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Abstract
Low-dose protocols for respiratory gating in cardiothoracic small-animal imaging lead to

streak artifacts in the images reconstructed with a Feldkamp-Davis-Kress (FDK) method.

We propose a novel prior- and motion-based reconstruction (PRIMOR) method, which

improves prior-based reconstruction (PBR) by adding a penalty function that includes a

model of motion. The prior image is generated as the average of all the respiratory gates,

reconstructed with FDK. Motion between respiratory gates is estimated using a nonrigid

registration method based on hierarchical B-splines. We compare PRIMOR with an equiva-

lent PBR method without motion estimation using as reference the reconstruction of high

dose data. From these data acquired with a micro-CT scanner, different scenarios were

simulated by changing photon flux and number of projections. Methods were evaluated in

terms of contrast-to-noise-ratio (CNR), mean square error (MSE), streak artefact indicator

(SAI), solution error norm (SEN), and correction of respiratory motion. Also, to evaluate the

effect of each method on lung studies quantification, we have computed the Jaccard similar-

ity index of the mask obtained from segmenting each image as compared to those obtained

from the high dose reconstruction. Both iterative methods greatly improved FDK reconstruc-

tion in all cases. PBR was prone to streak artifacts and presented blurring effects in bone

and lung tissues when using both a low number of projections and low dose. Adopting PBR

as a reference, PRIMOR increased CNR up to 33% and decreased MSE, SAI and SEN up

to 20%, 4% and 13%, respectively. PRIMOR also presented better compensation for respi-

ratory motion and higher Jaccard similarity index. In conclusion, the new method proposed

for low-dose respiratory gating in small-animal scanners shows an improvement in image

quality and allows a reduction of dose or a reduction of the number of projections between

two and three times with respect to previous PBR approaches.
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Introduction
Respiratory gating helps to overcome the problem of breathing motion in cardiothoracic small-
animal imaging. This may be relevant in several clinical situations. For instance: 1) when using
the CT for attenuation correction in PET [1]; 2) when assessing the degree of infection in lung
diseases as tuberculosis, which is generally based on the inspection of images to quantify the den-
sity and extension of nodules in the lung [2]; 3) when planning radiation therapy for treatment
of tumors in chest and abdomen, in which movement due to normal breathing complicates
tumor location [3,4]. We use the term gate to denote each different reconstructed image for dif-
ferent time points over the breathing cycle. One option to generate a gated study is to acquire
multiple frames from every projection angle, each one corresponding to a different point over
the breathing cycle, and to sort them out assigning each frame to the corresponding gate accord-
ing to a respiratory signal [5]. To achieve good image quality for each respiratory phase with this
approach, conventional reconstruction methods require more data than those actually acquired
with a standard protocol for static images. As an example, top panel of Fig 1 shows the effect of
sorting data into four gates when using the dose of a standard static protocol: after assigning
frames to different gates, few noisy and irregularly distributed projections (less than 8 frames/
projection) are left for the reconstruction of each respiratory phase, leading to streak artifacts in
the FDK reconstructed images. Bottom row in Fig 1 shows the result for a high-dose protocol
(four times more frames per projection angle, if reconstructing four respiratory gates).

Since radiation can affect the immune system and modify other biological pathways, dose
must be kept low, particularly in longitudinal studies [6]. Besides, the ultimate goal of these
techniques is to be translated to the clinical field, where the ALARA principle ('As Low As Rea-
sonably Achievable') holds for the patient radiation dose (http://www.nrc.gov/reading-rm/
basic-ref/glossary/alara.html).

Compressed sensing enables accurate image reconstruction from few projections using con-
vex optimization, provided that the image is sparse in a transformed domain [7,8,9,10,11].
Prior-based reconstruction (PBR) is widely used for CT since reconstructed images are highly
sparse when subtracted from a prior image that, in the case of dynamic applications, can be
obtained by averaging all the data.

The most widely used PBR method is prior image constrained compressed sensing (PICCS),
which has been widely tested in different applications [12,13,14,15,16]. The image gradient is
the most commonly used transformed domain but, as we showed in a previous study, using a
wavelet transform in the prior term instead of the gradient leads to better texture for PICCS
[16]. This type of prior is free from artifacts but is blurred due to temporal averaging.

Motion-based reconstruction obtains an even sparser transformed domain by reconstruct-
ing images using an estimation of motion between consecutive frames. This approach has been
proposed for cardiac cine MRI [17,18,19].

Few previous studies have combined prior-based reconstruction methods with registration
in CT [20,21,22,23]. These works aimed to improve image quality in low dose acquisition using
a previously acquired high-quality prior image not spatially registered with the data, thus
requiring a registration step which was implemented by modifying the prior penalty term.
However, these methods would not work for respiratory gating in small-animal CT because of
two main reasons: first, there is no a high quality previous acquisition image; second, the prior
is a blurred image made from averaging all gates.

In this work, we propose a novel prior- and motion-based reconstruction (PRIMOR)
method for respiratory gating in small-animal CT, which extends the PBR method in [16] by
including a model of the motion between gates. A prior image is obtained as the average of all
respiratory gates reconstructed with an FDK-based algorithm. Motion is estimated using a
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nonrigid registration method based on hierarchical B-splines. We compared PRIMOR and

PBR on different simulated scenarios, created by changing the number of photons (dose) and

the number of projections from a reference FDK reconstruction of high dose data previously

acquired with a micro-CT scanner. In both cases the problem was solved using the Split Breg-

man approach, which is efficient for convex constrained optimization [24].

Methods

Image Reconstruction

PBR. Gated CT images can be accurately reconstructed from highly undersampled and

noisy data using PBR methods, such as PICCS. These methods assume that each respiratory

phase imageuiis sparse under the transformationC, which accounts for spatial sparsity, and

that there must be a prior imageupto ensure that the difference image obtained by subtraction

of each gate from the prior,ui up, is sparse under the transformationF[12]. Iffirepresents

the data corresponding to thei-th gate image andFis the forward operator, PICCS solves the

convex constrained optimization problem

min
u
bkCðuÞk1þakFðu upÞk1such thatkFu fk

2

2 s2 ð1Þ

whereurepresents the reconstructed gates andfrepresents the acquired data for all respiratory

gates, i.e.u=[u1
T,...,uI

T]T,f=[f1
T,...,fI

T]T,up¼½u
T
p;...;u

T
p

T
,Iis the total number of respi-

ratory phase bins,σaccounts for noise in the data,βweights the image penalty function andα

weights the prior penalty function.

In this work, we use an equivalent ofEq (1)to recover only the image variation with respect

to the prior for each gate,v=[v1
T,...,vI

T]T. Thus, we define the PBR method used in this work,

min
v
bkCðupþvÞk1þakFðvÞk1such thatkFðupþvÞ fk

2

2 s2 ð2Þ

Fig 1. Standard dose vs. versus high dose respiratory gated data.Top: FDK reconstructions of gated data with four time points over the breathing cycle
(four gates) obtained with a standard protocol for static studies (360 views covering 360° with eight frames per projection angle). After assigning frames to
different gates, few and irregularly distributed projections are left for the reconstruction of each respiratory phase. Bottom: FDK reconstructions of gated data
obtained with ideal high-dose data comprising 32 frames per projection angle, which is four times the dose of the standard protocol.

doi:10.1371/journal.pone.0149841.g001
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The common choice forCis the spatial discrete gradient that leads to TV,kruk1, which fil-

ters out noise while preserving edges in the image. We adopt isotropic TV,

kruk1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrxuÞ

2
þðryuÞ

2
q

. ForFwe use the symlet wavelet transform [25] to impose spar-

sity on the image variation, which was previously found to provide a more natural texture than

TV for the prior term [16].

PRIMOR method. PRIMOR improves PBR by adding a penalty function that takes into

account a previously computed model of motion. IfTrepresents an operator that encodes the

motion between consecutive gates, we define PRIMOR by including the termkT(up+v)k1in

PBR [Eq (2)] with the weighting parameterγ

min
v
bkCðupþvÞk1þakFvk1þgkTðupþvÞk1such thatkFðupþvÞ fk

2

2 s2; ð3Þ

where the prior imageupis defined as the average of all respiratory gates reconstructed with an

FDK-based algorithm [26]. A sketch of the method is shown inFig 2.

For the motion estimation, the temporal sparsity transformationTcan be computed in

terms of nonrigid registration between frames as

Tu¼

u1 R1uI

u2 R2u1

...

uI RIuI1

2

6
6
6
6
4

3

7
7
7
7
5

ð4Þ

We selected a free-form deformation (FFD), widely used in medical imaging, which models

motion using a sparse mesh of control points based on hierarchical cubic B-splines [27,28].

The hierarchical approach enables robust multiresolution registration, which provides a

sequence of meshes with an increasing number of control points. B-splines have interesting

properties, such as positivity, symmetry, compact support and maximal order of approxima-

tion [29,30], and are therefore a natural choice for the representation of physiological move-

ments [27].

The nonrigid registration problem searches for the spatial transformationRi:(x,y,z)!(x’,y’,z’),

which relates the image domain at theith-gateuito the image domain at the previous gateui-1.

This procedure requires interpolation to relate pixel intensity between images, with the result

thatRi(ui-1) comprises both registration and interpolation. The nonrigid registration problem

can be expressed as

min
Ri

kui Riðui1Þk
2

2þrCsmoothðRiÞ ð5Þ

whereCsmoothis a smoothness penalty function, generally in the form of a thin plate of metal

bending energy andρis a regularization parameter [27,28]. The FFD-based registration method

was implemented using the software available in MATLAB Central (Dirk-Jan Kroon; B-spline

grid, image and point based registration; 2012, retrieved fromhttp://www.mathworks.com/

matlabcentral/fileexchange/20057-b-spline-grid-image-and-point-based-registration), which is

based on the Quasi Newton L-BFGS optimization method. It required the selection of several

parameters: the regularization parameterρthat weights the penalty function, the number of grid

points, and the number of refinement grids within the hierarchical approach. All results were

computed withρ=10−4and three refinements, thefinest being a uniform grid of 47x47 control

points. These parameters were heuristically chosen: doing two and three refinements provided

similarly good results while with only one refinement the grid was too coarse and led to larger
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registration errors;ρvalues in the range from 10−3to 10−4led to optimum results while values

larger than 10−2led to large registration errors.

Split Bregman formulation to solve PRIMOR and PBR problems. We implemented

PBR [Eq (2)] and PRIMOR using the Split Bregman method, which efficiently handles

L1-based constrained problems [24,31,32]. The Split Bregman formulation separates L2- and

L1-norm functionals in such a way that they can be solved analytically in two alternating steps.

Constraints are imposed using the Bregman iteration. The part including the L2-norm func-

tionals results in a linear system that can be efficiently solved using iterative methods and the

part with the L1-norm functionals is solved using shrinkage formulas. As PBR can be obtained

from PRIMOR by makingγ= 0, we develop the formulation for the general case of PRIMOR.

To perform the split, we include the new variablesdx,dy,w, andtand formulate a new prob-

lem that is equivalent toEq (3)

min
v;dx;dy;w;t

bkðdx;dyÞk1þakwk1þgktk1such thatkFðupþvÞ fk
2
s2;

dx¼rxðupþvÞ;dy¼ryðupþvÞ;w¼Fv;t¼TðupþvÞ
ð6Þ

Eq (6)is easily managed using an equivalent unconstrained optimization approach with

constraints imposed by adding a Bregman iterationbi. That is,

min
v;dx;dy;w;t

bkðdx;dyÞk1þakwk1þgktk1þ
m

2
kFðupþvÞ fkk

2

2þ
l

2
kdx rxðupþvÞ bkxk

2

2þ

l

2
kdy ryðupþvÞ bkyk

2

2þ
l

2
kw Fv bkwk

2

2þ
l

2
kt TðupþvÞ bktk

2

2

ð7Þ

whereμis a regularization parameter that weights the datafidelity term,λis a regularization

parameter that weights the terms imposing the constraints for the dummy variables,kis the

Fig 2. Workflow of PRIMOR reconstruction.

doi:10.1371/journal.pone.0149841.g002
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iteration number and the Bregman iterations are updated as

bx
kþ1¼bx

kþrxðupþv
kþ1Þ dx

kþ1

by
kþ1¼by

kþryðupþv
kþ1Þ dy

kþ1

bw
kþ1¼bw

kþFvkþ1 wkþ1

bt
kþ1¼bt

kþTðupþv
kþ1Þ tkþ1

fkþ1¼fkþf Fðupþv
kþ1Þ

ð8Þ

Since the image variationvand the auxiliary variablesw,dx,dy, andtare independent of

each other,Eq (7)can now be split into several equations (one for each variable) that are solved

sequentially, as follows:

vkþ1¼min
v

m

2
FðupþvÞ fk

2

2
þ
l

2
dx
k DxðupþvÞ bkx

2

2
þ
l

2
dy
k DyðupþvÞ bky

2

2

þ
l

2
wk Fv bk

w

2

2
þ
l

2
tk TðupþvÞ bkt

2

2

dx
kþ1;dy

kþ1¼min
dx;dy

bðdx;dyÞ
1
þ
l

2
dx Dxðupþv

kþ1Þ bkx
2

2
þ
l

2
dy Dyðupþv

kþ1Þ bky
2

2

wkþ1¼min
w
akwk1þ

l

2
w Fvkþ1 bk

w

2

2

tkþ1¼min
t
gktk1þ

l

2
t Tðupþv

kþ1Þ bkt
2

2

ð9Þ

Since the solution ofvonly involves L2-norm functionals, it can be obtained exactly as the

solution of the linear system

Kvkþ1¼rk

K¼mFTFþlDx
TDxþlDy

TDyþlT
TTþlI

rk¼lDx
Tðdx

k Dxup bkxÞþlDy
Tðdy

k Dyup bkyÞ

þlTTðtk Tup bktÞþlF
Tðwk bkwÞ

ð10Þ

Note thatEq (10)constitutes a very large-scale problem, where K = N×N and N is the num-

ber of pixels, yet it can be solved efficiently using a Krylov solver, such as the biconjugate gradi-

ent stabilized method, which involves only matrix-vector multiplications:

mFTðFvÞþlDx
TðDxvÞþlDy

TðDyvÞþlT
TðTvÞþgv¼r ð11Þ
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The auxiliary variablesdx,dy,w, andtare solved analytically using shrinkage formulas,

which are thresholding operations [24,33].

dkþ1j ¼maxsk b=l;0
jDjðupþv

kþ1Þþbkjj

sk
;

sk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDxðupþv

kþ1Þþbkxj
2
þjDyðupþv

kþ1Þþbkyj
2

q
;j¼x;y

wkþ1¼shrinkFvkþ1þbkw;
a=l ¼maxðjFv

kþ1þbkwj a=l;0ÞsignðFv
kþ1þbkwÞ

tkþ1¼shrinkTðupþv
kþ1Þþbkt;

g=l

h i
¼

max jTðupþv
kþ1Þþbktj

g=l;0signðTðupþv
kþ1ÞþbktÞ

ð12Þ

Regularization parameter selection. Regularization parameters related to the Bregman

iterations in the reconstruction method (μandλin [Eq (7)]) were selected following sugges-

tions from previous studies [30,32]. Forμ4 the method converged to the same solution for

different iteration numbers, which were selected as a number of iterations that yielded mini-

mum mean-square error, considering the ideal high-dose image as the correct solution.

The weighting parameters that control the relative degree of image variation sparsity and

spatial and temporal image sparsity were heuristically determined as follows. For PBR [Eq (2)],

decreasingαwhile increasingβ(α= 0.2,β= 0.8) results in a patchy-like pattern (due to the high

weight of spatial-TV); increasingαwhile loweringβ(α=0.8,β= 0.2) results in noisy images

(due to the low weight of spatial-TV and high weight of the prior). After testing some other

intermediate values we decided to chooseα= 0.4 andβ= 0.2 as a compromise. For PRIMOR we

used these sameαandβvalues and verified the effect ofγ. Very lowγvalues (γ= 0.01) led to

results similar to those of PBR. Increasingγimposes gates to be similar, which filters out noise

considerably, but also blurs minor image details, as similarity between gates is too enforced.γ

values in the range from 0.1 to 1 were a good compromise. We finally selectedγ= 0.5 to avoid

giving too much weight to temporal sparsity.Table 1shows a summary of the parameter values

used.

Data Acquisition and Simulation

Algorithms were evaluated using simulations from rodent data acquired in a real scanner. Real

data were acquired with the CT subsystem of an ARGUS PET/CT (SEDECAL) scanner, which

is a cone-beam micro-CT scanner based on a flat panel detector [34]. In this scanner, the stan-

dard protocol for static imaging acquires 8 frames per projection angle of 512×512 pixels (0.2

mm2pixel size) along 360 equispaced angular positions. Respiratory gated studies were carried

out by arranging the data into four gates using software-based retrospective gating [5] and

reconstructing each of the four gates with an FDK-based algorithm [26]. In order to keep

image quality of each gate similar to that of the static image, we acquired another study using a

“high dose protocol”with 32 projection images per view, resulting in a fourfold dose increase.

Table 1. Regularization parameters selected for PBR and PRIMOR methods.

μ λ β  α  γ

PBR 2 1 0.2 0.4 0

PRIMOR 2 1 0.2 0.4 0.5

doi:10.1371/journal.pone.0149841.t001

Prior- and Motion-Based CS Method for Respiratory Gated CT

PLOS ONE | DOI:10.1371/journal.pone.0149841 March 9, 2016 7/20



Using the high dose protocol, we acquired rodent data (10-week-old adult female Wistar

rats weighing 300 g and anesthetized with isoflurane). To reduce computational time, we

selected a smaller field of view (350×350 pixels) and the central slice (extrapolation to 3D

would be straightforward). We used this data set as a gold standard. Animals were handled

according to the European Communities Council Directive (2010/63/EU) and national regula-

tions (RD 53/2013) with the approval of the Animal Experimentation Ethics Committee of

Hospital General Universitario Gregorio Marañón.

In a real acquisition of a respiratory gated study with the ARGUS scanner, the dose (and the

image noise) depends on the parameters of the x-ray source (amperage and voltage), the num-

ber of angular positions and the number of frames per angle. To generalize the effect of these

parameters on the resulting image to any scanner, we define two figures: dose, given by the

number of photons emitted by the x-ray source, and number of projections.

We simulated seven different scenarios: low-dose scenarios, with 120 projections and reduc-

ing the number of photons emitted by the x-ray source (I0= 4.5×10
4,I0/2, I0/4 and I0/6), and

subsampled scenarios, by reducing the number of projections per gate (120, 80, 60 and 40 pro-

jections) for number of photons I0.I0was chosen so as to obtain a noise figure for the prior

image similar to that of a real high-dose gate.

Noise was added by modelling the measurements fias independently distributed Poisson

random variables:

fi Poissonffig i¼1;...;M with fi¼Ioe

Z

uðx;y;zÞ
ð13Þ

whereu(x,y,z) is the high-dose reconstruction,I0is the number of photons emitted by the x-

ray source, and M is the number of measured projections. Then, we simulated respiratory gat-

ing by randomly choosing a small number of projections from each gate, and classifying each

projection as to pertaining to a specific respiratory phase.

In order to generate statistical results, we generated five different noise realizations for each

low dose scenario and five random selections of projection angles for each of the subsampled

scenarios.Table 2shows the 40 simulated data sets, where each scenario is defined by the dose

(compared to the dose used in the protocol for static imaging) and the number of projections

per gate.

Simulations were computed using the IRT code (J A Fessler, Image reconstruction

toolbox [IRT], 2011, retrieved from<http://www.eecs.umich.edu/~fessler/code/index.html>).

The prior image was obtained by adding all gates and applying a Gaussian filter with a win-

dow of 5 pixels and standard deviation of 3 (right panel ofFig 3).

Comparison of Methods and Analysis of Images

Analysis of the influence of dose and number of projections. Data were reconstructed

with PBR and PRIMOR. To evaluate the influence of dose and number of projections for each

method, images were compared in terms of four metrics: 1) mean-square error (MSE) in bone;

2) contrast-to-noise ratio in lung (ROIs shown inFig 4); 3) total variation of the difference

between reconstructed images and the target; and 4) solution error norm (SEN). Five different

realizations were created for each scenario, thus yielding a total of 40 data sets. To evaluate the

statistical significance of the difference between PBR and PRIMOR we used a Mann-Whitney

test, as it is more robust and avoids the assumption of normality in the data.

We assessed the recovery of bone tissue by computing the MSE of a ROI in the bone area

with respect to the same ROI in the reference high-dose image. Bone region was delimited by

using a mask that comprises bone and some of the surrounding tissue in order to account for
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blurring artefacts. Noise was measured as the standard deviation in a circular ROI drawn in a
homogeneous region within the heart. Contrast-to-noise ratio was assessed as the absolute dif-
ference between the HU in a lung nodule and the value in healthy lung tissue divided by the
noise in the heart. All masks are shown in Fig 4.

Artifacts were assessed by the streak artefact indicator (SAI), which measures the total varia-
tion of the difference between reconstructed images and the target. It has been previously used
to measure artefacts in CT [35]. Convergence was assessed using the solution error norm, com-
puted in the entire image and using high-dose image as a reference.

Finally, image texture was evaluated by visual inspection. We provide videos of the recon-
structed images for different scenarios, which help to appreciate the motion between different
respiratory gates (videos can be found at https://github.com/HGGM-LIM/prior-motion-
reconstruction-CT).

Correction of respiratory motion. Compensation for respiratory motion was assessed by
drawing a profile across an area of soft tissue that presented large movement across respiratory
gates and comparing with the same profile for high-dose FDK images.

Table 2. Simulated data sets used for the evaluations.

Scenario Dose # projections per gate # noise realizations # random selection of projections cases

High dose protocol (gold standard) 4I0 360 1 1

Static protocol 1 I0 120 5 1

Static protocol 2 I0 120 1 5

Low-dose I0/2 120 5 1

Low-dose I0/4 120 5 1

Low-dose I0/6 120 5 1

Subsampled I0 80 1 5

Subsampled I0 60 1 5

Subsampled I0 40 1 5

doi:10.1371/journal.pone.0149841.t002

Fig 3. Axial view of respiratory gated data. Left: FDK reconstruction of gated ideal high-dose data for frame 1. Right: Prior image obtained with a filtered
version of the FDK reconstruction of the average of the whole data set for a subsampled scenario (120 projections and number of photons I0 = 4.5×105).

doi:10.1371/journal.pone.0149841.g003
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Application study. A possible clinical application would be to assess the degree of infec-
tion in lung diseases such as tuberculosis, which is generally based on the inspection of images
to quantify the density and number of nodules in the lung.

Since the nodules in tuberculosis have a similar contrast and shape than vessels in an axial
slice, we considered vessels as a good surrogate of granulomas and performed the quantifica-
tion on them. To this end, we used a previously available semiautomatic tool based on region
growing for granuloma quantification in tuberculosis. With this tool, an expert segmented five
small vessels in all the studies: high dose image (used as a reference) and FDK, PBR and PRI-
MOR images, for the different scenarios. We then computed the Jaccard similarity index of the
masks obtained with the three methods, as compared to those obtained with the reference.

Results

Analysis of Influence of Dose and Number of Projections
Fig 5 shows the results of PBR and PRIMOR for different noise levels and number of projec-
tions for respiratory phase three. For the best case scenario (120 projections and maximum
number of photons I0) (first row in Fig 5), PBR leads to slightly blurred edges for bone and soft
tissue and to a decrease in contrast within bone tissue, while PRIMOR is almost unaffected.
When the number of projections decreases (second row in Fig 5), PBR leads to streak artefacts
and to highly blurred edges for bone and soft tissue, while PRIMOR removes most of these arti-
facts. When the dose decreases (third row in Fig 5), PBR leads to noisier images, which affects
both bone and soft tissue, and distort nodules in the lung, while PRIMOR is just affected by a
slight blur in bone tissue. Overall, PRIMOR leads to improved images for all scenarios. Videos
showing reconstructed images of the four respiratory gates for the different scenarios are avail-
able at https://github.com/HGGM-LIM/prior-motion-reconstruction-CT.

Fig 6 shows the MSE in the bone area and the contrast-to-noise ratio in the lung area for all
the different scenarios. Both iterative methods greatly improve FDK reconstruction in all cases.
For all subsampled scenarios PRIMOR provided significantly better contrast recovery and less
MSE than PBR (p<0.01). Compared with PBR, PRIMOR obtained similar values of MSE for
half number of projections and better CNR for one third of the projections. When lowering the
dose, PRIMOR also produced significantly better contrast recovery and less MSE than PBR

Fig 4. Masks used to measure contrast-to-noise ratio andMSE. Left: Masks used to measure contrast-to-noise ratio as the absolute difference between
the yellow and green ROIs divided by the noise measured in the blue ROI. Middle: Masks to compute MSE in the lung area. Right: Masks to compute MSE in
the bone area.

doi:10.1371/journal.pone.0149841.g004
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Fig 5. Images corresponding to different scenarios for respiratory phase three, reconstructed with PBR and PRIMOR algorithms. From top to
bottom, each row represents a different scenario: 120 projections and dose corresponding to a maximum number of photons I0 (subsampled scenario), 40
projections and I0 (subsampled scenario), and 120 projections and number of photons I0/6 (low-dose scenario). Yellow arrows indicate where artifacts are
more noticeable: an increase in streak artifacts (1), blurred edges for bone tissue (2), and blurred edges for soft tissue (3). Videos for these results showing
images for all gates are available at https://github.com/HGGM-LIM/prior-motion-reconstruction-CT.

doi:10.1371/journal.pone.0149841.g005

Prior- and Motion-Based CSMethod for Respiratory Gated CT

PLOSONE | DOI:10.1371/journal.pone.0149841 March 9, 2016 11 / 20

https://github.com/HGGM-�LIM/prior-motion-reconstruction-CT


(p<0.01) for all cases except for the case of lowest dose (I0/6), in which PRIMOR presents
lower MSE but is not statistically significant. Overall, PRIMOR yielded similar values of MSE
and CNR than PBR for a two to threefold reduction in dose or number of projections.

Fig 7 shows the SAI, computed as total variation of the difference between reconstructed
images and the target. For different number of projections, PRIMOR presented significantly
lower SAI than PBR (p<0.01). For different dose values, PRIMOR also presented lower SAI
than PBR, statistically significant in all cases (p<0.05) except for the case of lowest dose (I0/6).
The effect of dose was less noticeable than that of number of projections. In all cases both PBR
and PRIMOR led to much lower SAI than FDK.

Fig 8 shows relative MSE vs. iteration number obtained by PBR and PRIMOR methods for
the different scenarios. PRIMOR presented lower error in all cases, where differences were

Fig 6. Mean-square error in the bone area (top) and contrast-to-noise ratio inside the lungs (bottom) in the images reconstructed with FDK, PBR
and PRIMOR for the different scenarios.Mean and SD of five noise realizations are provided for each scenario. The left panels show different numbers of
projections (40, 60, 80 and 120 projections) for a dose corresponding to a number of photons I0 = 4.5×104; the right panel represents the different dose
values (I0, I0/2, I0/4 and I0/6) for 120 projections.

doi:10.1371/journal.pone.0149841.g006
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most significant for low dose. Regarding convergence, PRIMOR generally converged at higher
iteration number but with lower error than PBR.

Analysis of Compensation for Respiratory Motion
Fig 9 shows a profile along a line containing soft tissue that presented large motion for the ideal
high-dose FDK and for FDK, PBR and PRIMOR reconstructions of respiratory gates 1 and 3
using 120 projections and a number of photons I0 = 4.5×104. The profiles reveal the presence
of respiratory movement for the two respiratory gates. Although both PBR and PRIMOR can
improve FDK reconstruction by correcting the movement artifact between the different gates,
profiles on PRIMOR reconstructions are more similar to those of the high dose FDK. This is
confirmed by the videos mentioned in Fig 5, which show how PBR is able to correct the motion
artefact, recovering the difference between gates, but it is more severely affected by noise and
other artefacts than PRIMOR.

Application Study
Lowering the dose led to a substantial decrease in Jaccard similarity index for FDK, while PBR
and PRIMOR were less affected. PRIMOR led to higher similarity index than PBR in all cases

Fig 7. SAI computed as total variation of the difference between reconstructed images and the target for different number of projections (left) and
number of photons (right).Graphs showmean values and standard errors.

doi:10.1371/journal.pone.0149841.g007
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(Fig 10a and 10b). Decreasing the number of projections showed a similar effect when using
FDK, while it did not affect PBR and PRIMOR. Fig 10c shows an example of the segmented
mask on the high dose image (used as the reference) and masks obtained from PBR and PRI-
MOR reconstructions for the best case scenario (120 projections and I0) and worst case sce-
nario (120 projections and I0/6). At lower dose, the segmentation from PBR is clearly worse
than the segmentation from PRIMOR, due to the presence of artefacts.

Computation Time
The code was implemented in MATLAB and run on a Linux machine with 16 CPU of 64-bit
and 2.3 GHz and with 16 GB RAM. We used a straightforward parallelization of PRIMOR over
the four gates to reduce computation times. Motion estimation took 1.9 min. The reconstruc-
tion step took 90 s per iteration, out of which 81 s were employed for solving the linear system
and 7 s for the Bregman iteration. As the linear system does not need to be solved with high
precision, a tolerance of 10−2 was sufficient and provided the same solution as 10−4, which took
145 s. The total computation time was 200 min for 98 iterations for the best case scenario (120
projections and I0) and 81 min for 55 iterations for the worst case scenario (120 projections
and I0/6).

Discussion
Commercial scanners use traditional FDK for image reconstruction, but it results in severe arti-
facts when reconstructing respiratory-gated CT data using standard dose. To ensure a suffi-
cient number of projections per gate, a dose four times higher may be needed (for four gates).
An alternative is to use a PBR method which has been shown to reduce artefacts when there
are insufficient numbers of projections. We propose PRIMOR, a novel PBR and motion-based
compressed sensing method for reducing the radiation dose in CT respiratory gating.

Fig 8. Convergence of PBR and PRIMOR algorithms for different scenarios. Relative MSE vs. the
iteration number given by both PBR and PRIMORmethods for the static imaging protocol (I0 = 4.5×104, 120
projections per phase), a decrease in dose (I0/6, 120 projections) and decrease in the number of projections
(I0, 40 projections).

doi:10.1371/journal.pone.0149841.g008
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We compared PRIMOR with FDK and PBR, an analogous prior-based method with no esti-
mation of motion, in scenarios corresponding to different dose levels and numbers of projec-
tions. PRIMOR produced better results in all scenarios by reducing streak artifacts, reducing
noise, and improving image quality in terms of MSE and contrast-to-noise ratio. Adopting
PBR as a reference, PRIMOR increased CNR in up to 33% and decreased MSE, streak artifact
indicator and solution error norm in up to 20%, 4% and 13%, respectively. PRIMOR also pre-
sented better compensation for respiratory motion and more accurate segmentation of lung
tissue.

Few methodologies have previously addressed the lack of projections in respiratory and car-
diac gated micro CT. Some methods are based on filling the missing data by using a prior
image built from the data. This is the case of the least-error sorting technique [35], which
ensures that all angular positions are filled, and the method presented in [36], which fills the
missing regions in the Fourier domain. McKinnon-Bates method also used the average of all
respiratory gates to construct the prior image [37,38]. However, methods based on compressed
sensing show improved results with respect to these previous methods. In a chest phantom,
PICCS outperformed both FDK with McKinnon-Bates correction and spatial TV [39]. In a

Fig 9. Respiratory motion correction. Normalized profile along the yellow line in the top figure for ideal
high-dose FDK (4I0 and 360 projections) and for a subsampled scenario (120 projections and I0)
reconstructed with FDK (left) and with PBR and PRIMOR corresponding to respiratory gates 1 and 3. Green
arrows show where differences between PBR and PRIMOR are more noticable.

doi:10.1371/journal.pone.0149841.g009
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previous study we showed that the use of the wavelet transform in the prior term instead of the
gradient commonly used in PICCS led to a more natural texture in the image [16].

The exploitation of temporal sparsity based on spatiotemporal total variation reconstruction
yielded better results than McKinnon-Bates and low dose phase-correlated reconstruction on a
mouse phantom [40]. A variation of the previous method, weighted spatiotemporal TV,

Fig 10. Assessment of the influence of the different scenarios and reconstruction methods on the segmentation of lung tissue. Jaccard index for
different dose (a) and number of projections (b) when using FDK, PBR and PRIMORmethods. C) Example of the segmented masks from high dose image
and PBR and PRIMORmethods for the best (120 projections and I0) and worst case scenarios (120 projections and I0/6).

doi:10.1371/journal.pone.0149841.g010
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improved results based on a spatial adaptive weighting function that assigns larger weight to
regions without motion. This technique enabled the reconstruction of retrospective cone beam
micro-CT data using only between 55 and 95 projections per angle [41]. Comparing our
method to PICCS and spatiotemporal TV, PRIMOR is an extension of these two methods, as it
combines PICCS with motion based reconstruction methods, which is an improvement with
respect to spatiotemporal TV as it accounts for motion between consecutive gates. PICCS
assumes that the difference between the different gates and the prior image (the mean of all
gates) is sparse. PRIMOR provides a sparser transform by modelling the differences between
gates. As PRIMOR combines both PBR and motion-based methods, it achieves the benefits of
both methods. On the one hand, the prior image helps to maintain the image texture while on
the other hand a sparser transform restricts the solution space, which results in a reduction of
artefacts. Regarding the weighted spatiotemporal TV method [41], it is possible to incorporate
this strategy into the PRIMOR method by including a similar spatial adaptive weight function,
perhaps further improving results.

As for motion estimation, we used a free-form deformation method based on hierarchical
B-splines [27]. B-splines provide a smooth natural choice for representation of physiological
movements, and the hierarchical approach enables robust registration. These properties have
made this registration approach to be widely used in medical imaging. We found the algorithm
very easy to use by controlling the smoothness with the number of control points and the regis-
tration error with a thresholding parameter. Previous motion-based reconstruction methods in
magnetic resonance imaging have found phase-based motion estimation to be better than pre-
viously used block-matching and optical flow methods [17]. Other possible nonrigid registra-
tion algorithms are Kanade algorithm or Demons registration algorithm [42,43], which are
based on optical flow methods. While we have shown that PRIMOR gains by including a
model of motion within the reconstruction algorithm, we will not expect further improvements
by using other nonrigid registration algorithms. However, this is limited to our data sets and
further work would be required to better understand the differences between motion estima-
tion methods for low-dose CT.

Few previous studies have combined prior-based reconstruction methods with registration
in CT [20,23]. These works aimed to improve image quality in low dose acquisition using a
previously acquired high quality prior image which is not registered with the data, so a registra-
tion step was included by modifying the prior penalty term. There are two substantial differ-
ences with our work: first, we are considering the case in which we do not have a high quality
previous acquisition image; second, the built prior is a blurred image made from averaging all
un-gated data. Thus, in our work, instead of modifying the prior penalty term, we include in
the cost function a new penalty term that takes into account motion between consecutive gates,
considering that there would be little difference among them.

The present study is subject to several limitations. Although we evaluated the methods at
different dose levels and with different numbers of projections, further validation with experi-
mentally acquired data is required. Nevertheless, major differences are not expected. Another
limitation is that results shown were obtained for a set of user-determined parameters values.
Parameter selection was required for the registration algorithm, the Split Bregman method,
and the Gaussian smoothing of the prior image. We confirmed that similar results were
obtained when varying these parameters within a range. The regularization parameter weight-
ing the penalty function in the registration step was found to yield similar results for a wide
range of values. The parameters μ and λ weighting the Bregman iteration terms were chosen
following the suggestions from previous studies [24,32]. Goldstein and Osher [24] proved that
the final outcome is independent of these parameters as long as they are sufficiently small. Low
values ensure that noise is removed in the first iterations, finer scales of the image are recovered
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sequentially from coarser to finer as the iteration number increases, and noise is recovered the
last. Abascal et al. [32] showed that, in practice, one can initially select small values for these
parameters to ensure convergence and then increase μ (weighting of the data fidelity term) to
achieve faster convergence. The most important parameter is the number of iterations, as one
must stop before fitting the noise. In this work we have selected a number of iterations that led
to the minimum solution error, in order to compare the best possible solution obtained by
both PBR and PRIMOR methods. In practice, it may be convenient to select a small μ value
that leads to slow convergence, and the solution will be similar for a wide range of number of
iterations, as previously reported [19]. The parameters α and β, which control the relative
degree of sparsity, were also heuristically chosen to provide best results for PBR. We used these
values for PRIMOR and then verified the effect of γ. Higher γ values (higher weight to temporal
sparsity) improved image texture. Conversely, very large values may lead to miss minor image
details from specific gates, as similarity between gates is enforced. Our trade-off was to choose
a relatively small γ, to make sure results were not biased. As future work, finding an optimum γ
value may further enhance results with respect to PBR.

Besides, further improvements could be made to the proposed method. For instance,
Ramani and Fessler [44] included statistical data modeling, which improved convergence. Fur-
thermore, we used a prior image based on the average of data for all phase bins, although other
priors, such as a running average, could yield better results [13].

Regarding the execution time, the most computationally expensive parts of the algorithm
are the projection and backprojection operators. In this work, these operations were computed
using the IRT code (J A Fessler, Image reconstruction toolbox [IRT], 2011, retrieved from
<http://www.eecs.umich.edu/~fessler/code/index.html>). The projection of one slice
(350×350) using IRT code took 1.8 s. We are working on a GPU implementation where the
projection of a volume (3503) takes 0.95 s, thus supporting the idea that with this implementa-
tion the algorithm is suitable for practical applications.

In conclusion, we propose PRIMOR, a novel method for the reconstruction of low-dose CT
data with respiratory gating, which improves previous PBR methods by including a new pen-
alty based on the model of motion between consecutive respiratory gates. The proposed
method shows an improvement in image quality and allows a reduction of dose or number of
projections of two to three times with respect to previous PBR approaches.
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