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Abstract

Nature offers a vast amount of examples of efficient locomotion. Millions of years of
evolution have allowed animals –such as fish, insects and birds–, and even plants –such
as winged-seeds or dandelions– to achieve outstanding locomotive skills. Therefore, it
is not a surprise that scientists and engineers have tried to replicate the flight and
swimming capabilities of the former examples in order to develop efficient aerial and
nautical robots. In fact, these efforts have led to the design and development of
several successful bioinspired robots. However, their performance is still far below
their living counterparts. One of the main reasons is that the understanding of the
physics underlying biological locomotion is still limited. This is due to the complexity
of the problem under consideration: the locomotion of a body through a fluid medium.
This can be considered fluid structure interaction (FSI) problem where the dynamics
of the specimens is the result from the hydrodynamic interaction with the surrounding
fluid, which in turn is modified by the motion of the specimens. Consequently, the
resulting problem is highly nonlinear and complex from a mathematical standpoint.

This dissertation attempts to contribute to further understand the fluid structure
interactions in bioinspired locomotion problems. To that end, direct numerical simula-
tions of several examples of bioinspired FSI problems are performed. These examples
include the auto-rotation of a winged-seed, the flow interactions between the wings of
a dragonfly, and the schooling patterns that emerge between two fish.

In the first part of this dissertation, the algorithm which has been developed to
perform part of the aforementioned studies is presented. The proposed algorithm
allows the study of the FSI of systems of connected rigid bodies –which serve as a
model for the actual specimens– immersed in an incompressible fluid. It is built based
on a preexisting flow solver, coupled with a robotic algorithm for the computation
of the dynamics equations of the bodies. The use of robotic algorithms endows the
proposed methodology with a great flexibility, allowing to simulate a large variety of
problems with different geometries and configurations.

The second part of the thesis is devoted to the analysis of the aforementioned
examples. In this regard, we first consider the flight of a winged-seed. This is a
very interesting, yet complex, problem of fluid-dynamic interaction; in which the
auto-rotative motion is the result of a subtle equilibrium between the aerodynamic
forces and the inertia properties of the winged-seed. In our study, the dynamics and
the flow surrounding the auto-rotating seed are characterized in a range of Reynolds
numbers, Re. Specifically, we focus on the study of the leading edge vortex (LEV) that
is developed on the upper surface of the seed’s wing as it auto-rotates. Our findings
suggest that, in the explored range Re = [80 − 240], LEV’s stability is not driven
by vorticity transport along the spanwise direction nor viscous effects, as reported
in the literature of rotating wings. Instead, fictitious accelerations (i.e., Coriolis and
centrifugal accelerations) are the most suitable candidates to stabilize the LEV over
the seed’s wing.

In the second example, we study the effect of the three-dimensional (3D) interac-
tions in the performance of two tandem wings, resembling those of a dragonfly. To
that end, the wings undergo a two-dimensional (2D) optimum kinematics which is
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a combination of heaving and pitching. We first analyze the effect of wings’ aspect
ratio,A, by comparing the 3D and 2D simulations. The results show that 3D vortical
interactions are detrimental for the thrust production of the hindwing, but they do not
significantly affect the propulsive efficiency of the tandem arrangement. Next, a more
realistic flapping kinematics of the 3D is considered and compared to the previous
heaving kinematics. We find a decrease in the propulsive efficiency of the flapping
wings compared to their heaving counterparts, which has been linked to a non-desired
shedding of vorticity on the inboard region of the wings.

The last bioinspired example corresponds to the collective motion of two self-
propelled three-dimensional bodies. These bodies are idealized as rectangular, flat
plates with flexibility along their chordwise direction, and that self-propels thanks
to a prescribed vertical motion of their leading edges. We observe that tandem
configurations emerge where both plates swim at a constant mean horizontal velocity
and with a mean equilibrium horizontal distance. These configurations can be classified,
attending to the resulting flow interactions, into compact and regular configurations.
In the former, the performance of the upstream flapper is modified due to the close
interaction with the downstream flapper. However, in the regular configurations, the
performance of the upstream flapper is similar to that of an isolated flapper. Conversely,
the performance of the downstream flapper is affected in both configurations by the
interaction with the wake of the upstream flapper. We are able to link the changes in
the downstream flapper’s performance to its interaction with the vertical jet induced
by vortex rings of the upstream flapper’s wake. Finally, we propose a model to
qualitatively predict the performance of a hypothetical downstream flapper based
on the flow field of and isolated flapper, showing good agreement with the actual
simulations.

Key words: bio-inspired locomotion, fluid structure interaction, direct numerical
simulations.
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Resumen

La naturaleza ofrece una gran cantidad de ejemplos de locomoción eficiente. Millones
de años de evolución han permitido a animales –tales como peces, insectos o pájaros– e
incluso plantas –como sámaras o dientes de león– lograr unas habilidades de lomoción
excepcionales. Por lo tanto, no es una sorpresa que cient́ıficos e ingenieros hayan
intentado replicar la capacidades de vuelo y nado de los anteriores ejemplos, con
el objetivo de desarrollar robots aéreos y nadadores más eficientes. De hecho, estos
esfuerzos han dado lugar al diseño y desarrollo exitoso de varios robots bioinsipirados.
Sin embargo, el rendimiento de éstos es todav́ıa muy inferior al de sus referentes
biológicos. Una de las principales razones es que la comprensión de la f́ısica subyacente
de la lomococión de sistemas biológicos es aún limitada. Esto es debido a la complejidad
del problema, a saber, el movimiento de un cuerpo a través de un medio fluido. Este
se puede considerar como un problema de interacción fluido estructura (FSI) donde
la dinámica del espécimen es el resultado de la interacción fluidodinámica con el
fluido de alrededor, el cual es a su vez modificado por el movimiento del cuerpo.
Consecuentemente, el problema resultante es altamente no lineal y complejo desde un
punto de vista matemático.

Con esta disertación se pretende contribuir a una mayor comprensión de la interac-
ción fluido estructura en problemas de locomoción bioninspirados. Con tal propósito,
se han realizado simulaciones numéricas directas de varios ejemplos bioinspirados de
interacción fluido estructura. Estos ejemplos incluyen la autorrotación de una sámara,
las interaccionés fluidas entre las alas de una libélula y los patrones de nado que surgen
entre dos peces.

Durante la primera parte de esta disertación, se describe el algoritmo que ha
sido desarrollado con el propósito de simular alguno de los problemas anteriormente
citados. El algoritmo propuesto permite el estudio de la interacción fluido estructura
de sistemas de cuerpos ŕıgidos conectados –los cuales sirven como modelo de los
espećımenes reales– que están sumergidos en un fluido incompresible. Está construido
sobre un solver fluido pre-existente, acoplado a un algoritmo robótico que se encarga
de calcular las ecuaciones dinámicas de los cuerpos. El uso de algoritmos robóticos
proporciona a la metodoloǵıa propuesta una gran flexibilidad, permitiendo simular
una gran variedad de problemas con diversas geometŕıas y configuraciones.

La segunda parte de esta tesis está dedicada al análisis de los ejemplos mencionados
anteriormente. En este respecto, consideramos primero el vuelo de una sámara, el
cual es un problema muy interesante, aunque complejo, de interacción fluido dinámica
en el cual el movimiento autorrotativo es el resultado de un sutil equilibrio entre las
fuerzas aerodinámicas y las propiedades inerciales de la semilla. En nuestro estudio,
caracterizamos la dinámica y el flujo alrededor de la semilla autorrotante en un rango
de números de Reynolds, Re. En concreto, nos centramos en el estudio del vórtice
del borde de ataque (LEV) que se forma en la parte superior del ala de la sámara
cuando ésta autorrota. Nuestros hallazgos sugieren que, en el rango explorado de
Re = [80− 240], la estabilidad del LEV no se debe a un transporte de vorticidad a
lo largo de la dirección de la envergadura del ala, ni a efectos viscosos –como se ha
mencionado en la literatura de alas rotativas–, si no que las aceleraciones ficticias (es
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decir, las aceleraciones centŕıfugas y de Coriolis), son las candidatas más probables
responsables de la estabilización del LEV.

En el segundo ejemplo, se estudia el efecto de las interacciones tridimensionales
(3D) en el rendimiento de dos alas en configuración tándem, basadas en las de una
libélula. Para ello, se prescribe que el movimiento de las alas sea una combinación de
cabeceo y oscilación vertical que es óptimo en 2 dimensiones (2D). Primero analizamos
el efecto de la relación de aspecto de las alas, A, comparando los resultados de las
simulaciones en 3D y en 2D. Los resultados revelan que las interacciones vorticales
en 3D son perjudiciales para la generación de empuje del ala trasera, pero estas
interacciones no afectan de forma significativa a la eficiencia propulsiva del conjunto.
Posteriormente, se considera un movimiento de batimiento más realista de las alas,
y se compara su eficiencia con la obtenida previamente para las alas en movimiento
oscilatorio vertical. Se observa una menor eficiencia de las alas en batimiento en
comparación con las mismas alas en movimiento oscilatorio vertical. Este deterioro es
asociado a un desprendimiento de estructuras vorticales cerca de los bordes marginales
de las alas en batimiento.

El último ejemplo bioinspirado es el del movimiento colectivo de dos cuerpos
tridimiensionales que se auto propulsan. Estos cuerpos se idealizan como placas planas
rectangulares, siendo flexibles a lo largo de su cuerda, y que se auto propulsan gracias
a un movimiento vertical impuesto de sus bordes de ataque. Los resultados muestran
la aparición de configuraciones tándem donde sendas placas nadan con una velocidad
media constante y separadas a una distancia de equilibrio que es también constante.
Estas configuraciones son clasificadas –atendiendo a las interacciones fluidas– entre
compactas y regulares. En las primeras, el rendimiento de la placa que nada aguas
arriba (a la que llamaremos ĺıder) se ve afectado por las interacciones cercanas con
el cuerpo que nada aguas abajo (al que denominaremos seguidor). En cambio, en
las configuraciones regulares el redimiento del ĺıder es el mismo que el de una placa
similar nadando de forma aislada. Por el contrario, el rendimiento del seguidor se ve
afectado en ambas configuraciones debido a las interacciones con la estela del ĺıder. Se
ha podido relacionar estos cambios en la eficiencia del seguidor con la interacción con
el chorro inducido por los anillos vorticales de la estela del ĺıder. Finalmente, hemos
propuesto un modelo que permite predecir, de forma cualitativa, el rendimiento de un
seguidor hipotético basándonos en el campo fluido de una placa aislada. El modelo
muestra una buena correlación con los datos obtenidos de las simulaciones numéricas.

Palabras clave: locomoción bioinspirada, interacción fluido estructura, simulaciones
numéricas directas.
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Part I

Overview and summary





Chapter 1

Introduction

When it comes to efficient means of locomotion, nature stands as the clear winner.
One only needs to have a look at the numerous examples provided by animal kingdom.
In the oceans and rivers, we find that the swimming capabilities of fish largely exceed
those achieved by nautical science and technology (Triantafyllou & Triantafyllou 1995).
For example, the Atlantic mackerel can reach burst speeds up to 18 L /s (where L
stands for body lengths); many fish species can sustain speeds of about 3 L /s for over
600 min, whereas swimming at lower speeds with no signs of fatigue (Videler & Wardle
1991). Looking at the skies, a common barn swallow can roll five times faster than a
highly acrobatic aircraft; while a common pigeon frequently attains flight speeds of
∼ 75 L /s, widely exceeding the 32 L /s reached by a supersonic fighter (Shyy et al.
2013). Likewise, albatrosses are probably one of the most efficient flyers in terms of
endurance: they are able to cover distances up to 15, 000 km in a single foraging trip
(Jouventin & Weimerskirch 1990) by taking advantage of shear layers of wind over
the ocean by means of the so-called dynamic soaring (Cone Jr 1964; Shaffer et al.
2001). Although previous examples have focused on animals, kingdom Plantae also
offers striking examples of locomotion efficiency (Burrows 1975; Greene & Johnson
1990). Probably, one of the most well-known examples are winged seeds which, by
virtue of their shape, are able to enter into auto-rotation as they fall from their tree
and disperse from tens of meters to kilometers (Nathan 2006). Another noteworthy
example are dandelions, which can achieve long dispersal distances (Tackenberg et al.
2003) owing to the interaction of their filaments with the surrounding air (Cummins
et al. 2018).

Therefore, it is not surprising that we humans have tried to mimic nature and
have developed robots inspired by some of the former examples. As an illustration,
Triantafyllou & Triantafyllou (1995) were probably the first in developing a functional
robotic fish, the RoboTuna. In the following years, a considerable amount of new
prototypes were reported in the literature (see Aditi & Atul (2016) for a review on
fish-inspired robots). A decade later, the first bioinspired flapping wings robot was
presented by Wood (2008), followed by the DelFly by de Croon et al. (2009), and the
Nano Hummingbird by Keennon et al. (2012). Likewise, auto-rotating winged seeds
inspired the development of the Samarai (Fregene & Bolden 2010), and the robotic
samara of Ulrich et al. (2010).

However, the performance of these bioinspired robots is still far from their living
counterparts (Epps et al. 2009; Helbling & Wood 2018). Setting aside technological
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2 1. Introduction

limitations, one key factor is the need for a proper understanding of the fundamental
physics underlying the locomotion of living creatures. In this regard, the mechanisms
employed by fish, birds, insects or winged-seeds to achieve such performances are clearly
different among one another. Nonetheless, all of them are based on manipulating
the flow around them. This flow manipulation can be achieved by passive or active
mechanisms. The former are related to the morphology of the specimen, like the
uneven mass distribution of winged-seeds responsible for their auto-rotation (Norberg
1973); or the turbucles on the leading edges of Humpback whales, which provides them
with an enhanced manoeuvrability (Miklosovic et al. 2004). In active flow control, the
specimen directly modifies the flow with its movements: using its muscular activity
(Fish & Lauder 2006).

Irrespective of the actual mechanism, from a physics standpoint these kind of
problems can be considered as fluid structure interaction (FSI) problems between a
body (or bodies) and a surrounding fluid. In these FSI problems, the dynamics of
the bodies is the result of their hydrodynamic interaction with the surrounding fluid,
which in turn is modified by the mechanisms employed by the bodies. This coupled
interaction leads to a highly complex and nonlinear problem.

In order to gain a proper understanding of the physical mechanisms that govern
these FSI problems, experiments and numerical simulations have proven to be very
useful tools. On the one hand, experiments allow to study the actual problem
in a controlled environment, as well as to perform large parametric studies. In
particular, the advent of digital particle image velocimetry (DPIV) has allowed
detailed examination of the flow structures produced by swimming and aerial animals
(Birch & Dickinson 2001; Fish & Lauder 2006; Smits 2019). In spite of this, the
amount of information that can be extracted from the fluid is still limited –usually
restricted to the in-plane velocity in one or several planes without temporal resolution–,
and force measurements in free motion is challenging (Hightower et al. 2017; Rival
& Oudheusden 2017). On the other hand, from numerical simulations, the flow field
(i.e., flow velocity and pressure) is known at each time instant, as well as the forces
acting on the bodies without any kind of external interference. Nevertheless, this
data availability comes at the expense of a high computational cost, as well as the
complexity in modelling the coupled FSI problem.

In particular, the numerical simulation of this kind of FSI problems entails several
challenges. First of all, the equations that govern the dynamics of the specimens must
be derived and coupled with the flow equations, leading to a highly non-linear problem
which must be solved. Secondly, the modelling of the geometry and kinematics of the
specimens is complex: they may be composed of several ”bodies” which have a relative
motion among them (e.g., an insect can be decomposed into its thorax-abdomen, and
its wings, which flap relative to the former); and additionally they can suffer from
deformations due to the hydrodynamic interaction. This can further complicate the
derivation of the dynamic equations and the solution of the whole system. Consequently,
these problems are usually simplified to some extent. Sometimes, the dynamics of the
bodies are not solved; instead the motion of the bodies is fully prescribed, leading
to a one-way coupling in which the body modifies the surrounding fluid, but the
flow does not modify the motion of the bodies. Alternatively, when the dynamics



1.2. Thesis structure 3

of a specimen is computed from the FSI, the modelling of its inertia and geometric
properties is simplified to reduce the complexity of the governing equations. One
common simplification is to consider the specimen to be composed of several connected
bodies. These bodies can be flexible, or assumed to be rigid, which reduces the
computational complexity. Furthermore, there are numerous studies in which all the
bodies except one are assumed to be massless (e.g., insect wings are usually modelled
as massless). Thus leading to a simplified expression of the dynamic equations.

1.1. Objectives

The main objective of this thesis is to contribute to the understanding of the interactions
among dynamics, elasticity and hydrodynamics in bioinspired problems, with the
hope that this understanding paves the way for the development of more efficient,
bioinspired aerial and swimming robots.

In order to achieve this global aim, three objectives are defined. Firstly, we study
the auto-rotation of a winged-seed by means of numerical simulations to elucidate the
coupled fluid-dynamic interaction of this passive mechanism.

Secondly, numerical simulations are performed to study the flow interactions of a
collective of two bodies, with the objective of analyzing the effect of the kinematics
and the elasticity of the bodies.

Finally, a computational tool to simulate the FSI problem of several systems of
connected rigid body is developed and validated, in order to be able to fulfill the
previous objective.

1.2. Thesis structure

The present document is organized in two parts, subdivided into chapters.

Part I provides an overall view and framework to the thesis. The present chapter
(chapter 1) provides an introduction; chapter 2 summarizes the numerical methods
used to accomplish the studies of this thesis; and chapter 3 summarizes the main
contributions of this work.

Part II contains the original publications this dissertation led to. The first paper
presents the numerical algorithm developed to compute the FSI of multi-body systems
of rigid bodies. The second and the third articles are focused on the dynamics and
the flow around a winged seed in auto-rotation, respectively. The fourth research
article analyzes the flow interaction of two finite wings in in-line tandem configuration
with a prescribed motion, resembling those of dragonflies. Finally, the last research
item further explores the interaction of two tandem plates but which self-propel in an
otherwise quiescent fluid:

Paper 1: A weakly coupled immersed boundary method and dynamic algorithm for
the fluid-structure interaction of multi-body systems.

Paper 2: Kinematics and dynamics of the auto-rotation of a model winged seed.

Paper 3: A numerical study of the flow around a model winged seed in auto-rotation.

Paper 4: Three-dimensional effects on the aerodynamic performance of flapping
wings in tandem configuration
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Paper 5: Flow interaction of three-dimensional self-propelled flexible plates in tan-
dem.



Chapter 2

Numerical methodology

2.1. Governing equations

The most general problem considered in the present thesis is depicted in figure 2.1. It
consists of one or more rigid-bodies immersed in a fluid. For the biological locomotive
problems considered herein, the fluid can be effectively considered as incompressible
(Wang & Sun 2005).

Thus, the equations governing the motion of the surrounding fluid are the Navier-
Stokes equations of an imcompressible, newtonian fluid:

∇ · u = 0, (2.1a)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u, (2.1b)

where u is the flow velocity, p is the pressure, and ρ and ν are the density and
kinematic viscosity of the fluid, respectively. Equation (2.1) must be complemented
with the boundary conditions of the particular problem, namely, the so-called non-slip
boundary condition on the surface of the bodies:

u = U∂Γi(x) ∀x ∈ ∂Γi, ∀i ∈ B, (2.2)

where ∂Γi is the interface between the fluid and body, Γi; B = {1, . . . , NB} is the set
of bodies (being NB the total number of bodies); and U∂Γi

(x) is the velocity of Γi at
its surface point, x.

Note that, the value of U∂Γi
is not necessarily known a priori, but it can be a

function of the dynamics of the body due to the interaction with the fluid. This is
assessed in section 2.3.2.

2.2. Fluid structure interaction algorithms: the immersed
boundary method

There are many numerical procedures to solve the FSI problem posed in section 2.1.
They can be broadly categorized according to its formulation into monolithic and
partitioned (non-monolithic) formulations (Bazilevs et al. 2008; Hou et al. 2012); or
according to the treatment of the solid-fluid interfaces as conforming mesh methods
and non-conforming mesh methods (Deng et al. 2013).

Monolithic formulations treat both the fluid and the structure in the same math-
ematical framework, leading to a single discrete system of equations for the whole
problem. They are robust and can achieve better accuracy, but they generally lead

5
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Ωf

∂Γ1 ∂Γ2

∂Γ3

Γ1

Γ2

Γ3

Figure 2.1: Sketch of the general problem under consideration: several bodies, Γi,
immersed in a surrounding fluid of domain, Ωf .

to large and poorly conditioned systems, which require the use of iterative solvers
(Ryzhakov et al. 2010). As a result, they require substantially more resources. In
contrast, in partitioned formulations the fluid and the structure are solved separately
and the interfacial condition eq. (2.2) is used explicitly to ensure the compatibility
between both systems (Hou et al. 2012). This allows to integrate existing, specialized
codes for each subsystem. Moreover, the resulting systems of equations are generally
better conditioned. Consequently, partitioned formulation has become a very popular
option when solving FSI problems. Nevertheless, for specific cases, as for instance
when the density of the fluid and the structure is very similar, partitioned schemes
often show instability or poor converge (Ryzhakov et al. 2010).

Regarding the second categorization, in conforming mesh methods, the interface
condition is treated as a physical boundary. Thus, as the solution advances in time,
re-meshing of the fluid domain is necessary due to the movement of the bodies (i.e.,
the solid interface). On the contrary, a physical boundary between the bodies and
the fluid does not exist in non-conforming methods, but constraints are imposed to
eq. (2.1) for interface conditions to be fulfilled. As a consequence, re-meshing of the
fluid domain is not required.

In the present thesis, a partitioned formulation with a non-conforming mesh
method is used. The main motivation is that these approaches allow greater flexibility
and simplicity in the implementation, and they are perfectly suited for the analysis of
biological locomotion. In particular, a partitioned immersed boundary method (IBM)
is used for all the studies presented in this thesis.

The main idea underlying IBM is depicted in figure 2.2. A Cartesian grid is
defined which covers the fluid domain, considered to be a simply connected region,
where eq. (2.1) is solved. Additionally, consider the surface of each body, ∂Γi, to be
discretized into a set of points, L(i) = {1, ..., ni}, each of which has an associated
volume, ∆Vi,j . The whole set of surface points is usually denoted as Lagrangian
force points. The main idea behind IBM consists of adding a forcing term, f , to
eq. (2.1b), such that the fluid velocity interpolated at the Lagrangian force points
satisfies eq. (2.2).
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Lagrangian point

∆V

∂Γ1

Cartesian Grid

Figure 2.2: Sketch of the immersed boundary discretization of the fluid domain and
the boundary of a body Γ1 in two dimensions (or equivalently, a sectional view of a
3D space configuration).

Section 2.3 provides additional details on the IBM used in the present thesis. For
further details in immersed methods for fluid structure interaction problems, reader is
referred to Mittal & Iaccarino (2005); Griffith & Patankar (2020).

2.3. In-house code: TUCAN

The in-house code used in the present thesis was initially developed by Moriche (2017)
during his PhD thesis; and several improvements were later introduced by Gonzalo
(2018). Consequently, this section is intended to provide an overall description of
the code. A more detailed description is provided in the aforementioned references.
Likewise, the improvements to TUCAN developed during the present thesis are the
subject of Paper 1.

2.3.1. Flow solver

The flow solver is similar to that presented in Uhlmann (2005). Equation (2.1) is
solved using the projection method proposed by Brown et al. (2001) in order to enforce
continuity. Spatial derivates are discretized by second order, centred finite differences
on a staggered grid. Temporal marching is achieved by a three stage, low storage
Runge-Kutta method, where non-linear terms are treated explicitly, and linear terms
implicitly.

The resulting equations for a kth Runge-Kutta substep yield to be:

ũ = uk−1 + ∆t
(
2αkν∇2uk−1 − 2αkρ

−1∇pk−1

−γk[(u · ∇)u]k−1 − ζk[(u · ∇)u]k−2
)
, (2.3a)

Ũ(Xi,j) = ũ(x)δh (x−Xi,j) ∆Vi,j , (2.3b)

Fk(Xi,j) =
U

(d)
∂Γi

(Xi,j)− Ũ(Xi,j)

∆t
, (2.3c)
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fk =
∑
i∈B

∑
j∈L(i)

Fk(Xi,j)δh (x−Xi,j) ∆Vi,j , (2.3d)

∇2u∗ − u∗

αkν∆t
= − 1

ναk

(
ũ

∆t
+ fk

)
+∇2uk−1, (2.3e)

∇2φk =
∇ · u∗
2αk∆t

, (2.3f)

uk = u∗ − 2αk∆t∇φk, (2.3g)

pk = pk−1 + ρ
(
φk − αkν∆t∇2φk

)
, (2.3h)

where the subscript indicates the substep at which the variable is evaluated; φ is the
so-called pseudo-pressure; αk, γk, ζk are the set of coefficients of the kth Runge-Kutta
substep, given by Rai & Moin (1991); ũ is an estimate flow velocity for the forcing
term calculation; and u∗ is an intermediate flow velocity used in by the fractional step
method.

The forcing of the IBM appears in eqs. (2.3b)–(2.3d). In eq. (2.3b), the fluid

velocity is interpolated at the Lagrangian points. This interpolated velocity, Ũ(Xi,j),

is used, in conjunction with the surface velocity, U
(d)
∂Γi

, in eq. (2.3c) to compute the

forcing term at the Lagrangian point j of body Γi, namely F(Xi,j) (where the temporal
superscript is dropped for convenience). This force is transferred to the grid points of
the fluid mesh by means of eq. (2.3d). Interpolation from the Lagrangian points to
the fluid mesh and vice-versa is performed using the regularized delta function, δh,
introduced by Peskin (2002).

2.3.2. Coupling the motion of the bodies

When the motion of the bodies is prescribed, U
(d)
∂Γi

is known, and therefore the solution

of eq. (2.3) can be computed at each time instant.

However, in a general problem where the motion of the bodies is the result of the

fluid-structure interaction, U
(d)
∂Γi

is unknown a priori. Instead, in addition to eq. (2.1),
the dynamic equations of motion of the bodies must be solved.

From classical mechanics, it is known that the equations of motion of a system of
connected rigid bodies can be written in terms of its degrees of freedom (also known
as generalized coordinates, defined herein as q) as a system of ordinary differential
equations:

Hq̈ + c = ξ, (2.4)

where H is the so-called inertia matrix, c is a vector containing the effect of fictitious
accelerations and gravity (if present), and ξ is the vector of generalized forces.

Solution of (2.4) at a given time yields the state of the system of bodies, namely
(q, q̇), which after the corresponding mapping, leads to (X,U∂Γ(X)), allowing to
evolve eq. (2.3c). The construction and method of solution of eq. (2.4), as well as the
mapping and the coupling with the fluid equations is detailed in Paper 1.
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Finally, when a single body is considered, eq. (2.4) can take the form of the
Newton-Euler equations of motion. Namely,

mU̇G = Fext , (2.5)

IGΩ̇ + Ω× IGΩ = MG,ext , (2.6)

where m and IG are the mass and inertia tensor of the body; UG and Ω are the
linear and angular velocity of the body; and Fext and MG,ext are the external forces
and moments acting on the body. The subscript G indicates that the magnitude is
computed with respect to the gravity centre of the body. Note that, eq. (2.6) only
holds when expressed in a body-fixed reference frame.

The dynamics of a winged-seed are computed in Paper 2 and Paper 3 by means of
eqs. (2.5) and (2.6). Some of the mathematical details for the coupling of eqs. (2.5) and
(2.6) with (2.3) are provided in Paper 2, whereas a complete description is available in
Moriche et al. (2021).

2.3.3. Main features of TUCAN

In this section main features of TUCAN are highlighted. These features are presented
in detail in Moriche (2017); Gonzalo (2018); thus, in this section we merely outline
them and refer the interested reader to the aforementioned theses.

Equation (2.3) can be solved both in 2D and 3D. In the former, the computational
domain is a rectangle, meanwhile in 3D it is a rectangular prism. This fluid domain
is discretized into a structured staggered grid (see figure 2.3a). In this kind of grid,
the pressure and velocities are not defined at the same mesh points, thus avoiding the
odd-even decoupling between velocity and pressure that happens in a collocated mesh
when central differences are used to discretize the diffusive terms (Hirsch 2007).

In the original version of TUCAN developed by Moriche (2017), the staggered grid
can only be uniformly discretized. Due to the limitation ∆V ≈ ∆r3 imposed by the
IBM (Uhlmann 2005), in a uniformly discretized grid the flow far away from the bodies
is solved in a much finer mesh than required. Thus leading to larger computational time
than actually required. To overcome these limitations, Gonzalo (2018) implemented
the possibility of using a non-uniform grid in TUCAN. In particular, it allows to
specify a rectangular prism with a uniform grid, where the bodies are expected to
remain during the simulation. Outside this uniform grid, the grid is controlled by the
stretch factor (see Gonzalo (2018) for further details). A schematic representation of
this kind of grid is displayed in figure 2.3b.

TUCAN allows to impose Dirichlet, Neumann or periodic type boundary conditions
in any boundary of the computational domain. In addition, for simulations where a
free-stream inflow is imposed at one side of the domain, an advective type boundary
condition can be set at the opposite side. This type of boundary condition allows
strong vortical structures to leave the domain without reflections that would affect
the whole domain if either Dirichlet or Neumann boundary conditions were imposed
(Moriche 2017).

Parallelization is implemented in TUCAN by means of a block domain decomposi-
tion. The physical flow domain and the corresponding grid is split into smaller block



10 2. Numerical methodology
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uniform grid
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(b)

Figure 2.3: (a) Sketch of a (x,y)-slice of a staggered grid. Pressure is computed at
points ( ), x component of the velocity is computed at points ( ), and y component
of the velocity is computed at points ( ). (b) Sketch of a characteristic fluid domain.
The discretized bodies are expected to move inside the uniform region.

domains (rectangular cuboids) and assigned to different processors. Communication
among processors is based on the Message Passing Interface (MPI) standard.

Upon discretization, eq. (2.3e) and (2.3f) lead to three (one for each velocity
component) and one, independent, linear systems, respectively, which are solved each
substep. These systems are solved in parallel using the preconditioner library, Hypre
(Chow et al. 1998; Falgout & Yang 2002). The discretized Poisson equation (eq. (2.3f))
is solved using the biconjugate gradient stabilized solver (BiCGSTAB) preconditioned
with a parallel semicoarsening multigrid solver (PFMG). On the other hand, the
discretized Helmholtz equation for each velocity component (eq. (2.3e)) is solved using
a preconditioned conjugate gradient solver (PCG).

Input/Output (I/O) files that must be read/written by TUCAN are handled in the
Hierarchical Data Format, version 5 (HDF5), designed for high volume and complex
data management and compatible with MPI standards (Folk et al. 2011).

Finally, TUCAN has been thoroughly validated, and its scalability demonstrated.
Validation test cases of fixed bodies and moving bodies with prescribed kinematics
are presented in Moriche (2017); cases of free-falling single rigid bodies are presented
with low detail in Paper 2 of the present thesis, and with much more detail in Moriche
et al. (2021); and finally, the validation of the FSI of multibody systems is the subject
of Paper 1.



Chapter 3

Main contributions and conclusions

The first contribution of the present thesis is the development of a computational
framework for the study of biological locomotion. This is achieved by the implementa-
tion of a numerical solver capable of computing the fluid structure interaction of one
or several systems of connected rigid bodies in an incompressible fluid.

The second contribution of this dissertation is the study of three examples of
biological locomotion, displayed in figure 3.1, which exploit different mechanisms. First
of all, the auto-rotation flight of a winged-seed was simulated. This exemplifies a
passive mechanism for locomotion, in which the seed is not able to modify the flow by
any active means, but its motion is solely determined by its inertia properties and
the flow interaction. This study allowed the elucidation of the effect of Re on the
auto-rotative flight; as well as to provide quantitative measurements of the forces and
the flow around the seed in auto-rotation. Figure 3.1a displays the flow around the
auto-rotating seed model, as well as the actual winged-seed the model is based on.

In a second block, two examples of bioinspired collective motion are studied. The
flow interaction between two wings in tandem configuration with a prescribed motion
are firstly analysed, motivated by the wings of dragonflies. This study focused on the
characterization of the three-dimensional (3D) effects of the flow interaction between
the wings, and the differences with the two-dimensional (2D) studies which are typically
found in the literature. The main results showed that, 3D vortical interaction between
the wings decrease force produced by the hindwing as compared to the 2D case. It
was also found that a realistic flapping motion leads to a worse performance than the
2D idealized motion. For an illustration, figure 3.1b depicts the vortical structures
developed by the two wings, as a simplified problem of the actual interaction between
the fore- and hind-wing of a dragonfly.

The final case of study is that of two flexible plates in tandem configuration
which self-propels, simulating the most simple schooling configuration. Note that this
case might also be considered as a step forward in the study of the fluid structure
interaction between the two bodies presented before: instead of prescribing the motion
of the wings, the overall dynamics is determined by the flow interactions. This study
allowed to characterize the stable schooling positions and their associated performance.
Particularly, it was shown that the downstream body is able to benefit from the flow
interactions if its instantaneous velocity is aligned with the one induced by the vortex
rings of the upstream body’s wake. As an example, figure 3.1c depicts the flow for a

11
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(a)

(b)

(c)

Figure 3.1: Flow visualization of the biological problem studied in this thesis. The
inset attached to each panel displays the actual subject the problem is inspired in. (a)
Auto-rotation of a winged-seed; (b) flapping motion of dragonfly’s tandem wings; and
(c) the collective motion of two self-propelled bodies.1

particular schooling configuration where the downstream body is interacting with the
vortex ring just shed by the leading body.

In the following section the main conclusions of each paper are summarized.

3.1. Paper highlights

Paper 1

A weakly coupled immersed boundary method and dynamic algorithm for the
fluid-structure interaction of multi-body systems

• A numerical methodology to solve the fluid-structure interaction problem with
systems of connected rigid body is presented and validated.
• The proposed method follows a partitioned formulation. The flow equations

are solved using a fractional-step method, and the non-slip boundary condition
over the surface of the bodies is imposed by means of the immersed boundary
method proposed by Uhlmann (2005).

1The dragonfly of panel (b) and the fish of panel (c) are extracted and adapted from www.pngimg.com

and www.daily.jstor.org, respectively.

https://pngimg.com/uploads/dragonfly/dragonfly_PNG22.png
https://daily.jstor.org/what-makes-fish-swim-fast/
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• The dynamic equations of the system of rigid bodies is computed in terms of
reduced coordinates by means of the recursive algorithms proposed in Felis
(2017). This endows the algorithm with great flexibility: allowing to simulate a
great variety of different problems.
• Two bioinspired problems are presented to show the capabilities of the developed

methodology: a 3D self-propelling flexible plate; and the flow around a flexible
filament attached to an sphere, loosely inspired by the ballooning mechanism
of spiders.

Paper 2

Kinematics and dynamics of the auto-rotation of a model winged seed

• Numerical simulations of the auto-rotation of a model winged-seed in the
range of Reynolds number, Re = 80− 240, with constant geometry and inertia
properties are performed.
• It is found that the seed attains a stable auto-rotative state, with constant

angular velocity and attitude angles. Additionally, it is found that the seed
rotates while skidding (i.e., the angle between the horizontal projection of the
spanwise axis of the seed and the centrifugal forces is different from zero).
• As Re increases, the angular velocity increases and the inclination of the

winged-seed with respect to the horizontal plane decreases.
• Analysis of the aerodynamic forces and moments acting on the seed suggests

that the vertical component is mainly due to pressure forces, whereas the
components tangent to the wing seem to be related to viscous forces.

Paper 3

A Numerical Study of the Flow Around a Model Winged Seed in Auto-Rotation

• The flow around an auto-rotating seed is characterized in the range Re =
80− 240. Three vortical structures are developed: a helical wing tip vortex;
a vortex shed behind nut; and a leading edge vortex (LEV) above the wing
surface which merges with the helical tip vortex.
• Three possible mechanisms for the stabilization of the LEV are studied:

– No evidence for the first proposed mechanism, vorticity transport within
the LEV, after a statistical analysis of fluid particle trajectories, is found.

– Viscous stabilization could be a suitable mechanism only near the tips,
however the flow topology at the tips makes it highly improbable.

– Based on order of flow magnitudes, it was found that non-inertial ac-
celerations could be a potential candidate for the stabilization of the
LEV.

• The flow inside the LEV is described by characterizing the average spanwise
vorticity, spanwise velocity and pressure. It is shown that, the flow for Re = 160
and 240 is qualitatively different to that for Re = 80, probably because the
latter is close to the lower limit of auto-rotation (estimated to be Re . 50 for
the considered seed).
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Paper 4

Three-dimensional effects on the aerodynamic performance of flapping wings in
tandem configuration

• Numerical simulations are performed to analyse the influence of 3D effects in
the performance of tandem wings undergoing a 2D optimal kinematics.
• Aspect ratio effects are studied by considering wings of aspect ratio 2 and

4 undergoing a heaving and pitching motion. The results show that vortex
breakdown leads to a thrust reduction on the hind-wing; however, the propulsive
efficiency remains approximately constant and similar to that of the 2D case.
• The effect of a more realistic motion, namely a flapping motion, is addressed

by comparing them with the previous results in heaving. The results show that
there is a reduction in the forces and in the propulsive efficiency from a heaving
to a flapping motion.
• The detrimental performance in flapping motion is more pronounced for the

highest aspect ratio and it has been linked to a non-desired shedding vorticity
on the inboard region of the wings.

Paper 5

Flow interaction of three-dimensional self-propelled flexible plates in tandem

• Numerical simulations are performed to explore the tandem configurations of
two self-propelled flexible plates of finite span.
• Two main patterns of stable configurations are found: compact and regular

configurations. The former are characterized by a close interaction between
the flappers, which leads to a higher required power and propulsive speed than
if they self-propelled in isolation. In regular configuration, the performance
of the upstream flapper (leader) is not affected, but the performance of the
downstream flapper (follower) is modified due to the interaction with the wake
of the leader.
• Analysis reveals that the temporal evolution of the follower’s required power

can be linked to the vortex rings of the leader’s wake. Specifically, the follower
saves energy when it is moving in the same direction of the jet induced by the
vortex ring it is interacting with.
• A model to qualitatively predict the performance of a hypothetical follower

is presented. This model is based on the flow field of an isolated flapper and
shows good agreement with the actual data from the simulations.
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A weakly coupled immersed boundary method and
dynamic algorithm for the fluid-structure

interaction of multi-body systems

G. Arranz1, O. Flores1, M. Garćıa-Villalba1

1 Universidad Carlos III de Madrid, Spain

Journal Computational Physics (Under review) (2021)

We present a method for computing fluid-structure interaction problems for multi-
body systems. The fluid flow equations are solved using a conventional fractional-step
method with the immersed boundary method proposed by Uhlmann [J. Comput Phys.
209 (2005) 448]. The equations of the rigid bodies are solved using recursive algorithms
proposed by Felis [Auton. Robot 41 (2017) 495]. The two systems of equations are
weakly coupled, so that the resulting method is cost-effective. The accuracy of the
method is demonstrated by comparison with two-dimensional cases of the literature:
the flapping of a flexible airfoil and the self-propulsion of a plunging flexible plate.
As an illustration of the capabilities of the proposed method, two three-dimensional
bio-inspired problems are presented: an extension to three dimensions of the plunging
flexible plate and a simple model of spider ballooning.

Key words: immersed boundary method, multi-body system, Navier–Stokes equations,
fluid-structure interaction, bioinspired locomotion

1. Introduction

The understanding of the mechanisms of biological motion, such as insect flight, fish
swimming, bacteria swarming or seed dispersal by wind, has shown to be important
for scientific and engineering applications. Clear examples are the recent developments
in micro-air vehicles (de Croon et al. 2009; Richter & Lipson 2011; Keennon et al.
2012) or swimming robots (Triantafyllou & Triantafyllou 1995; Hirata et al. 2000; Yu
et al. 2004). However, despite these advances, there is still a lack of proper knowledge
about the physics underlying the motion of biological systems. This restricts artificial
systems from achieving the performance of biological systems.

In particular, one of the shortcomings associated to the modelling of biological
motion is that it is computationally challenging. From a physical point of view, it
can be envisaged as a fluid-structure interaction (FSI) problem, in which one or more
bodies are immersed in a fluid. The dynamics of the bodies is a direct result of
their hydrodynamic interaction with the surrounding fluid. As a consequence, the
resulting problem is a highly non-linear problem consisting of the coupling between
the equations of the fluid motion and the equations of motion of the bodies. An
additional aspect to be considered is the geometrical variability of the bodies found in
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applications: they may have mobile appendages (e.g., the wings of flying animals or
robots, fins of aquatic swimmers, etc.), they may be deformable and subject to large
deformations, etc. This poses additional complexities in order to model this kind of
problems. First, the fluid-solid interface changes with time. Second, the equations of
the body dynamics can become complex to derive and to solve.

In computational fluid dynamics, solid-fluid interfaces can be represented with
two families of procedures that differ in the spatial discretization of the fluid near
the solid: conforming mesh methods and non-conforming mesh methods (Deng et al.
2013). In the former, the interface condition is treated as a physical boundary, which
requires the re-meshing of the fluid domain due to the movement of the bodies as time
evolves. The Arbitrary Eulerian-Lagrangian (ALE) method in Donea et al. (2017)
is an example of conforming mesh methods. On the other hand, in non-conforming
mesh methods, a physical boundary between the bodies and the fluid does not exist,
but constraints are imposed to the fluid equations such that interface conditions are
fulfilled at the boundaries. As a consequence, re-meshing of the fluid domain is not
required. In this regard, immersed methods such as immersed boundary methods
(IBM) have proven to be a very useful tool to reproduce the arbitrary motion of solids
immersed in a fluid (Mittal & Iaccarino 2005; Griffith & Patankar 2020; Uhlmann
2005; Pinelli et al. 2010; Breugem 2012; Kempe & Fröhlich 2012).

Regarding the modelling of the dynamics of the bodies, in some situations, a
feasible approach is to approximate a given complex body as a set of rigid bodies
connected among them by kinematic constraints (see for example Liu (2009); Suzuki
et al. (2015)). Under this approach, the dynamics of the bodies are represented
as a system of non-linear differential equations which is influenced by the inertia
properties of the rigid bodies and the connections among them. Note that there is a
large variability of possible system configurations so that, in general, the system of
non-linear differential equations needs to be re-derived every time the configuration is
modified (i.e., adding a body, such as a tail, or changing the type of links between
bodies). In this regard, robotic algorithms stand as an outstanding choice to compute
the dynamics of a complex system of rigid bodies with a semi-automatic procedure
(Featherstone 2014).

Most of the works which study the FSI of multi-body system derived the equations
of motion specifically for the problem under consideration (Zhang et al. 2013; Arora
et al. 2018; Suzuki et al. 2019; Yao & Yeo 2019). On the contrary, few works are found
in the literature which are able to compute the interaction problem of a generic multi-
body system with a surrounding flow. For example, Wang & Eldredge (2015) reported
a vorticity-based immersed boundary projection method with a strong coupling of the
dynamics equations. More recently, Li et al. (2018) coupled a multi-body algorithm
with the existing finite volume method of the commercial software, Ansys, to solve
the flow around the bodies. In this case, only rotations where allowed between the
bodies conforming the multi-body system. The time coupling between both algorithm
was accomplished in a staggered fashion, leading to a weak coupling of both systems.
Finally, Bernier et al. (2019) recently developed a 2D vortex particle method coupled
with a multi-body solver, extending the work by Gazzola et al. (2011).
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Figure 1: (a) Schematic representation of the interaction of two multi-body systems
(MBS1 and MBS2) of rigid bodies, Γi, with a surrounding fluid domain, Ωf . The
connections among the bodies are represented as dashed lines. Γ0 is a fixed inertial
reference base. (b) Definition of the reference systems, Σ, and vectors used to define
the position and orientation of a given body Γi.

In this article, we present a methodology to compute the dynamics of multi-body
systems immersed in an incompressible Newtonian fluid using a partitioned (non
monolithic) approach. The flow equations are solved by means of Direct Numerical
Simulation (DNS) where the presence of the bodies is modelled using the IBM proposed
by Uhlmann (2005). The dynamics of the multi-body systems is solved using recursive
dynamic algorithms in reduced coordinates developed by Felis (2017).

The structure of the paper is as follows: the methodology is presented in § 2; a
validation of the methodology with existing cases reported in the literature is found in
§ 3; in § 4, two illustrative problems solved using this methodology are presented; and,
finally, the major conclusions of this study are gathered in § 5.

2. Methodology

2.1. Problem description

The physical problem considered in the present work is the interaction of a multi-body
system (MBS) of rigid bodies with a surrounding fluid. In this MBS, the rigid bodies
are connected among them by joints (i.e., kinematic constraints) and are subject to
the hydrodynamic forces and torques exerted by the surrounding fluid. Note that a
collection of MBSs can also be handled by the proposed method. This is illustrated
with a sketch in Figure 1a, where Γi stands for the ith rigid body of the MBS. Note that
Γ0 in the sketch does not represent a rigid body, but a fixed inertial base. Consequently,
the joints connecting Γ1 and Γ4 to Γ0 do not necessarily restrict any degree of freedom
(i.e., free body motion).
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The fluid is modelled as incompressible and Newtonian, whose governing equations
are

∇ · u = 0, (1a)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u + f , (1b)

where u is the fluid velocity field, ρ is the fluid density, p is the pressure, ν is the
kinematic viscosity, and f is a forcing term. The latter is calculated to fulfill the
non-slip boundary condition on the surface of the bodies,

u(x) = U∂Γi
(x) ∀x ∈ ∂Γi, ∀i ∈ B, (2)

where U∂Γi is the velocity on the surface of the rigid body Γi, and B = {1, ..., NB}, is
the set of rigid bodies, being NB the total number of them.

Concerning the equations that govern the dynamics of the MBS, recall that six
scalar equations, the so-called Newton-Euler equations, are needed to represent the
dynamics of a single rigid body in three dimensions (3D). Thus, in principle 6×NB
equations fully describe the dynamics of the MBS. However, the joints connecting
bodies usually constrain their relative motion. Consequently, it is possible to reduce
the number of equations to the number of the degrees of freedom (Ndof) of the MBS.
Although several methodologies can be adopted to find these equations (Greenwood
2006), the final result leads to a system of ordinary differential equations which can
be written in the form Featherstone (2014):

H(q)q̈ + c(q, q̇) = ξ + ξh, (3)

where q is the vector of the generalized coordinates (of size Ndof × 1), H is the joint
space or generalized inertia matrix, c is the generalized bias force (accounting for
gravity, Coriolis and centrifugal forces), ξ is the vector of generalized forces (e.g.,
springs and/or dampers in the joints, etc.), and ξh is the vector of generalized forces
due to the surrounding fluid (i.e., hydrodynamic forces). Note that, although only the
dependence on q and q̇ of H and c is made explicit in eq. (3), both also depend on the
inertia properties of the bodies. Note also that, q represents the configuration of the
MBS at a given time instant in the Ndof-dimensional configuration space (Greenwood
2006; Boyer & Porez 2015).

In the following subsections, the solver employed to solve eq. (1) and eq. (3) are
described (in § 2.2 and § 2.3, respectively), followed by the description of the algorithm
coupling both solvers (§ 2.4).

2.2. Flow solver

Equation (1) is solved using the numerical method proposed by Uhlmann (2005), where
the forcing term is modelled using Uhlmann’s immersed boundary method (IBM).
The method requires the use of two grids. First, the fluid domain, Ωf , is discretized
into a fixed, Cartesian grid, the so-called Eulerian grid. Second, the surface of each
rigid-body, ∂Γi, is discretized into ni evenly distributed points. Therefore, the set of
surface points for a body Γi is defined as L(i) = {1, ..., ni}, and the position of grid
points on ∂Γi is labelled as Xi,j , j ∈ L(i). This is the so-called Lagrangian grid.



A weakly coupled IBM & dyn. alg. for the FSI of multi-body sys. 29

The equations (1) are solved using a fractional step method. The spatial deriva-
tives are discretized with 2nd order finite differences in a staggered grid. The temporal
scheme is a 3-stage low-storage, semi-implicit Runge-Kutta, in which the convective
terms are treated explicitly and the viscous terms are treated implicitly. For complete-
ness, the discretized equations at the kth Runge-Kutta substep are provided below:

ũ = uk−1 + ∆t
(
2αkν∇2uk−1 − 2αkρ

−1∇pk−1

−γk[(u · ∇)u]k−1 − ζk[(u · ∇)u]k−2
)
, (4a)

∇2u∗ − u∗

αkν∆t
= − 1

ναk

(
ũ

∆t
+ fk

)
+∇2uk−1, (4b)

∇2φk =
∇ · u∗
2αk∆t

, (4c)

uk = u∗ − 2αk∆t∇φk, (4d)

pk = pk−1 + ρ
(
φk − αkν∆t∇2φk

)
, (4e)

where ũ is an estimated velocity without the forcing term (i.e., disregarding the solid
surfaces), φ is the pseudo-pressure and the the Runge-Kutta coefficients (αk, γk and
ζk) are taken from Rai & Moin (1991).

The forcing term in eq. (4b), fk, is obtained from estimating the necessary force
to fulfil the boundary condition given by eq. (2):

Fk(Xi,j) =
Uk−1
∂Γi

(Xi,j)− Ũ(Xi,j)

∆t
, ∀j ∈ L(i), i ∈ B. (5)

In this equation, Ũ corresponds to ũ interpolated to the Lagrangian points. Note that
this implementation of the IBM requires interpolations from the Eulerian grid to the
Lagrangian grid (ũ 7→ Ũ), as well as a spreading operator from the Lagrangian grid
to the Eulerian grid (Fk 7→ fk). These two operators are defined using the regularized
delta functions introduced by Peskin (2002), which satisfy the necessary conditions
in terms of conservation of momentum, force and torque in the interpolation and
spreading operations.

For further details on the immersed boundary method described above, the reader
is referred to Uhlmann (2005). This algorithm has been implemented in a code called
TUCAN, which has been successfully used for the simulation of rigid-bodies with
prescribed kinematics (Moriche et al. 2016, 2017; Gonzalo et al. 2018; Arranz et al.
2020). Likewise, the free motion of a single-rigid body immersed in a fluid has been also
successfully simulated (Arranz et al. 2018b,a), using the coupling method presented
in Uhlmann (2005).

2.3. Multi-body solver

The temporal integration of eq. (3) provides the generalized velocities, which in turn,
are integrated to compute the generalized coordinates at a given time instant, t.
Nonetheless, the kinematics of several DoFs are often known as a prescribed function



30 G. Arranz et al.

of time (e.g., the motion of a wing with respect to the flyer’s body). Therefore, it is

convenient to write q as q =
[
qT
u qT

p

]T
, where qp contains the generalized coordinates

whose temporal evolution is prescribed. Likewise,

H =

[
Hu Hup
Hpu Hp

]
, c =

[
cu
cp

]
, ξ =

[
ξu
ξp

]
, ξh =

[
ξh,u
ξh,p

]
(6)

Therefore, a reduced system for the unknown generalized accelerations is found,

Hu(q)q̈u = ξu − c∗u(q, q̇) + ξh,u, (7)

where c∗u = cu + Hupq̈p. The reduced system of eq. (7) has the same form as eq. (3)
but consists of Ndof −Np algebraic equations (where Np is the number of DoF whose
motion is prescribed). Note also that Hu and c∗u depend on all generalized coordinates,
prescribed and otherwise.

Equation (7) is discretized using the same temporal scheme used for the convective
terms in eq. (1),

q̇ku = q̇k−1
u + ∆t

(
γk[H−1

u (ξu − c∗u)]k−1 + ζk[H−1
u (ξu − c∗u)]k−2 + [H−1

u ]k−1ξkh,u
)
, (8)

where the inverse of the reduced joint space matrix (Hu) is computed using the
Cholesky factorization. On the other hand, ξkh,u are the generalized forces mapped

from the physical hydrodynamic forces computed from Fk of eq. (5) as explained in
the following section.

The generalized coordinates are computed implicitly, as in the coupling method
proposed in Uhlmann (2005), using the same scheme as for the viscous terms in eq. (4),

qku = qk−1
u + ∆tαk(q̇ku + q̇k−1

u ). (9)

As mentioned in the introduction, several methods can be used to derive eq. (3)
and compute the corresponding joint space inertia matrix, H, and the bias force
vector, c. In the present work, the open-source Rigid Body Dynamics Library (RBDL)
developed by Felis (2017) has been employed. In particular, c is computed using
the Recursive Newton-Euler algorithm (RNEA), and H is computed by means of the
Composite Rigid-Body algorithm (CRBA) (Featherstone 2014; Felis 2017). These
matrices are then reordered into eq. (6) to obtain Hu and c∗u. Lastly, the expression
for the generalized forces is discussed in next section and in B.2.

Finally, it is worth mentioning that several degrees of freedom are allowed between
two connected bodies. In these cases, the joint that links the bodies is usually denoted
as multiple DoF joint. Depending on the involved degrees of freedom, the definition
of these joints can become cumbersome. Therefore, for a higher versatility of the
algorithm, multiple DoF joints are simulated using single DoF joints (i.e., prismatic or
revolute joints) with virtual bodies whose mass and inertia is zero (Felis 2017) (see
Appendix A for further details). The only exceptions are spherical joints (3 rotations),
which are simulated using a quaternion formulation to avoid singularities (Featherstone
2014).
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Figure 2: Schematic diagram of the coupling between the fluid solver and the
dynamic algorithm during a Runge-Kutta substep. these are used to compute the new
state of the multi-body system.

2.4. Coupling

The coupling of the algorithms corresponding to the fluid phase and to the MBS is
depicted in Fig. 2. Let the state of fluid phase and MBS be known at Runge-Kutta
substep k − 1. The steps are as follows:

1. The generalized coordinates and velocities (qk−1 and q̇k−1) are used to compute

the position and velocity of the Lagrangian points, namely, Xi,j and Uk−1
∂Γi

(Xi,j).

2. The latter is used in eq. (5) to compute Fk, which is then transferred to the
Eulerian grid, Fk 7→ fk.

3. With fk, eq. (4) can be solved to obtain the state of the fluid phase at substep
k, namely, uk and pk inside Ωf .

4. The hydrodynamic forces and moments acting on the bodies (F , M) are
computed from Fk, as detailed below.

5. (F , M) are mapped as generalized external forces, ξh. Then, eq. (8) is solved,
yielding q̇k.

6. Finally, qk is computed from eq. (9), fully determining the state of the bodies
at substep k.

Note that, in the fluid solver, X and U∂Γ are treated explicitly (i.e., at k − 1), while
in the multi-body solver ξh represents the hydrodynamic force integrated between
k − 1 and k. This leads to a weak coupling of the sub-systems, where the flow field at
the solid interface may not be fully compatible with the solid’s interface velocity at
the end of the time step (Uhlmann 2005).

To build the mapping (q, q̇) 7→ (Xi,j ,U∂Γi
(Xi,j)), it is necessary to know the

position of a control point of Γi, xi; the orientation of Γi with respect to the inertial
coordinate basis, Σ0 (given by the rotation matrix Ei); and the angular and linear
velocity of the control point, ωi and vi, respectively. Thus,

Xi,j = x0
i + Eir

′
i,j , (10a)

U∂Γi
= v0

i + ω0
i × Eir

′
i,j , (10b)

where the superscripts indicate the coordinate basis in which the vector is expressed,
and r′i,j is the relative position of the point j ∈ L(i) on the surface of the ith body,
with respect to the body’s control point expressed in Σi (hence, it is a fixed quantity
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for a rigid body). Note that, x0
i and Ei can be calculated from the rotation matrices

and position vectors of the joints that link Γi to the ground. Likewise, ωi and vi can
be expressed as functions f(q, q̇). In the present case, these variables can directly be
extracted from the multi-body library, RBDL. For the interested reader, B.1 provides
the expressions to compute x0

i , ωi and vi.

The hydrodynamic forces and moments acting upon the body Γi, namely, Fi and
Mi, can be shown to be (Uhlmann 2005):

Fi = −ρ
∑
j∈L(i)

F(Xi,j)∆Vj︸ ︷︷ ︸
Gi

+
ρ

ρi
miẍG,i, (11a)

Mi = −ρ
∑
j∈L(i)

(Xi,j − xi)× F(Xj)∆Vj︸ ︷︷ ︸
Ni

+ρ

∫
∂Γi

(x− xi)× u dx, (11b)

where ρi, mi and xG,i are the density, mass and position of the gravity centre of
Γi, respectively. The integral term of eq. (11b) represents the rate of change of
angular momentum of the fluid inside Γi whose value has to be computed by numerical
integration, as in other works (Tschisgale et al. 2017). However, in the present work
this term is approximated by supposing rigid-body motion of the fluid inside Γi, for
efficiency reasons, as in Uhlmann (2005). This entails that the contribution of the
last term of eq. (11) can be embedded in H and c if they are built using an effective
density for each body equal to (ρi− ρ), in a similar fashion as for single rigid bodies in
Uhlmann (2005). This imposes a lower limit of the density ratios that can be simulated
using the present approach of approximately ρi/ρ ≥ 1.2, based on Uhlmann (2005).
The remaining terms of eq. (11), namely Gi and Ni, constitute then ξh of eq. (3) after
mapped to the space of generalized forces (see B.2 for further details).

3. Validation

As detailed in § 2, the multi-body algorithm developed herein has been coupled
with a pre-existing flow solver which has already been used to solve the coupled
fluid-structure interaction of single rigid bodies (Arranz et al. 2018b,a). Since the
multi-body algorithm can be also used to simulate the problem of a single rigid body
with several DoFs (i.e., by defining virtual, mass-less bodies, linked by the single
DoFs joints described in appendix Appendix A), we can compare the results of the
multi-body algorithm with those obtained with the pre-existing algorithm. Since the
flow solver is the same, the only differences should arise from the construction and
solution of the dynamic equations. Several test cases have been performed following
this methodology (both in 2D and 3D), including the free fall of circular cylinders
(2D) and spheroids (3D), and the auto-rotation of a winged samara seed (Arranz et al.
2018b), yielding an excellent agreement between the multi-body and single-rigid-body
algorithms. These tests are not presented herein for the sake of brevity, and instead,
we validate our multi-body solver against 2D multi-body problems previously reported
in the literature.
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Figure 3: Sketch of the validation case adapted from Toomey & Eldredge (2008).

3.1. Flapping of a flexible airfoil

The first validation case is extracted from Toomey & Eldredge (2008). A sketch of the
problem is shown in Fig. 3. It consists of two 2D rigid bodies connected by a torsional
spring and a damper, immersed in a quiescent fluid. Both bodies are ellipses of aspect
ratio 5 : 1 of major axis c. The distance between each body and the torsional spring is
d = 0.05c. The motion of the lead body is fully prescribed and given by the linear
displacement of its centre of mass, X1(t), and the orientation angle, α1(t). The motion
of the follower body is given by the deflection angle, θ(t), between the follower and
the lead body (see Fig. 3), which results from the dynamic interaction with the lead
body and the surrounding fluid. Hence, the degrees of freedom of the MBS are X1, α1

and θ, while the only unknown degree of freedom is θ. Consequently, the vectors of
generalized coordinates are qp = [X1, α1] and qu = θ. The prescribed motion of the
lead body follows the time laws

X1(t) =
A0

2

Gt(ft)C(ft)

max (Gt)
, α1(t) = −β Gr(ft)

max (Gr)
,

where f is the frequency of oscillation (T = 1/f is the period of oscillation), and the
translational and angular amplitudes are set to A0/c = 1.4 and β = π/4, respectively.
Furthermore,

Gt(t) =

∫
t

tanh (σ cos 2πt′)dt′, Gr(t) = tanh (σ cos 2πt),

C(t) =
tanh (8t− 2) + tanh 2

1 + tanh 2
.

Two cases from Toomey & Eldredge (2008) are considered: Case 1 (σ = 0.628)
and Case 4 (σ = 3.770). Fig. 4 depicts the kinematics of the lead body for both cases.
The rest of parameters that fully define the problem are the rotation Reynolds number,
Rer = α̇Mc

2/ν = 100 (where α̇M is the maximum angular velocity); the body-to-fluid
density ratio, ρs/ρ = 5; the dimensionless spring stiffness, K∗ = K/(ρf2c4) = 456;
and the damping coefficient, R∗ = R/(ρfc4) = 3.95.

The results obtained with the present algorithm are compared with the results
reported by Toomey & Eldredge (2008) using a viscous vortex particle method, and
with the results reported by Wang & Eldredge (2015) using the IB-projection method.
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Figure 4: (a) Horizontal position and (b) pitch angle of the lead body as a function
of time. ( ) Case 1; ( ) Case 4.

Note that both cases use strongly coupled body dynamics, while in the present
algorithm the body dynamics are weakly coupled with the fluid solver.

In the present simulations, the computational domain is a square of side 32c
(like in Wang & Eldredge (2015)) with periodic boundary conditions. At t = 0, the
centre of mass of the lead body is located at 8c from the top wall and centred in
the horizontal direction. The fluid domain is discretized with a uniform mesh of grid
spacing ∆x = c/64. This is a slightly coarser resolution than the one used in previous
studies (Toomey & Eldredge 2008; Wang & Eldredge 2015) (∆x ≈ c/100). The time
step is set to ∆t = 5 · 10−4T , leading to CFL ≤ 0.4. Finally, the bodies are discretized
using a Lagrangian mesh with evenly spaced points with distance ∆x.

Fig. 5 depicts the comparison of the deflection angle, θ, and the vertical force,
Fy, between the current results and the existing literature. A good agreement of the
evolution of the deflection angle, and the non-dimensional vertical force is observed
for both cases despite the different numerical approaches and computational details.

3.2. Self-propelling flexible plate

The second validation case is taken from Arora et al. (2018) and consists of a 2D
self-propelling flexible plate. The plate is modelled using a lumped-torsional flexibility
model as shown in Fig. 6a. In particular, the plate of chord C and thickness e/C = 0.02
is divided into five rectangular rigid bodies, of uniform density, ρs, separated by a
distance 2d = e, joint by torsional springs of torsional stiffness, K. The plate is free
to move in the horizontal direction, whereas the vertical position of the leading edge
is prescribed as:

Y (t) = A cos(2πft) (12)

The relative deflection angle of body i with respect its predecessor, i− 1, is defined as
θi (see Fig. 6a). Consequently, the generalized vectors of the multi-body system are
qp = Y and qu = [X, θ1, ..., θ5], where X is the horizontal coordinate of the leading
edge of the plate.

The parameters that govern the present problem are the non-dimensional ampli-
tude, A/C = 0.6; the Reynolds number, Re = AfC/ν = 100; the body-to-fluid density
ratio, ρs/ρ = 10; and the non-dimensional torsional stiffness, K∗ = K/ρf2C4 = 52.242.
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Figure 5: (a-b) Deflection angle of the follower body, and (c-d) total vertical force
acting upon the multi-body system as a function of time. Note the difference in scale
between cases 1 and 4. ( ) present results, ( ) Toomey & Eldredge (2008), and
( ) Wang & Eldredge (2015).

The chosen parameters correspond to the case ψ = Aρ/(eρs) = 3, ω∗ = ωn/(2πf) = 3.5
(where ωn is the first natural frequency of the multi-body system), shown in Arora
et al. (2018, Fig. 15 and 16).

The simulations are performed in a rectangular domain of size 20C×12C uniformly
discretized with a grid size ∆x = 0.004C. Note that, due to the plunging motion of the
plate’s LE, it moves horizontally at an instantaneous speed Ẋ(t). Therefore, the plate

travels an horizontal distance UpT (where Up = f
∫ T
T−1

Ẋdt is the mean propulsive

speed), over a cycle. In order for the plate not to leave the computational domain,
the plate is immersed in a uniform stream flow of intensity U∞, such that U∞ ≈ Up
and the mean horizontal displacement of the plate with respect to the computational
domain is as small as possible. Consequently, Dirichlet boundary conditions are
imposed at the inflow and lateral walls, namely, u = U∞ and v = 0 (where u and v are
the horizontal and vertical fluid velocities, respectively, and U∞ equals the estimated
mean propulsive velocity extracted from (Arora et al. 2018, Fig. 14)); and an advective
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Figure 6: (a) Lumped-torsional flexibility model of the flexible plate based on Arora
et al. (2018) consisting of 5 rectangular rigid bodies joined by torsional springs. (b)
Extension of the model of Arora et al. (2018) to three-dimensions by considering
rectangular plates of width b.

boundary condition is imposed at the outflow boundary. The bodies are discretized
using a Lagrangian grid with equidistant points separated ∆x = 0.004C and the time
step is ∆t = 5 · 10−5T (where T = f−1). On the other hand, simulations in Arora
et al. (2018) are performed using a Lattice-Boltzmann method with a computational
domain 50C × 20C and spatial discretization ∆x = 0.005C.
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Figure 7: Comparison of the (a) tip deflection angle, (b) horizontal force and (c)
vertical force: ( ) present results, and ( ) Arora et al. (2018). In Fig. 7a, ( )
corresponds to the Y -position of the leading edge (without scale).

Fig. 7a depicts the time evolution during two cycles of the tip deflection angle
(defined as the angle between the horizontal and the line that joins the leading edge
and the trailing edge). Fig. 7b-c shows the time evolution of the horizontal and vertical
forces exerted on the plate normalized by 1

2ρV
2C, where V = 2πfA is the maximum

vertical velocity of the leading edge. It should be pointed out that results from Arora
et al. (2018) correspond to cycles 48− 49, whereas the present results are for cycles
12− 13, since no changes were observed with respect to previous cycles. Nevertheless,
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a good agreement is observed between the present simulations and those from Arora
et al. (2018), with relative differences in the peak-to-peak amplitudes of the forces of
less than 3%, and an absolute difference of the maximum tip-deflection angle lower
than 0.19◦.

4. Results

In the next sections, two examples of the capabilities of the proposed methodology are
presented. In §4.1 the study from Arora et al. (2018) presented in §3.2 for validation
is extended to a 3D configuration. In §4.2 the proposed algorithm is employed to
model a deformable filament attached to a sphere, as an idealized model of the spider
ballooning problem.

4.1. Self propelling finite aspect ratio plate

We now extend the study of Arora et al. (2018) by considering a flexible plate of
finite span, b = 0.5C, undergoing the same plunging motion given by eq. (12). The
flexible plate with finite aspect ratio (A = 0.5) is modelled using the lumped-torsional
model of Arora et al. (2018) (see Fig. 6a) extended to three dimensions, as depicted in
Fig. 6b.

In order to reduce the computational cost of the 3D configuration, a lower Re
than in § 3.2 is considered, allowing for a coarser spatial grid. Hence, both 2D and 3D
flexible plates are simulated, to compare both configurations under the same conditions.
The Reynolds number and the plunging amplitude in eq. (12) are set to Re = 20 and
A/C = 0.6, respectively. On the other hand the plunging frequency is selected as that
of maximum propulsive speed for the 2D plate, namely ω∗ = ωn/(2πf) ≈ 5 (Arora
et al. 2018). This leads to a torsional stiffness parameter K∗ = 106.617 for the 2D
plate and a torsional stiffness parameter K∗3D = K3D/(ρf

2C5) = K∗A = 53.309 for
the torsional springs of the 3D plate.

4.1.1. Computational set-up

Since the Reynolds number of these cases is five times smaller than that of the
validation case discussed in 3.2, a grid refinement study is performed for the 2D
configuration to select the grid spacing, ∆x, and the size of the computational domain.

Figure 8a displays the tip deflection angle during a cycle for 3 different values of ∆x
in a computational domain of size 16C×8C. As it can be appreciated, the trend of the
tip angle is well captured even for the lowest grid resolution, ∆x = 0.02C. In particular,
the relative error in the maximum tip angle is of 2% and 0.5% for ∆x = 0.02C and
0.0125C, respectively. Likewise, the effect of the external boundaries is evaluated by
considering two sizes of the computational domain, 16C × 8C and 40C × 16C, both
discretized with a uniform grid spacing ∆x = 0.02C. The evolution of the tip angle
during a cycle is displayed in Fig. 8b for both computational domains. The variation
of the maximum tip angle with the fluid domain is less than 1%. Therefore, it is clearly
observed that the location of the far field boundaries is not affecting the computed
solution.

In sight of the previous results, the computational domain is chosen to be 16C×8C
for the 2D simulation and 16C × 8C × 8C for the 3D simulation. This computational
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domain is uniformly discretized with a grid size ∆x = 0.0125C for the 2D simulations.
On the other hand, for the 3D simulation, a grid spacing ∆x = 0.02C is used to
discretized a refined region which contains the plate, whereas outside this region, a
constant stretching factor of 1% is applied to the grid in all directions. The size of
the refined region is 4C × 2C × 2C, being centred along the y and z directions and
starting at 3C from the inflow boundary along the streamwise direction.

The boundary conditions of the 2D case are those reported in section 3.2. For
the 3D simulation, free-slip boundary conditions are imposed at all lateral boundaries,
uniform streamwise flow of intensity U∞ at the inflow boundary, and an advective
boundary condition at the outflow boundary. Note that, while Up is known from Arora
et al. (2018) for the 2D case and we can set U∞ = Up; it is not known a priori for its
3D counterpart. In order to estimate U∞ such that the plate remains at a constant
mean horizontal position within the computational domain, simulations fixing the
horizontal position of the 3D plate are performed in which the U∞ is varied until the
mean horizontal force over a cycle was approximately zero. Then, the simulation is
restarted with this value of U∞, allowing the horizontal displacement of the flapper.
Hence, the propulsive speed can be computed as:

Up = U∞ − 〈Ẋ〉 = U∞ −
1

T

∫ T

T−1

Ẋdt, (13)

where Ẋ is the instantaneous velocity of the leading edge of the plate with respect to
the computational domain.

In terms of the IBM, all the surfaces are discretized into evenly distributed points
separated by a distance ∆x. The simulations are run until the forces on the plate are
periodic and the value of Up, computed with eq. (13), does not vary with respect to
the previous cycle.
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Figure 8: (a) Grid sensitivity analysis on the tip deflection angle, α: ( ) ∆x =
0.02C, ( ) ∆x = 0.0125C, and ( ) ∆x = 0.00625C. (b) Effect of the fluid domain
on α: ( ) 16C × 8C, and ( ) 40× 16C.
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U∗p 〈P ∗i 〉 ε

2D 1.50 2.52 0.60
3D 0.48 1.44 0.33

Table 1: Non-dimensionalized values of the propulsive speed, U∗p , average input
power, 〈P ∗i 〉, and effectiveness, ε, for both cases.

4.1.2. Discussion of the results

One of the most noticeable differences between both cases is the change of the mean
propulsive speed, Up, which significantly decreases from the 2D configuration to the
finite aspect ratio case. This result is consistent with findings of Yeh & Alexeev (2016)
for plunging flexible plates with smaller plunging amplitude A/C = 0.1 and at slightly
higher Re than the present one. Yeh & Alexeev (2016) reported that, for a given ω∗,
the propulsive speed decreased with decreasing b/C (note that the 2D case would
correspond to A→∞). Table 1 shows that U∗p = Up/V is three times lower for the
A = 0.5 flapper. Thus, it is remarkable that the maximum tip deflection angle is
similar for both cases, as shown in Fig. 9a. Nonetheless, the phase-shift between the
vertical position of the leading edge and the tip deflection angle differs between both
cases: for the 2D case this phase-shift is close to π/2 (α ≈ 0 when Y is maximum)
meanwhile it is lower for the 3D case.

The aerodynamic forces also differ significantly from the 2D to the 3D scenario.
This is appreciated in Fig. 9b and 9c, which depict the aerodynamic forces normalized
with the maximum vertical velocity and the reference surface, S. This reference surface
is C for the 2D case (since Fx are forces per unit span) and bC for the 3D case. In
both cases, the tip deflection angle and the vertical force are in phase, suggesting that
both, tip deflection and lift force, are direct consequences of the pressure difference
between the upper and lower pressure acting upon the plate. A similar rationale
holds for the horizontal force (Fig. 9b); in both cases the peak thrust (negative Fx)
occurs at the maximum tip deflection, meanwhile the drag (positive Fx) is maximum
for α ≈ 0. Nonetheless, it can be observed that the drag and thrust peak have a
similar amplitude for the 2D case, whereas the thrust peak for the 3D case is less
pronounced. The smaller amplitude of Fx in the 3D case is directly linked to a more
steady instantaneous horizontal velocity (not shown).

Figure 10 displays the vortical structures around the 3D flapper at the beginning
of the downstroke (Fig. 10a) and roughly at mid-downstroke (Fig. 10b). The observed
structures are qualitatively similar to those reported in the literature of similar flexible
flappers but at post-resonance plunging frequencies (Yeh & Alexeev 2014, 2016). In
particular, a leading edge vortex (LEV) and a pair of side tip vortices (STV) are
developed at each stroke of the flapper. These vortices are shed at the end of each
stroke and become a vortex ring which is convected downstream.

In order to compare the flow structure in both configurations, Fig. 11 depicts the
spanwise vorticity ωz and the pressure for the 2D case and for the mid-span (z = 0)
plane of the 3D case. It can be appreciated that the flow clearly differs between
both scenarios. In particular, the 2D wake topology is different from the 3D wake
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Figure 9: Comparison of the (a) tip deflection angle, (b) horizontal force and (c)
vertical force: ( ), 2D configuration and ( ) A = 0.5 plate. In the normalization
of the forces, S = C for the 2D case and S = bC for the 3D cases. In Fig. 9a, ( )
corresponds to the position of the leading edge (without scale).
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Figure 10: Visualization of the flow structures around the A = 0.5 flapper at two
time instants. Vortical structures are displayed as iso-contours of the Q criterion (Hunt
et al. 1988): light grey structures correspond to Q = 0.004V 2/C2 and red structures
to Q = 7V 2/C2.

described in the previous paragraph. Instead of a succession of vortex dipoles observed
in the 3D case (which correspond to the intersection of the vortex rings at z = 0), two
consecutive vortices with the same vorticity orientation are shed during each stroke;
namely: an LEV and a trailing edge vortex (TEV). The higher Up can be appreciated
as a larger separation between vortices shed during each stroke in the 2D scenario,
as compared to the 3D wake. In the 2D case, the LEV developed during upstroke
(LEVu) is shed at mid-downstroke, right before the shedding of the TEV that develops
during the downstroke (TEVd), as depicted in Fig. 11b.
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Figure 11: Spanwise vorticity, ωz, and pressure contours for the 2D case and at
mid-span of the 3D case at (a) beginning of the downstroke (t/T = 0) and (b)
mid-downstroke (t/T = 0.24).

The LEV developed by the 2D plate is more intense, with a lower pressure
associated to it, than to its 3D counterpart (see Fig. 11a). Indeed, this lower pressure
region associated to the 2D LEV explains the smaller wing tip deflection at the
beginning of a stroke; Fig. 11a reveals that at t/T = 0, the 2D LEVu is close to the
trailing edge, making the plate to remain nearly horizontal. On the contrary, the
absence of LEVu at the trailing of the 3D flapper, leads to a higher pressure (i.e,
weaker suction) at the lower surface, yielding a higher tip deflection.

Finally, it is interesting to analyse the variation in the performance of the flappers.
To that end, the effectiveness, or swimming economy of each plate is computed as
(Yeh & Alexeev 2014, 2016):

ε =
U∗p
〈P ∗i 〉

, (14)

where 〈P ∗i 〉 is the average non-dimensional input power, namely, P ∗i = 2FyẎ /(ρV
3S),

over the last cycle (Arora et al. 2018). The values of 〈P ∗i 〉 and ε for both cases are
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gathered in Table 1. Although the required input power for the finite aspect ratio plate
is lower than for its 2D counterpart, the reduction is not large enough to compensate
for the lower propulsive speed. As a consequence, the swimming economy of the finite
plate is significantly smaller than that of the 2D plate. Previous studies have linked
the detriment of the swimming performance with decreasing A with the STV (Raspa
et al. 2014; Yeh & Alexeev 2016). The absence of STV in the 2D case (A → ∞),
together with its greater performance, are in agreement with this hypothesis.

4.2. Spider ballooning

The second example of application of the methodology proposed here is inspired
by the ability of some spiders to disperse aerially by releasing one or several silk
filaments. These filaments act as drag lines when they encounter a wind current,
allowing spiders to achieve long dispersal distances. This mechanism is usually known
as spider ballooning (Humphrey 1987; Zhao et al. 2017; Cho et al. 2018). Several
studies addressing this phenomena, both experimentally (Suter 1991; Cho et al. 2018;
Courtney et al. 2020) and numerically (restricted to 2D) (Humphrey 1987; Reynolds
et al. 2006; Zhao et al. 2017), are found in the literature. These studies are mostly
focused on characterizing the dispersal properties (in terms of dispersal length, terminal
descent velocity, effective length of the filaments, etc.) of spider ballooning, both with
actual samples or simplified models.

Motivated by this problem, a fundamental study is devised where the flow around
a fixed sphere of diameter D, which has a filament of length L attached to it, is studied.
In particular, the objective of the study is to determine what is the effect of the
filament on the flow around the sphere, as well as the fluid forces acting upon it. From
the point of view of the filament, this problem can be classified as an extraneously
induced excitation (EIE) fluid-induced vibration problem (Paidoussis 1998; Yu et al.
2019).

Two simulations are performed: a fixed sphere immersed in a uniform flow, and
the same problem but with a filament attached to the surface of the sphere. For the
sake of clarity, the first case is labelled as S and the second case is labelled as F. The
filament is modelled as N rigid links connected among them by joints which do not
restrain the rotation (see Fig. 12a). For the dynamical model, the links are modelled
as cylindrical rods of constant density ρs = 6ρ, length l = L/N and diameter, d = ∆x
(where ∆x is the grid size). For the fluid coupling, each link is discretized into a 1D
array of l/∆x points evenly distributed. Consequently, the fluid does not exert any
torque along the longitudinal axis of the filament. This enables to define the position
of a given link i with respect to its predecessor by means of two angles, θi and ϕi
(see Fig. 12b), instead of 3, as should be required to define the orientation of a rigid
body. Accordingly, the joint connecting a given link, i, with its predecessor, i− 1, is a
multi-DOF joint consisting of a revolute joint about the yi−axis, followed by another
revolute joint about the rotated zi−axis, namely, z′i, as sketched in Fig. 12b.

The sphere is immersed in a uniform flow parallel to the x-axis (see Fig. 12a)
of magnitude U . The point at which the filament is attached is x = −D/2, that is,
downstream the of sphere. For the present study, L = 5D, Re = DU/ν = 300, and
N = 24. This Reynolds number corresponds to a flow regime for the case of the
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Figure 12: (a) Sketch of the multi-body system composed of a fixed sphere and
filament consisting of N = 6 links. The reference frame depicted corresponds to the
inertial reference frame. (b) Schematic view of the parameters that define the joint
between two linkages. The Cartesian frame xiyizi is fixed to the link i− 1.

isolated sphere in which vortex shedding starts to occur (Bouchet et al. 2006). It has
been selected to explore if interference between the filament and the shed vortices is
found.

4.2.1. Computational set-up

For both simulations, the computational domain is a rectangular prism of dimensions
14D × 8D × 8D in the streamwise and lateral directions, respectively. A uniform
refined region of size 7D × 2D × 2D is defined, with a grid spacing ∆x = D/48. This
region is located 3D downstream of the inflow, centered within the lateral directions
of the computational domain. Outside of this region, a stretching factor of 1% is
applied in all directions. A uniform free stream of magnitude U is imposed at the
inflow boundary, free-slip boundary conditions are imposed at the lateral boundaries
and an advective boundary conditions is implemented at the outflow boundary.

For the IBM, the sphere is discretized into Ns evenly distributed points, such that
Ns ≈ πD2/∆x2, similarly to (Uhlmann 2005). On the other hand, each segment of
the filament is discretized by equally spaced points, separated a distance ∆x, without
gaps between adjacent segments.

The time step is fixed to ∆t = 0.0025U/D, ensuring CFL < 0.2. Finally, the
simulation of the isolated sphere (case S) is started from scratch, whereas the sphere
with the attached filament (case F) is started from a flow field of case S when vortex
shedding was present.

4.2.2. Discussion of the results

At the selected Reynolds number, the flow over the sphere exhibits periodic shedding
of vortices after an initial transient. Fig. 13 displays an snapshot of the wake of the
sphere after the onset of vortex shedding. This leads to oscillatory hydrodynamic
forces over the sphere, as observed from Fig. 14a, which depicts the non-dimensional
streamwise (i.e., drag) force, F ∗x = Fx/(ρU

3πD2/8). It can also be observed that
the mean value of F ∗x increases after the onset of vortex shedding. The oscillation
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Figure 13: Instantaneous visualization of the flow structures around the isolated
sphere at Re = 300. Vortical structures correspond to iso-contours of the Q-criterion,
Q = 0.2U2/D2.

frequency is found to be 0.135U/D, in agreement with existing literature at the same
Reynolds number (Tomboulides et al. 1993; Johnson & Patel 1999). Furthermore, the
non-axisymmetric wake leads to the appearance of a transversal force contained in the
plane of symmetry of the wake. Note that the location of this plane of symmetry with
respect to the inertial axis arises naturally, only forced by numerical biases (Johnson &
Patel 1999). In the present case, the angle between the (x, y)−plane and the symmetry
plane is approximately 67.7◦. This angle, is computed by a least square regression of
the transversal forces, as shown in in Fig. 14b. Figure 14c depicts the transverse force
when expressed in parallel (F‖) and perpendicular (F⊥) components with respect to
the symmetry plane of the wake. The plot shows oscillations of F ∗‖ , with the same

frequency of oscillation as F ∗x , and a net non-zero F ∗‖ when averaged over several

periods.

When the deformable filament is attached to the posterior part of the sphere, the
flow topology is greatly modified. If the simulation is started from a flow field with
vortical structures (Fig. 15a) the filament starts oscillating, and after 2-3 shedding
cycles, vortex shedding is suppressed, and a stable flow around the sphere-filament is
developed (Fig. 15b). If the simulations are started from scratch, no vortex shedding
occurs. The topology of the flow in this new regime is characterized by the development
of an axisymmetric recirculation region attached to the sphere, similarly to the case
of the isolated sphere at Re < 210 (Johnson & Patel 1999). This can be clearly
appreciated in Fig. 16, which depicts the instantaneous streamlines past the sphere
and the filament. Note that a shear layer is developed along the filament, which
changes direction in the recirculation bubble.

The vortex shedding inhibition has a noticeable effect on the forces acting over
the sphere. Firstly, the mean drag force acting over the sphere is reduced and the
oscillations are hindered, as shown in Fig. 14a, leading to a steady value of the drag
force over the sphere. However, the total drag force (i.e., sphere + filament) increases,
due to the skin friction of the filament, which acts as a drag line. Secondly, the
amplitude of the oscillations of the transverse force decreases with respect to the
case of the isolated sphere, as shown in Fig. 14c. The frequency of oscillation of the
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Figure 14: (a) Temporal evolution of the non-dimensional streamwise force.
( ) case S; ( ) case F (force over the sphere); ( ) case F (force over the
sphere and the filament). (b) ( ) Non-dimensional transverse force on the sphere
for case S for t > 90D/U (after onset of vortex shedding); and its ( ) least square
regression. (c) Temporal evolution of the non-dimensional transverse forces expressed
into its parallel and normal components. Color legend is as 14a, line styles stands for
( ) F ∗‖ , and ( ) F ∗⊥.
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Figure 15: Instantaneous visualization of the flow structures around the sphere with
the deformable filament at (a) initial time instants, and (b) after reaching and stable
state. Vortical structures correspond to iso-contours of the Q-criterion, Q = 0.2U2/D2,
as in Fig. 13.
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Figure 16: Instantaneous streamlines past the sphere and the filament in the (x, e‖)-
plane, together with the vorticity perpendicular to the plane.
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Figure 17: Oscillation pattern of the filament during the last two oscillation cycles
of the transverse forces. Line color indicates the time instant (from grey to black).
Note the difference in the scale of the axes.

transverse forces (which was previously linked to the shedding frequency of vortices
over the sphere) is also reduced, from 0.135U/D without the filament to 0.120U/D
with the filament.

In addition, the mean value of the transverse force over an oscillation cycle has
a zero mean value (Fig. 14c), which suggest that the flow becomes symmetric, in a
time-average sense, across the (x, e‖)−plane (where e‖ is the direction perpendicular
to x−axis and contained in the wake’s symmetry plane).

Regarding the dynamics of the filament, Fig. 17 depicts its deformation pattern
during the last two oscillation cycles of the transverse force. It can be observed that
the filament is not steady but it oscillates with a low amplitude. It is interesting to
note that these oscillations are contained in a plane, which correspond to the symmetry
plane of the wake of the isolated sphere.

5. Conclusions

A methodology to solve fluid-structure interaction problems with multi-body systems
has been presented. The proposed methodology follows a partitioned approach. The
flow is solved using a conventional fractional-step method while the presence of the
bodies of the MBS in the fluid is performed by means of the immersed boundary
method proposed by Uhlmann (2005). On the other hand, the dynamic equations
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of the rigid bodies are computed in terms of the reduced coordinates of the MBS by
the CRBA and RNEA recursive algorithms proposed by Felis (2017). The coupling
between flow equations and the MBS equations is weak, extending the approach of
Uhlmann (2005) for single rigid bodies to MBSs.

Two cases from the literature have been selected to validate the present methodol-
ogy. Since the flow solver has been already validated elsewhere, the validation focuses
on the multi-body dynamics and the coupling. The first validation case corresponds to
a system of two bodies joined by a torsional spring. Very good agreement is obtained
when comparing to a vortex particle method (Toomey & Eldredge 2008) and to a
vorticity-based IBM with strong coupling (Wang & Eldredge 2015). The second case
is that of a flexible, self-propelled plate modelled as several rigid bodies connected
by torsional springs (Arora et al. 2018). The obtained results show again very good
agreement with those obtained from a Lattice-Boltzmann simulation (Arora et al.
2018).

Two additional bio-inspired examples are provided to illustrate the capabilities
of the methodology. The first example is a three-dimensional extension of the case
presented by Arora et al. (2018). It is observed that 3D effects are detrimental in
terms of propulsive speed and efficiency, although the deflection of the plate is not
significantly modified. The results are in accordance with those reported by Yeh &
Alexeev (2014) for flexible self-propelled plates. The second example is loosely inspired
by the ballooning mechanism of several spiders to disperse aerially. The problem
is modelled as a deformable filament attached to a fixed sphere and immersed in
a free-stream. The flexibility of the filament is modelled as a chain of rigid links
connected with multi-DoF joints. When compared to an isolated sphere at the same
Reynolds number, it is shown that the vortex shedding is suppressed, despite the very
low amplitude of oscillation of the filament. The reduction in the unsteadiness of the
flow results in a decrease of the drag contribution from the sphere, but a larger total
drag due to the extra friction introduced by the filament.

In summary, it has been shown that the proposed methodology allows the definition
and analysis of a multitude of diverse configurations of MBS, thanks to the use of
generalised recursive algorithms. Moreover, the coupling between the flow equations
and the MBS equations is very simple, yet robust enough to provide very good
agreement with existing results from the literature. Nonetheless, the weak coupling
imposes a lower limit on the density ratios of the bodies which can be simulated with
the present methodology. Although, recent works have proven to successfully tackle
arbitrary density ratios for single rigid bodies using a non-iterative version of the weak
coupling approach presented in Tschisgale et al. (2017), the technical details are not
trivial for arbitrary geometries so that this extension of the methodology is left for
future work.
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Appendix A. Joint modelling

A joint that connect two bodies can also be regarded as the constraint of the relative
motion between two Cartesian reference frames, attached to each body Featherstone
(2014). Figure 18a illustrates this concept: body Γi has an attached reference frame,
Σi, and is linked to its predecessor body, Γk, which has its own attached reference
frame, Σk. Therefore, a joint can be defined by the rotation matrix, Ek,i, from Σi to
Σk; and the vector si, which links the origin of both Cartesian frames and is implicitly
expressed in Σk. Note that Ek,i and si only depend on the degrees of freedom allowed
by the joint, but their definition depend on the kind of joint.

Single DoF joints of two types are considered: prismatic (i.e., translation) joints
along any axis of Σk; and revolute (i.e. rotation) joints about any axis of Σk. For a
prismatic joint which allows translation along the x-axis of Σk, Ek,i is the identity
matrix of size 3; and si(qi) = qiex, where ex is the unitary vector parallel to x-axis, and
qi is the joint’s degree of freedom and corresponds to the magnitude of the translation.
Then, the relative velocity of body Γi with respect to Σk is:

ω′i = 0, v′i = ṡi = q̇iex.

On the other hand, for a joint which allows the rotation about the x-axis, Ek,i(qi) is a
matrix belonging to the 3D rotation group, SO(3), namely

Ek,i(qi) =

1 0 0
0 cos qi − sin qi
0 sin qi cos qi

 ;

and si is a constant vector. Note that, in this case qi stands for the rotation angle. In
this case, the relative velocity of body Γi with respect to Σk takes the form:

ω′i = q̇iex, v′i = ω′i × si.

Similar definitions stand for translations and rotations about y and z axes.

In order to model joints which allow multiple degrees of freedom between two
bodies, several virtual bodies can be linked sequentially using single DoF joints
(prismatic or revolute), as illustrated in Fig. 18b. For the dynamical model, these
virtual bodies have no mass; and for the fluid coupling, they have no associated
Lagrangian points (i.e., no volume). Under this approach, the connection between the
two physical bodies is equivalent to a multi DoF joint. Hence, the present methodology
allows a simple implementation of any kind of kinematic joint with a negligible increase
of the computational cost.

Appendix B. Mapping between generalized and physical
coordinates

B.1. From generalized coordinates to physical coordinates

Computation of Xi,j and U∂Γi , according to eq. (10), requires the calculation of Ei,
x0
i , v0

i , and ω0
i . These variables can be derived from the joint variables derived in
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Figure 18: (a) Sketch of body Γi and its predecessor, Γk, illustrating the elements
that define the joint between them. (b) Representation of a joint with 3 DoF, simulated
by means of 2 virtual bodies (represented as dashed circles) which have no mass and
associated Lagrangian points.

Appendix A. To that end, we exploit the fact that, for a kinematic tree like the one
considered in Fig. 1a, we can define a unique predecessor for each body, Γi, which
can be hence denoted as Γλ(i). Likewise, a set µ(i) can be defined containing all the
bodies which precede Γi. As an example, for body Γ7 in Fig. 1a, µ(7) = {4, 5, 7}.
Under these definitions, the rotation matrix of body Γi is computed as:

Ei =
∏
j∈µ(i)

Eλ(j),j (15)

Likewise,

x0
i =

∑
j∈µ(i)

Eλ(j)sj(qj), (16)

whereas, v0
i and ω0

i can be computed from eq. (16) by substituting sj by v′j and ω′j ,
respectively.

B.2. From physical coordinates to generalized coordinates

In order to compute ξh to solve eq. (7), the hydrodynamic forces acting upon the
bodies must be expressed in terms of generalized coordinates. Note that, with the
present coupling, the component of the hydrodynamic forces that have to be mapped
are Gi and Ni from eq. (11a) and eq. (11b), respectively. For the sake of efficiency,
it is convenient to gather both forces and moments acting on body Γi into a single
vector:

f̂hi =

[
Ni
Gi

]
, (17)

where it is implicitly assumed that both Ni and Gi are expressed in Σ0 and moments
are computed about the origin.

We also define the matrix transform of Γi as:

X∗i =

[
E>i −E>i x0

i×
0 E>i

]
, (18)
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where x0
i× is a skew-symmetric matrix belonging to the Lie algebra of the SO(3)

rotation group.

With the previous definitions, a simplified version of the RNEA can be implemented
to compute the components of ξh, namely:

for i← 1, NB do

ĝi = X∗i f̂
h
i

end for
for i← NB , 1 do

ξh,i = S>i ĝi
if λ(i) 6= 0 then

ĝλ(i) = ĝλ(i) + X∗λ(i)f̂
h
i

end if
end for

where λ(i) is the index of the predecessor body of Γi. The previous algorithm simply
transfers the forces acting upon a given body across its supporting tree (i.e., the set of
bodies that connect it to base, Σ0). Note that, Si is the motion subspace of the joint.
For prismatic and revolute joints, Si is a unitary column vector of size 6× 1, whose
only non-zero component is the axis along which rotation/translation is allowed. In
particular, its first 3 components are associated to rotations about the x, y or z axes
of the joints; meanwhile its 3 last components are associated with translations along
the aforementioned axes.
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Numerical simulations of the auto-rotation of a model winged seed are presented. The
calculations are performed by solving simultaneously the Navier-Stokes equations for
the flow surrounding the seed and the rigid-body equations for the motion of the seed.
The Reynolds number based on the descent speed and a characteristic chord length
is varied in the range 80 − 240. Within this range, the seed attains an asymptotic
state with finite amplitude auto-rotation, while for smaller values of the Reynolds
number no auto-rotation is observed. The motion of the seed is characterized by
the coning and pitch angles, the angular velocity and the horizontal translation of
the seed. The values obtained for these quantities are qualitatively similar to those
reported in the literature in experiments with real winged seeds. When increasing the
Reynolds number, the seed tends to rotate at higher speeds, with less inclination with
respect to the horizontal plane, and with a larger translation velocity. With respect
to the aerodynamic forces, it is observed that, with increasing Reynolds number, the
horizontal components decrease in magnitude while the vertical component increases.
The force distribution along the wing span is characterized using both global and local
characteristic speeds and chord lengths for the non-dimensionalisation of the force
coefficients. It is found that the vertical component does not depend on the Reynolds
number when using local scaling, while the chordwise component of the force does.

Key words: winged-seed, auto-rotation, numerical simulation

1. Introduction

Nature has shown to be an excellent engineer. Therefore, it is not surprising that
several tree species are able to take advantage of wind and turbulent gusts to disperse
their seeds thanks to their suitable shapes. More surprising is the fact that this
dispersal can range from tens of meters to kilometers (Nathan 2006). Some of these
seeds, often called straying seeds, rely on their small weight to surface ratio to perform
a parachuting flight thanks to the drag force acting on them (Burrows 1975; Minami
& Azuma 2003). However, there are other kind of seeds which are able to create lifting
forces opposite to gravity to reduce their descent speed and increase their dispersal
distance under lateral winds. This type of seeds, usually known as winged seeds, or
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samaras, generate these aerodynamic forces executing auto-rotational flight as they
fall (Azuma 1992, chapter 6). Thus, samaras have much larger wing loading (weight
to exposed surface ratio) than straying seeds (Minami & Azuma 2003).

Winged seeds from different species have different size and shape, but all of them
exhibit a similar physical structure: a thin, leaf-like wing with a thicker leading edge;
and a nut (or embryo) at one side of the wing. These seeds have received a lot of
attention from the scientific community during the last decades (Norberg 1973; Green
1980; Azuma & Yasuda 1989; Rosen & Seter 1991; Seter & Rosen 1992; Yasuda &
Azuma 1997). The reasons for this attention are mainly two. First, the reduction
of the descent speed in auto-rotation compared to the free falling velocity, which
has obvious engineering applications. Second, winged seeds have high auto-rotation
stability, meaning that they are able to sustain auto-rotation when they encounter
wind disturbances (Lee & Choi 2017), and when their shape is drastically changed
(Varshney et al. 2012). The gist of this stable auto-rotation is a subtle coupling between
seed’s inertia and aerodynamic forces (Varshney et al. 2012). In this fashion, samaras
possess self-stability governed just by their structural pattern, without the need of
any active actuator, like neuromuscular control in animal flight (Norberg 1973).

These natural abilities have fostered the development of aerial vehicles based
on samaras. Examples of these are the Samarai developed by Lockheed-Martin
(Obradovic et al. 2012; Fregene & Bolden 2010) and the robotic samara developed
by Ulrich et al. (2010), which have a propeller installed to be remotely controlled.
Similarly, Pounds & Singh (2015) present a sensor based on the shape of a winged
seed to exploit the dispersal capabilities of these seeds. In this fashion, several of these
sensors are deployed from an aerial vehicle with the scope of monitoring a target area.

However, the design of efficient vehicles entails a more detailed comprehension
of the auto-rotation phenomena, which is difficult to study. The coupling between
the seed’s inertia and aerodynamic forces poses several difficulties in order to analyse
the problem from a theoretical perspective. The descent speed, angular velocity, and
attitude of the seed as it auto-rotates will be largely defined by the aerodynamic forces,
which in turn will vary depending on the former parameters. Hence, a theoretical
approach of the problem entails, ineluctably, a model of the aerodynamic forces based
on seed’s kinematics. The vast majority of these models are simplified models based on
the blade element theory, which do not consider the existence of a leading edge vortex
(LEV), or three dimensional effects of the flow, among others (Azuma & Yasuda 1989;
Seter & Rosen 1992b).

On the other extreme, thanks to advances in flow visualization techniques such
as digital particle image velocimetry (DPIV), it is possible to measure the velocity
field around an actual samara in auto-rotation. In fact, this technique allowed Lentink
et al. (2009) to visualize a stable LEV created on the upper surface of winged seeds as
they auto-rotate. Nonetheless, although DPIV allows to study the flow field, the force
distribution is not easily measured experimentally. Consequently, force distributions
are usually extrapolated from the velocity field as in Lentink et al. (2009), Salcedo
et al. (2013) and Limacher & Rival (2015).

These difficulties can be overcome with the use of Direct Numerical Simulations
(DNS) with a 2-way coupling between the fluid and the solid dynamics, where the
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aerodynamic forces are directly obtained and hence do not need to be modelled
(Uhlmann 2005). Moreover, systematic variations of a single parameter of the problem
(e.g., seed’s inertia, density ratio or Reynolds number) are easily performed using DNS,
allowing to study the isolated effect of these parameters on the auto-rotation of the
seed.

In the present study we take advantage of this latter approach, and perform DNS
of the auto-rotation of a winged-seed at different Reynolds numbers, Re = wdc/ν
(where wd is the descent speed, c is the characteristic chord of the seed’s wing, and
ν is the dynamic viscosity of air). The objective is to investigate auto-rotation at
lower Reynolds number than typical values found in nature (which are of the order of
Re ∼ 700), studying the change of the kinematics and the aerodynamic forces with Re
while keeping the seed’s geometry and inertia constant. The analysis focuses on the
motion and attitude of the model winged seed, and on the resulting aerodynamic forces.
The analysis of the flow surrounding the seed is reported elsewhere (Arranz et al.
2018). The structure of the paper is as follows. Section 2 presents the methodology
used for the simulations, including the numerical methods, geometric and inertial
model of the seed, etc. The results of the simulations are presented and discussed in
section 3 in terms of the seed kinematics and the distribution of aerodynamic forces.
Finally, the conclusions are presented in section 4.

2. Methodology

2.1. Numerical model

The problem under study is the motion of a winged seed immersed in ambient fluid.
Four different reference frames are used in the present analysis: ΣL, Σp, Σc and ΣR.
ΣL is the laboratory reference frame: an inertial reference frame with axes xL, yL and
zL, the latter pointing upwards. Σp is a body-fixed reference frame centered at the
seed’s gravity centre, G, whose axes coincide with the principal axes of inertia of the
seed. Both ΣL and Σp are sketched in figure 1a, and are used to solve the equations
of motion of the seed, as discussed in the next paragraph. The other two reference
frames sketched in figure 1b, Σc and ΣR, are defined in terms of the seed’s geometry
and are used for analysing and visualizing purposes. Σc is a body fixed reference
frame centered at the centre of the nut; with zc normal to the wing of the seed and yc
pointing towards the tip of the wing. On the other hand ΣR is a non-inertial reference
frame whose attitude is defined by its axes zR, parallel to zL, and yR, which is the
projection of yc on the horizontal plane (zL = 0).

We define i, j and k to be the unit vectors in the x, y and z directions, respectively.
The subscript of these vectors indicate the reference frame they belong to, e.g.: iL
is the unit vector of xL. On the other hand, to specifically indicate that a vector is
expressed in a certain basis, the superscript notation, xY , is used, where ΣY is the
basis. Therefore, xY indicates that the components of xY , namely, (x1, x2, x3) are
x1 = x · iY , x2 = x · jY and x3 = x · kY .

The equations that govern the motion of the seed are:

msu̇G = Fext , (1)

IGΩ̇ + Ω× IGΩ = MG. (2)
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Figure 1: (a) Sketch of ΣL and Σp. The position vector of the gravity centre, xG, the
velocity vector of G, uG, and the angular velocity vector, Ω, are also displayed. LE
and TE stands for the leading edge and the trailing edge of the wing seed, respectively.
(b) Sketch of Σc and ΣR. The two angles that define the attitude of the seed, the
coning angle, β, and the pitch angle, θ, are also displayed.

In eq. (1) and eq. (2), dot indicates time derivative, ms is the mass of the seed, uG
is the absolute velocity of the gravity centre (i.e. with respect to ΣL), Fext are the
external forces acting upon the seed, Ω is the angular velocity, IG is the tensor of
inertia about the gravity centre of the seed and MG are the moments about the
gravity centre. Note that eq. (2) is expressed in a body-fixed frame of reference. The
external forces are the gravity, −msgkL, where g is the gravity acceleration; buoyant
force, msρ/ρsgkL, where ρ and ρs are the fluid and seed densities, respectively; and
aerodynamic forces, F. On the other hand, we consider that the moment MG is only
due to the aerodynamic forces, which is strictly true for a samara of uniform density.

Equation (1) is solved in the inertial reference frame ΣL, whereas eq. (2) is solved
in the body reference frame Σp. The latter simplifies the resolution of eq. (2) since
the tensor IG, when expressed in Σp, is constant and diagonal, with the elements of
this diagonal corresponding to the principal moments of inertia of the seed.

In order to solve eq. (1) and eq. (2), the attitude of Σp with respect ΣL must be
known. This is done here with the quaternion formulation, which avoids the possible
singularities that may arise with the Euler angles (see Tewari 2007). The quaternion,
Q = (Q1, Q2, Q3, Q4), is defined as:

Qi = ei sin
(ϕ

2

)
(i = 1, 2, 3) and (3)

Q4 = cos
(ϕ

2

)
, (4)

where e = (e1, e2, e3) is a unit vector along the rotation axis and ϕ is the angle of
rotation. Hence, the quaternion Q defines a rotation that converts ΣL into Σp. It is
possible to show that the time evolution of Q is:

dQ

dt
=

1

2
ΩQ, (5)
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where Ω depends on Ωp = (p, q, r) (superscript p indicates that Ω is expressed in Σp),
namely:

Ω =


0 r −q p
−r 0 p q
q −p 0 r
−p −q −r 0

 . (6)

For further details about quaternion formulation the reader is referred to Tewari
(2007).

The solution to the system of equations eq. (1), eq. (2) and eq. (5) yields the
evolution of the seed’s dynamics. However, the aerodynamic forces and moments
acting on the seed must be known. To compute them, we solve the incompressible
Navier-Stokes equations,

∇ · u = 0, (7a)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇pf + ν∇2u, (7b)

where u is the fluid velocity, pf is the pressure and ν is the kinematic viscosity of the
fluid. Equations eq. (7a) and eq. (7b) are solved in the inertial reference frame, ΣL.

Direct numerical simulations are carried out to solve eq. (7a) and eq. (7b) with
TUCAN: an in-house solver of the Navier-Stokes equations that uses a fractional
step method and centered, second-order finite differences for spatial derivatives in a
staggered grid; time evolution is performed by a semi-implicit three stages Runge-
Kutta method; and the presence of the body inside the fluid is modelled by means
of an Immersed Boundary Method (IBM) (Uhlmann 2005). The code is described
in Moriche (2017) and it has been extensively validated and applied to aerodynamic
flows (Moriche et al. 2016, 2017).

The coupling between the equations of motion and the Navier-Stokes equations is
implemented as in Uhlmann (2005). It is a weak coupling, in which at each Runge-
Kutta stage, the flow is solved first to obtain F, and then the seed dynamics are
updated. The difference with Uhlmann (2005) is that eq. eq. (2) is expressed in
the principal axes of inertia, entailing the computation of eq. (5). On the contrary,
Uhlmann (2005) modelled spheres which have isotropic inertia properties, so that IG
is constant regardless of the reference frame, and there is no need to keep track of the
orientation of the sphere.

To validate the present algorithm, we have computed the motion of an oblate
spheroid of aspect ratio 1.5 and density ratio ρs/ρf = 2.14 settling under gravity in
ambient fluid. For this configuration, high-fidelity data from a boundary-conforming
spectral-element method is available (Chrust 2012). Using a grid resolution of 24 points
per major axis, we have reproduced the instability regimes described in Chrust (2012),

and their transitions with increasing the Galileo number, Ga =
√

(ρs/ρf − 1)gV /ν,
where V is the volume of the spheroid. Particularly, our validation runs show a steady
vertical trajectory for Ga = 96, steady oblique for Ga = 110, oscillating oblique for
Ga = 122 and vertical with lateral oscillations for Ga = 150.
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Figure 2: (a) Tipuana Tipu seed. (b) Simplified model of Tipuana Tipu seed used
in the simulations. Top view and side view of the model. C is the geometric centre
of the nut, and G is the gravity centre of the seed. For reference Σp and Σc are also
sketched.
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rn
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Figure 3: (a) Sketch of the wing planform together with the fictitious rod and its
gravity centre position, Gr. (b) Discretization of the samara seed.

2.2. Geometric, inertial and aerodynamic model

For the simulations, we use a simplified model based on the Tipuana Tipu seed shown
in figure 2a. The use of a simplified model instead of replicating the actual shape of a
real samara is well justified if one looks at the vast variety of winged-seed’s geometries
that exist in Nature (Azuma & Yasuda 1989; Green 1980). This simplified model
consists of a nut, which is modelled as an oblate spheroid, and a wing modelled as a
flat plate (see figure 2b).

The shape of the wing consists of four quarters of ellipse which are tangent to
each other, following the same approach as Pedersen & Żbikowski (2006) to model
insect wings (figure 3a). Note that similarities between winged seeds and animal
wings were already reported by Norberg (1973) and have been recently analysed by
Ortega-Jiménez et al. (2017) in terms of their auto-rotation.
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We define the characteristic chord of the wing to be c (see figure 3a). The
dimensions of the wing are b/c = 1.9, bTE/c = 1.32 and rn/c = 0.3, as shown in
figure 3a. Note that rn is the semi-major axis of the nut, whose aspect ratio is 0.6 (i.e.
ratio between the semi-minor axis and the semi-major axis of the ellipsoid).

For the inertia model, we assume that the seed has constant density ρs, the oblate
spheroid is solid, and the wing is a flat plate of thickness t = 0.005c. Moreover,
the effect of the thick leading edge –which plays a role of the utmost importance in
auto-rotation stability (Norberg 1973; Seter & Rosen 1992; Yasuda & Azuma 1997), is
also accounted for with a fictitious rod, shown in figure 3a. The dimensions of this
fictitious rod are adjusted so that for the spanwise sections of the wing affected by
the rod, the distance from the leading edge to the mass centre is smaller than 30% of
c(yc), in accordance to Norberg (1973). The rod is defined by its radius rr = 0.05c
and length lr = 1.54c, the position of its gravity centre, CGr = −0.25cic + 0.77cjc
(where CGr denotes the vector from C to Gr), and the orientation of its longitudinal
axis, parallel to yc (see figure 3a). In this fashion, the resulting inertia tensor of the
seed with respect to C expressed in Σc, namely, IcC , is:

IcC =

19.26 −0.99 0
−0.99 3.20 0

0 0 21.57

 · 10−3ρsc
5,

and the gravity centre of the seed with respect to Σc turns out to be, CG = −0.018cic+
0.185cjc. The principal tensor of inertia turns out to be:

IpG =

16.29 0 0
0 3.17 0
0 0 18.56

 · 10−3ρsc
5.

2.3. Computational set-up

To perform the simulations, the seed is placed in a cubic fluid domain of side 10.66c.
Periodic boundary conditions are imposed at the lateral boundaries, whereas a uniform
inflow is imposed at the bottom boundary (zL = −3.66c), and an advective boundary
condition is imposed at the top boundary. The computational domain is discretized
with a uniform Cartesian grid of 5123 points, which corresponds to 48 grid points
per length c. This resolution has been set after performing a grid refinement study,
presented in Appendix Appendix A. Likewise, the seed is also discretized into points
(see figure 3b) whose resolution is based on the requirements of the immersed boundary
method (Uhlmann 2005). Particularly, the seed consists of 5674 points. Since the wing
thickness t is much smaller than the grid spacing, ∆ = c/48, the wing is modelled as a
flat surface. The time step, ∆t, has been selected so that CFL = umax∆t/∆ ≤ 0.2,
where umax is the maximum velocity in the flow field.

The seed is free to rotate and its gravity centre can move on an horizontal plane,
but we restrain its motion in the vertical direction. Note that fixing zLG = 0 (and
wLG = ẇLG = 0) and imposing a constant inflow velocity wd results in a configuration
that is analogous to the natural configuration: a seed descending at a constant speed
wd in a fluid at rest. The advantage of this procedure is that it allows a finer control of
the simulation parameters (note that in the natural configuration the descent velocity
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of the seed, wd, is unknown), and a simpler set-up of the computational domain: in
the natural configuration, when the inflow velocity is not exactly equal to wd, the seed
is eventually advected outside of the computational domain.

Finally, it should be noted that fixing the vertical position of the gravity centre of
the seed means that the the vertical component of eq. (1) is not solved, which is the
only equation involving the gravity acceleration, g. Indeed, once the seed has reached
a stable auto-rotative state, we can use the value of FLz obtained in the simulation to
estimate the value of g required to have a equilibrium of forces in the vertical direction,

g =
FLz
ms

%

%− 1
, (8)

where FLz is the vertical component of FL, and % = ρs/ρf is the density ratio. Then,
the simulation can be restarted in the natural configuration (i.e., solving all components
of eq. (1) and allowing the seed to move freely in the domain) using the value of g
computed in eq. (8). This approach is proposed by Uhlmann & Dušek (2014). We
followed this procedure for a single case, obtaining a dynamical response of the samara
in the natural configuration virtually indistinguishable to the results reported in section
3.

When fixing zLG = 0, the problem depends on two non-dimensional numbers,
the density ratio, %, and the Reynolds number, Re. In our simulations % = 300
(which is a reasonable value close to reality) and we vary the Reynolds number,
Re = [80, 160, 240]. Note that these Re are on the lower limit of typical Reynolds
number of actual winged-seeds, which ranges from Re ' 350 to 1540 (Green 1980;
Azuma & Yasuda 1989; Salcedo et al. 2013).

To trigger the auto-rotation of the seed, the simulations are started with initial
conditions: Ω0 = Ω0kL = c/wdkL, uG = 0, and zp parallel to zL, which is equivalent
to an initial rotation about G. To check the effect of the value Ω0 on the final auto-
rotative steady state, we also started a simulation with Ω0 = 1

2c/wd, yielding the same
auto-rotative state. It should be highlighted that in both cases, the initial angular
velocity is lower than the final angular velocity.

The previous procedure is followed to start the simulation with Re = 240 and
with a lower resolution, 256× 256× 256 grid points, to save computational time. Once
the seed has performed several cycles, at a given time t1, the flow field is interpolated
into a finer grid of 512× 512× 512 grid points and the simulation is restarted with this
denser mesh. For Re = 80 and 160, we use the flow field and the seed attitude at t1
to restart the simulation with the desired Re at the reduced resolution. After the seed
has performed several cycles with the new Reynolds number, the field is interpolated
into the finer mesh, as explained previously, and the simulations are continued.

3. Results

For all cases under study the seed attained an asymptotic state with finite amplitude
auto-rotation. We performed additional simulations at Re ≤ 80. First, the simulation
was started directly at Re = 80 with the initial condition described in section 2.3. In
this case the seed failed to auto-rotate, suggesting that the problem presents hysteresis.
Likewise, starting with the auto-rotating simulation at Re = 80, we successively
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tip
trajectory

G trajectory

Figure 4: Three dimensional view of the seed’s trajectory for Re = 240. ( ) Tra-
jectory of the wing’s tip, ( ) trajectory of the gravity centre. The attitude of the
seed is depicted at different equidistant time instants. The dotted line is a vertical
axis parallel to kL.

decreased the Reynolds number and it was observed that there may be a lower limit
Re ≈ 50 below which auto-rotation is no longer possible. Nevertheless, the aim of this
study is not to determine what is the exact Reynolds number at which auto-rotation
is no longer possible so that additional simulations should be performed in the future
in order to establish this value accurately.

For a visualization of the simulations, figure 4 shows the trajectory and orientation
of the seed at Re = 240 descending at a constant speed wd. The seed is depicted at
equispaced time instants. In addition, the trajectory of the wing tip and G are also
displayed.

Although in figure 4 only Re = 240 is shown, the motion is qualitatively similar
for all Re under study. From figure 4, one can infer that the seed spins about a vertical
axis; thus, Ω is parallel to kL (except for small deviations which never exceed 2◦). As
a result, the wing tip describes a helical path. On the contrary, G follows almost a
vertical path (with small displacements in xL and yL), suggesting that the rotation
axis is very close to G.

As mentioned in section 1, auto-rotation is due to a tight coupling between the
aerodynamic forces and the seed’s motion. In turn, aerodynamic forces are greatly
dependent on flow structures, which are represented in figure 5. This figure displays
iso-surfaces of the second invariant of the velocity gradient tensor, Q, for the case
with Re = 240 (i.e. the Q-criterion of Hunt et al. 1988 for the identification of vortical
structures). Three main vortical structures can be identified: the wing tip vortex; the
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Figure 5: Iso-surfaces of the Q-criterion for Re = 240. Light blue iso-surface Q̃ = 0.5,
dark blue iso-surface Q̃ = 5, where Q̃ = Qc2/w2

d.

wake shed by the nut; and the LEV (i.e, leading edge vortex) which is formed above
the wing and corresponds to the darker blue surface in figure 5. As a consequence
of the rotation, the wing tip vortex wraps about a vertical axis, forming a helical
structure, similar to the trajectory of the wing tip shown in figure 4. The vortex shed
by the nut has also a helical shape, but with a smaller radius. A more detailed analysis
of the corresponding flow fields is reported in Arranz et al. (2018).

Figure 4 shows that the seed reaches a quasi-stationary state. Consequently, in
the following sections we will discuss time averaged quantities over the last 4 periods
of the simulations. These averaged quantities are denoted with angular brackets, e.g.:
〈x〉. Likewise, non-dimensional variables are denoted as x̃.

3.1. Seed kinematics

Quantitatively, the effect of the Reynolds number on the motion of the seed is assessed
by the change of the coning angle, β, and the pitch angle, θ, the angular velocity, Ω,
and the displacement of G. β is the angle between jc and the horizontal plane, and
it gives an indication of how tilted the winged seed is with respect to the horizontal
plane. On the other hand, θ is the angle between ic and iR and it can be seen as a
geometric angle of attack. The definitions of both β and θ are depicted in figure 1b.
Mathematically, β and θ are defined as:

β = cos−1 (jc · jR) (9)

θ = −sgn(ic · kL) cos−1 (ic · iR) (10)
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Figure 6: Evolution of Ω̃ averaged over the last four periods, 〈Ω̃〉, as a function of
Re. The standard deviation is depicted with error bars.

(a) Re = 80 (b) Re = 160 (c) Re = 240

Figure 7: Temporal evolution of β ( ); θ ( ); and the angle of attack at 0.65b,
α(yc = 0.65b) ( ). Symbol ()rresponds to the time instant when fluid relative
velocity is local maximum; ()e the time instants when fluid relative velocity is local
minimum. The shaded region correspond to the last four periods, where the averages
are calculated.

Figure 6 displays the average of the modulus of the non-dimensional angular
velocity (namely, Ω̃ = Ωc/wd) as a function of Re, together with its standard deviation.
In figure 6 one can appreciate that the standard deviation for all the cases is very
small, indicating that Ω̃ is indeed rather constant. Looking at the evolution of 〈Ω̃〉
with Re, one can observe that it increases with Re, i.e. the seed spins faster as the
Reynolds number increases. The values of 〈Ω̃〉 are also gathered in table 1.

Figure 7 shows the temporal evolution of β and θ for the different Reynolds
numbers. The time t = 0 corresponds to the time when the simulations are started on
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(a) (b)

Figure 8: (a) Evolution of 〈β〉 ( ), and −〈θ〉 ( ) as a function of Re. The standard
deviation of β and −θ is depicted with error bars. (b) Angle of attack distribution
along the span of the seed’s wing. ( ) Re = 80, ( ) Re = 160 and ( ) Re = 240.
The dashed vertical line depicts the start of the nut.

the fine grid. Regardless of Re, both angles show an oscillatory behaviour about a
mean value after an initial transient. The initial variation is caused by the change
of the resolution, as explained in section 2.3. Nonetheless, the oscillation of both
angles is small, not exceeding 2◦. Note that there is a phase shift of approximately
π/2 between β and θ. Also, the oscillations observed in figure 7 have a fixed frequency.
This frequency is equal to Ω/2π for all Reynolds numbers, meaning that the period
of the oscillations is the period of the rotation. It is interesting to recall that this
oscillatory behaviour has also been observed experimentally (Ulrich & Pines 2012).
This issue will be discussed further below.

Figure 8a shows the evolution of the mean coning angle, 〈β〉, and the mean pitch
angle, 〈θ〉, with the Reynolds number. The angles are averaged over the last 4 periods
(shaded region in figure 7), and their standard deviation is also depicted in the plot
by means of vertical bars. One should recall that θ is always negative, and that is
why both figure 7 and figure 8a show −θ. A negative pitch angle means that if the
axis yc would lie on the horizontal plane, the leading edge of the seed would be below
this horizontal plane. As the Reynolds number is increased both the coning and the
pitch angle decrease (in absolute magnitude). Thus, the wing of the seed tends to be
more parallel to the horizontal plane as Re is increased. Note that the growth of the
standard deviation with Re means that the amplitude of the oscillations increases, a
fact that one can appreciate in figure 7. The values of 〈β〉 and 〈θ〉 are also gathered in
table 1.

We now proceed to compare our results with the kinematics of actual seeds. To
do so, table 1 shows experimental values of the coning angle, the pitch angle and the
tip speed ratio, λ, found in the literature. Since in all the references the Reynolds
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number is based on the mean chord, ĉ = S/bw, where S is the total surface of the
wing and bw is the total span of the wing (bw = b+ rn in our case), we define a new

Reynolds number for the comparison, R̂e = wdĉ/ν. It should be noted that the seeds
reported in table 1 belong to different species, having different geometries and inertias.
This precludes a quantitative comparison with our results. For the same reason, an
analysis of the effect of the Re on the kinematics of the seeds cannot be assessed
with the experimental values of table 1. This analysis has to rely only on the present
simulation data.

Despite the simplifications of our model (flat wing, no surface roughness, imposed
inertia tensor), the kinematics of the seed are qualitatively similar to experiments
found in existing literature. The coning angle of the different seeds ranges between 12◦

and 36◦. Nonetheless, table 1 shows that within our simulations 〈β〉 agrees with the
lower limit of the coning angle measured in experiments. However, the trend exhibited
in figure 8a is a decrease of 〈β〉 with the Reynolds number. If this tendency is followed,
lower 〈β〉 would be expected for higher Re, in disagreement with experiments. This
discrepancy could be attributed to the simplifications of the model. However, the
behaviour of this trend might change for higher Re.

Comparison of the pitch angle is more cumbersome due to the difficulty in
measuring it experimentally. Moreover, there is no consensus of the definition of θ.
For instance, Green (1980) defines θ as ”tilt of wing in plane of rotation”, whereas
Azuma & Yasuda (1989) defines θ at a given spanwise section. Therefore, we limit the
comparison to the sign of 〈θ〉, which is always negative in both the experiments and
in our results.

In order to compare the angular velocity, the tip speed ratio, λ, is used (Miller
et al. 1997). This parameter is computed as the ratio between the tip speed due to

angular velocity (roughly b〈Ω̃〉 cos 〈β〉) and the descent speed, wd. The tip speed ratio
is gathered in table 1. In the literature, λ ranges from approximately 2 to 3.3. The
values of the simulations are within the experimental range (except the case Re = 80,
which is slightly lower).

The combined effect of β, θ and Ω determines the angle of attack, α(yc), which is
an important quantity in aerodynamics. Mathematically, α can be expressed as

α(yc) = tan−1

(
ue(yc) · kc
ue(yc) · ic

)
, (11)

where ue(yc) = wdkL − uG − Ω × (ycjc) is the effective velocity at each spanwise
section. Figure 8b depicts the angle of attack distribution along the span for the
different Re. It is found that the angle of attack distribution is very similar for the
three Re, specially for yc > 0.6c. For the outer spanwise positions, the local angle
of attack slightly decreases with the Reynolds number. The temporal evolution of α
is similar to β and θ, namely, it oscillates with a frequency of Ω/2π. However, the
amplitude of the oscillations is one order of magnitude smaller than those of β and
θ, although they also increase with Re. This phenomenon is illustrated in figure 7,
where the temporal evolution of α at yc = 0.65b is depicted. The selection of this
particular spanwise section is somewhat arbitrary, but similar plots are obtained for
other sections (specially in terms of the effect of the Reynolds numbers).
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(a) (b)

(c) (d)

Figure 9: (a) Trajectory of the gravity centre, G on the horizontal plane. Line
style: ( ) Resolution 256× 256× 256 grid points, ( ) resolution 512× 512× 512
grid points. ( ) Re = 80, ( ) Re = 160 and ( ) Re = 240. (b) (c) and (d)
Intersection of the moving axoid with the horizontal plane zL/c = 0. (b) Re = 80,
(c) Re = 160, and (d) Re = 240. The intersection during the last four periods is
highlighted. () the mean position of the rotation axis averaged over the last four
periods. The dashed line makes 120◦ with respect to yc

We turn now our attention to the motion of G in the horizontal plane. Recall
that, as discussed in figure 4, the velocity of G in the horizontal plane is not zero.
Indeed figure 9a shows the trajectory of the gravity centre on the horizontal plane
for the different Reynolds numbers. For Re = 80, after the initial transient (shown in
dashed line), the gravity centre seems to rotate about an axis which tends to be at
a fixed position. For Re = 160 and 240 the trajectories shown in figure 9a seems to
suggest that for these Reynolds numbers the axis of rotation does not tend to a fixed
position. This is reminiscent of the different regimes of sedimentation observed for
simpler bodies, like spheres, disks and spheroids (Ern et al. 2012).
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To better understand the motion described by the seed in figure 9a, we compute
the moving axoid, which is the locus of the instantaneous axis of rotation seen from
a body fixed reference frame (Beju et al. 1983). Note that the instantaneous axis
of rotation is always parallel to Ω, which in turn is parallel to kL (except for small
deviations, as previously commented). Therefore, the moving axoid is a ruled surface
which can be characterized by its intersection with the plane zL = zR = 0.

Figure 9b-d depicts the intersection of the moving axoid with the plane zR = 0
for the different Re in ΣR centered at G. For Re = 80 the intersection is a point
(figure 9b), meanwhile for Re = 160 and 240 it is a circle (figure 9c and 9d). This
indicates that for Re = 80 the seed gravity centre is rotating about a fixed axis in
the laboratory reference frame, as we anticipated from figure 9a. On the other hand,
the moving axoid for Re = 240 and 160 resembles that of a cylinder with its mass
centre at a position different from its geometric centre, rolling without slipping over a
surface. The radius of the intersection corresponds to the radius of the cylinder, and
the distance from the centre of the intersection to G is the offset between the gravity
centre and the geometric centre of the cylinder.

Therefore, the moving axoids shown in figure 9c and 9d are consistent with a
seed rotating about an axis (the geometric centre of the intersection) which in turn
is displacing, as we hypothesized from figure 9a. In this fashion, we can define rGR

to be the vector from G to the mean position of the intersection during the last four
periods (represented with the symbol × in figure 9b-d). It is interesting to note that
the modulus of rGR decreases with Re (see table 1), while the angle between rGR
and jR, γ, remains constant for all Re and close to 120◦ (particularly it ranges from
126.0◦ for Re = 80, to 120.1◦ for Re = 240). This means that the seed is rotating
while skidding (i.e, oversteering), which in the helicopter nomenclature corresponds
to a positive lead angle equal to π − γ. Nevertheless, it should be stressed that as
shown in table 1, r̃GR ∼ 0.01. Hence, the seed is rotating about a vertical axis which
practically coincides with G, as we anticipated from the visualization of figure 4.

In sight of the above, we could attempt to split uG into a rotational component,
uG,r, and a displacement component, uG,d. The former would be the velocity of G
relative to the rotation axis, that is uG if the axis of rotation is fixed. Hence, the
latter would be the velocity at which the axis of rotation moves. To calculate uG,d we
apply a low pass filter to uG, removing the frequencies greater than 1/2 the rotation
frequency, Ω/2π. The filtered signal corresponds to uG,d. Then, we calculate the
modulus of uG,d, yielding uG,d/wd = 0.0014, 0.0058 and 0.0213 for Re = 80, 160 and
240, respectively. Therefore, as Re increases the seed rotates about a vertical axis
which tends to move faster.

The displacement velocity, uG,d, may explain the increasing oscillations of β and
θ with Re. The motion of the seed is analogous to the motion of a helicopter’s blade
in forward flight. The aerodynamic forces produced by the blade depend on the
relative velocity of the fluid with respect to the blade. Higher velocities produce higher
aerodynamic forces (Seddon & Newman 2011). When the helicopter is fixed at a
point, the relative velocity is radial and depends only on the angular velocity of the
blade and the radial distance. In this fashion, the aerodynamic forces developed are
constant throughout a cycle. However, when the helicopter is moving forward at a
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Forces Moments

Re 〈F̃Rx 〉 〈F̃Ry 〉 〈F̃Rz 〉 〈M̃R
x 〉 〈M̃R

y 〉 〈M̃R
z 〉

80 −0.46 −0.34 1.72 1.02 −0.25 7 · 10−4

160 −0.46 −0.30 2.48 1.70 −0.39 7 · 10−4

240 −0.43 −0.27 2.87 2.08 −0.46 6 · 10−4

Table 2: Average values of the forces and moments as a function of Re.

given velocity, U (or the flow surrounding it has a velocity −U), the relative velocity
of the blade depends also on its orientation with respect to the direction of the motion.
Therefore, the aerodynamic forces would change depending on the azimuthal position
of the blade.

For the case of the winged-seed, when it is moving with a velocity uG,d, a similar
behaviour might be expected, with the addition that the seed is free to change its
attitude. Hence, variations of the attitude could be expected due to the variation of
the aerodynamic forces. In fact, the amplitude of the oscillations of the angles are in
accordance to the amplitudes imposed to the helicopter’s blades for the given advance
ratios, uG,d/Ωb (Seddon & Newman 2011).

3.2. Dynamics and force equilibrium

After the analysis of the kinematics of motion, we proceed with the analysis of the
aerodynamic forces. Table 2 gathers the mean aerodynamic forces and moments
about G averaged over the last four periods and expressed in ΣR. The forces are
non-dimensionalized with ρfw

2
dc

2 and the moments are non-dimensionalized with

ρfw
2
dc

3, such that F̃ = F/ρfw
2
dc

2 and M̃ = M/ρfw
2
dc

3.

The data in table 2 show that the horizontal forces (〈F̃Rx 〉 and 〈F̃Ry 〉) slightly

decrease in magnitude with Re, whereas the vertical force 〈F̃Rz 〉 substantially increases.
The latter means that the allowed weight of a given seed increases with Re. On the
other hand, if G is rotating about a vertical axis, the projection of the aerodynamic
forces onto the horizontal plane should counteract the centrifugal force, i.e. it should
be msΩ

2rGR. Indeed, the modulus of the horizontal component of F̃ is 0.57, 0.55 and
0.51 for Re = 80, 160 and 240, respectively. These values are within a 2% of the average
non-dimensional centrifugal force, namely ms〈Ω̃〉2〈r̃GR〉/ρc3. It is also interesting to
remark that even though rGR is small, and one could presume the seed is rotating
about G, this small distance is responsible for the slight decrease of ms〈Ω̃〉2〈r̃GR〉/ρc3
with Re (i.e., Ω increases with Re). Moreover, the centrifugal force is of the same
order as the vertical force. Finally, as expected, the resultant aerodynamic force points
towards the axis of rotation and the angle between the horizontal projection of F and
the yc axis ranges from 126.1◦ for Re = 80, to 122.4◦ for Re = 240, in agreement with
the position of the moving axoids in figure 9.

The moments along xR and yR are higher for higher Re. Note that this trend is
in accordance with the behaviour of the forces, i.e.: higher vertical force and relatively
constant horizontal forces. Note also that the latter is necessary to compensate the
acceleration terms due to the rotation of the seed around an axis which is not parallel
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to a principal axis of inertia. On the other hand, the moment along zR axis is nearly
zero for all Re. This is a necessary consequence of having a constant angular velocity
pointing along kR.

With the aim of explaining the previous trends, we analyse the force distribution
on the seed with respect to Σc. We choose Σc because it is a body fixed reference
frame whose vertical axis, zc, is normal to the wing, which is the direction along which
the aerodynamic force is largest.

Figure 10 shows the distribution of the three components of the aerodynamic force
and the pitching moment with respect to the axis yc (figure 10d). These quantities are
non-dimensionalized using the descent speed, wd, the chord, c, and the fluid density,
ρ. The distributions are averaged over a time interval that corresponds to the last
revolution of the seed. Note that the discretization of the wing is such that near the
wing tip there are only a few lagrangian points per chord (see figure 3b), which leads
to oscillations of the force distribution at this region.

As expected figure 10a shows that the largest contribution to F cz is produced by
the wing. The contribution of the nut is also positive and it is likely more related to
the drag experienced by the nut in a free-stream of velocity wd, than to the fact that
the seed is rotating. On the wing, the normal force distribution is roughly parabolic,
with a peak value that increases and displaces towards the tip as Re increases. As
a result, the integral of the normal force along the span increases as Re rises. This
increase is likely a consequence of the larger angular velocity, yielding higher relative
velocities.

On the contrary, the contribution of the force along the xc direction, figure 10b, is
very similar despite the different Ω among cases. In fact, the integral of F cx decreases
with Re. This behaviour might be explained by the fact that these forces are associated
to the skin friction (at least on the wing), rather than to the angular velocity. The nut
and the sections of the wing closer to the nut are actually producing negative drag.
Note that this region is close to the axis of rotation, and the flow pattern near the nut
is complex (see figure 5). Therefore, the behaviour of the forces in this region cannot
be easily explained.

The force distribution in the spanwise direction is shown in figure 10c. It is
positive along the wing and relatively constant (slightly increasing with Re) meanwhile
it becomes negative at the nut at yc ≈ 0.15c. Similarly to f cx, f cy is a tangential force,
thus it is likely linked to skin friction rather than to pressure forces, as f cz . Hence, a
positive spanwise force suggests the presence of a spanwise flow towards the tip, a
hypothesis that is confirmed in Arranz et al. (2018).

The distribution of the pitching moment (figure 10d) along the span gives an
indication of how the normal force is distributed along the chord at each spanwise
section. Positive pitching moment means nose up moment about the yc axis. For all
Re the pitching moment is negative at every spanwise location. Therefore, there is
a nose down moment about yc for all Re along the span, which is consistent with
〈M̃R

y 〉. Note that the behaviour of the pitching moment with Re is similar to the one
observed for f cz . This could be anticipated beforehand since the pitching is directly
proportional to f cz .
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(a) (b)

(c) (d)

Figure 10: Forces and moment distribution over the seed in Σc reference frame for
( ) Re = 80, ( ) Re = 160 and ( ) Re = 240. (a) Force distribution normal to
the wing, f cz . (b) Force distribution tangential to the chordwise direction, ic, f

c
x. (c)

Force distribution tangential to the spanwise direction, jc, f
c
y . (d) Pitching moment

–i.e. moment along yc axis–, mc
y. Dashed lines correspond to the nut, continuous lines

correspond to the wing.

The selection of the descent speed for the non-dimensionalization of the force in
figure 10 is somewhat arbitrary. It could be argued that since the angular velocity
changes with Re, this quantity should also enter in the non-dimensionalization of
the aerodynamic forces. This idea is explored by defining the aerodynamic force and
moment coefficients

Cf (yc) =
f c

1
2ρfU

2
e (yc)c(yc)

, Cm(yc) =
mc

1
2ρfU

2
e (yc)c(yc)c

,

in terms of the modulus of the effective velocity at each wing section, Ue(yc) = ‖ue(yc)‖,
and the local chord, c(yc). Note that the effective velocity is a function of the descent
speed, coning angle and angular velocity.
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(a) (b)

(c) (d)

Figure 11: Forces and moment coefficients distribution over the seed in Σc reference
frame for ( ) Re = 80, ( ) Re = 160 and ( ) Re = 240. (a) Normal force
coefficient, Cfz. (b) Tangential force coefficient, Cfx. Dashed lines are the friction
coefficient calculated with the local chord c(yc) and the effective velocity Ue(yc). (c)
Spanwise force coefficient Cfy. (d) Pitching moment coefficient Cmy.

Figure 11 shows these aerodynamic force and moment coefficients along the span.
Note that only the portion of the span corresponding to the wing is depicted in the
figure since Ue has not been defined for the nut. In general, the force and moment
coefficients tend to collapse better than in figure 10 (except possibly for Cfx), especially
when only Re = 160 and 240 are considered. In figure 11a and figure 11d one can
appreciate that Cfz and Cmy tend to collapse for all Re for yc ≥ 1.2c. Thus, as we
anticipated, f cz (and in turn, mc

y) is highly linked to the relative velocity at each
spanwise section, rather than to the Re. In other words, f cz is more related to pressure
forces than to viscous forces. It is also noteworthy that Cfz along the span resembles
the angle of attack distribution of figure 8b.
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Figure 12: Vertical moment distribution, mR
z along yR direction. ( ) Re = 80,

( ) Re = 160 and ( ) Re = 240.

As mentioned above, Cfx (figure 11b) seems to show a Re number dependency,
decreasing as Re increases at any spanwise section. This behaviour is in agreement
with the evolution of the skin friction coefficient of a flat plate with Re, which is
included in figure figure 11b with dashed lines. Although the behaviour of the local
friction coefficient is not the same as Cfx (in the calculation of the friction coefficient,
it is assumed that the flow is aligned with the chord and three dimensional effects
are not considered), it is observed that the offset among different Re coincides for
both coefficients. Finally, the behaviour of Cfy (figure 11c) is more intricate, and it is
probably linked to both viscous effects and centrifugal forces.

Integration of the previous forces yields FR. However, it is not clear a priori how
these force distributions yield 〈M̃R

z 〉 ≈ 0. There are two possibilities: the distribution
of the vertical moment is negligible at all spanwise sections (i.e., mR

z (yR) ≈ 0 for all
yR), or the distribution is non-zero but it changes sign along yR. Figure 12 depicts
mR
z as a function of yR for the different Reynolds numbers, non-dimensionalized with

the descent speed, wd, the characteristic chord of the wing, c, and the fluid density
ρ. Two facts are remarkable. First, the moment distribution is very similar for all
Re despite the difference in the force distribution for the different cases. Second, the
moment is negative near the nut and near the tip and positive elsewhere, which is
very similar to the distribution of mR

z in the blades of helicopters in auto-rotation
(Cuerva et al. 2009). Moreover, the spanwise section of proper auto-rotation (i.e. the
spanwise section near the tip where mR

z = 0) is at approximately 70% of the total
span of the seed’s wing, which is the characteristic spanwise section of auto-rotation
of helicopter’s blades (Cuerva et al. 2006).

4. Conclusions

We present simulations of the auto-rotation of a model winged seed at various Reynolds
numbers in the range 80 − 240, keeping the seed’s geometry and inertia constant.
The calculations have been performed by solving the Navier-Stokes equations for the
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flow surrounding the seed using an immersed boundary method, together with the
Newton-Euler rigid-body equations for the motion of the seed. Within this Reynolds
number range, the seed attains a stable auto-rotative state, with an approximately
constant angular velocity about a vertical axis. The coning angle and the pitch
angle present small oscillations about a mean value for all Re under study. Both the
mean value and the amplitude of the oscillations decrease as the Reynolds number is
increased. Thus, with increasing Re, the seed tends to rotate at higher speeds, with
less inclination with respect to the horizontal plane. The kinematics of the seed is
similar to that reported in the literature in experiments with real winged seeds.

Also with increasing Re, it has been found that the translation of seed on the
horizontal plane seems to increase. By computing the moving axoid we have observed
that the vertical axis of rotation displaces, while the distance from the gravity centre
of the seed to the axis remains rather constant for a given Re. Therefore, the lateral
motion of the seed can be described as a regular rotation with respect to an axis which
is drifting. This drifting velocity seems to increase with Re, and seems to be connected
to the oscillations in β and θ. Moreover, we have found that the seed rotates while
skidding (oversteering), resulting in an angle between the spanwise axis of the seed
and the centrifugal forces (pointing towards the center of the moving axoid) of about
γ ≈ 120◦, irrespective of the Re. In the helicopter nomenclature, this corresponds to
a positive lead angle of the blade.

We have analysed the aerodynamic forces and moments acting on the seed. Is is
observed that, with increasing Reynolds number, the horizontal components decrease
in magnitude while the vertical component increases. Thus, the allowed weight of
a given seed increases with the Reynolds number. Despite the displacement of the
seed on the horizontal plane, and the oscillations of the angles (which lead to small
variations in the angular velocity), a simplified equilibrium of forces and moments
was found. The horizontal force is directed towards the axis of rotation and with a
magnitude roughly equal to the centrifugal force. The moment about the vertical
direction vanishes (as expected if the seed rotates with constant angular velocity about
a vertical axis). In this regard, we have analysed the vertical moment distribution
along the span that results in a zero moment. It has been found that it is very similar
to typical moment distributions on auto-rotating helicopter blades, and it seems to be
independent of Re.

The force distribution along the wing span was characterized using both global
and local characteristic speeds and chord lengths for the non dimensionalisation of
the force coefficients. It was found that the vertical component does not depend on
the Reynolds number when using local scaling, suggesting that this component is
mainly due to pressure force. On the other hand, the components tangent to the wing
do present variations with the Reynolds number, so that they seem to be related to
viscous forces.
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Points/c F̃z εz F̃x εx
32 1.8989 5.2% 0.9421 2.3%
40 1.8592 2.9% 0.9326 1.3%
48 1.8342 1.6% 0.9263 0.6%
64 1.8060 – 0.9205 –

Table 3: Non-dimensional forces and relative errors, ε, as a function of the resolution.
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Appendix A. Grid refinement study

A grid refinement study was performed to determine the grid resolution to be employed
in the simulations. The study was performed by externally imposing the attitude and
angular velocity of the seed. The attitude of the seed and angular velocity were chosen
corresponding to those obtained in a preliminary calculation of the auto-rotating
seed at Re = 75 with high resolution. Therefore, the imposed motion of the seed is
defined by 〈β〉 = 15.91◦, 〈θ〉 = −25.48◦ and 〈Ω̃〉 = 0.89. We then performed several
simulations varying the grid resolution at Re = 240, to study the convergence of the
aerodynamic forces. These simulations were performed in a computational domain of
dimensions xL/c ∈ [−2, 2], yL/c ∈ [−2, 2] and zL/c ∈ [−3, 5], with free-slip boundary
conditions at the lateral walls, an inflow at the bottom wall and advective boundary
condition at the top wall. Note that free-slip boundary conditions are imposed at
the lateral walls because the gravity centre of the seed is fixed at the center of the
horizontal plane zL = 0. Therefore, the seed cannot cross the lateral boundaries, as it
may occur when the seed is free to move on the horizontal plane.

Four grid resolutions were tested, 32, 40, 48 and 64 points per chord length, which
correspond to domains of 128× 128 × 256 grid points, 160 × 160 × 320 grid points,
256× 256× 512 grid points, and 512× 512× 768 grid points, respectively.

The variation of the vertical (Fz) and horizontal (Fx) aerodynamic forces non-
dimensionalized with ρw2

dc
2, as well as their relative error, ε, are gathered in table 3.

The relative error is calculated using the forces obtained with 64 points/c, averaged
over one period, as reference values:

εz,x =
|F̃z,x − F̃ 64

z,x|
F̃ 64
z,x

(12)

Figure 13 displays the variation of εz and εx with the resolution. There, one can
appreciate that for resolutions higher than 32 points/c, εx is less than 2%. Likewise, for
48 points/c, εz is also less than 2%. Therefore, we choose a resolution of 48 points/c
since both εx and εz are smaller than 2%. Although the grid refinement study was
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Figure 13: Variation of the relative error of the vertical force, ( ) εz, and the
horizontal force, ( ) εx, with the resolution.

performed for Re = 240, the same grid was employed for the cases Re = 80 and
Re = 160, for which the results are expected to be correspondingly more accurate.
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In this study the flow around a winged-seed in auto-rotation is characterized using
direct numerical simulations (DNS) at Reynolds number in the range 80− 240, based
on the descent speed and a characteristic chord length. In this range, the flow is
approximately steady when observed from a reference frame fixed to the seed. For
all cases, the flow structure consists of a wing tip vortex which describes a helical
path, a vortex shed behind the nut of the seed and a stable leading edge vortex
above the wing surface which merges with the tip vortex. With increasing Reynolds
number, the leading edge vortex becomes more intense and gets closer to the wing
surface. The simulation results also show the formation of a spanwise flow on the
upper surface of the wing, moving fluid towards the wing tip in a region downstream
and beneath the leading edge vortex. This spanwise flow is rather weak inside the
core of the leading edge vortex, and the analysis of the streamlines show a very weak
transport of vorticity along the vortex for the cases under consideration. The analysis
of the flow suggests that the stabilization of the leading edge vortex is mainly due to
non-inertial accelerations, although viscous effects may contribute, specially at lower
Re. Furthermore, the leading edge vortex has been characterized by analysing the
flow variables averaged along cross-sections of the vortex. While some quantities,
like the spanwise velocity or the pressure inside the vortex, are rather insensitive to
the threshold used to define the leading edge vortex, the same is not true for the
circulation of the vortex or its averaged spanwise vorticity, due to the viscous nature
of the vortex. Finally, it is observed that the spanwise vorticity scales with the angular
rotation of the seed for the different Re.

Key words: direct numerical simulation, auto-rotation, leading edge vortex

1. Introduction

Geometric and inertia properties of certain bodies induce their rotation when falling
through an ambient fluid at rest. Winged seeds, or samaras, are a clear example:
when they fall from their tree, they start auto-rotating thanks to their structural
pattern (Norberg 1973). The particular case of the samara is interesting among other
auto-rotative bodies because, as it rotates, it creates a high lifting force, opposite to
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the gravity force, which results in a decrease of its descent speed. This ”parachuting
effect” increases the chance of being transported by a lateral gust wind, thus allowing
the seed to spread over a wider area (Green 1980).

The auto-rotation of winged-seeds has received some attention in the literature
over the last decades. Probably one of the first detailed studies on the dynamics of
auto-rotation of winged-seeds is due to Norberg (1973), who studied this phenomenon
theoretically. Later, Azuma & Yasuda (1989) report kinematic and aerodynamic
parameters for different winged-seeds species, based on experimental measurements.
More recent studies focus on the characterization of the parametric space where
winged-seeds auto-rotate, in terms of their geometry and their mass distribution. For
instance, Yasuda & Azuma (1997) analyse the influence of the position of the gravity
centre and the geometry of the wing, performing experiments with both real seeds
and models with simplified geometries. Similarly, Varshney et al. (2012) present a
series of experiments on winged-seeds, in which sections of the wing are systematically
removed until the wing surface is reduced to 30% of the original value. They report
that the seed is still able to enter into auto-rotation, despite these drastic structural
changes. Seter & Rosen (1992) conducted a stability analysis, using a numerical model,
to analyse the effect of the mass distribution of the seed on its auto-rotation. Their
results show that stability is highly dependent on the chordwise distribution, being a
concentrated mass towards the leading edge a necessary condition for auto-rotation.
More recently, Lee & Choi (2017) performed direct numerical simulations to analyse
the effect of lateral wind disturbances on the trajectory of the seed. They show that
in the presence of moderately strong wind (of the order of the descent velocity) the
autorotation is maintained, and the seed falls at roughly the same velocity.

On the other hand, the autorotation of winged seeds has motivated the development
of some bio-inspired aerial vehicles (Obradovic et al. 2012; Fregene & Bolden 2010;
Ulrich et al. 2010; Pounds & Singh 2015). Lentink and co-workers found that a stable
leading edge vortex (LEV), similar to the one produced in flapping wings (Ellington
et al. 1996), is created on the upper surface of winged seeds as they auto-rotate
(Lentink et al. 2009). The presence of a stable LEV was later confirmed Salcedo et al.
(2013) and Lee et al. (2014) in winged-seeds of different size and shape, suggesting
that leading edge vortex formation is a common mechanism in auto-rotating seeds.
Due to the interest in the development of bio-inspired micro air vehicles (MAV) and
the role that the LEV plays in the aerodynamic performance of flapping wings, the
relevance of this discovery can be easily understood: the flow around a steadily falling
seed is simpler than the fully unsteady flow over the flapping wings of animals. In the
former, the LEV remains always attached, reaching a quasi-steady state. In flapping
wings, a new LEV is generated in every stroke, to be shed into the wake at the stroke
reversal.

In fact, the study of LEV stability on revolving and flapping wings is a topic of
active research. There is a broad literature (including both experimental and numerical
studies) discussing the stabilization mechanisms of the LEV in revolving and hovering
wings (Garmann & Visbal 2014; Harbig et al. 2013; Jardin & David 2014; Jardin 2017;
Lentink & Dickinson 2009; Limacher & Rival 2015; Birch & Dickinson 2001; Birch
et al. 2004; Poelma et al. 2006). Although the understanding of the phenomenon is
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far from complete, several mechanisms have been already identified. The existence
of a spanwise flow inside the LEV, which drains vorticity towards the tip, is widely
accepted as a stabilization mechanism for revolving wings at Re & 1000 (van den Berg
& Ellington 1997; Birch et al. 2004; Jardin & David 2014). At lower Re, the spanwise
flow is weaker; thus, although vorticity transport could still balance production at the
leading edge (see Poelma et al. (2006)), other mechanisms may play an important role,
such as a centrifugal pumping (Lentink & Dickinson 2009), or viscous effects (Jardin
2017).

It is also interesting to note that, in the references of the previous paragraph, the
simulations and the experiments are conducted on wings which are impulsively started
and they revolve with a certain amplitude while the LEV develops. This angular
amplitude is always restricted to be less than 360◦ to avoid the wing encountering
its own wake. In the case of the winged-seed falling in ambient fluid, the seed
never encounters its own wake. This, together with the low Reynolds number under
consideration, means that the LEV remains always attached and steady.

Besides its advantages for the study of the dynamics of the LEV, the study of
samara’s auto-rotation entails several challenges. Auto-rotation is the result of the
coupling between inertia and aerodynamic force, thus it is inherently a non-linear
phenomenon (Lugt 1983). As a consequence, the motion and attitude of the seed are
not known a priori so that it is necessary to solve the Newton-Euler equations of
the seed coupled with the Navier-Stokes equations, which provide the aerodynamic
force. Therefore, the resulting motion will largely depend on the seed’s shape, its mass
distribution, and the fluid properties, leading to a large parametric space.

The purpose of the present paper is to characterize the flow and the LEV around a
model winged-seed (with fixed shape and inertia properties) in auto-rotation, varying
the Reynolds number (Re = wdc/ν, where wd is the descent speed, c is the characteristic
chord of the seed, and ν is the kinematic viscosity of the fluid). To that end, direct
numerical simulations of a falling winged seed in auto-rotation are performed at Re
ranging from 80 to 240. Note that, by fixing the geometry and the inertia of the seed
while changing Re, it is possible to isolate its effect on the auto-rotation of the seed,
both in terms of the dynamics (which will vary due to the aforementioned coupling)
and in terms of the flow around the seed. The present paper focus on the analysis of
the latter. Although we also briefly discuss the motion of the winged seed (since it
affects the flow), the detailed analysis of the kinematics and dynamics of the seed is
reported elsewhere (Arranz et al. 2018).

The paper is structured as follows: section 2 details the numerical model used to
perform the simulations, as well as the seed model and the set-up of the simulations;
the analysis of the flow is presented in section 3; and finally, several conclusions are
drawn in section 4.

2. Methodology

2.1. Numerical model

In the present study the descent of a model winged-seed at a constant speed wd is
considered. The seed is free to rotate along any direction and its gravity centre, G,
can displace within the horizontal plane.
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To simulate the motion of the seed, it is treated as a rigid body. Hence, we solve
the equations of motion of the seed,

msv̇G = Fext , (1)

IGΩ̇ + Ω× IGΩ = MG. (2)

In these equations, a dot on a variable denotes its time derivative. In eq. (1), ms

is the mass of the seed, vG is the velocity of the seed’s gravity centre and Fext is
the external force acting upon the seed (sum of aerodynamic force, gravity force and
buoyant force). In eq. (2), IG is the inertia tensor of the seed with respect to G, Ω is
the angular velocity, and MG are the external moments about G. Note that eq. (2)
holds when expressed in a body fixed reference frame, where IG is time independent.
Moreover, MG is due only to aerodynamic forces, which is strictly true for a seed of
uniform density.

In order to obtain the aerodynamic force acting upon the seed, the equations of
motion are solved together with the incompressible Navier-Stokes equations. This
is done with TUCAN, an in-house DNS code that solves the incompressible Navier-
Stokes equations. TUCAN uses a fractional step method on a staggered grid. Spatial
derivatives are discretized with centered, second-order finite differences, and a semi-
implicit low-storage three-stage Runge-Kutta method is used for time integration.
The presence of the body is modelled using the immersed boundary method (IBM)
proposed by Uhlmann (2005). More details on the flow solver can be found in Moriche
(2017), which has been validated with a collection of 2D (Poiseuille flow, Taylor-Green
vortices, stationary and moving cylinders and heaving and pitching airfoils (Moriche
et al. 2017)), and 3D flows (fully-developed turbulent channel flow, laminar flow around
a sphere and heaving and pitching wings (Moriche et al. 2016)).

The coupling between the Navier-Stokes equations and the equations of motion
also follows the algorithm proposed by Uhlmann (2005). The coupling between the
rigid-body equations for the seed and the fluid equations is weak: at each Runge-
Kutta stage the aerodynamic force on the seed is computed from the flow solver, then
this force is used in the rigid-body equations to update the state of the seed. The
most important difference between the present code and the algorithm proposed by
Uhlmann (2005) is that the latter is designed to deal with spheres, where only their
angular velocity and acceleration is needed (i.e., not their angular orientation). In
the present simulations it is necessary to track the orientation of the seed, which is
accomplished with the quaternion formulation described in Arranz et al. (2018). The
present algorithm has been validated by computing the motion of an oblate spheroid
of aspect ratio 1.5 and density ratio ρs/ρf = 2.14 (where ρs and ρf are the spheroid
and fluid density, respectively) settling under gravity in ambient fluid, a configuration
for which high-fidelity data from a boundary-conforming spectral-element method is
available (Chrust 2012). Using a grid resolution of 24 points per major axis, we have
reproduced the instability regimes described in Chrust (2012), and their transitions

with increasing the Galileo number, Ga =
√

(ρs/ρf − 1)gV /ν, where g is the gravity
acceleration and V is the volume of the spheroid. In particular our validation runs
show a steady vertical trajectory for Ga = 96, steady oblique for Ga = 110, oscillating
oblique for Ga = 122 and vertical with lateral oscillations for Ga = 150.
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Figure 1: Sketch of the modelled seed used in the simulations. (a) Top view, and (b)
side view. Besides the characteristic dimensions of the seed, the body fixed reference
frame, Σc (xc, yc, zc), the geometric centre of the nut, C, the gravity centre, G, and
the position of the leading edge (LE) are shown.

The model of the seed has been inspired by an actual Tipuana Tipu seed. A
sketch of the model is shown in figure 1. It consists of a nut, modelled as an oblate
spheroid, and a flat wing, modelled with quarters of ellipses, which are tangent to
each other, as proposed by Pedersen & Żbikowski (2006). We define the characteristic
chord of the seed to be equal to the maximum chord, denoted c. Thus, the dimensions
of the wing are given by b = 1.9c and bTE = 1.32c. The semi-major axis of the nut is
0.3c and the semi-minor axis is 0.18c. Figure 1 depicts also the body fixed reference
frame Σc, whose origin is located at the geometric centre of the nut (point C). The
axes of Σc are defined such that zc is perpendicular to the wing’s surface, yc is the
spanwise direction (pointing towards the wing tip), and xc is the chordwise direction
(fulfilling the right hand rule).

We prescribe the inertia of the seed in order to take into account the uneven mass
distribution along the wing of the seed (Norberg 1973). Thus, the gravity centre of
the seed is at CG = −0.018cic + 0.185cjc (where CG is the vector from C to G and
ic and jc are the unitary vectors of xc and yc, respectively); and the inertia tensor of
the seed about C expressed in Σc is:

IC =

19.26 −0.99 0
−0.99 3.20 0

0 0 21.57

 · 10−3ρsc
5,

where ρs is the density of the seed. A more complete description of the geometric and
inertial model of the seed can be found in Arranz et al. (2018).

2.2. Computational set-up

The fluid domain employed for the simulations is a cube of length L = 10.66c in
which the seed is placed. Periodic boundary conditions are imposed at the lateral
walls, a uniform inflow of velocity wd is imposed at the bottom wall, and an advective
boundary condition is imposed at the top boundary. The value of L has been selected
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after performing several simulations to ensure that the dynamics of the seed is not
affected by the horizontal size of the computational domain. The grid resolution
consists of 5123 grid points, which is equivalent to 48 points per chord length. The
resolution was selected after performing a grid refinement study presented in Arranz
et al. (2018). In addition to the grid for the fluid domain, a Lagrangian grid for the
seed needs to be defined. In the IBM of Uhlmann (2005), the area associated to each
Lagrangian point has to be roughly the same as the square of the grid spacing for
the fluid domain. In the present configuration, this leads to a total number of 5674
Lagrangian points. The time step, ∆t, for the temporal evolution is chosen to ensure
that CFL = umax∆t/∆ ≤ 0.2, where umax is the maximum fluid velocity in the whole
domain and ∆ = c/48 is the grid spacing.

To perform the simulations, the vertical position of the seed’s gravity centre is fixed
at 3.66c from the bottom boundary of the domain (i.e., inflow boundary condition).
This means that the seed gravity centre can move within a horizontal plane and the
seed can rotate freely about any direction. Therefore, the configuration is equivalent
to a seed descending at a constant speed wd. Consequently, for a given seed geometry
and inertia, the Reynolds number, Re, and the density ratio, % = ρs/ρf (where ρf
is the fluid density), univocally define the problem. For the present simulations, the
density ratio is set to % = 300, a value close to the one of real seeds falling in air
(according to data extracted from Azuma & Yasuda (1989)).

3. Results

Although the aim of this work is to characterize the flow, we start by summarizing
the resulting motion of the seed and its variation with Re. More details can be found
in Arranz et al. (2018).

For all Reynolds number investigated in this study, the seed auto-rotates at an
approximately constant angular velocity about an approximately vertical axis (except
for small deviations which never exceed 2◦ with respect to the vertical). It is interesting
to recall that the problem presents hysteresis: the seed auto-rotates at Re = 80 if the
simulation is started from a flow field obtained from a higher Re calculation, whereas
it fails to auto-rotate if the simulation is initialized with a uniform flow field and an
impulsive rotation of the seed. Decreasing further Re, the wing of the seed aligns with
the free stream and auto-rotation stops, even for the simulations started from initial
flow fields obtained from higher Re calculations.

The angular velocity and the attitude of the seed change with Re. The latter is
defined by two angles: the coning angle, β, and the pitch angle, θ. The coning angle is
the angle between the spanwise axis, yc, and its projection onto the horizontal plane.
The pitch angle is a geometric angle of attack: it is the angle between the chordwise
axis, xc, and the horizontal line contained in a plane perpendicular to yc. Both angles
are depicted in figure 2a.

Figure 2b shows the variation with Re of β, θ and the tip speed ratio, defined
as λ = Ωb/wd, being Ω the average angular velocity. It should be noted that the
motion of the seed is such that both the coning angle and the pitch angle present small
oscillations about a mean value. Therefore, figure 2b shows the mean value of β and
θ, together with their standard deviation, depicted as vertical bars. From figure 2b it
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Figure 2: (a) Definition of the seed reference frame Σc, and the coning (β) and pitch
(θ) angles. (b) Evolution of the angles β ( ), and θ ( ), and the tip speed ratio, λ,
( ) as a function of the Reynolds number.

is observed that while λ increases with Re (i.e., the seed spins faster with Re), both
the coning angle and the pitch angle decrease in magnitude. This means that, with
increasing Re, the seed’s wing becomes more aligned with the horizontal plane.

The changes in the kinematics of the seed have an impact on the flow around the
seed. This is illustrated in figure 3, that displays iso-surfaces of the second invariant
of the velocity-gradient tensor, Q (Hunt et al. 1988), for Re = 80, Re = 160 and
Re = 240. Since the angular velocity changes with Re and the descent velocity is
constant for all the cases, we choose Ω2 to non-dimensionalize Q in order to facilitate
the comparison between the various cases. Three main vortical structures can be
identified for all Re: a wing tip vortex, a vortex shed behind the nut, and an LEV
which is formed above the wing and corresponds to the darker grey surface in figure 3.
The wing tip vortex wraps around a vertical axis yielding a helical structure, whose
pitch decreases with increasing Re, indicating a faster rotation. The vortex shed
behind the nut also forms an helix with the same sense of rotation but smaller radius
than the wing tip vortex. This suggests that the axis of rotation is close to the nut
(indeed it is found approximately at the gravity centre (Arranz et al. 2018)). Finally,
the LEV seems to become more intense with increasing Re, especially when comparing
the cases Re = 80 and 160. Note that the intensity of the LEV is usually related to
the lift, so that a more intense LEV results in a larger lift on the wing (Arranz et al.
2018).

As discussed above, the coning angle, β, the pitch angle, θ, and the angular
velocity remain approximately constant as the seed falls, for a given Reynolds number.
As a consequence, and due to the low Reynolds number, the flow around the seed
is approximately steady when observed from a reference frame fixed to the seed.
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Figure 3: Iso-surfaces of the second invariant of the velocity gradient tensor, Q,
for (a) Re = 80, (b) Re = 160, and (c) Re = 240. Light grey surface corresponds to
Q = 0.75Ω2 and dark grey surface corresponds to Q = 12Ω2 for each case.

Therefore, it seems appropriate to study the flow variables with respect to the seed’s
reference frame Σc. Thus, the time-averaged relative velocity of a given point, x, is

u(x) =
1

T

∫ T

0

(U− vG −Ω× r) dt, (3)

where U is the instantaneous absolute velocity, vG is the velocity of the seed’s gravity
centre, Ω is the instantaneous angular velocity and r is the vector position from
G to x. Note that all the vectors in eq. (3) need to be expressed in Σc. For the
present cases, the time average is performed over the last 2 revolutions run in the
simulation, discarding an initial transient whose duration varies with the Reynolds
number from about 10 revolutions for Re = 80 to 30 revolutions for Re = 240 (see
Arranz et al. (2018)). Thus, T ≈ 4π/Ω, where Ω is the averaged angular velocity of
the seed. Similarly, the time-averaged relative vorticity is defined as ω = ∇×u, where
again the curl is taken in the seed’s reference frame Σc. From now on, all relative flow
variables are implicitly assumed to be averaged in time.

The second invariant of the time-averaged relative-velocity-gradient tensor, q, can
also be expressed in terms of the time averaged value of Q, the mean angular velocity,
Ω k (being k the unit vector parallel to the rotation axis), and ω,

q =
1

T

∫ T

0

Qdt− Ω2 − Ω k · ω. (4)
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Surfaces of constant q will be used in the following sections to identify and characterize
the LEV. Relevant quantities like the circulation of the LEV will be shown to depend
on the particular threshold value of q chosen to identify the vortex, henceforth denoted
as qth. Note that the range of qth to be employed is implicitly limited by eq. (4). At
the inflow, Q and the absolute vorticity are zero, so that ω = −2Ω k and q = Ω2.
Therefore, the threshold, qth, to be used to identify the LEV has to be several times
larger than q at the inflow.

3.1. Flow characterization

The flow around the winged seed, even when observed from Σc, is 3D and rather
complex, as it can be appreciated in figure 3. Hence, in order to characterize the
flow, we analyze it first in spanwise cross-sections. Three planes are selected, namely
yc = 0.25b, yc = 0.5b and yc = 0.75b, as sketched on top of figures 4-6.

First, we analyze the relative spanwise vorticity in figure 4 since this is the main
component of the vorticity in the LEV. In the figure, contours of ωy, are shown for
the three cases, at the three spanwise locations mentioned above. In addition to the
vorticity contours, contours of q for the thresholds 6Ω2 and 12Ω2 are also displayed
in the figure. This gives an indication of the position of the LEV along the span for
the different Re. Note that the contours are normalized with the maximum spanwise
vorticity (computed in the fluid domain defined by yc = [0.3c, 1.9c] and the limits
shown in figure 4), ωy,maxc/wd = [46, 85, 107], for Re = 80, 160 and 240, respectively.
Therefore, it should be borne in mind that the intensity of the vorticity field shown in
figure 4 increases with the Reynolds number. For all spanwise positions, the contours
of ωy and the contours of q look qualitatively similar, and, as expected, the maximum
of ωy is found inside the LEV. The main difference between the three cases is that
with increasing Re the LEV gets closer to the wing surface, all along the span.

In the literature, the presence of an LEV near the wing surface is associated with
lift augmentation as a result of the low-pressure region developed in the core of the
LEV (Lentink et al. 2009). Figure 5 shows the contours of the pressure (relative
to the pressure at the inflow) normalized with the absolute value of the minimum
pressure for each Reynolds number, pmin/(ρfw

2
d) = [1.3, 2.4, 3.0] for Re = 80, 160 and

240, respectively. Regardless of Re and the spanwise section, there is a low pressure
region above the wing whose peak is located near the LEV. This low pressure region
seems to be narrower near the wing root (see left panels of figure 5, yc = 0.25b) and it
widens towards the wing tip (see right panels of figure 5, yc = 0.75b). Note that, as a
result of larger pressure difference with Re (recall that the values are normalized with
pmin, which is larger for higher Re), larger lifting forces are developed for the higher
Reynolds numbers (Arranz et al. 2018).

As discussed in the introduction, the stability of the LEV in revolving wings has
been widely studied in the literature. Several authors suggest that the stabilization
may be linked to the development of a spanwise flow over the wing surface (van den
Berg & Ellington 1997; Birch et al. 2004; Poelma et al. 2006; Lentink et al. 2009).
Therefore, it is interesting to analyze the relative spanwise velocity, uy, for the present
cases. This velocity is shown in figure 6 at the same spanwise locations studied
above. As before, uy is normalized with the maximum spanwise velocity for each Re,
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Figure 4: Contours of the spanwise vorticity, ωy, normalized with the maximum
spanwise vorticity for each Re. Each row corresponds to a different Reynolds number.
The columns correspond (from left to right) to spanwise positions at 25%, 50% and
75% of the span. For a visualization, the corresponding spanwise plane is sketched
above the column. Red contours correspond to the intersection of the iso-surfaces of
q = 6Ω2 and q = 12Ω2 with the plane.

uy,max/wd = [0.89, 1.10, 1.44]. First of all, a chordwise gradient of uy is observed for
all cases. This velocity gradient, which yields a positive uy upstream and a negative uy
downstream is due to the wing rotation, i.e. the last term of eq. (3). Besides this linear
variation, a region of positive spanwise velocity is found above the wing, for all cases.
This spanwise flow (except near the nut) is behind and below the LEV, and the peak
of maximum uy never coincides with the core of the LEV but it is downstream and
beneath it. Its intensity decreases towards the tip and with decreasing Re. Particularly,
it is barely appreciable for Re = 80, whereas it reaches a maximum at yc = 0.25b for
Re = 240 (left panel of figure 6), being approximately equal to 40% of the tip velocity.

The increase of the intensity of this spanwise flow with Re may be linked to the
centrifugal and Coriolis accelerations, as reported in previous works (Sun & Wu 2004;
Aono et al. 2008). figure 7 displays the contribution of these terms to the spanwise
momentum equation (namely, −[Ω×Ω×r+2Ω×u] ·jc), normalized with its maximum
value for each Re, namely, 1.76w2

d/c, 4.53w2
d/c and 6.51w2

d/c for Re = 80, 160 and
240, respectively. These fictitious accelerations are positive in the region where the
spanwise flow is present, and they increase with Re, in agreement with the spanwise
flow behind the LEV shown in figure 6.
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Figure 5: Contours of the pressure normalized with the absolute value of the minimum
pressure for each Re. Each row correspond to a different Reynolds number. The
columns correspond (from left to right) to spanwise positions at 25%, 50% and 75% of
the span. For a visualization, the corresponding spanwise plane is sketched above the
column. Red contours correspond to the intersection of the iso-surfaces of q = 6Ω2

and q = 12Ω2 with the plane.

The spanwise velocity and vorticity contours shown in figure 4 and 6 are qualita-
tively similar to those observed in the flow around revolving and flapping wings at
similar Re (Birch & Dickinson 2001; Birch et al. 2004; Poelma et al. 2006; Lentink
& Dickinson 2009; Harbig et al. 2013). It should be noted that, in these references
the Reynolds number is expressed in terms of the mean chord and the velocity of the
wing tip, which yields Reynolds numbers equal to [121, 337, 584] in the present case.

3.2. Spanwise flow and stabilization of the LEV

The fact that the maximum uy in figure 6 does not occur inside the LEV seems to
suggest that, at least for the geometry, kinematics and Reynolds numbers considered
here, the stability of the LEV (i.e., the fact that it is not shed into the wake) is not linked
to a spanwise flow inside the vortex. Recall that, as mentioned in the introduction,
several authors argue that the vorticity transport along the LEV produced by the
spanwise flow contributes to the stability of the LEV for Re & 1000 (van den Berg &
Ellington 1997; Birch et al. 2004; Poelma et al. 2006). However, while figure 6 shows
that the maximum of uy is registered outside of the LEV, it does not show whether
the weaker uy inside the LEV is strong enough to produce vorticity transport along
the LEV. To test this hypothesis, we compute the streamlines of the relative velocity
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Figure 6: Contours of the spanwise velocity, uy, normalized with the maximum
spanwise velocity for each Re. Each row correspond to a different Reynolds number.
The columns correspond (from left to right) to spanwise positions at 25%, 50% and
75% of the span. For a visualization, the corresponding spanwise plane is sketched
above the column. Red contours correspond to the intersection of the iso-surfaces of
q = 6Ω2 and q = 12Ω2 with the plane.

field. Note that, since the flow is steady with respect to Σc, the streamlines of the
relative velocity correspond to the path lines followed by the fluid particles as they
move past the rotating seed. These streamlines are shown in figure 8, for the three Re
under study.

Particularly, figure 8 shows the streamlines crossing the plane yc = 0.5b above the
wing surface at prescribed seeding points uniformly spaced in the plane. Streamlines
crossing the plane yc = 0.5b inside the LEV (defined as the iso-surface of qth = 6Ω2) are
colored with the velocity magnitude, while streamlines crossing yc = 0.5b between the
LEV and the wing surface are colored in blue. The rationale between this differentiation
is to compare the behaviour of the fluid particles inside the LEV to those moving
outward through the region of maximum uy.

Figure 8 shows that the fluid particles that enter the LEV come from the pressure
side (lower surface of the wing): they are accelerated as they turn around the leading
edge of the seed, and they leave the LEV without travelling inside it along its
longitudinal axis. On the contrary, fluid particles beneath the leading edge vortex do
not seem to come from the leading edge but from the vortex at the nut, and they travel
longer distances along the wing span before leaving the wing. The same behaviour is
observed for the streamlines in the three Reynolds numbers under study, although the
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Figure 7: Contours of the spanwise component of the centrifugal and Coriolis accel-
erations normalized with its maximum for each Re. Each row correspond to a different
Reynolds number. The columns correspond (from left to right) to spanwise positions
at 25%, 50% and 75% of the span. For a visualization, the corresponding spanwise
plane is sketched above the column. Red contours correspond to the intersection of
the iso-surfaces of q = 6Ω2 and q = 12Ω2 with the plane.

spanwise distance travelled by the streamlines beneath the LEV (blue lines in figure 8)
becomes larger as Re increases, as it may be expected from the larger spanwise velocity
observed in figure 6.

Note that the same behaviour is observed for streamlines defined at different
yc planes, and for different qth in the definition of the LEV. To demonstrate this,
we compute streamlines passing through seeding points uniformly distributed in the
volume of the LEV, defined as the region with q ≥ 6Ω2. We compute approximately
4.5× 104 streamlines for each Re, storing the yc coordinate of the point where each
streamline enters and exits the LEV, y0 and yf , respectively. These data is used to
compute the joint probability density functions (JPDFs) shown in figure 9.

Figure 9a shows an iso-contour containing 95% of the JPDF of y0 and yf . It can
be observed that the JPDF is very similar for all Re. It mostly lies on the region
yf > y0, corresponding to fluid particles travelling along the wing span inside the
LEV towards the wing tip. For y0/c . 0.6 the effect of increasing the Re is to have
shorter displacements along the wing span (i.e., the contour gets closer to the line
y0 = yf ). A similar behaviour is observed near the wing tip, where the JPDF of case
Re = 240 shows values yf < y0 (i.e., fluid particles travelling inward). This is better
observed in figure 9b, where an iso-contour of the JPDF of yf − y0 and y0 is shown
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Figure 8: Streamlines at plane yc = 0.5b. Streamlines whose intersection with
yc = 0.5b lies inside the LEV (for q = 6Ω2, also shown) are colored by its velocity
intensity. Blue streamlines beneath and downstream the LEV. (a) Top view and (b)
side view for Re = 80. (c) Top view and (d) side view for Re = 160. (e) Top view and
(f) side view for Re = 240.

(containing 20% of the JPDF). Note that this iso-contour roughly shows the mode
of the JPDF (i.e. the most probable values of the JPDF at each y0). The spanwise
distance travelled by the fluid particles inside the LEV decreases as Re increases for all
spanwise sections, in agreement with the visualizations in figure 8. Also, as streamlines
closer to the wing tip are considered, the travelled distance (yf − y0) becomes smaller,
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Figure 9: (a) JPDF of y0 and yf . The iso-contour contains 95% of the JPDF. (b)
JPDF of y0 and the spanwise travelled distance yf − y0. The iso-contour contains
20% of the JPDF, which provides an approximation to the mode of the JPDF. Note
the different scale of the abscissa and the ordinate in (b). In both panels, line styles
correspond to a different Re: ( ) Re = 80, ( ) Re = 160 and, ( ) Re = 240.

changing sign for Re = 240 for y0/c ≈ 1.2−1.3. This decrease of the travelled distance
may be a combination of two factors. On the one hand, as it can be inferred from
figure 6, the spanwise velocity in the LEV decreases from the nut to the wing tip. On
the other hand, the chordwise velocity increases with y0 (being roughly proportional
to Ωy0 cosβ), and with Re (due to the larger rotational velocity and the decrease
in the coning angle). The change of sign (i.e., change of direction) of the travelled
distance is probably due to the wing tip vortex, i.e. an effect of the flow around the
tip from the lower surface to the upper surface of the wing. This effect becomes more
noticeable for larger Re, since β decreases. Moreover, figure 9b shows that for y0 > c
the difference in (yf − y0) for the different Reynolds number becomes of the same
order as the change of wd sinβ with Re. This fact might suggest that the spanwise
flow inside the LEV is mainly due to β (i.e., the projection of the descent speed along
the spanwise direction), rather than to rotational accelerations. This is supported by
figure 7, where it is observed that the magnitude of these accelerations is small inside
the LEV.

Overall, the analysis of the streamlines shows a spanwise flow inside the LEV
that becomes less dominant as Re increases. On the other hand, the spanwise flow
increases with Re outside of the LEV, as it has been discussed in figure 6. From this
point of view, our results do not seem to be consistent with a scenario where the LEV
is stabilized by vorticity transport within the LEV itself.
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(a) (b)

Figure 10: (a) Variation of the modulus of the effective velocity along yc. (b)
Effective Reynolds number at yc versus the effective angle of attack at the same
spanwise location. Characteristic spanwise sections are marked at 25% ( ), 50% ( ),
and 75% ( ) of the span. Dashed line in (b) correspond to the theoretical 2D-viscous
stability limit (extracted from Zhang et al. (2009)). In both panels, ( )Re = 80,
( )Re = 160, and ( )Re = 240.

At the present range of Reynolds number, LEV stability could be due to viscous
effects. For a sufficiently low Re, Jardin (2017) argues that the stability of the LEV
at a given spanwise section is solely determined by its local Re and its effective angle
of attack, as in a 2D wing. Hence, in order to evaluate the stabilization of the LEV
due to viscous effects, we compute the local Reynolds number, Reyc , and the effective
angle of attack, α, at each spanwise section. The local Reynolds number is based
on the local chord, c(yc), and the local effective velocity, ue(yc). This velocity is the
projection of the rigid body velocity along the yc axis (dashed line in figure 1) onto
the plane perpendicular to this axis. Mathematically, its modulus is

ue(yc) =
√

(v(yc) · ic)2 + (v(yc) · kc)2, (5)

where v(yc) = vG+Ω× (ycjc−CG). The modulus of the effective velocity is depicted
in figure 10a for each Re. On the other hand, the effective angle of attack, α(yc), is
the angle between ue(yc) and the wing chordwise direction.

Figure 10b shows, for each case, the effective Reynolds number, Reyc , as a function
of the effective angle of attack. For reference, several characteristic spanwise sections
have been marked. It can be observed that α is high near the nut (between 60◦ − 70◦)
and decreases towards the tip (until ∼ 10◦). The effective Re increases towards the tip
due to the higher ue until yc ≈ 0.75b, dropping to zero for spanwise sections beyond
75% of the span because of the sharp decrease of c(yc) near the wing tip. The region
below the dashed line in figure 10b would correspond to the spanwise sections whose
LEV might be stabilized by viscous effects. Hence, for Re = 160 and 240, only for
yc ≥ 0.75b the LEV might be stabilized due to this phenomenon. Meanwhile for
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Re = 80, this threshold would extend up to yc ≥ 0.5b. Therefore, viscosity does not
seem to be a plausible candidate to explain LEV stability, specially for Re = 160
and 240, since it would only be dominant near the tip, where the LEV has tilted and
merged with the wing tip vortex.

Having discarded vorticity transport along the spanwise direction and having
analysed the importance of viscous effects, Coriolis and centrifugal effects (referred to
as centrifugal pumping in the present paper) may play a role in the attachment of
the LEV. The importance of non-inertial effects have been already recognised in the
development of an spanwise flow behind the LEV for the present cases. According to
several authors (Lentink & Dickinson 2009; Harbig et al. 2013; Jardin 2017), fictitious
forces would contribute to the attachment of the LEV for Rossby numbers, Ro, of order
unity. Defining Ro as in Hargib et al. Harbig et al. (2013), namely Ro = utip/Ωb, where

utip =
√
w2
d + Ωb, it is found that Ro =

√
λ2 + 1/λ, which, in the cases presented

here, ranges from 1.2 to 1. Consequently, centrifugal pumping would be a feasible
candidate for the stabilization of the LEV in the cases analysed here. Nevertheless,
the exact mechanisms by which fictitious forces stabilize the LEV in the present case
are still not clear.

3.3. Leading edge vortex characterization

We now proceed to a more detailed characterization of the LEV. To that end we average
the relative velocity (〈uy〉), relative vorticity (〈ωy〉) and pressure (〈p〉) inside the LEV
(regions where q > qth) in planes of constant yc. These averages are performed for
different values of qth, in order to assess the dependence of the averaged values upon
the particular threshold used in the identification of the LEV. Figure 11 depicts the
three variables along the LEV for each Re and for qth/Ω

2 in the range 6− 12. They
are normalized with the descent speed, wd, the characteristic chord, c, and ρf .

Figure 11a-c shows 〈ωy〉 for the different Re and qth. Regardless of qth and Re,
〈ωy〉 slightly decreases from the nut to 25% of the span, and then it increases until
reaching a plateau. This increase becomes steeper as Re increases. At the wing tip,
〈ωy〉 abruptly decreases, due to the merging of the LEV into the wing tip vortex, with
the consequent change of direction of the vorticity. At a given spanwise section and
qth, 〈ωy〉 increases with Re. On the other hand, 〈ωy〉 increases with qth for all Re
analyzed., This indicates that ωy is not constant inside the cross sections of the LEV,
as it corresponds to a viscous vortex.

The relative spanwise velocity averaged over the LEV is displayed in figure 11d-f.
Note that, contrary to 〈ωy〉, 〈uy〉 is fairly independent of qth for a given Re. Therefore,
we can focus the discussion on the evolution of 〈uy〉 along the LEV and the effect
of the Reynolds number. For all cases we observe that 〈uy〉 decreases towards the
tip, although the profiles for Re = 160 and 240 differ considerably from the profile
for Re = 80. In particular, the negative gradient of 〈uy〉 along the span is much
less pronounced for Re = 80 than for the higher Re. The latter profiles present a
steep gradient up to yc ≈ 0.7 and a milder one beyond that location. This higher
spanwise velocity near the nut is due to the spanwise flow, developed presumably due
to non-inertial forces, which partially coincides with the LEV for Re = 160 and 240 and
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Re = 80 Re = 160 Re = 240

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11: Relative spanwise vorticity averaged over the LEV cross-sections,
〈ωy〉c/wd, as a function of yc for (a) Re = 80, (b) Re = 160, and (c) Re = 240.
Relative spanwise velocity averaged over the LEV cross-sections, 〈uy〉c/wd, as a func-
tion of yc for (d) Re = 80, (e) Re = 160, and (f) Re = 240. Pressure averaged over
the LEV cross-sections, 〈p〉/(ρw2

d), as a function of yc for (g) Re = 80, (h) Re = 160,
and (i) Re = 240. Different qth/Ω

2 values have different color intensity, as shown in
the colorbar. Dashed lines correspond to the 25%, 50% and 75% spanwise sections
(figure 4-6).

it is not present for Re = 80 (see figure 6). Except in this region, 〈uy〉 decreases with
Re, in agreement with the behaviour of the streamlines (see discussion of figure 9b).

As commented before, the decrease of spanwise flow in the LEV with increasing
Re seems to be related to the attitude of the seed: the coning angle is larger at lower
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(a) (b)

(c) (d)

Figure 12: (a) Relative spanwise velocity averaged over the LEV cross-sections
normalized with ue(yc). (b) Relative pressure averaged over the LEV cross-sections
normalized with ρfcue(yc). (c) Relative spanwise vorticity normalized with c/ue(yc),
and (d) with Ω. ( )Re = 80, ( )Re = 160 and ( )Re = 240. Shaded regions
correspond to the variation with qth = [6− 12].

Re, which implies a larger projection of the descent velocity wd along the spanwise
direction of the wing, yc.

The pressure averaged over the LEV cross-sections, 〈p〉, is depicted in figure 11g-i
for the different Re. Similarly to 〈uy〉, the averaged pressure is also largely independent
of qth. Throughout the span, lower pressures are found for increasing Re, which suggests
that the lift force of the winged seed increases with Re (as confirmed in Arranz et al.
(2018)). For all Re, the pressure increases towards the tip for yc & 0.9c, producing
and adverse pressure gradient which becomes stronger as Re increases. Note that,
while the projection of wd along the spanwise direction of the seed could explain the
intensity of 〈uy〉, the presence of an adverse pressure gradient might explain why 〈uy〉
decreases towards the wing tip.

Note that the variables shown in figure 11 are normalized with magnitudes which
remain constant regardless of Re. Hence, it is interesting to use a normalization in
which the effect of the Reynolds number is somehow involved. Figure 12a-d depicts
〈uy〉, 〈p〉 and 〈ωy〉 normalized with c, ρf and the effective velocity at yc. Note that
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by employing ue(yc) as the characteristic velocity, we are accounting for the change
in the angular speed and for the change in the seed’s attitude. Figure 12 shows 〈uy〉,
〈p〉 and 〈ωy〉 for qth = 9. Additionally, the shaded regions correspond to the variation
with the threshold, qth = [6− 12] for each variable and Re. Figure 12a and figure 12b
reveal that, upon this normalization, the cases Re = 160 and 240 tend to collapse,
contrary to the case Re = 80. This behaviour is also observed in the aerodynamic
forces (Arranz et al. 2018), and seems to suggest that auto-rotation at Re = 80 differs
from auto-rotation at higher Re (within the range of study). Nonetheless, it has
been already mentioned that the case with Re = 80 is somewhat anomalous since for
example its auto-rotation depends on the initial conditions (hysteresis).

Regarding 〈ωy〉, it is interesting to recall that, although using ue(yc) as the
characteristic velocity (figure 12c) yields a result similar to figure 12a-b, using Ωc
instead, results in a collapse of the profiles of 〈ωy〉 for all Re, except close to the nut
(yc < 0.8c), where the case Re = 80 differs from the other two cases. This can be
appreciated in figure 12d, and it is also true for other qth. This suggests that the
characteristic velocity for chordwise and vertical velocities is Ωc, even if the precise
cause for this scaling is not clear at the present time.

Finally, we conclude the characterization of the LEV by computing the spanwise
circulation inside the LEV, Γ, since it is usually employed to relate the intensity of the
LEV to the aerodynamic force. We compute Γ as the integral of ωy over the LEV cross-
sections. This circulation is shown in figure 13 for different thresholds qth, and for the
three Reynolds numbers considered here. Note that, if ωy were concentrated in a finite
surface (i.e., a vortex tube), then Γ would become independent of qth for a sufficiently
low value of the threshold. However, figure 13 shows Γ increasing monotonously as
qth decreases, with no sign of a plateau. This is the expected behaviour for a viscous
vortex, as it corresponds to a low-Reynolds number flow. An important consequence
of the lack of collapse of Γ with qth in figure 13 is that Γ can hardly be used to
characterize the aerodynamic force on the wing at the present Re. Note that this
approach is usually found in the literature for winged seeds at higher Re (Lentink
et al. 2009; Poelma et al. 2006).

4. Conclusions

Numerical simulations of the auto-rotation of a winged-seed at Re in the range 80−240
have been performed. The seed, for all cases under study, reaches a state of stable
auto-rotation with approximately constant angular velocity and attitude, which vary
with Re. Due to this, and to the low Reynolds number, the flow is approximately
steady when observed from a reference frame fixed to the seed, so that this perspective
has been employed in the flow characterization. Three vortical structures are formed
near the seed: a wing tip vortex which describes a helical path; a vortex shed behind
the nut; and a stable LEV above the wing surface which merges with the tip vortex.

We have characterized the flow over the wing surface by analyzing the relative
spanwise vorticity, the relative spanwise velocity and the pressure at various spanwise
sections. With increasing Reynolds number, the flow visualizations show that the
LEV becomes more intense and gets closer to the wing surface. For all cases the low
pressure peak on the wing surface is located in the neighbourhood of the LEV. We
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(a) (b) (c)

Figure 13: Circulation averaged over the LEV cross-sections, Γ/(wdc), as a function
of yc. (a) Re = 80, (b) Re = 160, and (c) Re = 240. Different qth/Ω

2 values have
different color intensity, as shown in the colorbar.

have also identified the formation of a spanwise flow on the wing surface, which is more
intense downstream and beneath the LEV. This flow topology is directly linked to
Coriolis and centripetal accelerations and is in agreement with flows around revolving
wings found in the literature.

We have explored the three possible mechanisms for the stabilization of the LEV
reported in the literature, namely, the vorticity transport within the LEV, viscous
effects and centrifugal pumping. The first mechanism has been evaluated via a statis-
tical analysis of fluid particle trajectories along the LEV. We have found no evidence
of significant vorticity transport along the LEV for the flow under consideration. The
evaluation of the viscous stabilization of the LEV has been performed in terms of
the local Re and local angle of attack of the corresponding wing section. The results
suggest that this mechanism can only be important near the tips, but the 3D character
of the flow in this region makes it unlikely. Finally, the stabilization via non-inertial
accelerations seems to be a potential candidate, since the Rossby number is of order
unity in the present study.

To conclude, the flow inside the LEV has been characterized, studying the variation
of average flow magnitudes inside the LEV with different q thresholds. The average
spanwise velocity and the pressure inside the LEV do not seem to depend on the q
value. We also found that 〈uy〉 decreases for increasing Re, contrary to the behaviour
of the spanwise flow outside the LEV.

The average spanwise vorticity inside the LEV, 〈ωy〉, for a given Re depends on
the value of q. On the contrary, for a given q, 〈ωy〉 is quantitatively similar for the
different Re when scaled with Ω, suggesting that both the chordwise and vertical
velocity components scale with the angular speed. The multiplication of 〈ωy〉 by the
cross-sectional area of the LEV to compute its spanwise circulation, Γ, yielded that
it largely depends on the q value, as it should be expected for a low-Reynolds flow.
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Hence, the aerodynamic forces cannot be inferred from Γ, contrary to what can be
done with reasonable accuracy at higher Re.

Overall, we observe that the flow around the auto-rotating seed for Re = 160
and 240 is qualitatively different compared to Re = 80. This result may be explained
by the fact that Re = 80 seems to be close to the lower limit where auto-rotation is
possible (for the seed considered here).
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Direct numerical simulations have been performed to analyse how three-dimensional
effects influence the performance of wings in tandem configuration undergoing a two-
dimensional optimal kinematics. This optimal motion is a combination of heaving
and pitching of the airfoils in a uniform free-stream at a Reynolds number Re = 1000
and Strouhal number Stc = 0.7. Wings of two different aspect ratios, A = 2 and 4,
undergoing the 2D motion have been considered. It has been found that the interactions
between the vortical structures of the fore- and the hind-wings are qualitatively similar
to the two-dimensional case for both A. However, the ratio between the mean thrust
of the hind-wing and the fore-wing decreases from 80% in 2D to 70% in 3D, implying
that the 3D effects are detrimental for the vortical interactions between the wings in
terms of thrust production. Nonetheless, the propulsive efficiency remains constant
both in 2D and 3D, for both A. A more realistic flapping motion has also been
analysed and compared to the heaving motion. It has been found that the aerodynamic
forces decrease when the wings are in flapping motion. This detrimental behaviour
has been linked to a sub-optimal motion of the inboard region of the wings. This
sub-optimal region of the wings entails a decrease of the mean thrust and of the
propulsive efficiency compared to the heaving case, which are more pronounced for
the A = 4 wings.

1. Introduction

In contrast to birds, bats and most insects, dragonflies have two pairs of wings
which can be controlled independently (Norberg 1975; Thomas et al. 2004). By
modifying the kinematics and the phase relationship between the fore and hind pair of
wings, dragonflies are capable of performing rapid manoeuvres, accelerate, or cruising
efficiently (Alexander 1984; Wakeling & Ellington 1997). This versatility, and the
recent interest in the development of micro air vehicles (MAVs), have fostered the
scientific community to understand which are the mechanisms that govern the flight
of these insects. Thanks to this interest, it has been discovered, and now it is widely
accepted, that one of the most important mechanisms dragonflies take advantage of
is the wake interaction between their wings (Wang & Russell 2007; Lehmann 2007;
Usherwood & Lehmann 2008).
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In hovering flight, the wake interaction between the fore- and the hind-wing has a
negative effect in terms of lift generation. This was shown by Maybury & Lehmann
(2004). They conducted experiments on two robotic flapping wings vertically stacked,
showing that the total vertical force obtained was reduced due to the interaction
between the wings, regardless of the phase shift of the wings. Likewise, Wang & Sun
(2005) performed numerical simulations of two wings in tandem configuration with
a motion close to the actual motion of dragonfly’s wings. By modifying the phase
shift between the wings, they showed that the vertical force developed by each wing is
always lower than the force developed by the same wing when isolated. Similar results
were obtained by Rival et al. (2011) for two-dimensional pitching and heaving plates.
Nonetheless, they found that for an optimal phase shift, similar values of mean lift
than the foils when isolated were achieved, but with more constant force production
over the cycle. Likewise, Wang & Russell (2007) performed numerical simulations of
the two-dimensional wings’ motion of a dragonfly, revealing that counter-stroking of
the wings minimizes the aerodynamic power. Later, Usherwood & Lehmann (2008)
found that adequate wing phasing during hovering can lead to a power reduction up
to 22% compared with a single pair of wings.

Contrary to hovering, airfoil tandem configurations in forward flight can outperform
isolated airfoils in terms of aerodynamic force production or propulsive efficiency. By
modifying only the phase lag between two airfoils in tandem under a simplified
pitching/heaving motion, Broering & Lian (2015) were able to obtain higher lift or
propulsive efficiency compared to a single airfoil. Likewise, Boschitsch et al. (2014)
performed a parametric study of the phase lag and spacing between two pure pitching
foils. They observed a banded pattern of the thrust and propulsive efficiency in the
phase-spacing diagram, revealing a linear dependency between both parameters. This
dependency was later observed for combined pitching/heaving foils (Lua et al. 2016;
Muscutt et al. 2017), and it was also mentioned by Maybury & Lehmann (2004) for
3D wings in hovering configuration. Kamisawa & Isogai (2008) performed numerical
simulations to find the flapping kinematics of two pairs of flapping tandem wings
of minimum required power for forward flight. They found that, for the range of
velocities studied, the required power was lower than the maximum available power.
More recently, Nagai et al. (2019) studied the effect of phasing of tandem flapping
wings in forward flight. Their results suggest that actual dragonfly might not select
the phase differences in term of aerodynamic efficiency but also in terms of other
factors such as longitudinal manoeuvrability or flight stability.

Other studies have focused on finding optimal tandem kinematics in two dimensions
(Ortega-Casanova & Fernandez-Feria 2016; Ortega-Casanova & Fernández-Feria 2019;
Huera-Huarte 2018). However, there are fewer studies addressing the aerodynamic
performance of optimal kinematics in 3D wings, specially in terms of comparison with
their corresponding 2D configurations. There are only a few works that compare 2D
and 3D configurations with the same kinematics, which are briefly reviewed next.

Zheng et al. (2016) analysed the forewing-hindwing interaction of finite aspect
ratio wings in heaving and pitching motion. Their results revealed discrepancies with
past 2D studies undergoing similar kinematics, which might be attributed to 3D effects.
However, flow visualization was limited by phase-locked 2D measurements at a single
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spanwise location, leaving as an open question if three dimensional effects significantly
affect the forewing-hindwing interaction. Kurt & Moored (2018) experimentally
analysed the effect of the wing tip vortices of two tandem wings of A = 2 in pure
pitching motion on the propulsive efficiency and thrust. To do so, they measured the
forces on the wings for a range of different phasing and spacing, and repeated the
experiments placing a splitter plate and a surface plate at the wing tips to minimize
3D effects. Their results show many broad similarities between both configurations;
however, they found that, for the 3D configuration, increasing the spacing while
keeping the phase lag constant, always results in a decrease of the propulsive efficiency
due to the breakdown of the vortices. On the contrary, when 3D effects were minimized,
optimal configurations were found for larger spacing between the wings. A comparison
between two tandem airfoils in heaving and pitching motion and two wings of A = 2
under the same kinematics and spacing was performed by Broering & Lian (2015)
by means of numerical simulations. They compared the 2D and 3D simulations
for 3 different phases. Generally, three dimensional effects led to a force reduction;
nonetheless, collective propulsive efficiencies for the three-dimensional cases were very
similar or even slightly higher than their two-dimensional counterparts. Overall, these
works show a discrepancy on the extent of the influence that the 3D effects have on
the aerodynamic performance of a two-dimensional (2D) configuration.

Moreover, it should be noted that previous comparisons between 2D and 3D
configurations, Broering & Lian (2015),Zheng et al. (2016) and Kurt & Moored (2018),
consider the motion of the finite wings to be two-dimensional (i.e., heaving). However,
actual motion of dragonfly’s wings is a flapping motion in which each section of the wing
has a different velocity. Practically no studies are found in the literature which compare
flapping kinematics with a 2D motion. Sun & Lan (2004) performed a numerical
simulation of a pair of dragonfly tandem undergoing a realistic hovering motion, and
compared the obtained aerodynamic forces with those of a 2D computation based
on similar wing kinematics; They observed that, for the particular configuration, 3D
fore-hind wing interaction is weaker than 2D interaction in terms of force generation.
Nonetheless, we have not found in the literature other studies which assessed the effect
of implementing a 2D optimal kinematics in a 3D configuration with flapping motion.
Therefore, the objective of the present study is to analyse how three dimensional
effects influence the aerodynamic forces and flow structures of tandem wings with
a flapping motion. To that end, we perform direct numerical simulations (DNS) of
tandem wings in flapping motion, tandem wings in heaving motion and tandem airfoils
(2D) in heaving motion. Moreover, in this study we analyse the effect of the A by
considering wings of AR = 2 and 4, extending the results from Broering & Lian (2015),
Zheng et al. (2016) and Kurt & Moored (2018), which only considered a single A.

The structure of the paper is as follows: the description of the problem and
computational set-up is provided in section 2; the discussion of the results from the
simulations is given in section 3; and section 4 gathers the main conclusions extracted
from this study.
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Figure 1: Sketch of the 2D-kinematics with the definition of θi and hi. The inertial
reference frame is also depicted for reference.

i ϕh,i ϕθ,i θ0 Stc Sta

1 0 3π/4
25◦ 0.7 0.17

2 π −π/4

Table 1: Kinematic parameters of the two-dimensional configuration.

2. Methodology

2.1. Problem description

Two equal, finite wings in an in-line tandem arrangement and immersed in a uniform
and constant free-stream of magnitude U , are considered. Both wings move with a
kinematics based on the optimal, two-dimensional configuration of Ortega-Casanova &
Fernández-Feria Ortega-Casanova & Fernández-Feria (2019). The motion corresponds
to a combination of heaving and pitching about the mid chord. The pitching angle, θ,
and heaving amplitude, h, are described by the sinusoidal functions:

hi(t) = h0 cos (2πft+ ϕh,i), (1)

θi(t) = θ0 cos (2πft+ ϕθ,i), (2)

where the subscript i indicates the wing (i = 1 fore-wing, i = 2 hind-wing) as shown in
figure 1. In eqs. (1) and (2), h0 is the maximum heaving amplitude, θ0 is the pitching
amplitude, f is the frequency, ϕh,i is the heaving phase shift and ϕθ,i is the pitching
phase shift. The frequency and heaving amplitude are fixed by the non-dimensional
numbers, Stc = fc/U and Sta = h0f/U . All the parameters that define the motion
are gathered in table 1. Note that, according to the values of ϕh,i and ϕθ,i in table 1,
pitching is advanced 3π/4 with respect to heaving for both foils. Consequently, the
motion of both foils is identical with a phase shift equal to π. Moreover, since the
pitch angle averaged over a cycle is zero, the motion is symmetric with respect to the
horizontal plane.

The airfoil sections correspond to a flat plate with chord, c. The distance between
the trailing edge of the fore-wing and the leading edge of the hind-wing when they lay
onto a horizontal plane is S/c = 0.5 (see figure 1). The Reynolds number based on
the chord and the free-stream velocity is Re = Uc/ν = 1000 for all the cases.
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For the three-dimensional simulations, wings of rectangular planform with span,
b, and the same cross-section as the 2D airfoils are considered. We study two aspect
ratios, A = b/c = 2 and 4, and two kind of motions: heaving and flapping (i.e.,
rotation about an axis parallel to the free-stream velocity). Kinematics of the finite
span wings in the heaving case is straightforward: all chordwise sections of the wings
move according to eqs. (1) and (2), exactly as in the 2D case. On the contrary, in
flapping motion, only one chordwise section has the same vertical amplitude, h0, as in
the 2D case. We denote this section as the characteristic section, and set it to be at
0.65b from the inboard wing tip. Moreover, the axis of rotation for the flapping motion
is located at a fixed distance to the inboard wing tip, set to ∆ξ = c for all flapping
cases. For clarity, figures 2a and 2b show a sketch of the wings in flapping motion, the
position of the characteristic section, and the position an orientation of the flapping
axis. The figures also include the wing-fixed reference frames, Σi. For the i-wing,
the origin of Σi is located at the mid-chord of the inboard wing tip, the ξi-axis is
oriented along the spanwise direction and coincides with the pitching axis, the ηi-axis
is perpendicular to the wing surface, and τi-axis correspond to the chordwise direction.

As shown in figure 2b, the flapping motion of the wings depends on the vertical
amplitude of the characteristic section, h0, the distance of this section to the inboard
wing tip, ξC , and the root offset, ∆ξ. Hence, the flapping angle (see figure 2a) is:

φi(t) = φ0 cos (2πft+ ϕh,i), (3)

where φ0 = sin−1 (h0/ (∆ξ + ξC)) is the flapping amplitude. For the aspect ratios
considered here, φ0 ≈ 6.1◦ and 3.9◦ forA = 2 and 4, respectively. On the other hand,
the pitching axis coincides with the longitudinal symmetry axis of the wing, as shown
in figure 2a. Finally, it should be pointed out that the wing reference frames defined in
figure 2a are also used when the wings are in heaving motion to ease the comparison
between the cases.

In the subsequent sections, the aerodynamic forces at certain chordwise sections
are analysed. These sections are sketched in figures 2c and 2d: section m corresponds
to the wing section at the midspan; sections I and O are located at 0.5c from the
inboard and outboard wing tips, respectively (note that, in the heaving case, the forces
at both sections will be the same owing to symmetry); and section C corresponds to
the characteristic section defined above.

2.2. Computational set-up

Direct numerical simulations (DNS) are performed with the in-house code TUCAN,
which solves the Navier-Stokes equations of the incompressible flow. TUCAN uses
second-order finite differences for the spatial discretization in a staggered grid and
a 3-stage, low-storage Runge-Kutta scheme for time integration. The time step is
always selected so that the Courant–Friedrichs–Lewy number is smaller than 0.2.
The presence of the bodies is modelled by means of the immersed boundary method
proposed by Uhlmann (2005). The present algorithm has been successfully used for
the simulation of aerodynamic flows, both in two- (Moriche et al. 2017, 2020) and
three-dimensions (Moriche et al. 2016; Gonzalo et al. 2018; Arranz et al. 2018b,a;
Moriche et al. 2019).
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Figure 2: (a) Sketch of the flapping motion. The sections whose heaving amplitude
is h0 are highlighted in purple. The inertial reference frame Σ ≡ (x, y, z) and the
body reference frames Σi ≡ (τi, ξi, ηi) are also shown. (b) Front view of a single wing
with the definition of ∆ξ and ξC . (c) Illustration of the chordwise sections where the
sectional forces are computed for A = 4 and (d) A = 2.

The computational domain is a rectangular prism, displayed in figure 3. The
wings are centered in a refined region (3.5c× Lyr × Lzr in figure 3) with a uniform
grid spacing in all directions, ∆r = c/96. Outside this region, a constant stretching of
1% is applied to the grid in all directions. The dimensions of the refined region depend
on the A and on the motion of the wings. For the heaving motion, Lyr/c = 1 +A
and Lzr/c = 1. For the flapping motion, Lyr/c = 1 +A and Lzr/c = 1.6 and 2, for
A = 2 and 4, respectively. Finally, Lyi = 3c in the heaving case and Lyi = 0.5c in
the flapping cases. Thus, in flapping motion the plane Y = 0 contains the flapping
axis. As a result, the 3D simulations consists of around 2× 108 grid points, depending
on the particular case. The computational domain for the 2D simulation corresponds
to a Y = const. plane of the 3D computational domain with a uniform grid spacing
∆r = c/96, leading to a grid with 9× 105 points.
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Figure 3: Sketch of the 3D computational domain. Solid lines delimit the uniform
grid and the stretched grid. Only one of each five grid lines is represented.

In terms of boundary conditions, a uniform free-stream velocity, U , is imposed at
the inflow plane (X = 0). A convective boundary condition is imposed at the outflow
plane (X = 14c). Free-slip boundary conditions are imposed at the lateral boundaries.

TUCAN uses and immersed boundary method, which requires the specification
of a Lagrangian mesh for the wings. Since the wings are flat plates, two flat surfaces
are employed to discretize each wing. A uniform grid is used in each surface, with a
grid spacing ∆r = c/96 in both spanwinse and chordwise directions. The two surfaces
discretizing each wing are separated a distance ∆r, leading to a thickness e/c ≈ 0.01.

The grid resolution reported in the previous paragraphs was selected after per-
forming a grid sensitivity study for the 2D configuration, for ∆r = c/48, ∆r = c/96
and ∆r = c/192. Figure 4 displays the temporal evolution of the aerodynamic force
coefficients for the hind airfoil, which are more affected by the vortical interactions.
Although not shown here, similar results are obtained for the fore airfoil. It can be
appreciated that the temporal history of the forces with ∆r = c/96 is very similar to
that of ∆r = c/192, while with ∆r = c/48 the peaks in the forces are clearly different.
Moreover, the differences in the propulsive efficiency computed for ∆r = c/96 and
c/192 are about 3%. Therefore, as a compromise between accuracy and computational
cost, all simulations are performed with a grid spacing of ∆r = c/96 in the refined
region.

The simulations are started in a grid with a lower resolution (∆r = c/56 in the
refined region) during the first 3 cycles, then the flow field is interpolated on the finer
grid and the simulation is restarted and run until convergence is achieved. This entails
about 3− 4 additional cycles. For the present cases, convergence means that periodic
flow conditions are obtained for all cases, with the same period of oscillation of the
forcing motion. Consequently, the aerodynamic forces and the flow in the region of
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(a) (b)

Figure 4: Temporal evolution of the (a) horizontal and (b) vertical force coefficients
of the hind airfoil. ( ) ∆r = c/48; ( ) ∆r = c/96; and ( ) ∆r = c/192.

interest are periodic, and the discussion of the results is based on the last computed
cycle without any loss of generality.

2.3. Definition of aerodynamic coefficients

The aerodynamic force coefficients are defined as

Ck,i =
2Fi · ek
ρU2bc

, (4)

where Fi is the total aerodynamic force on the i-wing, ek is the unitary vector
parallel to the k-axis and ρ is the fluid density. On the other hand, we also analyse
sectional forces at a given spanwise position. To that end, we define the sectional force
coefficients as

ck,i(ξ) =
2fi(ξ) · ek
ρU2c

, (5)

where fi(ξ) is the sectional force at the spanwise position ξ of the i-wing. Note that
eq. (5) also corresponds to the aerodynamic force coefficient for the 2D case.

As reported by Lee et al. (2011), immersed boundary methods generate low
amplitude, high frequency spurious oscillations on the forces when the bodies are
moving. These oscillations do not affect the statistics of the forces during a cycle, and,
since they do not represent a physical phenomenon, are removed in the present analysis
using a sharp cut-off low-pass filter. The cutoff frequency is fc = (84∆t)−1 = 50f ,
ensuring that only the spurious oscillations are supressed.

Finally, the performance of the wings is assessed by means of the individual
propulsive efficiency and the global propulsive efficiency, computed as:

ηp,i =
CT,i

P i
, ηp =

∑
i=1,2 CT,i∑
i=1,2 P i

,
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respectively, where CT,i is the average thrust coefficient (computed as the average of

−Cx,i over a cycle), and P i is the averaged non-dimensional input power of the i wing
over a cycle. The instantaneous power is computed as:

Pi(t) = Cz,i
ḣi(t)

U
+

2Mi ·$(t)

ρU3bc2
, (6)

where $(t) = φ̇(t)ex + θ̇(t)eξ is the angular frequency. In heaving, Mi is the

aerodynamic moment computed at any point along the ξi axis and φ̇ = 0. In flapping,
Mi is computed at the intersection of the ξi axis with the flapping axis, where ḣ = 0,
so that the first term of eq. (6) is dropped.

3. Results

3.1. 2D simulation: reference case

As a reference case we have selected a flow configuration with optimal kinematics as
reported in previous works (Ortega-Casanova & Fernández-Feria 2019). The temporal
evolution of the force coefficients of the 2D reference case is displayed in figure 5.
These results are discussed below together with the results of the 3D simulations. Note
that, the force coefficients obtained in the present simulations are in good agreement
with the force reported in Ortega-Casanova & Fernández-Feria (2019) (not shown).
Table 2 gathers the thrust and propulsive efficiencies of each airfoil averaged over a
cycle. The motion of the airfoils results in a net production of thrust, with an overall
propulsive efficiency slightly larger than the corresponding efficiency of an isolated
airfoil oscillating as the fore-airfoil. The average thrust of the hind-wing (cT,2) is
reduced compared to the average thrust of the fore-wing (cT,1) by approximately 20%.
Despite this thrust reduction, the propulsive efficiency of the hind-foil (ηp,2) is very
similar to the propulsive efficiency of the fore-wing (ηp,1), as shown in table 2. Hence,
the thrust reduction is accompanied by a reduction of the required power, leading to
a relatively constant propulsive efficiency for both airfoils.

Although the motion of the airfoils is symmetric with respect to the horizontal
plane, a net lift (cz = 0.51) is obtained in the tandem configuration as a result of wake
deflection (see figure 6a below). This phenomenon does not occur for the isolated airfoil
with the present kinematics (Ortega-Casanova & Fernández-Feria 2019), although
it has been observed on isolated airfoils with different motions (Lewin & Haj-Hariri
2003).

cT,1 cT,2 ηp,1 ηp,2 ηp

1.02 0.81 0.24 0.23 0.23

Table 2: Averaged results of the 2D simulations. Mean thrust (cT,i), individual
propulsive efficiencies (ηp,i) and global propulsive efficiency (ηp).
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(a) (b)

(c) (d)

Figure 5: Temporal evolution of the force coefficients. (a-b) Fore-wing, (c-d) hind-
wing. (a) and (c) horizontal force coefficient; (b) and (d) vertical force coefficient.
( ) 2D reference case; ( ) A = 2; ( ) A = 4. In all plots, the shaded region
corresponds to the downstroke of each wing.

3.2. 3D simulations: Aspect ratio effects

In order to assess the three dimensional effects due to the finite aspect ratio of the
wings, the 2D and the 3D heaving cases are compared first.

Figure 5 depicts the aerodynamic force coefficients (Cx,i and Cz,i) in heaving
motion for both A, together with the forces of the 2D reference case. Qualitatively,
the aerodynamic forces of the finite wings are similar to those of the 2D case. Both
the fore and the hind-wing produce thrust (i.e., negative horizontal force) during most
of the cycle. Figure 5a shows two thrust peaks for the fore-wing at mid-downstroke
and mid-upstroke; these peaks are also present for the hind-wing (figure 5c) but less
intense, due to flow interaction, as it will be discussed below. On the other hand, the
vertical force for both airfoils is mostly positive during the downstroke and negative
during the upstroke (figures 5b and 5d). These forces yield a zero mean lift, contrary
to the non-zero mean lift observed in the 2D case. This difference on the mean lift is
clearly observable in the structure of the far wake of these cases. To illustrate this,
figure 6 shows the vertical velocity component time-averaged over a cycle. In the
2D case, figure 6a, the deflection of the wake with respect to the horizontal plane
is clearly visible. In the 3D heaving case with A = 4, no significant deviation from
anti-symmetry is observed in the wake, figure 6b. A similar observation was reported
by Dong et al. (2006) on single plunging foils and wings at similar reduced frequencies.
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(a) (b)

Figure 6: Vertical velocity time-averaged over a cycle. (a) 2D reference case, (b)
midspan plane of AR = 4 heaving case. Contours are normalized with the freestream
velocity, U .

A CT,1 CT,2 Cz,1 Cz,2 ηp,1 ηp,2 ηp

Heaving
2 0.81 0.57 3.83 2.05 0.23 0.21 0.23
4 0.91 0.65 4.39 2.24 0.23 0.22 0.23

Flapping
2 0.62 0.45 3.42 1.90 0.22 0.19 0.21
4 0.66 0.49 3.78 2.04 0.21 0.19 0.20

Table 3: Average forces during half-stroke and propulsive efficiencies for the finite
span cases.

Regarding the effect of the aspect ratio on the forces, figures 5a and 5b show
that, on the fore-wing, larger A leads to higher forces during the mid-upstroke and
mid-downstroke. On the hind-wing (figures 5c and 5d), the temporal evolution of the
force coefficients presents more oscillations due to the interaction with the wake of the
fore-wing, like in the 2D configuration (Ortega-Casanova & Fernández-Feria 2019).
Despite this, a qualitatively similar increase in the peak forces of the hind-wing with
A is also observed. In fact, the average forces over half cycle of each wing decrease
roughly 10% fromA = 4 to 2. This is reported in table 3 that gathers the thrust and
lift coefficients averaged over half a cycle and the propulsive efficiencies of each wing.

Figure 7 shows visualizations of the three-dimensional simulations for the cases
A = 2 and A = 4 at various time instants during the cycle. The vortical structures
depicted in the figure correspond to iso-surfaces of the second invariant of the velocity
gradient tensor, Q (Hunt et al. 1988). The iso-surfaces of Q = 6Ω2

0 are coloured with
the spanwise vorticity, ωy, where Ω0 = 2πf is the maximum angular velocity. On the
other hand, semi-transparent iso-surfaces correspond to Q = 3Ω2

0 and are associated
to less intense vortical structures. Figure 7a depicts the flow structures at the end
of the fore-wing’s downstroke. For both A one can appreciate the two main vortical
structures developed during the motion, namely: the trailing edge vortex developed by
the fore-wing (TV), and a leading edge vortex on the hind-wing. The latter is denoted
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(c) t/T = 1

Figure 7: Flow visualization of the cases in heaving motion at various time instants:
(a) end of the fore-wing downstroke; (b) fore-wing mid-upstroke; and (c) end of the
fore-wing upstroke. (left) A = 2, and (right) A = 4. Vortices are represented by
means of the Q-criterion Hunt et al. (1988). Semi-transparent iso-surface correspond to
Q = 3Ω2

0; iso-surface coloured with the spanwise vorticity, ωy, correspond to Q = 6Ω2
0.
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fore-wing hind-wing

(a) section m

fore-wing hind-wing
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Figure 8: Temporal evolution of sectional force coefficients at chordwise sections (a)
ξ = ξm and (b) ξ = ξI . ( ) A = 2, ( ) A = 4 and ( ) 2D force coefficient. As
in figure 5, the shaded region correspond to the downstroke of each wing.

as the induced leading edge vortex (iLEV), since it is induced by the wake shed by the
fore-wing. For both A, the TV and the iLEV tilt upwards and break near the tips
of the hind-wing. However, for A = 4, there is a region at the midspan where both
vortices resemble two-dimensional vortices. This breakdown observed near the wing
tips progresses towards mid section, as observed at later time instants in figures 7b
and 7c. The progression of the breakdown seems to occur at the same velocity for
both A. As a consequence, the dipole in the midspan section of the A = 2 case
breaks down earlier than in the A = 4 case. This breakdown of the vortices at the
midspan is in accordance with observations on pitching tandem wings ofA = 2 (Kurt
& Moored 2018). Finally, it is interesting to note that the vortex structures near the
tips of both wings are very similar for both A at all times depicted in figure 7.

It is interesting to analyse if the differences between the flow structures observed in
figure 7 for eachA have a direct impact on the forces. Hence, we compute the sectional
forces at the mid-span section, ξ = ξm (see figures 2c and 2d) and at the inboard (or
equivalently, outboard) sections, ξ = ξI (ξO). These sectional force coefficients are
shown in figure 8. The sectional force coefficients differ at the mid-span (figure 8a),
where figure 7a shows differences in the vortical structures of cases A = 2 and 4. In
particular, figure 8a shows that the peak sectional forces of both wing at midspan
decrease with decreasing A. On the other hand, figure 8b shows that the sectional
forces at spanwise positions which are influenced by the wing-tip vortices are very
similar for both A, provided that sections at the same distance to the wing tip are
considered. Comparison of sectional forces at different chordwise sections reveals that,
for the present case, this similarity is extended up to 0.75c from the wing tips for both
the fore-wing and the hind-wing (not shown).
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In order to analyse the origin of the discrepances in the forces at the midspan
section, Figures 9 and 10 depict the spanwise vorticity of the 2D case, and of the
3D simulations at ξ = ξm, respectively. Figure 9 shows a complete cycle of the 2D
case. It is interesting to compare the first half (figures 9a-9d), which corresponds
to the downstroke of the fore-wing, and the second half of the cycle (figures 9e-9h).
One can appreciate that the dipole that is formed by the TV and the iLEV on the
lower surface of the hind-airfoil during its upstroke (figures 9a-9d) remains close to
the hind-airfoil during its downstroke (figures 9e-9h). The same does not happen
to the dipole that develops on the upper surface (figures 9e and 9f), which detaches
from the foil and travels downstream (figures 9g and 9h). This difference is clearly
appreciated by analysing the position of the vortices in figures 9a and 9e. The relative
attachment of the dipole during the hind-wing downstroke explains the larger peak
forces near t/T = 0.75 (figure 9f) compared to those at t/T = 0.25 (figure 9b), during
the upstroke of the hind-wing, as shown in figure 5. Likewise, the development of a
leading edge vortex on the suction surface of the fore-wing at the end of its downstroke
(figure 9d) explains the force reduction during its upstroke. In particular, this vortex
lowers the pressure on the upper surface, leading to an increase in the force normal
to the airfoil whose projection on the x- and z-axes leads to an increase of both cx
(thrust reduction) and cz (negative force reduction), respectively.

Figure 10 displays only the first half of the cycle for the finite aspect ratio wings,
since the flow is symmetric with respect to the z = 0 plane on the other half of the cycle.
The spanwise vorticity contours at the mid-span show that the iLEV development
from the shear layer of the fore-wing, as well as its first interaction with the TV,
are qualitatively similar to the 2D case (figures 9a-9d) for both A. The subsequent
evolution of the dipole can be observed on the lower surface of the hind-wing, which
corresponds to the vortices shed during the previous cycle. Specifically, the vortical
structures on the lower hind-wing surface would correspond to the iLEV and TV at
t = t0 + 0.5T (being t0 the time specified in figure 10) with the opposite vorticity.
It is observed that, as the vortices interact and travel downstream, the differences
between the cases become more evident. For A = 4 (figures 10e-10h), the dipole
travels downstream and detaches from the hind-wing, like during the downstroke of
the 2D hind-airfoil (figures 9e-9h). On the contrary, the vorticity intensity of the
dipole for A = 4 diminishes faster than its 2D counterpart. This effect is due to the
spanwise compression of the wake, also observed for single pitching/heaving wings
(Dong et al. 2006; Buchholz & Smits 2006; Green et al. 2011; Buchholz & Smits 2008).
On the other hand, a proper dipole is not formed between the TV and the iLEV over
theA = 2 hind-wing (figures 10a-10d); instead, vortex breakdown from the tips reach
the midspan section before, as shown in figure 7b.

Although vortical interaction is clearly different at midspan of the hind-wing for
A = 2 and 4, it does not explain the differences of the sectional forces on the fore-wing
(figure 8a), since no vortices are found at the midspan of the fore-wing. Hence, the
reduction of the sectional forces at ξ = ξm on the fore-wing with lower A seems more
likely explained by finite-wing effects, namely, downwash induced velocity as in steady
aerodynamics. Moreover, since the difference of the sectional force of the hind-wing
with A is similar to that of the fore-wing, it can be concluded that finite-wing effects
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Figure 9: Spanwise vorticity contours of the 2D simulation during a full period.
Pictures correspond to different equidistant time instants. (a-d) from t/T = 0.125 to
t/T = 0.5; (e-h): from t/T = 0.625 to t/T = 1.
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Figure 10: Spanwise vorticity contours at section ξ = ξm during the downstroke of
the fore-wing. From left to right, t/T = 0.125, 0.25, 0.375 and 0.5. The upper row
corresponds to A = 2 and the lower row to A = 4.

are also the main responsible for force reduction on the hind-wing when A decreases.
Consequently, vortex breakdown at the midspan has a secondary effect on the forces
since it does not occur close to the wing surface (Moriche et al. 2017).

To summarize, table 3 gathers, for each wing, the thrust and lift coefficients
averaged over half a cycle, as well as the individual and global propulsive efficiencies.
The averaged force coefficients are found to be smaller for A = 2 compared to
A = 4, both for the fore-wing and the hind-wing. If the mean thrust of each wing is
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compared to its two-dimensional counterpart (table 2), a reduction of approximately
21% and 11% is obtained for the fore-wing of A = 2 and 4, respectively. Preliminary
simulations of isolated wings (not shown here) have shown that the thrust generated
by the fore-wing is independent of the vortical interaction between the fore- and
hind-wings, in agreement with previous works (Maybury & Lehmann 2004; Nagai
et al. 2019). This suggests that the aforementioned thrust reduction is mainly due to
wing-tip effects, namely, induced downwash velocity. For the hind-wing, the thrust
reduction from 2D to 3D is larger, from 29% for A = 2 to 20% for A = 4 wings.
Consequently, three-dimensional vortical mechanisms which are not present in the 2D
case (i.e., wing-tip vortices and vortex breakdown) influence the hind-wing’s thrust
generation. Indeed, the thrust reduction of the hind-wing with respect to the fore-wing
(1− CT,2/CT,1) is very similar for both aspect ratios (30% and 28% for A = 2 and
4, respectively), and higher than for the two-dimensional case, which is close to 20%.
This leads to the conclusion that 3D vortex interaction, for the A considered in this
study, has a non-negligible impact on the aerodynamic forces. Despite the detriment
in thrust generation, the propulsive efficiency of the hind-wing (ηp,2) is very similar
to the propulsive efficiency of the fore-wing (ηp,1) and only slightly lower than the
individual propulsive efficiencies of the two-dimensional case. Consequently, the overall
propulsive efficiency, ηp is virtually the same. The low dependency of ηp on A was
reported by Dong et al. (2006) for single wings in pitching and heaving motion, and
later by Buchholz & Smits (2008) for a low-A pitching wing. In both cases, the
Strouhal number was in the same range as the one considered in the present study.

3.3. 3D simulations: Heaving vs. flapping

From a mechanical point of view, heaving is not a realistic motion for either MAVs or
flying animals. Therefore, in the present section we analyse the differences between a
pair of tandem finite wings in heaving (section 3.2) and the same wings performing a
flapping motion about a fixed axis, as described in section 2.

Figure 11 shows the temporal evolution of the aerodynamic force coefficients in the
heaving and flapping configurations, for both A = 2 and 4. In the flapping case, for
both the fore- and the hind-wing, a decrease of the thrust peaks is observed compared
to to the heaving case (figures 11a and 11c), while drag peaks (at t/T ≈ 0.35 and
0.85) remain virtually equal. This decrease is more pronounced for A = 4 than for
A = 2. As a consequence, the average thrust of both wings is reduced in flapping
motion when compared to heaving motion (see table 3). Regarding the effect on the
vertical force, figures 11b and 11d reveal an amplitude decrease for both wings in the
flapping case. Moreover, from heaving to flapping, there is a shift in the time at which
forces are maximum.

Top row of figure 12 shows the sectional aerodynamic forces at the characteristic
section, ξC (viz., the section which moves like the 2D-configuration in flapping motion)
for both A and for the heaving and flapping motion. One can appreciate that, for
a given A, the sectional forces at ξC are very similar both in heaving and flapping.
This observation holds for the fore and the hind-wing and for the horizontal and
vertical components of the forces. However, the sectional force coefficients vary with
A. In particular, the peak forces are diminished for the lower aspect ratio. Since the
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(a) (b)

(c) (d)

Figure 11: Temporal evolution of the force coefficients. (a-b) Fore-wing, (c-d) hind-
wing. (a) and (c) horizontal force coefficient; (b) and (d) vertical force coefficient.
A = 2: ( ) heaving, ( ) flapping; and A = 4 ( ) heaving, ( ) flapping.

characteristic section, ξC , changes with A (ξC = 1.3c for A = 2, and ξC = 2.6 for
A = 4), the fact that the sectional forces at ξC vary withA but not with the motion
seems to suggest that the sectional forces do not depend only on the sectional motion
but also on the vortical structures.

Since the amplitude of the aerodynamic forces is lower in flapping motion, there
must be wing sections with lower sectional forces than at ξC . To show this, figure 12
(bottom row) displays the sectional forces at ξI and ξO for the flapping motion of the
A = 2 and 4 wings. As expected, the amplitude of the vertical force is decreased at
the inboard sections of the wings; the same happens for the peak thrust. The opposite
behaviour is observed at outboard wing section. Moreover, it is interesting to note
that, in addition to a reduction of the peak thrust at inboard sections, there is an
increase of positive horizontal force (drag), at the end of the downstroke. This effect
is more pronounced for the A = 4 wing. Additionally, the peak of the forces shifts
forward in time from outboard to inboard wing sections. This shift is related to the
spanwise variation of the effective angle of attack, αi(ξ), which is the angle between
the chordwise direction (τi in figure 2) and the flow velocity at the mid-chord of the
ξi-section. Particularly,

αi(ξ) = θi − tan−1

(
φ̇i(∆ξ + ξ)

U

)
(7)
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fore-wing hind-wing

(a)

fore-wing hind-wing

(b)

Figure 12: Temporal evolution of the sectional (a) horizontal and (b) vertical force
coefficients. For both figures, top row displays the sectional forces at the characteristic
section, ξC = 0.65b: A = 2: ( ) heaving, ( ) flapping; A = 4: ( ) heaving,
( ) flapping. Bottom row displays the sectional forces near the wing tips during
flapping motion: ( ) inboard section, ξI , and ( ) outboard section, ξO. ( )A = 2
and ( ) A = 4.

where φ̇ is the time derivative of φ. The peak of αi occurs earlier at outboard sections
than at inboard sections of the wing, in accordance to peak of the forces.

The spanwise variation of the forces for both wings can be understood by looking
at the spanwise vorticity (figure 13). The results correspond to A = 4, since for this
case the differences between the outboard and the inboard sections are more noticeable.
Figure 13 depicts, for the inboard (ξI), midspan (ξm) and outboard (ξO) wing sections,
the vorticity normal to the cylindrical surface whose axis of revolution coincides with
the flapping axis and with radii equal to ∆ξ + ξI , ∆ξ + ξm and ∆ξ + ξO, respectively.
These surfaces are also illustrated in figure 14a. It is noticeable that the vorticity
at the midspan (second row in figure 13) is very similar to that in heaving motion
at the same section, figure 10. This is not true for the inboard and outboard wing
sections. If we focus on the fore-wing at ξ = ξI , a vortex is developed on the lower
surface of the fore-wing, due to the pitch-up rotation of the wing, t/T = 0.375. This
vortex is labelled 1 in the figure. During the cycle, this vortex travels downstream
until it merges with the shear layer shed at the hind-wing’s trailing edge. The vortex
motion is chronologically indicated by the numbers in figure 13 (top row). Note that,
since only half a cycle is shown, the vortex flips side from 2 to 3 and from 6 to 7 in
the present representation. On the contrary, if we compare the vorticity contour at
the inboard (top row of figure 13) and outboard (bottom row) wing sections, it is
appreciated that no vortex is shed at ξ = ξO. Instead, the shear layer on the upper
surface detaches at the leading edge (t/T = 0.5).
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Figure 13: Spanwise vorticity contours during the downstroke (upstroke) of the fore-
(hind-)wing at different chordwise sections of A = 4 wings in flapping motion. Each
column correspond to a given time: from left to right, t/T = 0.125, 0.25, 0.375 and
0.5. Upper row correspond to the inboard wing tip (ξ = ξI), middle row correspond
to the midspan section (ξ = ξm), and lower row correspond to the outboard wing tip
(ξ = ξO).

The spanwise variation of the vorticity can be explained by the spanwise variation
of the effective angle of attack (see eq. (7)). Near the inboard wing tip, the contribution
of the vertical velocity to α1 is small, and inboard sections behave like an airfoil in
pure pitching. Specifically, the shedding and travelling of the vortices at the fore-wing
leading edge at ξI is similar to that observed in pure pitching foils for θ0 ≥ 8◦ (and
similar Stc and Re) (Das et al. 2016). Outboard fore-wing sections have larger heaving
amplitudes. As a consequence, an LEV starts developing after the mid-downstroke
(t/T = 0.375 in figure 13) at outboard spanwise locations, in a similar fashion as wings
in flapping without pitching motion (Gonzalo et al. 2018). However, pitch-up rotation
inhibits its later development and shedding as for flapping wings without pitching
(Gonzalo et al. 2018) or heaving airfoils (Lewin & Haj-Hariri 2003).

The spanwise variation of the fore-wing wake flow affects the hind-wing. Figure 13
shows that, for a given time instant, the trailing edge vortex is located further upwards
and downstream at outboard spanwise positions. As a consequence, the shear layer
of the TV impinges earlier on the leading edge at outboard wing sections and the
iLEV starts developing earlier at outboard wing sections. This is illustrated in the last
column of figure 13 (t/T = 0.5), where it is observed that the shear layer shed during
the downstroke of the fore-wing have just impinged on the leading edge of outboard
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ξ2
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η2

ξ2

τ2

ξ2

τ2

(a) Flapping (b) Heaving

Figure 14: Vortical structures on the A = 4 hind-wing at t/T = 0.75 for the (a)
flapping and (b) heaving case. The vortical structures correspond to Q = 6Ω2

0 and
are coloured with ωy (legend as in figure 7). The planes sketched in (a) and (b) are
the ones used to display the vorticity contours in figures 13 and 10, respectively (note
that in the latter, inboard and outboard planes are equivalent).

wing sections (bottom row); meanwhile at the inboard wing sections the shear layer
has not yet reached the leading edge of the hind-wing.

Figure 14 shows that, even with the spanwise variation of TV and iLEV, the
overall vortical interactions on the hind-wing for the flapping case are similar to the
heaving case. Nonetheless, it is observed that, as a consequence of the varying intensity
of the vortices along the spanwise direction, both the TV and iLEV are found more
downstream and upwards on the outboard regions when compared to the heaving case.
At longer times, there is a vortex breakdown similar to the heaving case (figure 15).

Regarding averaged forces, table 3 shows that the mean thrust of each wing
decreases in the flapping case compared to the heaving case. The reduction is more
pronounced for A = 4 (27% and 26% for the fore- and hind-wing, respectively) than
for A = 2 (23% and 20% for the fore- and hind-wing, respectively). On the other
hand, the thrust reduction of the hind-wing compared to the fore-wing is 27% for
both A, being very similar to the results observed in heaving. This entails that, as
shown before, the interaction between both wings is rather similar both in heaving
and flapping motions. Finally, a reduction in the propulsive efficiency, ηp, is also
observed in the flapping case compared to the heaving case. Contrary to heaving,
ηp slightly decreases with A in the flapping case. This adverse effect of A can be
attributed to the fact that, as A increases, there is a larger region of the wing which
has a suboptimal motion, particularly close to the inboard wing tip, whose sectional
propulsive efficiency is lower. This is true for both the fore- and the hind-wing.
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(a) t/T = 0.75

(b) t/T = 1

Figure 15: Visualization of the cases in flapping motion. (a) t/T = 0.75 and (b)
t/T = 1. The closer tips correspond to the inboard wingtips. Iso-surfaces of the
Q-criterion are equal to those on figure 7.

4. Conclusions

The objective of this study was to analyse how three dimensional effects influence the
performance of wings in tandem configuration undergoing a two-dimensional optimal
kinematics. To do so, direct numerical simulations, both in 2D and 3D, have been
performed.

First, finite aspect ratio effects have been studied by considering wings of two
different aspect ratios, 2 and 4, undergoing a heaving and pitching motion corresponding
to the 2D optimal kinematics (Ortega-Casanova & Fernández-Feria 2019). The analysis
has been based on comparisons of the flow structure and of the aerodynamic forces
on the wings. For both A, the interaction mechanisms between the fore- and the
hind-wing vortical structures are qualitatively similar to the two-dimensional case.
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Namely, the shear layer shed by the fore-wing induces a leading edge vortex on the
hind-wing surface which interacts with the trailing vortex of the fore-wing. However, in
3D, there is a breakdown of both vortices starting at the wing tips of the hind-wing and
progressing towards the midspan, leading to somewhat different vortex organisation
surrounding the wings. The mean thrust of the finite wings is lower than in the 2D
case. This reduction is larger with decreasing A. Moreover, it is found that the
thrust reduction is more pronounced on the hind-wing. This entails that 3D vortical
mechanisms, not present in 2D, have a non-negligible impact on the aerodynamic forces
of the hind-wing. Nonetheless, the propulsive efficiency (ηp) remains approximately
constant for both A and for the 2D dimensional case. Our results are consistent with
the observations of Dong et al. (2006) for single heaving/pitching wings, as well as
those of Broering & Lian (2015) for tandem wings at a significantly lower Reynolds
number than the one considered here.

The results of the tandem wings in heaving motion have been compared to those
obtained for a flapping motion. The objective was to analyse the effects of having a
more realistic, three-dimensional motion. The results show that, for a given A, the
aerodynamic forces decrease when the wings are in flapping motion. A comparison of
the sectional forces along the span reveals that the forces are nearly identical for the
heaving motion at midspan and for the flapping motion at the characteristic section
(i.e. the section whose motion corresponds to the 2D airfoil motion). On the contrary,
the amplitude of the vertical force decreases at inboard wing sections in flapping
motion; likewise, both the amplitude and the mean value of the thrust force decrease.
This detrimental behaviour has been linked to a sub-optimal motion of the inboard
region, which is close to a pure pitching motion of low efficiency (Das et al. 2016).
It should be noted that this behaviour is found both on the fore-wing and on the
hind-wing. This sub-optimal region of the wings entails not only a decrease of the
mean thrust, but also a decrease of the propulsive efficiency compared to the heaving
case, which is more noticeable for A = 4, since the extension of this region is larger
in this case.

The present results also suggest that for 3D configurations, a moderate spacing
between the wings (i.e, s . c) is probably desirable to avoid the full breakdown
of the TEV before it reaches the hind-wing. This is not the case for 2D airfoils in
tandem configuration, where the vortices shed by the fore-wing dissipate very slowly,
allowing basically the same vortical interactions when the distance between the airfoils
is increased by λ (where λ is the wavelength of wake shed by the fore-wing) (Zhu et al.
2014; Kurt & Moored 2018).

To summarise, it has been found that 2D tandem simulations provide reasonable
predictions of the propulsive efficiency of finite aspect ratio wings, in the range of
Reynolds and Strouhal numbers studied here. On the other hand, mean thrust
production of the hind-wing is not properly estimated in 2D simulations, due to
differences between 2D and 3D vortical interactions. Concerning the mean lift, it has
been observed that a non-zero value is obtained in 2D that can be attributed to the
well-known phenomenon of wake deflection. On the contrary, in the 3D simulations
the mean lift is zero for all cases. This is consistent with the observations of Dong
et al. (2006) for single heaving/pitching wings and hints that, for finite-aspect ratio
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tandem wings, the practical relevance of the wake deflection phenomenon might be
limited. Finally, it has been found that the aerodynamic performance of the tandem
wings is deteriorated when a realistic, three-dimensional flapping motion is considered.
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numerical study of the flow around a model winged seed in auto-rotation. Flow Turbul.
Combust. 101 (2), 477–497.

Arranz, G., Moriche, M., Uhlmann, M., Flores, O. & Garćıa-Villalba, M. 2018b
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Tandem configurations of two self-propelled flexible flappers of finite span are explored
by means of numerical simulations. A sinusoidal vertical motion of the leading edge
of both flappers with the same frequency and amplitude, but different phase, φ,
is prescribed. In addition, a vertical offset, H, between the flappers is imposed.
The configurations that emerge in the parametric space H − φ are characterized in
terms of their hydrodynamic performance and topology. After an initial transient,
the flappers reach a stable configuration with a constant mean propulsive speed
and a mean equilibrium horizontal distance. Depending on the values of H and
φ, two different tandem configurations are observed, namely compact and regular
configurations. The performance of the upstream flapper (i.e., the leader) is virtually
equal to the performance of an isolated flapper, except in the compact configurations,
where the close interaction with the downstream flapper (i.e., the follower) results in
higher power requirements and propulsive speed than the isolated flapper. On the
contrary, the performance of the follower is significantly affected by the wake of the
leader in both regular and compact configurations. The analysis of the flow shows
that the performance of the follower is influenced by the interaction with the vertical
jet induced by the vortex rings shed by the leader. This interaction can be beneficial
or detrimental for the follower’s performance, depending on the alignment of the jet
velocity with the vertical motion of the follower. Finally, a qualitative prediction
of the performance of a hypothetical follower is presented. The proposed model is
semi-empirical, and it uses the flow field of the wake of an isolated flapper, exploiting
the small effect of the follower on the leader’s wake.

Key words: swimming/flying, flow-structure interaction, numerial simulation

1. Introduction

Nature provides a host of examples of interacting bodies through a fluid with surprising
behaviours. These range from a single, passive body like an auto-rotating maple seed
(Lentink et al. 2009), to a large number of synchronised, active bodies which interact
with the surrounding fluid, like fish schooling or bird flocks (Weihs 1973; Mora et al.
2016). The latter is particularly interesting since, due to the presence of more than
one body, each individual has to interact with an ambient fluid which is disturbed by
the surrounding individuals. These interactions can be exploited by the individual
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to extract energy from the fluid and move in a more efficient manner than if it were
in isolation. Although the main reason why animals form schools or flocks may not
be entirely clear yet, it is well known that animals benefit from collective motion in
terms of flow interaction (Weimerskirch et al. 2001; Becker et al. 2015).

This beneficial interaction is not restricted to a large number of bodies, but it is
also observed into its minimal expression for two body configurations. For example,
Liao et al. (2003) observed that a trout behind the wake of a cylinder adapted its body
kinematics to extract energy from the vortices of the cylinder’s wake. They attributed
this phenomenon to a beneficial interaction with the oncoming vortices, which they
denoted as Kármán gait. Even more stunning are the results from Beal et al. (2006),
who observed that a dead fish can overcome its own drag in the wake of a cylinder
provided its resonant frequency matches that of the von Kármán vortex sheet. It
can be argued that the beneficial flow interaction in the previous examples is merely
due to the lower average streamwise velocity of the von Kármán vortex sheet wake.
However, several studies have shown that swimmers are less efficient isolated (i.e., in
a clean free-stream) than when swimming in reverse von Kármán streets, like those
produced by thrust-producing, oscillating foils in a free-stream (Platzer et al. 2008) or
self-propelling oscillating bodies (Alben & Shelley 2005). In particular, Boschitsch
et al. (2014); Muscutt et al. (2017) and Kurt & Moored (2018) found that, for an inline
tandem configuration of two oscillating foils, the distance and phase shift between the
motion of the foils can always be adjusted such that the follower foil interacts with
the on-coming vortices extracting energy from the flow; thus, confirming the Kármán
gait hypothesis proposed in Liao et al. (2003) and Streitlien et al. (1996).

However, in the aforementioned examples the bodies were immersed in a free-
stream with their horizontal position held fixed. Consequently, the configuration of
the collective motion is not determined by the fluid interaction. On the contrary, when
the bodies self-propel, the configuration cannot be imposed but is the one that results
from the equilibrium of the hydrodynamic forces due to flow mediated interactions.
Ramananarivo et al. (2016) and Newbolt et al. (2019) experimentally studied the case
two airfoils in inline tandem configuration which self propelled due to an imposed
heaving motion with a varying phase shift. They found that, for a given phase shift,
stable configurations emerged at quantized equilibrium distances; and that this distance
was linearly proportional to the phase shift. However, no measurement of the efficiency
were provided, leaving open-ended the question of whether tandem configurations
of self-propelled bodies can benefit from flow interactions. In this regard, numerical
simulations have proven to be very useful, since they can provide quantitative data
of the flow field, but also of the forces and moments acting on the bodies. Lin et al.
(2019b) numerically simulated two self-propelling 2D foils undergoing a heaving and
pitching motion, finding that the follower always benefits from the flow interaction,
whereas the lead foil can benefit only if both foils are close. Similar studies are found
in the literature where the bodies are modelled as flexible foils and self-propulsion is
achieved thanks to a passive flexion of the body (Zhu et al. 2014; Peng et al. 2018a;
Ryu et al. 2020), or where the deflection of the body is fully prescribed (Maertens
et al. 2017). In all these cases, similar qualitative conclusions are extracted from these
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works, suggesting that the same main flow mechanism interaction is present in all
these examples of self-propelled collective locomotion.

Additional studies have focused on the effect of the size of the bodies (Peng et al.
2018b); or the stable schooling configurations with multiple individuals (Peng et al.
2018c; Park & Sung 2018; Dai et al. 2018; Lin et al. 2020). However, very few works are
found in the literature which consider a three dimensional flow, being all the previous
examples restricted to 2D configurations. For example, Daghooghi & Borazjani (2015)
numerically investigated the performance of an ”infinite” school of mackerels with a
rectangular pattern; and Li et al. (2019) analysed the energetics benefit of a two fish
school configuration where the kinematics of both fish where that of self-propulsion,
but their relative distance where fixed. However –to our knowledge– the only 3D
study where the bodies self-propel and their dynamics are determined from the fluid
structure interaction is that of Verma et al. (2018), who used reinforcement learning to
find the efficient optimal schooling configuration for a system of 2 and 3 self-propelled
fish-like bodies.

This lack of 3D studies may be explained by the computational cost. However, it
is known that the wake pattern of a self-propelled body significantly differs from 2D to
3D (Gazzola et al. 2011): from a reverse von Kármán vortex street in 2D to a diverging
wake of vortex rings in 3D. This could lead to significant differences of 3D stable
positions of the collective and on their associated performance when compared to its
2D counterparts. First of all, the stable quantized positions observed by Ramananarivo
et al. (2016); Newbolt et al. (2019) on a von Kármán vortex street may not longer
emerge on a 3D bifurcating wake. Secondly, on a 2D vortex street the only dissipation
mechanism is viscosity; however, three-dimensional mechanisms can lead to vortex
breakdown at much shorter distances. Hence, different vortical interactions might be
expected from 2D to 3D which could alter the performance of the bodies. In summary,
it is not clear if the main conclusions of tandem self-propelled bodies obtained from
2D studies are applicable to a 3D scenario.

In the present study, we analyse the problem of two self-propelled finite aspect
ratio plates in tandem configuration. The main focus of the study is to identify
which are the equilibrium positions and their associated performance, as well as to
highlight the similarities/differences with the 2D configurations found in the literature.
Particularly, the plates have chordwise flexibility (similarly to Yeh & Alexeev (2014);
Quinn et al. (2014, 2015); Hoover et al. (2018)) and self propel due to an imposed
heaving motion of their leading edge.

The paper is structured as follows: section 2 describes the problem and the
numerical methodology; in section 3 the main results are discussed; and, finally the
main conclusions of the study are gathered in section 4.

2. Methodology

2.1. Problem description

Two self-propelling plates in tandem configuration immersed in an otherwise undis-
turbed fluid are considered. The plates have a rectangular planform of chord C and
span b; thickness, e; uniform density, ρs; and they are flexible along the chordwise
direction. Under the tandem arrangements considered, one of the flappers swims
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Zl(t)

Zf (t)

D(t)

H

Figure 1: Side view of the schooling configuration. Each flapper has a prescribed
heaving motion about a fixed vertical pivoting position (represented as a red dot in
the figure). The vertical offset between the follower’s and leader’s pivoting position
is denoted as H. D(t) is the instantaneous horizontal distance between the flappers’
leading edge.

downstream of the other. We denote the flapper swimming downstream as follower,
and the upstream flapper as leader. Hence, variables related to the follower and leader
are indicated hereafter with the subindexes f and l, respectively.

The vertical motion of the leading edge of the flappers is prescribed as sinusoidal
functions, namely

Zl(t) = Al cos (2πft), Zf (t) = H +Af cos (2πft− φ), (1)

where Ai is the heaving amplitude of the i flapper, f is the frequency of oscillation,
φ is the phase offset, and H is the mean vertical offset between the flappers. These
magnitudes are sketched in figure 1, alongside the instantaneous horizontal distance,
D(t) = Xf (t)−Xl(t), where Xi is the horizontal position of the leading edge of the i
flapper.

The flappers share the same fixed plane of symmetry along the spanwise (y)
direction (i.e., they are aligned), and their leading edge is always parallel to the y-axis.
Likewise, note that while the vertical motion of the leading edge of the flappers is
prescribed, its horizontal motion results from the fluid structure interaction.

The fluid surrounding the flappers is governed by the Navier-Stokes equations of
the incompressible flow for a Newtonian fluid, namely,

∇ · u = 0, (2a)

∂u

∂t
+ (u · ∇) u = −1

ρ
∇p+ ν∇2u, (2b)

where u is the flow velocity, p is the fluid pressure, ρ is the fluid density, and ν is
the fluid kinematic viscosity.

One of the objectives of the present study is to find stable equilibrium positions of
the flappers in the H − φ plane. The rest of parameters that define the problem are
kept fixed, namely: the aspect ratio of the flappers, b/C, and their non-dimensional
thickness, e/C; the heaving amplitude is set equal for both flappers, Al ≡ Af = A; the
Reynolds number, Re = V C/ν, where V = 2πAf is the maximum vertical velocity of
the leading edge of the flappers; the density ratio, % = ρs/ρ; and the non-dimensional
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Heaving offset, H [0, 0.3, 0.6]C
Phase offset, φ [0◦ − 360◦]
Flappers’ span, b 0.5C
Flappers’ thickness, e 0.02C
Heaving amplitude, A 0.5C
Reynolds number, Re 200
Density ratio, % 10
Natural frequency, ω∗ 2.17

Table 1: Parameters of the problem under study.

natural frequency, ω∗ = ωn/(2πf), where ωn is the first natural frequency of the
flapper’s elastic response in vacuum. The value of these parameters is presented in
Table 1.

To select the elastic properties of the flapper (i.e., its natural frequency), two
different simulations of self-propelled isolated flappers with finite aspect ratio (i.e., 3D
simulations) were performed with ω∗ = 2.17 and 4.59, choosing for the present study
the case yielding maximum propulsive speed. The range for values of ω∗ used in the
prospective 3D simulations was selected after performing a finer parametric study of
the equivalent 2D problem, similar to that presented in Arora et al. (2018).

2.2. Computational set-up

To simulate the flexibility of a flapper the lumped-torsional flexibility model of Arora
et al. (2018) is used. Under this approach, a flapper is discretized into NB rigid bodies
linked to each other by means of torsional springs. The stiffness of these torsional
springs is computed to match ω∗. A sketch of the multi-body model of a flapper is
provided in Figure 2. For a given flapper, its rigid bodies are labelled as j = 1, . . . , NB .
Each body is a rectangular prism of span b, length c and thickness e, separated a
distance d = e/2 from the torsional spring that connects it to the consecutive body.
Consequently, the relative attitude of body j with respect to its predecessor, j − 1 is
given by the angle θj (see Figure 2b).

Under the previous model, each flapper has 2 + NB degrees of freedom (dof s),
namely: horizontal (X) and vertical (Z) translation of the leading edge, and NB
relative rotations of the bodies. Therefore, it is possible to express the equations that
govern the dynamics of the flappers in the general form (Featherstone 2014):

H(q)q̈ = ξ − c(q, q̇) + ξh, (3)

where q is the vector of generalized coordinates (i.e., the dof s of the system), H is the
generalized inertia matrix, c is the generalized bias force vector, ξ is the vector of the
generalized forces (accounting for the torsional springs), and ξh is the vector of the
generalized forces due to the flow. Although in eq. (3) only the dependence on q and
(q, q̇) is made explicit for H and c, respectively, they both implicitly depend on the
geometric and inertia properties of the flappers.
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Figure 2: (a) 3D representation of the multi-body model of a flapper. (b) Side view
(x− z plane) of the multi-body model. Blue spirals are the torsional springs, and θj is
the relative deflection angle of body j with respect to body j − 1, similarly to Arora
et al. (2018).

The vector of generalized coordinates is defined as q = [qu,qp]
>, where qu =

[Xl, θl,1, ..., θl,NB
, Xf , θf,1, ..., θf,NB

]> is the vector of unknown generalized positions,
and qp = [Zl, Zf ]> is the vector which contains the prescribed generalized positions,
given by eq. (1). Likewise, ξ = [ξu, ξp], where ξu = −K[0, θl,1, ..., θl,NB

, 0, θf,1, ..., θf,NB
]>,

and ξp = [Fp,l, Fp,f ]> contains the unknown reaction vertical forces acting on the
leading edge. In the present implementation, a reduced system of eq. (3) is solved
to compute qu, q̇u, and q̈u, as detailed in Arranz et al. (2021). After that, one can
solve for the reactive forces acting on the leading edge. For the present study, NB = 5,
based on the work of Arora et al. (2018).

Equations (2) and (3) are solved together using an in-house code, TUCANMB
(Arranz et al. 2021). In particular, the flow is solved by means of direct numerical
simulations (DNS), where the presence of the body in the fluid is modelled using the
immersed boundary method (IBM) proposed by Uhlmann (2005). On the other hand,
H and c of eq. (3) are computed using the robotic algorithm presented in Felis (2017).
The coupling between the fluid and the dynamic equations along time is done in an
staggered way, usually referred to as weak coupling. Interested readers can find more
details about the algorithm in Arranz et al. (2021).

The computational fluid domain is a rectangular prism of size 16C×6C×8C along
the streamwise, spanwise and vertical directions, respectively. Note that, the same
computational fluid domain was used in Yeh & Alexeev (2014) for similar simulations
of an isolated 3D self-propelled flexible plate. The flappers are located inside a refined
region with uniform grid size, ∆r, extended from [−0.5C, 0.5C] along the y-axis,
[−C, C +H] along the z-axis, and [−6.5C, Lx] (where Lx ranged from −2C to 4C,
depending on D) along the x-axis. Note that, previous distances are given with respect
to the cuboid centroid. Moreover, for cases with H = 0.6C the total domain is also
enlarged 0.6C in the positive z direction. Outside this uniformly refined region, the
mesh has a constant stretching of 0.8% in all directions.
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The grid size, ∆r, is determined after performing a grid sensitivity analysis, leading
to the conclusion that ∆r = C/50 accurately captures the dynamics of the problem,
whereas with ∆r = C/80 the flow details and temporal evolution of the forces are
accurately represented. Likewise, the time step is selected to be ∆tf = 5 · 10−4 and
4 · 10−4, for ∆r = C/50 and C/80, respectively, ensuring CFL = Umax∆t/∆r < 0.2
(where Umax is the maximum flow velocity in the domain). Interested readers can find
more details of the grid sensitivity analysis in appendix Appendix A.

A constant horizontal velocity, U∞, is imposed at the inflow boundary; an advective
boundary condition is imposed at the outflow boundary; and free-slip boundary
conditions are imposed at the lateral boundaries. With the present set-up, the flappers
could reach the inflow or outflow boundaries if their mean advance velocity (denoted as
propulsive speed, Up in the following sections) is higher or lower than U∞, respectively.

Therefore, the inflow velocity must be set equal to U∞ ≡ Up so that the flappers

remain in the refined region of the computational domain. Since Up is unknown a
priori, simulations are started with an initial guess of U∞, denoted as U0

i , which is
updated every kth time step, by means of the relaxation equation:

Uki = (1− β)Uk−1
i + βẊk−1

l , (4)

where β is a small parameter set to ∆tf , and superscripts indicate the time step where
the variable is evaluated. After a transient, the horizontal position of the flappers
oscillates around a fixed value, as well as Ui. It turns out that the average value of
Ui over a complete oscillation, is a good estimate of the mean propulsive velocity.
Therefore, U∞ is set to this average value, and the simulation is continued with this
constant inflow velocity. Only the results of this last phase of the simulations are
reported in this manuscript, after discarding the initial transient.

2.3. Performance indicators

After an initial transient, the flappers self arrange into an stable configuration, with a
constant mean separation distance, D, and mean propulsive speed, Up, over a cycle.
These magnitudes are computed as:

D =
1

T

∫ T∗

T∗−1

D(t) dt, Up = U∞ −
1

T

∫ T∗

T∗−1

Ẋl dt, (5)

where T = 1/f is the flapping period, and T∗ is the last computed full cycle of the
simulation.

The performance of a self-propelled flapper is computed in terms of its average
power consumption over a flapping cycle, namely:

P i =
1

T

∫ T∗

T∗−1

max (Pi, 0)dt, (6)

where Pi = Fp,i · Żi, being Fp,i is the vertical component of the reaction force acting
on the leading edge of the i flapper. Neglecting negative power contribution in (6)
entails that elastic storage of power is not considered. This approach is similar to
the one adopted in Berman & Wang (2007); Vejdani et al. (2018). In the following
discussion the performance of a given flapper in tandem configuration will be assessed
in terms of the comparison with the same flapper in isolation. To that purpose the
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power ratio of the i flapper is defined as Πi = P i/P s, where P s is the averaged power
of the isolated flapper.

As an additional measure of performance, the propulsive efficiency η is defined as
the ratio between the total useful kinetic energy and the total power consumption,

η =
mU

2

p

P l + P f
, (7)

where m is the mass of each flapper. The equivalent propulsive efficiency that the
tandem system would have if no interaction between flappers occurred is also defined,

ηs =
mU

2

p,s

2P s
. (8)

3. Results

3.1. Emergent patterns and overall dynamics

For reference, the case of the isolated flapper is presented first. The flapper self-propels
at a mean speed, Up,s = 0.88V , shedding a vortex ring during each stroke. The
vortex rings move away from the flapper with an oblique trajectory due to their own
induced velocity, leading to a bifurcating wake (Kurt et al. 2020). These vortices
are visible in figure 3a, which shows a visualization of the flow around the isolated
flapper at mid-downstroke. The deflection of the flapper during a cycle is depicted
in Figure 3b. Note that, the upstroke and the downstroke deflection patterns are
symmetric. At the beginning of a stroke, the flapper is almost horizontal, whereas the
largest deflection occurs at mid-stroke. Consequently, there is a phase offset of ∼ π/2
between the heaving motion and the deflection. Such a phase offset is characteristic of
flexible heaving foils when aerodynamic effects are more important than inertia effects
(Arora et al. 2018), and is commonly associated to high propulsive efficiency both for
passive flexion (Heathcote & Gursul 2007; Zhang et al. 2010) and prescribed pitching
kinematics (Moriche et al. 2017).

Figure 4 depicts the streamwise, 〈u〉, and vertical, 〈w〉, velocities of the fluid
averaged over a cycle and along the flapper’s span y/C = [−0.25, 0.25]. Note that, for
the averaging, a Galilean reference frame moving at a constant horizontal speed, Up,s,
was used. The averaged wake left by the vortex rings results in a bifurcating momentum
jet. Note that this wake pattern is not restricted to flexible, 3D self-propelling flappers,
but is is general to oscillating bodies, like rigid wings, immersed in a free-stream
within the typical range of Strouhal for propulsion, namely, 0.15 ≤ St ≤ 0.5 (Taylor
et al. 2003). In particular, the diverging wake pattern made of shed vortex ring is
the common trace of low aspect ratio oscillating wings (Dong et al. 2006; Buchholz
& Smits 2008). This wake pattern clearly differs from the reverse Von-Kármán wake
observed in 2D self-propelled plates (Alben & Shelley 2005; Hua et al. 2013).

We now turn our attention to the emergent dynamics found in the tandem simula-
tions. A total of 24 tandem configurations were simulated. They are characterized by
the follower’s vertical offset, H, the phase shift, φ, and the equilibrium distance, D.
Under the initial separation distances considered (i.e., D0/C = [1.5− 3]), a single D
was found for each φ, except for φ = 0◦, where two equilibrium distances co-existed
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(a) (b)

Figure 3: (a) Flow visualization around the isolated, self-propelled, flapper at
mid-downstroke. Flow is visualized in terms of iso-surfaces of the Q-criterion for
Q/f2 = 0.1. (b) Bending pattern of the flapper’s chordline during the downstroke
(solid) and upstroke (dashed). Dotted line corresponds to the trajectory of the leading
edge.
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Figure 4: Velocity field of the isolated self-propelled flapper, averaged over 2 cycles
and over y/C = [−0.25, 0.25]. (a) Horizontal component of the velocity, and (b)
vertical component of the velocity. Black line correspond to the mean position of the
flapper.

depending on D0. In order to differentiate them, we assign φ = 0◦ to those configu-
rations for which D/C ≈ 1, whereas φ = 360◦ is used for the tandem configurations
where D/C ≈ 3.
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(a) (b)

Figure 5: Flow visualization around the flappers in tandem formation. Flow is
visualized in terms of iso-surfaces of the Q-criterion for Q/f2 = 0.5. (a) H = 0.6C,
φ = 180◦ and (b) H = 0, φ = 0◦.

For illustration, figure 5 displays flow visualizations of two of the cases. Figure 5a
displays the flow corresponding to the case H = 0.6C and φ = 180◦, leading to
D/C = 2.2 (i.e., the horizontal gap between the trailing edge of the leader and the
leading edge of the follower is approximately equal to C). It can be appreciated that
the flow surrounding the leader is virtually unaffected by the follower, whereas the
follower is swimming across the leader’s wake vortices. Downstream of the follower, the
wakes of the flappers interact yielding a different wake structure than for the isolated
flapper. Figure 5b depicts the case H = 0 and φ = 0◦. In this case, the equilibrium
distance is D/C = 1.01 (i.e., the trailing edge of the leader and the leading edge of
the follower are almost touching). Due to the proximity between the flappers, there
is no clear distinction between the wakes of each plate. Instead, they appear to be
merged. These two cases can be understood as the 3D counterparts of the regular and
compact configurations reported by Zhu et al. (2014) for 2D tandem plates.

The performance of all the simulated configurations is summarized in figure 6. The
data is presented in the form of ratios relating metrics of the performance in the tandem
configuration to the corresponding metric of the isolated flapper, and using dashed
lines to link configurations with the same phase shift, φ. Figures 6a and 6b display the
input power required by the leader and the follower, respectively, as compared to that
required by the isolated flapper. For configurations where D/C ≥ 1.25, the energy
expenditure of the leader is virtually equal to that of the isolated flapper; whereas
for the compact configurations (i.e., φ = 0◦ and H ≤ 0.3C), a slightly higher mean
power is required by the leader as compared to that in isolation. Contrary to that, for
H = 0.6C and φ = 0◦, the follower’s and leader’s leading edges are almost aligned,
with D = 0.2C, and the required power is equal for both flappers and slightly less
than for the isolated flapper. The particularity of this aligned mode will be briefly
discussed at the end of this subsection, § 3.1.

Nevertheless, the effect of the tandem configuration on the leader’s power require-
ment is almost negligible, even for the compact configurations, as compared to the
effect on the follower: figure 6a shows that the power requirements for the leader vary
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Figure 6: (a) Input power ratio of the leader (Πl), (b) input power ratio of the
follower (Πf ), and (c) propulsive speed ratio (Up/Up,s) for all the configurations
explored. (d) Ratio of propulsive efficiency, η/ηs. The symbols stand for the resolution
of the simulation: ( ) ∆x = C/80; ( ) ∆x = C/50.

within ±1% of the value obtained for the isolated flapper, while figure 6b shows that
the power requirement for the follower vary up to ±10%, depending on H and φ. In
particular, depending on H there exists a φ below which the follower is able to take
advantage from the fluid interaction such that their required energy is lower than
that in isolation. From the performed simulations, it is found that this transition
occurs roughly at φ > 30◦, 135◦ and 180◦ for H = 0, 0.3C and 0.6C, respectively.
On the other hand, the power spent by the follower in the compact configurations,
considerably exceeds that of the isolated flapper (up to 10%).

The propulsive speed of the regular configurations (shown in figure 6c) is equal to
that of the isolated flapper, consistently with previous 2D simulations (Zhu et al. 2014;
Lin et al. 2019b; Ryu et al. 2020). For compact configurations (and H = 0, φ = 30◦),
the propulsive speed is found to be up to 3% higher than Up,s. While the result is
consistent with 2D simulations in the compact range and for H = 0, the increment in
propulsive velocity of the 3D cases is more modest: Lin et al. (2019b) report propulsive
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velocities up to 50% higher than in isolation for heaving and pitching rigid 2D-foils in
compact configurations at Re = 200. Likewise, Ryu et al. (2020) find an increase of
40% in Up for flexible plates at Re = 100, whereas Peng et al. (2018a) report a more
modest increase of 10%, for flexible plates at Re = 200 in compact configurations.
According to Lin et al. (2019b), the higher propulsive speed of the tandem airfoils
in the compact configurations occurs because the foils behave as a single larger foil.
Consequently, the problem might be equivalent to that of a plate with twice Re, thus
a larger Up would be expected (Park & Sung 2018; Lin et al. 2019a). However, in 3D,
the two flappers would behave as a single flapper with twice the chord, but half the
aspect ratio, A = b/C. Since Up,s decreases for decreasing A (Yeh & Alexeev 2016),
it might be the case that both the Re and A counteracting effects lead to the small
change observed for the present configurations.

As reported by Peng et al. (2018a), the significant increase of Up in 2D compact
configurations is enough to counteract the higher required power, leading to a higher
overall efficiency of the compact configurations compared to isolated configurations
(i.e., η/ηs > 1). However, in 3D, the results strongly depend on H and φ, as shown
in figure 6d. For regular configurations higher η/ηs are obtained for cases where the
follower extracts energy from the flow (i.e., Πf < 1), as expected.

The aforementioned transition from compact to aligned for the cases with φ = 0◦

when H varies is also observed in 2D. In particular, Peng et al. (2018a) found that, for
2D flexible plates, when φ = 0◦ the stable position of the follower is D/C ≈ 1 below a
certain H. However, for H/C ≥ 0.6, both plates becomes aligned (D/C = 0). In these
cases, the required average power of each plate is equal and lower than that of the
isolated plate, meanwhile Up significantly decreases, leading to a loss of efficiency. In
this regard, the same behaviour is observed in the present study for the aligned mode.
Nonetheless, the dynamics differ between 2D and 3D. In 2D, the performance of both
plates is symmetric with respect to each stroke and there is no leader or follower. On
the contrary, in 3D the forces of the leader are nearly identical to that of the isolated
case, whereas the follower is affected by the interaction of its trailing edge with the
vortices shed by the leader. Finally, it is worth noting that the trends of the power
ratios obtained by Peng et al. (2018a) (denoted herein as Πi,2D) in the 2D compact
configurations (namely, H/C < 0.6) are the opposite than the ones reported here in
3D. In both 2D and 3D, the flappers require more energy in the tandem configuration
than if isolated (i.e., Πl,2D, Πf,2D > 1), entailing that the interaction is detrimental
for both flappers. However, while Peng et al. (2018a) reports that this interaction
is more detrimental for the leader (namely, Πl,2D > Πf,2D), our present 3D results
shows the opposite trend (namely, Πl < Πf ) as seen in figures 6a and 6b.

3.2. Flow interaction mechanisms

From the previous section it is clear that the follower is more affected by the collective
behaviour than the leader, even for compact configurations. In order to understand the
dependence of Πf on H and φ, the temporal evolution of Pf is depicted in figure 7 for
a few representative cases. In figure 7a the evolution for cases with constant H/C = 0
and different phase offset is shown, whereas figure 7b shows Pf for a constant offset,
φ = 180◦ and different H. Note that, to allow a comparison with the isolated flapper
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(grey dashed line in figures 7a and 7b), we define the variable t̂ = t− φ/(2πf) to shift
the time reference of the follower so that its downstroke is synchronized with that
of the isolated flapper. Qualitatively the required power behaves as a squared sine
function over a cycle, being P ≈ 0 at the beginning of the downstroke and upstroke,
and maximum at mid-stroke. For H = 0 and φ = 0◦, the power ratio Πf > 1 observed
in figure 6b is due to an increase of the maximum required power at mid-stroke, as
shown in figure 7a. However, for the optimum case, H = 0 and φ = 135◦, the power
reduction is not due to a lower maximum required power at mid-stroke, but to a
decrease of Pf after each mid-stroke. This can be better appreciated in figure 7c,
which displays the difference (Pf − Ps). In all cases, the follower spends more energy
during the first half of the stroke than the isolated flapper. However, for the optimal
case, this is largely counteracted during the second half of the stroke, yielding a total
reduction of the required energy. Overall, it is observed that the difference (Pf − Ps)
monotonically decreases with increasing D (i.e., increasing φ) during the first half of a
stroke. However, the power difference (Pf − Ps) during the second half of a stroke
does not follow the same behaviour: it decreases when φ varies from 0◦ to 135◦, but it
increases again when φ varies from 135◦ to 360◦. As a consequence, for φ greater than
the optimal one, Πf increases towards 1, as illustrated by case φ = 360◦ in figure 7c.

Figure 7b allows to analyse the effect of H on the transition from Πf < 1 to Πf > 1

for a fixed φ. Note that D/C is similar for the cases displayed, as shown in figure 6.
In figure 7b it is observed that for H/C > 0, Pf is not equal during the downstroke
and the upstroke. In particular, the peak of the required power is higher during the
downstroke and increases with H, whereas the peak during the upstroke remains
approximately constant and equal to that of Ps. The larger power consumption during
the donwstroke is not compensated during the upstroke for H/C = 0.6, as shown in
figure 7d; whereas the lower peak for H/C = 0.3 during its downstroke, and a larger
power reduction during the upstroke, allows this follower to outperform the isolated
flapper

To summarize, the results from figures 7c and 7d suggest that, irrespective of the
final power ratio, the follower always requires more power than the isolated flapper
during the first half of the stroke, and less during part of the second half of the
stroke. This is true for all the cases presented in this paper. The instantaneous
power required by the follower, Pf , depends on the hydrodynamic forces and on
the inertia and elasticity of the flapper. However, due to the choice of parameters
of the present simulations (table 1), the influence of the hydrodynamic forces is
dominant, and it should be possible to explain the behaviour of Pf in terms of the
flow interactions. Moreover, since the inertia/elastic properties of the flapper and its
prescribed kinematics are the same for both the follower and the isolated flapper, the
difference (Pf − Ps) must be ascribed to interactions of the follower with the leader’s
wake. Thus, we now proceed to analyse the flow surrounding the follower at different
time instants.

Figure 8 depicts the pressure field and the velocity field near the follower at the
beginning of the downstroke (t̂/T ≈ 0.1) for cases H = 0, and φ = 135◦ and φ = 0◦.
For reference the case of the isolated flapper is also shown in the top part of the
figure. Note that for the time instants considered Żf < 0, and the instantaneous
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Figure 7: (a-b) Temporal evolution of the required power during a cycle, and (c-d)
temporal evolution of the difference of the input power of the leader/follower and the
isolated flapper. (a,c) H = 0 and ( ) φ = 0◦; ( ) φ = 135◦; and ( ) φ = 360◦.
(b,d) φ = 180◦ and ( ) H = 0; ( ) H = 0.3C; and ( ) H = 0.6C. In (a-b),
( ) corresponds to the power of the isolated flapper. Note that the time is shifted in
each case so that 0 corresponds to the beginning of the downstroke for each flapper.
For reference, the downstroke is indicated with a grey background.

required power of the follower exceeds that of the isolated flapper for both cases. The
follower is interacting with the vortex ring (VR) shed during the leader’s upstroke and,
consequently, the VR circulation induces an upwards velocity jet. Due to the phase
offset, the VR is located above the follower when φ = 135◦ (middle row) and below
the follower for φ = 0◦ (bottom row). However, in both cases, the VR is convecting
fluid against the flapper motion. This results in a flow pattern with a saddle point on
the suction (pressure) side of the follower for φ = 135◦ (φ = 0◦). Note that this saddle
point does not occur in the case of the isolated flapper (top row of figure 8).

Figure 9 displays the flow after the mid-downstroke (t̂/T ≈ 0.3), when the follower
requires less power than the isolated flapper for φ = 135◦, but requires higher power
for φ = 0◦. The middle row of figure 9 (φ = 135◦) shows that the VR shed during
the leader’s upstroke has travelled downstream meanwhile the VR shed during its
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Figure 8: Flow visualization of different cases at a similar time instant t̂/T ≈ 0.1.
From top to bottom: isolated flapper; tandem case with H = 0, φ = 135◦; and tandem
case with H = 0, φ = 0◦. Left column corresponds to the pressure field at y = 0 plane
around the isolated flapper for the top panel, and around the follower for the remaining
panels. The dashed line indicates the plane shown in the center column panels. Center
column displays the pressure in the x = Xf + 0.25C plane. Superimposed to the
pressure, the instantaneous streamlines of the in-plane velocity are displayed. The
streamlines are coloured with the local velocity magnitude. Right column displays
iso-surfaces of the Q-criterion for Q/f2 = 0.5. Red lines stands for the intersection of
the iso-surfaces with the x = Xf + 0.25 plane.
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downstroke (with opposite circulation) starts interacting with the follower. Since both
the follower’s wing tip vortices and the VR have the same circulation, they seem
to merge near the LE, and no saddle point is observed. This yields a downwards,
high-velocity jet, which decreases the pressure on the follower’s lower surface, thus
explaining the lower Pf required with respect to Ps observed in figure 7c. This
interaction is in agreement with the recently published work of Li et al. (2020), who
reported that a following fish in tandem saved energy when its tail motion matches
the direction of the induced velocity of the wake’s VRs.

On the contrary, the bottom row of figure 9 (φ = 0◦) shows that the VR shed
during leader’s downstroke is still above the follower. Consequently, the VR is still
inducing an upwards jet, whose overall result is a lower pressure on the upper surface.
This leads to an increase of required power as compared to the isolated flapper. Note
that, the saddle point is still present. Although not shown, for t̂/T ≥ 0.36, the VR is
no longer affecting the flow above the follower’s surface, and it starts interacting with
the next VR, leading to a flow configuration similar to that of φ = 135◦. However,
this beneficial interaction occurs during a shorter period of time, leading to an overall
lower performance. Due to symmetry, an analogous behaviour is observed during the
follower’s upstroke.

Note also that, although only two cases have been presented here for the sake of
brevity, the same qualitative behaviour is observed for the other cases. For H > 0,
due to the lack of symmetry, the distance between the follower and the VR’s during
the upstroke and the downstroke is not the same, modulating the intensity of the
interaction. But the nature of the interaction of the follower with the VR in the wake
of the leader remains qualitatively the same.

Based on the results of figures 8 and 9, it is tempting to seek an estimate of the
performance of the follower in the analysis of the wake of an isolated flapper. The key
assumption is that the wake structure between the leader and the follower is governed
by the flapping motion of the leader, with a weak effect of the follower. Therefore,
the performance of the latter might be estimated superimposing its trajectory on
the wake of an isolated flapper (Zhu et al. 2014; Peng et al. 2018b). This is done in
figure 10, which displays the vertical velocity (w) in the wake of the isolated flapper at
a vertical line with coordinates y = 0 and x(t) = Xs(t) +D(t) (i.e., at the midspan of
the leading edge of an hypothetical follower). Thus, the figure provides an estimation
of the vertical velocity of the fluid just upstream of the leading edge of an hypothetical
follower. Each panel in figure 10 corresponds to a different equilibrium position of the
hypothetical follower, specified in terms of the values of H and φ. The corresponding
trajectory of the hypothetical follower is also shown in each panel, with a black solid
line. Note that the follower travels from right to left in the figure, implying that the
rightmost position (t = 0) corresponds to the beginning of the follower’s downstroke.

The first row of figure 10 (panels a to c) shows the same cases presented in
figures 7a and 7c. Figure 10a shows that, for the case with H = 0 and φ = 0, during
roughly the first half of each stroke, the hypothetical follower encounters flow that
opposes its motion: positive w during the first half of the downstroke, negative w
during the first half of the upstroke). However, for cases φ = 135◦ and φ = 360◦

(figure 10b and c, respectively) the sign of w coincides better with the direction of
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Figure 9: Flow visualization of various cases at a similar time instant t̂/T ≈ 0.3.
From top to bottom: isolated flapper; tandem case with H = 0, φ = 135◦; and tandem
case with H = 0, φ = 0◦. Caption as in figure 8.

the stroke of the follower. The difference between these two cases is the intensity of
the vertical velocity fluctuations at the LE of the follower, larger for the case with
φ = 135◦, which might explain its larger energy savings (as discussed in figure 7c).

The left and central panels of the second row of figure 10 (panels d and e) display
the configurations analyzed in figure 7b and 7d, with φ = 180◦ and H/C = 0.3 and 0.6,
respectively. Since H > 0, the flow encountered by the hypothetical follower during the
downstroke and upstroke is no longer symmetric. The fraction of the stroke when the
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a) H/C = 0, φ = 0◦ b) H/C = 0, φ = 135◦ c) H/C = 0, φ = 360◦

d) H/C = 0.3, φ = 180◦ e) H/C = 0.6, φ = 180◦ f) H/C = 0.6, φ = 360◦

Figure 10: Vertical velocity field at y = 0 seen by the leading edge of the follower’s
flapper as if it where in the undisturbed wake of the isolated flapper. Black line denotes
the vertical position of the follower’s leading edge as a function of time, where t̂ = 0 is
the beginning of the follower’s downstroke. Dashed black lines are the contours for
w = 0.

sign of the velocity of flapper and wake coincide is larger for the case H/C = 0.3 than
for the case with H/C = 0.6, specially during the upstroke (note that the transition
from positive to negative vertical velocity is indicated with dashed contour lines in
figure 10). Additionally, whenever the sign of the velocities coincide, the value of w at
the LE of the follower is higher for H/C = 0.3 than for H/C = 0.6. Both observations
are in line with the behaviour of the required power in figure 7d, with larger power
savings with respect to the isolated flapper in case H/C = 0.3 than in case H/C = 0.6.

Finally, panel figure 10f depicts the case H = 0.6C and φ = 360◦. A comparison
of panels e) and f) shows that, by increasing D, the hypothetical follower is now
swimming through a region where the flow velocity is better aligned with the LE’s
vertical motion. Thus, a larger value of the power ratio Πf is expected for the case
with φ = 360◦ than for the case with φ = 180◦, a result that is confirmed in the actual
simulation (see results in figure 6b).

For reference, figure 11 shows the pressure fluctuation field seen by the hypothetical
follower, obtained in the same fashion as the vertical velocity field in figure 10. These
pressure fluctuation fields are analogous to those reported by other authors for 2D flows
(Zhu et al. 2014; Peng et al. 2018b), and can be used to estimate the relative position
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Figure 11: Caption as figure 10 but for the pressure field.

of the vortex ring (i.e., a low pressure region, in blue in the figure) with respect to the
trajectory of the hypothetical follower (black line). However, this representation is not
ideal since it does not show the direction of the jet induced by the vortex ring, which
is important in determining if a vortical interaction is beneficial or not, as discussed
in figures 8 and 9. Overall, figure 11 seems to suggest that the tandem configurations
where the follower outperforms the isolated flapper correspond to cases where the
vortex rings pass above the LE during its downstroke. As discussed in this section, this
an oversimplification since not only the position, but also the sign of the circulation of
the vortex ring matters.

3.3. Modelling the follower’s performance

The results discussed in the previous sections have shown that the nature of the
interaction of the follower with the leader’s wake is qualitatively the same for all cases,
including the compact configurations. Our results support the existing literature on
the topic, confirming that the differences in the performance of the follower are linked
to the different timing of the interaction of the follower with the vortex rings shed
by the leader, which determines if the interaction is beneficial (in terms of power
requirements) or not. In this section, a more quantitative analysis of the results is
presented.

Figure 12a shows Πf as a function of D, for three values of H. Although the data
presented in this figure was already reported in figure 6b, this alternative representation
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Figure 12: (a) Input power ratio of the follower, Πf , as a function of D. Note that
the vertical axis is reversed, such that maximums corresponds to cases where the
follower outperforms the isolated flapper. (b) Relationship between φ and D for all
cases. Symbols stand for the vertical offset: ( ) H/C = 0; ( ) H/C = 0.3; and ( )
H/C = 0.6. In (b), dashed black line is the linear regression.

highlights other features of the present study. First of all, it is clear that for each
H there exist a D (and consequently also a corresponding phase shift φ) for which
the follower is able to extract the most energy from the flow interaction, as indicated
by the corresponding peaks in figure 12a. This distance increases with H, due to
the diverging pattern of the leader’s wake. The optimum values are Πf = 0.917,
0.960 and 0.957 for H/C = 0, 0.3 and 0.6, respectively. It is clear that the global
optimum is obtained for H = 0 because the positive flow interaction occurs both
during the upstroke and the downstroke. Also, it is clearly appreciated in figure 12a
that Πf is most sensitive to φ when the vertical offset is H = 0, with broader peaks
for H/C = 0.3 and 0.6.

It is also noticeable (at least for H/C = 0 and 0.3) that Πf tends to 1 relatively

quickly as D increases, especially when compared to similar studies in 2D, (Park &
Sung 2018; Lin et al. 2019b, 2020; Ryu et al. 2020). This is due to the diverging
pattern of the wake in 3D: In the previous section, figure 11c shows that the follower
of case H = 0, φ = 360◦ (D/C ≈ 3.5) is not directly interacting with the VRs, since
the VRs are passing the follower too far away. In a 2D configuration with a reversed
Von-Kármán vortex street, in which the vortices are advected in the streamwise
direction with no wake bifurcation, a very similar interaction would be obtained for
φ = 0◦ and for φ = 360◦.

Figure 12b shows D versus φ for the different vertical offsets. Although figure 6
revealed that D depended on both φ and H, it is clear from figure 12b that its main
dependence is on φ. Particularly, D shows a linear dependency on φ for all cases
except for the aligned mode case (i.e., the data point in the lower left corner of the
figure). This trend is also observed for 2D schooling configurations (Newbolt et al.
2019; Lin et al. 2019b; Ryu et al. 2020), and can be linked to the wavelength of the
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leader’s wake, λl, as postulated in Portugal et al. (2014). This wavelength is defined
as λl ≡ fUλ, where f is the frequency of the flapping motion and Uλ is the horizontal
advective velocity of the leader’s wake. Indeed, Newbolt et al. (2019) propose

φ = 2πS + φ0, (9)

where φ0 is an unknown constant and S is the schooling number (Ramananarivo et al.
2016), defined as the ratio of the horizontal distance between the leader’s trailing edge
and the follower’s leading edge and λl. That is S ≡ (D − C)/λl, which yields

φ = 2π

(
D

C
− 1

)
C

fUλ
+ φ0. (10)

A linear regression on the data shown in figure 12b, excluding the aligned mode
case, yields φ0 = 0.12 and Uλ = 0.78V = 0.89Up,s. Note that, φ0 ≈ 0 entails that, for

φ = 0, the equilibrium distance is D/C = 1 (i.e., S = 0). This is of course consistent
with the present results, and also with the literature: Ramananarivo et al. (2016);
Peng et al. (2018a); Lin et al. (2019b); Newbolt et al. (2019), all of them find S ≈ 0
for φ = 0. On the other hand, these authors report Uλ ≈ Up for 2D configurations,
somewhat larger than the value obtained here for 3D configurations. The origin of this
discrepancy is unclear, but one possible source could be the different flow topology
of the 2D and 3D wakes. Indeed, similar discrepancies for Uλ have been reported
between 2D and 3D configurations with imposed gap distances and fixed free-stream
velocities: Uλ ≈ 1.2U∞ for 2D (Boschitsch et al. 2014), larger than Uλ ≈ 1.02U∞ in
3D (Kurt & Moored 2018).

In § 3.2 we observed a relation between the vertical induced velocity of the VR
and the required power of the follower. Motivated by figure 10, we hypothesise that
the effect of the VR can be estimated from the averaged vertical velocity seen by the
leading edge of a hypothetical follower swimming in the wake of an isolated flapper.
This quantity is defined as

wLE ,f (t) =

∫ b/2

−b/2
w(Xf (t), y, Zf (t); t)dy. (11)

The discussion in section 3.2 suggests that higher power is required when the induced
flow velocity is opposed to the direction of the follower’s LE (Żf ), and vice-versa.
Thus, to estimate the goodness of a given configuration we define

〈wLE ,f Żf 〉 =
1

T

∫ T

0

wLE ,f (t)Żf (t)dt, (12)

expecting large values of 〈wLE ,f Żf 〉 to be linked to high performance cases (i.e.,
Πf < 1), and low or negative values to be associated to low performing cases (Πf > 1).

Indeed, figure 13 displays 〈wLE ,f Żf 〉 versus Πf for all cases, showing a good correlation
between these two variables (i.e., a linear regression yields R2 = 0.95). Note that, in

the plot 〈wLE ,f Żf 〉 is normalized with the integral over a cycle of Ż2
f , namely, 2πf2A2.

The correlation between 〈wLE ,f Żf 〉 and Πf indicates a route to the estimation of

the performance of any given tandem configuration, by using 〈wLE ,f Żf 〉 as a surrogate

model of Πf . Note that, the computation of 〈wLE ,f Żf 〉 only requires the flow field of
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Figure 13: Follower’s power ratio, Πf , as a function of 〈wLE ,f Żf 〉 for all cases.
( ) H/C = 0; ( ) H/C = 0.3; and ( ) H/C = 0.6.

the isolated case and the position of the hypothetical follower’s LE, xf = (Xf , Zf ). In

order to compute xf , we assume Xf (t) ≈ Xs(t) +D, which requires that the velocity
of the leader is approximately equal to that of the isolated flapper (see figure 6c)
and that D(t) ≈ D. The latter assumption is reasonable for the present cases, with
|D(t)−D| . 0.17C for all cases reported here. Using these estimations, together with
equations 10 and 1, the position of the hypothetical follower’s LE can be expressed as

xf (t,H, φ) =

(
Xs(t) +

fUλ
2π

(φ− φ0) + C,Zf (t,H, φ)

)
, (13)

where the dependence of Zf on H, φ and t has been made explicit.

Figure 14a displays a map of 〈wLE ,f Żf 〉 for hypothetical followers, as a function

of the mean separation D and the height H. This map is computed using Uλ = 0.78V
and φ0 = 0.12 in equation 13 (i.e., with the values calculated from the linear regression

in figure 12b), and shows good agreement between 〈wLE ,f Żf 〉 and the values of Πf

obtained from the actual simulations. The map of 〈wLE ,f Żf 〉 predicts a range of good
performing hypothetical followers along a diagonal band, with a maximum occurring
for H = 0. For configurations below this diagonal band, 〈wLE ,f Żf 〉 decreases slowly,
consistent with the slow drift of Πf → 1 as H decreases from the optimal value. Recall
that this decrease in performance is associated to the loss of the beneficial interactions
with the VR, and hence the performance of the follower tends monotonically to
the performance of the isolated flapper. On the contrary, configurations above the
optimal diagonal band show a sharp decrease of 〈wLE ,f Żf 〉, consistent with the sudden
degradation of the follower’s performance as the interactions with the VR become
damaging (Πf > 1). Likewise, the map of 〈wLE ,f Żf 〉 also predicts the sharp transition

in performance for H = 0 previously discussed in figure 12a, when D/C decreases
from the optimum value (i.e., D/C ≈ 1.6) to D/C ≈ 1.

It is interesting to note that the map of 〈wLE ,f Żf 〉 predicts good performance for

cases with D/C ≈ 1 and H/C ≈ [0.4, 0.6]. Note however that figure 14a provides no
information about the stability of a given configuration (i.e., a duplet D −H). That
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Figure 14: Contour of 〈wLE ,f Żf 〉/(2πf2A2) for a follower’s LE trajectory computed
with eq. (13). Values of xf are computed assuming (a) Uλ = 0.78V , φ0 = −0.12, and

(b) Uλ = Up,s, φ0 = 0. The simulated cases are superimposed, coloured with Πf , as in
figure 6b.

is, there is no warranty that equilibrium, self-propelled, tandem configurations can be
obtained for the whole phase space D-H plotted in figure 14a. Hence, it could be the
case that configurations around this region are not stable, but develop into an aligned
mode configuration (i.e., with D → 0).

Even though the previous model yields good predictive results, the values obtained
not only depend on data of the isolated flapper. In addition a large number of tandem
simulations has been required to estimate the values of Uλ and φ0, via the linear
regression in figure 12b. Therefore, it is interesting to explore what predictions can
be made by using only data of the isolated flapper simulation. This can be done
by assuming in eq. (13) the values of Uλ = Up,s, and φ0 = 0, which are reasonable
estimations according to the literature (Newbolt et al. 2019; Peng et al. 2018a; Lin
et al. 2019b). The results of this alternative model are presented in figure 14b. The
agreement with the actual data of the tandem simulations is reduced, but nevertheless,
the main features of the configuration space are satisfactorily predicted, at least in a
qualitative way. Namely, the maximum performance follows a diagonal line with a
clear maximum at H = 0; configurations above this line have a lower performance;
and there exists a sharp transition at H = 0 from the optimum case to bad performing
configurations as D/C → 1 (i.e., φ→ 0). Finally, this model also predicts the good
performance region for D/C = 1 and H/C ≈ 0.6 discussed in the previous paragraph.

4. Conclusions

In this work, the tandem configurations of two self-propelled flexible plates of finite
span are explored by means of numerical simulations. The flappers self-propel due
to an imposed vertical motion of their leading edges. We explore the stable tandem
configurations that emerge in the parametric space of phase shift between the motion
of each leading edge (φ ∈ [0◦ − 360◦]) and vertical offset between the mean vertical
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position of the flappers (H/C ∈ [0− 0.6]). For all the cases, the flappers self-propel at
a mean constant speed and a mean equilibrium distance between the leader and the
follower.

Two main patterns are found: compact and regular configurations, in agreement
with similar two dimensional configurations (Zhu et al. 2014). In compact configurations
the equilibrium is such that the leading edge of the follower and the trailing edge of
the leader are almost touching. The propulsive speed of the compact configurations is
slightly higher than that of the isolated flapper, but at the expense of a higher required
power, both for the leader and the follower. On the other hand, regular configurations
are characterized by larger equilibrium distances, propelling at the same speed as the
isolated flapper. In this mode, the leader is virtually unaffected by the follower, such
that it performs as an isolated flapper; on the contrary, the follower is affected by the
leader’s wake and its performance depends both on H and φ. For some values of these
parameters the follower’s required power is reduced compared to the isolated flapper.
In summary, a 3% increase of the propulsive speed is found in compact configurations
as compared to the case of the isolated flapper; and a maximum reduction of ≈ 10%
on the required power of the follower for the regular configurations. These gains are
more modest than those found in 2D (Park & Sung 2018; Peng et al. 2018a; Lin et al.
2019b; Ryu et al. 2020), a fact that can be attributed to the different flow topology
between the 2D and 3D wakes. This reduced energy harvesting from 2D to 3D is also
reported in Verma et al. (2018).

To understand the effect of φ and H on the performance of the follower, the
instantaneous required power of the latter is compared to that of the isolated flapper.
It is found that, irrespective of the overall performance, the follower requires more
power than the isolated flapper during the first half of each stroke. Good performing
cases outperform the isolated flapper during the second half, thus counteracting the
previous excess of required power, and leading to a lower averaged required power for
the follower than for the isolated case.

These changes in the temporal evolution of the power are linked to the flow
interaction of the follower with vortex rings (VR) in the leader’s wake. The analysis
of the flow field at different time instants reveals that the follower saves energy when
it is moving (vertically) in the same direction of the jet induced by the VR interacting
with the follower (i.e., beneficial interactions). Conversely, detrimental interactions are
found when the jet induced by the VR points in the opposite direction to the motion
of the follower, yielding larger energy requirements than in the isolated case. For the
cases where the VR is too far away from the follower, the power requirements of the
latter tend to those of the isolated flapper (i.e., no interactions).

A predictive model of the performance (in terms of required power) of the follower
is presented based on the flow field of the isolated flapper. Two versions of the model
are explored, one which makes use of data extracted from the tandem simulations and
another which only relies on the data from the isolated flapper simulation. Although
the first version of the model shows better agreement with the actual data from
the simulations (as expected), the second version is still able to capture the main
characteristics of the φ−H phase space, at least from a qualitative point of view.
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Figure 15: Grid sensitivity analysis on the (a) horizontal force, (b) vertical force,
and (c) tip deflection angle (α), of an isolated flapper with a prescribed motion of its
leading edge. Note that S = bC is the planform area of the flapper. ( ) ∆x = C/50;
( ) ∆x = C/80; and ( ) ∆x = C/120.
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Appendix A. Grid sensitivity analysis

In order to determine the grid spacing to be employed in the simulations, a grid
sensitivity study is performed. As a benchmark case, the simulation of a single flapper
with an imposed vertical motion of its leading edge equal to that of the leader in
eq. (1) and fixed along the horizontal direction, is considered. The properties of the
flapper and of the fluid are those gathered in Table 1, and U∞ = 0.83V .

Three different ∆r are considered, C/50, C/80, and C/120. For each simulation
∆tf = 0.025∆r/C, ensuring CFL = Umax∆t/∆r < 0.2 (where Umax is the maximum
flow velocity in the domain). The grid sensitivity on the horizontal, Fx, and vertical
force, Fz, is depicted in Fig. 15, as well as on the tip deflection angle, α (defined as the
angle between the horizontal plane and the plane that joins the leading edge and the
trailing edge (Arora et al. 2018)). It can be observed that the dynamics of the flapper
are well captured with all employed grids. Table 2 gathers the variation with the grid
spacing of the mean forces, their rms and the maximum value of the tip deflection
angle over a cycle, T = 1/f . Note that, F ∗ = 2F/ρV 2S (where S = bc), and () stands
for the average over a cycle. Relative errors below 6% are obtained between the forces
computed with ∆r = C/50 and ∆r = C/120; whereas this difference is reduced to 2%
if the results from ∆r = C/80 and ∆r = C/120 are compared.

Table 3 shows, for illustration, the effect of the grid spacing on the performance of
a tandem case with H/C = 0.6 and φ = 360◦. The difference in the propulsive speed
from ∆r = C/50 to ∆r = C/80 is less than 1% and the difference in the equilibrium
distance is 0.003C, implying that the same tandem configuration is obtained for both
grid spacings. The difference in the average power (P ∗i ≡ 2Pi/ρV

3S) is below 4%,
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∆r F ∗x rms(F ∗x ) F ∗z rms(F ∗z ) αmax [deg]
C/50 −0.033 0.305 1.479 1.626 31.61
C/80 −0.042 0.302 1.430 1.575 30.84
C/120 −0.044 0.296 1.401 1.544 30.38

Table 2: Statistics of the forces for an isolated flapper with imposed motion as a
function of the grid size.

∆r Up/V P ∗s D/C P ∗l P ∗f Πl Πf

C/50 0.874 0.648 3.383 0.649 0.627 1.001 0.967
C/80 0.879 0.624 3.386 0.625 0.603 1.001 0.966

Table 3: Statistics of the tandem configuration, H/C = 0.6, φ = 360◦, for different
grid sizes.

however when comparing the power ratio, the difference is lower than 0.2%. Similar
results are obtained for the other tandem simulations presented herein.

In view of the results from tables 2 and 3, the simulations are performed with
∆r = C/50. Only for those configurations where flow visualizations and temporal
histories of force and power are presented, the simulations are performed with ∆r =
C/80.
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