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A low-work-function tether is a long conductor coated with a low-work-function material that orbits around a

planet with both the magnetic field and ionosphere. Depending on the work functionW of the coating and the tether

temperature T, the photoelectron emission can be relevant within the cathodic tether segment. Thus, this mechanism

needs to be added to the thermionic emission considered in previousworks. An emissionmodel for low-work-function

tethers, including a typical solar photon spectrum, a Fowler–DuBridge law for the photoelectron yield of the coating,

and a Richardson–Dushman law for the thermionic emission, is presented, and used to organize the thermionic and

photoelectric dominated regimes of low-work-function tetherswithin theW–T plane. ForT ≈ 500 K andW ≈ 1.5 eV,
the photoemission and thermionic emission can be of the same order and have similar efficiency as the electron

collection. The emission model is combined with orbital-motion theory for all the plasma and emitted particles, and

the longitudinal bias and current profiles throughout a low-work-function tether are determined for typical

low-Earth-orbit environmental values. Results for the average current are presented. The study highlights the main

electrical, mechanical, and optical properties that should be considered in the design of low-work-function tethers,

and it briefly discusses some promising materials.

Nomenclature

At = tether cross-sectional area, m2

B = ambient magnetic field, T
Em = motional electric field along the tether, V/m
E = photon energy, eV
e = elementary charge, C
FL = Lorentz force, N
fα = distribution function of particle α, s2∕m5

hp = Planck constant, m2 ⋅ kg∕s
I = current along the tether, A
J = current density, A∕m2

kB = Boltzmann constant, m2 ⋅ kg∕s2 K
Lt = tether length, m
L� = length characterizing ohmic effects, m
Ms = spacecraft mass, kg
me = electron mass, kg
mt = tether mass, kg
N0 = ambient plasma density, 1∕m3

pt = tether perimeter, m
R = tether radius, m
rs = orbital radius of the spacecraft, m
S = solar energy spectrum, ph∕sm2 eV
SSun = solar constant, W∕m2

Te = electron temperature, K
Teq = tether equilibrium temperature, K
Ti = ion temperature, K
Tm = melting temperature, K
ut = unit vector along the straight tether
v = tether-to-plasma relative velocity, m∕s
W = work function, eV
x = distance along tether from its anodic end, m
Yph = tether photoelectron yield (electrons per incoming

photon)

αabs = tether solar absorption
ϵem = tether emissivity
λDe = electron Debye length, m
μ = standard gravitational parameter, m3∕s2
ρt = tether density, kg∕m3

ρ0 = tether radius to Debye length ratio
σB = Stefan–Boltzmann constant, W∕m2 ⋅ K4

σt = tether conductivity, 1∕Ωm
Φp = tether-to-plasma bias, V
ϕF = Fowler function

Subscripts

ph = photoelectric
t = tether
th = thermionic

I. Introduction

T HE space debris population near the Earth will increase in the
future due to new launches, on-orbit explosions, and accidental

collisions. Even without future launches, studies show that the low-
Earth-orbit (LEO) debris population will remain relatively constant
for the next four decades and will increase noticeably beyond that
[1,2]. Effective means to protect the environment include the deorbit
of satellites, payload adapters, and rocket stages at their end of life
and the active debris removal of the most dangerous objects. Both
actions require an active deorbit technology, like chemical and
electrical thrusters, or a passive technology, like drag augmentation
devices and electrodynamic tethers in passive mode [3–5].
Bare electrodynamic tethers equipped with plasma contactors,

introduced in 1993 [6], can provide a relatively simple and effective
solution within a wide range of orbits and spacecraft masses [7–9].
As compared with other technologies, this device has important
advantages, which would be enhanced even more if the plasma
contactor and its expellant were eliminated. Pursuing this idea, the
bare thermionic tether was introduced in 2012 [10]. If the tether is
coated with a low-work-function material, then the cathodic contact
with the ambient plasma is accomplished by thermionic emission
from the tether itself. The operation of such a tether is fully passive
and, in deorbit scenarios, does not involve consumables and power.
One of the main advantages of using the tether itself for anodic and
cathodic contacts is to allow a large collecting/emitting area (even for
small tether radius or width) and the reduction of space-charge
effects. A preliminary analysis showed that the thermionic tether is a
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promising device for a deorbit payload adapter from geostationary

transfer orbits [11].
The charge exchanges between the tether and the ambient plasma

and the longitudinal current and voltage profiles along the tether are

the main components of the electrical model of the thermionic tether.

For an orbital velocity v, the magnetic field B induces, on the tether
reference frame, a motional electric field v ×B, which drives an

electric current along the tether if a closed-circuit electric contactwith

the environmental plasma is provided.Cathodic and anodic segments

develop along such an electrically floating thermionic tether.
The tether collects electrons along the anodic segment as a giant

Langmuir probe, and the cathodic segment emits electrons as a giant

emissive probe. However, the modeling of the latter is more complex

and involves the physical properties of the coating and the ambient
plasma.
The first work on thermionic tethers ignored ohmic effects and

showed that, in general, the cathodic tether segment had two regions
[10] (see Fig. 1): 1) a segment with space-charge-limited (SCL)

emission that extends from the zero bias pointB up to an intermediate

point B�, and 2) a segment between B� and the tether cathodic endC
with full Richardson–Dushman (RD) thermionic emission. The
device is said to operate in the short-tether regime when the full

cathodic segment is SCL and in the long-tether regime if both SCL

and RD segments exist. Preliminary models for the precise location

ofB� and the plasma/tether charge exchangewithinBB� were used in
[10]. A later analysis included ohmic effects [12]. In [13], a more

refined model based on orbital-motion theory (OMT) [14,15] for the

location of B� was used, and the organization of the short- and
long-tether operational regimes were discussed in terms of two key

dimensionless parameters.
All the previous works on bare tethers coated with low-work-

function materials considered thermionic emission at the cathodic
segment. However, our analysis shows that, thanks to the coating, the

tether can also act as a photocathode under the natural illumination

of the Sun. In 1965, photoelectron emission was mentioned for

the first time in the pioneer work on electrodynamic tethers by Drell
et al. [16] as a mechanism to close the tether–plasma current circuit.

However, to the best of our knowledge, our work is the first that

presents a model for bare tethers with photoemission at the cathodic
segment. Whether photoelectron emission is negligible, comparable,

or dominant to thermionic emission basically depends on tether

properties like work function, photoelectric yield, and temperature.

For this reason, we will refer to the device as a low-work-function
tether, or low-W tether (LWT), instead of a thermionic or

photoelectric tether. The second novelty of the work is related with

the tether/plasma current exchange model, which incorporates full
numerical solutions of the Vlasov–Poisson system. This contribution
allows us tomake an assessment of the approximate analytical model
used in previous works [10,12].
The work is organized as follows. Section II.A introduces a

photoemission model for the LWT and discusses the operational
regimes as a function of thework function and the tether temperature.
In Sec. II.B, we modify a recent model for emissive and Langmuir
probes [17] to incorporate photoelectric effects. For both anodic and
cathodic segments, the current density versus tether bias character-
istics J�Φp� are found by self-consistently solving the Vlasov–
Poisson system, considering both thermionic and photoelectric
effects. The relations J�Φp� obtained numerically are used to
determine the efficiency of LWTs in deorbit scenarios, as well as to
make a critical comparisonwith previousworks. Promisingmaterials
for LWT applications are discussed in Sec. IV. The conclusions are
summarized in Sec. V.

II. Low-Work-Function Tethers Model

For a tether of length Lt, conductivity σt, cross-sectional area At,
and perimeterpt, the longitudinal profiles of the current intensity I�x�
and the tether-to-plasma bias Φp�x� are governed by [6]

dI

dx
� ptJ�Φp� (1)

dΦp

dx
� I

σtAt

− Em (2)

where J�Φp� is the collected/emitted current density (positively
defined for electron collection); x ∈ �0; Lt� is the distance along tether
from its anodic tip; and Em � ut ⋅ �v × B� is the motional electric
field projection along ut, which is the tangent unit vector along the
straight tether pointing in the direction of the electric current
[I � I�x�ut]. Given the law J�Φp�, the integration of Eqs. (1) and (2)
with the boundary conditions I�0� � I�Lt� � 0 provides the current
intensity and bias profiles. From them, one finds the Lorentz force

FL �
Z

Lt

0

ut × BI�x� dx ≈ ut × B

Z
Lt

0

I�x� dx (3)

which mainly governs the deorbit performance of the device.
Therefore, the key aspect in the modeling of the tether is the

relationship J�Φp� that is inserted in Eqs. (1) and (2). For the anodic
segment, previous works [6,10] used the orbital-motion-limited
(OML) current law. Analytical formulas in the classical [18] and the
relativistic [19] (if the probe bias is extremely high, like in Jupiter)
regimes can be used for a tether radiusR below a threshold [20]. In the
high bias limit (eΦp∕kBTe ≫ 1, with Te as the plasma electron
temperature and kB as the Boltzmann constant), it reads

JOML � eN0

π

��������������������
2eΦp∕me

q
(4)

whereme is the electron mass, e is the electron charge, andN0 is the
unperturbed plasma density. For the cathodic segment, past works
considered three basic mechanisms. Each ion impacting on the
cathodic segment picks up an electron to leave as neutral. Depending
on the tether bias, this rate can be increased by secondary electron
emission. The emission due to these two mechanisms reads

Jion�sec � −
eN0

π

��������������������
2eΦp∕mi

q
�1� γ1jΦpj� (5)

with γ1 the yield written per unit bias. They were both discussed in
[21], where a cathodeless bare tether was proposed to excite artificial
auroral effects. A typical value of γ1 � 0.15∕kV was used for the
modeling of the secondary electron emission. As a consequence of
the ionmass in the denominator of Eq. (5), these two current densitiesFig. 1 Schematics of a LWT (adapted from [10,12]).
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were small as compared to the electron collection (for equal bias)
in the anodic segment given by Eq. (4). For O� ions, the ratio
between the two currents is

��������������
me∕mi

p
≈ 1∕172. In deorbiting

scenarios, the performance of such a floating tether would be very
low. For this reason, recent works considered a tether coated with a
low-work-function material [10,12,15], which emitts electrons
thermionically and follows the Richardson–Dushman law

Jth � −AT2 exp

�
−

W

kBT

�
(6)

with

A � 4πmeek
2
B

h3p
≈ 1.20 ⋅ 106 Am−2 K−2

where hp is the Planck constant; andT andW are the temperature and
work function of the tether, respectively. For relevant values ofW∕T,
one has JOML ∼ jJthj ≫ jJion�secj; i.e., the ion collection and
secondary emission can be ignored. As shown in Sec. II.A, there is a
fourthmechanism (photoemission) that can competewith thermionic
emission.
Along the cathodic segment, the evaluation of the emitted current

from the tether to the plasma becomesmore complicated due to space-
charge effects. Emitted electrons result in a negative space charge,
which suppresses the electric field that accelerates the emitted
electrons outward, or even reverses it at segment BB� in Fig. 1.
Currents emitted by the points at this segment are space-charge-
limited, with a current density of jJSCLj < jJthj. Previous works
[10,15] used a crudemodel for JSCL, and [15] presented an asymptotic
analysis to predict the position of B� using the OML theory.

A. Photoelectric Emission by LWTs

A coating with low-W materials does not only ease the thermionic
electron emission but can also yield to a relevant photoemission level.
The cathodic tether segment, with a negative bias with respect to the
ambient plasma, can act as a passive photocathode under the natural
illumination of the Sun. However, the modeling of the photocurrent
for metal surfaces coated with low-W materials is a difficult and
complex task. The photon absorption, the transport of the electrons to
the surface, and the emission are affected by several factors, including
the band structure of the metal, the thickness of the coating, and the
angle of incidence and polarization of the light, among others [22]. A
reliable determination of the photocurrent, which is highly dependent
on the chosen metal/coating combination and the surface treatment,
typically requires experiments. In this work, we used a relatively
simple but general model and verified that the results were in
agreement with previous experiments for specific materials.
The current density of photoelectrons (A∕m2) is given by

Jph � −f�1 − rt�e
Z

∞

0

S�E�Yph�E� dE (7)

where rt is the LWT reflectivity; the energy spectrum of the solar
photons S�E� is the number of photons per unit of time, area and
energy (with units of ph∕sm2 eV); and Yph�E� is the photoelectric
yield of the LWT, i.e., the number of emitted electrons (hereafter
shown as “el”) per incoming photon (hereafter shown as “photon
(ph)”) for a given photon energy E. The factor f takes into account
that only a fraction of the total perimeter is illuminated by the sun.
Figure 2a shows the energy spectrum S�E�, including the continuous
spectrum (solid line) and the spectral lines (triangles), versus the
photon energy in electronvolts. For energies below and above 4.8 eV,
we used the 2000 ASTM Standard Extraterrestrial Spectrum
Reference E-490-00 [23] and the data from [24], respectively. For the
case of interest of this work (i.e., LWTs with work functions below
about 1.5 eV), the photocurrent contribution coming from the portion
of the solar spectrum above 5 eV was small (below few a percent of
the total).
Regarding the photoelectric yield Yph�E� in Eq. (7), we adopted

the Fowler–DuBridge law [25,26]:

Yph�E� � αAT2ϕF

�
E −W

kBT

�
(8)

where ϕF is the Fowler function

ϕF�x� �
8<
:

ex − e2x

22
� e3x

32
� : : : x ≤ 0

x2

2
� π2

6
−
�
e−x − e−2x

22
� e−3x

32
− : : :

�
x ≥ 0

(9)

with α as a constant that depends on the material. For metals, α is

typically between 5 × 10−19 and 5 × 10−18 el ⋅m2∕ph ⋅ A. Hereafter,
we will (conservatively) assume α ≈ 5.10−19el ⋅m2∕ph ⋅ A.
Interestingly, the Richardson–Dushman law [Eq. (6)] and the

Fowler–DuBridge photoelectric yield [Eq. (8)] have a similar

dependence with the temperature and the work function.
Figure 2b shows the photoelectric yield per incoming photon

versus photon energy using the Fowler–DuBridge law and for work

function values ofW � 1.5; 2.5, and 3.9 eV. The lines with stars and
with circles correspond to the experimental data of copper (Cu)with a
monolayer of cesium (Cs) on the surface and aluminum (Al) oxide,

adapted from [27,28], respectively. For these materials, the authors

found work function values equal to 1.55 and 3.9 eV. As shown in the

figure, the Fowler–DuBridge law gives a first approximation of
Yph�E�, but accurate and reliable values of Yph�E� require

experimental tests with the specific metal, coating, and surface

treatment. For W � 1.5 eV, our model is very conservative, i.e., it

predicts a low value of photoelectrons because the experimental
curve of Yph�E� is more than one order of magnitude above the

theoretical one. For 3.9 eV, the model is optimistic (conservative) for

energies below (above) about 8 eV.
Unfortunately, experimental data of the photoelectric yields for the

most promisingmaterials with applications to LWTs (see Sec. IV) are

not available yet. This issue introduces uncertainties in the results that

we mitigated by presenting parametric studies that vary the LWT

temperature and its work function. Figure 3 shows the sum of the
photoelectric and the thermionic density currents in a logarithm scale

versus these two design parameters. The calculation was carried out

with Eqs. (6–8), f � rt � 1∕2, and the solar flux shown in Fig. 2.

TheW–T relation that gives Jth � Jph is shown with a dashed black
curve. It separates the parametric domainswhere the current emission

is dominated by photoemission or thermionic emission.
For typical plasma and LWT conditions in LEO (N0 � 1011 m−3

and Em � 150 V∕km), Eq. (4) shows that the maximum collected

electron current density for a 1-km-length anodic segment is about

JOML ≈ 3.6 ⋅ 10−2 A∕m2 (Φp ≈ EmL). Curiously, according to

Fig. 3, a LWTwith an emission level about this order of magnitude

Fig. 2 Panels a) and b) show the solar photon spectrum and the
photoelectric yield, respectively.
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(i.e., jJph � Jthj ∼ 10−2 A∕m2) has similar contributions from

thermionic and photoelectric emissions. Figure 3 also reveals the

high sensitivity of the LWT performance with the temperature and

the work function. Regarding the former, a balance between

radiative cooling and solar absorption gives the LWT equilibrium

temperature

Teq �
�
αabsSSun
πϵemσB

�
1∕4

(10)

with αabs and ϵem as the tether absorptivity and emissivity, SSun ≈
1.37 kW∕m2 as the solar constant, and σB ≈ 5.67 ⋅ 10−8 W∕m2 K4

as the Stefan–Boltzmann constant. For αabs � 0.5 and ϵem � 0.06,
one finds Teq ≈ 500 K. Joule heating, ignored by this first balance,
would increase the equilibrium temperature even more.

B. Plasma/LWT Contact

Because the typical length of the LWT is several kilometers and

its radius R is about a few millimeters, condition Lt ≫ R holds.

For tapes, the width wt also satisfies Lt ≫ wt. This simplifies the

LWT/plasma contactmodel notably because the current density J of a
LWT cross section at a particular bias Φp can be analyzed as a two-

dimensional uniformly biased Langmuir probe. It is well known from

probe theory that J in Eq. (1) does not generally coincide with JOML

and the sum Jph � Jth in the anodic and the cathodic segments,

respectively. Depending on the LWT properties and environmental

parameters, a tether cross section could collect electrons beyond the

OML regime (J < JOML) or emit current under SCL condi-

tions (jJj < jJth � Jphj).
A rigorous determination of J�Φp� requires the OMT, which

corresponds to self-consistent solutions of the stationary Vlasov–

Poisson system in cylindrical coordinates. In a recent work, this

problem was written as an ordinary integrodifferential equation and

J�Φp� relations were computed numerically for both positive and

negative biases [17]. As will be explained in the following (see also

the Appendix), minor modifications are required to adapt this theory
to LWT applications with photoelectric effects.
The first change is related with the boundary conditions of the

distribution functions, which should include the photoelectrons. At

the faraway plasma (r → ∞), the electron and ion plasma distribution

functions are assumed to be Maxwellian:

fe;i�r → ∞; vr; vθ� �
N0me;i

2πkBTe;i

exp

�
−
me;i�v2r � v2θ�

2kBTe;i

�
(11)

with vr and vθ as the radial and azimuthal velocities, and r as the

radial distance from the probe axis. At the LWT (r � R), the

distribution functions of the emitted electrons are assumed to be

half-Maxwellian:

fph;th�R; vr > 0; vθ� �
N0ph;thme

πkBTph;th

exp

�
−
me�v2r � v2θ�
2kBTph;th

�
(12)

where subscripts ph and th denote electrons emitted through

photoelectric and thermionic effects, respectively. For thermionic

emission, we take Tth � T in Eq. (12), as is commonly done in

emissive Langmuir probe studies. Regarding photoemission, an

isotropic distribution is realistic for amorphous materials but would

not necessarily hold for finely powdered substances [28]. For

materials with W ∼ 4–5 eV, like aluminum (Al) oxide, the mean

kinetic energy is about kBTph ≈ 1 eV [28]. However, experimental

results for copper coated with cesium (W � 1.55 eV) indicate that
the mean kinetic energy could be lower [27]. Our calculations will

consider kBTph ≈ 0.25 eV.
Taking into account [17] and Eqs. (11) and (12), the OMT for a

probe with thermionic and photoelectric emissions depends on the

following dimensionless parameters

δi ≡
Ti

Te

; δth ≡
Tth

Te

; δph ≡
Tph

Te

; φp ≡
eΦp

kBTe

(13)

ρ0 ≡
R

λDe
; βth ≡

N0th

N0

; βph ≡
N0ph

N0

(14)

with λDe as the electron Debye length. From Eq. (12), one finds the

relation

Jph � −e
Z

∞

0

Z �∞

−∞
vrfph dvr dvθ � −N0phe

���������������
2kBTph

πme

s
(15)

and a similar equation holds if subscript ph is changed by th. Because
Jth and Jph are given by Eqs. (6) and (7), the ratios βth and βph are
related with LWT properties: W, T, and Yph�E�.
Given the set of parameters in Eqs. (13) and (14), the current

density J�Φp� appearing in Eq. (1) is computed as follows. First, the

normalized potential profile φ�ρ� � eΦ∕kTe is found by solving

Poisson equation

1

ρ

d

dρ

�
ρ
dφ

dρ

�
� −ρ20�ni − ne − βphnph − βthnth� (16)

with ρ � r∕R. The stationary Vlasov equation with an axisymmetric

geometry (round LWT) conserves the energy, the angular

momentum, and the distribution function; and this can be used to

write the normalized particle densities nα�ρ� as integrals involving
φ�ρ� (see details in the Appendix and [17]). Equation (16), with the

boundary conditions φ�ρ � 1� � φp and φ → 0 as r → ∞, is an

integrodifferential equation that is solved with an iterative numerical

algorithm. Once the potential profile φ�ρ� is known, the normalized

current density jLWT ≡ J∕J0 is computed from Eq. (A7), with

J0 � eN0

�������������������������
kBTe∕2πme

p
as the random electron thermal current.

As an example, we now consider typical environmental values in

LEO: kBTe � kBTi � 0.15 eV,Em � 150 V∕km, oxygen ions, and

LWT properties: R � 1 mm, rt � f � 1∕2, T � 500 K,
kBTth � kBT, and kBTph � 0.25 eV. These values give the

dimensionless parameters δi � 1, δth ≈ 0.29, δph ≈ 1.7, and

μi ≈ 29378. Three relevant cases of plasma densities and coating

work functions are studied (see Table 1): 1) N0 � 1011 m−3 and

W � 1.4 eV (ρ0 ≈ 0.11, βth ≈ 2.1, and βph ≈ 1.4),
2) N0 � 1012 m−3 and W � 1.4 eV (ρ0 ≈ 0.35, βth ≈ 0.21, and

βph ≈ 0.14), and 3) N0 � 1012 m−3 and W � 1.2 eV (ρ0 ≈ 0.35,
βth ≈ 21.6, and βph ≈ 0.19). In cases 1 and 2, thermionic and

photoelectric effects are comparable, whereas in case 3 (the one with

the higher emission level), thermionic emission is dominant.
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Fig. 3 Contour plot of log10�jJph � Jthj� versusT andW (J in amperes
per square meter).
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For these three cases, we computed the jLWT–φp curve with

the Vlasov–Poisson solver (see solid curves in Fig. 4) and with

the analytical model presented in [12], but improved with the

photoelectric effect (dashed lines). A detail of this diagram close
to the origin is shown in Fig. 5. The segment of the jLWT–φp

curve between the two crosses operates under SCL conditions

(nonmonotonic potential). As expected, both models match very

well, except close to the origin due to space-charge effects. Section III

discusses the importance of such a discrepancy on tether performance

and shows that the simplified model of [10] is adequate for

preliminary mission design within a wide range of conditions.
Previous calculations are valid for round tethers at rest and

negligible trapped particle populations. Note that the angular

momentum of the particles is not conserved for tape tethers or if the

relative motion between the plasma and the tether–plasma is

considered. Trapped particles arise due to collisions or transient

phenomena, which would lead to the breakdown of the conservation

of fα or the energy, respectively. Accurate J�Φp� relations for these
conditions require the extension of computationally demanding
codes like the one presented in [29–31].

III. Electrodynamic Performance

After introducing the dimensionless variables i ≡ I∕EmσtAt,
ϕ ≡Φp∕EmLt, and ξ ≡ x∕Lt, Eqs. (1) and (2) become

di

dξ
� λjLWT�ϕ�;

dϕ

dξ
� i�ξ� − 1 (17)

where λ ≡ Lt∕L0 and

L0 ≡ EmσtAt∕pteN0 ⋅
�������������������������
2πme∕kBTe

p
The integration of this set of equations, with the boundary conditions
i�0� � i�1� � 0 and jLWT�φp� given by Eq. (A7), provides the
current and voltage profiles along the tether (note that
φp � ϕeEmLt∕kTe). Once i�ξ� is known, one computes the
normalized average current

iav �
Z

1

0

i�ξ� dξ � 1� ϕ�1� − ϕ�0� (18)

that naturally appears in the Lorentz force [see Eq. (3)]:

FL ≈ EmσtAtLtiav�ut × B� (19)

The dot product of the spacecraft velocity v � drs∕dt with its
equation of motion dv∕dt � −μrs∕r3s � FL∕Ms yields [9]

drs
dt

� −2
r2s
μ

mt

Ms

σt
ρt
E2
miav (20)

wherewe assume that the Lorentz dragmakes the orbit slowly evolve
through a sequence of quasi-circular orbits with v2 ≈ μ∕rs, and the
straight tether is perfectly aligned with the local vertical. In Eq. (20),
rs is the radius of the orbit; μ is the Earth gravitational constant;Ms is
the spacecraft mass; and mt � ρtAtLt and ρt are the mass and the
density of the LWT, respectively. Following previous works on bare
tethers [6,7], the average current intensity iav will be presented as a
function of the ratio L∕L�, where

L� ≡
�
2At

pt

�
2∕3�9π2meσ

2
t Em

128e3N2
0

�
1∕3

(21)

is a characteristic dimension that gauges ohmic effects.
Figure 6 shows iav versus L∕L� for the parameters discussed in

Sec. II.B (cases 1–3). Similar to Fig. 4, solid lines correspond to
iav values computed with the jLWT–φp curves obtained from the
Vlasov–Poisson solver, and dashed lines correspond with the model
of [12] extended with photoemission. For low emission (case 2), the
differences are notable (above 20%). However, for high emission
(case 3), the agreement is better than 2% (except in the limit
L∕L� → 0, which is not interesting for tether applications). Although
the numerical and analytical jLWT–φp curves exhibit greater
differences for high emission because the SCL potential range is
broader (see Fig. 4), the iav curve shows the worst agreement for low
emission. This result is explained by the fact that iav is obtained after
an integration along the tether. For high emission, the OML electron
collection forφp > 0 and the RD emission at monotonic potential for
φp < 0 contribute most to the iav integral and, among such bias
ranges, the agreement between bothmodels is good.We also checked
that ohmic effects can be safely ignored for cases 1 and 2.However, in
case 3, such a simplification would overestimate the current up to
10% for the range of tether lengths considered in the analysis.
It is remarkable that the LWT efficiencies obtained from the

numerical JLWT–φp curves are above the one obtained with the
analytical model of [12]. Therefore, such an analytical model is

Table 1 Parameter considered in the
analysis

Case N0, m
−3 W, eV ρ0 βth βph

1 1011 1.4 0.11 2.1 1.4
2 1012 1.4 0.35 0.21 0.14
3 1012 1.2 0.35 21.6 0.19

Fig. 4 Normalized current jLWT versus normalized probe bias φp for
several emission levels.

Fig. 5 Normalized current jLWT versus normalized probe bias φp for
several emission levels.
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appropriate to carry out a conservative analysis in preliminary

studies.On the other hand, tether efficiency is enhanced by increasing

the emission level (see Fig. 6). The normalized average current

iav increases with βth � βph, and therefore with currents Jth and Jph
[see Eq. (15)]. LWTs should be manufactured with the lowest

achievablework function coating andwith a high photoelectric yield.

Tape tethers exhibit much better performance and are more robust

against space debris impacts than round tethers [32]. They are more

efficient because, for equal mass and length, tapes have larger

perimeters and smaller L� due to the factor �At∕pt�2∕3 in Eq. (21).

However, in order to findmore accurate results, the relation J�Φp� for
tapes is needed. This can be done by adapting the two-dimensional

stationary Vlasov–Poisson solver of [33] to include electron

emission. An approximate alternative is to make the perimeter and

cross-sectional-area replacements 2πR → 2wt and πR2 → wtht,
withwt and ht as thewidth and the thickness of the tape. Note that, in
the OML regime, the collected current just depends on the perimeter

[34], and the same approximation is accurate for tether cathodic

points with monotonic potential. However, the limit of validity of the

OML [20], the emitted current within the SCL regime, and the

monotonic/nonmonotonic transition φp value must be determined

anew for every cross section. As an example, we can make a first

estimation of the deorbit performance of an aluminum tape with

dimensions of Lt � 2 km, wt � 2 cm and ht � 50 μm, mass of

mt � ρtLtwtht � 5.4 kg, and a spacecraft with a mass of

Ms � 500 kg and orbiting at 800 km of altitude. For the parameters

of cases 1–3, one finds L∕L� ≈ 1; 4.8, and 4.8; and Fig. 6 gives

iav ≈ 0.03; 0.06, and 0.65. Equation (20) provides a decay rate of 2.3,
4.2, and 46 km∕day.

IV. LWT Material Selection

The LWT model presented in Secs. II and III highlights the key
design parameters that control the performance of LWTs. This
information can be used to select themost promisingmaterials for the
tether substrate and its coating. In particular, according toEqs. (6) and
(8), the tether material should have a low work function to enhance
the thermionic and the photoelectric emissions and should sustain
high temperaturewithout losingmechanical properties. Equation (20)
shows that the substrate of the LWT should have a high value for the
ratio σt∕ρt. On the other hand, because the electron emission is
greatly enhanced by the tether temperature (see Fig. 3), a highmelting
temperature Tm is also desirable. The properties of two possible
materials, Al 1100-H19 and Beryllium-Copper (BeCu) C17500
alloys, are presented in Table 2. The decision between these two
materials is linked to the properties of the thermionic coating. If the
work function is low enough and good emission levels are possible at,
say, T ≈ 500 K, then Al is a better choice (due to the larger σt∕ρt
ratio). However, if the tether should operate at a higher temperature to
stimulate the thermionic emission, then a BeCu tether is required due
to its higher melting point.
The requirements for the coating are quite demanding because

it involves the work function value, optical properties like
absorptivity and emissivity, and its stability in a tough space
environment. Table 3 shows the work function of some thermionic
materials. Themost promising is theC12A7: e− electride [35], which
combines exceptional characteristics. Although comprising two
insulating oxides, it exhibits high electronic conductivity at room
temperature, is chemically inert, and its work function is extremely
low. Two research groups working in electric propulsion measured
extremely low-work-function values (0.76 eV [36] and 0.6 eV [37]),
but the intrinsic work function should be higher (2.1 eV [38] and
2.4 eV [39]). Besides thework function, the final optical properties of
the coated tether surface are also critical. In particular, as shown in
Eq. (10), the ratio αabs∕ϵem should be within a certain range to
guarantee that the LWToperates at the required temperature.
Besides manufacturing issues, there are three testing activities

that are required to improve the confidence in the model. First, the
relationship J�Φp� could be determined experimentally by studying
the collected and emitted currents of biased LWT samples in a plasma
chamber. Second, the photoelectric yield Yph�E�may be determined
experimentally to predict the response of a LWT irradiated by
sunlight. Third, testing of the optical properties αabs and ϵem is also
needed. These are themain elements that dictatewhether the cathodic
contact of the LWTwith the plasma is efficient and if the concept is
feasible.

V. Conclusions

The analysis of this work shows that the photoelectric effect can be
used by low-work-function electrodynamic tethers to achieve good
cathodic contact, thus avoiding the use of active elements like hollow
cathodes. If the tether is coated with a photosensitive compound,
then the cathodic segment of the tether would work as a passive
photocathode under the natural illumination of the Sun. Whether
photoemission is dominant, negligible, or comparable to thermionic
emission depends on tether temperature, work function, and
photoelectric yield. As shown in Fig. 3, higher emission levels are
reached in the parametric domain where the thermionic emission is
dominant. However, such a scenario requires a tether temperature
and a work function that are very demanding for the conductive
substrates and coatings. The state of the art of low-work-function
materials indicates that a low-W tether (LWT) with comparable
thermionic and photoelectric emissions may be more feasible in the
short term. The analysis showed that for typical conditions for low
Earth orbit, tether temperature T ≈ 500 K, and work function
W � 1.5 eV, both emissive mechanisms are comparable and present
an efficiency that is similar to the electron collection. In this case, the
photoelectric and thermionic effects should be included in the model
to accurately determine the Lorentz force.
Current and voltage profiles along LWTs have been computed

with a model that incorporates orbital-motion theory along the full

Fig. 6 iav versus L∕L� obtained from the numerical (solid) and
analytical (dashed) models.

Table 2 Candidates for LWT substrate

Material ρt, kg∕m3 σt, Ω−1 m−1 Tm, K

Al (1100-H19) 2700 3.54 ⋅ 107 920
BeCu (C17500) 8600 2.61 ⋅ 107 1300

Table 3 Candidates for LWT
coating

Material W, eV

C12A7: e− 0.6, 0.76, 2.1, 2.4
BaO-W 2.1
CeB6 2.5
LaB6 2.7
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tether. The calculations, which give a rigorous treatment of the
current emission within the space-charge-limited segment, show that
previous analytical models are slightly conservative. Therefore, their
implementations are fully justified for preliminary mission design
purposes. The model introduced in this work could be used by tether
flight simulators, aimed at the performance determination of LWTs
with thermionic and photoelectric effects. However, such application
needs the development of a large dataset with the current/voltage
characteristics obtained from the orbital-motion theory for a wide
range of conditions, including tether geometry and environmental
variables. Such a work would also have applications to emissive and
Langmuir probes applied to plasma diagnostics.

Appendix: Orbital-Motion Theory Results

For a cylindrical probe immersed at rest in a stationary and
collisionless plasma, the Vlasov equation conserves the angular
momentum, the energy, and the particle distribution functions. These
conservation laws are used to write the normalized particle densities,
ne;i�ρ� ≡ Ne;i�r�∕N0 and nph;th�ρ� ≡ Nph;th�r�∕N0ph;th, as a function
of the normalized radial distance ρ � r∕R and electrostatic potential
φ�ρ� � eΦ�r�∕kTe (see details in [17]):

nα�ρ� � 2Hα

Z
∞

u�αρ

exp�−ϵα�
π

arcsin

�
l�αρ
lαρ

�
dϵα

−Hα

Z
∞

u�α

exp�−ϵα�
π

arcsin

�
l�α
lαρ

�
dϵα (A1)

In Eq. (A1), the subscript α denotes α � e; i; ph, and th, and we
introduced the following functions: He;i � 1, Hph;th � 2,
l2αρ�ρ; ϵα� � ρ2�ϵα − uαρ�ρ��, uiρ � φ∕δi, ueρ � −φ, uphρ �
−�φ − φp�∕δph, and uthρ � −�φ − φp�∕δth, where

u�α ≡maxfuα�ρ 0�: 1 ≤ ρ 0 < ∞g (A2)

l�α�ϵα� ≡minflαρ�ρ 0; ϵα�: 1 ≤ ρ 0 < ∞g (A3)

and

u�αρ�ρ� ≡maxfuα�ρ 0�g (A4)

l�αρ�ρ; ϵα� ≡minflαρ�ρ 0; ϵα�g (A5)

with 1 ≤ ρ 0 ≤ ρ for α � ph and th, and ρ ≤ ρ 0 < ∞ for α � e and i.
The substitution of Eq. (A1) in Poisson’s equation

1

ρ

d

dρ

�
ρ
dφ

dρ

�
� −ρ20�ni − ne − βphnph − βthnth� (A6)

yields an integrodifferential equation for φ�ρ� that should be solved
with the boundary conditionsφ�1� � φp andφ → 0 as ρ → ∞. Once
solved (for instance, using a finite element method combined with a
Newton algorithm [17]), the total current J in Eq. (1) is

J

J0
≡ jLWT�φp� �

X
α

2Gα���
π

p
Z

∞

u�α
l�α�ϵα� exp�−ϵα� dϵα (A7)

with J0 ≡ eN0

�������������������������
kBTe∕2πme

p
as the random electron thermal current.

The sum should be extended to the four species (α � e; i; ph; th), and
we define the constants Gi � −

�����������
δi∕μi

p
, Ge � 1, Gth � −2βth

������
δth

p
,

Gph � −2βph
�������
δph

p
, and μi � mi∕me.
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