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Abstract

Axial-azimuthal instabilities of a Hall-thruster plasma discharge are investigated
using fluid model and a linear global stability approach, appropriate to the large axial
inhomogeneity of the equilibrium solution. Electron pressure and electron inertia
are considered in both the equilibrium and perturbed solutions. Fourier transform
in time and azimuth are taken and the dispersion relation for the resultant Sturm-
Liouville problem governing the axial behavior of the modes is numerically obtained.
The analysis, focused in mid-to-high frequencies and large wavenumbers identifies two
main instability types. The dominant mode develops in the near plume at 1-5 MHz and
azimuthal mode numbers ∼ 10-50, has a weak ion response and seems to be triggered
by negative gradients of the magnetic field. The subdominant mode develops near
the anode at 100-300 kHz and azimuthal mode numbers ∼ 1-10, and seems of the
rotating-spoke type. Both instabilities are well characterized by investigating their
oblique propagation, the influence of design and operation parameters, and the effects
of anode-cathode electric connection, electron inertia, and temperature perturbations.
The possible impact of these instabilities on electron cross-field transport is estimated
through a quasilinear approach, which yields a spatially-rippled turbulent force.

1 Introduction

Instabilities and their role in electron cross-field transport is the main open problem in
Hall-effect thruster (HET) discharges. Although oscillations modes within a large range of
frequencies and wavevectors have been observed in experiments and simulations [1] there
is not yet a fully established classification and characterization of them. Among all oscilla-
tion modes, azimuthal ones are potential candidates to contribute to cross-field transport
through, at least, a net azimuthal electric force coming from correlated oscillations of
plasma density and azimuthal electric field [2, 3].

Among the different lines of research, linear stability analyses provide the basic stage in
order to identify the instability modes and characterizing them physically. Linear stability
studies can be based on either kinetic or fluid formulations, and they can be local (generally
limited to a given axial section of the HET discharge) or global (dealing with the whole
extension of the discharge). Kinetically based studies are generally local, due to their
high complexity, and, in the context of HET plasmas, lead to dispersion relations for
the electron-cyclotron drift instability [4, 5, 6, 7] and the modified two-stream instability
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[8, 9, 10]. Fluid formulations are amenable to local and global studies and the modal
families resulting are quite diverse. Global analyses, which take into account the large
inhomogeneity of the plasma discharge, are more consistent and localize the regions where
instabilities develop.

A stationary axial model of the inhomogeneous HET discharge [11, 12] was used by Escobar
and Ahedo to carry out linear global stability studies at both low-frequencies (the 10-
100 Khz range, say) and high-frequencies (the 1-10 MHz range, say), with azimuthal
wavemodes of order unity[13, 14]. The papers included an extensive literature review on
the subject, that we, thus, omit here. The low-frequency global analysis [13] was quite
extensive: equilibrium and perturbation models kept all relevant terms, the central role of
ionization instabilities was highlighted, as well as the relation with experimental evidence,
and the comparison with a previous local analysis [15] was made.

The high-frequency global analysis [14], centered in the MHz range, was more limited in
scope. First, several simplifications were applied to the perturbation model in order to
recover the global dispersion relations of previous studies on Rayleigh and lower-hybrid
instabilities by Litvak and Fisch [16] and Kapulkin et al. [17, 18]. Second, the analysis
was limited to low azimuthal mode numbers. And third, electron pressure was ignored,
which is now believed an important shortcoming inside the HET chamber. More recently,
Sorokina et al. [19] discussed the existence of drift-gradient, near-anode modes using
typical plasma-parameter profiles and a global dispersion relation that coincides with the
collisionless limit of reference [14] except for the treatment of the compressibility of the
electron velocity field; both models ignore the electron pressure. Marusov et al. [20] apply
the same logic than references [14] and [19] to a magnetron-type geometry with a constant
magnetic field. Romadanov et al. [21] have also discussed a global perturbation model
aiming at the regimes of drift-gradient and lower-hybrid instabilities [22, 23]. The model
has the peculiarity of being applied to a fully empirical equilibrium solution, where 7/8
of the domain corresponds to the external plume, and, similarly to Refs. [14, 19, 20], the
perturbation problem is simplified into a second-order differential equation for the electric
potential perturbation.

The present work analyzes global fluid instabilities of the inhomogeneous HET discharge in
the mid-to-high ranges of both frequency and azimuthal wavenumber, but always respect-
ing the limits of validity of the multi-fluid formulation, i.e. frequencies and wavenumbers
much smaller, respectively, than the electron gyrofrequency and the inverse of the electron
gyroradius. Compared to the previously mentioned global analyses, the axial-azimuthal
model considered here keeps fully the effects of: (i) the electron pressure, in order to cover
both the subsonic and supersonic regions of the discharge; and (ii) the electron inertia, in
order to assess their relevance in equilibrium and perturbation solutions, and turbulence-
based forces. In references [14, 21, 19, 20], electron inertia was included directly as a small
correction to the leading E ×B drift velocity in the final mathematical model.

Several studies with nonlinear particle-in-cell simulations are proposing the turbulent elec-
tric force generated by electron-drift kinetic instabilities as the main driver of the anoma-
lous cross-field transport of electrons in HET discharges [24, 3, 25, 7, 26]. The fluid insta-
bilities discussed here develop in a frequency range not far from the above kinetic ones.
This has motivated us to consider the quasilinear extension of the global fluid model, based
on estimating the quadratically correlated terms in the electron momentum equation, in
order to speculate on the possible contribution to anomalous transport of the electric and
inertia forces generated by those fluid instabilities.
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The zeroth and first-order formulations of the axial-azimuthal model, and the equilibrium
solution are presented in Sec. 2. The fluid model assumes quasineutrality except at the
anode sheath. The inclusion of electron azimuthal inertia in the equilibrium solution is
rather novel. Since the low frequency range is out of the scope here, neutral dynamics are
disregarded in the first-order problem.

Sections 3 and 4 analyze the eigenvalues and eigenmodes of the global dispersion relation
of a ‘nominal model’, with no electron inertia effects in equilibrium and no temperature
perturbations. This case is very comparable with the majority of local analyses in the
literature [27, 23, 28] and shows a manageable number of unstable branches. A dominant
near-plume and a subdominant near-anode instabilities are identified. The quasineutrality
and axial-wavenumber spectrum of these instabilities are checked, and an investigation of
design and operation parameters is conducted in order to assure the robustness of the
characterization of these instabilities.

Section 5 investigates how the dispersion relation and the resulting eigenmodes are mod-
ified in ‘off-nominal models’, in particular when zeroth-order electron inertia is included
or when electron temperature perturbations are allowed. Section 6 analyzes the domi-
nant perturbation forces in the electron momentum equation and attempts to estimate
the relevance of the instabilities studied here in the electron cross-field transport.

2 Model Formulation

A time-dependent, axial-azimuthal, fluid model of a Hall thruster is considered. Since the
radial direction is excluded, plasma magnitudes will be in fact radially-averaged values,
while the plasma interaction with radial walls is included as source terms in the axial-
azimuthal model. In particular, for a generic vector variable v(z, y, t), its divergence will
be expressed as

∇ · v = ∇̂ · v + v′w, ∇̂ · v =
∂vy
∂y

+
1

Ac

∂

∂z
(Acvz) , (1)

where: y = Rθ is the azimuthal arc (with R the annular channel mid-radius), z is the axial
coordinate, Ac is the cross-sectional area of the plasma beam, and v′w is the radial wall
contribution to magnitude v(z, y, t). As sketched in figure 1, the plasma domain goes from
the anode A (at z = 0) to the chamber exit E (at z = LE) and the external cathode (at
z = LN), which is treated here as an infinitely-thin source of electrons. This assumption
decouples the current-free region downstream of the plume, which is here left out of the
analysis. Since the radial direction is omitted, the plasma is quasineutral everywhere
except at the infinitely-thin Debye sheath next to the anode, B being the sheath edge in
figure 1.

The plasma is constituted of neutrals, singly-charged ions and electrons, with subscripts
n, i, and e, respectively. The equations for the quasineutral plasma are based in previous
works by Ahedo and co-workers [11]. Using conventional notation, they are the following:

∂nn
∂t

+ ∇̂ · (nnun) = −n(νp − νw), (2)

∂n

∂t
+ ∇̂ · (nui) = n(νp − νw), (3)

3

Page 3 of 36 AUTHOR SUBMITTED MANUSCRIPT - PSST-103934.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 Acc

ep
ted

 M
an

us
cri

pt



A B D S E
N

Figure 1: Schematic representation of the plasma discharge in a Hall thruster.
ṁ is the mass flow, Vd is the discharge voltage, Id the discharge current, and
IiN is the ion current flowing downstream. The electron current flowing from
anode A to neutralizer N, −Id, splits into the downstream neutralizing current,
IN+ = IiN, and the upstream ionizing current IeN− = Id − IiN. E is the chamber
exit, B is the anode sheath edge, D is the ion stagnation point, and S is the
ion sonic point. Ac(z) is the effective cross-section area.

∂n

∂t
+ ∇̂ · (nue) = n(νp − νw), (4)

minn

(
∂un
∂t

+ un · ∇un
)

= min[νw (unw − un) + νin (ui − un)] (5)

min

(
∂ui
∂t

+ ui · ∇ui
)

= −en∇φ+minνi (un − ui) , (6)

men

(
∂ue
∂t

+ ue · ∇ue
)

= −∇ (nTe) + en (∇φ− ue ×B)−menνeue, (7)

∂

∂t

(
3

2
nTe

)
+ ∇̂ ·

(
5

2
nTeue + qe

)
= ue · ∇ (nTe)− nνpEinel − nνweTe +menνeu

2
e, (8)

0 =
5

2
nTe∇Te + eqe ×B +meνeqe. (9)

In equations (2)-(4): νp is the plasma production (i.e., ionization) frequency, and nνw is
the source term for particle losses at radial walls. Equations (5)-(7) are a combination
of the corresponding species momentum and particle conservation equations. In equation
(5): unw is the effective neutral velocity from plasma recombination at lateral walls, νin is
the frequency of charge-exchange collisions, and neutral pressure has been neglected. In
equation (6): φ is the electrostatic potential, ion pressure and magnetization have been
neglected, and νi = νin + νp is the total collision frequency for ions. In equation (7): B is
the applied magnetic field and

νe = νen + νei + νwm + νt (10)

is an effective collision frequency for electrons, which includes contributions from electron-
neutral collisions (νen), electron-ion collisions (νei), effective wall-collisionality (νwm), and
turbulent transport (νt). In equation (8): Einel is the effective ionization-plus-excitation
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energy cost per ionization event, and nνweTe accounts for energy losses at lateral walls.
Appendix A compiles the auxiliary models for all the collisionality terms included in the
model. The effective cross-section area of the beam, Ac, is taken constant inside the
channel and follows dAc/dz = 4πR(TeE/mi)

1/2/uzi in the plume.

Azimuthal fluxes are considered relevant only for electrons, so that

un = uzn1z, ui = uzi1z, ue = uye1y + uze1z,

and the electron heat flux is qe = qye1y + qze1z. The magnetic field is approximated as

B(z) = 1r Bm exp

[
−(z − zm)2

L2
m

]
, (11)

where zm (generally at the thruster exit zm = LE) is the location of the maximum field
Bm, and Lm determines the rate of decay of the magnetic field in the thruster, which is
generally different inside (Lm,in) and outside (Lm,out) the thruster.

Axial-azimuthal oscillatory modes in a Hall thruster discharge are studied as small pertur-
bations of the axisymmetric equilibrium solution of the above model. Under this approach,
the plasma variables are expressed as

ϕ(y, z, t) = ϕ0(z) + ϕ̃1(y, z, t), (12)

where ϕ represents every plasma variable, ϕ0 is the equilibrium part and ϕ̃1 is the per-
turbation part, satisfying |ϕ̃1| � |ϕ0|. When expanding equations (2)-(8) in this way, the
leading (or zeroth) order yields a system of ordinary differential equations that determines
the axial equilibrium solution. The next order yields the set of linear perturbation equa-
tions with axially-varying coefficients, which depend on the equilibrium solution. Since
the equilibrium solution is azimuthally homogeneous, the Fourier transform in both t and
y of the perturbation equations can be taken, which is equivalent to write every first-order
variable as

ϕ̃1(z, y, t) = Re{ϕ1(z, ky, ω) exp (−iωt+ ikyy)}, (13)

where ky is the real azimuthal wavenumber, ω = ωr+iγ is the complex (angular) frequency,
and ϕ1(z, ky, ω) is the complex amplitude of the perturbations, which keeps the axial
dependence. Formally, due to azimuthal periodicity only integer mode numbers kyR can
exist, but this restriction will add nothing relevant to the analysis hereafter.

2.1 Equilibrium solution

The stationary (∂/∂t = 0) axisymmetric (∂/∂y = 0) form of the set of equations (2)-(8),
governing the plasma equilibrium solution, reads

− d

dz
(Acnn0uzn0) =

d

dz
(Acn0uzi0) =

d

dz
(Acn0uze0) = Acn0 (νp − νw) , (14)

minn0uzn0
duzn0

dz
= min0 [νw (uznw − uzn0) + νin (uzi0 − uzn0)] , (15)

min0uzi0
duzi0

dz
= −en0

dφ0
dz

+min0νi (uzn0 − uzi0) , (16)

5
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0 = − d

dz
(n0Te0) + en0

dφ0
dz

+ en0uye0B −men0νeuze0, (17)

men0uze0
duye0

dz
= −en0uze0B −men0νeuye0, (18)

d

dz

(
5

2
n0Te0uze0 + qze0

)
= uze0

d

dz
(n0Te0)− n0νpEinel − n0νweTe0

+men0νeu
2
e0 −

(
5

2
n0Te0uze0 + qze0

)
d lnAc

dz
, (19)

qze0 = −5n0Te0
2me

νe
ν2e + ω2

ce

dTe0
dz

. (20)

In equation (17), axial electron inertia has been discarded since it is always negligible.
However, azimuthal electron inertia can be relevant and has been kept in equation (18).
In equation (20), ωce = eB/me stands for the electron gyrofrequency and the azimuthal
heat flow equation has been used in order to eliminate qye0 from the system. The continuity
equations (14) can be combined by pairs and integrated to yield

Acmi (nn0uzn0 + n0uzi0) = const = ṁ, (21)

Acen0 (uzi0 − uze0) = const = Id, (22)

being ṁ and Id, the total mass flow and the electric current flowing between anode and
cathode, respectively. The discharge current is also the current flowing through the exter-
nal anode-cathode circuit, since the plume downstream of point N is assumed current-free.

The rearrangement of the above ordinary differential problem, shows the possible existence
of singularities at sonic points, defined by uzi0 = ±cs0, with cs0 =

√
Te0/mi. For instance,

the equation for the derivative of the ion velocity reads(
Te0 −miu

2
zi0

) duzi0
dz

= G0, (23)

with

G0 = Te0 (νp − νw)− uzi0Te0
d lnAc

dz
− eBuzi0uye0

+miνiuzi0 (uzi0 − uzn0)−
2me

5n0Te0

ν2e + ω2
ce

νe
uzi0qze0. (24)

The axial boundary conditions for the equilibrium problem are the following.

1. The total mass flow ṁ injected at the anode is known.

2. The injection velocity of neutrals at the anode uzn0A is known and the sheath is
transparent for neutrals.

3. The ion velocity is backwards and sonic at the anode sheath edge, uzi0B = −cs0B.

4. The electric potential is set zero at the cathode, φN = 0.

6
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5. Taking then φ0A = Vd, the electric potential at the anode sheath edge is

φ0B = Vd + φ0AB, φ0AB =
Te0B
e

ln
c̄e0B

4|uze0B|
, (25)

where c̄e =
√

8Te/πme is the electron thermal velocity.

6. The heat flux at the anode sheath edge is [29]

qze0B = n0Buze0B

(
eφ0AB −

1

2
T0eB

)
. (26)

7. There is a regular forward sonic transition inside the channel, at an unknown location
S, satisfying

uzi0S = cs0S, G0S = 0. (27)

8. The temperature of injected electrons at the cathode N, Te0N, is known.

9. The electrons are emitted at N with null azimuthal velocity, i.e. uye0N = 0.

Since Vd is an input, the discharge current Id is an output. The opposite choice is valid
too. The circuit boundary condition does not change the equilibrium solution but it does
on the perturbation modes, as it will be shown later.

Table 1: Nominal simulation case parameters, based on a SPT-100-type Hall
thruster, used in this work and defined in the main text. Ac,in is the chamber
cross-section area.

ṁ 4.75 mg s−1 Vd 300 V

Bm 251 G zm 2.5 cm

LE 2.5 cm LN 3.35 cm

Ac,in 40 cm2 R 4.25 cm

TeN 5 eV uznB 300 m s−1

Lm,in 1.5 cm Lm,out 0.5 cm

The parameters of the nominal simulation case, based on previous works [13, 14], are gath-
ered in table 1. The resulting stationary solution is plotted in figure 2. The main features
of this solution were thoroughly discussed in [30, 29, 11]. The only interesting novelty
here is the inclusion of azimuthal electron inertia. This is motivated by consistency, since
electron azimuthal inertia is known to be important in high-frequency, short wavelength
perturbation modes, such as lower-hybrid oscillations [31, 23]. To assess the relevance of
electron azimuthal inertia in the stationary solution, figure 2 plots the solution for two
different models. First, there is Model 0A excluding the azimuthal electron inertia, when
the electron azimuthal momentum equation (18) reduces to the algebraic relation

uye0 = −ωce
νe
uze0, (28)

(and the ninth boundary condition above is not applied). Then, there is Model 0B, which
includes the electron azimuthal inertia term. The comparison of Models 0A and 0B shows
that, in Model 0B, unmagnetized electrons emitted from the cathode with zero azimuthal

7
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Figure 2: Stationary axial response of Model 0B for parameters in Table 1.
Ion-stagnation (D), ion-sonic (S) and channel exit (E) are marked with crosses.
Only B(z) is an input, its maximum being at E. In (a)-(f), red dashed lines
correspond to the inertialess-electron Model 0A. In (g): the two forces con-
tributing to the azimuthal electron drift. In (h): relative gradient lengths of
n, uzi, uze, and uye.

velocity adapt, within a thin region, to the solution of Model 0A. Also, close to the anode,
the near singularity of duye0/dz makes uye0 significantly lower when inertia is considered;
this reduction near the anode affects uze0 too. For the rest of regions and plasma variables,
Models 0A and 0B yield practically the same solution.

Neglecting the small collisional contribution to the axial momentum equation (17), this
states that azimuthal electron velocity is approximately the sum of the E × B and dia-
magnetic drifts,

uye0 = − 1

B

[
dφ

dz
+

1

en0

dpe0
dz

]
> 0.

Figure 2(g) shows that each of these contributions dominates in separated regions of the
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discharge and both yield an azimuthal current along +y (notice that both drifts are neg-
ative only in regions where they are not dominant). The dominance of pressure gradients
over the electric field in the inner part of the chamber, and the ion sonic transition there
are two clear features highlighting the importance of electron pressure effects in an stability
analysis of the global discharge.

A second aspect highlighting the importance of a global analysis is the high inhomogeneity
of the equilibrium solution. Figure 2 (h) depicts the inverse of the local gradient length of
main plasma magnitudes,

kϕ(z) =

∣∣∣∣ 1

ϕ0

dϕ0

dz

∣∣∣∣ (29)

for a generic plasma variable at equilibrium, ϕ0. Leaving apart the singular behaviors near
the anode sheath edge and the ion stagnation point (uzi0 = 0), the plasma profiles have
kϕR = O(10). A local stability analysis is fully justifiable only for perturbation modes
with axial wavenumbers kz satisfying the Boussinesq approximation kzR� kϕR = O(10).
Otherwise only the global analysis of stability is fully consistent.

In order to evaluate spatial and time scales in the perturbation modes, typical values of
the equilibrium solution are: ne0 ∼ 1018 m−3, Te0 ∼ 20 eV, B ∼ 150 G, ion sound velocity
cs0 ∼ 3.8 km s−1, electron thermal velocity c̄e0 ∼ 1900 km s−1, cyclotron frequency
fce = ωce/2π ∼ 400 MHz, lower-hybrid frequency flh ∼ 0.86 MHz, axial-transit frequency
fz ∼ uzi0/2πLN ∼ 90 kHz, azimuthal transit frequency fθ ∼ uye0/2πR ∼ 3.5 MHz, Debye
length λD ∼ 33 µm, and electron gyroradius `e ∼ 720 µm. This yields R/`e ∼ 60 and
`e/λD ∼ 22.

2.2 Linear perturbation model

As aforementioned, the evolution of small perturbations to an equilibrium plasma is gov-
erned by the first-order expansion of equations (2)-(8). Nonetheless, perturbations of
collision frequencies have been ignored (which is not fully consistent in all cases), as well
as, the perturbations of neutral variables (which is correct for the high-frequency range of
interest here). Then, the first order equations for continuity and momentum of ions and
electrons are

uzi0
dn1
dz

+ n0
duzi1

dz
=

(
iω − duzi0

dz
+ νp − νw

)
n1 −

dn0
dz

uzi1 ≡ F1, (30)

uze0
dn1
dz

+ n0
duze1

dz
=

(
iω − ikyuye0 −

duze0
dz

+ νp − νw
)
n1 −

dn0
dz

uze1 − ikyn0uye1 ≡ F2,

(31)

uzi0
duzi1

dz
+

e

mi

dφ1
dz

=

(
iω − duzi0

dz
− νi

)
uzi1 ≡ F3, (32)

uze0
duze1

dz
+

Te0
men0

dn1
dz
− e

me

dφ1
dz

+
1

me

dTe1
dz

=

(
iω − ikyuye0 −

duze0
dz

− νe
)
uze1

+
eB

me
uye1 +

Te0
men20

dn0
dz

n1 −
1

men0

dn0
dz

Te1 ≡ F4, (33)
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uze0
duye1

dz
= (iω − ikyuye0 − νe)uye1 −

(
duye0

dz
+
eB

me

)
uze1

− iky
Te0
men0

n1 + iky
e

me
φ1 − iky

1

me
Te1, (34)

and the energy equations for electrons are

dqze1
dz

+
3

2
uze0n0

dTe1
dz

+
3

2
uze0Te0

dn1
dz

+
5

2
n0Te0

duze1
dz

=

(
iω

3

2
Te0 − iky

3

2
uye0Te0

− 3

2
uze0

dTe0
dz
− 5

2
Te0

duze0
dz

− νpEinel − νweTe0 +meνeu
2
ye0

)
n1

+

(
−3

2

dn0Te0
dz

+ 2meνen0uze0

)
uze1 +

(
−iky

5

2
n0Te0 + 2meνen0uye0

)
uye1

+

(
i
3

2
ω − iky

3

2
uye0 −

3

2

uze0
n0

dn0
dz
− 5

2

duze0
dz

− νwe −
5

2

Te0
meνe

k2y

)
n0Te1 + iky

ωce
νe
qze1, (35)

5

2
n0Te0

dTe1
dz

= −5

2
Te0

dTe0
dz

n1 −
5

2
n0

(
dTe0
dz

+ iky
ωce
νe
Te0

)
Te1 −me

ν2e + ω2
ce

νe
qze1 ≡ F5,

(36)

Under the limits of cold electrons (implying hypersonic ions) and

duzi0/dz, kzuzi0, kzuze0 � ω, kyuye0, νe � ωce

(with kz an effective axial wavenumber) the mathematical complexity of the problem
gets significantly reduced and the perturbation problem resembles the one by Escobar
and Ahedo [14]. Furthermore, if electron collisions are assumed to be even smaller (i.e.,
νe � ω, kyuye0 � ωce) the perturbation problem becomes collisionless and similar to that
of Sorokina et al. [19].

The boundary conditions for the perturbation model are perturbations of those for the
equilibrium problem, and are homogeneous for the stability analysis. They are the follow-
ing.

1. The ion velocity satisfies the Bohm condition at B,

uzi1B = − cs0B
2Te0B

Te1B = − 1

2mics0B
Te1B. (37)

As it will be shown, the first-order problem is singular at the anode-sheath edge.
This condition ensures the validity of the small-perturbation assumption close to the
anode singularity [32]. The numerical solution of the perturbation problem verifies
that this is required for moderate growths of perturbations around B and for good
convergence behaviour with a suitable number of grid points.

2. The potential perturbation is zero at the anode, φ1A = 0. Then, assuming an
instantaneous response of the anode sheath to perturbation, the linearized sheath
potential-fall condition yields

φ1B = φ1A +

(
eφ0AB

Te0B
+

1

2

)
Te1B
e
− Te0B
euze0B

uze1B. (38)
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3. The heat flux at the sheath edge satisfies

qze1B =

(
eφ0AB −

1

2
Te0B

)
uze0Bn1B

+

(
eφ0AB −

3

2
Te0B

)
n0Buze1B +

eφ0AB

Te0B
n0Buze0BTe1B. (39)

4. A regularizing boundary condition at point S is required to ensure smooth behaviour
close to the sonic point, similarly to the equilibrium problem. The system of first
order fluid equations written in the form of equations (30)-(36) hides the role played
by sonic points in the model. From equations (30)-(33) and (36), the derivative of
uzi1 satisfies

n0
(
Te0 −miu

2
zi0

) duzi1
dz

= G1,

G1 = Te0F1 +meuze0uzi0F2 − n0uzi0
(
miF3 +meF4 −

2

5

F5

n0Te0

)
,

where uze0 � c̄e0 was used, and functions F1 to F5 are defined in equations (30)-(33)
and (36), respectively. Thus

G1S = 0 (40)

is required to avoid a singularity at the zeroth-order interior sonic point in the per-
turbation problem (the anode-sheath edge is, however, singular). The interior sonic
point of the perturbed plasma is shifted with respect to the zeroth-order position
[32] but this displacement is not needed to solve the perturbation problem and can
be computed in post-processing.

5. The perturbation of the discharge current is zero at the cathode,

Id1N ≡ AcNe [(uzi0N − uze0N)n1N + n0Nuzi1N − n0Nuze1N] = 0. (41)

The alternative case of zero perturbation of the cathode potential, φ1N = 0, will be
treated later too.

6. The azimuthal electron velocity perturbation is zero at the cathode, uye1N = 0.

7. The temperature of electrons injected at N is known, yielding Te1N = 0.

For a given equilibrium solution, the parameters of the linear perturbation problem (de-
fined in the complex plane) are the real wavenumber ky and the complex frequency
ω ≡ ωr + iγ. For each ky, the problem admits eigenvalues ω and eigenmodes (i.e. non-
trivial solutions) in the form of the perturbation magnitudes ϕ1(z, ky, ω) in equation (13).
Eigenmodes with γ > 0 are unstable. Modes with phase velocity ωr/ky > 0 propagate in
the +uye0 (i.e +y) direction. It is enough to analyze the parametric region ky > 0 since,
as demonstrated in Appendix B, the region ky < 0 yields the same perturbation m The
numerical method to solve this eigenvalue (or Sturm-Liouville) problem is explained in the
Appendix C.

3 Near-plume and near-anode instabilitiess

Stability results will be hereafter analyzed for several simulation settings. This and
next section discuss a, say, nominal model (or Model I) consisting of (i) the stationary,
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Figure 3: Nominal model. Main eigenvalues of global dispersion relation. Each
unstable branch is tagged with a number and an instability type. Red and blue
colours denote propagation along +y and −y, respectively.

inertialess-electron Model 0A, and (ii) the perturbation model with zero electron tempera-
ture perturbations (i.e. Te1 = 0), thus consisting of Eqs. (30)-(34), and (iii) the perturbed
boundary conditions defined before. Parameters of table 1 will be used, except in sections
4.3 and 4.4, devoted to parametric investigation where the effects of varying the magnetic
field slope, the discharge voltage, the mass flow and the channel length, are analyzed.
Three off-nominal models (II, II, and IV) are defined and discussed in Section 5.

In Sturm-Liouville problems, such as the present one, the number of eigenvalues of the
global dispersion relation can be, in principle, infinite. The interest is, of course, in the
most unstable modes. The instability analysis here will be centered in unstable modes
with: (real) frequencies f = |ωr|/2π ∼ 0.5−50 MHz, well below the electron gyrofrequency
(ωce/2π ∼ 400 MHz); and azimuthal mode numbers kyR < 50 (i.e azimuthal wavelengths
down to λy ≡ 2π/ky ∼ 5 mm), also within the applicability range of the present fluid
formulation.

The unstable solutions of the dispersion relation for the nominal model are plotted in
figure 3. There are up to 3 families of high-frequency unstable modes plus a low-frequency
(f ∼ 7.5 kHz) unstable family. This last one [branch 0 in figure 3] is characterized by
intense density oscillations in the ionization region, which correspond to the breathing
and rotating-spoke modes of Ref. [13] but incompletely characterized in the present mid-
to-high frequency model (which neglects neutral density perturbations). Hereafter that
low-frequency mode will be omitted from figures and discussions.

Then, in the range f > 100 kHz of interest, there are three branches of unstable modes.
Based on the region where these modes develop preferentially, they are named Near-Anode
Instability (NAI) [branch 1 in figure 3] and Near-Plume Instability (NPI) [branches 2 and
3]. Figure 3 states that the global perturbation response of the nominal model is dominated
by the NPI mode in branch 2 with kyR = 23 (i.e. λy = 1.16 cm) and f = 2.87 MHz. In
addtion, the NAI mode of branch 1 with kyR = 3 (i.e. λy = 8.90 cm) and f = 241 kHz
is considered a subdominant mode, since it develops in a different region of the discharge
and thus can still be present in the long-time response. Branch 3 is just a second NPI
mode, likely overshadowed by branch 2 in the long-time response.
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Figure 4: Nominal model. Instantaneous spatial response for the subdominant
NAI mode, with kyR = 3 and f = 241 kHz. In this and similar figures, only three
azimuthal wavelengths are plotted and perturbations amplitudes correspond
to φ̃1,max = 1 volt.

3.1 The subdominant Near-Anode Instability

The NAI in figure 3 presents low azimuthal mode numbers, kyR = 1.3-6.0 (λy ∼ 4.4-21
cm), and mid-frequencies f = 160-290 kHz. Instantaneous 2D spatial profiles of the main
NAI mode (kyR = 3) are shown in figure 4. The plots represent perturbation solutions,
i.e. the eigenmodes defined in equation (13). They scale linearly with, say,

φ̃1,max = max{φ̃1(y, z, t)} ∀y, z. (42)

which has been set to equal to 1 volt in figure 4.

It is clearly observed that the NAI develops mainly in the near-anode region (from B to
D in figure 2), but some remnants are observed in the rest of the discharge, in particular
for φ̃1 around the thruster exit E. Azimuthally, the NAI propagates with an azimuthal
phase velocity ωr/ky = 21.5 km/s for kyR = 3 in the +uye0 direction; remind that this
velocity is a diamagnetic drift near the anode. The axial propagation of the NAI is not
identical for all plasma variables as the change of inclination of the wavefronts in figure
4 illustrates. A Fast Fourier transform (FFT) analysis discussed later will identify the
main axial wavenumbers kz of the perturbed variables. Near the anode, ñ1, ũzi1, and φ̃1
propagate axially outwards (i.e., the dominant term in the FFT has kz < 0), while electron
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velocities do not propagate. Around the chamber exit, the propagation of φ̃1 has changed
and is directed towards the plume (i.e. kz > 0).

The high-frequency global analysis by Sorokina et al. [19] discusses the existence of a near-
anode modes with kyR from 1 to 5, frequencies of 260-670 kHz and propagation in the
+uye0 direction. There are however differences with the present case, that could be related
to model limitations (some of them also common to the global models of [14] and [20]),
such as the lack of pressure forces on both the equilibrium and perturbation problems and
the assumption of marginal electron inertia effects. Also, the local analysis by Marusov et
al. [33] predicts near-anode instabilities within similar frequency range and suggests that
pressure force has a non-negligible impact on the resultant wavelengths, frequencies and
growth rates of the unstable modes.

Rotating-spoke instabilities are also near-anode oscillations propagating in the +uye0 di-
rection with similar λy but generally at frequencies below 100 kHz [2, 34]. An exception
are rotating spokes with f ∼ 79-210 kHz observed in a cylindrical HET [35]. This dis-
crepancy with respect to experimentally observed frequencies of near-anode modes was
already noted in reference [19]. The formation of wave packets with a reduced envelope
frequency, when unstable modes with similar ωr and γ co-exist, was identified as a possible
explanation.

3.2 The dominant Near-Plume Instability

For the nominal model, figure 3 shows that the main NPI branch [number 2 in figure 3]
develops at higher mode numbers and frequencies than the NAI. It has kyR ∼ 19-23 (i.e.,
λy ∼ 1.40-1.16 cm), and f ∼ 1.1-3.3 MHz. The azimuthal propagation is along +uye0,
which is now due to the E × B drift. Instantaneous 2D spatial profiles of the dominant
NPI mode, with kyR ∼ 23 and f = 2.87 MHz (thus, ω/ky ' 45.9km/s) are shown in figure
5. The oscillations develop almost exclusively in the near plume, which coincides here
with the region having dB/dz < 0. Concerning the direction of propagation of the waves,
ñ1 and ũzi1 propagate obliquely inwards (i.e. with positive kz). The propagation of φ̃1,
ũze1 and ũye1 is azimuthal. For ũye1, there is an abrupt change of phase, close to 180◦,
at the mid-plume. This event takes place when dφ̃1/dz changes sign, due to the inversion
of the azimuthal E × B drift component in the perturbation problem. Additionally, ũye1
presents small-amplitude short-wavelength axial waves.

The NPI modes of branch 3 in figure 3 propagate azimuthally along −y. Since they develop
in the same discharge region of branch 2 with a smaller γ they will not be observed in the
long-term perturbed plasma response, so they are dropped from the discussion here.

The NAI and NPI modes present interesting differences on the relative perturbations
of the different plasma magnitudes. First, ñ1/φ̃1 and ũzi1/φ̃1 decrease by two orders
of magnitudes from the NAI to the NPI, suggests that the NPI is mainly an ‘electron
mode’. Second, ñ1/n0 � eφ̃1/Te0 for the NPI mode, which has consequences on fulfilling
quasineutrality (see Sec. 4.1). Third, while the NAI has ũze1 � ũye1, the NPI has
ũze1 ∼ ũye1, implying that ũze1/uze0 � ũye1/uye0, so that the perturbed axial electron
inertia is as relevant as the azimuthal one for the NPI mode (see Sec. 6.1).

The development of oscillations in the discharge region where dB/dz < 0 suggest a connec-
tion of the (global) NPI with (local) high-frequency drift-gradient instabilities [23, 28, 33],
originally analyzed by Esipchuk and Tilinin [31]. The dispersion relation for these waves
points at density and magnetic gradients as the main instability mechanisms. In the local
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Figure 5: Nominal model. Instantaneous spatial response for the dominant
NPI mode: kyR = 23 (i.e. λy = 1.16 cm) and f = 2.87 MHz.

stability analyses, the values of dB/dz and dn0/dz leading to instabilities do not follow
simple criteria and depend on the model assumptions and other local properties of the
plasma. For example, the local analysis by Marusov et al. [33] shows near-plume drift-
gradient modes, within the wide frequency range 0.01-12.16 MHz, that are only unstable
when accounting for finite electron temperature. The effect of the magnetic field shape on
the NPI modes is further investigated later.

Finally, counter-propagating azimuthal oscillations have been observed in some empirical
results in the literature [36], which resemble the main and secondary NPI modes here.
These observations have been made in the frequency range 0.9-6 MHz, but in the context
of the electron-cyclotron drift instability. The azimuthal scales are smaller, generally
satisfying ky`e ≥ O(1), outside the range of analysis of the fluid models here.

4 Further investigation of the NAI and NPI instabilities

This section analyzes more in detail the characteristics of the NAI and NPI modes for the
nominal model.
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(a) Nominal model, NAI
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(b) Nominal model, NPI
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(c) Model III, NPI
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(d) Model IV, NPI
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Figure 6: Assessment of quasineutrality in main instability modes. (a) Sub-
dominant NAI in nominal model. (b) Dominant NPI in nominal model. (c)
Dominant NPI in Model III, having kyR = 37.4 and f = 27.2 MHz. (d) Dom-
inant NPI in Model IV, having kyR = 25.1, f = 14.2 MHz. The noise in the
electric charge is due to the numerical second derivative of φ1 used for its
computation.

4.1 Plasma quasineutrality

The perturbation model has assumed the zero-Debye length limit, so perturbations are
quasineutral except in the perturbed anode sheath. Once the solution is known, the level
of compliance with quasineutrality can be assessed. The perturbed Poisson equation allows
to estimate the charge separation as

e (ni1 − ne1) = ε0

(
k2yφ1 −

d2φ1
dz2

)
, (43)

and to compare it with the quasineutral estimated charge density, en1. A value of λD,
based on n0 and Te0, very small compared to any other characteristic length of the problem
is enough to ensure the validity of the quasineutral assumption in the equilibrium solution.
For the kyR range considered in this work, kyλD is always very small. However, in the
first-order problem, and assuming kz ≤ O(ky), quasineutrality requires

ky
√
ε0φ1/en1 � 1, (44)

which is a more severe condition than kyλD � 1 when n1/n0 � eφ1/Te0, a situation
happening for the dominant NPI.

For the NAI and the NPI modes of the nominal model, figure 6 (a) and (b) plot both (ni1−
ne1) and n1, showing that |ni1 − ne1| � |n1|, thus validating the modes are quasineutral.
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However, figures 6(c)-(d) for off-nominal models discussed in section 5, will show that the
dominant NPI modes present non-neutral effects, which should be included in the global
perturbation model. That inclusion is far from immediate since the perturbation model is
built upon a stationary solution which is quasineutral, except for the anode sheath.

4.2 Axial wavenumbers

A standard local stability analysis solves the complex eigenfrequency for given azimuthal
and axial wavenumbers, that is ω(ky, kz). The present global stability analysis provides
the complex eigenfrequency for each azimuthal wavenumber ω(ky) and the complex eigen-
modes as functions of z. These eigenmodes do not correspond generally to normal modes
with a single kz. Indeed, the analysis of the NAI and the NPI in figures 4 and 5, respec-
tively, showed that the axial propagation is dependent on both the variable and the region
within the discharge.

(a) kyR = 3, f = 241 kHz
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(b) kyR = 23, f = 2.87 MHz
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Figure 7: Nominal model. Axial wavenumbers of n1, φ1 and uze1 from the
(normalized) axial FFT of the perturbed solution, for (a) the subdominant
NAI mode and (b) the dominant NPI mode.

The dominant axial wavenumbers of the instability modes can be obtained from the axial
FFT. The kzR-spectrum goes from a minimum of 2πR/LN ' 8 to a maximum of πR/∆z ≈
4000, where ∆z ≈ LN/1000 is the cell size used here to solve the Sturm-Liouville problem.
The axial FFTs of the modes of figures 4 and 5 are plotted in figure 7. The FFTs are done
on complex amplitudes and yield, in general, nonsymmetrical spectra on kz for each ky.
The sign of the dominant kz determines the principal direction of axial propagation. The
FFTs in figure 7 for each global mode show that the dominant kz is different for several
perturbation variables. The trends already identified in figures 4 and 5 are confirmed
here: for the NAI, the negative oblique propagation of ñ1, the positive and negative
oblique propagations of φ̃1, and the purely-azimuthal propagation of ũze1; for the NPI, the
positive oblique propagation of ñ1, a secondary high-kz mode on electron velocities (out
of the kzR limits of the figure), etcetera. The comparison of figures 2(h) and 7, yields that
the Boussinesq approximation, kz � kϕ, that could justify a local axial analysis, is not
satisfied.

4.3 Influence of the magnetic field slope

The previous analysis has shown that the NPI develops only outside point E, which,
for the chosen configuration, is both the thruster chamber exit and the location of the
maximum magnetic field. In this subsection the location of Bm is shifted away from the
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Figure 8: Nominal model. Variation of the magnetic field profiles. In left plots,
the magnetic field has (zm, Lm,out) = (1.5 cm, 0.5 cm), and the dominant NPI
eigenmode has (kyR, f) = (25.1, 2.36 MHz). In right plots, one has (zm, Lm,out) =
(1.5 cm, 1 cm) and (kyR, f) = (15.3, 1.46 MHz). First row: Axial profiles of
B and the stationary azimuthal electron velocity. Rows 2 to 4: instantaneous
profiles of the dominant mode. Green dash-dotted and cyan dashed vertical
lines indicate the locations of the maxima of B and uye0, respectively.
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chamber exit (still point E) in order to elucidate whether the change of the plasma jet
area and collisionality or, more likely, the slope of B(z) are driving the NPI. All the
equilibrium plasma variables are recomputed in every case according to the equilibrium
equations in section 2.1. Figure 8 shows the dominant NPI mode for two magnetic profiles
with zm = 1.5 cm, i.e. 1 cm inwards of E. The left case keeps constant the axial decay
length Lm,out, and the right one smooths that decay. The corresponding dominant NPI
modes have (kyR, f) equal to (25.1, 2.36 MHz) and (15.3, 1.46 MHz), respectively. In
the first row, together with B(z), uye0(z) is depicted, showing a maximum to the right
of zm. The other three rows plot the perturbation solution for the dominnat NPI mode
showing that while ñ1 and (unplotted) ũzi1 oscillations spread all over the dB/dz < 0
region, the electron-related oscillations are bounded approximately between the maxima
of B(z) and and uye0(z). The eigenvalue spectrum of the case with the slowest decay of
B(z) (unplotted), shows a significant shift of the NPI to smaller wavelengths kyR ∼ 13-19.
The behavior of the NPI under variations of B(z) reinforces the idea that these modes are
strongly related with dB/dz being negative. Local fluid instabilities, in the same order
of frequencies, driven by negative gradients of B (and n0) were studied by Esipchuk and
Tilinin [31] and have been recently revisited by several authors [23, 28].

4.4 Investigation of operation and geometrical parameters

In order to check the dependence of the NAI and NPI on the zeroth-order solution, the
perturbation problem is solved for different equilibrium solutions, obtained by modifying
discharge voltage, mass flow, or channel length. In order to have in each case an optimal
magnetic strength (with the plasma well attached to the anode) the maximum amplitude
of the magnetic field is tuned according to conditions of reference [12]. In each case, the
rest of parameters are as in table 1.

Figure 9 (top row) plots the influence of the discharge voltage, through cases Vd = 200 V,
300 V and 700 V. The NAI is favored by a low Vd, when its range of kyR is wider and
the growth rate is larger; its frequency increases slightly with Vd. The NAI is practically
absent for Vd = 700 V. As suggested before, those features are typical of rotating spoke
instabilities, as reported experimentally [37] and numerically [13]. With respect to the
NPI modes, as Vd increases, there is a shift on kyR toward higher wavenumbers but both
the amplitude of the kyR-range and the maximum growth rate do not change practically.
The frequency increases slightly with Vd, which agrees with empirical evidence on high-
frequency oscillations in Hall thrusters [38].

Figure 9 (middle row) plots the influence of the mass flow rate, simulating three different
flows. For the NAI, the kyR range is very sensitive to ṁ: at low values, the NAI disappears;
at high values, the range becomes wide and can even overlap the one of the NPI. At
low mass flows, the frequency of the oscillations decreases mildly. Similar trends were
identified in reference [13] for rotating spokes due to the displacement of the ionization
region. Nonetheless, NPI continues to be the dominant mode and presents a mild shift of
kyR with mass flow changes.

Figure 9 (bottom row) plots the influence of the channel length, LE, while keeping constant
the distance from exit to cathode (i.e. LN−LE). The ratio B(0)/Bm is also kept constant
throughout the cases, by adjusting Lm,in, in order to prevent the long-channel case from
having unrealistically low magnetic field close to the anode. The NAI gets less unstable
as the channel is shorter and, indeed, that unstable branch disappears for LE = 1.4 cm.
This is coherent with findings on the rotating spoke: they were observed originally in
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(Bottom) Effect of LE
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Figure 9: Nominal model. Effects on the dispersion relation of parametric
variation. In each case, parameters of table 1 are used except those explicitly
specified below. Contrary to other similar figures, for each case, only the
most unstable mode at each kyR is plotted. All eigenvalues correspond to
NPI modes, except those specifically marked. Cross and diamond markers
account for azimuthal propagation in the +y and −y directions, respectively.
(Top) Effect of discharge voltage: Vd = 200 V, Bm = 194 G (cyan); Vd = 300
V, Bm = 251 G (black, nominal case); and Vd = 700 V, Bm = 416 G (magenta).
(Middle) Effect of node mass flow: ṁ = 3.1 mg/s, Bm = 224 G (cyan); ṁ = 4.75
mg/s, Bm = 251 G (black, nominal case); and ṁ = 6.3 mg/s, Bm = 265 G
(magenta). (Bottom) Effect of the channel length: LE = 1.4 cm, Bm = 245
G (cyan); LE = 2.5 cm, Bm = 251 G (black, nominal case); and LE = 3.3 cm,
Bm = 251 G (magenta).
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a long-channel (∼ 10 cm) thruster [2] and PIC simulations suggest that they appear if
the anode-cathode distance is large enough [3]. The frequency and growth rate of the
dominant NPI do not change much with the chamber length but the mode number kyR
shifts towards higher values when reducing LE as a consequence of modifying the decay
of B(z) inside the channel. This points out that the near-plume instability is not totally
alien to gradients inside the chamber. An interesting novelty is the presence, for the
shortest channel, of a new pair of NPI branches with lower wavenumbers [’new NPI’ in
figure 9(bottom row)]. Interestingly, their dominant mode has a growth rate very close to
the one of the original pair of NPI branches, and will also be found again next.

5 Changes in the global fluid models

The following off-nominal models, named II, III and IV, are considered here. In section
5.1, Model II corresponds to the nominal one except for a change of a boundary condition
in the perturbation model. In section 5.2, Model III corresponds to the nominal one except
for the stationary Model 0B being used instead of the (electron inertialess) Model 0A. And
in section 5.3, Model IV corresponds to the nominal one except that Te1 perturbations are
admitted in the perturbation model.

5.1 Model II: Change of the circuit boundary condition

Depending on the anode-to-cathode electric circuit coupled to the plasma, the discharge
current or the discharge voltage are controlled. When solving the stationary problem, this
is not an issue, since results will be the same as long as the operational point in the current-
voltage curve of the thruster model is the same. However, fixing the current or voltage
does affect time-dependent perturbations and the global stability dispersion relations can
present differences. The nominal model here has considered a current-controlled response
with Id1N = 0, Eq. (41). Model II here changes from the boundary condition Id1N = 0 to
φ1N = 0 (which together with φ1A = 0, guarantees Vd1 = φ1A − φ1B = 0).

Figure 10 depicts main eigenvalues of the global dispersion relation for this voltage-
controlled case. The known branches 1 to 3 of the nominal model are just shifted moder-
ately, with no qualitative changes in the NAI and NPI modes. The most unstable mode in
branch 2 has now kyR = 25.5, f = 2.04 MHz, γ = 5.73 · 106 s−1. Beyond that, two addi-
tional branches, 4 and 5, of NPI type, appear, qualitatively identical to the ones found in
figure 9(bottom) for the short-channel. The main NPI mode in branch 4, has kyR = 11.0,
f = 3.0 MHz, and γ = 6.16 · 106 s−1. Therefore it is narrowly the globally dominant mode
for Model II. The eigenmodes of branch 4 (none of them depicted here) are very similar
to those in branch 2 except for slightly shorter axial wavelengths and a phase change in
ũze1 similar to that of ũye1 in figure 5(d).

An important conclusion of this particular study is that global instabilities are not de-
termined exclusively by the intrinsic plasma dynamics but also by the particular set of
homogeneous boundary conditions, an aspect out of the capabilities of local stability anal-
yses.

5.2 Model III: Inclusion of zeroth-order electron inertia

Model III considers, as stationary model, the more general Model 0B, instead of the
electron-inertialess Model 0A, both being depicted in Fig. 2. The main eigenvalues of the
resulting global dispersion relation are shown in figure 11. Branches 1 to 3 are just shifted
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Figure 10: Model II (imposing φ1N = 0). Main eigenvalues. Red and blue
colours denote azimuthal propagation in the +y and −y directions, respectively.
Branches 4 and 5 are new NPI modes.
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Figure 11: Model III (using the stationary Model 0B). Main eigenvalues. Red
and blue colours denote azimuthal propagation along +y and −y, respectively.
Branches 6 to 9 are new NPI modes.

versions of those of the nominal model in figure 3. Interestingly, the dominant modes in
NPI branches 2 and 3 (which counterstream azimuthally) have now very similar growth
rates. However, these two branches are now overshadowed by branches 6 to 9, all of NPI
type, with significantly higher frequencies. The dominant mode of Model III belongs to
branch 8, having kyR = 37.4 and f = 27.2 MHz. The eigenmodes are shown in figure 12.
However, there are two facts that make not reliable these modes. The first one are the
the particular behavior of the instability in the very thin region close to the neutralizer,
with very small axial wavelengths. These could be induced by the large values of duye0/dz
there and the boundary conditions at the infinitely thin cathode location. The second one,
partially related to the first one, is the failure of the quasineutrality condition, as shown
in figure 6(c). Therefore, a consistent stability analysis of Model 0B is going to require
considering a finite thickness cathode, the extension to the downstream plume, and the
consideration of non-neutral effects in the global perturbation model.

5.3 Model IV: Inclusion of temperature perturbations

This subsection analyzes the effect of allowing perturbations of the electron temperature
and the heat flux, i.e. Te1, qze1 6= 0. The system of perturbed equations comprises equa-
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Figure 12: Model III. Instantaneous spatial response for the dominant NPI
mode: kyR = 37.4 (i.e. λy = 0.71 cm) and f = 27.2 MHz.

tions (30)-(36), with the corresponding boundary conditions. The stationary inertialess
Model 0A is used.

The corresponding eigenvalues are represented in Figure 13. The subdominant NAI [in
branch 1] and the dominant NPI [in branch 2] modes are still identifiable. There are several
new NPI branches [untagged], but the long-term behavior is expected to be dominated, in
the near plume, by the dominant NPI mode in branch 2. This branch is unstable within
a much wider interval of kyR and its frequency has increased considerably, up to f . 140
MHz. The fork structure in f with a main and secondary NPI modes has been substituted
by a more involved coexistence of instability modes. For instance, now the frequency of
the main NPI branch shows a sign change at kyR ≈ 22. The dominant NPI mode of Model
IV has now kyR = 25.1 and f = 14.2 MHz. The corresponding eigenmodes are plotted
in figure 14. Compared to the dominant NPI mode of the nominal model (figure 5), this
one shows: an attenuation of the fast axial oscillations of ũye1, shorter axial wavelengths
(i.e., larger kz) of ñ1, φ̃1 and ũzi1, and a decrease by one order of magnitude of the relative
amplitude of ñ1/φ̃1. The two last effects lead to an increase of non-neutrality and, indeed,
6(d) shows that non-neutral effects should be included for a correct characterization of the
NPI instability with temperature perturbations.

Another feature of Model IV to stand out is that the NAI branch 1 is no more a subdom-
inant mode. This role is taken by branch 10 in figure 13, in particular by the eigenmode
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Figure 13: Model IV (allowing temperature perturbations). Main eigenval-
ues. Red and blue colours denote azimuthal propagation along +y and −y,
respectively.

Figure 14: Model IV. Instantaneous spatial response for the dominant NPI
mode: kyR = 25.1 and f = 14.2 MHz.

with kyR = 54.8 and f =49 Mhz. This mode is not of NAI or NPI type, since it develops
between the ion-stagnation point D and the point with n0 maximum in figure 2(b), i.e
in a region with downstream ion flow and dn0/dz > 0. This subdominant mode presents
significant non-neutral effects too.
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Figure 15: Nominal model. Contributions to the axial and azimuthal compo-
nents of the first-order electron momentum equations (33) and (34) for the (a)
subdominant NAI and (b) dominant NPI modes. P, M, E, I, and C represent
pressure, magnetic, electric, inertial, and collisional terms. Complex moduli
in arbitrary units are shown. Small-wavelength axial oscillations (mainly due
to uye1) have been filtered out.

6 Analysis of the electron momentum equations

The analysis here is limited to the nominal model.

6.1 Dominant perturbation forces

Equations (33) and (34) for the axial and azimuthal components of the first-order, electron
momentum, are analysed in order to identify the main perturbation forces. Figures 15(a)
and (b) plot the relative contributions of (I) inertia terms, (P) pressure gradients, (E)
electric forces, (M) magnetic forces, and (C) collisional terms, for the subdominant NAI
and dominant NPI modes of the nominal model. The first observation is that the electric
and magnetic perturbation forces are the main contributions, as expected. The second one
is that collisional effects are very marginal for both the NAI and the NPI ‘high-frequency’
modes (and this is true either keeping or neglecting the turbulent contribution νt to the
total collision rate νe in the perturbation model). Therefore, these two instabilities would
pertain to the drift-gradient instability class. Third, the perturbed pressure gradient is
totally negligible for the NPI –due to the small (relative) perturbation of plasma density–,
but is an important contribution in the inner (subsonic) region of the discharge for the
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Figure 16: Nominal model. Azimuthal electron momentum balance including
turbulent forces. (a) Magnetic force, and turbulent force arising from the
dominant NPI mode with φ̃NPI1,max = 71V plus the subdominant NAI mode with

φ̃NAI1,max = 10.5V. (b) Individual contributions of the electric and inertial forces to

the previous NPI and NAI turbulent forces. These are proportional to (φ̃NPI1,max)2

and (φ̃NAI1,max)2, respectively. Small-wavelength axial oscillations (mainly due to
uye1) have been filtered out.

NAI.

Finally, the perturbed inertial forces provide mild local contributions to the azimuthal
force balance, in the regions of development of each instability mode, where the station-
ary azimuthal inertia was already important. In fact, these contributions are partially
connected to the fulfilment of the boundary conditions. While in the equilibrium solution
only the azimuthal electron inertia has some contribution of interest, in the perturbed NPI
modes, the axial electron inertia is as relevant as the azimuthal one. Neglecting smaller
contributions, the perturbed electron momentum equations (33) and (34) for the NPI and
NAI modes, can be simplified into

ikymeuye0uze1 ' eBuye1 + e
dφ1
dz
− Te0
n0

dn1
dz

, (45)

ikymeuye0uye1 ' −eBuze1 + ikyeφ1 − iky
Te0
n0

n1, (46)

with the (mild) inertial terms are grouped on the left side. The inertia contribution in the
perturbed axial equation is of interest only for the NPI since uze1 = O(uye1) (Fig. 5). The
pressure terms are only important for the NAI.

6.2 On electron cross-field transport

The quasilinear extension of the fluid model is considered now to analyze quadratically
correlated effects of the NPI and NAI modes. The key equation for cross-field electron
transport is the stationary azimuthal momentum equation (18), which can be formally
expressed as the force balance

0 = Fmag + Fine + Fcol + Ftur, (47)

with Fmag = −eBn0uze0, Fine = −men0uze0duye0/dz, Fcol = −me(νe0 − νt)n0uye0, and
Ftur, respectively, the magnetic, inertial, collisional (excluding the empirical contribution of
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turbulence), and turbulence-based forces. The magnetic force is undoubtedly the dominant
force and must be balanced by the combination of the rest of forces. Figure 16(a) plots
Fmag, Fine, and Fcol, and, as expected, inertial and collisional forces cannot balance Fmag

except at very localized regions. In this case, the compensation comes from the crude and
common expression used for the turbulent force, Ftur = −αteBn0uye0, according to Eq.
(60).

Let us analyze now, based on the quadratic time-and-azimuth averaged contributions of
the dominant NAI and NPI modes, how the resulting azimuthal turbulent force would
be. Since the linear perturbation analysis does not predict the saturation level of the
instability modes, we will speculate on which saturation levels can lead to Ftur balance
Fmag globally. The time- and azimuth- averaging operator on a quadratic magnitude Φ is
defined as

〈Φ〉 (z) =
ωky
4π2

∫ t+2π/ω

t
dt

∫ y+2π/ky

y
dy Φ(t, y, z). (48)

For complex, first-order variables ϕ̃1 and ψ̃1, fulfilling (13), the correlated product satisfies〈
ϕ̃1ψ̃1

〉
= Re{ϕ1ψ

∗
1}/2, with ψ∗1 the complex conjugate of ψ1.

Departing from Eq. (7), the turbulent force is Ftur = Ftur,1 + Ftur,2 with

Ftur,1 = −e〈ñ1Ẽy1〉, (49)

Ftur,2 = −me

[
n0

〈
ũze1

∂ũye1
∂z

〉
+ uze0

〈
ñ1
∂ũye1
∂z

〉
+ uye0

〈
ñ1
∂ũye1
∂y

〉
+
∂uye0
∂z

〈ñ1ũze1〉+

〈
ñ1
∂ũye1
∂t

〉]
, (50)

the contributions from electric and inertial forces, respectively (the pressure azimuthal
gradient does not contribute, on average, to turbulent transport because of its azimuthal
periodicity).

The shapes of Ftur(z) generated by the dominant NPI and the subdominant NAI modes
are depicted in Figure 16 (a) too. The contributions are proportional to (φ̃NPI1,max)2 and

(φ̃NAI1,max)2, respectively for each mode. As commented above, the saturation values of

the electric potential, φ̃NPI1,max and φ̃NAI1,max, are out of reach of the linear model, and those

selected for the plots, φ̃NPI1,max = 71V and φ̃NAI1,max = 10.5V, correspond just to those making
Ftur to compensate globally Fmag in the last and first centimeter of the domain, where,
respectively, the NPI and NAI are significant. The associated amplitudes of the azimuthal
electric fields are Ẽy1,max = Re{ikyφ1,max} are 390 V/cm and 7.4 V/cm for the NPI and
NAI modes, respectively. These magnitudes of the perturbations fields are comparable
to those of the local zeroth-order electric field, thus suggesting that the NPI and NAI
modes must develop well into the nonlinear regime in order to contribute to the cross-field
transport.

Figure 16(b) depicts the electric and inertial contributions to Ftur. The inertial contri-
bution, Ftur,2, is small for the NAI, but it is of the same order than the electric one,
Ftur,1, for the NPI. This result is not immediate since, within first order, electron inertia
(meuye0uye1) is generally small compared to the electric force (eφ1). However, for the
second-order forces,

men0uze1∂uye1/∂z

ekyn1φ1
∼ meuye0uye1

eφ1
· n0uze1
n1uye0

≥ O(1), (51)
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since n0uze1/n1uye0 ∼ 100 for the NPI (as for the quasineutrality condition, the extremely
low n1 disrupts the expected natural orderings). This, and a mildly higher correlation
level on the electric force, explain that Ftur,2 ∼ Ftur,1 for the NPI.

Next, while
∫ zN
zA

Fturdz < 0, is negative (and, thus, contributes positively to cross-field
transport), the profile of Ftur(z) is very rippled spatially, Ftur becoming even positive in
certain subregions. This is natural to the oscillatory character of modes generating Ftur

but is far different from the gentle profile of Ftur = −αteBn0uye0, used to construct the
equilibrium solution (although this one could be interpreted as a spatially-averaged force).
An iterative scheme can be set up to obtain a solution consistent with the rippled Ftur(z)
up to second order. This is out of the scope of this work and a challenging problem
anyway. A spatially rippled Ftur(z) enhances the relevance of the electron inertia force
in the equilibrium solution, since it is the first term reacting to variations of Ftur(z), and
likely leads to some rippling in the rest of plasma variables at equilibrium and to changes
in the linear perturbation modes. Furthermore, the non-negligible role of electron inertia
in the instability analysis here, implies that gyroviscous effects, of the same order than
inertia effects in the standard finite-Larmor-radius ordering [39, 23], should be included
in the model to strengthen its consistency. But the gyroviscous tensor introduces second-
order axial derivatives, implying a major change in the mathematical formulation, which
here is first-order in axial derivatives.

To conclude it is worth observing that a spatially rippled Ftur(z) is also found in the
nonlinear kinetic simulations of a HET discharge [25], although instabilities there were
attributed to kinetic electron-drift instabilities. A fully non-linear fluid model would be
needed to a more solid comparison of kinetic and fluid contributions to cross-field transport.

7 Summary and conclusions

The plasma discharge in a HET from the anode to the external cathode is highly in-
homogeneous, so the linear stability analysis of a stationary response must consider the
discharge globally. Departing from a fluid model of the discharge that ignores the radial
direction, and is quasineutral except for the anode sheath, a perturbation scheme is ap-
plied to define (i) a zeroth-order axisymmetric stationary axial model plus (ii) a first-order
model of small perturbations. Both pressure effects and electron inertia effects are kept in
the two models, with the interest of assessing their relevance.

Fourier transforms are applied only in time and the azimuthal direction, so the pertur-
bation model constitutes a set of ordinary differential equations in z for each azimuthal
wavenumber ky and frequency ω. The stability analysis of the perturbation model consid-
ers homogeneous boundary conditions at the anode, the cathode, and the internal sonic
point. Given ky, the problem admits non-trivial solutions only at specific values of ω. A
discretization method in a uniform grid has been implemented to transform the differential
Sturm-Liouville problem into an algebraic eigenvalue problem. For each real ky, complex
eigenvalues ω are found; the corresponding eigenvectors build up the perturbation solution.

The analysis is focused in the mid-to-high frequency range (say, f > 100 kHz) and high-
wavenumber range (i.e. kyR large) but still within the fluid-formulation validity range.
Two well-distinguished instability types are found under a broad range of conditions.
There is first a dominant instability mode (NPI) developing in the near-plume. It has
frequencies in the ranges f ∼ 1-30 MHz and azimuthal mode numbers kyR ∼ 10-40. It
involves electron perturbations almost exclusively and travels in the +uye0 direction. By
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modifying B(z) it is shown that the NPI development is related to the region where dB/dz
is negative, thus suggesting that the NPI could be related to the classical drift-gradient
instability of Esipchuk and Tilinin. There is, then, a subdominant instability mode (NAI)
developing mainly near the anode. This mode has lower frequencies (f ∼ 100-300 kHz)
and mode numbers (kyR ∼ 1-10) and involves both perturbations of electrons and ions.
This mode could be a high-frequency manifestation of a rotating spoke.

For the nominal model (the main one studied here) there is a second counterstreaming
NPI branch (i.e. travelling along −uye0) which could be related to some experimental
observations but it is never dominant in the analyses here. For a short channel or a
certain anode-to-cathode electric connection, a second pair of NPI branches develop at
lower wavenumbers, and one of their modes can even become the dominant mode. When
zeroth-order electron inertia (mostly significant close to the anode and cathode boundaries)
or electron temperature perturbations are included in the analysis, the number of unstable
eigenvalue branches of the dispersion relation increase much, and the discussion is more
involved. Still, there is a dominant NPI mode but mode number and frequency have
shifted to higher values.

Both NPI and NAI are not simple normal waves since, for each ky and ω, a fast Fourier
transform shows that different axial wavenumbers kz characterize the propagation of the
different plasma variables, which means that the oblique propagation is different for each
of them, contrary to local analyses based on setting both wavenumbers, and obtaining
ω(ky, kz). The two perturbation modes are nearly collisionless, pressure effects matter
only for the NAI (developing in the subsonic region of the plasma beam), and first-order
electron inertia is a small correction to them. Quasineutrality is satisfied by the NAI but
not always by the NPI: non-neutral effects appear, even with kλD � 1, due to the very
low perturbations of the ions in the NPI.

The last part of the paper has been devoted to a speculative analysis on the possible contri-
bution of the NPI and the NAI to the electron cross-field transport, through quadratically-
correlated electric and inertia forces. The conclusions have been that: (1) a fully nonlinear
development of the modes is required to obtain a significant turbulent azimuthal force, (2)
the contribution of electron inertia to the net turbulent force is not small for the NPI
(because of the small density perturbation and the resulting quadratic electric force), and
(3) the turbulent force is highly rippled axially.

This last feature has important consequences on the stationary mathematical model. First,
it makes electron inertia a key mechanism to control spatial rippling on the equilibrium
solution. Second, the gyroviscous effects, cannot be further ignored, mainly if dealing with
a rippled solution, but these imply major changes to the present first-order mathematical
formulation. Finally, since the NPI develops close to the cathode boundary, the extension
of the global discharge model beyond the cathode, into the current-free plume, is another
interesting direction of research.
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A Expressions for collision-related parameters

This Appendix compiles the expressions for the collision-related terms of Eqs. (2)-(9) and
the values selected in the simulations for some of the constants. The expressions come
from previous papers on the same model by Ahedo and coworkers.

The ionization or production frequency, νp, is modeled as νp = nnc̄eσ̄ion, with

σ̄ion = σion,0

[
1 +

TeEion

(Te + Eion)2

]
exp

(
−Eion

Te

)
(52)

where Eion stands for the primary ionization energy. For xenon: Eion = 12.1 eV, σion,0 =
5× 10−20 m2. The effective energy loss due to ionization, Einel, satisfies

Einel

Eion
= 2 +

1

4
exp

(
2Eion

3Te

)
(53)

The elastic electron-neutral collisions frequency is νen = nnc̄eσen. Here, and for xenon the
cross-section σen is taken approximately constant and equal to σen = 27× 10−20 m2.

The electron-ion (Coulomb) collision frequency is νei = nRei, with Rei given by

Rei
10−12m3s−1

= 2.9 ·
(

1 eV

Te

)3/2

ln Λ and ln Λ ≈ 9 +
1

2
ln

[(
1018 m−3

ne

)(
Te

1 eV

)3
]
.

(54)

The ion-neutral (charge-exchange) collision frequency is νin = nncinσin, with cin = |uzi −
uzn| and

σin = σin0

[
1− 0.2 log10

cin
1 km/s

]2
(55)

and σin0 = 81 · 10−20 m2 for Xe.

The wall-loss frequency of particles is

νw = ν̃w
2πR

Ac
cs (56)

with ν̃w a constant (accounting for plasma density decrease near the wall); ν̃w = 0.17 is
used here. The effective axial velocity of wall-born neutrals from ion recombination is

uznw = awuzn + (1− aw)uzi (57)

where aw is a velocity accommodation factor; aw = 0.85 is used here. The wall-loss
frequency for momentum and energy are νwm = βmνw and νwe = βeνw, respectively with

βm =
δw

1− δw
, βe = 5.62 +

1.65

1− δw
. (58)

Here, δw is the effective secondary electron emission yield from the wall, which is modeled
as

δw(Te) =
√
Te/T1 if Te < T ∗e (59)

and δw = δ∗w =
√
T ∗e /T1 if Te ≥ T ∗e , where T1 is the temperature leading (theoretically) to

a 100% yield (which depends on the wall material) and T ∗e is the temperature where the
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charge-saturation limit is reached at the wall. Here: T ∗e /T1 = 0.967, δ∗w = 0.983, and T1 =
37 eV.

Turbulent transport in the stationary solution is introduced through an effective collisional
frequency

νt = αtωce (60)

with αt a constant equal to 0.0094 in the simulations here.

B Symmetry of the perturbation problem

As noted in the main text, the parametric region with ky < 0 yields the same perturbation
modes than those obtained for ky > 0. Analytical evidence is provided here by, first,
proving that the perturbation problem satisfies the symmetry condition

ωr(−ky) = −ωr(ky), γ(−ky) = γ(ky), ϕ1(z,−ky,−ω∗) = ϕ∗1(z, ky, ω), (61)

for every first-order variable ϕ1, with the asterisk denoting the complex conjugate. The
solutions, for ky and −ky, complying with (61) do not generally belong to the same branch
(meaning by ‘branch’ the continuous curves in, e.g., figure 3).

According to the symmetry condition (61), every perturbation equation, that can be ex-
pressed as f(ky, ω,ϕ1) = 0 (being ϕ1 the vector of first-order variables), complies with

f∗(ky, ω,ϕ1) = f(−ky,−ω∗,ϕ∗1). (62)

In that case, if there exists a solution for ky, ω and ϕ1 obeying f(ky, ω,ϕ1) = 0; there must
exist another solution fulfilling f(−ky,−ω∗,ϕ∗1) = 0 for −ky, −ω∗ and ϕ∗1. Let us now
demonstrate that (62) is satisfied by the perturbation equations (30)-(36). It is enough
with providing proof for electron-related equations, since those for ions are simplified
versions of these. Also, for the sake of conciseness, we will work on the case with Te1 = 0;
but the property (62) remains valid for the more general case with non-zero Te1 and qze1.

If ky, ω and ϕ1 are substituted by −ky, −ω∗ and ϕ∗1 in the first-order electron continuity
equation (31), the result is

uze0
dn∗1
dz

+n0
du∗ze1

dz
=

(
−iω∗ + ikyuye0 −

duze0
dz

+ νp − νw
)
n∗1−

dn0
dz

u∗ze1+ikyn0u
∗
ye1, (63)

that can be easily proved to be equal to the complex conjugate of equation (31), thus
fulfilling (62). Similarly, the same substituion for the electron momentum equations (33)
and (34), yields

uze0
du∗ze1

dz
+

Te0
men0

dn∗1
dz
− e

me

dφ∗1
dz

=

(
−iω∗ + ikyuye0 −

duze0
dz

− νe
)
u∗ze1

+
eB

me
u∗ye1 +

Te0
men20

dn0
dz

n∗1, (64)

uze0
du∗ye1

dz
= (−iω∗ + ikyuye0 − νe)u∗ye1 −

(
duye0

dz
+
eB

me

)
u∗ze1

+ iky
Te0
men0

n∗1 − iky
e

me
φ∗1, (65)
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which are equal to complex conjugate of equations (33) and (34), respectively. The same
procedure can be followed to demonstrate the compliance with (62) of the general system
with non-zero Te1 and qze1; and including electron energy and heat flow equations.

Following the definition (13), for every complex perturbation solution, only the real part
has physical meaning. It happens that the modes satisfying the proposed symmetry also
fulfill

ϕ̃1(z, y, t) = Re{ϕ1(z, ky, ω) exp (−iωt+ ikyy)} = Re{ϕ∗1(z, ky, ω) exp (iω∗t− ikyy)} (66)

and, thus, they are the same mode.

C Numerical method for the perturbation problem

The system of linearized macroscopic equations can be written formally as a general ho-
mogeneous system of ordinary differential equations

Ā · dx1

dz
=
(
B̄ + iωC̄ + ikyD̄ + k2yD̄2

)
· x1 (67)

with x1 = x1(z) being the vector of perturbation variables and having length m, say. The
coefficients of matrices Ā, B̄, C̄, D̄ and D̄2 are functions of just z and the equilibrium so-
lution x0 = x0(z). Similarly, each boundary condition of the problem is homogeneous and
can be expressed as a linear combination of the perturbation variables at the corresponding
point of application (since the boundary conditions do not involve axial gradients).

The global linear stability problem, or Sturm-Liouville problem, described by equation (67)
and its set of homogeneous boundary conditions consists of finding non-trivial solutions
x1(z) (eigenfunctions) at specific values of the complex frequency ω (eigenvalues) for given
ky and background plasma state x0(z).

Equation (67) is solved in a discrete way on an uniform grid with p points covering the
distance from the anode sheath edge (B) to the neutralizer (N). The unknowns of the
discrete problem, X1, are the values of the first order variables, x1, at the grid points.
Let j be the index, going from 1 to p, denoting the grid point. This means a total of
mp unknowns, which satisfy m boundary conditions and m (p− 1) macroscopic equations.
These come from evaluating equations (67) at p different axial positions of the domain.
These do not need to coincide with the grid points. After checking different possibilities
to proceed, the method identified as the most numerically robust has been selected.

This method evaluates the first-order system (67) at intermediate points in between grid
points; the non-integer index j+1/2 denotes the midpoint between grid points j and j+1.
This directly yields m(p−1) equations, which can be written, analogously to equation (67),
as the system

Āg ·
dX∗1
dz

=
(
B̄g + iωC̄g + ikyD̄g + k2yD̄2,g

)
·X∗1 (68)

where X∗1 stands for the vector of first order quantities at midpoints, which is m(p − 1)
elements long. The matrices in the previous expression are squared with column length
m(p − 1), and are global versions of those in equation (67). Their coefficients come from
evaluating the local matrices at each midpoint. The specific arrangement of these coeffi-
cients within global matrices depends on the order used for the elements in vector X∗1 .
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Equation (68) has to be expressed in terms of the unknown vector X1. First, the deriva-
tives at midpoints (collected in dX∗1/dz) are estimated, using grid-point values, with the
centered finite difference formula

dx1

dz

∣∣∣∣j+1/2

≈ xj+1
1 − xj1

∆z
(69)

where ∆z is the grid step. Using this equation it is possible to build a finite difference
matrix F̄ such that

dX∗1
dz
≈ F̄ ·X1. (70)

Second, the values of perturbations at midpoints (collected in X∗1 ) can be estimated as
the mean of the values at the two nearest grid points, i.e

x
j+1/2
1 ≈ xj1 + xj+1

1

2
(71)

This expression can be used to build an averaging matrix M̄ such that X∗1 ≈ M̄ ·X1. The
size of matrices F̄ and M̄ is m(p− 1)×mp.

Using these discretizations in equation (68) yields the algebraic equation

Āg · F̄ ·X1 =
(
B̄g + iωC̄g + ikyD̄g + k2yD̄2,g

)
· M̄ ·X1 (72)

The size of the matrices multiplying X1 is m(p− 1)×mp. The set of linear homogeneous
boundary conditions can be expressed as linear combinations of the the discrete unknowns
of the problem in the form Ḡ ·X1 = 0.

Then, the complete discrete system of equations that gives an approximate solution to the
Sturm-Liouville problem of equation (67) reads[(

Āg · F̄−
(
B̄g + ikyD̄g + k2yD̄2,g

)
· M̄

Ḡ

)
−
(

C̄ · M̄
0̄

)
iω

]
·X1 = 0 (73)

This is a generalized algebraic eigenvalue problem with ω and the corresponding X1 being
the eigenvalues and eigenvectors, respectively. Once solved, the axial evolution of the
perturbation plasma variables is obtained in the complex plane.

This scheme has shown good numerical convergence and, for simple equilibrium solu-
tions, the discrete solution has been verified with analytical solutions. An alternative
discretization scheme would have been to evaluate the first order fluid equations at grid
points (instead of at midpoints) and use forward, centered, and backward finite difference
schemes for estimating axial gradients at left boundary, interior points and right boundary,
respectively. However, the complete system (67) cannot be evaluated at every grid point,
since this would provide mp equations, and m boundary conditions should still be added.
This implies that m fluid equations must be disregarded, but that selection is not at all
trivial when boundary conditions are set at different points (B, S and N).
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