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 10 

Abstract 11 

The material that is used in solar receivers is subjected to intense cyclic thermal stresses and 12 

extreme temperatures, which are directly dependent on the intermittence of the solar 13 

resource. These factors accelerate the ageing mechanisms and reduce the durability of the 14 

receivers because of a reduction of their thermal performance. 15 

This study presents guidelines to study the thermo-radiative properties of an absorber 16 

material that is subjected to a highly concentrated solar flux. The material was a square 17 

honeycomb SiCSi structure that is typically used in volumetric air receivers. Accelerated ageing 18 

tests were performed by means of crashing thermal treatments, in which the modulus and 19 

period of the incident flux and the boundary conditions of the material were varied. 20 

The reflectivity and absorptivity of the material were experimentally characterized before and 21 

after the thermal treatments. The measurements were performed using two different 22 

reflectometers, one monochromatic and one in the solar band; the latter can measure at 23 

ambient temperature or high temperature that is representative of the operational conditions 24 

(400 - 700 ºC). However, only the solar band reflectometer working at high temperature was 25 

able to detect the evolution of the thermo-radiative properties of the material, which 26 

highlights the important role of the temperature and the wavelength. Furthermore, the 27 

thermal treatments in which the samples were water-cooled and in which the solar flux was 28 

medial more quickly accelerated the ageing mechanism of the material and reduced its 29 

absorptivity. 30 
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Volumetric solar receiver; SiCSi; reflectivity; absorptivity; ageing; durability. 1 

Nomenclature 2 

Abbreviations 3 

A : Samples in which the incident flux is intercepted by the sheet side. 4 

B : Samples in which the incident flux is intercepted by the honeycomb face. 5 

BC : Boundary conditions.  6 

CSP: Concentrating solar power. 7 

DISCO: Solar band reflectometer. 8 

DNI: Direct normal irradiance. 9 

nt: Non-treated or raw sample. 10 

REFFO: Monochromatic optical fibre reflectometer. 11 

SAAF: Accelerating age facility. 12 

TT : Thermal treatment.  13 

Symbols 14 

E : Energy per unit surface area [W/m2]. 15 

k : Conductivity [W/mK].  16 

T : Temperature [K].  17 

ambT : Ambient temperature [K]. 18 

 : Absorptivity [-].  19 

s
⊥ : Normal absorptivity [-]. 20 

 : Emissivity [-].  21 

air : Absorbed solar flux [W/m2]. 22 

i : Incident solar flux [W/m2]. 23 
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rec : Receiver efficiency [-]. 1 

s
⊥ : Hemispherical reflectivity [-]. 2 

Subscripts 3 

a : Adiabatic.  4 

i : Isothermal. 5 

s : Steady. 6 

u : Un-steady. 7 

1: Incident solar flux 1000 KW/m2. 8 

2 : Incident solar flux 700 KW/m2. 9 

3 : Incident solar flux 500 KW/m2. 10 

1. Introduction 11 

 12 

Concentrating Solar Power (CSP) is a promising source of clean energy in modern society. 13 

While solar energy offers the highest renewable energy potential to our planet, CSP can 14 

provide dispatchable power in a technically viable way by means of thermal energy storage 15 

and/or hybridization [1]. One of the main challenges of CSP is to reduce the levelized cost of 16 

electricity to improve its competitiveness with respect to conventional electricity generation. 17 

To achieve this goal, the durability of the materials is a crucial issue for designing reliable 18 

systems with high efficiencies and low maintenance costs [2]. Durability is defined as the 19 

capability of withstanding repeated use over a relatively long period of time to fulfil the design 20 

conditions.  21 

 22 

Solar receivers are one of the main subsystems of CSP. They absorb the concentrated solar flux 23 

and transfer it to the heat transfer fluid with the greatest possible efficiency. Therefore, the 24 

receivers are exposed to highly concentrated solar fluxes, intense thermal stresses and high 25 

temperatures, which are known to be the major ageing factors of the materials [3]. From this 26 

perspective, specific materials have been developed to fulfil the requirements of solar 27 

receivers and maintain their performance over time. However, the early evolution of some of 28 

the critical properties of the materials, such the thermo-radiative properties (absorptivity, 29 
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emissivity) and thermo-physical properties (diffusivity, effusivity), causes the thermal 1 

efficiency of the receiver to deteriorate gradually to the failure limit, at which point the 2 

efficiency is not sufficient, and the receiver has to be replaced. 3 

 4 

The most reliable way to assess the durability of the receiver’s material is to test it under real 5 

operational conditions over long periods of time. However, this method is expensive and 6 

delays the development of technology. Therefore, the idea of performing thermal treatments 7 

(TTs) under extreme conditions, which accelerate the ageing of the receiver, has arisen. This 8 

method allows large numbers of extreme cycles to be performed over short periods of time, 9 

which aids in predicting the evolution of the properties of the materials and their durability.  10 

 11 

Few studies have focused on the evolution of the thermo-radiative properties of the materials 12 

that are used in high-temperature solar receivers. Carlsson et al. [4] studied the durability and 13 

methods to accelerate the ageing of materials that are used in low-temperature solar systems 14 

and developed a performance criterion for flat-plate receivers. Rojas-Morín and Fernández-15 

Reche [5] studied the thermal fatigue lifetime of Inconel-625 exposed to high solar radiation. 16 

Boubault et al. [2] determined the optimal conditions to accelerate the ageing of a coated two-17 

layer metal using a numerical thermal model that was validated with experimental tests. The 18 

results of the optimal tests were published two year later [3]. Capeillère et al. [6] simulated the 19 

thermo-mechanical behaviour of a ceramic plate solar receiver, and Fend et al. [7] 20 

experimentally determined the thermo-physical properties of porous materials that are used 21 

in volumetric receivers. However, the latter two studies were carried out on unexposed 22 

materials. Experimental studies of the durability of ceramic solar receivers, such as SiCSi, were 23 

not found in the literature. 24 

 25 

Therefore, in this study, square honeycomb samples of SiCSi, which are typically used in air 26 

volumetric receivers, were thermally treated in a solar-accelerated ageing facility (SAAF) at the 27 

PROMES laboratory. The TTs consisted of constant irradiance cycles and periodic square 28 

variations of the irradiance, which led to an enhancement of the ageing mechanisms due to 29 

variations of the temperature and thermal gradients. To determine the degradation of the 30 

SiCSi samples, the normal absorptivity was estimated before and after the TTs and was 31 

compared. The normal absorptivity was calculated in three ways using two different devices: 32 

1) a reflectometer of optical fibre (REFFO), 2) an optical fibre solar reflectometer (DISCO) at 33 

ambient temperature and 3) a DISCO at a high representative temperature. It was thus 34 

possible to determine the importance of the wavelength and temperature in measuring the 35 
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thermo-radiative properties of the materials. Moreover, the degradation of the material can 1 

be studied as a function of the different ageing factors that were tested during the TT. 2 

 3 

2. Study material 4 

 5 

Over the past few decades, numerous materials have been used in solar receivers. The first 6 

receivers were built with standard stainless steels, which resulted in high corrosion and 7 

degradation [8]. Hence, a generation of high nickel alloys emerged to solve these problems. 8 

However, these high nickel alloys cannot withstand temperatures over 800 ºC, so they need to 9 

be coated to improve the receiver absorptivity. The most common coating, the black paint 10 

Pyromark, undergoes high degradation under highly concentrated solar fluxes [9]. Although 11 

advanced metals are currently being developed, they all have problems associated with 12 

coating degradation. Therefore, the new generation of solar receivers that will be used in 13 

Brayton cycles, which reach temperatures up to 1000 ºC, must be built with other types of 14 

materials, such as ceramic materials. 15 

 16 

Ceramic materials have been successfully used in volumetric air receiver applications, such as 17 

HiTRec-I, HiTRec-II, Solair-200 and Solair-3000. The main problem of volumetric air receivers is 18 

the flow instability. However, in 1996, DLR showed that SiCSi honeycomb absorbers had the 19 

best results in terms of the application temperature, thermal shock resistance, and flow 20 

stability, which guaranteed a high thermal efficiency of the receivers [10].  21 

 22 

Silicon carbide is composed of 20% silica and 80% carbon. SiCSi is used for high performance 23 

ceramic devices such as heat-exchangers, seal-rings, valve-discs and ceramic engine parts [11]. 24 

Its large field of applications is due to its outstanding properties, including good resistance to 25 

oxidation and corrosion, excellent thermal conductivity and high mechanical strength up to 26 

1300 ºC. However, at temperatures above 1400 ºC, the mechanical properties (e.g., strength 27 

and creep) deteriorate due to the existing free silicon content [12]. Furthermore, this ceramic 28 

has particular advantages in terms of production and costs because it can be produced at 29 

relatively low temperatures. SiCSi is widely used in solar receiver applications due to its 30 

properties, which allow using the unspoiled material without a coating. For open volumetric 31 

receivers, the SiCSi is typically designed like a honeycomb.  32 

This study analysed a honeycomb SiCSi structure from the company SCHUNCK with an 33 

absorptivity of 0.9 [7]. This material is equivalent to those used in the demonstration receiver 34 

Solair-3000 (Figure 1). The main advantage of this honeycomb structure in an open volumetric 35 
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receiver is that it produces a stable 2D air flow. However, during the receiver operation, hot 1 

spots can form and damage the receiver. 2 

 3 

  4 

(a)                                                                                (b) 5 

Figure 1: a) Operational principles of Solair-3000 [13]. b) 140 mm × 40 mm units mounted in 6 

Solair-3000 [14]. 7 

 8 

The selected honeycomb SiCSi structure is composed of 2 mm x 2 mm square channels with 9 

the same depth as that of the absorber structure. The channels have a wall thickness of 0.8 10 

mm. The honeycomb structure is non-symmetric in all directions. During normal operation of 11 

the receiver, the incident flux is parallel to the receiver channels; thus, the receiver channel 12 

direction is considered the main direction of the structure.  13 

 14 

To carry out this study, the absorber structure was cut into two types of small samples using a 15 

diamond cutting system. Both types of samples are 15 mm x 15 mm square and 6 mm wide, 16 

and the solar flux during the TT was intercepted by one of the square faces. The type A 17 

samples were cut from the principal block in the secondary direction of the structure, so the 18 

face that intercepts the solar flux corresponds to a plane wall. The type B samples were cut in 19 

the main direction of the block, and the face that intercepts the solar radiation is composed of 20 

5 x 5 channels that are 6 mm long (Figure 2). Therefore, the normal absorptivity of each type of 21 

sample is considerably different due to the geometric differences between the faces that 22 

intercept the solar irradiation. 23 
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 1 

Figure 2. Type A and B SiCSi honeycomb samples. 2 

It is important to note that the cutting of the samples is not very accurate, so the surfaces of 3 

the samples are non-homogeneous. Although the front surface of volumetric receivers is 4 

equivalent to the type B samples, that surface is difficult to characterize due to the irregularity 5 

that is caused by the numerous honeycomb cells. Therefore, type A samples are required to 6 

understand the evolution of the optical properties of SiCSi. 7 

3. Thermal treatments 8 

This section describes the experimental facility that was used to carry out the TTs and the 9 

selected TTs. 10 

3.1. Experimental set-up: SAAF 11 

The SAAF was developed at the CNRS-PROMES laboratory (Odeillo, France) to expose samples 12 

to controlled solar irradiances (Figure 3). 13 

 14 

(a)                                                                                               (b) 15 

Figure 3: a) Schematic of the Solar Accelerated Ageing Facility (SAAF) [15]. b) SAAF [3]. 16 
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A 20-square-meter heliostat reflects solar rays towards a 2-meter-diameter parabolic 1 

concentrator that is capable of concentrating the light by 16,000 times. Thirteen rotary blade-2 

shutters allow the amount of incident solar power to be controlled precisely via an irradiance 3 

sensor coupled with a PID regulation loop. The concentrated solar flux is homogenized using a 4 

water-cooled 20 mm x 20 mm x 60 mm mirror kaleidoscope before hitting the surface of the 5 

samples [3].   6 

The sample is located at the focal point of the parabolic concentrator and is held in a metallic 7 

(AU4G) water-cooling test bed, which is able to withstand high temperatures (Figure 4). The 8 

sample is placed on a 50 mm x 50 mm copper sheet, which could be cooled by water.  9 

 10 

(a)                                                                               (b) 11 

Figure 4: a) SAAF trolley zoom. b) MACOR support. 12 

An infrared solar-blind pyrometer was installed above the sample to monitor the surface 13 

temperature by collecting the flux emitted by the sample at a wavelength of 5.2 µm. The 14 

diameter of the optical target was 7.45 mm, which is the same order of magnitude as the wall 15 

thickness of the sample; this caused reliability problems for the temperature measurements of 16 

the type B samples. In these samples, the target section encompassed the front wall of the 17 

honeycomb, the cavity of the honeycomb, and the copper sheet. 18 

 19 

3.2. Selection of thermal treatments  20 

This study is motivated by the deterioration of the thermal performance of the receivers as a 21 

result of the alteration of the material due to ageing [3]. The thermal performance of the 22 

receiver is defined by the ratio of the energy that is absorbed by the heat transfer fluid to the 23 

incident flux on the receiver (Equation 1).  24 

air
rec

i





=          (Equation 1) 25 
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A thermal treatment strategy was designed taking into account the factors that most affect the 1 

ageing of the material. Boubault et al. and Lalau et al. [2,16] determined that the total 2 

exposure time, the flux intensity, and the boundary conditions of the samples (BCs) are the 3 

main ageing mechanisms for metallic and ceramic plates. They also highlighted the importance 4 

of studying the effects of steady and cyclic irradiation separately because they have different 5 

effects on the temperature and the thermal gradients. Figure 5 depicts the procedure that was 6 

used to study the ageing evolution of a solar receiver.  7 

 8 

Figure 5. Accelerated ageing scheme [16]. 9 

This study is mainly focused on experimentally accelerating the age of honeycomb SiCSi 10 

samples in the SAAF using the most aggressive TTs given by [2,16]. This experimental study is 11 

not capable of following the evolution of the receiver performance. However, it can predict 12 

the evolution of the thermo-radiative properties and particularly the normal absorptivity of 13 

the honeycomb raw material. 14 

Lalau et al. [16] selected fifteen TTs for a previous analysis of SiC and found that the period of 15 

the cyclic TT was not a significant factor in the ageing of the material. Thus, in this study, the 16 

number of TTs could be reduced to 7, including cyclic and steady TTs. All of the TTs were as 17 

long as possible (3 hours), and the solar flux varied from 500 kW/m2 to 1000 kW/m2. The cyclic 18 

TTs used periods of 60 seconds with square-shaped irradiance cycles (Figure 6b). Note that 19 

square cycles have higher energy for a fixed amplitude and period than other cycle shapes, 20 

which allows higher stress factors to be obtained [2].  21 

During the TTs in the SAAF, the front surface and the side of the samples were in direct contact 22 

with the external ambient air and were subjected to natural convection. In contrast, 23 

isothermal or adiabatic BCs were used on the rear surface. The first BC was achieved by means 24 

of a water flow at 10 ⁰C that cooled the rear face of the copper sheet to maintain a constant 25 

temperature at the contact between the copper sheet and the sample. The cooling water was 26 
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not used for the adiabatic BC, and a fibreglass layer was placed between the sample and the 1 

copper sheet. 2 

      3 

(a)                                                                               (b) 4 

Figure 6. a) Example of a steady state TT at 1000 kW/m2. b) Example of an un-steady state TT 5 

at 1000 kW/m2. The blue line corresponds to the constant value on the PID (left axis), the red 6 

line corresponds to the solar flux that is intercepted by the irradiance sensor (left axis), the 7 

yellow line corresponds to the surface temperature that is measured with the pyrometer (right 8 

axis), and the orange line is the solar flux on the sample (right axis). 9 

Table 1 summarizes the seven TTs that were used on the samples in this study. A total of eight 10 

samples were used for each type of sample: seven for the different TTs (treated samples) and 11 

one raw (non-treated) sample.  12 

Table 1: Summary of the TTs applied to both types of samples. Yellow indicates the TTs in 13 

which the samples were cooled by water (isothermal BC), and red indicates the TTs in which 14 

the samples were isolated (adiabatic BC). Subscripts: u: un-steady; s: steady; i: isothermal; a: 15 

adiabatic; 1: 1000 KW/m2; 2: 700 KW/m2; and 3: 500 KW/m2.  16 

Exposure time 3 hours 

Amplitude Un-steady state Steady state 

Period [s] 60  - 

Incident 
Flux 

[kW/m2] 

1000 TTui1             TTua1 TTsi1          TTsa1 

700 TTui2      

500 TTui3                   TTsa3 

 17 

Table 2 shows the maximum temperature that was reached during the different TTs for sample 18 

types A and B. During the TT, the type A samples reached higher temperatures than the type B 19 

samples; thus, the usage of honeycomb structures reduces the wall temperature compared to 20 

the plane walls. Furthermore, the adiabatic BCs are more aggressive than the isothermal BCs. 21 
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Note also that TTui2 had an unexpected low temperature for sample type A and an extremely 1 

high temperature for sample type B. TTsa3 for sample type A also resulted in a higher 2 

temperature than was expected.  3 

Table 2: Summary of the maximum front surface temperatures reached during the different 4 

TTs that were applied to both types of samples. Yellow indicates the TTs with isothermal BCs, 5 

and red indicates adiabatic BCs. 6 

Sample type A B 

Exposure time 3 hours 3 hours 

Amplitude Un-steady state Steady state Un-steady state Steady state 

Period [s] 60 - 60 - 

Maximum surface 
temperature [⁰C] 

700            1050 375           525 450             700 325           525 

275      1000      

550                   800 400                   475 

 7 

After carrying out the TTs, most of the samples had no visible changes (macroscopic level), 8 

which confirms the correct heat transfer fluid circulation in solar receiver applications. 9 

However, it should be noted that the type A sample that was thermally treated with TTua1 was 10 

broken and that the type B samples that were thermally treated with TTsa3 and TTsa1 formed a 11 

series of bubbles at the surface that intercepted the solar flux (Figure 7). These exceptions 12 

verify that the adiabatic BCs are the most severe for both types of samples.  13 

    14 

(a)                                                                                 (b) 15 

Figure 7. a) Sample A after TTua1. b) Sample B after TTsa1. 16 

4. Normal absorptivity determination 17 

The normal absorptivity of the material cannot be measured directly; thus, it is estimated from 18 

the directional normal solar reflectivity distribution. Two different reflectometers were used to 19 

characterize the thermo-radiative properties of both types of honeycomb SiCSi samples; a 20 

monochromatic reflectometer with a length of 0.83 µm (REFFO) was used at ambient 21 
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temperature, and a solar band reflectometer (DISCO) was used at ambient temperature and a 1 

representative high temperature.  2 

 3 

By integrating the directional normal solar reflectivity distribution that was obtained with the 4 

reflectometers over the entire hemisphere, it is possible to estimate the hemispherical normal 5 

reflectivity in the solar spectrum, s
⊥ . Therefore, the normal solar absorptivity, s

⊥ , can be 6 

calculated by integration using Equation 2 [17]: 7 

1s s ⊥ ⊥= −          (Equation 2) 8 

This study also focused on finding the correct way to characterize the thermo-radiative 9 

properties of solar materials, which depend on the wavelength and the temperature. 10 

Therefore, a test was performed to determine whether a monochromatic optical fibre 11 

reflectometer is able to characterize the evolution of the normal absorptivity of ceramic 12 

absorbers or whether a solar band reflectometer is required. Furthermore, the deterioration of 13 

the thermo-radiative properties after the TT at ambient temperature was checked to 14 

determine whether it is equal to that at high temperatures. Both reflectometers and the 15 

measurement processes are described in the following subsections.  16 

4.1. Monochromatic optical fibre reflectometer (REFFO) 17 

REFFO measures the normal hemispherical and monochromatic reflectivity of the samples in 18 

the infrared spectrum at a wavelength of 0.83 µm. 19 

A silica optical fibre with a diameter of 1 mm emits a monochromatic beam perpendicular to 20 

the surface of the sample. The reflected flux is collected by a series of seven receiving optical 21 

fibres that are distributed every ten degrees from 0˚ to 60˚ (Figure 8).  22 

                    23 

                                    (a)                                                                              (b) 24 

Figure 8. a) Schematic of the REFFO device. b) REFFO device. 25 
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 1 

4.2. Solar band optical fibre reflectometer (DISCO) 2 

A fibre reflectometer called DISCO was used to estimate the hemispherical reflectivity in the 3 

solar spectrum (visible wavelengths). The operational principles are similar to those of REFFO; 4 

an optical fibre emits a solar beam perpendicular to the surface of the sample, and eight fibres 5 

collect the reflected flux in different directions from 0˚ to 70˚ [18]. The solar beam that is 6 

emitted by DISCO is injected into the optical fibre by a convergent lens that receives the solar 7 

flux from a 3 m x 3 m square heliostat that is located adjacent to the device. 8 

     9 

(a)                                                                           (b) 10 

Figure 9. a) Schematic of the DISCO device. A: Fibre basis cooled by water. B: Motorized trolley. 11 

C: Detection body. D: Pyroreflectometer. E: Computer. F: Parabola. 1: Sample, 2: Sphere lab. 3: 12 

Emission fibre. 4: Receiver fibres from 10˚ to 70˚. 5: Normal receiver fibre. 6: Laser 13 

Pyroreflectometer. 7: Pyroreflectometer receiver fibre. b) DISCO device. 14 

DISCO can measure the reflectivity of the samples at different temperatures because the 15 

sample is placed at the focus of a 2-m-diameter parabola (Figure 9). A shutter system is used 16 

to control the solar irradiation that is intercepted by the sample. If the shutters are opened, 17 

the rear part of the sample is heated, and the reflectivity is measured by the non-irradiated 18 

face. The pyrometer that was previously used in the SAAF facility was employed to measure 19 

the temperature of the sample; it faced the non-irradiated surface of the sample. When the 20 

shutters were closed, the solar irradiation to be injected into the optical fibre passed through a 21 

hole in the middle of the shutters, but the sample remained at the ambient temperature. 22 

5. Results and discussion 23 

In this section, the normal absorptivity of both types of honeycomb SiCSi samples was 24 

characterized. In particular, the most influential parameters on the evolution of the normal 25 
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absorptivity were identified. The normal absorptivities of the treated and the non-treated 1 

samples were then characterized with the different devices and compared. 2 

5.1. Characterization of raw samples (non-treated) 3 

The honeycomb SiCSi samples A and B were characterized before performing the TTs. To 4 

reduce the error, the reflectivity measurements were repeated several times. In REFFO, they 5 

were repeated 25 times. However, due to the instability of the sun and the need for clear 6 

skies, only 7 repetitions were used to measure the reflectivity in DISCO. 7 

Using REFFO, the average hemispherical reflectivities were 0.0895 for sample A and 0.0656 for 8 

sample B with standard deviations of 0.23% and 0.085%, respectively. At ambient temperature 9 

(10 - 15 ˚C), DISCO measured a hemispherical reflectivity of 0.0991 with a standard deviation 10 

of 0.62% for sample A and a hemispherical reflectivity of 0.0496 with a standard deviation of 11 

0.58% for sample B. The higher standard deviation in sample A can be explained by a greater 12 

variation of the Direct Normal Irradiance (DNI) during the reflectivity tests of sample A. 13 

At high temperatures, the shutters were opened, but maintaining a constant temperature was 14 

difficult because they were manually controlled. Therefore, a range of temperatures between 15 

400 and 700 ˚C that were obtained during the TTs was allowed. The DNI during the test was 16 

approximately 100 W/m2, and the shutters were never opened more than 20%. The shutters 17 

were opened for short periods of time to avoid overheating the samples and the fibres 18 

because they were not cooled.  19 

Performing the measurements at high temperatures increased the dispersion of the results; 20 

the hemispherical reflectivity of the non-treated sample A was 0.0942, and the standard 21 

deviation 0.79%. The facility could not accurately measure sample B and obtained only one 22 

valid value for the hemispherical reflectivity (0.00818). 23 

Table 3 summarizes the normal absorptivities of the non-treated samples A and B. The shape 24 

of the front face of the type B samples makes it similar to a black body, so the absorptivity of 25 

these samples is higher than that of the type A samples, whose surface is similar to a sheet.  26 

The normal absorptivities that were obtained with the three types of measurements for the 27 

type A samples were very similar; they were approximately 1% higher when REFFO was used 28 

and slightly lower at ambient temperature than at high temperatures. Therefore, both devices 29 

can be used to characterize the material before the TTs. However, the normal absorptivities 30 

that were calculated for the type B samples by the different methods differed significantly by 31 
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approximately 4%. The difference was mainly associated with the focus point at which the 1 

reflectivity tests were performed. 2 

DISCO at ambient temperature showed that sample B reflects very low energy, which indicates 3 

that no rays were reflected back to the receiving fibres in any direction, and the focus point 4 

was the inner part of a channel. However, the directional reflectivity of DISCO at high 5 

temperatures for sample B had a similar pattern to that for sample A; the reflectivity was 6 

measured at a focus point that was formed by the walls. Because the absorptivity that was 7 

measured with REFFO is between the other results, the fibres were measured at a focus point 8 

that was formed by walls and channels. These results demonstrate the difficulty of 9 

characterizing the type B samples.  10 

Table 3. Normal absorptivity calculated using the REFFO and DISCO devices at different 11 

temperatures for the non-treated samples A and B. 12 

Absorptivity REFFO DISCO Tamb DISCO T≈600 ⁰C 

Sample A 0.91 0.901 0.906 

Sample B 0.93 0.950 0.918 

 13 

5.2. Characterization of treated samples 14 

This subsection compares the normal absorptivity of the different samples after the TTs with 15 

the absorptivity of the non-treated samples. These comparisons were performed by varying 16 

only one parameter of the treatment, including the incident flux, the BC or the irradiation 17 

cycle. This subsection also focuses on the comparison between reflectometers. 18 

Variation of the incident flux 19 

Two series of TTs can be compared as a function of the incident flux. TTui1, TTui2 and TTui3 use 20 

periods of 60 seconds and isothermal conditions, and TTsa1 and TTsa3 use a constant flux and 21 

adiabatic conditions. The absorptivities of the SiCSi samples after these TTs are shown in Figure 22 

10, in which the solid lines represent the average normal absorptivity for the non-treated type 23 

A and B samples using the different devices (colours), and the different symbols represent the 24 

average normal absorptivity for the five TTs described above that were measured with the 25 

different facilities (colours and shapes). 26 

Consistent with Table 3, the results in Figure 10 show that the normal absorptivity for the 27 

three types of measurements varies less for the non-treated sample A than for sample B. Thus, 28 
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to understand the evolution of the normal absorptivity after the TTs, special attention will be 1 

paid to the behaviour of the type A samples. 2 

 3 

(a) (b) 4 

  5 

(c)                                                                              (d) 6 

Figure 10. Effect of the incident flux on the normal absorptivity using a) 60 s period TT for type 7 

A samples, b) 60 s period TT for type B samples, c) steady state TT for type A samples, and d) 8 

steady state TT for type B samples. 9 

Figure 10 also shows that the absorptivity that is measured with REFFO is nearly constant. The 10 

differences in the type B samples are due to the relative position of the focus point and the 11 

optical fibres. Thus, REFFO is not able to determine the ageing effect of the materials.  12 

Using DISCO at ambient temperature, the absorptivity decreased after the TT and increased 13 

with the incident flux. The evolution of the absorptivity that was measured with DISCO at only 14 

high temperature can be observed in the type A samples. The flux of 500 kW/m2 is not 15 

sufficient to accelerate the ageing of the SiCSi, and the absorptivity is the same as in the non-16 

treated sample. At 700 kW/m2, the degradation of the material is noticeable, and the 17 

absorptivity decreases; at 1000 kW/m2, the temperature of the surface is so high that the 18 

absorptivity increases despite the material degradation and reaches similar values to that of 19 
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the non-treated sample. For all of the TTs, the normal absorptivities of the samples that were 1 

measured at high temperatures are higher than those at ambient temperature.  2 

Variation of the irradiation cycle 3 

By fixing the BC and the incident flux, a cyclic irradiance was studied to determine whether it 4 

more effectively activates the ageing mechanism of the SiCSi samples than a constant 5 

irradiance. Hence, two series of TTs were compared. TTui1 and TTsi1 used a flux of 1000 KW/m2 6 

and were cooled by water, and TTua1 and TTsa1 used 1000 KW/m2 and were isolated. 7 

The results in Figure 11 confirm that REFFO cannot follow the absorptivity evolution of 8 

exposed SiCSi. Using DISCO, the absorptivity of the treated samples is lower than the 9 

absorptivity of the non-treated samples. Thus, both cyclic and steady treatments activate the 10 

ageing mechanisms of the SiCSi. The normal absorptivity is lower after constant irradiation 11 

than after cyclic irradiation because the deterioration of the material in the cyclic treatments is 12 

compensated for by the higher temperature. For sample A, the absorptivity of TTua1 is lower 13 

than that of TTsa1 because the surface temperature in the first TT exceeded 1000 ⁰C. At this 14 

temperature, the corrosion is severe, which accelerates the ageing mechanism of the SiCSi and 15 

reduces its absorptivity. 16 

 17 

(a)                                                                              (b) 18 

  19 



18 
 

(c)                                                                              (d) 1 

Figure 11. Effects of the steady and unsteady TTs on the normal absorptivity when the samples 2 

are thermally treated with 1000 KW/m2 and a) water-cooled for type A samples, b) water-3 

cooled for type B samples, c) isolated for type A samples, and d) isolated for type B samples. 4 

Variation of the boundary conditions  5 

The effect of the BCs on the ageing mechanism of the SiCSi was studied using two series of 6 

thermal treatments; TTsi1 and TTsa1 used a constant irradiance of 1000 kW/m2, and TTui1 and 7 

TTua1 used a cyclic irradiance of 1000 kW/m2. Figure 12 shows the absorptivities that were 8 

obtained for these samples. 9 

 10 

(a)                                                                              (b) 11 

 12 

(c)                                                                              (d) 13 

Figure 12. Effects of the isothermal and adiabatic BCs on the normal absorptivity for TTs of: a) 14 

60 s period for type A samples, b) 60 s period for type B samples, c) steady state for type A 15 

samples, and d) steady state for type B samples. 16 

Figure 12 shows that under the same operational conditions, the ageing mechanisms of the 17 

isolated and cooled samples depend on the surface temperature that is reached during the TT. 18 
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The cooled samples have lower absorptivities than the isolated samples unless than the 1 

temperature exceeds the corrosion limit. 2 

6. Conclusions 3 

In this study, the thermo-radiative properties of two types of SiCSi honeycomb samples were 4 

characterized before and after different TTs were carried out. These TTs are used to subject 5 

the samples to extreme operational conditions to accelerate their ageing mechanisms. All of 6 

the TTs were 3 hours long, and the incident solar flux, the irradiance shape and the BCs of the 7 

samples were varied.  8 

During the TT, the type A samples received the concentrated solar flux perpendicular to the 9 

honeycomb, and the type B samples intercepted the solar flux in the same direction as the 10 

channels. Therefore, the type A samples do not correspond to a volumetric receiver, but they 11 

must be analysed. The reflectivity measurements depend on the focus point, and the type B 12 

samples are very heterogeneous, so it is difficult to characterize and follow the evolution of 13 

the optical properties of this type of samples. 14 

The thermo-radiative properties of the honeycomb SiCSi were measured using two different 15 

devices: a monochromatic REFFO and a solar band DISCO. In the latter, two types of 16 

experiments were performed, including one at ambient temperature and one at high 17 

temperatures that are representative of the typical range of operation for solar receivers. The 18 

normal absorptivities that were obtained for the non-treated type A sample with the three 19 

tests were very similar. The dispersion for the type B sample was much greater due to the non-20 

homogeneous surface.  21 

The normal absorptivity of the samples decreases after any TT. However, the normal 22 

absorptivity is greater if high temperatures were reached during the TT than for the low 23 

temperature TT, and it could exceed the absorptivity of the non-treated samples. Thus, the 24 

factors that maximize the temperature tend to also increase the normal absorptivity. However, 25 

if the temperature of the surface exceeds 1000 ⁰C, the material degrades drastically, and the 26 

absorptivity decreases abruptly. The lowest efficiency of the SiCSi was reached using the TT 27 

with intermediate concentrated solar fluxes, constant irradiance and the isothermal BC. 28 

The results showed that the monochromatic REFFO could not detect the normal absorptivity 29 

variations before and after the TTs, which indicates that the wavelength that this device uses is 30 

not able to characterize the degradation of the optical properties of materials that are used in 31 

concentrating solar applications. The DISCO experiment showed the variations in the optical 32 
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properties before and after the TTs. In general, the tests that were performed at ambient and 1 

high temperatures have the same patterns, although the normal absorptivity at high 2 

temperatures is usually greater than that at ambient temperature.  3 

Therefore, DISCO at ambient temperature can be used to determine the relative variation of 4 

the thermo-radiative properties of SiCSi due to exposure (aging effect). However, DISCO must 5 

be used at high temperatures to determine the absolute thermo-radiative properties of the 6 

samples. Nevertheless, DISCO at high temperatures gives a larger higher dispersion in the 7 

measurements and has some difficulty in performing the TTs, especially for the type B 8 

samples. Hence, a reference reflectivity should be measured at ambient temperature to 9 

demonstrate the coherence of the high temperature results. 10 
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