinear 

phase shift depends on the nonlinearity and optical power. Since total power is normalized to 

unity and nonlinearity in the experiments 𝜒𝐸𝑋𝑃 is estimated, nonlinear phase dynamics can be 

now determined by a post-processing algorithm based on Equations (56)-(58). Another 

mathematical tool for minimizing the error of the searching phase algorithm is to check the 

relative phase4 𝜙𝑢𝑣(𝑚, 𝑥) between loop 𝑣 and 𝑢 from time step 𝑚 to 𝑚 + 1 

𝜙𝑢𝑣(𝑚, 𝑥) = 𝜙𝑢(𝑚, 𝑥) − 𝜙𝑣(𝑚, 𝑥) =

sin−1

(

 
𝐼𝑢
′ (𝑚 + 1, 𝑥 − 1) − 𝐼𝑣

′(𝑚 + 1, 𝑥 + 1) − (2𝐶𝑥
𝑚 − 1)(𝐼𝑢

′ (𝑚, 𝑥) − 𝐼𝑣
′(𝑚, 𝑥))

4√𝐼𝑢′ (𝑚, 𝑥)𝐼𝑣′(𝑚, 𝑥)(𝐶𝑥
𝑚 − 𝐶2𝑥

𝑚
)

)

 , (59) 

where 𝐶𝑥
𝑚 is the modulated coupling coefficient of the variable coupler. However, the 

compiled relative phase 𝜙𝑢𝑣 displays only numbers between [−𝜋 2⁄ , 𝜋 2⁄ ] due to sin−1 is 

multivalued, which thus may result in an ambiguity phase error of ±𝜋. Besides, ensuring that 

the nonlinear phase shift 𝜑𝑁𝐿 is weak in the experiments, smooth nonlinear phase increments 

can be observed by the phase difference 𝜙𝑢𝑣. Therefore, a tracking phase algorithm built-in 

                                                 
4 See Appendix D. 
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Equations (56)-(58) and assisted by Equation (59) carries out the phase information in loop v 

(𝜙𝑣) and u (𝜙𝑢), taking into consideration the estimated nonlinear coefficient 𝜒𝐸𝑋𝑃 and initial 

amplitude/phase distribution 𝜓𝑚=1. Consequently, the vector distribution 𝜓𝑚 in the 

experiments is thus reconstructed as 

𝜓𝑚 = (
√𝐼𝑣

′ (𝑚, 𝑥)𝑒𝑖𝜙𝑣(𝑚,𝑥)

√𝐼𝑢
′ (𝑚, 𝑥)𝑒𝑖𝜙𝑢(𝑚,𝑥)

). (60) 

 

2.3.5. Photonic Multimodal States in Thermal Equilibrium 

Formally, a vanishing phase modulation (𝜑0 = 0) results in a bandgap in the center of 

the Brillouin zone, but the lower and upper dispersion branches are still connected at the 

Brillouin zone edges since the band structure is periodic in the 𝜃 direction (see Figure 10). 

Therefore, only 𝜑0 > 0 ensures that both lower and upper parts of the band structure are 

isolated, suppressing energy transfer between them. Similarly, 𝐶 < 0.5 can be wisely chosen 

in order to accelerate the optical thermalization process to thermal equilibrium since it 

shrinks the eigenmodes −e.i. decrease the coupling strength− and thus facilitates the energy 

transfer among them during the nonlinear interaction. The photonic mesh lattice 

configuration is thus chosen as 20 positions, phase modulation 𝜑0 = 0.25𝜋 and splitting ratio 

𝐶 = 0.3 to accommodate a suitable experimental realization for up to 500 roundtrips. The 

experimental setup is based on Figure 5 and the variable coupler (VC) is modulated in the 

time domain for generating reflecting boundaries. Since our VC has a maximum switching 

speed of 1 MHz and a rise/fall time of ~200 ns, the fiber loop length was increased to allow 

for a larger length difference ∆𝐿 = 110 m, resulting in a pulse spacing of ∆𝑇 = 275 ns.  

As an illustration of a thermal equilibrium process, numerical simulations generate 

100 ensembles (𝑛) of the initial distribution 𝜓𝑚=1 based on Equation (49). Each 𝜓𝑚=1 has 

the same modal occupancy |𝑐𝑘
𝑚|2, but differs in its phase distribution. Numerically, these 

initial distributions propagate through the system based on Equations (42)-(45). Here, two 

scenarios of optical thermalization processes are shown with different initial modal 

occupancies: 10 eigenmodes equally excited in the lower band (see red stars in Figure 21(a)-

(c)) and 10 eigenmodes equally excited in the upper band (see red stars in Figure 21(d)-(f)).  
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Figure 21: Numerically simulated thermalization processes. (a)-(c) Lower band excitation: initial (red stars) and 

final modal occupancy (blue circles) after 𝟏𝟎𝟎𝟎 roundtrips for at (a) 𝝌 = 𝟎. 𝟎𝟓𝝅, (b) 𝝌 = 𝟎. 𝟏𝝅 and (c) 𝝌 =
𝟎. 𝟑𝝅. (d)-(e) Upper band excitation: initial (red stars) and final modal occupancy (blue circles) after 𝟏𝟎𝟎𝟎 

roundtrips for at (a) 𝝌 = 𝟎. 𝟏𝝅, (b) 𝝌 = 𝟎. 𝟐𝝅 and (c) 𝝌 = 𝟎. 𝟒𝟓𝝅. Modal occupancy as a function of time steps 

𝒎 for (g) lower band excitation (𝝌 = 𝟎. 𝟑𝝅) and (h) upper band excitation (𝝌 = 𝟎. 𝟒𝟓𝝅). 

 

A weak nonlinearity 𝜒 allows for the adiabatic transfer of energy among modes during 

nonlinear propagation, which becomes faster for an increase of χ (Figure 21(a)-(f)). 

Surprisingly, modal occupancy always reaches thermal equilibrium provided that χ ≠ 0 

(Figure 21(g) and (h)), yet noticeably bigger χ speed up the process. It is observed that 

entropy grows every time step 𝑚 in Figure 22(a) and (b) until it reaches its maximum value 

−e.i. a thermal equilibrium. Additionally, modal occupancy reaches thermal equilibrium by 

following a Rayleigh-Jeans distribution given by Equation (40). 
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Figure 22: Entropy (𝛀) of a (a) lower and (b) upper band excitation as a function of time steps 𝒎 for different 

nonlinearity values. Internal energy (𝑼) of a (c) lower (𝝌 = 𝟎. 𝟑𝝅) and (d) upper (𝝌 = 𝟎. 𝟒𝟓𝝅) band excitation 

as a function of time steps 𝒎. 

As described by Equation (40), the thermodynamic equilibrium is characterized by the 

intensive parameters 𝑇 and 𝜇, which are related to the initial parameters, such as 𝑃 and 𝑈. For 

the initial excitation (lower band) depicted in Figure 21(a), 𝑃 = 1 and 𝑈 ≈ 1.8795 result in a 

theoretical modal distribution (see dashed line in Figure 21(a)-(c)) based on a positive 

temperature 𝑇 = 0.75 and chemical potential 𝜇 = 1.77 extracted from Equation (39) and 

plotted by Equation (40). A similar effect is expected for the initial excitation (upper band) 

depicted in Figure 21(c), where 𝑃 = 1 and 𝑈 ≈ −1.874. Consequently, for this 

configuration, a negative temperature 𝑇 = −0.75 and chemical potential 𝜇 = −1.77 appears. 

Due to noise from the EDFAs, our experimental realization is limited to 500 roundtrips for 

which the noise floor remains comparably low. 

Experimentally, a broad Gaussian distribution is prepared for 60 roundtrips by using the 

phase modulation protocol (see Section 2.1.2). A pre-selection of 𝑛 = 50 ensembles of the 

initial distribution is carried out by Equations (50)-(52) (see Section 2.3.2). The initial 

distribution 𝜓𝑚=1 is realized at 𝑚 = 60 with amplitude and phase modulators, and thus 

propagates through the mesh lattice for 500 roundtrips (see Figure 23(e)). Here, four 

scenarios of photonic modal states are prepared with 10 eigenmodes equally excited in the 
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lower (see red stars in Figure 23(a) and (b)) and upper (see red stars in Figure 23(c) and (d)) 

band, where the initial modal occupancy slightly differ due to fluctuating power from ASE 

noise. By using Equations (56)-(60), nonlinearity (𝜒𝐸𝑋𝑃) and correspondent phase (𝜙𝑢 and 

𝜙𝑣) from the complex distribution in loop 𝑣 and 𝑢 are recovered and estimated, while 

Equation (47) calculates the modal occupancy. 

 It is worth noticing that each initial excitation reaches thermal equilibrium at 𝑚 = 500 

(see blue curve in Figure 23(a)-(d)) with inherent characteristic parameters of 𝑇 and 𝜇. 

Essentially, entropy as a function of 𝑚 is analyzed to verify that it always increases towards a 

stationary value –namely a thermal equilibrium (see Figure 24).   

 

 

Figure 23: Experimental realization of photonic modal states in thermal equilibrium. The 10th (a) first and (b) 

last eigenmodes equally excited in the lower band.  The 10th (c) first and (d) last eigenmodes equally excited in 

the upper band. Blue circles and red stars denote initial and final modal occupancy, respectively. (c) Intensity 

distribution 𝑰𝒗(𝒎, 𝒙) in the logarithmic scale as a function of 𝒎 in loop 𝒗. 
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Figure 24: Entropy (𝛀) as a function of 𝒎 for different initial excitations: the 10th (a) first and (b) last 

eigenmodes equally excited in the lower band, whereas the 10th (c) first and (d) last eigenmodes equally excited 

in the upper band. 

 

2.3.6. Isentropic Expansion and Compression 

Isentropic processes as adiabatic expansion or compression can also be realized in an 

optical setting as part of a Carnot-like cycle [87]. During such a process, the number of 

modes remains the same, while the internal energy 𝑈 is subject to a negative or positive 

change during expansion or compression, respectively, as a result of the reduction or rise in 

e.g. of the coupling strengths. Since it should be an adiabatic process, the entropy is kept 

constant, and thus the modal occupancy |𝑐𝑘
𝑚|2 remains invariant. Additionally, as a 

characteristic of an isentropic expansion and compression, the relation of 𝜇 𝑇⁄  and 𝑈 𝑇⁄  

remain constant during the process. Therefore, the optical “gas” heats up or cools down 

during isentropic compressions or expansions, respectively. Based on Equation (49), we 

numerically generated 200 ensembles (𝑛) of initial distributions 𝜓𝑚=1, each one being in 

thermal equilibrium and possessing the same modal occupancy |𝑐𝑘
𝑚=1|2, but different random 

phases. We first numerically simulated the propagation (see Figure 25) with a phase 

modulation of 𝜑0 = 𝜋 to close the bandgap in the center of the Brillouin zone. During 

propagation, we change the coupling 𝐶 starting at 0.3 and adiabatically increasing/decreasing 

to 0.5/0.1 during expansion and compression processes, respectively.  
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Figure 25: Modal occupancy in thermal equilibrium as a function of 𝒎 under isentropic (a), (c) compression, 

and  (b), (d) expansion.  

 

We indeed numerically observed isentropic expansion and compression with 

thermalized modal occupancies comprising negative and positive temperatures (see Figure 25 

and Figure 26). Starting with a modal occupancy in thermal equilibrium (i.e. following a 

Rayleigh-Jeans distribution) at negative temperature and after an adiabatic 

expansion/compression from 𝑚 = 40 to 440, the splitting ratio 𝐶 was increased/decreased, 

resulting in occupancies as shown in Figure 25(a) and (b)). During these processes, internal 

energy grew/declined until C ceased to change (see Figure 26(a)), whereas 𝜇 and 𝑇 adjusted 

simultaneously to remain its relation 𝜇 𝑇⁄  constant (see Figure 26(c) and (d)). A similar effect 

occurred for a modal occupancy in thermal equilibrium at positive temperature (see Figure 

25(c) and (d) and Figure 26(b), (d), and (f)). 

Experimentally, both isentropic expansion and compression processes are investigated 

at negative and positive temperatures. Similarly, a broad Gaussian distribution is prepared for 

60 roundtrips by using the phase modulation protocol (see Section 2.1.2) and a pre-selection 

of 50 ensembles (𝑛) of the initial distribution is carried out by Equations (50)-(52) (see 

Section 2.3.2). The initial distribution 𝜓𝑚=1 is prepared as usual at 𝑚 = 60 with amplitude 

and phase modulators and thus propagates through the mesh lattice for 500 roundtrips. 
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Figure 26: Numerical simulation of the evolution of the internal energy (𝑼) as a function of 𝒎 for (a) negative 

and (b) positive temperature. (c)-(f) 𝑻 and 𝝁 increase or decrease during isentropic expansion and compression 

in order to remain its relation 𝝁 𝑻⁄  constant.  𝜶 = 𝟏𝟎𝟐 is a coefficient used for convenience.  

 

Here, 𝜓𝑚=1  consists of a modal occupancy being already in thermal equilibrium with 

an initial temperature 𝑇1 and chemical potential 𝜇1 (see red stars in Figure 27(a)-(d)). Under 

isentropic expansion/compression, 𝐶 grows/declines from 0.3 to 0.5/0.1 during time steps 𝑚 

from 80 to 440. After 500 roundtrips, modal occupancy is extracted using Equation (47) (see 

blue curves in Figure 27(a)-(d)). As expected, internal energy increases/decreases during 

expansion/compression (see Figure 27(e) and (f)). The theoretical curve from Figure 27(a)-

(d) is given by Equation (40).  

In the experiment, the ratio between initial and final temperatures and chemical 

potentials is (𝑇1 𝜇1⁄ ) (𝑇2 𝜇2⁄ )⁄ ≈ 0.88 and not unity as predicted. This discrepancy is caused 

by the ASE noise from the amplifiers, inducing small deviations in the field distributions 𝑢𝑥
𝑚 

and 𝑣𝑥
𝑚. 
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Figure 27: Experimental realization of isentropic expansion and compression in a photonic mesh lattice. 

Isentropic expansion for (a) negative and (c) positive temperature. Isentropic compression for (b) negative and 

(d) positive temperature. Internal energy 𝑼 as a function of 𝒎 for (e) negative and (f) positive temperature. 

 

2.3.7. Joule Photon-gas Expansion 

Contrary to isentropic expansion/compression, Joule photon-gas expansion is connected 

with heat exchange and comprises a sudden increase in the number of modes (𝑀1 → 𝑀2) 

realized by an expansion of the mesh lattice positions (𝑁1 → 𝑁2), while optical power, 𝜑0 

and 𝐶 are kept constant. The number of associated eigenmodes increases accordingly, i.e. 

𝑀 = (2𝑁 + 2).  

Here, similar to the isentropic configuration, we choose 𝜑0 = 𝜋 and 𝐶 = 0.3. We first 

numerically simulated the propagation of a modal occupancy in thermal equilibrium (see blue 

curve in Figure 25 for negative (a) and positive (b) temperatures), where a sudden increase of 

mesh lattice positions (𝑁2 = 2𝑁1) occurs at 𝑚 = 60.   
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Figure 28: Joule photon-gas expansion. (a)-(b) The entropy in thermal equilibrium is changed by Joule 

expansion, whereas the final temperature 𝑻𝟐 increases proportionally to the expanded mesh lattice position, 

without changing the chemical potential 𝝁𝟏 = 𝝁𝟐. (e)-(f) Initial (blue) and final (green) modal occupancy 

distribution after Joule expansion. 𝜶 = 𝟏𝟎𝟐 is a coefficient used for convenience. 

 

Consequently, 𝑇 increases proportionally to 𝑀2 𝑀1⁄ , while 𝜇 remains constant (see 

Figure 28(c) and (d) for 𝑀2 = 2𝑀1). At the end of this process, the final modal occupancy 

still exhibits a Rayleigh-Jeans distribution and thus it is in thermal equilibrium, but at a 

different temperature 𝑇2 and the same chemical potential 𝜇2 = 𝜇1 (see the green curve in 

Figure 28(a) and (b)). This effect is exceptionally connected to the relative entropy associated 

with the photonic “monoatomic” chain network, where Ω ∝ 𝑀𝑙𝑛(1 𝑀⁄ ) [87], [91], [110]. As 

a result, the corresponding temperature 𝑇 and relation of 𝜇 𝑇⁄  in such configuration are 

proportional to 1 𝑀⁄  and 𝑀, respectively [87]. The resulting photonic response is thus in 

stark contrast to the Joule expansion behavior expected from ideal monoatomic gases, where 

the temperature is constant and the chemical potential substantially changes.  
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Figure 29: Experimental realization of Joule photon-gas expansion for (a) negative and (b) positive temperature. 

(c) Intensity distribution (in logarithm scale) as a function of 𝒎 in loop 𝒗.  

Experimentally, two scenarios are selected starting with a thermal equilibrium at 

negative and positive temperatures, as shown in Figure 29. As before, a broad Gaussian 

distribution is prepared for 60 roundtrips by using the phase modulation protocol (see Section 

2.1.2) and a pre-selection of 50 ensembles (𝑛) of the initial distribution is carried out based 

on Equations (50)-(52) (see Section 2.3.2). The initial distribution 𝜓𝑚=1 is prepared at 𝑚 =

60 with amplitude and phase modulators and thus propagates through the mesh lattice for 500 

roundtrips.  

Here, 𝜓𝑚=1 consists of a modal occupancy being already in thermal equilibrium with 

an initial temperature 𝑇1 and chemical potential 𝜇1 (see the red curve in Figure 29(a) and (b)). 

At 𝑚 = 120 (i.e. 60 roundtrips after the initial distribution preparation, see Figure 29(c)), the 

mesh lattice suddenly double its size (𝑁2 = 2𝑁1), whereas 𝜑0 and 𝐶 are kept constant. After 

500 roundtrips, modal occupancy is extracted following Equation (47) as depicted by blue 

curves in Figure 29(a) and (b). During such a process, the system’s temperature decreases to 

𝑇2 𝑇1⁄ ≈ 0.66 without changing the chemical potential 𝜇1 ≈ 𝜇2. Similarly, the experimental 

results show that the ratio between the initial and final temperatures slightly differ from the 

theoretically predicted value of 0.5 due to ASE noise from the amplifiers, which causes small 

deviations in the field distributions 𝑢𝑥
𝑚 and 𝑣𝑥

𝑚.  



 

 55 

2.4. Quantum Interference with Entangled Time-bin Photons 

The classical theory of information and computation proposed in the last decades relies 

on independent bit-by-bit macroscopic terms and Boolean operations for transmitting and 

processing pieces of information from one point to another [113]–[116]. However, the 

amount of information generated has been exponentially growing every year due to new 

demanding communication technologies, such as the so-called internet-of-things [117]–[119] 

and 5G/6G wireless communication [120]–[124]. To overcome the bottleneck associated with 

classical information processing and computing [125], new approaches using the versatility 

of quantum mechanics have been theoretically proposed towards a new branch of quantum 

communication and computation [126]–[128].  

By exploiting the degrees of freedom offered by quantum mechanics, such as 

uncertainty, interference, and entanglement, an enormous amount of information can be 

encoded in strings of quantum bits (qubits), instead of unitary bits as in the classical 

counterpart [26], [129], [130]. By definition, a classical bit is comprehended of a binary 

signal (0 or 1) and generally modulated and transported by one or more continuous 

parameters, such as frequency, phase, or intensity of an electrical signal [116]. On the other 

hand, quantum data use qubits and exploits microscopic systems, such as nuclear spins, 

atoms, or photons [14], [131]–[135]. Whereas the classical information can be represented by 

Boolean states 0 and 1, quantum-mechanically this can be done by employing distinguishable 

states of the qubits, e.i. ⟨0| and ⟨1|, given, for example, by the polarization or wavelength of 

light [133], [136], [137]. Quantum information also is represented by a superposition of linear 

combinations of those basis states, such as 𝛼⟨0| + 𝛽⟨1|, which allows for extending the 

information capacity to intermediate states [16], [138], an impossible approach in the 

classical counterpart based on predefined parameters. With regard to quantum data 

measurements, the likelihood of measurable entities is based on their probabilities, such as 

|𝛼|2 and |𝛽|2, and pairs of qubits add a new “dimension” for exploiting information and 

operation capacity [139]. Quantum processing also allows for speeding-up computation, 

particularly quadratic and exponential speed-up for searching and factoring, respectively 

[131]. Additionally, quantum entanglement, as opposite to the straightforward classical 

information, can connect any two points in space-time due to its ability towards sharing the 

same information, providing a new framework on how pieces of information can be 

judiciously distributed and efficiently processed [140], [141].  
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Despite logical operations in a classical computation yield a sequence of Boolean 

operations by logical gates, such as NOT and AND gates [142], nonclassical processors can 

be also expressed by a sequence of quantum gates, acting on a string of qubits [143]–[145]. 

However, an experimental realization of quantum gates and operations is still challenging due 

to environmental and propagation losses [14], [146]. Remarkably, photons are not affected by 

thermal and electromagnetic noises (compared to trapped ions [147], [148]) and thus 

represent a promising candidate for quantum processors and quantum key distribution (QKD) 

due to the possibility of exploiting the high-speed telecommunication devices and optical 

network already distributed worldwide [146]. In optics, a quantum gate can be efficiently 

implemented by means of linear optics with phase modulation and beam splitters [149]. In 

particular, fiber-loop systems are thus a powerful tool for performing stable interference 

measurements [36], [150] and overcoming high losses in spatial waveguide arrays [30], 

[151]. Provided that information is encoded in the time domain [45], [60], a fiber-loop 

coupled by a variable beam splitter resembles a photonic mesh lattice, which can perform a 

variety of quantum measurements, such as controlled-NOT quantum gates [152], boson 

samplings [15], quantum data compression [153], to mention a few.  

Here, a 1D quantum walk setup exploits the discrete arrival times of a single photon as 

its internal state [18] since the coupled-fiber loop inherently possesses a time-multiplexing 

approach for encoding and propagating temporal packages into the system. Consequently, 

encoding quantum information in terms of relative arrival times of light pulses (e.i. time-bin 

degree of freedom) present a robust kind of single-photon qubits [154]. The advantages of 

time-bin-encoded qubits follow: 

 High stability and scalability in terms of linear-optical quantum computing 

(LOQC) implementations since it employs a single optical path (or optical fiber) 

rather than a maze of multiple paths [155].  

 Allowing for universal quantum computing with logical gates based on Knill, 

Laflamme, and Milburn (KLM) scheme [154]. 

 Robust to long-distance quantum communication if compared to polarization and 

frequency degrees of freedom [156]. 

This project in collaboration with Professor Roberto Morandotti (INRS-EMT) in 

Montreal, Canada, utilizes the time-bin degree of freedom due to discrete arrival time (i.e. as 
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an internal state) is fully compatible with a photonic mesh lattice encoded by the time-

multiplexing technique. It is proposed a modified 1D coupled-fiber loop for generating and 

propagating time-bin entangled photons, following Roberto’s recent work in [157]. 

Ultimately, it is proposed an all-optical architecture based on a 1D coupled-fiber loop for 

generating and processing time-bin qubits, which aims for exploiting a large variety of 

quantum interference measurements, such as quantum gates [149], [158], and a circuit boson-

sampling network [15] without changing its physical configuration due to the use of high-

speed telecommunication equipment, such as phase modulators and beam splitters. 

 

2.4.1. Modified Coupled-fiber Loop for Time-bin States  

With regard to proposed schemes in literature [154]–[157], this one introduces a new 

approach of all-optical fiber architecture based on quantum interference [159] and 

entanglement [160], of which the goal ultimately is to carry out an adaptive photonic mesh 

lattice featuring quantum operation properties. The proposed scheme is composed of a 

coupled-fiber loop (see Figure 30(a)) and uses time-bin entangled photons generated by 

spontaneous parametric down-conversion (SPDC) in a periodically poled lithium niobate 

(PPLN) [161]. The system presents a stable approach due to the fiber-coupler loops act as a 

self-aligning interferometer as well as adaptive since it possesses an intrinsic ability to 

prepare entangled quantum states and perform quantum interference measurements along its 

propagation direction in different time frames (see Figure 30(b)).  

As the process of interference requires a precise arrival time of two-photon beams at 

the variable coupler, external photon sources and quantum gates based on interferometer 

waveguide arrays need an extreme precision in length [126], which makes it a challenging 

approach due to imperfection in fabrication. On the other hand, fiber-loops can overcome this 

issue provided that the system is re-utilized by using it as a source for generating identical 

time-bins before the quantum measurement set, maintaining all photon-bins in the time 

domain equally spaced and matching them with the time delay of that coupled-fiber loop (see 

Figure 30(a) and (b)).  

Schematically, a seed bright pulse at a central frequency (𝑓0) is injected into loop 𝑢 by 

an optical switcher (gate 1 in Figure 30(a)). Throughout two roundtrips, gates 1 and 2 are 

kept at full transmission stage (e.i closed), where two optical pulses spaced by ∆𝑇 in the time 

domain (e.i. due to loop length difference ∆𝐿) are generated by a free LW event.  
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Figure 30: Preparation and quantum measurement of the proposed coupled fiber-loop, where stable quantum 

interferences are acquired due to a perfect timing match between photon bins. (a) The proposed architecture 

utilizing a fiber-loop system for preparing time-bin photons and measuring quantum interferences. (b) 

Representation of two-stage measurement set: time-bin preparation (yellow pulses) and quantum walk 

measurement (red pulses). (c) In the frequency domain, a frequency carrier at 𝒇𝟎 inserted into the periodically 

poled lithium niobate (PPLN) at a proper input power creates entangled photon-pairs by the nonlinear process 

spontaneous parametric down-conversion (SPDC). Symmetric optical bands are selected individually (green 

boxes) by a programmable optical filter to measure the biphoton joint-coincidence spectral correlations. 

Afterward, gate 1 is set to full reflection (i.e. open) and two bright pulses leave the 

coupled-fiber loop and enter the PPLN. At a proper input power, SPDC generates a broad 

frequency comb, including single-photon pairs at signal (𝑓−𝑛) and idler (𝑓𝑛) frequencies (see 

Figure 30(c)) [162]. Finally, a programmable optical filter selects this signal and idler pair for 

injection (in the opposite direction of classical LW) into loop 𝑣 by an optical switcher (gate 

2) to perform a quantum walk (see Figure 30(b) for 𝑚’ = 1, 2 and 3).  

Essentially, a single photon interference in a Mach-Zehnder interferometer is often 

referred to as a classical interference since it produces a phase-dependent probability to 

measure a single photon at its output, similar to a wave propagating through two paths and 

interfering with itself. On the other hand, the biphoton interference, namely referred to as 

quantum interference, results in a phase-dependent probability to measure two-photon 

coincidences, which has no classical analogy [163]. This concept was first exploited by the 

so-called Hong-Ou-Mandel (HOM) effect, where two photons enter two different ports of a 

beam splitter [164]. If those photons are indistinguishable (e.i. there is no information on 
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which photon entered which port of the beam splitter), they will exit always together at the 

same output port. This results in a two-photon bunch and zero probability to detect 

coincidences between detectors connected with the different output ports of the splitter since 

the likelihood of photons crossing each other are canceled for identical photons [165]. 

Instead, coincidences can be detected if a temporal delay between the photons is introduced, 

making them temporally distinguishable and thus allowing them to exit different output ports.  

A time-bin entanglement is a discrete form of energy-time entanglement [160], [166] 

and a photon pair is generated in a coherent superposition of two time-bins referred to as first 

|1⟩ and second |2⟩, according to our setup (please, note that the notation used in [157] for 

these two time-bins is ascribed as short |𝑆⟩ and long |𝐿⟩ and it has been changed in this 

dissertation in order to not confuse with short/long loops in our set-up). Consequently, the 

quantum state generated at the PPLN is a coherent superposition written as 

|𝛹⟩ =
1

√2
(|1,1⟩ + 𝑒𝑖𝜑|2,2⟩), (61) 

where |1,1⟩ = |1⟩signal|1⟩idler denotes the signal and idler photons both being in the first 

time-bin, and |2,2⟩ in the second time-bin. Here, 𝜑 is a phase shift introduced by PM to the 

second time-bin only. The state |𝛹⟩ injected into the fiber-coupled loop is interfered after two 

roundtrips (𝑚′ = 3 in Figure 30(b)), where the central peak corresponds to a projection on a 

superposition of both time-bins, namely |𝛹𝐶⟩ =
1

√2
(|1⟩ + 𝑒𝑖𝜑|2⟩) [167]. 

 

2.4.2. Experimental Results 

The proposed coupled-fiber loop set-up in the experiments is depicted in Figure 31(a). 

The system is redesigned with shorter loops due to limited integration time and the number of 

experimentally achievable time steps. The limiting characteristic here is the switching speed 

of those commercially available optical switchers (gate 1 and 2) and variable coupler 

(NanonaTM optical switcher from BATi) with a response time of 60 ns and insertion loss of 1 

dB. Another limiting factor is a balancing threshold between fiber loop length/roundtrips and 

integration time, in which longer loops result in a smaller repetition rate (𝑓rep) of that seed 

pulse injected into the system and thus bigger integration time. The two fiber loops are 

coupled by a variable coupler. They have an average length of 𝐿 ≈ 110 m (𝑇 ≈ 550 ns) and 

differ in lengths by ∆𝐿 ≈ 22 m (∆𝑡 ≈ 110 ns).  
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Figure 31: Experimental realization of a quantum walk based on a modified coupled-fiber loop for generating 

and propagating entangled single photons. (a) Experimental set-up. (b) Single-photon spectrum measurement 

after the PPLN. Red dotted curve represents the measurement of nPD’s dark count rate and 𝝀𝟎 = 𝟏𝟓𝟒𝟗. 𝟒𝟒 nm 

is the pump wavelength (𝒇𝟎 = 𝟏𝟗𝟑. 𝟒𝟖 THz). (c) Time-bin-encoded photon pairs are injected into loop 𝒗 to 

perform quantum interference, where coincidence is analyzed on the interfered central peak (orange box) at 

𝒎′ = 𝟑. VC: variable coupler, ISO: optical isolator, PBS: polarizing beam splitter, nPD: superconducting 

nanowire detector. PD: photodetector. 

In this case, 𝑓rep is configured to 200 kHz (i.e. a seed pulse every 5 𝜇s) to allow for 7 

roundtrips per measurement set, from which three roundtrips are for preparation and four for 

a quantum walk. Initially, a sequence of coherent pulses at 𝑓′rep of 10 MHz from a pulsed 

laser (PriTel Femtosecond Fiber Laser series) at 𝜆0 = 1549.44 nm (𝑓0 = 193.48 THz) is 

carved into 𝑓rep = 200 kHz by an AOM (40-dB suppression ratio). An optical passband filter 

reduces the optical signal bandwidth to 0.3 nm to match the maximum phase-matching 

bandwidth of the PPLN system. A PBS ensures the same polarization of light since the whole 

set-up utilizes polarization-maintaining SMF. 

The coupled-fiber loop in the first stage of preparation works with classical light pulses 

and, throughout its light walk dynamics in a clockwise direction, can create two bins in the 

time domain spaced by ∆𝑇. After the preparation stage, the generated time-bins are 

decoupled out of the loop 𝑢 by the gate 1, amplified and transmitted to a dual-stage PPLN 
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system (see Figure 32), where the first PPLN converts the pump frequency from 1549.44 nm 

(see Figure 32(a)) to 774.7 nm (see Figure 32(b)) by parametric up-conversion.  

Next, the second PPLN generates broadband signal/idler photon pairs (~8 THz) 

symmetrically with respect to the pump frequency. Figure 31(b) shows the single-photon 

spectrum measurement, which consists of swiping a 25-GHz bandwidth of a programmable 

optical filter (Finisar Waveshaper 4000s) over the entire operating frequency range (~8 THz) 

and photodetecting by a superconducting nanowire detector (nPD) at the output of the second 

PPLN. Finally, a notch filter (100-dB suppression at ~1549.52 nm) removes any residual 

pump frequency (e.g. back-reflections) to the nPDs and a PM can be used to tune the phase 

difference between two of those time-bins.  

For all measurements, we used nPDs from Quantum Opus with ~80% detection 

efficiency (corresponding to 0.96 dB detection loss) and 50 ps timing jitter. The detector 

signals were acquired with a Time to Digital Converter (TDC) from PicoQuant (HydraHarp 

400) with a 1 ps timing resolution.  

 

Figure 32: Two-stages PPLN system. Optical bandwidth (a) before and (b) after the first PPLN. (c) Histogram 

of a single photon detection with superconducting nanowire detectors for a single pulse injected into the PPLN 

at  𝒇𝒓𝒆𝒑 = 𝟐𝟎𝟎 kHz (without passing through the coupled-fiber loops). The start-stop-time (SST) span is 

illustrated as an orange box. (d) Correspondent coincidence-to-accidental ratio (CAR)  as a function of the input 

power. 
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The losses for the photons in the quantum walk measurement relies on the number of 

roundtrips 𝑚′ employed and add up to (5.96 + 2𝑚′) dB, which breaks down as follows: 5 dB 

for the programmable optical filter (Finisar Waveshaper 4000s), 0.96 dB detection loss 

(Quantum Opus detectors), and 1 dB per optical switcher. The first measurement consists of 

inserting a single bright pulse into the PPLN at 𝑓rep = 200 kHz (without passing through the 

coupled-fiber loop) to verify the optimal input power for maximum coincidence spectral 

correlations of a photon-pair.  

Figure 32(c) depicts the histogram of photon counts detected by an nPD (integration 

time of 15 minutes) for 1.2 THz bandwidth of signals (𝑓−𝑛) and idlers (𝑓𝑛) frequencies. By a 

post-processing algorithm built-in Matlab, the time-tagged time-resolved (TTTR) data 

acquisition records all individual pulses, and in particular their arrival times [168]. Since this 

system employs a fixed synchronization rate based on 𝑓rep, the data acquired during an 

integration time are recorded in time tags of a time-correlated single-photon counting 

(TCSPC) time, namely T3 analysis from Pico-Quant manufacturer [169]. By a T3 analysis, 

coincidences are counted when a photon detected from both nPDs arrives at the same start-

stop-time (SST) span, whereas accidentals are added when a photon is not simultaneously 

detected over that considered SST span (see orange boxes in Figure 32(c)). The coincidence-

to-accidentals ratio (CAR) is measured as a function of the input power, as shown in Figure 

32(d). Furthermore, the two time-bin-encoded photon-pairs are injected into loop 𝑣 by gate 2 

to perform a quantum walk, as shown in Figure 31(a) and (c). A phase modulator placed after 

the PPLN modulates the second time-bin only by a phase shift of 𝜑.  

Figure 33 shows the quantum interference measurement of the photons in loop 𝑣 at 

time step 𝑚′ = 3. At 𝑚′ = 3, a quantum interference between the first and second bin occurs 

and it is proportional to 𝜑. According to [157], [166], the coincidence counts of a two-photon 

interference is expected to be proportional to 1 − 𝑉 cos(𝜙 + 𝜑𝑠 + 𝜑𝑖) in the SPDC case, 

where 𝑉 is the interferometry visibility, 𝜙 is the phase shift applied at the pump frequency, 

and 𝜑𝑠 and 𝜑𝑖 are the phases for the signal and idler frequencies, respectively. For this 

particular set-up configuration, 𝜙 ≈ 0 and 𝜑𝑠 ≈ 𝜑𝑖 = 𝜑 due to the signal and idler 

frequencies receive the same phase on the phase modulator. Therefore, the phase shift 𝜑 

introduced on the second time-bin by a PM (see Figure 31(a)) governs the quantum 

interference between both time-bin-encoded photon-pairs.  

The measurement set consists of selecting three different signal/idler bands of 420 GHz 

(3.3 nm) by a programmable optical filter (see Figure Figure 33(a)) to be photodetected over 
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an integration time of 4 hours for each phase shift 𝜑. Provided that 𝜑 > 0 (see Figure 33(b)), 

the coincidence counts increases until it reaches its maximum value for 𝜑 ≈ 𝜋 4⁄  and 3𝜋 4⁄ , 

while the minimum values are achieve for 𝜑 ≈ 0, 𝜋 and 2𝜋. Yet, by analyzing the 

coincidence counts in Figure 33(b) as a function of 𝜑, the observed entanglement visibility of 

95% is found for the first band (blue curve) and 75% for the second (red curve) and third 

(green curve) bands. The resulting interference effect  clearly exceeds 1 √2⁄ ≈ 71%, which 

represents a violation of the Bell inequality for a biphoton interference [162], [170] and 

demonstrates that the twin photons are time entangled and realize quantum interference 

[156], [171]. Additionally and contrary to the optical delay line scheme demonstrated in 

[139], [157], the proposed coupled-fiber loops generated and measured time-bin-encoded 

photon-pairs without the need for any external interferometry stabilization mechanism.  

 

Figure 33: Quantum interference measurements of time-bin-encoded photon-pairs by using a coupled-fiber loop. 

(a) The optical bandwidth of signals/idlers (420 GHz) is selected by a programmable optical filter. (b) 

Normalized coincidence counts as a function of 𝝋 for three different signal/idler bands.  
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2.4.3. Outlook: Quantum Walk Approach for Quantum Information 

Processing 

As the typical information is time-bin-encoded, the 50/50 optical coupler can be 

replaced by a temporally modulated variable coupler (see Figure 34(a)) for modeling any 

type of spatially lumped coupling ratios, thus creating an adaptive quantum photonic 

measurement platform (see Figure 34(b), where the indices below the interferometers indicate 

their splitting ratio). Therefore, a photonic mesh lattice can be reconfigured and controlled at 

the working speed of telecommunication devices. Due to the latter feature, time and 

frequency entanglement can be also prepared and fully exploited for information processing 

in hyper-entanglement states [16], [138], [139], featuring the all-optical architecture shown in 

Figure 31. The adaptive quantum photonic platform depicted in Figure 34(b) can be used as a 

quantum circuit for information processing, exploiting time-frequency entanglement and 

quantum interference measurement for quantum gates [149], [158], or a circuit boson-

sampling network [15]. The transverse (𝑥) and propagation (𝑚) direction of a resembled 

photonic mesh lattice can be easily configured as required without changing its physical 

configuration. 

 

Figure 34: All-optical architecture based on a 1D coupled-fiber loop. (a) Variable coupler modulation in the 

time domain for modeling any type of spatially lumping coupling ratios, resulting in (b) an adaptive quantum 

photonic measurement platform. 
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3. Two-dimensional Photonic Mesh Lattice Projects 

3.1. Generation of a 2D Gaussian Wave Packet as an Initial Distribution 

In general, all experiments using a 2D broad excitation in this present dissertation 

employed an amplitude modulation protocol similar to the 1D approach (see Section 2.1). 

The working principle of this protocol is based on the fact that blocking inner and outer loops 

alternately every time step results in diffusive equations, as explained in the following for the 

linear system (𝜒 = 0) without external phase modulation (𝜑0 = 0). At time step 𝑚 = 1, a 

single pulse is inserted into the system. For 𝑚 = 1 until 𝑚 = 𝑀 time steps, path 𝐴 and 𝐵 are 

blocked in an alternating way resulting in the following evolution equations:  

𝑎𝑥,𝑦
𝑚+1 =

1

2
( 𝑎𝑥+1,𝑦+1

𝑚
⏟    

=0, for even(𝑚)

+ 𝑖 𝑏𝑥+1,𝑦+1
𝑚
⏟    

=0, for odd(𝑚)

+ 𝑖 𝑏𝑥+1,𝑦−1
𝑚
⏟    

=0, for odd(𝑚)

− 𝑎𝑥+1,𝑦−1
𝑚
⏟    

=0, for even(𝑚)

), (62) 

𝑏𝑥,𝑦
𝑚+1 =

1

2
( 𝑏𝑥−1,𝑦−1

𝑚
⏟    

=0, for odd(𝑚)

+ 𝑖 𝑎𝑥−1,𝑦−1
𝑚
⏟    

=0, for even(𝑚)

+ 𝑖 𝑎𝑥−1,𝑦+1
𝑚
⏟    

=0, for even(𝑚)

− 𝑏𝑥−1,𝑦+1
𝑚
⏟    

=0, for odd(𝑚)

), (63) 

where paths 𝐶 and 𝐷 are maintained constant. For a double step starting at 𝑚 = 1, this results 

in a diffusive equation   

𝑎𝑥,𝑦
𝑚+2 =

𝑖

4
(𝑏𝑥+2,𝑦+2
𝑚 − 𝑏𝑥+2,𝑦−2

𝑚 ) (64) 

𝑏𝑥,𝑦
𝑚+2 = −

1

4
(𝑏𝑥,𝑦−2
𝑚 + 2𝑏𝑥,𝑦

𝑚 + 𝑏𝑥,𝑦+2
𝑚 ) (65) 

along the 𝑦-direction (see Figure 35(a)-(c)). After the first 𝑀 time steps, the same scheme is 

applied to paths 𝐶 and 𝐷 while 𝐴 and 𝐵 are not modulated anymore.   

𝑐𝑥,𝑦
𝑚+1 =

1

2
( 𝑐𝑥+1,𝑦+1

𝑚
⏟    

=0,   for even(𝑚)

+ 𝑖𝑑𝑥+1,𝑦+1
𝑚

⏟      
=0,   for odd(𝑚)

+ 𝑖𝑑𝑥−1,𝑦+1
𝑚

⏟      
=0,   for odd(𝑚)

− 𝑐𝑥−1,𝑦+1
𝑚
⏟    

=0,   for even(𝑚)

), (66) 

𝑑𝑥,𝑦
𝑚+1 =

1

2
( 𝑑𝑥−1,𝑦−1

𝑚
⏟    

=0,   for odd(𝑚)

+ 𝑖𝑐𝑥−1,𝑦−1
𝑚

⏟      
=0,   for even(𝑚)

+ 𝑖 𝑐𝑥+1,𝑦−1
𝑚
⏟    

=0,   for even(𝑚)

− 𝑑𝑥+1,𝑦−1
𝑚
⏟    

=0,   for odd(𝑚)

). (67) 

Again, for a double step starting from an even 𝑚 = 𝑀 this results in diffusion equations  
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𝑐𝑥,𝑦
𝑚+2 =

𝑖

4
(𝑑𝑥+2,𝑦+2

𝑚 − 𝑑𝑥−2,𝑦+2
𝑚 ) (68) 

𝑑𝑥,𝑦
𝑚+2 = −

1

4
(2𝑑𝑥,𝑦

𝑚 + 𝑑𝑥−2,𝑦
𝑚 + 𝑑𝑥+2,𝑦

𝑚 ) (69) 

along the horizontal direction (see Figure 35(d)-(f)). In this way, after 𝑀 time steps along the 

vertical and another 𝑀 time steps along the horizontal direction, a broad Gaussian 

distribution 

𝑎𝑥,𝑦
𝑚 =

1

√𝜋2𝑀

𝑒−
𝑥2+𝑦2

2𝑀  
(70) 

is created provided that 𝑀 ≫ 1. The width of the distribution 𝑤 is symmetric in 𝑥𝑦 

coordinates and increases ∝ √𝑀.  

At the time step 2𝑀 − 1, one of the paths 𝐶 and 𝐷 is blocked for the last time and 

consequently, when passing next time the 50/50 at the beginning of time step 𝑚 = 2𝑀, the 

Gaussian distribution is split with an equal intensity into two parts propagating through paths 

𝐴 and 𝐵. A phase shift of 𝜋/2 introduced by the optical coupler (see Equations (7)-(10)) is 

compensated by the phase modulator in path 𝐷 at time step 2𝑀.  Additionally, in order to 

excite an eigenstate of the system, an amplitude and phase relation5 has to be adjusted 

between paths 𝐴 and 𝐵 at the time step 2𝑀 by the modulators according to the eigenstate in 

Equation (19) and Table 1. For instance, considering a phase modulation in Equation (18) 

for 𝜑0 = π/2, the eigenstate for exciting the center (kx = ky = 0) of the focusing band should 

have an amplitude (|𝐴|/|𝐵|) and phase (arg𝐴/𝐵) relation of 1.93185 and − π/4, 

respectively.  

Table 1: Amplitude and phase difference between loop 𝑨 and 𝑩 at the time step 2M in order to excite the center 

of the Brillouin Zone (kx = ky = 0) of the focusing band for different modulated system configurations. 

𝜑0 |𝐴|/|𝐵| 𝑎𝑡 𝑚 = 2𝑀 arg(𝐴/𝐵) 𝑎𝑡 𝑚 = 2𝑀 

𝜋/6 2.35625 − 5π/12 

𝜋/3 2.1889 − π/3 

𝜋/2 1.93185 − π/4 

2𝜋/3 1.61803 − π/6 

5𝜋/6 1.29177 − π/12 

                                                 
5 See Appendix B. 
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Figure 35: Protocol used for creating pulse chains with a Gaussian envelope. (a)-(c) Discrete points with a 

Gaussian envelope expand in 𝒚-direction. (d)-(f) A Gaussian envelope expands in 𝒙-direction. (g) Flowchart of 

the preparation and measurement set for Gaussian beam analysis. 
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3.2. Nonlinear dynamics in a 2D Conservative Photonic Mesh Lattice 

Power-induced wave collapse is one of the most fascinating phenomena in optics as it 

provides extremely high intensities, thus stimulating a range of nonlinear processes [172]. For 

low power levels, propagation of beams in bulk media is dominated by diffraction, while 

above a certain threshold self-focusing is steadily enhanced by the action of a positive 

nonlinearity [53]. Pulses propagating in optical fibers, a genuine 1D system, tend to form 

solitons, an effect well described by the nonlinear Schrödinger equation (NLS) [172], [173]. 

Here, the balance of nonlinearity and dispersion imposes an unambiguous relationship 

between amplitude, energy, and width of stable pulses. In contrast to fiber solitons, stationary 

states of the 2D NLS can be scaled arbitrarily in amplitude and width, while energy stays 

constant [174]–[176]. An autocatalytic blow-up occurs by self-focusing nonlinearity, which is 

only stopped by saturation of the nonlinearity [177], material damage [178], or the inherent 

medium discreteness [179]. In the latter case, this leads to energy localization on a single site 

[45]. In such a situation, the beam compresses during propagation, while the amplitude 

increases, and consequently enhances the effect of the cubic nonlinearity in an autocatalytic 

way, ultimately ending in a blow-up of the nonlinear wave [172], [175], thus potentially 

leading to stable solitons for quadratic [180], thermal [181] or photorefractive nonlinearities 

[182], [183]. The collapse also finds its end when the field structure is so far compressed that 

it resolves the discreteness of the underlying system, resulting in the formation of an 

extremely spiked single lattice site soliton [184]–[187]. In 2D waveguide arrays, nonlinear 

pulse compression [188], discrete solitons [189], [190], and even light bullets for temporal 

dispersion [191] were reported. 

 

3.2.1. Theoretical Model 

Following the Vlasov-Petrishchev-Talanov theorem [172], collapse only occurs if (𝑝 −

 1)𝐷 ≥ 4, with 𝑝 being the order of the nonlinearity and 𝐷 the dimension of the system. In 

particular, collapse and the resulting boost of nonlinear phenomena is not expected for 

genuine one-dimensional fiber systems (𝐷 = 1) with cubic nonlinearity (𝑝 = 3). Therefore, 

this project follows the introduced concept of synthetic dimensions to experimentally 

demonstrate that a genuine 1D system formed by coupled-fiber loops can resemble an 

extended effective lattice with two artificial transverse dimensions. Consequently, a suitable 

band structure enables the investigation of nonlinear propagation effects, leading to a 

collapsing wave. 
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For this project, the experimental setup follows the scheme presented in Figure 3, and, 

consequently, pulse dynamics are described by the generalized four discrete evolution 

equations in Equations (7)-(10). From Equation (20), a passive band structure (𝜑0 = 0) in 

absence of any phase modulation consists of a closed bandgap and Dirac points on the edges 

of the Brillouin Zone (see Figure 36(a)). As solitons are localized states with exponentially 

decaying tails, they can only exist in the presence of a bandgap, in which their propagation 

constant is situated [176]. As nonlinearity shifts propagation constants away from linear 

waves in a defined direction, a certain sign of the band curvature is mandatory for the 

soliton’s propagation constant to reach the gap [172]. As shown in Figure 36(b), the two 

bands of the system feature opposite curvatures (𝜑0 = 𝜋 2⁄ ). Given that the fiber nonlinearity 

is positive, only the upper (focusing) band allows for soliton formation when excited in the 

center of the Brillouin zone by a broad Gaussian wave packet with narrow momentum spread 

(see red circle in Figure 36(b)). Here, an overall phase modulation of 𝜑0 = 𝜋 2⁄  is chosen, 

which guarantees a broad gap of width ∆𝜃 = 2𝜋/3 and for which the upper band has a 

constant positive curvature in a wide momentum range and thus resembles the dispersion 

relation of waves propagating in bulk materials.  

Consequently, provided that only a single band is excited close to the  point (𝑘x =

0, 𝑘y = 0) and that changes between subsequent roundtrips are small, this quasi-continuous 

case can be covered by an effective Schrödinger equation as 

[𝑖
𝜕

𝜕𝑚
+

1

4√3
(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
) +

4

3
𝜒|𝑈|2]𝑈 = 0. (71) 

 

 

Figure 36: Band structure of the 2D mesh lattice. Due to the Floquet nature of the system, not only the Bloch 

momenta 𝒌x/y, but also the propagation constant 𝜽 are periodic within [−𝛑; 𝛑]. (a) Passive band structure in the 

absence of any phase modulation. (b) By applying a phase modulation 𝝋𝟎 = 𝛑/𝟐  alternating every time step, 

the Dirac cone at 𝒌x = 𝒌y = ±𝛑 opens up and a gap appears. The red circle on the upper (focusing) band 

represents a selective excitation of a Gaussian wave packet in the center of the Brillouin Zone. 
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It is a result of the lowest order of expansion of the band structure in the  point and of 

an averaging of the nonlinear action over two roundtrips. U stands for the amplitude of a unit 

vector of one band. Here, experiments and calculations have been performed for phase 

modulation of 𝜑0 = 𝜋 2⁄ . 

 

3.2.2. 2D Solitons and Wave Collapse in a Conservative Lattice 

In contrast to a single lattice site excitation, which populates the complete band 

structure including the upper and lower band, a specific point of the Brillouin zone is excited 

by a spatially broad wave packet with a narrow momentum spread. To investigate the wave 

propagation, a sequence of pulses is launched corresponding to a Gaussian envelope 

𝐺𝑤(𝑥, 𝑦) = 𝐴𝑤exp[− (𝑥
2 + 𝑦2) 𝑤2⁄ ] along 𝑥 and 𝑦-axis (see Figure 37(a)-(c)) with a 

variable amplitude (𝐴𝑤) and a fixed width (𝑤) of 6 positions (1/𝑒 drop of intensity), where 

selective excitation centered on the  point (𝑘x = 0, 𝑘y = 0) of the upper band is realized (see 

Section 3.1).  

At low optical power (0.3 mW), the field distribution spreads similarly to a Gaussian 

beam diffracting in free space (see Figure 37(d)-(f)) to a width of about 9 positions. 

Physically speaking, this spreading is based on pulses acquiring new positions in the time 

domain (compare Figure 37(d) with Figure 37(a)). For a medium power level (1 mW), the 

positive nonlinearity of the fiber shifts nonlinear waves into the gap, thus isolating them from 

the linear spectrum and providing the conditions for localization. Hence, nonlinearity starts 

suppressing the coupling (see Figure 37(g)), resulting in the formation of a solitonic structure 

(see Figure 37(h) and (i)), which propagates for up to 60 roundtrips in the experiment, 

provided that the initial power has been adjusted carefully.  

Yet, even in computer simulations, numerically optimized soliton profiles finally 

decompose and either self-compress or broaden. Note that this behavior is well-known for the 

unstable Townes soliton of the continuous 2D NLS [192], [193]. To illuminate the soliton 

behavior, it is determined numerically the whole family of lattice solitons inside the bandgap 

(see Figure 38(k)). Following experimental conditions, the size of the computational domain 

was 80 positions in both 𝑥 and 𝑦 directions and periodic boundary conditions were used for 

termination. To find the solutions in an iterative way, we used an in-built MatLab iterative 

algorithm (“trust-region-dogleg”) based on “trust regions” with the Jacobian matrix derived 

numerically from the objective function [45]. Throughout the calculation, nonlinear 

coefficient 𝜒 was fixed to unity, while the field intensity was kept unconstrained. 
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First, it is concentrated on the unstable Townes-like soliton that generally collapses or 

broadens if its energy fluctuates towards a higher or lower value, respectively. Width 𝑤, 

amplitude 𝐴 (here 𝜒 = 1), and propagation constant 𝜃 of the soliton can vary. If 𝑤 ≫ 1, the 

soliton enters the continuous limit, where it can be well described by the 2D NLS and thus 

becomes the genuine Townes soliton [172], [192]. Since the latter has an intensity profile 

very similar to the Gaussian function G𝑤(𝑥, 𝑦) = exp[− (𝑥
2 + 𝑦2) 𝑤2⁄ ], the numerical 

model uses as a trial 

(
𝑎𝑥,𝑦
𝑚=0

𝑏𝑥,𝑦
𝑚=0) = 𝐴𝑤𝐺𝑤(𝑥, 𝑦)

1

√1 + |𝜎|2
(
𝜎
1
), (72) 

where it approximates the field distribution in the loops by the eigenvector of the upper band 

at the center of the first Brillouin zone and thus use  as given by Table 1. The corresponding 

linear eigenvalue is 𝜃c = π/3 according to the notation introduced in Equation (19). The trial 

values of 𝐴𝑤 and 𝑤 are first guessed for the case of a very weak nonlinearly-induced change 

of the propagation constant 𝜃w = 𝜃c + 𝛿. Given the soliton to have a double periodicity of 

the lattice, the following optimization task has to be solved: 

{
𝑎𝑥,𝑦
𝑚=2 − 𝑎𝑥,𝑦

𝑚=0𝑒𝑖(𝜃𝑐+𝛿) → 0

𝑏𝑥,𝑦
𝑚=2 − 𝑏𝑥,𝑦

𝑚=0𝑒𝑖(𝜃𝑐+𝛿) → 0
 ,   (73) 

where the increment 𝛿 should be much smaller than 𝜃c and (𝑎𝑥,𝑦
𝑚=2, 𝑏𝑥,𝑦

𝑚=2) is the field 

calculated after one full period. 
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Figure 37: Experimentally detected evolution of a broad excitation in the presence of a gap (𝝋𝟎 = 𝛑/𝟐 ) and for 

different power levels demonstrating wave collapse at mW power level (bottom row). The system is excited 

with a sequence of pulses with a Gaussian envelope (black dashed line) as shown in the (a) time domain, (b) a 

3D surface plot and (c) a 2D image with normalized scaled colors. (d)-(f) Linear diffraction of a Gaussian beam 

on the lattice (time step 𝒎 = 𝟔𝟎 , 𝟎. 𝟑 mW input power). (g)-(i) Townes-like soliton for intermediate power 

(time step 𝐦 = 𝟔𝟎, 𝟏. 𝟎 mW input power). (j)-(l) Collapse of the field distribution into a single lattice site at the 

highest power level (time step 𝒎 = 𝟔𝟎, 𝟑 mW input power). 

Importantly, after the optimized soliton is obtained, it is further used as a trial for 

searching a soliton with a slightly higher propagation constant. Next, the obtained solution is 

again used as a trial for a larger propagation constant, and so on until the edge of the lower 

band is encountered. Thus, the family of solutions is continuously traced inside the bandgap 

with the width ∆𝜃 = 2π/3. The outcome is provided in Figure 38(k). In general, several 

nonlinear solutions are found, both stationary and oscillating ones. The stationary solutions 

return to their initial shape after the shortest recovery period of the lattice −i.e. after two 
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roundtrips. In contrast, the oscillating ones recover after 4 or even 6 roundtrips. In the 

experiments, it is always observed the Gaussian excitation evolves around stationary states 

and, therefore, we restrict the discussion of these solitary structures.  

Two stationary structures are established: a Townes-like soliton, which tends to 

collapse, and an extremely localized solution, which usually marks the final state of the 

evolution. In the limit 𝜃 → 𝜃c, the Townes-like soliton spreads to infinite width and thus 

converges to its continuous counterpart. However, as it investigates a limited square domain 

(80 × 80), the energy curve even shows a little increase below 𝜃 ≈ 0.31π. Unlike the 

continuous case, where the total energy of a Townes soliton is constant and independent of its 

propagation constant, discreteness causes the energy to increase with growing 𝜃, while the 

width of the solution and thus the energy portion in the central spike remains almost constant 

(see Figure 38(k)). Although stationary, the Townes soliton is found to degrade during 

propagation as expected. Still, its lifetime is the highest close to the edge of the upper band 

(𝜃 ≲ 0.3π). For propagation constants close to the upper band 𝜃 → 𝜃linear = 𝜋 3⁄ , solitons 

with infinite width are found and their shape approaching that of the continuous counterpart 

the Townes-like soliton. As expected, these solutions are weakly unstable, and this instability 

is even boosted by discreteness. However, computed lifetimes (𝑚 > 100) are still much 

larger than that accessible in the experiment, which explains the experimental accessibility.  

By choosing even higher input power in the experiment (3 mW, see Figure 37(j)-(l)), 

nonlinear self-focusing dominates already at the beginning, thus resulting in a strong 

contraction of the field distribution (compare linear and nonlinear propagation plots in Figure 

38(a)-(j)). As the system is inherently discrete, this collapse is stopped at the single lattice 

site. While some excess radiation is shed away into the lattice, most of the power remains 

concentrated, thus forming an extremely localized and almost stationary state (see Figure 

37(j)).  
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Figure 38: Propagation plots of linear (input power 𝟎. 𝟑 mW) spreading (a)-(d) and nonlinear (input 

power 𝟑 mW) collapse (f)-(i) of a broad excitation (𝝋𝟎 = 𝛑/𝟐) in agreement with (e),(j) numerical simulations. 

(k) The fraction of total energy situated in the central side and total energy for a numerically determined soliton 

profile as a function of propagation constant (nonlinear coefficients 𝛘 was set to unity, respective soliton profiles 

are given on the right). 

Numerically, in the lower half of the gap, any perturbation of the soliton profile results 

in an almost immediate blow-up of the field causing a transformation into a less energetic and 

more stable highly localized stationary solution. This evolution is observed both in numerical 

simulations and in experiments. As a collapse of the field distribution is finally terminated by 

discreteness above a certain power threshold, it always ends up with a highly localized 

stationary solution. Its power as determined numerically is almost completely concentrated in 

a central spike (𝑥, 𝑦 = 0). Its total energy grows slowly with increasing propagation constant 

except for a small range of propagation constants close to the lower band edge (see Figure 

38(k)). Here, the solution appears to be unstable, while for all other cases the highly localized 

states seem to mark the stable end-point of the evolution. Interestingly, such self-compressing 

instability in a time-multiplexing system corresponds to a transfer of all the energy of a 

sequence of pulses into a single high-power flash of light (see Figure 37(j)). 
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Additionally, it is worth proving that this extreme self-localization is generic to quasi-

2D nonlinear systems with a gap and does not depend on the shape of the initial excitation. 

Given a single pulse injected into the left outer loop (see Figure 39(a)), corresponding to the 

center of the lattice (𝑥 = 0, 𝑦 = 0, see Figure 39(b) and (c)), it results in the whole band 

structure excitation. As expected, at low input power (0.3 mW), the initial pulse spreads on 

the 2D photonic mesh lattice (see Figure 39(d)-(f)). Nevertheless, above a certain power 

threshold, diffraction is compensated and the same extremely localized state appears (see 

Figure 39(g)-(i)). 

 

 

Figure 39: Evolution of a single lattice excitation in the presence of a gap (𝝋𝟎 = 𝛑/𝟐) demonstrating 

nonlinearly induced localization for high input power. The system is excited with a single pulse as shown in the 

(a) time domain, (b) a 3D surface plot, and (c) a 2D image with normalized scaled colors. (d)-(f), Linear pulse 

spreading onto the lattice (time step 𝐦 = 𝟔𝟎, 0.3 mW input power). (g)-(i) Nonlinearly driven localization at a 

single lattice site (time step 𝒎 = 𝟔𝟎, 1 mW input power). 
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3.3. Nonlinear Dynamics in a 2D Nonconservative Photonic Mesh 

Lattice 

Over the last few years, parity-time (PT) symmetry has been the focus of considerable 

attention [194]. Whether or not non-Hermitian Hamiltonians can still have real spectra was 

first proposed by Carl Bender [195], [196]. Unlike their Hermitian counterparts, 

nonconservative systems do not exhibit a priori real eigenvalues and hence unitary evolution 

[195]. However, once PT symmetry is introduced, such dissipative systems can surprisingly 

display a real eigenspectrum, thus ensuring energy conservation during evolution [197]. The 

symmetry is based on parity (P) and time-reversal (T) operators applied on a wave function 

[196] 

P𝜓(𝑥, 𝑡) = 𝜓(−𝑥, 𝑡) 

T 𝜓(𝑥, 𝑡) = 𝜓∗(𝑥, −𝑡) 
(74) 

where P flips the sign of one spatial coordinate and T reverses the flow of time and applies 

complex conjugate. Ever since, pseudo-Hermitian notions have permeated several fields 

ranging from optics [60], [197]–[201], to atomic and topological physics [202]–[204], 

optomechanics [205], electronics [206] as well as microwave photonics [207], [208], to 

mention a few. In optics, PT symmetry can be readily established by incorporating, in a 

balanced way, regions having an equal amount of optical gain and loss [209]. However, thus 

far, almost all optical realizations of PT symmetry have been restricted to systems with a 

single transverse dimension, such as, for example, arrays of optical waveguides [210], [211], 

and active coupled-cavity arrangements [212], [213]. In most cases, only the loss function 

was modulated [197], [214], [215] −a restrictive aspect that is only appropriate for linear 

systems. 

Absorption and diffraction have always been limiting factors in fully exploiting the 

potential of light in both science and technology [53]. In addressing these two fundamental 

problems, two main avenues have been pursued: (i) optical amplification to overcome losses 

[177] and (ii) usage of optical solitons to compensate for dispersive forces via optical 

nonlinearities [51]. While each of these components alone has been successful in dealing with 

these issues, the combined use of these two approaches has been thus far quite challenging 

[172]. This is because any restoration of conservative features requires a delicate adjustment 
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of the spectrum. In case this condition is not met, this leads to decay or explosive 

amplification, which is eventually limited by gain saturation [216]. In the latter scenario, 

dissipative solitons can appear in the system −occasionally resting on a constant background 

because of stability requirements [217]. In contrast, in PT-symmetric systems [218], [219], it 

is possible to restore a quasi-conservative setting that is free of such constraints. In recent 

years, several studies have shown that optical systems endowed with PT symmetry can 

enable unusual and previously unattainable light propagation features [60], [208], [209], 

[220]–[234]. These include among others, double refraction and band merging [37], [235], 

unidirectional invisibility [201], [236], abrupt phase transitions and power oscillations [35], 

[237], as well as unidirectional propagation [233], [234]. Naturally, by introducing 

nonlinearity, one could expect an even richer ground for new and unexpected phenomena. In 

this respect, it has been suggested, in several works, that entire soliton families do exist in 

one- and two-dimensional PT-symmetric arrangements with Kerr nonlinearities [35], [198], 

[238], [239]. However, experimental observation of such effects possesses high difficulty 

−especially in 2D periodic configurations where soliton behavior depends critically on the 

lattice dimensionality [175], [240]. To some extent, one can appreciate this emerging 

complexity by considering the properties of the conservative nonlinear Schrödinger equation 

with a focusing Kerr nonlinearity [241]. While the soliton energy in the 1D system is 

inversely proportional to their width, in the 2D this quantity remains constant [172].  Even 

more importantly, in the latter case, the field distribution can undergo a catastrophic collapse, 

as the contraction does not require additional power [172]. In this project, these intriguing 

properties are experimentally observed in 2D PT-symmetric photonic mesh lattices built 

through an internal gain/loss and index modulation. Besides, fiber nonlinearity enables 

nonlinear localization and a unique class of solitonic solutions, ultimately resulting in 2D 

PT-symmetric solitons as well as the first observation of 2D self-accelerating nonlinear wave 

packets [70]. 

 

3.3.1. 2D PT-symmetric Mesh Lattice 

Given a 1D Schrödinger equation: 𝑖ℏ𝜕𝑡𝜓 = ℋ𝜓, where its Hamiltonian ℋ is written as 

ℋ = −
ℏ

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥) (75) 



 

 78 

where 𝜓, ℏ and 𝑚 are the wave function, reduced Plank constant, and particle mass, 

respectively. The potential 𝑉(𝑥) in a PT-symmetric condition, according to Equation (74), 

states that 𝑉(x) = 𝑉∗(−x) [209]. In optics, electromagnetic wave propagation under a slowly 

varying envelope is described by the paraxial equation:  

𝑖
𝜕𝐸(𝑥, 𝑧)

𝜕𝑧
= [−

1

2𝑘0𝑛0

𝜕2

𝜕𝑥2
+ 𝑉(𝑥)] 𝐸(𝑥, 𝑧) ≡ ℋ𝐸(𝑥, 𝑧), (76) 

where 𝑧 is the propagation distance, 𝐸(𝑥, 𝑧) denote the transverse component of the electric 

field and 𝑘0 and 𝑛0 stand for free-space wave vector and refractive index, respectively. In 

analogy to Equation (75), the complex optical potential 𝑉(𝑥) = 𝑘0(𝑛R(𝑥) + 𝑖𝑛I(𝑥)) is 

composed by real (𝑛R) and imaginary (𝑛I) part of the refractive index [194], [242], [243]. 

Thus, 𝑉(𝑥) under PT-transformation is satisfied if 𝑛(𝑥) = 𝑛∗(−𝑥) along the transverse 

coordinate 𝑥, where real and imaginary part [194] are written as  

𝑛R(𝑥) = 𝑛R(−𝑥)  and  𝑛I(𝑥) = −𝑛I(−𝑥). (77) 

Since the two opposite sign of 𝑛I represent optical gain and loss, a PT-symmetric 

potential is achieved by a refractive index modulation −i.e. a balanced gain and loss profile 

[35], [209], [210], [244]. A similar analogy is expected also in the 2D configuration [197], 

[245], which is governed by the paraxial Helmholtz equation of electromagnetism for the 

electric field amplitude 𝐸(𝑥, 𝑦, 𝑧) [83] 

𝑖
𝑛0
2𝑘0

𝜕𝐸(𝑥, 𝑦, 𝑧)

𝜕𝑧
= −

𝑛0

2𝑘0
2 ∇

2𝐸(𝑥, 𝑦, 𝑧) − 𝑛(𝑥, 𝑦, 𝑧)𝐸(𝑥, 𝑦, 𝑧), (78) 

where the PT-symmetric configuration of the complex refractive index follows 

𝑛(𝑥, 𝑦, 𝑧) = 𝑛∗(−𝑥,−𝑦, 𝑧). (79) 

Therefore, the real part ℜ(𝑛(𝑥, 𝑦, 𝑧)) should be mirrored to the 2D central symmetry 

point at 𝑥 = 𝑦, while the imaginary part ℑ(𝑛(𝑥, 𝑦, 𝑧)) follows an antisymmetric distribution 

[214], [243]. In a coupled-fiber loop scheme, the 2D photonic mesh lattices featuring PT-

symmetric structure is illustrated Figure 40, in which the path 𝐴 (horizontal arrows pointing 

to the right), path 𝐵 (horizontal arrows pointing to the left), path 𝐶 (vertical arrows pointing 

upward) and path 𝐷 (horizontal arrows pointing downward) are marked by red (gain 𝐺) and 
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blue (loss 1/𝐺) colors. Similarly, the green spots on the mesh lattice represent the phase 

modulation with height 𝜑0. Note that the imaginary part of the potential satisfies the PT 

symmetry condition because that gain/loss pattern is antisymmetric concerning central 

symmetry point 𝑥 =  𝑦. According to PT symmetry in Equation (79), the phase modulation 

should be symmetric with respect to a flip around the line 𝑥 =  𝑦 and the conjugation does 

not change the modulation since it corresponds to the real part of the potential.  

The phase modulation shown in Figure 40 extends the unit cell (compared to Figure 

3(d)) for fulfilling PT symmetry and it corresponds to the simplest modulation scheme that 

only uses 4 of 8 components of the unit cell [70]. To certify that Figure 40 possesses an 

authentic PT symmetry, it is applied time-reversal T and then parity P transformations to the 

mesh lattice as illustrated in Figure 41. The Bloch eigenvector comprises eight 

components 𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5, 𝐿6, 𝐿7 and 𝐿8, which describes the complex amplitude in paths 

𝐴 and 𝐵 of the unit cell (see Figure 41(a)). Note that paths 𝐶 and 𝐷 is not necessarily 

represented in this model since they are an intermediate step between 𝑚 → 𝑚 + 1 (see 

Equation (16) and (17)).  

 

 

Figure 40: 2D PT-symmetric photonic mesh lattice. (a) Arrangement of gain/loss and, (b) phase modulation 

potentials for fulfilling PT symmetry. The squared green area denotes the PT-symmetric unit cell.  
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Figure 41: Retrieval of the PT-symmetry operators for the 2D synthetic lattice in three steps. (a) PT-symmetric 

mesh lattice. (b) First, the time-reversal operator flips the arrow toward opposite directions (flip of the 

momentum) and this in turn exchanges gain and loss (conjugation of the potential). (c) Second, the exchange of 

the momentum components corresponds to the flip of the mesh lattice around the line 𝒙 =  −𝒚. (d) Third, the 

parity operator transformation brings the 𝑪 and 𝑫 components into A and B, respectively, yet without shifting 

the position. 

First, the time-reversal T operator results in flipping the arrow toward the opposite 

direction (flip of the momentum), and this operation exchanges gain and loss (conjugation of 

the potential) (see Figure 41(b)). Subsequently, the exchange of the momentum components 

corresponds to the flip of the mesh lattice around the line 𝑥 =  𝑦 (see paths 𝐴 and 𝐵 altering 

to 𝐶 and 𝐷 in Figure 41(c)). Finally, the exchange of the momentum components, realized 

through the parity P operator, corresponds to the flip of the mesh lattice around the line 𝑥 =

 𝑦. Therefore, the last transformation P is required to fulfill PT symmetry, which brings 𝐶 

and 𝐷 components to 𝐴 and 𝐵, respectively, but without shifting the position (see Figure 

41(d)). Interestingly, this PT-symmetric phase modulation creates zigzag-shaped potential 
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barriers along the mesh lattice, akin to those expected from Peierls-Nabarro (PN) effects 

[246], [247]. 

Under such PT-symmetric configuration, the pulse dynamics in Equations (7)-(10) are 

rewritten to accommodate gain/loss and phase modulation. Similarly, the first part of the 

roundtrip represents a step to the left (𝑏𝑥,𝑦
𝑚 ) and right (𝑎𝑥,𝑦

𝑚 ) on the mesh lattice  

𝑎𝑥,𝑦
𝑚 =

√𝐺(−1)
𝑚

√2
(𝑐𝑥+1,𝑦
𝑚−1 + 𝑖𝑑𝑥+1,𝑦

𝑚−1 )exp(𝑖
1

2
χ|𝑐𝑥+1,𝑦

𝑚−1 + 𝑖𝑑𝑥+1,𝑦
𝑚−1 |

2
+ 𝑖𝜑𝑎(𝑥, 𝑦)), (80) 

𝑏𝑥,𝑦
𝑚 =

1

√2𝐺(−1)
𝑚
(𝑑𝑥−1,𝑦

𝑚−1 + 𝑖𝑐𝑥−1,𝑦
𝑚−1 )exp(𝑖

1

2
χ|𝑑𝑥−1,𝑦

𝑚−1 + 𝑖𝑐𝑥−1,𝑦
𝑚−1 |

2
+ 𝑖𝜑𝑏(𝑥, 𝑦)), (81) 

whereas pulses traveling afterward through paths 𝐶 (𝑐𝑥,𝑦
𝑚 ) and 𝐷 (𝑑𝑥,𝑦

𝑚 ) move downwards or 

upwards. This results in the second set of evolution equations  

𝑐𝑥,𝑦
𝑚 =

√𝐺(−1)
𝑚

√2
(𝑎𝑥,𝑦+1
𝑚 + 𝑖𝑏𝑥,𝑦+1

𝑚 )exp(𝑖
1

2
χ|𝑎𝑥,𝑦+1

𝑚 + 𝑖𝑏𝑥,𝑦+1
𝑚 |

2
+ 𝑖𝜑𝑐(𝑥, 𝑦)), (82) 

𝑑𝑥,𝑦
𝑚 =

1

√2𝐺(−1)
𝑚
(𝑏𝑥,𝑦−1
𝑚 + 𝑖𝑎𝑥,𝑦−1

𝑚 )exp(𝑖
1

2
χ|𝑏𝑥,𝑦−1

𝑚 + 𝑖𝑎𝑥,𝑦−1
𝑚 |

2
+ 𝑖𝜑𝑑(𝑥, 𝑦)). (83) 

Here, 𝐺(−1)
𝑚

 stands for the net gain/loss introduced by the amplitude modulators 

(AOM and MZM), where (−1)𝑚 denotes an exchange of gain and loss after every roundtrip. 

For an idle transmission ratio of AOMs and MZMs of Υ = 0.8 (see Section 1.5), all losses of 

the system are compensated by EDFA, thus restoring energy conservation and enabling a 

considerable increase in propagation steps. Still, pulses can easily be amplified [22] up to a 

value of 𝐺𝑀𝐴𝑋 = 1.25 per round trip. The splitting ratio of both optical couplers are set to a 

50/50 ratio. In each roundtrip, phase modulation protocols 𝜑a, 𝜑b, 𝜑c and 𝜑d  are applied to 

the pulses, which depend on the position (𝑥, 𝑦) in the lattice. Both gain/loss and phase 

modulation are applied to fulfill the PT symmetry condition. In this model, 𝜒 denotes an 

effective nonlinearity, in which the pulses acquire a nonlinear phase shift proportional to their 

optical power (see Section 1.6). Importantly, the pulses only accomplish one roundtrip after 

passing paths 𝐴, 𝐵, and afterward 𝐶, and 𝐷, and thus 𝑚 is increased by one. Note that a pulse 

has to complete two roundtrips to return to its origin. 
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3.3.2. 2D PT-symmetric Potential Protocols 

The photonic mesh lattice with two transverse dimensions exploits the time-

multiplexing technique, as described in Figure 3 and Section 1.3. The two synthetic 

dimensions are the result of a wise rearrangement of sequential pulses based on their arrival 

time, and any amplitude and phase manipulation on the 2D photonic mesh lattice is possible 

just by controlling those pulses in time. In this section, amplitude and phase modulation 

protocols are demonstrated, allowing for the experimental realization of the PT-symmetric 

mesh lattice, described previously in Figure 40 and Equation (80)-(83).  

According to the final schematic of PT-symmetric potentials in Figure 40, the gain (red 

arrow), loss (blue arrow), and phase (green spot) potentials can be readily configured 

experimentally in the form of signal protocols in the time domain (see Figure 3 and Equation 

(6)). From Equations (80)-(83), the synthetic transverse coordinates are ascribed by path 𝐴 

(horizontal arrows pointing to the right), path 𝐵 (horizontal arrows pointing to the left), path 

𝐶 (vertical arrows pointing upward) and path 𝐷 (horizontal arrows pointing downward). 

 

 

Figure 42: Separation of the mesh lattice into even and odd time steps 𝒎. (a) For even 𝒎, both gain/loss and 

phase modulation are applied. (b) For odd 𝒎, only a gain/loss potential is applied. 
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Figure 43: Experimental realization of PT-symmetric potentials (gain/loss and phase modulation) in the form of 

signal protocols in the time domain. (a) Amplitude modulation arrangement emulating gain (𝑮) and loss (𝟏/𝑮) 

potentials for each path. (b) Phase modulation arrangement for each path. 

As mentioned, gain/loss and phase potentials are controlled in the experiment by using, 

respectively, amplitude and phase modulators in each loop (see Figure 7) and thus high 

sampling rate generators should be used to manipulate each pulse (~22 ns). In Figure 42, the 

2D photonic mesh lattice is separated into even or odd time steps since the system depicts the 

periodicity of two. As depicted in Figure 8 and Equation (6), any position on the photonic 

mesh lattice on the 2D axes (𝑥 and 𝑦) can be taken in the time domain by multiplying 

𝑥. Δ𝑇inner and 𝑦. Δ𝑇outer, respectively. As shown in Figure 42, a gain 𝐺 and loss 1/𝐺 are 

introduced in paths 𝐴 and 𝐵, respectively, for every even time step 𝑚. The same pattern 

occurs for paths 𝐶 and 𝐷. In contrast, odd time steps 𝑚, the gain and loss pattern in each path 

is swept (see Figure 42(a) and Figure 43(a)). In contrast to the gain/loss protocol, where the 
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modulation takes place on a slower time scale, the phase modulation should be varied on the 

position scale. For instance in Figure 42 and Figure 43(b), the phase modulation protocol 

applies only phase potential in the paths when a time step is an even number.  

On path 𝐴, the first rolls (𝑦 = 0) shows that consecutive pulses in time (𝑥 → 𝑥 ± 2) 

acquire a phase potential of 𝜑0 and 0 sequentially. In the next two rolls (𝑦 → 𝑦 ± 2), the 

consecutive pulses acquire a phase potential of 0 and 𝜑0 (mirrored). These pieces of 

information are understood as the phase potential (𝜑0) is alternately varied in time (𝑥 → 𝑥 ±

2) with a width Δ𝑝 ≅ ∆𝑇𝑜𝑢𝑡𝑒𝑟 during one ∆𝑇𝑖𝑛𝑛𝑒𝑟. For the next ∆𝑇𝑖𝑛𝑛𝑒𝑟, the sequential phase 

variation is kept the same yet mirrored. On the 𝐵 path, the protocol is applied in the same 

way but inverted. However, path 𝐶 is not mirrored concerning path D and, therefore, they 

display the same phase protocol as path A (see Figure 43(b)). 

 

3.3.3. Broken and Recovered PT-symmetric regions 

The 2D photonic mesh lattice exhibits PT symmetry by using gain/loss and phase 

modulation, as shown in Figure 41. As a result of the modulation pattern, the unit cell of the 

lattice is doubled (see the squared green area in Figure 40) and thus the two original bands 

(for instance in Figure 11) of the linear spectrum split into four in total. Under linear 

conditions (𝜒 = 0), the band structure of the system is given by the following dispersion 

relation 

cos 𝜃 = ±
1

8
(−2cos(𝑔) + cos(𝑘𝑥 − 𝑘𝑦) − 4cos(𝜑𝑜)sin

2 (
𝑘𝑥 + 𝑘𝑦

2
) 

±√2𝑐𝑜𝑠 (
𝑘𝑥 + 𝑘𝑦

2
) [14 − 6cos(2𝜑𝑜) + 4cos(𝜑𝑜 − 𝑔) 

+4cos(𝜑𝑜 + 𝑔) + cos(2𝜑𝑜 − 𝑘𝑥 − 𝑘𝑦) + 4cos(𝜑𝑜 + 𝑘𝑥 − 𝑘𝑦) 

+4cos(𝜑𝑜 − 𝑘𝑥 + 𝑘𝑦) + 4cos(𝑔 − 𝑘𝑥 + 𝑘𝑦) + 4cos(𝑔 + 𝑘𝑥 − 𝑘𝑦) 

−2cos(𝑘𝑥 + 𝑘𝑦)+cos(2𝜑𝑜 + 𝑘𝑥 + 𝑘𝑦)]
1
2⁄ ), 

(84) 

which was obtained by inserting the evolution Equations (80)-(83) (following the 

simplification in Equations (16) and (17)) into a Floquet-Bloch ansatz of the form [55] 

(similarly to Equation (19)): 
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�̂�PT𝑥,𝑦(𝑔, 𝜑0)𝑒
𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)(

𝐴1
𝐵1
𝐴2
𝐵2

)

𝑘𝑥,𝑘𝑦

 

= 𝑒−𝑖𝜃𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)(

𝐴1
𝐵1
𝐴2
𝐵2

)

𝑘𝑥,𝑘𝑦

 

. (85) 

Here �̂�𝑃𝑇𝑥,𝑦 represents the evolution operator in the presence of a PT-symmetric 

potential [70]. The phase and amplitude modulation intensities are denoted by 𝜑𝑜 and 𝑔 =

−2𝑖 𝑙𝑛 (𝐺), respectively. 𝜃 stands for the propagation constant and 𝑘𝑥 and 𝑘𝑦 are the Bloch 

quasi momenta. The respective Bloch states are given by the double-step two-component 

vector (𝐴1,, 𝐵1, 𝐴2, 𝐵2)𝑘𝑥,𝑘𝑦
T , which represents the field amplitudes in the inner loops for the 

two points contained in the unit cell of the mesh lattice6. Due to doubled unit cell, the 

Brillouin zone is reduced by half at their diagonal directions, as also visualized by 𝑘𝑥 ± 𝑘𝑦 

from Equation (84).  

Correspondingly, band structures stemming from the Floquet-Bloch theorem are 

demonstrated in Figure 44(a)-(f) at different 𝜑0 and 𝐺. As follows, PT symmetry is broken 

(ℑ(𝜃) > 0) at any 𝐺 > 1 provided that 𝜑0 < 0.5𝜋. On the other hand, if a phase modulation 

between 0.5𝜋 < 𝜑0 < 𝜋 is applied, it eliminates the complex values, therefore, leading the 

system into a quasi conservative case (ℑ(𝜃) = 0, see Figure 44(d) and (e)). However, after a 

certain 𝐺 threshold, the phase modulation cannot recover the system and thus PT symmetry 

is broken again (see Figure 44(f) and (g)).   

Experimentally, the dynamics under broken and recovered band structures are shown in 

Figure 45. By injecting a single pulse in the 𝐶 loop, which corresponding to a single point 

distribution at the center of the lattice (𝑥 = 𝑦 = 0), results in an excitation of the entire band 

structure in momentum space −i.e. both upper and lower branches. In the passive and 

conservative case (𝐺 = 1.0, 𝜑𝑎, = 𝜑𝑏 = 𝜑𝑐 = 𝜑𝑑 = 0), the system’s eigenvalues are real 

(see Figure 44(a)) and hence light transport performs a 2D ballistic walk (see Figure 45(a)). 

However, for 𝐺 > 1.0 and without any phase modulation, the band structure becomes 

complex (ℑ(𝜃) > 0) and hence PT symmetry is broken (Figure 44(b) and (c)) −e.i. causing 

the power to grow exponentially during propagation, as shown in Figure 45(b) and (c) for 

𝜑0 = 0 and 0.3𝜋. 

                                                 
6 See Appendix C. 
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Figure 44: 2D band structures as a function of the gain/loss and phase modulation. (a) Free lattice configuration 

(𝑮 = 𝟏. 𝟎, 𝝋𝒐 = 𝟎). (b)-(c) Broken PT-symmetry (𝕴(𝜽) > 𝟎) when a gain 𝑮 > 𝟏. 𝟎 is applied. (d)-(e) 

Recovered or unbroken PT-symmetry (𝕴(𝜽) = 𝟎) when a recovering phase modulation of 𝝋𝒐 = 𝟎. 𝟔𝝅 is 

applied. (f) Phase modulation cannot recover the system and PT-symmetry is broken when 𝑮 = 𝟏. 𝟖𝟓 and 𝝋𝒐 =

𝟎. 𝟔𝝅. (g) Broken and recovered PT-symmetry region as a function of gain/loss potential and phase 

modulation. 

To restore pseudo-Hermiticity, the symmetric phase potential must be strong enough, 

so that PT symmetry is recovered (see Figure 44(d) and Figure 45(b) and (c) for 𝜑0 = 0.6𝜋). 

Again, the average energy is conserved during propagation (see Figure 45(d)), which is 

consistent with a real-valued band structure (ℑ(𝜃) = 0). Similar to the 1D case, the phase 

modulation must exceed a gain/loss dependent threshold to recover the real eigenspectrum 

and quasi-conservative dynamics, as shown in Figure 44(g). 
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Figure 45: Evolution from a single site excitation in the presence of PT-symmetric potentials. (a) Different 

propagation steps 𝒎 for an experimentally realized 2D light walk in a conservative system (𝑮 = 𝟎) when the 

phase modulation is 𝝋𝟎  =  𝟎. (b) Experiment and (c) simulation at 𝒎 = 𝟓𝟓 when a single site is excited in the 

presence of gain/loss 𝑮 = 𝟏. 𝟏 and phase modulation 𝝋𝟎  =  𝟎, 𝟎. 𝟑𝝅 and 𝟎. 𝟔𝝅. The latter one leads to a 

pseudo-Hermitian evolution and PT symmetry is fulfilled. (d) Experimental observation of the energy evolving 

as a function of roundtrips 𝒎 for 𝑮 = 𝟏. 𝟏 and phase modulation 𝝋𝟎 = 𝟎, 𝟎. 𝟑𝝅 and 𝟎. 𝟔𝝅. 

 

3.3.4. 2D PT-solitons and Nonlinearly-driven Instability 

In the range of values where PT symmetry is restored, where the band structure is real 

(ℑ(𝜃) = 0) and exhibits a bandgap, its upper dispersion branch is similar to that associated 

with waves propagating in a bulk material since it has a constant positive curvature over a 

wide range of Bloch momenta. In contrast to a single lattice site excitation (a single pulse) 

used before, which tends to populate all states simultaneously, a specific much narrower 

region in the Brillouin zone can instead be excited using a wave packet that is relatively 

broad in real space (see Figure 37(a)-(c)). Thus, a broad Gaussian distribution prepared by 
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amplitude modulation (Section 3.1) is injected into the PT-symmetric photonic mesh lattice 

at the time step 2M (see Figure 35), where a particular amplitude and phase relation between 

paths 𝐴 and 𝐵 are chosen to select either upper or lower band excitation based on Equation 

(85). The eigenvalues of amplitude and phase, depicted in Table 2, are based on the PT-

symmetric potentials (gain/loss 𝐺 and phase potential 𝜑0) and the exact values to excite the 

center (𝑘𝑥  =  𝑘𝑦  =  0) of the focusing (upper) band consists of four amplitudes 

(𝐴1, 𝐵1, 𝐴2 and 𝐵2) and phases (𝜑𝐴1, 𝜑𝐵1, 𝜑𝐴2 and 𝜑𝐵2), which should be arranged onto the 

lattice as depicted in Figure 46(a). Consequently, in the time domain, each consecutive pulse 

on paths 𝐴 and 𝐵 acquire alternatively amplitude and phase coefficients, which change their 

order for the next  ∆𝑇𝑖𝑛𝑛𝑒𝑟 (meaning 𝑦 → 𝑦 ± 2) (see Figure 46(b)).  

Experimentally, a broad excitation promoting a selective population within the central 

point  (𝑘𝑥 = 𝑘𝑦 = 0) of the upper band (𝐺 = 1.1 and 𝜑0 = 0.6π) is carried out by 

launching a train of rectangular pulses comprising of a Gaussian envelope 𝐺w(x, y) =

𝐴wexp[− (𝑥
2 + 𝑦2) 𝑤2⁄ ] along the synthetic 𝑥- and 𝑦-axis. In this case, variable amplitude 

(𝐴w) is used while the width (𝑤) is fixed in such a way so as the 1/𝑒 drop in intensity occurs 

after 6 sites (see Figure 47(a)). 

 

Figure 46: Amplitude and phase protocol in the (a) space and (b) time domain at the time step 𝒎 = 𝟐𝑴 of path 

A and B as required to excite the center of the Brillouin Zone (𝒌x = 𝟎, 𝒌y = 𝟎). 

Table 2: Amplitude and phase difference between the loop 𝑨 and 𝑩 at the time step 𝟐𝑴 in order to excite the 

center of the Brillouin Zone (𝒌𝒙 = 𝒌𝒚 = 𝟎) for different modulated system configurations. 

𝐺 𝜑0 (𝐴1, 𝐵1, 𝐴2, 𝐵2) (𝜑𝐴1, 𝜑𝐵1, 𝜑𝐴2, 𝜑𝐵2) 

1.0 

0.6𝜋 

(0.305, 0.64, 0.64, 0.305) (−0.7, 0, 0, −0.7)𝜋 

1.1 (0.303, 0.615, 0.660, 0.307) (−0.71, 0.007, 0, −0.68)𝜋 

1.69 (0.304, 0.573, 0.695, 0.311) (−0.742, 0.022, 0, −0.649)𝜋 
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At an input power of approximately 0.208 mW, the field distribution experiences linear 

diffraction and spreads diagonally in the 𝑥-𝑦-plane in this photonic mesh lattice (see Figure 

47(c)-(e)) due to the orientation of the phase potential lines. By gradually increasing the input 

power to 1.1 mW, 2D PT solitons start to appear (see Figure 47(f)-(h)).  

In the numerical simulation, a family of PT solitonic solutions is traced for the case 

𝜑0 = 0.6π and 𝐺 ≥ 1. In this model, the nonlinear coefficient 𝜒 is fixed to unity, so that the 

localized solutions originate from the positive (𝜃 > 0) focusing band. The total energy 

𝐸T = ∑ (|𝑎𝑥,𝑦|
2
+ |𝑏𝑥,𝑦|

2
)

𝑁

𝑥,𝑦=1

, (86) 

is unconstrained by the solver as it can be freely varied during the optimization process since 

it is a nonconservative system. The size of the computational domain 𝑁 is 80 × 80 positions, 

which corresponds to 40 × 40 elementary unit cells of the PT-symmetric lattice. The domain 

has periodic boundaries in both the 𝑥 and 𝑦 directions. The optimization process is based on 

the in-built Matlab Levenberg-Marquardt algorithm [70], which aims to minimize the 

following nonlinear multidimensional problem: 

{
|𝑎𝑥,𝑦
𝑚=2 − 𝑎𝑥,𝑦

𝑚=0𝑒𝑖𝜃|
2  
→0

|𝑏𝑥,𝑦
𝑚=2 − 𝑏𝑥,𝑦

𝑚=0𝑒𝑖𝜃|
2  
→0

,   (87) 

where the originally two-dimensional vector {𝑎𝑥,𝑦 , 𝑏𝑥,𝑦}x,y=1…N is preliminary stacked into a 

one-dimensional vector of the form {𝑎1,1, 𝑏1,1, 𝑎1,2, 𝑏1,2…𝑎1,𝑁 , 𝑏1,𝑁, 𝑎2,1, 𝑏2,1… 𝑎𝑁,𝑁 , 𝑏𝑁,𝑁}. 

The double step propagator for such a state is a consecutive action of a matrix N2 × N2 

(linear operations) and their nonlinear phase shift, depending on the amplitude distribution of 

the state itself, as it follows from the evolution equations in Equation (80)-(83). Function 

tolerance of the algorithm was typically set to 10−7, although spatially narrower solutions 

were found to gradually destabilize at higher 𝜃.  

Therefore, their precision had to be lowered down to 10−5 for the algorithm to 

converge in a manageable time. As the initial trial function, it is chosen a radially symmetric 

Gaussian envelope 6 positions wide (similar to the experiments), which matches the Bloch 

eigenvector of the elementary unit cell to the correspondent central point (𝑘𝑥 = 𝑘𝑦 =

0,  𝜃band > 0) of the upper focusing band in Equation (85). First, the parametric family of 
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solitons in the conservative case (𝐺 = 1.0 and 𝜑0 = 0.6π) is traced for further comparison. 

The propagation constant (𝜃) of the target solution is fixed slightly above the 𝜃band of the 

corresponding linear Bloch wave. After the solution is found, it is further chosen as a trial 

function for the next target solution, whose 𝜃 is again slightly increased concerning the 

previous one. In this way, the parametric family of solitons can be map out up to 

nearly −𝜃band (see Figure 48(a)). Besides, the conservative soliton width curve along 𝑥 = 𝑦 

is shown in Figure 48(b) as a function of propagation constant. Next, as 𝐸T and 𝜃 increase, 

the soliton gets more localized and expectedly loses its stability due to the discretization 

effect of the mesh lattice [176], [193], [248]. 

 

 

Figure 47: Experimental evolution of a broad excitation in the presence of PT-symmetric potentials (𝑮 =

𝟏. 𝟏;𝝋𝟎 = 𝟎. 𝟔𝝅). (a) 2D image of the initial Gaussian distribution at the input. (b) Experimental investigation 

of the energy evolution as a function of time steps 𝒎 for 𝟎. 𝟐𝟎𝟖 (blue), 𝟏. 𝟏 (green), 𝟒. 𝟏𝟓 mW (red) input 

power. (c)-(k) 2D image, displayed with normalized scaled colors, of the wave packets after 𝟏𝟒 (c),(f),(i), 𝟐𝟕 

(d),(g),(j) and 𝟒𝟎 (e),(h),(k) time steps 𝒎 for different input powers (𝟎. 𝟐𝟎𝟖; 𝟏. 𝟏 and 𝟒. 𝟏𝟓 mW). 
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More specifically, a small perturbation grows exponentially and manifests itself as 

weak oscillations of the amplitude while the soliton propagates. At some critical point, the 

soliton falls into a more stable nonstationary solution, which is mostly localized at one unit 

cell and is bouncing between two potential walls either in the 𝑥 or 𝑦 directions (see Figure 

48(e)). In the bandgap region, where the 𝐸T growth noticeably declines (𝜃 ≈ 0.17π), the 

initial stationary soliton becomes extremely unstable, meaning that the transition happens 

almost immediately (see Figure 48(a)).  

 

Figure 48: Numerical investigation of the conservative (𝑮 = 𝟏. 𝟎, 𝝋𝟎 = 𝟎. 𝟔𝝅) and the non-Hermitian (𝑮 >
𝟏. 𝟎, 𝝋𝟎 = 𝟎. 𝟔𝝅) solitons. (a) Energy of the conservative soliton as a function of 𝜽. (b) Width of the 

conservative soliton as a function of 𝜽. (c) and (d) Zoom in of (a) and (b), respectively, including the non-

Hermitian case (𝟏. 𝟎𝟏 ≤ 𝑮 ≤ 𝟏. 𝟕𝟔,𝝋𝟎 = 𝟎. 𝟔𝝅). The upper and lower grey zones represent the linear bands of 

the system (𝒌𝒙 = 𝒌𝒚 = 𝟎). (e) Conservative soliton profiles at the time step 𝒎 = 𝟗𝟎 for different 𝜽. (f) Non-

Hermitian soliton profiles at the time step 𝒎 = 𝟗𝟎 for different 𝜽. (g) Soliton solutions above the energy 

threshold are unstable and tend to collapse. 
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Since the transition takes place without a substantial loss of energy, the soliton does not 

acquire a considerable momentum and thus it is bouncing in one particular direction. Note 

that the initially unstable soliton does not turn into a less energetic and more stable breather, 

but instead it almost adiabatically collapses into a highly localized nonstationary state, a 

typical process for the 2D discrete Schrödinger system (see Figure 48(e)) [172], [192], [249]. 

Since the transition under consideration makes the soliton abruptly shrink in space, we can 

similarly refer to it as a collapse event on the discrete lattice [179]. Similar to Townes-like 

solitons in conservative 2D nonlinear Schrödinger systems [172], [192], the 2D PT-solitonic 

waves are intrinsically unstable. Figure 48(c) displays the dependence of the soliton 

propagation constant (eigenvalue 𝜃) as a function of the 𝐸T for both conservative (𝐺 = 1.0) 

and non-Hermitian lattice (1.01 ≤ 𝐺 ≤ 1.76) [194], [218]. Note that the intensity profile of 

low energy soliton solutions reflects the asymmetry of the lattice showing two non-equivalent 

diagonal directions (see Figure 47(e) and (h) and Figure 48(e) and (f)). In contrast, high 

energetic solutions appear more symmetric in shape when their width almost approaches one 

elementary PT unit cell (see Figure 47(h) in the experiment and Figure 48(f) in numerical 

simulation), thus corresponding to a highly localized soliton trapped between two zigzag-

shaped phase potential barriers (acting as a Peierls-Nabarro barrier [246], [250]).  

Similarly, Figure 48(d) depicts the eigenvalue-soliton width curve, where the field 

distribution along the diagonal 𝑥 =  𝑦 was fitted with a Gaussian function. Interestingly, the 

conservative soliton line (dotted black line) determines the threshold of the propagation 

constant beyond which nonconservative (i.e. 𝐺 > 1.0) nonlinear localized stationary 

solutions cannot exist. As the gain/loss factor increases, the corresponding propagation 

constant curves for PT solitons proportionally decrease and their widths rapidly become 

narrower. As in the case of 1D PT-symmetric photonic mesh lattices [35], [243], [251], these 

solitons also belong to one parametric family. Therefore, this 2D PT system behaves 

similarly to that of its Hermitian counterpart and, consequently, allows the solitons to adapt 

their amplitudes to their widths.  

Nonconservative soliton eigenvalues present a threshold of initial total energy 𝐸𝑇 that 

makes them highly unstable and immediately blows-up, releasing a large amount of energy 

due to their higher dissipative flux of energy for bigger gain/loss factors (see Figure 49(a)). 

Numerical simulations show that the soliton lifetime strongly depends on the soliton total 
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energy 𝐸𝑇 and the respective gain/loss factor. Likewise, soliton maximum lifetime is 

quantified by the propagation time step 𝑚, at which the amplitude profile deviation  

𝛿𝐸 = ∑ (|𝑎𝑥,𝑦
𝑚+2 − 𝑒𝑖𝜃𝑎𝑥,𝑦

𝑚 |
2
+ |𝑏𝑥,𝑦

𝑚+2 − 𝑒𝑖𝜃𝑏𝑥,𝑦
𝑚 |

2
)

𝑁

𝑥,𝑦=0

 (88) 

between two subsequent time steps 𝑚 and 𝑚 + 2 (after one modulation period) exceeds 1% 

of the total energy 𝐸𝑇 (see Figure 49(b)). For those PT-symmetric low energetic stationary 

soliton solutions that are relatively broad (𝑤 = 5 unit cells), their dimensions are noticeably 

larger than the step size of the lattice or its internal structure (under PT-symmetric gain and 

phase modulation).  

As a result, discretization effects become negligible in this quasi-continuous limit, thus 

allowing these otherwise unstable solitons to live for very long propagation times given that 

the gain/loss contrast factor is small (see Figure 49(b)). Since the Peierls-Nabarro potential is 

diminished, the broad soliton can diffract at the corners and slowly move along the diagonal 

zigzag-shaped potential without any energy loss [246], [250], [252]–[255]. In all cases, as in 

1D systems [35], [198], [209], [256]–[258], non-Hermitian 2D solitons exhibit a small energy 

growth that is proportional to the gain/loss factor (see Figure 49(c) and (d)), although PT 

symmetry of the lattice was restored in the linear limit −a clear indication that PT symmetry 

is locally broken by nonlinearity [220], [259], [260].  

Furthermore, as non-Hermitian 2D solitons propagate in this quasi-conservative system, 

they do not immediately disintegrate since the effective growth factor is generally much 

smaller than the gain/loss factor 𝐺 (see Figure 49(d)). Instead, their energy exponentially 

grows until they collapse. Unlike the 1D systems, the rate of growth of this instability is 

further enhanced in a 2D environment −especially close to the collapse point where the PT 

symmetry is now violated. This is demonstrated in the experiments by further increasing the 

input power to ~4.15 mW, where the region of instability is reached faster and nonlinear 

self-focusing leads to an immediate collapse of the field distribution (see Figure 47(i)-(k)), in 

a way analogous to what happens in a conservative 2D discrete Schrödinger system [45], 

[172], [192]. Contrary to what happens in its conservative counterpart (𝐺 = 1.0), the non-

Hermitian collapse event is followed by a fast growth of the total energy (see the red curve in 

Figure 47(b)), which leads to an even stronger local break in the PT symmetry.  
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Figure 49: Nonlinearity driven instability of the solitary waves for a non-Hermitian system (𝟏. 𝟎𝟏 ≥ 𝑮 ≥
𝟏. 𝟕𝟔,𝝋𝟎 = 𝟎. 𝟔𝝅). (a) Total energy threshold and (b) maximum lifetime (in time step 𝒎) as a function of 

gain/loss factor. (c) Higher gain/loss factors force the soliton to collapse/blow-up faster and with a proportional 

amount of rapidly released energy (sharp increase curve). (d) Exponential total energy growth rate before the 

collapse/blow-up event. 

This extremely localized field is concentrated around a single lattice site and a small 

amount of excess radiation is released in the form of outward propagating waves (see Figure 

47(i) and (j)). During the collapse, this highly localized wave nonlinearly self-accelerates 

and, as a result, moves on the mesh lattice (see Figure 47(k) in the experiments and Figure 

48(g) in numerical simulation). Numerical simulations indicate that, in most cases, the 

directionality of this movement tends to be perpendicular to the zigzag-shaped PT phase 

potentials (Peierls-Nabarro barrier), meaning that the energy of the highly localized state is 

large enough to overcome this potential barrier. Nevertheless, due to its very small width 

(𝑤 ≈  1), this moving localized soliton experiences discretization effects from the lattice as 

well as the previously mentioned zigzag-shaped PT phase potentials. Consequently, by 

overcoming the phase barrier, this moving −highly localized− collapsed soliton gradually 

loses its energy and finally dissolves. 
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Conclusions and Outlook 

In the course of my work, I implemented one and two transverse synthetic dimensions 

in a fiber optical system by using the time-multiplexing technique. The system is essentially 

composed of high-speed telecommunication devices and optical components connected as 

loops. Arriving Pulses and corresponding time delays produced by loop length differences 

resemble a photonic mesh lattice. Experimentally, the classical description of light as an 

electromagnetic wave is employed by launching high coherent optical pulses into the 

coupled-fiber loop, which exhibits interference effects and resembles the wave dynamics in a 

waveguide array.  

By applying a time-periodic bell-shaped potential with a vanishing temporal average, 

the Kapitza guiding light effect is demonstrated in the coupled-fiber loop set-up. The results 

confirm the pivotal role of the fiber-based platform for demonstrating fundamental effects in 

wave mechanics. Future works could comprise the investigation of topological effects under 

the action of a spatio-temporal periodic potential and the interaction between nonlinear 

localization and Kapitza effective potentials.  

Besides, thermalization processes in a nonlinear multimodal photonic mesh lattice are 

experimentally realized. These include Rayleigh-Jeans distributions with either positive or 

negative temperatures, isentropic expansion, and compression, as well as Joule photon-gas 

expansions. Exceptionally, the modal occupancy in thermal equilibrium possesses a unique 

temperature and chemical potential that have nothing to do with the actual thermal 

environment. Further works could focus on the investigation of wave transport in nonlinear 

structures employing thermodynamic Carnot cycles.  

In addition to classical light, we proposed and experimentally validated an all-optical 

architecture for single-photon pairs generation and propagation. First, utilizing modulating 

optical switchers and exploiting fiber-based loop properties, optical bins featuring stable time 

delay are generated by a classical light walk. A microring resonator placed at an intermediate 

stage of this modified coupled-fiber loop generates time-bin single-photon pairs. These 

entangled photons propagate in the opposite direction of classical pulses and perform 

quantum interference measurements with high stability. Further works could focus on the 

investigation of multistage biphoton interference (𝑚 > 3) as well as three or more time-bins 

interference. 

Further, we used two-dimensional photonic mesh lattices to experimentally evaluate 

nonlinear wave dynamics in conservative and non-Hermitian systems. Wave collapse of a 
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broad initial field distribution around a single lattice site is observed in such a discrete mesh 

lattice working at mW-power levels. By exploiting commercially available broad bandwidth 

photonic devices, such as amplitude and phase modulators, gain/loss, and the corresponding 

phase modulation, we reproduced a PT-symmetric photonic mesh lattice. Non-conservative 

PT solitons were numerically investigated and experimentally observed in a 2D photonic 

mesh lattice arrangement. Non-Hermitian solitons were found to exhibit a small energy 

growth that is proportional to the gain/loss factor, even though PT symmetry of the lattice 

was restored in the linear limit. For higher input power levels, a family of PT solitons is 

demonstrated to self-accelerate and move during the collapse. Further works may involve 2D 

topological insulators for PT-symmetric potentials.  
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Appendices 

A. Eigenvalue derivation of 1D photonic mesh lattice  

In the linear regime, the 1D evolution equation for a single time step is given by 

𝑣𝑥
𝑚+1 = (𝑡𝑥+1

𝑚 𝑣𝑥+1
𝑚 + 𝑖𝑟𝑥+1

𝑚 𝑢𝑥+1
𝑚 )exp(𝑖𝜑𝑣) and  

(1) 

𝑢𝑥
𝑚+1 = (𝑡𝑥−1

𝑚 𝑢𝑥−1
𝑚 + 𝑖𝑟𝑥−1

𝑚 𝑣𝑥−1
𝑚 )exp(𝑖𝜑𝑢), 

where 𝑡𝑥
𝑚 and 𝑟𝑥

𝑚 indicate transmission and reflection of the optical coupler. A phase 

modulation 𝜑𝑢 and 𝜑𝑣 is applied to loop 𝑣 and 𝑢 according to an arrangement as 

𝜑𝑣(𝑚) = {
0, odd 𝑚
𝜑0, even 𝑚

       and 

(2) 

𝜑𝑢(𝑚) = {
𝜑0, odd 𝑚
0, even 𝑚

. 

 For calculating the eigenvector of a 1D system, the evolution equation in Equation (1) 

and phase modulation in Equation (2) are converted in matrix evolution as 

�̂� = (
cos(𝜗) 𝑖 sin(𝜗)

𝑖 sin(𝜗) cos(𝜗)
) (3) 

�̂�𝑜𝑑𝑑 = (
0 0
0 𝜑0

) (4) 

�̂�𝑒𝑣𝑒𝑛 = (
𝜑0 0
0 0

) (5) 

�̂� = ( 𝑒
𝑖𝑘𝑥 𝑒𝑖𝑘𝑥

𝑒−𝑖𝑘𝑥 𝑒−𝑖𝑘𝑥
) (6) 

where 𝜗 is the transfer matrix angles of an optical coupler (𝑡 = cos(𝜗) and 𝑟 = sin(𝜗); e.g. 

𝜗 = 𝜋 4⁄  denotes a 50/50 coupler), �̂� is a phase modulation matrix for odd and even time 

steps and �̂� is the single-time step Bloch ansatz, which physically represents the direction of 

pulses spanned on the synthetic transverse coordinate 𝑥.  

The temporal evolution matrix �̂�1𝐷 is a result of a double-time step evolution since 1D 

mesh lattice has a periodicity of two: 
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�̂�1𝐷 = �̂� ∙ 𝑒
𝑖�̂�𝑜𝑑𝑑 ∙ �̂�⏟        
odd 𝑚

∙ �̂� ∙ 𝑒𝑖�̂�𝑒𝑣𝑒𝑛 ∙ �̂�⏟        
even 𝑚

, 
(7) 

here �̂� and �̂� do not change from odd to even time steps. Additionally, a Floquet ansatz �̂� of 

the system is written as 

�̂� = 𝑒−𝑖𝜃 (
1 0
0 1

), (8) 

where 𝜃 is the propagation constant (i.e. eigenvalue of the system). A dispersion relation is 

calculated by solving the eigenvalue problem 

det(�̂�1𝐷 − �̂�) = 0, (9) 

which results in a band structure  

cos 𝜃 = cos2(𝜗) cos 𝑘𝑥 − sin
2(𝜗) sin𝜑0. (10) 

Here, it introduces a variable 𝐶 for simplifying Equation (10), which represents a 

splitting ratio of the optical coupler (𝐶 = 𝑡2 = 1 − 𝑟2): 

cos 𝜃 = 𝐶 cos 𝑘𝑥 − (1 − 𝐶) sin𝜑0. (11) 

Next, an eigenvector (𝑉, 𝑈)𝑡 is derived from Equations (7) to probe an excitation onto a 

specific region of the band structure. By defining system parameters, such as phase 

modulation height 𝜑0 and splitting ratio 𝐶, the eigenvector of Equation (7) is found 

eigenvector(�̂�1𝐷)|𝑘𝑥→0 
= (

𝑉
𝑈
), (12) 

where Bloch momentum tends to zero (i.e. �̂�(𝑘𝑥 → 0)) in the center of the Brillouin zone, 

which represents a narrow momentum spread excitation (i.e. a broad Gaussian distribution). 
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B. Eigenvalue derivation of 2D photonic mesh lattice 

First, the 2D evolution equations are reduced to two equations since 𝑎𝑥,𝑦
𝑚  and 𝑏𝑥,𝑦

𝑚  are 

uniquely determined by 𝑐𝑥,𝑦
𝑚−1 and 𝑑𝑥,𝑦

𝑚−1 and those depend on 𝑎𝑥,𝑦
𝑚−1 and 𝑏𝑥,𝑦

𝑚−1 only. 

Therefore, the simplified 2D evolution equations for a single time step in the linear regime 

are given by 

𝑎𝑥,𝑦
𝑚+1 =

1

2
{𝑎𝑥−1,𝑦−1
𝑚 + 𝑖𝑏𝑥−1,𝑦−1

𝑚 + (𝑖𝑏𝑥−1,𝑦+1
𝑚 − 𝑎𝑥−1,𝑦+1

𝑚 )exp[𝑖(−1)𝑚−1𝜑0]} and 

(1) 

𝑏𝑥,𝑦
𝑚+1 =

1

2
{(𝑏𝑥+1,𝑦+1

𝑚 + 𝑖𝑎𝑥+1,𝑦+1
𝑚 )exp[𝑖(−1)𝑚−1𝜑0] + 𝑖𝑎𝑥+1,𝑦−1

𝑚 − 𝑏𝑥+1,𝑦−1
𝑚 }, 

where couplers are set to a 50/50 splitting ratio and 𝜑𝑎 = 𝜑𝑐 = 0, while 𝜑𝑏  and 𝜑𝑑 follow a 

phase modulation as follows 

𝜑𝑏,𝑑(𝑚) = {
−𝜑0, odd 𝑚
+𝜑0, even 𝑚

. (2) 

Here, the eigenvector and correspondent eigenvalues are calculated by converting 

Equations (1),(2) into matrix evolution as 

�̂�𝐴𝐵 = �̂�𝐶𝐷 =
1

√2
(
1 𝑖
𝑖 1

), (3) 

�̂�𝑜𝑑𝑑 = (
1 0
0 −𝜑0

), (4) 

�̂�𝑒𝑣𝑒𝑛 = (
1 0
0 𝜑0

), (5) 

�̂�𝑥 = (
𝑒𝑖𝑘𝑥 0
0 𝑒−𝑖𝑘𝑥

), (6) 

�̂�𝑦 = (
𝑒𝑖𝑘𝑦 0
0 𝑒−𝑖𝑘𝑦

), (7) 

where �̂�𝐴𝐵 and �̂�𝐶𝐷 are the 50/50 splitting ratio of optical couplers connecting loops 𝐴/𝐵 to 

𝐶/𝐷, �̂� is a phase modulation matrix for odd and even time steps from Equation (2), and �̂�𝑥 

and �̂�𝑦 are the single time step Bloch ansatz, which physically represents the direction of  
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pulses spanned on the synthetic transverse coordinate 𝑥 and y, respectively. Similarly, the 2D 

the system has a periodicity of two and thus the double step 2D temporal matrix evolution �̂� 

is written as.  

�̂�2𝐷 = �̂�𝐴𝐵 ∙ 𝑒
𝑖�̂�𝑜𝑑𝑑 ∙ �̂�𝑥⏟          

loop A and B

∙ �̂�𝐶𝐷 ∙ 𝑒
𝑖�̂�𝑜𝑑𝑑 ∙ �̂�𝑦⏟          

loop C and D⏟                      
odd 𝑚

∙ �̂�𝐴𝐵 ∙ 𝑒
𝑖�̂�𝑒𝑣𝑒𝑛 ∙ �̂�𝑥⏟          

loop A and B

∙ �̂�𝐶𝐷 ∙ 𝑒
𝑖�̂�𝑒𝑣𝑒𝑛 ∙ �̂�𝑦⏟          

loop C and D⏟                      
even 𝑚

 
(8) 

Additionally, a Floquet ansatz �̂� of the system is written as 

�̂� = 𝑒−𝑖𝜃 (
1 0
0 1

), (9) 

where 𝜃 is the propagation constant (i.e. eigenvalue of the system). A dispersion relation is 

calculated by solving the following equation 

det(�̂�2𝐷 − �̂�) = 0, (10) 

which results in a band structure  

cos(𝜃) = ±
1

2
[−
1

2
−
1

2
cos(2𝜑0) − cos (𝜑0) cos(𝑘𝑥) − cos (𝜑) cos(𝑘𝑦)

+ cos(𝑘𝑥) cos(𝑘𝑦)] 
(11) 

Next, an eigenvector (𝐴, 𝐵)𝑡 consisting of two components, which describe the amplitude 

and phase relation between loops A and B from Equation (1) is derived to probe an excitation 

onto a specific region of the band structure. By defining the phase modulation height 𝜑0, the 

eigenvector of Equation (8) is found 

eigenvector(�̂�2𝐷)|𝑘𝑥→0; 𝑘𝑦→0
= (

𝐴
𝐵
), (12) 

where Bloch momenta tend to zero (i.e. �̂�𝑥(𝑘𝑥 → 0) and �̂�𝑦(𝑘𝑦 → 0)) in the center of the 

Brillouin zone, which represents a narrow momentum spread excitation (i.e. a broad Gaussian 

distribution).
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C. Eigenvalue derivation of 2D PT-symmetric photonic mesh lattice  

Similar to its counterpart, 2D PT-symmetric mesh lattice can be represented by matrix 

evolution to calculate its eigenvector (𝐴1, 𝐵1, 𝐴2, 𝐵2) and the corresponding eigenvalues. 

First, the splitting ratio and Bloch momentum is written as 

�̂� = �̂�𝐴𝐵 = �̂�𝐶𝐷 =
1

√2
(
1 𝑖
𝑖 1

), (1) 

�̂�𝑥 = (
𝑒𝑖𝑘𝑥 0
0 𝑒−𝑖𝑘𝑥

), (2) 

�̂�𝑦 = (
𝑒𝑖𝑘𝑦 0
0 𝑒−𝑖𝑘𝑦

). (3) 

According to Equation (80)-(83) and Figure 40, 2D PT-symmetric mesh lattice has a 

periodicity of two and the matrix evolution comprises of 4-by-4 components due to its 

extended unit cell: 

�̂�PT(𝑔, 𝜑0) ≝∑�̂�PT𝑥,𝑦(𝑔, 𝜑0)

𝑥,𝑦

= 

=∑[(
�̂�(𝜑0)�̂�(𝑔)�̂�𝑥�̂��̂�𝑦�̂��̂��̂�

† −�̂�(𝜑0)�̂�𝑥�̂��̂�𝑦
†�̂�†�̂�†

−�̂�(−𝜑0)�̂�𝑥�̂��̂�𝑦
†�̂�†�̂�† �̂�(−𝜑0)�̂�(−𝑔)�̂�𝑥�̂��̂�𝑦�̂��̂�

) ∗

                         𝑥,𝑦

 

∗ (
�̂�(𝜑0)�̂�(−𝑔)�̂�𝑥�̂��̂�𝑦�̂��̂� −�̂�(𝜑0)�̂�𝑥�̂��̂�𝑦

†�̂�†�̂�†

−�̂�(−𝜑0)�̂�𝑥�̂��̂�𝑦
†�̂�†�̂�† �̂�(−𝜑0)�̂�(𝑔)�̂�𝑥�̂��̂�𝑦�̂��̂�

)], 

 

 

 

(4) 

where 𝛷(𝜑0) and 𝐺(𝑔) describe elements of the PT-symmetric phase and gain/loss 

modulation, respectively 

�̂�(𝜑0) ≝ 𝑒𝑖𝜑0 (
1 0
0 −1

) (5) 

�̂�(𝑔) ≝ 𝑒𝑔 (
1 0
0 −1

) , 𝑔 ∈ ℝ (6) 

Here, 𝜑0 is the phase modulation height and the arguments 𝑔 and −𝑔 of �̂� 

characterize the gain and loss parameters of the modulation, respectively. Hence, the  
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evolution equation for the wave at a fixed position (𝑥, 𝑦) reads 

𝑈PT𝑥,𝑦(𝑔, 𝜑0)𝑒
𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)(

𝐴1
𝐵1
𝐴2
𝐵2

)

𝑘𝑥,𝑘𝑦

 

= 𝑒−𝑖𝜃𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)(

𝐴1
𝐵1
𝐴2
𝐵2

)

𝑘𝑥,𝑘𝑦

 

. 
(

(7) 

Furthermore, the eigenvalue problem  

𝑈PT𝑥,𝑦(𝑔, 𝜑0)(

𝐴1
𝐵1
𝐴2
𝐵2

)

𝑘𝑥,𝑘𝑦

 

= 𝑒𝑖𝜃 (

𝐴1
𝐵1
𝐴2
𝐵2

)

𝑘𝑥,𝑘𝑦

 

, 
(

(8) 

delivers the corresponding eigenvalues 𝜆 of four quasi-energy bands 𝜃 = −𝑖ln (𝜆(𝑘𝑥, 𝑘𝑦)) as 

cos (𝜃(𝑘𝑥, 𝑘𝑦, 𝜑0, 𝑔)) = 

= ±
1

8
(−2cos(𝑔) + cos(𝑘𝑥 − 𝑘𝑦) − 4cos(𝜑𝑜)sin

2 (
𝑘𝑥 + 𝑘𝑦

2
) 

±√2𝑐𝑜𝑠 (
𝑘𝑥 + 𝑘𝑦

2
) [14 − 6cos(2𝜑𝑜) + 4cos(𝜑𝑜 − 𝑔) 

+4cos(𝜑𝑜 + 𝑔) + cos(2𝜑𝑜 − 𝑘𝑥 − 𝑘𝑦) + 4cos(𝜑𝑜 + 𝑘𝑥 − 𝑘𝑦) 

+4cos(𝜑𝑜 − 𝑘𝑥 + 𝑘𝑦) + 4cos(𝑔 − 𝑘𝑥 + 𝑘𝑦) + 4cos(𝑔 + 𝑘𝑥 − 𝑘𝑦) 

−2cos(𝑘𝑥 + 𝑘𝑦)+cos(2𝜑𝑜 + 𝑘𝑥 + 𝑘𝑦)]
1
2⁄ ). 

(9) 

By defining the phase modulation height 𝜑0 and gain/loss strength 𝑔, the eigenvector of 

Equation (4)-(8) is found 

eigenvector(𝑈PT)|𝑘𝑥→0; 𝑘𝑦→0 = (

𝐴1
𝐵1
𝐴2
𝐵2

), (10) 

where Bloch momenta tend to zero (i.e. �̂�𝑥(𝑘𝑥 → 0) and �̂�𝑦(𝑘𝑦 → 0)) in the center of the 

Brillouin zone, which represents a narrow momentum spread excitation (i.e. a broad Gaussian 

distribution). 

 



 

 D.1 

D. Recovering phase information by the relative phase in loop 𝒗 and 𝒖 

In the linear regime (𝜒 = 0), the 1D evolution equation is described as 

𝑢𝑥
𝑚+1 = (𝑡𝑥−1

𝑚 𝑢𝑥−1
𝑚 + 𝑖𝑟𝑥−1

𝑚 𝑣𝑥−1
𝑚 )exp(𝑖𝜑𝑢), (1) 

𝑣𝑥
𝑚+1 = (𝑡𝑥+1

𝑚 𝑣𝑥+1
𝑚 + 𝑖𝑟𝑥+1

𝑚 𝑢𝑥+1
𝑚 )exp(𝑖𝜑𝑣), (2) 

where 𝑚 is the time step and 𝑥 is the effective spatial position. 𝑡 and 𝑟 denote transmission 

and reflection of the variable coupler (𝑡2 + 𝑟2 = 1). After photodetection, optical intensities 

in loop 𝑣 and 𝑢 are measured and organized as |𝑣𝑥
𝑚|2 and |𝑢𝑥

𝑚|2, respectively. First, let 

consider the intensity differences from loop 𝑣 and 𝑢 at time step 𝑚 + 1 as a result of its last 

time step 𝑚 after an imbalance interferometer  

|𝑢𝑥+1
𝑚+1|2 − |𝑣𝑥−1

𝑚+1|2 = |𝑡𝑥
𝑚𝑢𝑥

𝑚 + 𝑖𝑟𝑥
𝑚𝑣𝑥

𝑚|2 − |𝑡𝑥
𝑚𝑣𝑥

𝑚 + 𝑖𝑟𝑥
𝑚𝑢𝑥

𝑚|2. (3) 

Here, phase modulation in both loops, such as exp(𝑖𝜑𝑢) and exp(𝑖𝜑𝑣), are removed by 

the modulus. Individually, each part of that intensity subtraction in Equation (3) is written as 

|𝑡𝑥
𝑚𝑢𝑥

𝑚 + 𝑖𝑟𝑥
𝑚𝑣𝑥

𝑚|2 = 𝑡2𝑥
𝑚
|𝑢𝑥
𝑚|2 + 𝑟2𝑥

𝑚
|𝑣𝑥
𝑚|2 + 𝑖𝑡𝑥

𝑚𝑟𝑥
𝑚𝑢𝑥

𝑚𝑣⋆𝑥
𝑚
+ 𝑖𝑡𝑥

𝑚𝑟𝑥
𝑚𝑢⋆𝑥

𝑚
𝑣𝑥
𝑚, (4) 

|𝑡𝑥
𝑚𝑣𝑥

𝑚 + 𝑖𝑟𝑥
𝑚𝑢𝑥

𝑚|2 = 𝑡2𝑥
𝑚
|𝑣𝑥
𝑚|2 + 𝑟2𝑥

𝑚
|𝑢𝑥
𝑚|2 + 𝑖𝑡𝑥

𝑚𝑟𝑥
𝑚𝑣𝑥

𝑚𝑢⋆𝑥
𝑚
+ 𝑖𝑡𝑥

𝑚𝑟𝑥
𝑚𝑣⋆𝑥

𝑚
𝑢𝑥
𝑚, (5) 

 Next, by inserting Equations (4) and (5) into (3), it yields 

|𝑢𝑥+1
𝑚+1|2 − |𝑣𝑥−1

𝑚+1|2 = (𝑡2𝑥
𝑚
− 𝑟2𝑥

𝑚
)(|𝑢𝑥

𝑚|2 − |𝑣𝑥
𝑚|2) + 2𝑡𝑥

𝑚𝑟𝑥
𝑚 (𝑖𝑣⋆𝑥

𝑚
𝑢𝑥
𝑚 − 𝑖𝑢⋆𝑥

𝑚
𝑣𝑥
𝑚)⏟              

2ℑ(𝑢⋆𝑥
𝑚𝑣𝑥

𝑚)

, 
(6) 

where ℑ(⋅) denotes the imaginary component. The phase difference (i.e. 𝜙𝑢𝑣 = 𝜙𝑢 − 𝜙𝑣) is 

found provided that ℑ(𝑢⋆𝑥
𝑚
𝑣𝑥
𝑚) = |𝑢𝑥

𝑚||𝑣𝑥
𝑚| sin(𝜙𝑢𝑣). Thus, Equation (6) is rewritten as 

|𝑢𝑥+1
𝑚+1|2 − |𝑣𝑥−1

𝑚+1|2 = (𝑡2𝑥
𝑚
− 𝑟2𝑥

𝑚
)(|𝑣𝑥

𝑚|2 − |𝑢𝑥
𝑚|2) + 4𝑡𝑥

𝑚𝑟𝑥
𝑚|𝑢𝑥

𝑚||𝑣𝑥
𝑚| sin(𝜙𝑢𝑣), (7) 
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Therefore, the phase difference information 𝜙𝑢𝑣 is described as 

𝜙𝑢𝑣 = sin
−1 [

|𝑢𝑥+1
𝑚+1|2 − |𝑣𝑥−1

𝑚+1|2 − (𝑡2𝑥
𝑚
− 𝑟2𝑥

𝑚
)(|𝑢𝑥

𝑚|2 − |𝑣𝑥
𝑚|2)

4𝑡𝑥
𝑚𝑟𝑥

𝑚|𝑢𝑥
𝑚||𝑣𝑥

𝑚|
]. (8) 

For simplicity regarding experimental data processing, 𝑡 and 𝑟 are changed to coupling 

coefficient of that variable coupler, where 𝐶𝑥
𝑚 = 𝑡2𝑥

𝑚
= 1 − 𝑟2𝑥

𝑚
. Thus, provided that 𝑡𝑥

𝑚 =

√𝐶𝑥
𝑚 and 𝑟𝑥

𝑚 = √1 − 𝐶𝑥
𝑚, Equation (8) is rewritten in terms of 𝐶 

𝜙𝑢𝑣 = sin
−1 [

|𝑢𝑥+1
𝑚+1|2 − |𝑣𝑥−1

𝑚+1|2 − (2𝐶𝑥
𝑚 − 1)(|𝑢𝑥

𝑚|2 − |𝑣𝑥
𝑚|2)

4√𝐶𝑥
𝑚 − 𝐶2𝑥

𝑚|𝑢𝑥
𝑚||𝑣𝑥

𝑚|
]. (9) 
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