
Università degli Studi di Padova

Dipartimento di Ingegneria dell’Informazione

Corso di Laurea in Bioingegneria

Dual-Probe Shear Wave
Elastography in a Transversely

Isotropic Phantom

Laureanda:

Gioia Bassan

Relatore:

Prof. Alfredo Ruggeri

Anno Accademico 2015/2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Padua@thesis

https://core.ac.uk/display/41986456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Abstract

Shear Wave Elastography (SWE) is an ultrasound based technique which is able

to measure tissue stiffness through the speed of induced shear waves. Tissue stiff-

ness is often related to pathological conditions and detecting mechanical changes

can help the recognition of potential diseases. The clinical use of SWE is limited

to isotropic tissue due to the difficulty in assessing a theoretical model for more

complex tissue and this project therefore aimed to evaluate the possibility of ob-

taining a full mechanical characterization of a transversely isotropic (TI) phantom

with dual-probe SWE. A TI hydrogel phantom was developed and mechanical

tests were performed to verify its anisotropy and determine the elastic moduli in

both the perpendicular and longitudinal directions. Shear moduli were estimated

using conventional and dual-probe SWE comparing the results to theoretical pure-

transverse (PT) and quasi-transverse (QT) wave propagation modes. Both me-

chanical and SWE tests showed that the phantoms were transversely isotropic

(ET/EL ' 0.81 ± 0.1). Moreover, multiple wave propagation modes calculated

with dual-probe SWE showed a good agreement with the theoretical curves and

indicated the possibility of measuring all the elasticity constants needed to fully

characterize an incompressible, TI tissue with dual-probe SWE.

Keywords: Shear wave elastography, transversely isotropic phantom, dual-probe

set-up
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Chapter 1

Introduction

In the past centuries, physicians have used palpation as the gold standard pro-

cedure for detecting potential diseases in large isotropic tissue. For nodules and

tumours, for instance, the emission of fluids from the vascular system into the

extra and intracellular space or the loss of lymphatic system cause an increase of

local stiffness [12]. Common medical imaging techniques like B-mode ultrasound,

Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) are not able

to recognise potential diseases when changes in tissue stiffness occur without cor-

responding changes that are detectable with these techniques.

In 1998, Sarvazyan et al. [5] were among the first to introduce Shear Wave Elas-

ticity Imaging (SWEI) as a support for ultrasound imaging. An acoustic radiation

force is generated by an ultrasound transducer and induces low-frequency shear

waves propagating through the tissue. Tracking the propagation velocity of this

waves, SWEI can obtain an estimation of the local stiffness and add new infor-

mation to the conventional B-mode image. In 2004, Bercoff et al. [6] introduced a

new acquisition method which increases the quality of the image by sending pushes

focused at different depths. These techniques have been clinically used only for

isotropic tissue such as breast or liver while the studies on anisotropic tissue so

far have been on a research basis because of their theoretical difficulties. In fact,

shear wave propagation in anisotropic tissue is more complicated because their

1



Chapter 1. Introduction 2

mechanical behaviour depends on the direction in which the force (i.e. the focused

beam) is applied.

At the School of Technology and Health at the Royal Institute of Technology

(KTH) in Stockholm, a research group developed a SWE system focusing on

isotropic tissue as well as arteries and in particular on the identification and char-

acterization of plaque aggregates in the carotid artery. The following work aims

to extend SWE to transversely isotropic (TI) tissue and contribute to the gen-

eral knowledge of SWE in non-isotropic tissue which could aid in the detection of

pathological developments in such tissue. The study includes the development of

tissue-mimicking TI phantoms, the assessment of their elastic properties through

mechanical and SWE tests and eventually the evaluation of multiple shear wave

propagation modes in the developed phantoms.



Chapter 2

Purpose of Study

The purpose of this study was the analysis of multiple wave propagation modes

with dual-probe Shear Wave Elastography in order to obtain a full characterization

of transversely isotropic tissue and extend SWE to tissue like muscle and tendon.

To achieve this purpose, the study was divided into two main parts.

The first part was oriented towards the development of a tissue-mimicking trans-

versely isotropic phantom. Mechanical and SWE tests were to be performed in

order to characterize its elastic properties and evaluate SWE as a tool for measur-

ing these parameters in this kind of tissue.

The second part aimed to track shear wave displacement perpendicular to the

pushing beam and measure shear wave propagation velocities in different direc-

tions. A dual-probe set-up was to be designed and tested on the developed phan-

toms comparing the results with previous studies. Eventually, the possibility of

extend dual-probe SWE to TI tissue was to be evaluated.

3





Chapter 3

Background

The following section provides the status quo of the work field and leads the reader

to understand all the steps that are discussed in the following chapters. In par-

ticular, this section has been divided in two main parts. Mechanical properties

of tissue are presented through definitions of elastic parameters needed to char-

acterize biological tissue. Isotropic and transversely isotropic cases are discussed

in order to understand the difference between them. Once understood the kind

of information needed to fully characterize the mechanical behaviour of a tissue,

shear wave elastography (SWE) is presented as a technique which is able to give

a quantitative evaluation of these parameters. In particular, we will go through

ultrasound fundamentals continuing with SWE and the relations between shear

wave propagation speed and elastic parameters.

3.1 Mechanical properties of biological tissue

When a force is applied to an object, it induces a deformation resulting in changes

of size and shape. Internal forces act to resist this deformation and, as a conse-

quence, the object will reach a final shape when the external forces are removed.

When an object is able to come back to its initial shape, it is called elastic [1].

The ratio between the force F and the area A where this force is applied is called

5
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stress (σ) and is measured in Pascal (Pa) (Equation 3.1).

σ =
F

A
(3.1)

As shown in Figure 3.1, a stress σij is defined as acting on the i-plane in the

j-direction. Normal stress is represented by the components of the stress tensor

directed perpendicular to a face (e.g. σ11); along that face, it is called tensile stress

if the component is directed outward and compressive stress otherwise. On the

other hand, the stress component parallel to a face is called shear stress (e.g. σ23).

Figure 3.1: Stress components acting on an object. Normal stress is repre-
sented by σ22 and shear stress is represented by σ23 and σ21 (adapted from

[1]).

The deformation occurring when an object is subjected to a force is measured in

terms of strain (ε) which is the relative change of an object dimension. The normal

strain in the xi-direction (with i = 1, 2, 3) is:

εi =
∂uxi
∂x

(3.2)

where uxi is the displacement vector along the xi-direction [2]. Considering the

plane (xi, xj), the shear strain (γij) describes the deformation considering changes

of angles in the object. Likewise it can be expressed in terms of the displacement

vector as:

γij =
∂uxi
∂xj

+
∂uxj
∂xi

(3.3)
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In terms of strain components, γij = 2εij. The knowledge of all εij (for i, j = 1, 2, 3)

enables to express the strain matrix T and characterize the deformation of the

object in every direction [2]:

T =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 (3.4)

In this thesis we assumed the material being elastic and homogeneous; thus, the

mechanical properties are described only by elastic parameters (leaving aside vis-

cous and plastic ones) and do not depend on the position in the body [2]. For

small stresses, most materials can be considered linear elastic and have a linear

relation between stress and strain. This relation is expressed by Hooke’s law and

its general form using index multiplication notation is:

σij = Cijklεkl (3.5)

where Cijkl is the fourth-order stiffness tensor and consists of the elastic con-

stants [13]. Equation 3.5 can also be written as:

εkl = Sijklσij (3.6)

where Sijkl is the compliance tensor which is the inverse of the stiffness tensor [13].

Mechanical properties of biological tissue are described by the stiffness tensor or

the compliance tensor. Using Voigt’s notation, they are represented by a 6 x 6

symmetric matrix with a number of independent constants varying from 2 to 21

depending on tissue symmetries. At first sight, the number of unknown parameters

is 36 but not all of them are required to describe an anisotropic material. Both

the stiffness and the compliance matrices are symmetric and have 21 independent

parameters in the fully anisotropic case [2]. The matrix formulation of Hooke’s
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law (Equation 3.5) for a generic elastic homogeneous material is [2]:



σ1

σ2

σ3

τ12

τ13

τ23


=



c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66





ε1

ε2

ε3

γ12

γ13

γ23


(3.7)

In mechanics, there are some parameters which describe the mechanical behaviour

of a material in relation to different physical quantities. Foe example, they relate

force and deformation, deformations in different directions and resistance to com-

pression.

Elasticity in linear elastic materials is most commonly expressed in terms of the

elastic modulus E (also called Young’s modulus) which relates the normal stress

to the resulting strain in the same direction (i = 1, 2, 3) [14]:

Ei =
σi
εi

(3.8)

The relation between deformations of an object in different directions is expressed

by the Poisson’s ratio νji. It is defined for a uniaxial stress state and relates the

lateral strain (xj-direction) to the axial strain (xi-direction) according to [14]:

νji = −εj
εi

(3.9)

Thanks to the high content of water, biological tissue is generally assumed incom-

pressible and has a Poisson’s ratio of ν = 0.5 [1].

The ability of a tissue to resist a uniform compression is expressed by the bulk

modulus K; it relates with both the elastic modulus and the Poisson’s ratio ac-

cording to [14]:

Kji =
E

3(1− 2νji)
(3.10)
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The ratio between shear stress τij = σij (with i 6= j) and shear strain γij is called

shear modulus and is denoted by G or µ [14]:

µij =
τij
γij

(3.11)

Table 3.1 presents typical values of the elastic moduli for biological tissues.

Material E (kPa)

Artery 700-3000

Cartilage 790

Tendon 800

Healthy soft tissues (Breast, kidney, liver, prostate) 0.5-70

Cancer in soft tissues (Breast, kidney, liver, prostate) 20-560

Table 3.1: Typical values of the elastic moduli in biological tissue (adapted
from [3]).

3.1.1 Isotropic tissue

A tissue is said to be isotropic if its mechanical properties do not vary with the

angular orientation [1]. The general stiffness matrix of Equation 3.7 can be ex-

pressed using only two independent parameters, called the Lamé constants, λ and

µ.

In such a tissue the Lamé constants are related to the stiffness tensor by:

Cijkl = [λδijδkl + µ(δikδjl + δilδjk)]εkl (3.12)

where δ is the Kronecker delta function defined as δij = 0 for i 6= j and δij = 1 for

i = j (i, j = 1, 2, 3).

Therefore, an isotropic tissue can be fully characterized by two parameters, either

the two Lamé constants (Equation 3.14) or the elastic modulus and the Poisson’s
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ratio (Equation 3.15). The elastic modulus E is linked to the Lamé constants by:

E = µ
3λ+ 2µ

λ+ µ
(3.13)

For common biological tissue, λ is approximately 105 times larger than µ and

Equation 3.13 becomes E = 3µ [15].

For a linear isotropic elastic tissue, the stiffness matrix (Equation 3.14) and the

compliance matrix (Equation 3.15) are obtained from a simplification of the gen-

eralized Hooke’s law of Equation 3.7 [13].



σ1

σ2

σ3

τ12

τ13

τ23


=



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ





ε1

ε2

ε3

γ12

γ13

γ23


(3.14)



ε1

ε2

ε3

γ12

γ13

γ23


=



1/E −ν/E −ν/E 0 0 0

−ν/E 1/E −ν/E 0 0 0

−ν/E −ν/E 1/E 0 0 0

0 0 0 1/µ 0 0

0 0 0 0 1/µ 0

0 0 0 0 0 1/µ





σ1

σ2

σ3

τ12

τ13

τ23


(3.15)

3.1.2 Transversely isotropic tissue

A tissue is said to be anisotropic if its mechanical properties vary with the angular

orientation. Anisotropy can occur when the tissue has a structural orientation

[16]. The most simple anisotropic model is the transverse isotropy. A transversely

isotropic (TI) tissue is characterized by a plane of isotropy (x1,x2) and an axis

of rotational symmetry (x3) which is perpendicular to the isotropic plane. Every
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plane containing the axis of symmetry and every plane parallel to the plane of

isotropy are planes of symmetry [1].

Figure 3.2: Schematic representation of a transversely isotropic tissue

The mechanical behaviour of a transversely isotropic tissue is described by five

independent elastic constants: c11, c33, c66, c44 and c13 for the stiffness matrix and

ET , EL, µL, νLT or νTT for the compliance matrix [15]. In particular:

• ET : Elastic modulus in the transverse direction (x1,x2);

• EL: Elastic modulus in the longitudinal direction (x3);

• µT : Shear modulus in the transverse direction (it is not an independent

constant and it can be calculated from ET and νTT with Equation 3.20);

• µL: Shear modulus in the longitudinal direction;

• νTT : Poisson’s ratio in the transverse direction for loading in the perpendic-

ular direction;

• νLT : Poisson’s ratio in the transverse direction for loading in the longitudinal

direction.
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As in the isotropic case, both the stiffness (Equation 3.16) and the compliance

(Equation 3.17) matrices can be simplified to [10]:

C =



c11 c11 − 2c66 c13 0 0 0

c11 − 2c66 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66


(3.16)

S = C−1 =



1/ET −νTT/ET −νLT/EL 0 0 0

−νTT/ET 1/ET −νLT/EL 0 0 0

−νTL/ET −νTL/ET 1/EL 0 0 0

0 0 0 1/µL 0 0

0 0 0 0 1/µL 0

0 0 0 0 0 1/µT


(3.17)

The compliance matrix can be further simplified using Equation 3.18 obtained

from the matrix symmetry [10].

νLT
EL

=
νTL
ET

(3.18)

S = C−1 =



1/ET −νTT/ET −νLT/EL 0 0 0

−νTT/ET 1/ET −νLT/EL 0 0 0

−νLT/EL −νLT/EL 1/EL 0 0 0

0 0 0 1/µL 0 0

0 0 0 0 1/µL 0

0 0 0 0 0 1/µT


(3.19)

While µT can be obtained from ET and νTT (Equation 3.20), µL can only be

calculated with shear tests (Equation 3.11) [10].

µT =
ET

2(1 + νTT )
(3.20)
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As shown in Figure 3.3, the elastic modulus of common biological tissue in longi-

tudinal direction is higher than the one in the transverse direction [2].

Figure 3.3: Stress-strain curves along transverse and longitudinal directions
in TI tissue (adapted from [2])

For an incompressible material like biological tissue, the Poisson’s ratios can be

calculated knowing that the fractional volume change, or dilatation e, of an in-

finitesimal volume subjected to stresses must be zero [10].

e =
1

ET
(1− νT − νL

ET
EL

)(σ11 + σ22) +
1

EL
(1− 2νL)σ33 (3.21)

If e = 0, the Poisson’s ratios satisfy two conditions:

νTT = 1− ET
2EL

, νLT =
1

2
(3.22)

Thus, to describe an incompressible TI material three independent elastic con-

stants are needed (ET , EL and µL), compared to five constants in the general TI

case [10].

3.2 Hyperelastic models

Constitutive laws are governing equations relating material stress and strain to one

another. In mechanics, hyperelastic constitutive laws are mainly used to model

the stress-strain relation of polymeric materials having a rubbery behaviour.
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This stress-strain relation is expressed in terms of the strain energy density W ,

which is the density of the energy stored by a system undergoing deformation [17].

For isotropic solid, W is defined as a function of the three invariants of the strain

tensor (W = W (F ) = U(I1, I2, I3)).

An incompressible material subjected to a uniaxial stress can also be described

using principal components of the stresses as:

σi = λi
∂W

∂λi
− p (3.23)

where p is the unknown hydrostatic stress given by boundary conditions and λi

are the component of the stretch tensor [18].

The stretch and the stress are defined as:

λi =
li
li0

=
li0 + ∆li

li0
= 1 + εi (3.24)

si =
σi
λi

=
∂w

∂λi
− p

λi
(3.25)

where li is the final length along the i-direction, li0 the initial length and εi the

strain.

The principal stretches of an incompressible material undergoing a uniaxial stress

are related by the following equation:

3∏
1

λi = λ1λ2λ3 = 1 (3.26)

Considering (x1, x2) the plane of isotropy and x3 the axis of transverse isotropy,

we have λ1 = λ2 and:

λ1 = λ2 =
1√
λ3

(3.27)
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3.2.1 Neo-Hookean model

The Neo-Hookean model is a hyperelastic model which is commonly used to ap-

proximate the stress-strain curve in rubber-like materials with very limited com-

pressibility [17].

The strain energy density function for an incompressible material is defined as:

W = c(I1 − 3) = (λ21 + λ22 + λ23 − 3) (3.28)

where c is a constant related to the material, I1 is the first invariant of the right

Chauchy-Green deformation tensor and λi are the principal stretches.

An analytical expression of σ3 can be obtained applying a uniaxial stress only

along the third direction and deriving the strain energy density:

σ3 = λ3
∂w

∂λ3
− λ2

∂w

∂λ2
= λ3(2cλ3)− λ2(2cλ2) = 2c(λ23 −

1

λ3
) (3.29)

The initial elastic modulus E3, describing the material response at initial loading,

is described as:

E3 = lim
λ3→1

2c(1 +
2

λ33
) = 6c (3.30)

In uniaxial loading, Equation 3.29 holds in the direction of measurement.

3.2.2 Mooney-Rivlin model

In a Mooney-Rivin solid the strain energy density function W is a linear combi-

nation of two invariants of the left Cauchy-Green deformation tensor (I1, I2).

W = c1(I1 − 3) + c2(I2 − 3) (3.31)

= c1(λ
2
1 + λ22 + λ23 − 3) + c2(λ

2
1λ

2
2 + λ22λ

2
3 + λ21λ

2
3 − 3) (3.32)
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In the case of uniaxial elongation along the third direction:

σ3 = λ3
∂W

∂λ3
− λ2

∂W

∂λ2
(3.33)

As for the Neo-Hookean model, an analytical expression of σ3 can be obtained

applying a uniaxial stress only along the third direction and deriving the strain

energy density.

σ3 = λ3(2c1λ3 + 2c2(λ3λ
2
2 + λ3λ

2
1)) + λ2(2c1λ2 + 2c2(λ2λ

2
3 + λ2λ

2
1)) (3.34)

= 2c1(λ
2
3 −

1

λ3
)− 2c2(

1

λ23
− λ3) (3.35)

The initial elastic modulus E3, describing the material response at initial loading,

is described as:

E3 = 2c1(1 +
2

λ33
)− 2c2(−

3

λ43
) = 6(c1 + c2) (3.36)

In uniaxial loading, Equation 3.35 holds in the direction of measurement.

3.3 Ultrasound

Ultrasound imaging is a growing medical diagnostic technique used in several ap-

plications such as two or three-dimensional imaging of organs, measurement of

blood flow motion or evaluation of tissue stiffness. A diagnostic parameter used

for the imaging is the acoustic impedance which is a measure of the resistance

of the tissue against a given pressure [3]. Differences in acoustic impedance be-

tween various biological structures enable ultrasound imaging like the one shown

in Figure 3.4.

In diagnostic ultrasound, a piezoelectric transducer encased in a plastic probe pro-

duces sound waves converting electrical pulses to mechanical vibrations and then

converts the reflected waves into electrical energy to measure their amplitude [19].
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Figure 3.4: An example of B-mode image showing reflections from organs,
blood vessel boundaries and scattering tissue (adapted from [3])

A sound wave propagating through tissue generates backwards and forwards oscil-

lations of the particles along its direction of propagation [3]. Clinical applications

usually use frequencies between 1 and 18 MHz [20].

When the pulses travel into the body they are reflected and scattered due to

variations in acoustical impedance and generate echoes. A two-dimensional image

can be obtained by measuring the amplitude of these echoes and considering both

the distance from the target to the transducer and the orientation of the ultrasonic

beam. The distance is calculated by determining how long it takes the echo to

be received from the moment the transducer sent the sound wave with d = tc/2

(Figure 3.5), where t is the time, d is the depth and c is the speed of sound in

tissue [3]. These echoes travel at an average speed of 1540 m/s in soft biological

tissue, 333 m/s in air and 3400 m/s in bones [3].

Figure 3.5: Measurement of depth using pulse echo principle (adapted
from [3])
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There are several modes of ultrasound that are used in medical imaging, for ex-

ample:

• A-mode (amplitude mode): it is the simplest mode and consists of a single-

element transducer sending pulses to scan a single line through the body

[21];

• B-mode (brightness mode): an array of transducers simultaneously scans a

plane through the body and forms a two-dimensional image [21];

• M-mode (motion mode): it records a video of the structure by sending pulses

in quick succession and taking B-mode images over a line each time [3];

• Doppler mode: it uses the Doppler effect to measure and visualize moving

structures such us blood [3].

When forming a B-mode image, several assumptions are made to simplify the

calculations [3]:

• the speed of sound is constant;

• the beam axis is straight;

• the attenuation in a specific tissue is constant;

• the pulse travels only to targets that are on the beam axis and back to the

transducer.

3.4 Elastography

Elastography is a medical imaging technique which is able to distinguish tissue by

its elastic properties and reveals anatomical structures composed of tissue with

different stiffness. Thanks to its ability to obtain quantitative measures, it adds a

new quality to conventional imaging techniques such as ultrasound and Magnetic
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Resonance Imaging (MRI). Figure 3.6 is an example of ultrasound-based elastog-

raphy; the pixel intensities represent the values of local shear modulus which is a

way to express tissue stiffness. Elastography aims to be a helpful and non-invasive

tool for investigating disease condition and replace biopsies which are painful and

invasive [16]. Palpation is the common practice to have a qualitative analysis of

tissue stiffness and consists of pressing the tissue by hand (mechanical static force)

and feeling after stiffer nodules [3]. This method is particularly used to find tu-

mours or nodules in breast and it dates back to 1550 BC in ancient Egypt [16].

Figure 3.6: Liver nodule imaged with an Aixplorer ultrasound system (Su-
perSonic Imagine, Aix-en-Provence, France)

Ultrasound elastographic techniques can be classified into two main groups ac-

cording to the measurement principle [3]:

• Strain technique: the tissue is compressed and both the tissue deformation

and the strain are measured (static method).

• Shear-wave technique: shear waves are generated and their velocity within

the tissues is measured. From the velocity of propagation it is possible to

estimate the shear modulus (dynamic method).

Strain elastography uses an externally applied force induced by a compression and

can be done manually by an operator who presses the transducer in and out of
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the tissue. This technique is not always efficient because of difficulties in reaching

deeper tissue and in quantifying the pressure applied [3].

In order to overcome these limitations an acoustic radiation force (ARF) can be

used to generate a displacement of the particles in the tissue under consideration

[3]. An ARF is induced by the interaction between an acoustic wave and tissue

and induces shear waves propagating in the direction perpendicular to the beam.

The propagation is caused by a transfer of momentum from the wave to the tissue,

arising either from the dissipation or the reflection of the wave [6]. The ARF can

be theoretically expressed by:

F (−→r , t) =
2αI(−→r , t)

c
(3.37)

where F is the acoustic radiation force, c is the speed of sound in the tissue

(typically 1540 m/s), α is the ultrasound attenuation and I the local intensity of

the beam. The mechanical displacements in an tissue can be seen as a sum of

three contributions using a Green’s function:

gij(
−→r , t) = gpij(

−→r , t) + gsij(
−→r , t) + gpsij (−→r , t) (3.38)

gpij(
−→r , t), gsij(−→r , t) and gpsij (−→r , t) are the three waves that are generated by the

ARF and represent the compressional wave (Figure 3.7, top), the low-frequency

shear wave (Figure 3.7, bottom) and a coupling term between the previous two

waves [6].

The ’pushing beam’, or ’pushing pulse’, is a focused ultrasonic beam that produces

a small movement of the tissue. The displacement produced is typically 1-20 µm,

which are sufficient to be detected using an ultrasound system [3].

Different imaging modalities can be used to estimate the resultant tissue dis-

placement and they are selected according to the specific application. Magnetic

resonance elastography (MRE) for example is limited to static organs because of

its long acquisition time (∼ 20 minutes) [6].
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Figure 3.7: Compressional wave (P-wave) and shear wave (S-wave) (adapted
from [4])

3.4.1 Shear Wave Elastography

Shear Wave Elastography (SWE) is an elastographic technique which relies on the

use of shear waves remotely induced by an ARF of a focused ultrasonic beam. This

localized ARF is applied to small volumes of tissue (1-8 mm3) for short duration

(less than 1 ms) and the resulting displacements are mapped using ultrasonic

correlation-based methods [20]. Shear waves are produced by the vibration of

tissue when reached by the pushing beam and travel at a speed vS. In isotropic,

incompressible and linear elastic tissue, the velocity depends on the local density

and the local shear modulus according to:

vS =

√
µ

ρ
(3.39)

where vS is the speed of the wave, µ is the shear modulus and ρ is the tissue

density.

Due to the high attenuation of shear waves, mechanical oscillations can be induced

only in a limited area near the focal point of the focused beam [5]. In soft tissue,

shear wave propagation velocity measured using the ultrasound system is approx-

imately 1-10 m/s [15]. In an isotropic, elastic and incompressible tissue the elastic

modulus can be deduced from the shear modulus (Equation 3.13) and the shear
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wave propagation velocity by :

E = 3µ = 3ρv2S (3.40)

Figure 3.8: Schematic representation of shear wave elasticity imaging. A shear
wave excitation transducer as well as various imaging transducers and detection

sensors are shown (adapted from [5])

Figure 3.8 shows the schematic diagram of shear wave elastography; an excitation

focused transducer (ultrasonic phased array or a single focused transducer) gener-

ates remote shear waves which propagate through the tissue and are detected by

the same or another transducer [5].

Another way of sending the pushing beam is focusing this beam at different depths.

It generates shear sources which move faster than the shear waves and create

quasi-plane shear waves of stronger amplitude (Figure 3.9) [6]. All the resulting

shear waves interfere constructively to create two shear wave fronts propagating in

opposite directions [6]. The shear modulus is estimated through the shear-waves

propagation in a source-free region.
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Figure 3.9: Generation of the supersonic shear source introduced by Super-
sonic Imaging (adapted from [6])

The overall procedure for SWE imaging can be divided in three steps and seen in

Figure 3.10. First, an ultrasound transducer sends an ultrasound-focused beam

in the tissue at a chosen location. Second, a second transducer, which could also

be the same one used for the pushing, starts sending plane-waves insonifications

at a high-frame rate in order to catch the shear wave generated by the push and

to generate images that will be compared with a reference echographic image

acquired before the pushing sequence. Third, the ARF data will be transferred

into a computer and processed with cross-correlation algorithms to calculate shear

wave propagation velocities [6].

Figure 3.10: Experimental protocol (adapted from [6])
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After processing the data with cross-correlation algorithms, shear wave propaga-

tion can be seen in the sequenced B-mode images. Figure 3.11 shows a simulation

of what B-mode images display.

Figure 3.11: Simulation of the longitudinal displacements induced by the
acoustic radiation force (adapted from [6])

In the past years, Shear Wave Elastography has been a interesting research topic

because of its non-invasive evaluation of tissue elastic properties but its clinical

use is limited to isotropic tissue like breast [22, 23], prostate [24] and thyroid [25].

However, the strength of SWE lies in the promising results in tissue in which is

not possible to perform manual palpation. Many studies were performed to extend

SWE to tissue like liver [26, 27], muscle [28], cornea [29] and Achilles tendon [30]

and they all show that applicability of SWE could be extended not only to detect

tumours in different and more complex tissue but also to detect other pathologies

related to tissue stiffness. For example, imaging the cornea using SWE could

be used to anticipate and prevent some corneal pathologies like Keratoconus or to

evaluate the biomechanical response after a surgery or a treatment [29]. Moreover,

SWE could be used to diagnose pathologies related to arterial wall stiffness [31]

or to muscles and tendons stiffness [30]. In general, the limit in the use of SWE

in these kind of tissue is the difficulty in finding a theoretical model of shear wave

propagation for these complex structures.
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3.4.2 Shear wave propagation in Transverse Isotropic tis-

sue

The general equation for an anisotropic homogeneous tissue undergoing a force

fi = (f1, f2, f3) is:

ρ
∂2ui
∂t2
− ∂σij
∂xj

= fi (3.41)

where −→u is the displacement, ∂σij/∂xj the stress gradient, t the time and xi the

Cartesian coordinate [32].

In order to give an analytic description of plane wave propagation we assume

no external forces and express the acceleration of an infinitesimal volume using

Newton’s second law as [10]:
∂σij
∂xj

= ρ
∂2ui
∂t2

(3.42)

Substituting the Hooke’s law of Equation 3.5 in Equation 3.42 we obtain [10]:

cijkl
∂uk

∂xj∂xi
= ρ

∂2ui
∂t2

(3.43)

In the measurement of shear wave propagation velocity, it is important to under-

stand the difference between phase and group velocity. Sometimes their definition

differs when considering different media; phase velocity occurs either due to non-

isotropy or due to viscosity and, in this case, different frequencies propagate at

different velocities. Consider an observer and a point source radiating plane waves

equally in all directions in a non-dispersive medium, as shown in Figure 3.12. The

group velocity vr is calculated by the ratio between the distance from the source

to the observer and the transit time between them. It corresponds to the speed of

a wave packet along the direction φr. If either the distance between the source and

the observer or the transit time is unknown, a measure of the phase velocity vω can

be done by observing the wave travel in a small region so that any wave appears

to be plane. It corresponds to the speed of a plane wave travelling perpendicularly

to the wave front [7].
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Figure 3.12: Phase and group velocity (vω and vr respectively) measurement
for a wave emitted from a point source in an anisotropic medium (adapted

from [7]).

In a non-dispersive isotropic object, phase and group velocities are identical, while

in a non-isotropic object these velocities are generally different along the same

direction. In this study we neglected the effect of viscosity and considered only

non-dispersive tissue.

Christoffel equation is obtained defining a harmonic (steady-state) plane wave

uk = Uke
kω(njxj/vω−t), where U is the polarization vector, ω the angular frequency,

vω the phase velocity and n the unit vector orthogonal to the wave front and

substituting it in Equation 3.43 [32]:


G11 − ρv2ω G12 G13

G21 G22 − ρv2ω G23

G31 G32 G33 − ρv2ω



U1

U2

U3

 = 0 (3.44)

where Gik are the Christoffel matrices which depend on the material properties

and the direction of the wave propagation [32]:

Gik = cijklnjnl (3.45)

For non-dispersive and TI tissue, the solution of Equation 3.44 corresponding to

pure shear wave is:

v2ω =
c66sin

2φω + c44cos
2φω

ρ
(3.46)

where φω is the angle between the direction of the wave propagation and the

direction of the fibres in the propagation plane and cij are the components of the

stiffness matrix (Equation 3.16) [33].
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The group velocity vr can be expressed by a transformation of the phase velocity

vω as:

vr =

√
v2ω + (

dvω
dφω

)2 (3.47)

φr = φω + arctan(
1

vω

dvω
dφω

) (3.48)

The theoretical expression for the group velocity is given by [33]:

vr(φ) =

√
c44c66

ρ(c44sin2(φr) + c66cos2(φr))
(3.49)

Using shear wave elastography to measure the velocity of shear wave in tissue we

can determine the components of the stiffness matrix. First, the constants c11 and

c33 are determined from the measurement of longitudinal ultrasound velocities in

direction perpendicular (vL1) and parallel (vL3) to the fibres axis (x3). Second, the

constants c44 and c66 which are the shear moduli in longitudinal and transverse

directions respectively, can be determined from the velocities of the shear waves

propagating in direction perpendicular (vS1) and parallel (vS3) to the fibres axis

with Equation 3.49 [15]. Third, according to the theory of Levinson [34], c13 can be

assumed being c13 '
√
c11c33 while reducing the number of independent constants

and simplifying the resulting equations.

c11 = ρv2L1 (3.50)

c33 = ρv2L3 (3.51)

c66 = ρv2S1 (3.52)

c44 = ρv2S3 (3.53)

c13 '
√
c11c33 (3.54)

In soft tissue, the typical values for these parameters are: ρ ' 1100 Kg/m3,

c11, c33, c13 ∼ 3 GPa, c44, s66 ∼ 100 kPa, and vS1, vS3 ' 1-10 m/s [15].
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Afterwards, the mechanical properties of a tissue can be expressed through its

elastic moduli calculating them from the stiffness coefficients. In a transversely

isotropic phantom, the two elastic moduli ET and EL are related to the stiffness

constants according to [15]:

ET =
4c66EL

EL + γc66
, γ =

c33
c11 − c66

(3.55)

For TI tissue, the perpendicular elastic modulus ET lies between 3µT and 4µT .

These boundaries are given by the value of the ET in the isotropic case (ET = EL)

and in a tissue having a EL much larger than ET (ET << EL) respectively [15].

This approximation is valid for muscles, for which EL ∼= 100 kPa and c44 = µL ≤

10 kPa, with vS between 1 and 3 m/s [28].

ET and EL can be estimated by [15]:

EL = =
c2

c11 − c66
(3.56)

ET =
4c66c

2

c2 + c33c66
(3.57)

c2 = c33(c11 − c66)− c213 (3.58)

A common approach to validate medical imaging techniques is the use of tissue-

mimicking phantoms. Gelatin, hydrogels, agarose and silicon have been used in the

past to study isotropic tissue [35] but a transversely isotropic phantom is needed

to model the characteristics of biological tissue having a dominant fibers direction

such as muscle, tendon or cerebral tissue [36].

Polyvinyl alcohol (PVA) cryo-hydrogel is a polymer of great interest thanks to its

ability to absorb a large amount of water; it has mechanical properties which are

similar to the ones of biological tissue. The formation of crystallites is obtained

by cycles of freezing and thawing in which the sample is repeatedly frozen for

approximately 12 hours and thawed back at room temperature for another 12

hours. The strength of the physical crosslinks increases with the number of freeze-

thaw (FT) cycles [35].
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Qin et al. [37] developed an anisotropic phantom for Magnetic Resonance Elas-

tography (MRE) by embedding Spandex fibres in PVA. Although this method is

feasible for MRE, it leads to high acoustic losses between PVA matrix and the

Spandex fibres when using ultrasound-based elastography [36]. Millon et al. [38]

proposed another method to induce anisotropy in a PVA phantom for cardio-

vascular applications; stretching the physical crosslinks of the polymeric chains

generates a transversely isotropic phantom solving the problem of the acoustic

losses. In the same way, Chatelin et al. [36] developed a TI phantom adapting the

procedure described by Millon to large tissue which became the starting point for

this project.





Chapter 4

Methods

The study was divided in four phases:

1. development of a transversely isotropic phantom;

2. assessment of transverse isotropy through mechanical tests;

3. assessment of transverse isotropy through conventional Shear Wave Elastog-

raphy;

4. measurement of the mechanical properties of the phantom using dual-probe

shear wave elastography.

4.1 Phantom Construction

The phantom was made of poly(vinyl alcohol) (PVA) cryogel to mimic the me-

chanical properties of biological tissue. The transverse isotropy was achieved by

stretching the physical crosslinks of the polymeric chains during repeated freeze-

thaw cycles [36]. The samples were prepared diluting a 7 wt% fully hydrolyzed

PVA (molecular weight: 56.140 g/mol, density: 1.269 g/cm3, Sigma-Aldrich, St.

Louis, MO) solution in 90 wt% deionized water and 3 wt% of graphite powder

(molecular weight: 12.01 g/mol, density: 5 gr/cm3, particle size ≤ 50µm, Merck

31
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KGaA, Darmstadt, Germany) was added as scattering for the ultrasound mea-

surements. The solution was poured in a 160×50×60 mm3 parallelepiped mold

and underwent two freeze-thaw cycles (24h per cycle, the thawing time for each

phantom is reported in Table 4.1). After the first two cycles the phantom was

removed from the mold and downsized by cutting away the bottom and the top

parts to obtain a final height of 35 mm. Afterwards, as shown in Figures 4.1

and 4.2, the remaining part was unidirectionally stretched in order to maintain

a constant static strain. In this study the phantom was stretched to 160% of its

initial length before proceeding with an additional three FT cycles (see Figure

4.1). After a total of five FT cycles, the sample was removed from the set-up, cut

to obtain samples to use for the mechanical tests (25×25×25 mm) and stored in

a box filled with water.

When designing the equipment used to stretch the phantom (Figure 4.3) it was

important to consider a few aspects. First, the set-up needed to be small enough

to be placed into the freezer during the freezing cycles; second, sand paper needed

to be glued to the gripping section to avoid that the phantom slipped out of the

set-up; third, the gripping section needed to be wide enough to hold the phantom

tightly. The final design can be seen in Figure 4.3.

Figure 4.1: Picture of the phantom 160 mm long. 30 mm on each side of the
phantom were used as a gripping section, the remaining 100 mm were stretched

to 160 mm.
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Figure 4.2: Picture of the overall set-up used to stretch the phantom. The
right clamp is fixed to the support and the position of the left clamp is controlled

through the screw on the left.

Phantom PVA density Thawing time

1 7% 12h

2 7% 12h

3 7% 12h

4 7% 14h

5 7% 14h

6 5% 14h

7 5% 14h

Table 4.1: PVA density and thawing time for each phantom.
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(a)

(b)

Figure 4.3: Drawings of the set-up used to stretch the phantom.

4.2 Mechanical tests

The mechanical tests were performed using an Instron 5567 (Instron Worldwide,

Norwood, MA, USA) (Figure 4.4) and the process was controlled by a connected
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computer using Bluehill 2 (Version 2.17 2005, Instron). Each specimen was ob-

tained by cutting a small cube (approximately 25x25x25 mm3) from the central

part of each phantom.

Figure 4.4: Specimen undergoing a compression test with an Instron 5567

Compression tests were performed on the specimens and a pre-compressive load of

2 N was applied to reduce the effects of potential oblique surfaces. During the test,

each specimen underwent a constant compression of 5 mm/s for 1.5-2 seconds and

the load was measured with the load cells. Dividing the load over the area and

the elongation over the length of the specimen we obtained stress-strain curves

for each direction. Afterwards, the elastic moduli in longitudinal and transverse

direction were calculated as the slope of these stress-strain curves.

An overall of six tests were performed on each specimen, four for the transverse and

two for the longitudinal directions. In the transverse direction, the four tests were

used to evaluate the assumption of transverse isotropy and were done by applying

the same constant compression on the specimen tilting it each time by 90 or 180

degrees (Figure 4.5). The same was done in measuring the elastic modulus in the

longitudinal direction (Figure 4.6). The two measurements were obtained tilting

the specimen by 180 degrees and applying the same constant compression.
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Figure 4.5: Mechanical set-up in the plane of isotropy. The red line is used
as a reference and represents the top of the phantom.

Figure 4.6: Mechanical set-up in the longitudinal direction. The red line is
used as a reference and represents the right side of the phantom.

4.2.1 Constitutive model fitting

Different post-processing methods were used to fit the stress-strain curve and

estimate the elastic modulus between 0% and 5% of the strain. Neo-Hookean

and Mooney-Rivlin hyperelastic constitutive models for incompressible materials

were compared to linear interpolation (Hooke’s law of Equation 3.5) to evaluate

if the phantom could be described as a linear elastic or as a non-linear elastic

material. For the data processing we used Matlab R2014b (MathWorks, Inc.,

Natick, Massachusetts, United States) and the implementation can be seen in

Appendix A. Table 4.2 presents the stress-strain relations in the three different

constitutive models explained in the Chapter 3.

Model Formula Elastic modulus

Hooke’s law σ = c1ε E = c1

Neo-Hookean σ = 2c1(λ
3 − 1

λ3
) E = 6c1

Mooney-Rivlin σ = 2c1(λ
2 − 1

λ
)− 2c2(

1

λ2
− λ) E = 6(c1 + c2)

Table 4.2: Stress-strain relations used by the constitutive models where σ is
the stress, ε the strain, λ the stretch, E the elastic modulus and c1 and c2 are

the model’s constants.
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The fitting of the data was done with the Linear Least Square (LLS) method. This

algorithmic technique finds the solution which minimizes the sum of the squares

of the residuals that are the differences between the data and the estimated curve.

After obtaining the elastic moduli in the two directions, the estimated velocity

was calculated. As explained in section 3.4.2, in a transversely isotropic and

homogeneous phantom the group velocity along a direction is related to the shear

modulus in that direction according to [20].

vS =

√
µ

ρ
(4.1)

In the plane of isotropy the shear modulus µT can be calculated using [10]:

µT =
ET

2(1 + νTT )
(4.2)

Assuming isotropy in the longitudinal direction, the shear modulus is:

µL =
EL

2(1 + νLT )
(4.3)

Phantom density was calculated using Archimede’s principle on several phantoms.

For each of them, a small sample was put in a water-filled cylindrical beaker after

having been weighted. The volume of the inserted phantom, V , was measured

through the change in water level in the beaker and the density was estimated by:

ρ =
m

V
(4.4)

where m is the mass of the sample.

The speed of sound was assumed being 1540 m/s, that is equal to the one of

biological tissue.

In order to obtain a quantitative estimation of the difference between constitutive

models, a paired t-test was performed on pairs of models comparing the values of

their elastic moduli. We calculated:
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• the differences between two models on each pair, the mean value of these

differences (m) and their standard deviation (sd);

• the standard error of the mean difference (SE) as SE = sd/
√
n, where n

was the number of phantoms tested;

• the t-statistic by T = m/SE;

• the p-value using the tables of the t-distribution and a significant level α

equal to 0.05;

• the 95 % confidence interval as m± (t∗×SE), where t∗ is the 2.5% point of

the t-distribution on n− 1 degrees of freedom.

The confidence interval is the interval in which the mean of the differences increases

or decreases with 95 % of probability. Moreover, in order to use this method, the

differences between the models needed to be approximately normally distributed.

Afterwards, the probability of making at least one type I error with multiple tests

was calculated as p = 1 − (1 − α)n, where n is the number of groups that were

tested.

4.3 Conventional Shear Wave Elastography

4.3.1 Programmable ultrasound system

Figure 4.7: Verasonics Research System (adapted from [8]).
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Shear Wave Elastography was performed using a programmable ultrasound system

(V1, Verasonic Inc, Redmond, WA, USA) with a 128-element linear transducer

(L7-4, Philips Healthcare, Andover, MA, USA). The Verasonics Research System is

a tool for transmitting, receiving and processing ultrasound. The Verasonics Data

Acquisition System (VDAS) unit consists of hardware embedded in an aluminium

case connected to a host computer through a PCI Express Bus cable. A part of

the data processing takes place in the host PC through Matlab programs.

Figure 4.8: Components of Verasonic Data Acquisition System (adapted from
[8]).

As shown in Figure 4.8, VDAS unit hardware is composed of several components:

• Scanhead Interface: contains the scanhead connectors;

• Acquisition Modules : contain the circuits for transmitting and receiving the

signals;

• Transmit Power Controller : contains the high voltage power supply for the

transmitters.

The four board system, which was used in this study, supports 256 and 128 chan-

nels for transmission and reception respectively. In table 4.3 are listed the main

structures used in programming the machine.
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Structure Description
Resource.Parameters Specify some system parameters
Trans Specify the characteristic of the transducer
SFormat Define the geometry of the acquisition regions
PData Specify the location of the pixel data array
Resource.RcvBuffer Define storage space for the RF data
Resource.ImageBuffer Reconstructing an image
TW Transmission wave forms
TX Transmission description, including delays and

apodization
TGC Time Gain Compensator
Receive RF receiving details
Recon Reconstruction instruction, including which data

to reconstruct
ReconInfo Reconstruction info, describing the type of recon-

struction
Process Data processing, such as image display and shear

wave elastography calculations
SeqControl Sequence control to create loops and delays in the

event sequence, as well as other miscellaneous actions
Event Sequence of event to process when running
UI User Interface

Table 4.3: List of structures (adapted from [11])

4.3.2 Post-Processing

Figure 4.9 shows the direction of the ultrasonic pushing beam compared to the

plane of the B-mode images in conventional SWE.
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Figure 4.9: Pushing beam direction (green arrow) compared to the shear wave
propagation direction (red arrows) in conventional SWE. The red brackets ”)(”

represent the focal point of the transducer.

An estimation of tissue stiffness can be done using shear wave velocity. From the

IQ data, which encodes information upon a sine wave and is obtained from the

Verasonic system, shear wave propagation velocity can be calculated.

Figure 4.10: Shear wave propagation represented by an axial displacement
map. Pixel intensities encode the axial displacement along the pushing beam.

The IQ data stores the B-mode images with a time resolution of 0.1 ms. By

calculating the mean values along the columns for each frame we obtain the axial
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displacement displayed in Figure 4.10 where the x-axis and y-axis correspond to

the time and the direction perpendicular to the ultrasonic beam respectively. The

pixel intensity depends on the value of the displacement in the direction of the

beam (Figure 4.11). A quick estimation of the velocity can be done by looking at

the image and using the formula v = x/t (where x is the displacement and t is the

time), while, for an automated post-processing, the Radon transform is preferred.

Figure 4.11: Temporal and spatial behaviour of axial displacement along the
radial direction at the focal of the transducer (adapted from [5])

The Radon transform is a projective transformation of a two-dimensional function

f(x, y) onto the polar coordinate space (θ, s) [9]:

Rθ(s) =

+∞∫
−∞

+∞∫
−∞

f(x, y)δ(xcosθ + ysinθ − s)dxdy (4.5)

where Rθ(s) is a projection of f(x, y) on the axis s of θ direction. The function

f(x, y) is the integral along the line perpendicular to θ direction [9]. A schematic

representation of this formulation is given by Figure 4.12.
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Figure 4.12: Illustration of a projection and a sinogram in which each projec-
tion fills a single row of θ in the sinogram. The right image shows the sinogram

of a general object (LORs are the lines of response) (adapted from [9])

Applying this transform to an axial displacement map and finding the angle θ

that minimizes (or maximizes) Rθ(s) equals to identify the direction of the line

representing the wave propagation over the time. In Figure 4.10 we can detect the

tilted angle θ of the blue line and, knowing the spatial and temporal resolution, we

can find the velocity. Figure 4.13 shows an example of a projection and a sinogram

of the upper of the axial displacement map.

Figure 4.13: Illustration of a projection and a sinogram in a axial displacement
map.

Shear wave propagation velocity was measured in different directions in the same

B-mode image. With conventional SWE we can only track the displacement per-

pendicular to the beam losing information about the displacement along the beam.

The velocities were obtained for 0, 15, 30, 150, 165 and 180 degrees assuming the

others according to symmetry properties. Figure 4.14 shows an example of B-

mode image of the shear wave displacement. Calculating the mean values of the
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displacement along the red lines, it is possible to estimate the shear wave propa-

gation velocity along these lines.

Figure 4.14: Example of B-mode image used to measure shear wave propaga-
tion velocities in different angles with conventional SWE (Phantom 11). Pixel

intensities encode displacement values.

Moreover, in order to verify that the procedure described in the phantom con-

struction gives rise to a homogeneous phantom, shear wave propagation velocities

were measured in different positions in the same phantom. In particular, the test

was done on phantom 6 and the velocities were estimated in six positions in the

transverse direction and three in the longitudinal direction. For the other phan-

toms, less measurements were performed (4-6 in total) in order to calculate the

standard deviation of the velocities.

4.4 Dual Probe Shear Wave Elastography

To enable capture of multiple wave motion, a novel setup consisting of two trans-

ducer heads was created. Dual-probe Shear Wave Elastography was performed

using the Verasonic ultrasound system and two 128-element linear transducers

(L7-4, Philips Healthcare, Andover, MA, USA). A support was made in order to

tilt the phantom of 45 degrees and place the two probes 90 degrees from each

other. Looking at Figure 4.15, the left transducer was used to send a focused

ultrasonic beam in a direction perpendicular to the fibers while the right one was

used to send ultrasonic plane waves in order to obtain sequenced B-mode images

with a temporal resolution of 0.1 ms.
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(a) (b)

Figure 4.15: Figure (a) was taken at KTH lab and shows the set-up for the
dual-probe SWE. The sample was placed in a tank filled with water and on
a support made of an absorbing material. A transducer was used to send the
ultrasonic push (left probe) and another one was used to form the sequenced
B-mode images (right probe). Figure (b) is a schematic representation of what

is shown in Figure (a). The red dots show the direction of the fibers.

The set-up described above is in line with the Finite Element (FE) study made by

Rouze et al. [10] about shear wave propagation in an incompressible, transversely

isotropic medium. First, considering the particle displacement along the direction

of the ultrasonic beam equals to use a single transducer for both transmission and

reception. This pure transverse (PT) wave mode is theoretically described by [10]:

ρv2PT = µT sin
2θ + µLcos

2θ (4.6)

The constants µT and µL are the shear moduli in transverse and longitudinal

directions respectively and were estimated through conventional SWE.

Second, considering the bi-dimensional particle displacement a dual probe set-up

is needed. This quasi-transverse (QT) wave mode is theoretically described by

[10]:

ρv2QT = µL + 4(
EL
ET

µT − µL)sin2θcos2θ (4.7)

where µT and µL were estimated trough conventional SWE and the ratios between

the elastic moduli EL/ET were calculated through the mechanical tests.
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4.4.1 Post-processing

Figure 4.16 shows the direction of the pushing beam compared to the plane of the

B-mode image and can be compared with Figure 4.9 to see the difference between

conventional and dual-probe SWE. Since in dual-probe SWE two transducers are

placed perpendicularly from each other, also the beam and the imaged plane are

perpendicular.

Figure 4.16: Pushing beam direction (green arrow) compared to shear wave
propagation direction (red arrows) with dual-probe SWE. The red brackets ”)(”

represent the focal point of the transducer.

In the single-probe set-up, the shear wave group velocities v′PT (θ) were measured

along 6 directions deriving the other 4 from symmetry properties. In the same

way, shear group velocities v′QT (θ) were estimated in the dual-probe set-up. In

this case, due to a different shape of the wave propagation displacement, it was

possible to measure the speed along an additional direction (7 calculated and 5

derived velocities). In particular, the velocities were obtained for 0, 30, 60, 90,

120, 150 and 180 degrees assuming the others from symmetry properties. Figure

4.17 shows an example of B-mode image of the shear wave displacement measured

using dual-probe SWE. Calculating the mean values of the displacement along the

red lines, it is possible to estimate the shear wave propagation velocity along these

lines.
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Figure 4.17: Example of B-mode image used to measure shear wave propa-
gation velocities in different angles with dual-probe SWE (Phantom 11). Pixel

intensities encode displacement values.

The aim was to compare the curves derived from the theoretical results (vPT (θ)

of Equation 4.6 and vQT (θ) of Equation 4.7) with the curve obtained from phan-

tom measurements. Figure 4.18 shows an example of the comparison between

the theoretical group velocities propagation and the velocities calculated with FE

models [10]. In our study the theoretical velocities were compared with the ones

calculated from the displacement results of shear wave elastography.

Figure 4.18: Parametric plots of theoretical group propagation velocities.
Pure-transverse (dashed) and quasi-transverse (solid) propagation modes cal-
culated using µL = 25kPa, µT = 9kPa are compared with the velocities calcu-
lated with the displacement results of the Finite Element model (data points)

(produced and published by Rouze et al. [10])
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In order to have a quantitative estimation of the goodness of the fitting, a statistical

test was performed on each phantom. The Residual Sum of Squares (RSS) was

calculated by the squared differences between parametric and measured data as:

RSS =
n∑
i=1

(yi − f(x(i)))2 (4.8)

where yi is the measured data, f(x(i)) is the parametric curve and n is the number

of data points. For each phantom, the RSS was calculated for both conventional

and dual-probe SWE.

A more detailed statistic was done for phantom 4 because it was giving the best

results in the RSS test for the quasi-transverse propagation mode. While for all

the other phantoms only a single measurement was performed using the dual-

probe set-up, phantom 4 was tested two more times in order to have a total of

three velocities for each direction of propagation. Afterwards, the RSS values were

calculated for the three measurements in order to see how much they were varying

for different measurements in the same phantom.

Another statistical test was performed using both the velocities obtained with

dual-probe set-up and the values of the shear moduli obtained with conventional

SWE. The method of the weighted non-linear least square (WNLLS) was used and

the data was fitted with Equation 4.7. In particular, the Matlab script was receiv-

ing in input the velocities calculated with dual-probe SWE and the shear moduli

calculated with conventional SWE and was using these parameters to estimated

the value of the ratio ET/EL that was giving the best fitting.
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Results

5.1 Mechanical tests

The stress-strain curves obtained from the mechanical tests (Figure 5.1) were

used to fit three different elastic models: linear interpolation, Neo-Hookean and

Mooney-Rivlin.

Figure 5.1 (a) and (b) show the four measurements in the transverse direction and

the two measurement in the longitudinal direction respectively.

(a) (b)

Figure 5.1: Stress-strain curves in the plane of isotropy (a) and in longitudinal
direction (b) for phantom 2. For each phantom, 4 measurements in the plane of
isotropy and another 2 in the longitudinal direction (plotted in different colours
in each graph) were performed in order to obtain a more accurate estimate of

the elastic moduli and validate the transverse isotropy.

49
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Figure 5.2 presents an example of the data points (blue) compared to the three

fitted curves (red) for a measurement in the plane of isotropy: linear interpolation

(Figure 5.2 (a)), Neo-Hookean (Figure 5.2 (b)) and Mooney-Rivlin (Figure 5.2 (c)).

(a) (b)

(c)

Figure 5.2: Example of stress-strain curves fitted using linear interpola-
tion (a), Neo-Hookean (b) and Mooney-Rivlin (c) models for phantom 2. In
all the three plots, the data points and the fitted curves are represented with

blue and red lines respectively.

The values of ET and EL for all the phantoms are reported in Tables 5.1 and 5.2

respectively (with relative standard deviations) and were calculated with the three

constitutive models. Each ET is the average of the four measurements in the plane

of isotropy and likewise each EL is the average of the two measurements in the

longitudinal direction. For a better understanding, we chose to present the results

clustering the phantoms according to their PVA density, i.e. presenting first the

results of phantoms 1, 2, 3, 4 and 5 made of 7 % of PVA and then the ones for

phantoms 6 and 7 made of 5% of PVA.
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Phantom Linear Interpolation Neo-Hookean Mooney-Rivlin

ET (kPa) ET (kPa) ET (kPa)

1 40.7±3.8 40.7±3.8 33.8±4.3

2 48.9±4.2 48.9±4.3 42.3±4.7

3 42.6±6.1 42.6±6.2 36.7±6.9

4 33.8±4.5 33.8±4.5 30.9±10.9

5 44.2±7.4 44.2±7.4 35.4±3.2

6 18.1±5.0 18.1±5.0 12.1±15.7

7 17.9±6.6 17.8±6.6 17.2±10.3

Table 5.1: Elastic moduli in the plane of isotropy calculated with three differ-
ent constitutive models: linear interpolation, Neo-Hookean and Moonley-Rivlin.

Phantom 6 and 7 are made of a lower PVA density.

Phantom Linear Interpolation Neo-Hookean Mooney-Rivlin

EL(kPa) EL(kPa) EL(kPa)

1 47.0±1.4 47.0±1.4 39.8±2.2

2 55.3±3.9 55.3±3.9 54.7±4.8

3 51.9±0.3 51.9±0.3 57.0±6.1

4 52.3±7.4 52.3±7.4 62.0±1.5

5 52.8±0.3 52.8±0.3 56.5±5.4

6 25.5±0.3 25.5±0.3 18.2±8.4

7 19.1±3.3 19.1±3.3 31.5±7.0

Table 5.2: Elastic moduli in longitudinal direction calculated with three differ-
ent constitutive models: linear interpolation, Neo-Hookean and Moonley-Rivlin.

Phantom 6 and 7 are made of a lower PVA density.

After calculating the elastic moduli, the three data sets (Linear Interpolation (LI),

Neo-Hookean (NH) and Mooney-Rivlin (MR)) were compared and clustered in

three groups: LI vs NH, LI vs MR and NH vs MR. The results of paired t-tests

state with 95% confidence that:
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• the difference between ET calculated with linear interpolation and Neo-

Hookean model lies between 17 and 33 Pa;

• the difference between EL calculated with linear interpolation and Neo-

Hookean model lies between 17 and 38 Pa;

• the difference between ET calculated with linear interpolation and Mooney-

Rivlin model lies between 982 and 9853 Pa;

• the difference between EL calculated with linear interpolation and Mooney-

Rivlin model lies between -9400 and 4901 Pa;

• the difference between ET calculated with Neo-Hookean and Mooney-Rivlin

model lies between 961 and 9823 Pa;

• the difference between EL calculated with Neo-Hookean and Mooney-Rivlin

model lies between -9425 and 4870 Pa;

The p-values with α equal to 0.05 were also measured and reported in Table 5.3.

If the p-values were lower than 0.05 than the two groups were considered different.

Group p-value (ET ) p-value (EL)

LI vs NH 1 1

LI vs MR 0.15 0.009

NH vs MR 0.15 0.009

Table 5.3: P-values for each group (Linear Interpolation (LI), Neo-Hookean
(NH) and Mooney-Rivlin (MR)

The probability of making at least one type I error with 3 groups is 1–(1−0.05)3 =

0.143 which means that the chance of incorrectly rejecting the null hypothesis is

about 1 in 7. Following these results, the linear interpolation model was chosen

partly due to computational simplicity and partly due to the similarity in results

with the evaluated hyperelastic models. For more details on this, see section 6.2.
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In order to verify the transverse isotropy of the phantoms, the ratios ET/EL were

calculated and reported in Table 5.4.

Phantom ET (kPa) EL (kPa) ET/EL

1 40.7±3.8 47.0±1.4 0.87

2 48.9±4.2 55.3±3.9 0.88

3 42.6±6.1 51.9±0.3 0.82

4 33.8±4.5 52.3±7.4 0.64

5 44.2±7.4 52.8±0.3 0.84

6 18.1±5.0 25.5±0.3 0.71

7 17.9±6.6 19.1±3.3 0.93

Table 5.4: Elastic moduli in transverse and longitudinal directions calculated
with linear interpolation. Phantom 6 and 7 are made of a lower PVA density.

Table 5.4 presents the values of the elastic moduli along the two main directions

calculated with the linear interpolation model. In order to prove the transverse

isotropy and the influence of PVA density, the average ET and EL were calculated

and reported in Table 5.5. In both phantoms made of 5 and 7 % of PVA, the

average EL is 23% higher than ET .

PVA density (%) ET (kPa) EL (kPa)

5 18.0±0.2 22.3±4.5

7 42.0±5.5 51.9±3.0

Table 5.5: Comparison between average values of ET and EL for phantoms
made of 5 and 7 % of PVA

The mean values of ET/EL for a TI phantom developed with the procedure de-

scribed above are 0.82± 0.16 and 0.81± 0.09 for phantoms made of 5 and 7 % of

PVA respectively. Furthermore, for phantom made of 7 % of PVA the mean ratios

are 0.86± 0.03 and 0.74± 0.13 for 12 and 14 hours of thawing time respectively.
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The ratios between the shear moduli µT/µL are 0.78 ± 0.18 and 0.77 ± 0.11 for

phantoms made of 5 and 7 % of PVA respectively.

The density was calculated with Archimedes’ principle and it was 1020 Kg/m3

and 960 Kg/m3 for phantoms made of 7 and 5 % of PVA density respectively.

Knowing the density and assuming νLT = 0.5 [10], both shear moduli and shear

wave propagation velocities in transverse (vT ) and longitudinal (vL) direction were

estimated. These values are reported in Table 5.6.

Phantom µT (kPa) µL(kPa) vT (m/s) vL(m/s)

1 12.98 15.6 3.58 3.93

2 15.69 18.44 3.93 4.26

3 13.41 17.31 3.64 4.13

4 10.09 17.42 3.15 4.14

5 13.97 17.61 3.72 4.17

6 5.51 8.50 2.40 2.98

7 5.83 6.36 2.45 2.56

Table 5.6: Shear moduli and estimated shear wave propagation velocities
calculated assuming linear elasticity. Phantom 6 and 7 are made of a lower

PVA density.

5.2 Conventional Shear Wave Elastography

Figure 5.3 shows a representative example of shear wave propagation in a phantom

imaged every 0.5 ms for 6 different time frames and can be compared to the simu-

lation presented in Figure 3.11. Pixel intensity encodes axial particle displacement

along the beam axis.
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Figure 5.3: Example of B-mode images at different time frames showing shear
wave propagation in longitudinal direction for phantom 4. The pushing beam
was sent along the depth axis and the shear wave propagates perpendicularly
to it. Pixel intensities are scaled equally for all the images and encode axial

particle displacement.

Figure 5.4 shows an example of shear wave velocities measured in six different

positions in the transverse direction (Figure 5.4 (a)) and three different positions

along the longitudinal direction (Figure 5.4 (b)) for phantom 1.

Moreover, Table 5.7 presents the average values of shear wave propagation veloc-

ities for phantoms made of 5 and 7 % of PVA.
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(a) (b)

Figure 5.4: Example of shear wave propagation velocities in different planes
of isotropy (a) and in different positions along the axis of isotropy (b). The

measurements were performed on phantom 1.

PVA density (%) vT (m/s) vL (m/s)

5 2.3±0.3 4.1±1.3

7 4.5±0.5 5.3±0.3

Table 5.7: Comparison between average values of vT and vL for phantoms
made of 5 and 7 % of PVA

To quantify the grade of anisotropy estimated through SWE, the ratios between

shear wave propagation velocities vT/vL have been calculated. The mean values of

this ratio are 0.58± 0.11 and 0.86± 0.05 for phantoms made of 5 and 7 % of PVA

respectively. Furthermore, for phantoms made of 7 % of PVA the mean ratios are

0.84± 0.07 and 0.88± 0.002 for 12 and 14 hours of thawing respectively.

The ratios between the shear moduli µT/µL are 0.34 ± 0.12 and 0.74 ± 0.09 for

phantoms made of 5 and 7 % of PVA respectively.

For each phantom, shear moduli in transverse and longitudinal directions were

calculated from the shear wave propagation velocities. In Table 5.8 the results

of the shear wave propagation velocities and the shear moduli in the two direc-

tions are presented. The values of the standard deviation are given from repeated

measurements at different positions.
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Phantom vT (m/s) vL(m/s) µT (kPa) µL(kPa) vT/vL

1 4.20±0.08 5.33±0.19 17.96 29.03 0.77

2 5.04±0.18 5.46±0.24 26.00 30.50 0.92

3 4.19±0.29 5.12±0.77 17.94 26.76 0.82

4 4.24±0.09 4.84±0.02 18.35 23.86 0.88

5 5.03±0.11 5.72±0.25 25.81 33.34 0.88

6 3.56±0.24 5.07±0.22 6.30 24.71 0.50

7 2.09±0.10 3.20±0.09 4.19 9.81 0.65

Table 5.8: Transverse and longitudinal shear wave propagation velocities
and transverse and longitudinal shear moduli obtained with conventional Shear

Wave Elastography.

5.3 Dual Probe Shear Wave Elastography

Figure 5.5 presents an example of shear wave propagation measured with a dual-

probe set-up and can be compared with Figure 5.3.
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Figure 5.5: Example of B-mode images at different time frames showing shear
wave propagation in phantom 4. The pushing beam was sent perpendicularly
to the images. Pixel intensities are scaled equally for all the images a part from

the top left one and encode axial particle displacement.

The following figures are parametric plots of theoretical group velocities where

pure-transverse PT (red dashed) and quasi-transverse QT (blue solid) are the

propagation modes. The velocities estimated using conventional and dual-probe

SWE are represented by red and blue asterisks respectively. The x-axis and y-axis

correspond to shear wave speed transverse to the symmetry axis and to the shear

wave speed along the symmetry axis, respectively. The parameters used for the

theoretical curves are gathered in Table 5.9 and refer to Tables 5.4 and 5.8.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Parametric curves vs data points of shear wave propagation group
velocities. The blue lines are the parametric curves of the quasi transverse (QT)
propagation mode and the blue asterisks are the data points measured with the
dual-probe set-up. The red lines are the parametric curves of the pure-transverse
(PT) propagation mode and the red asterisks are the data points measured with

conventional SWE.
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Phantom ET/EL µT (kPa) µL (kPa)

1 0.87 17.96 29.03

2 0.88 26.00 30.50

3 0.82 17.94 26.76

4 0.64 18.35 23.86

5 0.84 25.81 33.34

7 0.93 4.19 9.81

Table 5.9: Values of ET /EL ratios and shear moduli used to plot the para-
metric curves of shear waves propagation velocities. ET /EL were obtained from
mechanical tests and the shear moduli were obtained from conventional SWE.

Figure 5.7 shows the theoretical QT (blue) and PT(red) wave propagation modes

and shear wave velocities measured with dual-probe SWE (blue asterisks) in phan-

tom 4.

Figure 5.7: Parametric curves vs data points of shear wave propagation group
velocities for phantom 4. The blue lines are the parametric curves of the quasi
transverse (QT) propagation mode and the blue asterisks are the data points
measured with the dual-probe set-up. The red lines are the parametric curves of
the pure-transverse (PT) propagation mode and the red asterisks are the data

points measured with the conventional SWE.
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The results of the statistical tests performed to have a quantitative measure of the

goodness of the fitting are reported in Table 5.10 in terms of the residual sum of

squares (RSS) for both pure-transverse and quasi-transverse propagation modes.

Lower values of the RSS represent a lower deviation of the data points from the

theoretical curves, thus a better fitting.

Phantom RSS-PT (m/s)2 RSS-QT (m/s)2

1 0.63 2.90

2 0.81 0.69

3 1.70 3.72

4 0.30 5.83

5 1.49 0.51

7 2.69 4.48

Table 5.10: Residual sum of squares (RSS) values for both pure-transverse
(PT) and quasi-transverse (QT) propagation modes

Table 5.11 presents the results of the RSS test for phantom 4 where tests 1, 2

and 3 correspond to the data point measured with dual-probe. Lower RSS values

mean a lower deviation of the theoretical curves from the curves estimated using

data points, thus they indicate a better fitting.

Test’s number RSS (m/s)2

Test 1 0.51

Test 2 2.49

Test 3 2.32

Table 5.11: Results of the RSS test for Phantom 4.

Figure 5.8 presents the plots of QT parametric curves and their predictions cal-

culated with WNLLS. Table 5.12 shows the values of ET/EL estimated from the

predicted curves.



Chapter 5. Results 62

Phantom Predicted ET/EL Measured ET/EL

1 0.62 0.87

2 0.85 0.88

3 0.67 0.82

4 0.43 0.93

5 0.77 0.64

7 0.78 0.84

Table 5.12: Values of ET /EL estimated with WNLLS and measured with
mechanical tests.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Quasi-transverse parametric curves vs curves predicted using WN-
LLS. The blue lines are the parametric curves of the quasi transverse (QT)
propagation mode and the blue circles are the data points measured with the
dual-probe set-up. The red lines are the curves predicted using the data points

and the shear moduli estimated with conventional SWE.





Chapter 6

Discussion

In this work, a way of assessing multiple shear wave propagation modes on a devel-

oped transversely isotropic phantom using dual-probe Shear Wave Elastography

was presented. Initial results showed a good agreement between experimental data

and theoretical predictions indicating the ability of SWE as a measurement tool

for more complex analysis of mechanical behaviour even for transversely isotropic

tissue.

6.1 Phantom Construction

During the development of phantoms made of different PVA density, a value of

7% was chosen as a trade-off between phantom behaviour in SWE and mechanical

tests. The technique used for the phantoms construction was adapted to the

study made by Chatelin et al. [36] where the phantoms were made of 5 % of PVA

density and stretched to 180% of their initial length. Phantoms made of 5% of

PVA were more easy to stretch without rupture but their low consistence led to

difficulties in acquiring flat surfaces specimens and, as a consequence, mechanical

tests resulted less reliable. For this reason, phantoms made of 7% of PVA were used

in this work and suggested for studies which require compression tests. However,

some phantoms made of 5% of PVA were developed as comparison. Moreover,
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the phantoms were big enough to avoid guided waves in line with the design of

Chatelin et al. [36].

6.2 Mechanical tests

According to the results reported in Tables 5.1 and 5.2, linear interpolation and

Neo-Hookean models looked similar from each other while Mooney-Rivlin model

gave different values of the elastic moduli with a higher standard deviation. These

considerations were supported by the results of the statistical tests which showed

a high correspondence between linear interpolation and Neo-Hookean model. In

fact, the two models differed on average by 25−27 Pa which was very low compared

to the magnitude of the elastic moduli. The same conclusion could not be drawn

comparing these two models with Mooney-Rivlin model because of the higher

average values of their differences and the higher width of their confidence intervals.

The p-values reported in Table 5.3 showed the relations between pairs of data

sets. In particular, assuming α = 0.05, two groups were considered different when

the p-value was lower than α. According to these values, linear interpolation

and Neo-Hookean model gave the same results (p=1) for both ET and EL while

Moonley-Rivlin gave results similar to the other two models for ET (p=0.15) but

was different for EL (p=0.009). Therefore, the p-values confirmed what obtained

with the confidence intervals. With three groups, the probability of making at least

one type I error was 0.143 which means that the chance of incorrectly rejecting

the null hypothesis was about 1 in 7. An incorrect rejection leads one to conclude

that two data sets are different when in fact they are not. When the number of

groups is higher, this probability increases and it is better to consider other types

of statistical tests like ANOVA, which maintains the type I error probability at

a constant level. Looking at the stress-strain curves, Moonley-Rivlin model was

giving a good fitting when considering the results until higher strain (10-15%)

but generally showed a higher deviation from the data points at lower strain (0-

3 %). Therefore Moonley-Rivlin model was excluded from the study and linear
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interpolation was selected to represent the mechanical behaviour of the phantom

material.

Table 5.4 demonstrated that the procedure described in Chapter 4 gave rise to

transversely isotropic phantoms and confirmed what expected from the theory.

First, each phantom had a higher elastic modulus in longitudinal direction com-

pared to the one in the plane of isotropy. Second, phantoms made of 5 % of PVA

had an average ET of 18.0 ± 0.2 kPa and EL of 22.3 ± 4.5 kPa while phantoms

made of 7 % of PVA had an average ET of 42.0±5.5 kPa and EL of 51.9±3.0 kPa

(Table 5.5). These values also proved that increasing the PVA density increased

also phantom stiffness and thus its elastic modulus in both directions.

The ratios between the elastic moduli ET/EL were calculated in order to have a

parameter which described the grade of anisotropy reached with different proce-

dures. The three clusters of phantoms divided by thawing time and PVA density

were examined separately and gave 0.86± 0.03 (12h thawing time and 7% PVA),

0.74 ± 0.13 (14h thawing time and 7% PVA) and 0.82 ± 0.15 (14h thawing time

and 5% PVA). At first sight, these values indicated that increasing the thawing

time increased the anisotropic behaviour of the phantom but Table 5.4 showed

that the low value obtained for 14h of thawing time and 7% of PVA was strongly

influenced by the ratio in phantom 4. Therefore, we cannot conclude that these

parameters influenced the grade of anisotropy.

Comparing these results with Table 3.1, our phantoms show similarities with the

elastic moduli of healthy soft tissue like kidney, breast, prostate and liver (E '

0.5−70 kPa) but they are too soft to represent tendon (E ' 800 kPa). The elastic

modulus of muscle is more variable and depends of the state of the muscle during

the measurement.
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6.3 Conventional SWE

In line with the mechanical tests, the results obtained using SWE showed that all

the phantoms had a transversely isotropic behaviour. For each phantom, shear

wave propagated at a higher velocity along the longitudinal direction than in the

plane of isotropy. In particular, phantoms made of 5 % of PVA had an average

vT of 2.3± 0.3 m/s and vL of 4.1± 1.3 m/s while phantoms made of 7 % of PVA

had an average vT of 4.5± 0.5 m/s and vL of 5.3± 0.3 m/s (Table 5.7). As for the

elastic modulus, shear wave propagation velocity increased with PVA density.

As for the ratio between the elastic moduli, the ratios between shear wave propa-

gation velocities vT/vL were calculated. At first sight, these values indicated that

the anisotropic behaviour of the phantoms did not change with thawing time but

was stronger in softer phantoms. This consideration was not supported by the re-

sults obtained with the mechanical tests thus the ratios between estimated shear

moduli were calculated. In both cases, shear moduli were estimated from indirect

measurements and were influenced by approximations like phantom density and

isotropy along longitudinal direction. For phantoms made of 7% of PVA, µT/µL

varied between 0.74 (SWE) and 0.77 (mechanical tests) while for phantoms made

of 5% of PVA µT/µL varied between 0.34 (SWE) and 0.78 (mechanical tests). For

phantoms made of 5% of PVA the high difference between SWE and mechanical

test can be due to the difficulty in perform mechanical tests. In general, shear

moduli estimated with conventional SWE were higher than the ones estimated

through mechanical tests.

Chatelin et al. [36] obtained values of shear wave propagation velocities which

were approximately 1.95 m/s and 3.2 m/s in transverse and longitudinal directions

respectively compared to 2.3 m/s and 4.1 m/s obtained in this study. However,

the applied strain during the stretching was 0.80 for Chatelin and 0.60 for this

study thus the previous results were not supposed to be identical.

Mechanical Tests vs Conventional SWE

Both mechanical tests and conventional SWE proved the transverse isotropy of the
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phantoms showing a higher stiffness along the longitudinal direction. Nevertheless,

the results of these two tests did not perfectly coincide. For phantoms made of 5 %

of PVA, the shear moduli were µT = 5.67 kPa and µL = 7.43 kPa for mechanical

tests and µT = 5.25 kPa and µL = 17.26 kPa for conventional SWE. Likewise, in

the study made by Chatelin et al. [36], the shear moduli were µT = 4.31 kPa and

µL = 6.28 kPa for dynamic mechanical analysis and µT = 3.8 kPa and µL = 10.5

kPa for conventional SWE. In both cases one can see the difference between the

values of the mechanical tests and SWE. This could be due to assumptions made

in order to simplify the calculations, for example isotropy along the longitudinal

direction, viscosity or incompressibility. In general, our study shows slightly higher

shear moduli compared to the study made by Chatelin.

In this project, only transversely isotropic phantoms were considered leaving aside

tests on living biological tissue but other studies measured the elastic parameters

in different kind of phantoms and living tissue. For example, the shear moduli of

bovine muscle are µT = 8.9 kPa and µL = 17.2 kPa [37] and the shear moduli

of pork tenderloin are µT = 5.9 kPa and µL = 13.3 kPa [39]. The study made

by Aristizabal et al. [39] shows that the transverse isotropy can be obtained also

incorporating fibrous or fishing line material in porcine gelatin. The shear moduli

are, in the first case, µT ' 10 − 12 kPa and µL ' 15 − 17 kPa and, in the

second case, µT ' 5 − 8 kPa and µL ' 8 − 12 kPa depending on the gelatin

concentration. However, as already indicated by Chatelin [36], a phantom made

of PVA is particularly recommended in researches focused on ultrasound-based

elastography because it avoids acoustic impedance losses which exist in phantoms

made of a mixture of hydrogel and other materials.

6.4 Dual-probe SWE

The data points collected through SWE in a dual-probe set-up showed a good

agreement with the theoretical curves estimated using the results obtained from

both mechanical and conventional SWE tests. First of all, it was interesting to
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note the difference in shape of the wave imaged with one and two transducers. This

can be seen comparing Figure 5.3 and 5.5. In fact, while conventional ultrasound

can only track the shear wave propagation perpendicular to the beam axis, a dual-

probe set-up can track the displacement in several directions at the same time.

The main results obtained with this method were the curves presented in Figure

5.6. These curves were in line with the theoretical curves obtained by Rouze et

al. [10]. In general, the shape of the parametric curves was varying according to

the ET/EL ratio and the shear moduli. As mentioned before, it was difficult to

perform mechanical tests on phantom 7 due to its low stiffness and thus the shape

of its quasi-transverse propagation mode was strongly influenced by its high value

of ET/EL.

The divergence from the measured data was also proven by statistical tests which

gave a quantitative evaluation of the goodness of fits. As shown in Table 5.10, for

pure-transverse mode RSS values were varying from 0.30 for phantom 7 to 2.69 for

phantom 5 showing a good agreement between parametric curves and measured

data for phantom 7 and a high RSS for phantom 5 due to the difference along

the 150 degrees direction (see Figure 5.6 (f)). For quasi-transverse propagation

mode, RSS values were varying between 0.51 for phantom 4 and 5.83 for phantom

7. Phantom 4 gave the best agreement between measured data and theoretical

curves in QT mode and thus it was tested two more times to obtain a statistical

description of the distribution of the data point around the theoretical curve (Fig-

ure 5.7). The results in Table 5.11 showed that, for different measurements, the

RSS values were varying from 0.51 to 2.49 and highlighted the advantages of col-

lecting repeated measurements when using the data sets to describe the mechanical

properties of a tissue.

Figure 5.6 indicated the possibility of measuring the elasticity constants (µT , µL

and ET/EL) needed to fully characterize an incompressible, TI tissue through dual-

probe SWE. According to Equation 4.6, the shear moduli could be estimated with

a single transducer through the velocity curve of PT propagation mode but it was

difficult to measured both µT and µL with this method. In fact, as shown in Figure
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5.3, only the velocities in a direction perpendicular to the beam could be estimated.

Therefore, µT and µL were measured separately from shear wave propagation

velocities with a single-probe set-up. Once calculated the shear moduli, ET/EL

ratios were estimated through the WNLLS fitting of the data points obtained with

dual-probe SWE. Figure 5.8 showed a good fitting for phantoms 2, 4 and 5 and

confirms the possibility of using dual-probe set-up as a tool for estimating the

mechanical properties of a TI phantom.

Among the articles on Shear Wave Elastography, we could not find any study on

the dual-probe set-up hence it was not possible to compare the technique developed

in this thesis with other works. Conventional SWE is still a new technique and,

in my opinion, the research groups have been so far focused on optimizing the

single-probe set-up in order to evaluate more in detail which kind of information

could be obtained from it without trying to change the set-up. The studies based

on conventional SWE always relate tissue stiffness with the shear modulus and

try to find a correlation between a variation of the shear modulus and a potential

disease. However, some pathological conditions can also be related to the elastic

moduli (like for breast [40] and liver [41]) and it is possible that in these cases

the shear moduli calculated with conventional SWE are not sufficient to detect a

disease. Therefore, dual-probe SWE adds new information to conventional SWE

and could detect diseases which are not detected with conventional SWE. Further

investigations are needed to analyse a possible clinical applicability of dual-probe

SWE.

6.5 Limitation

In the development of a transversely isotropic phantom, despite the procedure

being the same for all the phantoms, the results did not show a constant ratio

between the elastic moduli in the two main directions. The results could have

been influenced by slight differences as thawing temperature, FT-cycles time or

evaporation of water during the preparation of the solution. Moreover, with this
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kind of procedure a high level of anisotropy was difficult to reach for two main rea-

sons: the maximum strain that could be applied during the stretching was limited

by the risk of breaking the phantom; reducing the PVA density to increase the

strain during the stretching decreased also the manoeuvrability for the mechanical

tests. In order to overcome these limitations, it was important to write comments

during the development of each phantom to understand unexpected results and

add improvements to the following times.

During the mechanical tests, a limitation was introduced by the oblique surfaces

of the samples and was reduced by a constant pre-compression before each test

and a careful cutting during the preparation of the samples.

Both conventional and dual-probe SWE were limited by the angle between the

phantom and the pushing beam. In the first case, the probe was placed perpen-

dicularly to the table and the phantom was placed in a tank filled with water.

If the phantom was isotropic this would not have been a problem but with a TI

phantom, if it rotated, the probe did not collect the data from either the plane or

the axis of isotropy but another plane which had different mechanical properties.

Likewise, in the dual-probe set-up the angle between the probes and the table was

45 degrees (Figure 4.15(a)). This angle was difficult to reach with high precision

and, as before, we might have collected the data from a different plane than the

isotropy one. Before each dual-probe SWE test, B-mode images were collected

with both the transducers in order to set their focal points approximately in the

middle of the specimen. Moreover, during each test the transducers were clamped

to a support to reduce the artefacts due to the their movement and to acquire

data always from the same direction.

6.6 Future Outlook

Shear wave elastography has been commercially used with successful results for

isotropic tissue. The attempts made to expand this technique into non-isotropic

tissue have been limited by the difficulties in assessing a wave motion properly.
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The presented work is a starting point for future studies on transversely isotropic

tissue which is the simplest case of anisotropy.

A possible next step can be to define a repeatable procedure for developing a TI

phantom trying to reach a constant value of ET/EL. Afterwards the procedure

can be improved to mimic specific biological tissue, for example, by changing PVA

density according to the density of the tissue, increasing or decreasing the number

of FT-cycles to obtain the same tissue stiffness or varying the constant strain

during the stretching to reach a specific ratio between the elastic moduli in the

two main directions.

Moreover, the phantom developed in this study was made for large TI tissue

neglecting guided waves. A further development could be studying this kind of

waves in a TI tissue by developing a thinner phantom.

Dual-probe SWE represented the main novelty of this project and gave promising

results in the phantom characterization. In the future, shear wave propagation

velocities could be measured in more directions in order to obtain more data

points to use for the WNLLS fitting. A reliable dual-probe SWE could also be

used to measure the elastic parameters in transversely isotropic tissue even without

knowing the direction of the fibers or without estimating the shear moduli from

separate tests. The aim is to be able to measure all the three parameters needed

to characterise this kind of tissue by a single test.





Chapter 7

Conclusions

The aim of the presented work was to develop a transversely isotropic phantom

and evaluate the possibility of characterizing its mechanical behaviour using dual-

probe Shear Wave Elastography.

The transverse isotropy of the developed phantoms was confirmed by both me-

chanical and SWE tests. First, mechanical tests showed a higher elastic modulus

in the longitudinal direction than in the transverse direction. Second, conventional

Shear Wave Elastography proved that the phantoms were homogeneous and the

induced shear wave was travelling faster in the longitudinal direction than in the

transverse direction. In general, the results obtained with both these procedures

indicated a good agreement with what expected from the theory suggesting SWE

as a valid tool to evaluate a TI tissue.

The main novelty of the project was the development of dual-probe SWE for a

multiple mode characterization of induced shear wave. In particular, the goodness

of the fitting between the theoretical curves of shear wave propagation and the

data collected through this procedure represented not only a potential progress in

research in the fully mechanical characterization of a TI tissue but also a possible

tool for calculating the ratio between the elastic moduli in the transverse and

longitudinal direction without mechanical tests.
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Appendix A

Matlab script for mechanical tests

Here is presented the code for the mechanical post-processing for the four tests in

the plane of isotropy.

% import the data of the strain and the stress from the xls file.

% strain = n x 4 vector where each column correspond to the strain

% values of a single test

% stress = n x 4 vector where each column correspond to the stress

% values of a single test

% stretch = n x 4 vector where each column correspond to the stretch

% values of a single test

%% Linear Least Square LLS - Hooke law

for i=1:4

% Model

G=[strain(:,i)/100 ones(length(strain),1)];

p est(:,i)= G\stress(:,i);

% Predicted stress

y pred L(:,i)=G∗p est(:,i);

E L(i)=p est(1,i);

end

E LLS=coeff(1) % Average elastic modulus

SD L=std(E L) % standard deviation
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%% Linear Least Square LLS - Neo Hookean

for i=1:4

% Model

G=[2∗(stretch(:,i).ˆ2-1./(stretch(:,i))) ones(length(stretch),1)];

p est(:,i)= G\stress(:,i);

% Predicted stress

y pred NH(:,i)=G∗p est(:,i);

E NH(i)=6∗p est(1,i);

end

E LLS NH=mean(E NH) % Average elastic modulus

SD NH=std(E NH) % standard deviation

& Code for the plotting of the curve

%% Linear Least Square LLS - Mooney-Rivlin

for i=1:4

% Model

G=[2∗(stretch(:,i).ˆ2-1./(stretch(:,i))) -2∗(1./(stretch(:,i).ˆ2)+

-stretch(:,i)) ones(length(stretch),1)];

p est(:,i)= G\stress(:,i);

% Predicted stress

y pred MR(:,i)=G∗p est(:,i);

E MR(i)=6∗(p est(1,i)+p est(2,i));

end

E LLS MR=mean(E MR) % Average elastic modulus

SD MR=std(E MR) % standard deviation


	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	2 Purpose of Study
	3 Background
	3.1 Mechanical properties of biological tissue
	3.1.1 Isotropic tissue
	3.1.2 Transversely isotropic tissue

	3.2 Hyperelastic models
	3.2.1 Neo-Hookean model
	3.2.2 Mooney-Rivlin model

	3.3 Ultrasound
	3.4 Elastography
	3.4.1 Shear Wave Elastography
	3.4.2 Shear wave propagation in Transverse Isotropic tissue


	4 Methods
	4.1 Phantom Construction
	4.2 Mechanical tests
	4.2.1 Constitutive model fitting

	4.3 Conventional Shear Wave Elastography
	4.3.1 Programmable ultrasound system
	4.3.2 Post-Processing

	4.4 Dual Probe Shear Wave Elastography
	4.4.1 Post-processing


	5 Results
	5.1 Mechanical tests
	5.2 Conventional Shear Wave Elastography
	5.3 Dual Probe Shear Wave Elastography

	6 Discussion
	6.1 Phantom Construction
	6.2 Mechanical tests
	6.3 Conventional SWE
	6.4 Dual-probe SWE
	6.5 Limitation
	6.6 Future Outlook

	7 Conclusions
	A Matlab script for mechanical tests

