
Università degli Studi di Padova
Facoltà di Ingegneria Industriale

Corso di Laurea Magistrale in

Ingegneria Aerospaziale

Implementation
and experimental verification

of a 3D-to-2D
Visual Odometry algorithm
for real-time measurements

of a vehicle pose

Giulia Soldà

Supervisor:
Prof. Stefano Debei

Assistant supervisor:
Marco Pertile

Anno accademico 2014-2015

Abstract

This work describes the implementation of a software for real-time vehicle pose

reconstruction using stereo visual odometry.

We implemented the visual odometry procedure firstly by guessing motion by a

linear 2D-to-3D method solving a PnP problem embedded within a random sample

consensus process (i.e., a Ransac scheme) to remove outliers. Then, a maximum

likelihood motion estimation is performed minimizing a non-linear problem. The

software is tested on various datasets in order to evaluate its accuracy and perfor-

mance.

Regarding the image processing steps, many feature detectors and descriptors

have been tested to provide best accuracy with the least computational time. To

achieve real-time execution, GPU implementations of feature extraction and match-

ing algorithms are used.

The developed software is tested on the NVIDIA Jetson TK1. This board is

the main computer of a project called MORPHEUS that involves the design and

building of the first robotic rover of the University of Padova. The system proposed

allows the rover to determine its real-time location and 3D orientation.

In this paper we present the results obtained, demonstrating an high degree of

reliability and an accuracy of better than 1% over 1350mm of travel.

Contents

List of Figures iii

List of Tables vii

1 Introduction 1

2 General problem 5

2.1 Introduction . 5

2.2 Camera model . 8

2.2.1 Camera calibration . 12

2.2.2 Lens distortion . 12

2.3 Feature detection and matching . 13

2.3.1 Feature detection . 14

2.3.2 Feature description . 15

2.3.3 SIFT . 16

2.3.4 SURF . 19

2.3.5 FAST . 21

2.4 Triangulation . 23

3 Motion estimation 25

3.1 Introduction . 25

3.2 The P3P problem . 26

3.3 Outliers rejection . 29

3.3.1 Ransac algorithm . 30

i

ii CONTENTS

4 Procedure 33

4.1 Image processing . 34

4.2 Triangulation . 40

4.3 Motion estimation . 41

4.3.1 Outlier rejection . 42

4.3.2 Non-linear optimization . 46

4.3.3 Trajectory reconstruction . 47

5 Experimental set-up 49

5.1 The MORPHEUS project . 53

6 Results 57

6.1 Image processing . 57

6.2 Motion estimation accuracy . 69

6.3 Acquisition frequency . 82

6.4 Datasets . 87

7 Conclusions 93

Bibliography 95

List of Figures

2.1 An illustration of the visual odometry problem. 6

2.2 A block diagram showing the main steps of the software. 7

2.3 Frontal pinhole imaging model. 9

2.4 Transformation from normalized coordinates to coordinates in pixels. 10

2.5 Comparison of feature detectors: properties and performance. 15

2.6 An illustration of the approach to construction of DoG. 17

2.7 An illustration of the approach to found local minima or maxima of

DoG images. 18

2.8 Schematic illustration of SIFT descriptor. 19

2.9 Schematic illustration of SURF box filters. 19

2.10 Example of SURF square regions. 21

2.11 Example of FAST corner detector. 22

2.12 An illustration of the midpoint triangulation problem. 23

3.1 PnP problem representation. 27

3.2 3D points (A,B,C) projected in 2D (u, v, w). 28

4.1 Schematic illustration of the steps performed by the software. 33

4.2 Example of image demosaicing. 36

4.3 Example of image undistortion. 37

4.4 An example of feature matching. 38

4.5 An example of feature tracking. 39

4.6 An illustration of the OpenGV triangulation problem. 40

4.7 Scheme of the 2D-3D correspondences extrapolation. 41

iii

iv LIST OF FIGURES

4.8 An illustration of 2D-3D correspondences. 42

4.9 An illustration of the OpenGV central absolute pose problem. 43

4.10 3D OpenGV reprojection error representation. 45

4.11 Example of 2D-3D correspondences after the outlier rejection steps. . 47

4.12 An example of outliers rejection through ransac. 48

5.1 Experimental set-up used to record the dataset. 50

5.2 Translation sequence No.1. 51

5.3 Translation sequence No.2. 51

5.4 Rotation sequence No.1. 52

5.5 Rotation sequence No.2. 52

5.6 MORPHEUS overview. 54

5.7 NVIDIA Jetson TK1. 54

5.8 Stereo camera system on the front of the MORPHEUS rover. 55

6.1 An example of feature detection and description using SIFT algorithm. 58

6.2 An example of feature detection and description using SURF algorithm. 59

6.3 An example of feature detection and description using FAST and

BRIEF algorithms. 60

6.4 Inliers percentage using different feature detectors and descriptors. . . 61

6.5 A comparison between different detectors and descriptors accuracy. . 63

6.6 A comparison between different detectors and descriptors accuracy. . 64

6.7 Different detector and descriptor times for each image pair. 66

6.8 A comparison between the motion estimation accuracy on images of

different size. 67

6.9 An example of hypothesis and consensus set used in the Ransac

outlier-rejection step.. 68

6.10 Different stereo-camera paths corresponding respectively to a trans-

lation sequence and a rotation one. 70

6.11 A comparison between different algorithm accuracies on the transla-

tion sequence No.1. 72

LIST OF FIGURES v

6.12 A comparison between different algorithm accuracies on the transla-

tion sequence No.2. 73

6.15 A comparison between different algorithm accuracies on the rotation

sequence No.1. 76

6.16 A comparison between different algorithm accuracies on the rotation

sequence No.2. 77

6.19 Illustration of the error on the three axis on the translation sequence

No.1. 80

6.20 Illustration of the error on the three axis on the rotation sequence No.1. 81

6.21 Illustration of Kneip algorithm with different step sizes on translation

sequence No.1. 83

6.22 Illustration of Gao algorithm with different step sizes on translation

sequence No.1. 84

6.23 Illustration of Kneip algorithm with different step sizes on rotation

sequence No.1. 85

6.24 Illustration of Gao algorithm with different step sizes on rotation

sequence No.1. 86

6.25 Example of images of the rotation sequence and computed path. . . . 87

6.26 Illustration of Kneip algorithm with different translation sequences. . 88

6.27 Illustration of Kneip algorithm with different rotation sequences. . . . 89

6.28 Illustration of Gao algorithm with different translation sequences. . . 90

6.29 Illustration of Gao algorithm with different rotation sequences. 91

vi LIST OF FIGURES

List of Tables

2.1 Summarize of the detectors. 15

2.2 Summarize of the descriptors. 16

5.1 Stereo-camera intrinsic parameters. 49

5.2 Stereo-camera extrinsic parameters. 50

6.1 Computational time percentage of different algorithm parts. 57

6.2 Average percentage of matched inliers in all the matched points found

using the different feature detectors and descriptors. 61

6.3 Ransac iterations number and consensus set size for different detec-

tors and descriptors. 62

6.4 Comparison of times required to perform the software main steps

using different feature detectors and descriptors. 65

6.5 Comparison of times required to perform the software main steps for

different image size. 68

6.6 Ransac parameters using different algorithms. 69

6.7 Average errors on the translation sequences obtained using different

step sizes. 71

6.8 Average errors on the rotation sequences obtained using different step

sizes. 71

vii

viii LIST OF TABLES

Chapter 1

Introduction

In planetary exploration space mission, motion estimation - and then localization

- of a vehicle on the surface of a planet is a key task. The typical approach for

vehicle localization involves the use of a combination of wheel odometry (from joint

encoders) and inertial sensing (e.g., gyroscopes and accelerometers), but presents

some limitations: inertial sensors are subjects to unacceptable drifts and wheel

odometry is unreliable in sandy or slippery terrain since wheels tend to slip and

sink. Moreover, the robot may operate in areas where GPS transmissions can not

be received or on planets that has not yet been equipped with a set of GPS satellites,

like on Mars.

Another process adopted in order to determining vehicle orientation and posi-

tion is called Visual Odometry (VO). It is the process of determining a camera (or

cameras) 6 degree of freedom position and orientation within a rigid scene using only

a sequence of images. When the cameras are mounted on a vehicle this technique

is also known as ego-motion estimation because the cameras are moving with the

vehicle and the camera motion is the vehicle one. The term “visual odometry” was

coined by Nister in 2004 in his landmark paper [1]. Likewise wheel odometry, which

relies on rotary wheel encoders, VO incrementally estimates vehicle pose examining

the changes that motion induces on the images of its on-board cameras.

The advantage of VO is that it is insensitive to soil mechanics (e.g., is not af-

fected by wheel slip in uneven terrain or other adverse conditions), produce a full 6

degrees of freedom motion estimate, and has lower drift rates than all but the most

1

2 CHAPTER 1. INTRODUCTION

expensive IMUs. Additionally, its usage is not limited to wheeled vehicles. On the

other hand, for VO to work effectively, sufficient illumination in the environment

and at least partially static scene with enough texture should be present. This capa-

bilities makes VO a natural complement to wheel odometry and to other navigation

systems such as GPS and IMUs.

The problem of estimating a vehicle ego-motion from visual input alone has

been some of the most active fields of research in computer vision for the last

three decades. Very impressive results have been obtained over long distances using

monocular, stereo systems and omni-directional cameras. Most of the early research

in VO was done for planetary rovers and was motivated by the NASA Mars explo-

ration program for provide all-terrain rovers with the capability to measure their

6 degree of freedom motion in the presence of wheel slippage in uneven and rough

terrains. Only during the last decade real-time implementations expanded, allowing

VO to be used on another planet by three Mars exploration rovers for the first time.

As mentioned before the image pairs may be generated from either single camera

systems (i.e., monocular VO) or stereo cameras (i.e., stereo VO). Using stereo image

pairs for each frame helps reduce error and provides additional depth and scale

information. When compared to monocular video, motion estimation from stereo

images is relatively easy and tends to be more stable and well behaved [1].

In contrast to the SLAM method, VO not maintain a map of the environment.

In this way VO trades off consistency for real-time performance, without the need

to keep track of all the previous history of the camera.

A historical review of the first 30 years of research in stereo VO is presented in

[2], starting from the early 1980s with the Moravec’s work [3]. Cheng et al. [4] give

an interesting insight into the importance of stereo odometry during NASA’s Mars

Exploration Rover missions with the rovers Spirit and Opportunity.

Many others recent applications of stereo odometry on different types of robots

in various environments can be found. For example in [1] and [5] Nister et al.

presented a system that estimates the motion of a stereo head or a single moving

camera based on video input. In particular, the stereo camera system mounted on an

autonomous ground vehicle demonstrated surprisingly accurate results for hundreds

3

of meters. In [6] a real-time, low-cost system to localize a mobile robot in outdoor

environments is presented. This system combines a visual odometry approach with

inertial measurements to fill in motion estimates when visual odometry fails. This

incremental motion is then fused with a low-cost GPS sensor using a Kalman Filter

to prevent long-term drifts. Olson et al. [7] described a methodology for long-

distance rover navigation that uses robust estimation of ego-motion. They also

noted that the use of an orientation sensor reduces the error growth to linear in the

distance travelled and results in a much lower error in practice. Another approach

presented in [8] uses a specialized method of Sparse Bundle Adjustment (SBA).

Howard [9] describes a real-time stereo visual odometry algorithm that is particularly

well-suited to ground vehicle applications.

As can be seen there are a lot of studies that evaluated several visual odometry

approaches and compare their implementations. Most of these algorithms have also

on-line source code available. Visual odometry is therefore become in these last ten

years a very attractive field in robotics and computer vision.

4 CHAPTER 1. INTRODUCTION

Chapter 2

General problem

2.1 Introduction

The present work wants to describe a real-time stereo visual odometry algorithm

that is particularly well-suited to ground vehicle applications.

As mentioned in the previous chapter, the goal of the VO procedure is to

calculate the displacement of a calibrated stereo system using the images acquired

in an initial position and in a second one.

Referring to figure 2.1, let us consider a vehicle that moves and takes images

with a rigidly attached camera system at discrete time instant k. At every instant

of time the stereo system take a left image and a right one, denoted by I
Lk

and I
Rk

.

For simplicity, the coordinate system of the left camera is assumed to be the origin.

Two camera positions - at time k � 1 and k - are related by the rigid body

transformation

T k�1
k

=

2

4R
k�1
k

tk�1
k

0 1

3

5 , (2.1)

where Rk�1
k

is the rotation matrix and tk�1
k

the translation vector.

The set of camera poses C = {C0, ..., Cn

} contains the transformation of the

camera with respect to the initial coordinate frame at k = 0.

The main task of VO is therefore to compute the relative transformation T k�1
k

from the images I
k

and I
k�1 using a feature-based method and then to concatenate

the transformations to recover the full trajectory of the camera. In this way VO

5

6 CHAPTER 2. GENERAL PROBLEM

Figure 2.1: An illustration of the visual odometry problem. The relative poses T k�1
k

of adjacent camera positions are computed and concatenated to get the absolute
pose C

k

with respect to the initial coordinate frame at k = 0 [2].

recovers the path incrementally, pose after pose.

Therefore assuming that the robot equips a calibrated stereo camera system,

whose intrinsic parameters and rigid relative pose are known through the camera

calibration process (see section 2.2 for the camera model details), the stereo visual

odometry process involves different steps (see the diagram in figure 2.2).

• Capture two images and undistort them to mathematically remove radial and

tangential lens distortion. This is called undistortion and is detailed in section

2.2.2.

• Extract features from each new frame in the left image (feature detection) and

obtain corresponding feature point in the right image. The output of this step

is a disparity map that contains the differences in coordinates on the image

plane of the same feature viewed in the left and right cameras. Moreover,

we can find a second type of correspondences observing the same feature at

two different instants of time. The first process is called feature matching,

while the second is named feature tracking. Feature detection and matching

are described in section 2.3.

2.1. INTRODUCTION 7

Image Sequence

Features Detection

Features Matching and Tracking
+ Triangulation

Motion Estimation

2D-to-2D 3D-to-3D 2D-to-3D

Figure 2.2: A block diagram showing the main steps of the software.

• Calculate the 3D location of the physical landmarks relative to the present

frame through the triangulation step, which is possible knowing the relative

position between the cameras.

• Perform the motion estimation step (see chapter 3).

These steps are performed for each pair of consecutive stereo frames. The

overall motion estimate is determined as the combination of motions from each pair

of frames.

There are three distinct approaches to tackle the problem of motion estimation,

depending on whether the correspondences are specified in three or two dimensions

[10]:

1. 3D-to-3D correspondences: we have 3D locations of N corresponding features

(points or lines) at two different times.

2. 2D-to-3D correspondences: we have correspondence of N features (f
i

, f 0
i

) such

that f
i

are specified in three dimensions and f 0
i

are their projection on the 2D

8 CHAPTER 2. GENERAL PROBLEM

image plane.

3. 2D-to-2D correspondences: N corresponding features are specified on the 2D

image plane either at two different times for a single camera or at the same

instant of time but for two different cameras.

The second approach is that proposed by Nister et al. [1]. They computed

the relative motion as a 3D-to-2D camera-pose estimation, incorporating Ransac

outlier rejection into the motion estimation.

The feature matching stage inevitably produces some incorrect correspondences

(i.e., wrong data associations named outliers), which will bias the frame-to-frame

motion estimate. A common solution to this problem is to use a robust estimator

that can tolerate some number of false matches. Therefore in the motion estimation

step we used Ransac (see section 3.3) and P3P motion estimation method on three

points (see section 3.2) using 2D-3D correspondences to exclude outliers from the

uncertain matches and obtain a consensus estimation of motion. A refinement via

non-linear optimization is then performed to polish the solution.

2.2 Camera model

The mathematical camera model which is used in the following to describe the

two cameras is the pinhole camera model (see figure 2.3). It describes the central

projection of 3D points through the center of projection onto the image plane. A

detailed discussion about this model can be found in [11].

Optical center of a pinhole camera coincides with the origin of a cartesian

coordinate system (O, x, y, z) and the positive z-axis is the direction of view. The

image plane is located at a distance equal to the focal length f from O along the

direction of view.

Let p be a generic scene point, with coordinates X0 =

h
X0 Y0 Z0

i
T

relative

to the world reference frame. The coordinates X

i

=

h
X Y Z

i
i T

of the same

point p relative to the camera frame i are given by a rigid-body transformation of

2.2. CAMERA MODEL 9

X0. In homogeneous coordinates

2

6666664

X

Y

Z

1

3

7777775

i

=

2

4 Ri

0 ti0

0 0 0 1

3

5

2

6666664

X0

Y0

Z0

1

3

7777775
. (2.2)

Figure 2.3: Frontal pinhole imaging model: 3D point p is projected at a 2D point
on the image plane as the point x at the intersection of the ray going through the
optical center O and the image plane at a distance f in front of the optical center
[11].

Adopting the frontal pinhole camera model the point X

i is projected onto the

image plane at the point

�

2

6664

x
i

y
i

1

3

7775
=

2

6664

f 0 0 0

0 f 0 0

0 0 f 0

3

7775

2

6666664

X

Y

Z

1

3

7777775

i

=

2

6664

f 0 0

0 f 0

0 0 1

3

7775

2

6664

1 0 0 0

0 1 0 0

0 0 1 0

3

7775

2

6666664

X

Y

Z

1

3

7777775

i

, (2.3)

where X

i

.
=

h
X Y Z 1

i
i T

and x

i

.
=

h
x
i

y
i

1

i
T

are in homogeneous rep-

resentation. The index i is 1 or 2 depending on which camera is considered: i

X

is the point position expressed in frame i associated with camera i, while x

i

is the

10 CHAPTER 2. GENERAL PROBLEM

projection of the point i

X with an ideal camera aligned like camera i with a focal

length f . � 2 R+ is an arbitrary positive scalar associated with the depth of the

point.

To summarize, the mapping from the 3D world to the 2D image (in length unit)

is given by

�x
i

= K
f

⇧0 X
i

= K
f

⇧0gX0 . (2.4)

The matrix ⇧0 2 R3⇥4 is often referred to as the standard projection matrix.

Figure 2.4: Transformation from normalized coordinates to coordinates in pixels
[11].

In order to render this model usable, we need to specify the relationship between

the retinal plane coordinate frame (centered at the optical center with one axis

aligned with the optical axis) and the pixel array. Referring to figure 2.4, we obtain

the following relation

2

6664

x0
i

y0
i

1

3

7775
=

2

6664

S
x

S
✓

O
x

0 S
y

O
y

0 0 1

3

7775

2

6664

x
i

y
i

1

3

7775
, (2.5)

where x0
i

and y0
i

are actual image coordinates in pixels, S
x

and S
y

represent the

pixels density along the x and y directions and (O
x

, O
y

) are the coordinate in pixels

of the principal point (where the z-axis intersects the image plane) relative to the

2.2. CAMERA MODEL 11

image reference frame. S
✓

is called skew factor and it is introduces in the case that

pixels are not rectangular. It is proportional to cot ✓, where ✓ is the angle between

the image axes x
s

and y
s

. In many practical applications it is common to assume

that S
✓

= 0.

In matrix form

x

0
i

= K
s

x

i

. (2.6)

Now, combining the projection model with the scaling and translation yields

a more realistic model of a transformation between homogeneous coordinates of a

3D point relative to the camera frame and homogeneous coordinate of its image

expressed in terms of pixels,

�x0
i

= K
s

K
f

⇧0 X
i . (2.7)

The constant 3⇥ 4 matrix ⇧0 represent the perspective projection.

To summarize, the overall model for image formation is therefore captured by

the equation

�x0
i

= K⇧0 X
i

= K⇧0gX0 . (2.8)

The 3 ⇥ 3 matrix K collects all parameters that are “intrinsic” to a particular

camera and is therefore called the intrinsic parameter matrix, or the calibration

matrix of the camera,

K
.
=

2

6664

fS
x

fS
✓

O
x

0 fS
y

O
y

0 0 1

3

7775
. (2.9)

The camera matrix is then a 3⇥ 4 matrix defined as

CM = K⇧0 =

2

6664

fS
x

fS
✓

O
x

0

0 fS
y

O
y

0

0 0 1 0

3

7775
. (2.10)

The entries of the matrix K have the following geometric interpretation:

• O
x

: x-coordinate of the principal point in pixels,

12 CHAPTER 2. GENERAL PROBLEM

• O
y

: y-coordinate of the principal point in pixels,

• fS
x

= ↵
x

: size of unit length in horizontal pixels,

• fS
y

= ↵
y

: size of unit length in vertical pixels,

• ↵
x

/↵
y

: aspect ratio �,

• fS
✓

: skew of the pixel, often close to zero.

When the calibration matrix K is known, the calibrated coordinates x

i

can be

obtained from the pixel coordinates x

0
i

by a simple inversion of K,

�x
i

= �K�1
x

0
i

. (2.11)

A stereo system is also characterized by its extrinsic parameters that describe

the mutual position and orientation between the two cameras. The intrinsic (i.e.,

matrix K) and extrinsic parameters can be obtained through the process of camera

calibration.

2.2.1 Camera calibration

The goal of calibration is to accurately measure the intrinsic and extrinsic parameters

of the camera system.

The most popular method uses a planar checkboard-like pattern. Taking several

pictures of the board shown at different positions and orientation, the intrinsic and

extrinsic parameters are found through a least-square minimization method. The

input data are the 2D positions of the corner of the squares on the board and their

corresponding pixel coordinates in each image.

A C implementation of camera calibration for perspective cameras can be found

in OpenCV [12].

2.2.2 Lens distortion

Since no lens is perfect, in addition to linear distortion (described by the parameters

in K) we must consider at least other two types of distortion.

2.3. FEATURE DETECTION AND MATCHING 13

Radial distortion : arises as a result of the shape of lens; this distortion is due

to manufacturing defects resulting from the lens not being exactly parallel to

the imaging plane.

Tangential distortion : arises from the assembly process of the camera as a whole.

Concerning the radial distortion, the lenses of real cameras often noticeably

distort the location of pixels near the edges of the image. This bulging phenomenon

is the source of the “barrel” or “fish-eye” effect. This type of distortion is 0 at the

optical center of the image and increases as we move toward the periphery. In

practice, this distortion is small and can be characterized by the first few terms

(generally k1, k2 and k3) of a Taylor series expansion around r = 0. In general, the

radial location of a point on the image will be rescaled according to the following

equations

x
corrected

= x
h
1 + k1

�
x2

+ y2
�
+ k2

�
x2

+ y2
�2

+ k3
�
x2

+ y2
�3i

y
corrected

= y
h
1 + k1

�
x2

+ y2
�
+ k2

�
x2

+ y2
�2

+ k3
�
x2

+ y2
�3i , (2.12)

where (x, y) is the original location on the image of the distorted point and

(x
corrected

, y
corrected

) is the new location as a result of the correction.

Tangential distortion is minimally characterized by two additional parameters,

p1 and p2, such that

x
corrected

= x+

⇥
2p1y + p2

�
3x2

+ y2
�⇤

y
corrected

= y +
⇥
p1

�
x2

+ 3y2
�
+ 2p2x

⇤ . (2.13)

Thus there are five distortion coefficients (typically bundled into one distortion

vector [k1, k2, p1, p2, k3]) required overall.

2.3 Feature detection and matching

Once the intrinsic and extrinsic parameters of a stereo system are determined, two

steps must be considered.

14 CHAPTER 2. GENERAL PROBLEM

• The first step is to detect 2D keypoints in both frames with an interest point

detector.

• In the second step, a feature descriptor is used to represent the detected key-

points in a distinctive way. Correspondences are then obtained by using a

matching strategy that compares feature descriptors based on a similarity

measurement.

Substantially detectors find out regions that are projection of landmarks and

can be used as features (i.e., an image pattern that differs from its immediate neigh-

bourhood in terms of intensity, color, and texture), while descriptors provide repre-

sentation of the detected region. These description allow to search similar regions

between image and to perform their matching.

The accuracy and robustness of the feature detector and matching algorithm

have a direct impact on the accuracy of the camera motion prediction.

2.3.1 Feature detection

During the feature-detection step, salient keypoints that match well in other images,

are searched in the image. Many features can be considered, e.g. points, straight

lines, curved lines, and corners or blobs (i.e., an image pattern different from its

immediate neighbourhood).

The appealing properties that a good feature detector should have are [13]: lo-

calization accuracy (both in position and scale), repeatability (i.e., a large number

of features should be re-detected in the next images), computational efficiency, ro-

bustness (to noise, compression artifacts, blur), distinctiveness (so that features can

be accurately matched across different images), and invariance to both photometric

(e.g., illumination) and geometric changes (rotation, scale, perspective distortion).

Every feature detector consists in two stages. The fist is to apply a feature-

response function on the entire image (such as the difference-of-Gaussian operator of

the SIFT). The second step is to apply nonmaxima suppression on the output of the

fist step to identify all local minima (or maxima) of the feature-response function.

The output of the second step represents detected features.

2.3. FEATURE DETECTION AND MATCHING 15

The literature is characterized by many feature detectors, with their pros and

cons. An overview of these detectors can be found in [13], [14], [15] and [16]. An

approximate comparison is given in table 2.1 and in figure 2.5.

The choice of the appropriate feature detector should be carefully considered,

depending on the environment type, computational constraints, real-time require-

ments and how nearby images are taken.

Scale invariance Feature type

Harris 7 Corner
FAST 7 Corner
Agast 7 Corner
BRISK(O) 7 Corner
BRISK 3 Corner
SIFT 3 Blob
SURF 3 Blob
CensurE 3 Blob

Table 2.1: Summarize of the detectors [16].

Figure 2.5: Comparison of feature detectors: properties and performance [13].

2.3.2 Feature description

After features are detected, their regions have to be represented by a descriptor in

order to compare them. In the feature description step, the region around each

detected feature is converted into a compact descriptor that can be matched against

16 CHAPTER 2. GENERAL PROBLEM

other descriptors. The simplest descriptor of a feature is its local appearance (e.g.,

the intensity of the pixel in a patch around the feature point), but in many case is

not a good information because its appearance will change with orientation, scale

and viewpoint changes.

Rotation invariance Descriptor type

SAD 7 Image patch pixels
NCC 7 Image patch pixels
SIFT 3 Gradient histogram
SURF 3 Gradient histogram
U-SURF 7 Gradient histogram
BRIEF 7 Brightness comparison
BRISK 3 Brightness comparison
U-BRISK 7 Brightness comparison

Table 2.2: Summarize of the descriptors [16].

Figure 2.5 presents a comparison of feature detectors. Different combination of

detectors and descriptors have been used for stereo VO: [13] and [16] for example

describe the state of the art feature detectors and descriptors in VO field and evaluate

which one may be the most appropriate solution. However, the selection of an

optimal procedure remains difficult, since the results substantially depend on the

implementation.

Sections 2.3.3, 2.3.4 and 2.3.5 briefly describe some of the popular detectors

and descriptors. Refer to the original papers for more details.

2.3.3 SIFT

Lowe proposed a “Scale Invariant Feature Transform” (SIFT) detector/descriptor

scheme [17]. The SIFT features are invariant to image scale and rotation and are

also robust to changes in illumination, noise and minor changes in viewpoint.

SIFT algorithm uses a Difference of Gaussians (DoG) detector, which is an

approximation of Laplacian of Gaussian. DoG is obtained as the difference of Gaus-

sian blurring of an image with two different �. In summary SIFT searches keypoints

at multiple scales by constructing a “Gaussian scale space”, that is a collection of

images obtained by progressively smoothing the input image with Gaussian filters

2.3. FEATURE DETECTION AND MATCHING 17

with different � (see figure 2.6). The smoothing level is called scale of the image: for

example, increasing the scale by an octave means doubling the size of the smoothing

kernel. This is repeated after down-sampling the image of a factor two. DoG images

are then computed by taking the difference between successive Gaussian-smoothed

images.

Figure 2.6: An illustration of the approach to construction of DoG. For each octave of
scale space, the initial image is repeatedly convolved with Gaussians to produce the
set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the
Gaussian image is down-sampled by a factor of 2, and the process repeated. [17]

SIFT features are found as local minima or maxima of DoG images across scales

and space. For example, one pixel in an image is compared with its 8 neighbours as

well as 9 pixels in next scale and 9 pixels in previous scales (see figure 2.7). If it is

a local extrema, it is a potential keypoint. In this way we obtain a list of (x, y, �)

values which means there is a potential keypoint at (x, y) at � scale.

Regarding different parameters, the paper [17] gives some empirical data which

can be summarized as: number of octaves = 4, number of scale levels = 5, initial

� = 1.6, k =

p
2 etc. as optimal values.

The potential keypoints locations have to be refined to get more accurate re-

sults. We have to eliminate those that are likely to be unstable, either because they

18 CHAPTER 2. GENERAL PROBLEM

Figure 2.7: Maxima and minima of the Difference-of-Gaussian images are detected
by comparing a pixel (marked with X) to its 26 neighbors in 3 ⇥ 3 regions at the
current and adjacent scales (marked with circles). [17]

are selected nearby an image edge, rather than an image blob, or are found on image

structures with low contrast. Filtering is then controlled by two parameters:

• the minimum amount of contrast to accept a keypoint (this threshold value is

set to 0.03 in the paper);

• the edge rejection threshold (set to 10 in the paper).

In this way any low-contrast keypoints and edge keypoints are eliminated and what

remains is strong interest points.

The keypoint descriptor is then created by first computing the gradient mag-

nitude and orientation at each image sample point in a region around the keypoint

location. To do that a 16⇥ 16 neighbourhood around the keypoint is taken. These

samples are also weighed by the Gaussian window to give less importance to gradi-

ents farther away from the keypoint center. Each 16⇥ 16 block is then divided into

sub-blocks of 4⇥ 4 size and for each sub-block, 8 bin orientation histogram summa-

rizing the subregion contents is created (see figure 2.8). The length of each arrow

corresponds to the sum of the gradient magnitudes near that direction within the

region. In this way a total of 128 bin values are available. In addition to this, several

measures are taken to achieve robustness against illumination changes, rotation, etc.

2.3. FEATURE DETECTION AND MATCHING 19

Figure 2.8: Schematic illustration of SIFT descriptor. The patch around the feature
is decomposed into a 4⇥ 4 grid and for each quadrant a histogram of eight gradient
orientation is built. All these histograms are then concatenated together forming a
128-element descriptor vector. Note that this figure shows a 2⇥ 2 descriptor array
computed from an 8 ⇥ 8 set of samples, whereas the experiments in [17] use 4 ⇥ 4

descriptors computed from a 16⇥ 16 sample array. [17]

2.3.4 SURF

The SIFT algorithm described in the section above was comparatively slow and

people needed more speeded-up version. In 2006 Bay et al. proposed a “Speeded Up

Robust Features” (SURF) detector/descriptor scheme [18] that, as name suggests,

is a speeded-up version of SIFT.

Unlike SIFT, SURF approximates LoG with box filters. These approximate

second order Gaussian derivatives and can be evaluated very fast using integral

images, independently of size. The 9⇥ 9 box filters in figure 2.9 are approximations

for Gaussian second order derivatives with � = 1.2 and represent the lowest scale

(i.e., highest spatial resolution).

Figure 2.9: Left to right: the (discretized and cropped) Gaussian second order
partial derivatives in y-direction and xy-direction, and the approximations thereof
using box filters. The grey regions are equal to zero. [18]

20 CHAPTER 2. GENERAL PROBLEM

Also the SURF rely on determinant of Hessian matrix for both scale and loca-

tion. Like SIFT, the interest points can be found in different scales. However in this

case scale spaces are implemented by applying box filters of different sizes. There-

fore, the scale space is analysed by up-scaling the filter size rather than iteratively

reducing the image size. The output of the 9 ⇥ 9 filter is considered as the initial

scale layer (i.e., scale s = 1.2, corresponding to Gaussian derivatives with � = 1.2).

The following layers are obtained by filtering the image with gradually bigger masks.

Specifically, this results in filters of size 9×9, 15×15, 21×21, 27×27, etc. In order to

localize interest points in the image and over scales, non-maximum suppression in a

3⇥ 3⇥ 3 neighbourhood is applied. The maxima of the determinant of the Hessian

matrix are then interpolated in scale and image space.

Regarding SURF descriptor, the first step consists of fixing a reproducible orien-

tation based on information from a circular region around the interest point. Then,

we construct a square region aligned to the selected orientation, and extract the

SURF descriptor from it.

In order to achieve rotational invariance, the orientation of the point of inter-

est needs to be found. For orientation assignment, SURF uses the Haar-wavelet

responses both in x and y directions within a circular neighbourhood of radius 6s

around the point of interest, where s is the scale at which the point of interest was

detected. Adequate Gaussian weights are also applied to it. The obtained responses

are then plotted as points in a two-dimensional space, with the horizontal response

in the abscissa and the vertical response in the ordinate. The dominant orientation

is estimated by calculating the sum of all responses within a sliding orientation win-

dow of angle 60 degrees. The horizontal and vertical responses within the window

are summed. The two summed responses then yield a local orientation vector. The

longest such vector overall defines the orientation of the point of interest. Note that

wavelet response can be found out using integral images very easily at any scale.

For many applications, rotation invariance is not required, so no need of finding

this orientation, which speeds up the process. SURF provides such a functionality

called Upright-SURF or U-SURF.

For feature description, SURF uses Wavelet responses in horizontal and vertical

2.3. FEATURE DETECTION AND MATCHING 21

direction (again, use of integral images makes things easier). A square window

of size 20s ⇥ 20s is extracted around the interest point and oriented along the

orientation as selected above (examples of such square regions are illustrated in

figure). This regions is then split up into smaller 4⇥4 subregions. For each subregion,

horizontal and vertical Haar-wavelet responses, called respectively d
x

and d
y

, are

taken and a vector is formed like this, v = (

P
d
x

,
P

d
y

,
P

|d
x

|,
P

|d
y

|). This results

in a descriptor vector for all 4 ⇥ 4 sub-regions of length 64. Lower the dimension,

higher the speed of computation and matching, but provide better distinctiveness

of features.

Figure 2.10: Example of SURF square regions. Left: In case of a homogeneous
region, all values are relatively low. Middle: In presence of frequencies in x direction,
the value of

P
|dx| is high, but all others remain low. Right: If the intensity is

gradually increasing in x direction, both values of
P

dx and
P

|dx| are high.[18]

In short, SURF adds a lot of features to improve the speed in every step.

Analysis shows it is 3 times faster than SIFT while performance is comparable to

SIFT. SURF is good at handling images with blurring and rotation, but not good

at handling viewpoint change and illumination change.

2.3.5 FAST

There exist several feature detectors and many of them are really good. But when

looking from a real-time application point of view, they are not fast enough. As a

solution to this, “Features from Accelerated Segment Test” (FAST) algorithm was

proposed by Rosten and Drummond in 2006 [19].

22 CHAPTER 2. GENERAL PROBLEM

Briefly, after selecting a pixel p of intensity I
p

, a circle of 16 pixels is considered

around it (see figure 2.11). The pixel p is a corner if there exists a set of n contiguous

pixels in the circle which are all brighter than I
p

+ t, or all darker than I
p

� t. In

figure 2.11 n was chosen to be 12: the dash lines shown 12 contiguous pixels which

are brighter than p by more than the threshold.

Figure 2.11: 12 point segment test corner detection in an image patch. The pixel
at p is the centre of a candidate corner. The highlighted squares are the pixels used
in the corner detection. The arc is indicated by the dashed line passes through 12
contiguous pixels which are brighter than p by more than the threshold.[19]

A high-speed test was proposed to exclude a large number of non-corners. This

test examines only the four pixels at 1, 9, 5 and 13. If p is a corner, then at least

three of these must all be brighter than I
p

+ t or darker than I
p

� t. If neither of

these is the case, then p cannot be a corner. The full segment test criterion can then

be applied to the passed candidates by examining all pixels in the circle.

FAST detector is several times faster than other existing corner detectors, but

it is not robust to high levels of noise.

Note that FAST is only a feature detector and doesn’t provide any method to

describe the features. We can use any other feature descriptors, such as BRIEF,

“Binary Robust Independent Elementary Features” [20], that is a faster method

feature descriptor calculation proposed by Calonder et al. [20]. It uses binary

strings such as feature point descriptor. It is highly discriminative even when only

using few bits and can be computed using simple intensity difference tests. The

descriptor similarity can be evaluated using the Hamming distance, which is very

2.4. TRIANGULATION 23

efficient to compute, instead of the L2 norm distance. So, BRIEF is very fast both

to build and match.

2.4 Triangulation

Once that both cameras of the stereo system are calibrated, the 3D position of a

feature point in space may be obtained by triangulation of the image points, for

example using the algorithm of the middle point (see figure 2.12).

Triangulated 3D points are determined by intersecting back-projected rays from

2D image correspondences of two image frames. In perfect conditions, these rays

would intersect in a single 3D point. However, because of image noise, camera

model and calibration errors, and feature matching uncertainty, they never intersect.

Therefore, the point at a minimal distance from all intersecting rays can be taken

as an estimate of the 3D point position.

Figure 2.12: An illustration of the midpoint triangulation problem. For each feature
x

i

the algorithm finds 3D points X1,s and X2,s, with the minimum distance, be-
longing respectively to the preimage lines (i.e. the lines that starts from the optical
center of each camera and project the 2D features from the image plane to the 3D
observed scene) of camera 1 and 2. Points X1,s and X2,s define a segment orthog-
onal to the two skew preimage lines. Middle point X of this segment is defined as
the measured 3D point of the feature. See [21] for details.

24 CHAPTER 2. GENERAL PROBLEM

Chapter 3

Motion estimation

3.1 Introduction

Motion estimation is the core computation step performed for every image in VO

system. More precisely, in this step the camera motion between the current image

pair and the previous one is computed.

As mentioned in section 2.1, depending on whether the features correspondences

are specified in two or three dimensione, there are three different methods.

Nister [1] compared the VO performance of the 3D-to-3D case to that of the

3D-to-2D one for a stereo camera system and found the latter being greatly superior

to the former. In his opinion the 3D-to-2D method is preferable compared to the

2D-to-2D case too, since the lower point correspondences needed results in a much

faster outlier rejection and then motion estimation.

Following the Nister et al. approach, in the present work 3D-to-2D motion

estimation is considered.

The general formulation is to find T k�1
k

that minimizes the image reprojection

error

arg min

T

k�1
k

X

i

��
x

i

k

� ˆ

x

i

k�1

��2
, (3.1)

where x

i

k

is the 2D point and ˆ

x

i

k�1 is the reprojection of the 3D point X

i

k�1

into image I
k

according to the transformation T k�1
k

.

25

26 CHAPTER 3. MOTION ESTIMATION

This problem is known as “Perspective from n Points” (PnP) and there are many

different solutions to it in the literature. The minimal case involves three 3D-to-2D

correspondences and this is called “perspective from three points” (P3P, see section

3.2). In the 3D-to-2D case, P3P is the standard method for robust estimation in

the presence of outliers.

3.2 The P3P problem

The Perspective-n-Point (PnP) problem, also known as pose estimation, aims at

retrieving the position and orientation of the camera with respect to a scene object

from n corresponding 3D points.

Fischler and Bolles [22] summarized the problem as follows (see figure 3.1):

“Given the relative spatial locations of n control points, and given the angle
to every pair of control points P

i

from an additional point called the center
of perspective C, find the lengths of the line segments joining C to each of
the control points.”

The next step then consists of retrieving the orientation and translation of the

camera with respect to the object reference frame.

We are interested in the particular case of PnP for n = 3, that is known as

“Perspective-Three-Point” (P3P) problem. The P3P is the smallest subset of control

points that yields a finite number of solution. Given the intrinsic camera parameters

and n � 4 points, the solution is generally unique.

The P3P is then the most basic case of the PnP problem. It aims at determining

the position and orientation of the camera in the world reference frame from three

2D-3D point correspondences. Using these three correspondences we can find up

to four possible pose configurations, each consisting of a rotation matrix and a

translation vector, that can then be disambiguated using a fourth point.

Referring to figure 3.2, the P3P principle can be summarized with the following

steps.

• Four 2D-3D correspondences are given (A $ a, B $ b, C $ c, D $ d): 3D

points are defined in the world coordinate system, while 2D points are defined

in the image coordinate system.

3.2. THE P3P PROBLEM 27

Figure 3.1: PnP problem representation [12]. Given a set of n 3D points P
i

whose
coordinates are known in some object coordinate frame O, let p

i

be a set of n 2D
points which are the projection of P

i

on the image plane I. Let �!v
i

= Cp
i

be n
directional vectors with C as the camera center of perspective (note that since the
camera is assumed to be calibrated, one can determine the vectors �!v

i

from the
camera calibration matrix K). The PnP problem is defined as to determine the
position of C and its orientation relative to O.

• The solution of the P3P equation system with three points (A,B,C) leads to

four possible set of distance kPAk, kPBk and kPCk , where P is the camera

optical center.

• These sets are then converted into four pose configurations.

• The fourth point (D) is then used to select the best pose configuration among

the four proposed.

In the literature, there exist many solutions to this problem, which can be

classified into iterative, non-iterative, linear and non-linear ones. For example, see

[23], [24], [25], [26] and [27].

28 CHAPTER 3. MOTION ESTIMATION

Figure 3.2: 3D points (A,B,C) projected in 2D (u, v, w).

OpenGV [28] consider different solution to the P3P problem proposed by dif-

ferent authors.

Gao et al. This solution represent the typical non-iterative algorithm that involves

solving for the roots of an eight-degree polynomial with no odd terms, yielding

up to four solutions, so that a fourth point is needed for disambiguation. In

their paper, Gao et al. proposed two approaches to solve the P3P problem,

one algebraic and one geometric.

Kneip et al. In contrast to all previous approaches, they propose a novel closed-

form solution to the P3P problem, which computes the aligning transformation

directly in a single stage, without the intermediate derivation of the points in

the camera frame. The proposed solution computes directly the position and

orientation of the camera in the world reference frame as a function of the

image coordinates and the coordinates of the reference points in the world

frame. In their paper Kneip et al. stated that the proposed algorithm offers

3.3. OUTLIERS REJECTION 29

accuracy and precision comparable to a popular, standard, state-of-the-art

approach but at much lower computational cost. The superior computational

efficiently is particularly suitable for any Ransac-outlier rejection step.

EPnP. It stand for “Efficient Perspective-n-Point” Camera Pose Estimation. Lep-

etit et al. proposed this non-iterative solution to the PnP problem that, ac-

cording to their paper, has better accuracy and much lower computational

complexity than non-iterative state-of-the-art methods, and much faster than

iterative ones with little loss of accuracy. This technique allows the computa-

tion of an accurate and unique solution in O(n) for n � 4. As in most of the

existing PnP solution techniques, the idea in the implementation of EPnP is

to retrieve the locations of P
i

relative to the camera coordinate frame. Then

one can retrieve the camera orientation and translation which aligns both sets

of coordinates. The algorithm has an efficient implementation because it rep-

resent the P
i

as a weighted sum of m  4 control points C1, ..., Cm

and perform

all further computation only on these points. For large n this yields a much

smaller number of unknowns compared to other algorithms and therefore ac-

celerates further computations.

The derivations that lead to these solutions of the P3P algorithm are presented

in [29], [30] and [31] respectively.

3.3 Outliers rejection

In VO real-time application we deal with hundreds or even thousands of noisy feature

points and outliers, which requires computationally efficient methods. There exists

several methods to reject outliers in the motion estimation process.

The standard approach consist of first using P3P in a Ransac scheme [22] - in

order to remove outliers - and then PnP on all remaining inliers.

In the following section we will see in detail the Ransac approach.

30 CHAPTER 3. MOTION ESTIMATION

3.3.1 Ransac algorithm

The Ransac algorithm (abbreviation for “RANdom SAmple And Consensus”) is

the standard method for model estimation starting from a set of data contaminated

by large amounts of outliers. A datum is considered to be an outlier if it will not

fit the “true” model instantiated by the “true” set of parameters within some error

threshold that defines the maximum deviation attributable to the effect of noise. The

percentage of outliers which can be handled by Ransac can be larger than 50% of

the entire dataset. It is a non-deterministic algorithm that produces a reasonable

result only with a certain probability which increase as more iterations are allowed.

The ransac algorithm, first published by Fischler and Bolles in 1981 [22], is

formally stated as follow:

“Given a model that requires a minimum of n data points to instantiate
its free parameters, and a set of data points P such that the number of
points in P is greater than n [#(P) � n], randomly select a subset S1 of n
data points from P and instantiate the model. Use the instantiated model
M1 to determine the subset S1⇤ of points in P that are within some error
tolerance of M1. The set S1⇤ is called the consensus set of S1.
If #(S1⇤) is greater than some threshold t, which is a function of the esti-
mate of the number of gross errors in P , use S1⇤ to compute (possible using
least squares) a new model M1

⇤.
If #(S1⇤) is less than t, randomly select a new subset S2 and repeat the
above process. If, after some predetermined number of trial, no consensus
set with t or more members has been found, either solve the model with the
largest consensus set found, or terminate in failure.”

The Ransac paradigm contains three unspecified parameters: (a) the error

tolerance used to determine whether or not a point is compatible with a model, (b)

the number of subsets to try and (c) the threshold t, which is a number of compatible

points used to imply that the correct model has been found.

Let us suppose that we have a dataset that contain both inliers, i.e. data whose

distribution can be explained by some set of model parameters, and outliers, which

are data that do not fit the model instantiated by the true set of parameters (within

some error threshold that defines the maximum deviation attributable to the effects

of noise). Ransac assumes that:

3.3. OUTLIERS REJECTION 31

• given a set of inliers, there exists a model and a set of parameters that optimally

fits the observed data in absence of noise;

• we know what is the maximum perturbation of an observed valid measurement.

It is therefore a learning technique to estimate parameters of a mathematical model

by random sampling of observed data.

The Ransac algorithm is essentially composed of two steps iteratively repeated

(hypothesize–and–test framework).

Hypothesize. A sample of subset containing minimal data items is randomly se-

lected from the input dataset. A fitting model and the corresponding model

parameters are then computed using only the elements of this sample subset.

The cardinality of the minimal sample set is the smallest sufficient to deter-

mine the model parameters (as opposed to other approaches, such as least

squares).

Test. The algorithm checks which elements of the entire dataset are consistent with

the model instantiated by the estimated model parameters obtained from the

first step. A data element will be considered as an outlier if it does not fit the

model instantiated by the set of estimated model parameters within some error

threshold. The set of inliers obtained for the fitting model is called consensus

set.

The algorithm will iteratively repeat the above two steps until the obtained

consensus set has enough inliers.

An advantage of Ransac is that it allows to do robust estimation of the model

parameters evaluating them with a high degree of accuracy even when the dataset

contains a significant number of outliers. A disadvantage is that there is no upper

bound on the time it takes to compute these parameters (except exhaustion). If we

limited the number of iterations, the obtained solution may not be optimal and may

not fit the data in a good way. In this way Ransac offers a trade-off: in fact the

probability of a reasonable model being produced increases by computing a greater

number of iterations. Furthermore Ransac is not always able to find the optimal set

32 CHAPTER 3. MOTION ESTIMATION

and it usually performs badly when the number of inliers is less than 50%. Another

disadvantage is that it requires the setting of problem-specific thresholds.

Note that Ransac draws the elements composing the minimal sample sat ran-

domly from the entire dataset. Therefore at each run the behaviour might change.

As pointed out by Torr et al. [32], ransac can be sensitive to the choice of the

correct noise threshold that defines which data points fit a model instantiated with

a certain set of parameters. If such threshold is too large, then all the hypotheses

tend to be ranked equally. On the other hand, when the noise threshold is too small,

the estimated parameters tend to be unstable.

The identification of outlying point correspondences is very important in order

to receive a reliable camera pose.

The number of iteration needed is another fundamental parameter. Let n is the

number of samples needed for instantiating a hypothesis and let p be the probability

of sampling in some iteration a set of n inliers from the dataset. Let w denote the

probability of one sample being an inlier, that is

w =

number of inlier points
total number of points

=

y

z
(3.2)

We don’t know beforehand w, but we can give some rough value. Selecting n

samples, wn is the probability of all points being inliers, and therefore 1�wn is the

probability that at least one of the points is an outlier (which implies that a bad

model will be estimated from this point set). After k iterations, the probability that

in each iteration at least one outlier has been sampled becomes (1�wn

)

k and must

be the same as 1 � p. This finally leads to the well-known formula introduced by

Fischler and Bolles [22] for computing the number of iterations required to satisfy

a given p,

k =

log (1� p)

log (1� wn

)

. (3.3)

Chapter 4

Procedure

Our goal was to implement a software that estimates the 6D pose of an agent giving

as input some pairs of images captured by its on-board cameras. The procedure is

schematically represented in figure 4.1.

FEATURE
DETECTION

STEREO
MATCHING

2D coords

TRIANGULATION
2D coords

stereo images
left - right

FEATURE
TRACKING

(t) - (t-dt)

MOTION ESTIMATION

3D vectors

2D coords

2D coords

Figure 4.1: Schematic illustration of the steps performed by the software.

Note that once we have the camera parameters (tables 5.1 and 5.2) we can

33

34 CHAPTER 4. PROCEDURE

define the two camera matrices, CM1 and CM2. As mentioned in chapter 2.2, a

camera matrix is a 3 ⇥ 4 matrix which describes the mapping of a pinhole camera

from 3D points in the world to 2D points in an image as

2

6664

x0
i

y0
i

1

3

7775
=

2

6664

fS
x

fS
✓

O
x

0

0 fS
y

O
y

0

0 0 1 0

3

7775

2

6666664

X

Y

Z

1

3

7777775

i

. (4.1)

Because the 3D points are expressed in the left camera reference frame, for the

left camera we have

2

6664

x0
1

y01

1

3

7775
=

2

6664

fS
x1 fS

✓1 O
x1 0

0 fS
y1 O

y1 0

0 0 1 0

3

7775

2

6666664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

3

7777775

2

6666664

X

Y

Z

1

3

7777775

1

, (4.2)

while for the right camera

2

6664

x0
2

y02

1

3

7775
=

2

6664

fS
x2 fS

✓2 O
x2 0

0 fS
y2 O

y2 0

0 0 1 0

3

7775

2

4 R1
2 t12

0 0 0 1

3

5

2

6666664

X

Y

Z

1

3

7777775

1

, (4.3)

where [R|t]12 is the transformation matrix between right and left camera refer-

ence frames.

4.1 Image processing

Fist of all the software reads a pair of stereo images and correct it. The dataset

images are given in a GBRG Bayer pattern format. The Bayer array is a color filter

array for arranging RGB color filters on a square grid of photo-sensors. It consists

of alternating green (G) and blue (B) filters for odd rows and alternating red (R)

4.1. IMAGE PROCESSING 35

and green (G) filters for even rows. The pattern of the color filters is shown in figure

4.2a). Note that in the Bayer array half of the pixels have a green filter because green

is the color for which the human eye is more sensitive. Once the sensor has been

exposed to an image, each pixel can be read. A pixels with a green filter provides an

exact measurement of the green component, while the red and blue components for

this pixel are obtained from the neighbours. For a green pixel, two red neighbours

can be interpolated to yield the red value; also two blue pixels can be interpolated

to yield the blue value. The demosaicing is then the process that can be used to

combine the pixel values in order to obtain a final image which contains full color

information at each pixel (see figure 4.2c).

The images were dewarped to compensate for lens distortion. Figure 4.3 shows

an example of this last step.

After these steps we applied a feature detector in order to find interest points.

Once detected the left and right keypoints, the feature extractor computes a de-

scriptors from the pixels around each interest point, while the matcher finds point

correspondences between the two images.

Several algorithms for feature detection and description were considered in the

preliminary phases of this work. We then selected a number of detectors and de-

scriptors which have previously shown a good performance in visual odometry and

tested them with different dataset. The developed software allows to choose between

different detectors and descriptors indeed. The selectable combination of detector

and descriptor are SIFT, SURF, FAST+BRIEF and SURF on GPU.

A standard correlation matching algorithm is then used for matching keypoint

descriptors. For each descriptor in the first set, the Brute-force matcher used finds

the closest descriptor in the second set by trying each one. The same matcher is

also used to track keypoints between two time instants. Figures 4.4 and 4.5 show

an example of these steps.

36 CHAPTER 4. PROCEDURE

(a) GBRG Bayer pattern: each pixel represents the light intensity captured by the corre-
sponding photo-sensor.

(b) Bayer pattern encoded image.

(c) The image after the demosaicing process.

Figure 4.2: Example of image demosaicing: this algorithm is used to reconstruct
a full color image (RGB) from the incomplete color samples output of the sensor
overlaid with the color filter array.

4.1. IMAGE PROCESSING 37

(a) Left image before with lens distortion.

(b) Left image after undistortion.

(c) Difference between the fist two images.

Figure 4.3: Example of image undistortion. The images are transformed to com-
pensate for radial and tangential lens distortion.

38 CHAPTER 4. PROCEDURE

Figure 4.4: An example of left-right feature matching using SURF detector and
descriptor and Brute-force matcher. The circle radius around each keypoint indicates
the size of the detected blob.

4.1. IMAGE PROCESSING 39

Figure 4.5: An example of left feature tracking between two instants using SURF
detector and descriptor and Brute-force matcher. The circle radius around each
keypoint indicates the size of the detected blob.

40 CHAPTER 4. PROCEDURE

4.2 Triangulation

Before proceeding we need to clearly define the meaning of a couple of words in

the present context. A bearing vector is defined as a 3D unit vector pointing at a

landmark (i.e., a spatial 3D point usually expressed in the world reference frame)

from a camera reference frame. It has two degrees of freedom (i.e., azimuth and

elevation) in the camera reference frame. A camera then denotes a camera reference

frame with a set of bearing vectors, all pointing from the origin to landmarks.

Finally, an absolute pose refers to the position and orientation of a viewpoint (that

in the present case coincides with the left camera), with respect to a fixed spatial

reference frame called the world reference frame.

OpenGV (“Open Geometric Vision”) [33] is a C++ library for calibrated real-

time 3D geometric vision. It also contains a linear triangulation method that com-

putes the position of a point expressed in the fist camera given a 2D-2D correspon-

dence between bearing vectors from two cameras. Figure 4.6 shows this triangulation

problem.

Figure 4.6: An illustration of the OpenGV [28] triangulation problem. The library
estimates the 3D position of a point given a 2D-2D correspondence between bearing
vectors and the transformation between the cameras, i.e., the position t12 of the
second camera seen from the fist one and the rotation R1

2 from the second camera
back to the fist camera frame.

In this way, at every instant the coordinates of every 3D interest point are

4.3. MOTION ESTIMATION 41

known in the left camera reference frame.

4.3 Motion estimation

At this point we have the 2D left image points and the 3D points at the previous

instant. Through the feature tracking step we also known the correspondences

between these 2D and 3D points. The scheme in figure 4.7 summarized the previous

steps, from the images acquisition until the 2D-3D correspondences extrapolation.

LEFT
DESCRIPTORS (t)

RIGHT
DESCRIPTORS (t)

2D LEFT POINT (t)
x

L
kx
L
k

2D RIGHT POINT (t)
x

R
kx
R
k

3D POINT (t)
X

L
kX

L
k

MATCHING
(distance < k)(distance < k)

TRIANGULATION

���xL
k � x̂

L
k

��� < k

0

TRACKING
LEFT

DESCRIPTORS (t+dt)

2D LEFT POINT (t+dt)
x

L
k+1x

L
k+1

2D-3D
CORRESPONDENCE

LEFT IMAGE (t) RIGHT IMAGE (t)

Figure 4.7: Scheme of the 2D-3D correspondences extrapolation.

In the present case we considered a 2D-3D correspondence referring to a bearing

vector and a world-point it is pointing at. Figure 4.8 shows an example of these

type of correspondences.

The central absolute pose problem consists of finding the pose of a camera in

a world frame given a number of 2D-3D correspondences between bearing vectors

in the camera frame and points in the world frame. As can be seen in figure 4.9

the sought transformation is given by the position t
c

of the camera seen from the

42 CHAPTER 4. PROCEDURE

Figure 4.8: An illustration of 2D-3D correspondences. We can see four bearing
vectors f

i

(that are built from four 2D points x

i

k

) pointing at four world points
X

i

k�1.

camera frame and the rotation R
c

from the camera to the world frame.

The 3D-to-2D motion estimation is implemented using OpenGV [28] library

that hosts the minimal P3P solvers presented in [30] and [29], and the n-point

solver presented in [31]. The implemented software allows to switch between these

three different algorithms, that are named KNEIP, GAO and EPNP algorithm re-

spectively. All these solvers takes as input the 3D unit bearing vectors f

i

k

and the

3D world points X

i

k�1, both expressed in the left camera frame.

4.3.1 Outlier rejection

As written in section 3.3 the standard approach consists of using P3P in a Ransac

scheme in order to remove outliers and then PnP on all remaining inliers.

In detail Ransac achieves its goal by repeating the following steps.

1. Select a subset of hypothetical inliers (considering only the left image) from

the original dataset at random. Each sample contains the smallest number of

feature correspondences necessary to obtain a unique solution for the camera

4.3. MOTION ESTIMATION 43

Figure 4.9: An illustration of the OpenGV central absolute pose problem [28].

motion.

2. Fit a model to the set of hypothetical inliers and then find the estimates

parameters �!x .

3. Test all the other data and finds how many data items fit the model with

parameters �!x within a user given tolerance. The points that fit the estimated

model well (according to the defined threshold) are considered as part of the

consensus set, that we call K. The scoring is based on reprojection errors in

left frame.

4. The model is considered good if sufficiently many points have been classified

as part of the consensus set. Therefore, if K is big enough, we accept fit and

exit with success.

5. Next the model may be improved by re-estimating it using all members of the

consensus set.

This procedure is repeated a fixed number of times, each time producing either

a model which is rejected because too few points are part of the consensus set, or a

refined model (with a corresponding consensus set size). In the latter case, we keep

refined model if its consensus set is larger than the previously saved model.

44 CHAPTER 4. PROCEDURE

The inputs to the algorithm are:

• the dataset for which we are trying to determine a model, which comprises

the 3D points (at time t) and the corresponding left bearing vectors (at time

t+ dt);

• the minimum number of points that are required to fit the model, that are 4

for the P3P solvers (i.e., KNEIP and GAO algorithms) and 6 for the EPNP

algorithm;

• the threshold value for determining when a data point fits the model, i.e., the

maximum distance a data point may be located from the determined model

to still be considered an inlier;

• the maximum number of iterations allowed;

• the desired probability of choosing at least one sample free from outliers (de-

fault value = 0.99).

While the outputs are:

• the current number of iterations;

• the samples that have been classified as inliers;

• the currently best hypothesis;

• the currently best fit model coefficients, that is the desired transformation.

Because of the 3D nature of the problem, we need a way to compute the thresh-

old reprojection errors in 3D within ransac. OpenGV looks at the angle ✓ between

the original bearing-vector f

meas

and the reprojected one f

repr

[28]. As illustrated

in figure 4.10, by adopting a certain threshold angle ✓
threshold

we constrain f

repr

to

lie within a cone of axis f

meas

and opening angle ✓
threshold

.

The threshold angle can be easily approximated with

✓
threshold

= arctan

l
, (4.4)

4.3. MOTION ESTIMATION 45

Figure 4.10: Schematic illustration of ✓, that is the angle used by OpenGV to
compute the reprojection errors in 3D [28].

where is the classical reprojection error-threshold, i.e. the euclidean distance

(expressed in pixels) between the 2D point and its corresponding 3D reprojected

one, and l is the focal length. The scalar product of f
meas

and f

repr

, which equals

to cos ✓ represent an efficient way to compute the angle between bearing vectors.

Since this value is between �1 and 1, and we want an error that minimizes to 0, er

express a reprojection error as

" = 1� f

T

meas

f

repr

= 1� cos ✓ . (4.5)

The threshold error is therefore given by

"
threshold

= 1� cos ✓
threshold

= 1� cos

✓
arctan

l

◆
. (4.6)

All the motion estimation algorithms described above are then implemented

inside a Ransac approach. The P3P problem needs three points and a fourth one

to disambiguate the solution.

As mentioned in section 3.3, the ransac algorithm needs a certain percentage

of inliers to work well and the probability of a reasonable model being produced

increases with the number of iterations.

In order to reduce the computational cost of the ransac step we have to

46 CHAPTER 4. PROCEDURE

eliminate a part of the outliers before it. To do this we made two checks.

• In the stereo matching step a part of the outliers are removed if the euclidean

distance between their descriptors is too high.

• In order to remove another part of the outliers the reprojection error is calcu-

lated. It is a geometric error corresponding to the image distance between a

3D reprojected point and a 2D measured one,

d
repr

=

��
x

L

k

� ˆ

x

L

k

�� , (4.7)

where x

L

k

is the 2D left point and ˆ

x

L

k�1 is the reprojection of the 3D point

X

L

k�1 into left image plane. If this error is larger than a few pixels, the match

can be rejected since it is not geometrically possible (i.e., the ray from the

camera through the image feature is not oriented towards the 3D triangulated

point). In this way we store only the points whose reprojection error falls

within a certain threshold.

Figure 4.11 shows an example of good 2D-3D correspondences after the outlier

rejection steps, while figure 4.12 gives an example of outlier rejection using ransac.

4.3.2 Non-linear optimization

A further non-linear optimization can also be applied to refine the final solution.

OpenGV library contains a non-linear optimization method that minimizes the im-

age reprojection error

argmin

Tk

X

i

��
x

i

k

� ˆ

x

i

k�1

��2 (4.8)

where x

i

k

is the 2D point of image I
k

, while x̂i

k�1 is the reprojection of the 3D

point X

i

k�1 into image I
k

according to the transformation T
k

.

4.3. MOTION ESTIMATION 47

Figure 4.11: Example of 2D-3D correspondences after the outlier rejection steps.
The red number indicates the 3D reprojected points on the left image plane, x̂i

k�1,
while the green ones are the corresponding 2D points, x

i

k

. The outlier rejection
allow to remove almost all of the bad correspondences and thus to reduce the com-
putational time of the motion estimation step.

4.3.3 Trajectory reconstruction

The procedure described above is repeated for all the image pairs, obtaining a trans-

formation matrix T k

k�1 between two sequential sets of images. By concatenation of

all these single movements, the full trajectory of the left camera can be recovered.

48 CHAPTER 4. PROCEDURE

Figure 4.12: An example of outliers rejection through ransac. The two figures
refer to two different time steps and show the 2D-3D correspondences between 3D
reprojected point (at time t � dt) and 2D image points (at time t). The green
correspondences are those that ransac considers inliers, while the red ones are
treated as the outliers and not used in order to compute the final camera pose.

Chapter 5

Experimental set-up

In order to measured the algorithm performance, the software was tested on some

datasets recorded by the laboratory stereo camera, whose intrinsic and extrinsic

parameters are illustrated in tables 5.1 and 5.2. A detailed analysis of this set-up

can be found in [34] and [35].

The stereo camera was mounted both on a linear slide and on a motor-driven

rotary stage that are provided with a graduate scale in order to compare the measure-

ments obtained by the visual system respectively with known linear displacements

and with known rotation angles. Figure 5.1 shows this set-up. The images recorded

have a 2040⇥ 1086 px resolution.

Left camera Right camera
Focal length [mm] f 6.0 6.0

Focal length * pixel density [px] ↵
x

= fS
x

1133.20108 1136.43126
↵
y

= fS
y

1133.19673 1135.97654

Principal point [mm] O
x

1058.25306 1056.95157
O

y

524.70888 542.00913

Distortion coefficients

k1 -0.14684 -0.14562
k2 0.08434 0.08334
p1 -0.00003 -0.00016
p2 0.00089 0.00042
k3 -0.01645 -0.01609

Table 5.1: Stereo-camera intrinsic parameters.

In order to test the performance of the software on extended sequences, some

49

50 CHAPTER 5. EXPERIMENTAL SET-UP

Figure 5.1: The experimental set-up used to record the datasets [34]. It comprises
the stereo camera mounted on the rotary stage, which can translate along the linear
slide.

Euler vector [rad]
⇥
0.02 0.1 0.4

⇤

Translation vector [mm]
⇥
546 �1.5 �3.5

⇤

Table 5.2: Stereo-camera extrinsic parameters.

different datasets of stereo frames are adopted. They relate to two different types

of test.

Translation test: it is a straight displacement along z�axis with a total travel

of 1350 mm; it is performed using the linear slide and acquiring the images

every 10 mm.

Rotation test: it is an axial displacement from 0

� to 90

� around y�axis; it is

performed using the rotary stage and acquiring the images every 0.5�.

In this way we could also test the VO algorithm with different steps between

two consecutive sets of images. Figures 5.2 - 5.5 show some examples of input images

used in our experiments.

51

(a) Left and right first images of the translation dataset sequence after the demosaic step.

(b) Left and right last images of the translation dataset sequence after the demosaic step.

Figure 5.2: Translation sequence No.1.

(a) Left and right first images of the translation dataset sequence after the demosaic step.

(b) Left and right last images of the translation dataset sequence after the demosaic step.

Figure 5.3: Translation sequence No.2.

52 CHAPTER 5. EXPERIMENTAL SET-UP

(a) Left and right first images of the rotation dataset sequence after the demosaic step.

(b) Left and right last images of the rotation dataset sequence after the demosaic step.

Figure 5.4: Rotation sequence No.1.

(a) Left and right first images of the rotation dataset sequence after the demosaic step.

(b) Left and right last images of the rotation dataset sequence after the demosaic step.

Figure 5.5: Rotation sequence No.2.

5.1. THE MORPHEUS PROJECT 53

5.1 The MORPHEUS project

The MORPHEUS project consists in designing and building the first students

rover of the University of Padova.

MORPHEUS is designed to be a functional rover, capable to perform different

tasks similar to ones that will support the future manned Mars exploration. In detail,

the rover will be able to sample surface soil and rocks, to drill, to autonomously drive

in harsh terrains and to operate assistant and maintenance tasks. The rover has six

wheels, connected to the chassis through three rockers, and it is able to drive using

a skid steering configuration. It is also equipped with a robotic arm (with three hot

swappable manipulators for different tasks), a sample extraction drill, a stereoscopic

vision system and an omnidirectional antenna for communications.

MORPHEUS rover is design to have a full speed of 1m/s (15�) with an accelera-

tion of 0.2m/s2. In addition to the stereo-vision system, it is equipped with different

sensors. The localization and the pose of the rover will be estimated through the

measurements collected by a GPS module and an IMU (accelerometers and gyro-

scopes). While the GPS provides only a rough estimate of the position with low

update frequency, the IMU gives more precise data with high update frequency; on

the other hand the accelerometers and gyroscopes can only give a relative measure

with an error that increases over time (due to the integration of the accelerations

and velocities) whereas the GPS measure is absolute, as it doesn’t depend on the

motion of the rover. A sensor fusion algorithm is then needed to put together all

these informations.

Our purpose was to implement a real-time long-run visual odometry algorithm

54 CHAPTER 5. EXPERIMENTAL SET-UP

Figure 5.6: MORPHEUS overview.

that enables to determine the rover pose. The vehicle stereo-vision system for au-

tonomous motion control is composed by two Raspberry-Pi camera modules and

a Raspberry-Pi compute module, while the main rover board is the Jetson TK1,

that is an embedded development platform from NVIDIA (figure 5.8). The visual

odometry software developed has been tested on this board.

Figure 5.7: The NVIDIA Jetson TK1 is the rover core, exploiting a Tegra K1 SOC.

5.1. THE MORPHEUS PROJECT 55

Figure 5.8: Stereo camera system on the front of the MORPHEUS rover. MOR-
PHEUS is equipped with two Raspberry Pi cameras that gain two synchronous
images through the Raspberry Compute Module board.

56 CHAPTER 5. EXPERIMENTAL SET-UP

Chapter 6

Results

6.1 Image processing

Accuracy of feature localization and computation cost are crucial aspects for visual

odometry. As can be seen in table 6.1, the computational time for the motion esti-

mation step is typically a small fraction of the time required for the visual odometry

process, while the image processing is the most expensive stage.

Step Computational cost

loading images 2.11%
undistortion 10.18%
SURF detector 29.82%
SURF descriptor 50.18%
BF matcher 5.61%
Motion estimation 1.80%

Table 6.1: Computational time percentage of different algorithm parts.

Image processing evaluations have been conducted using different feature de-

tection and description algorithms. Their performance has been estimated using

some indirect indicators that are the number of inliers/matches per frame, the com-

putational time, the iterations in Ransac and the error per frame in the motion

estimation.

Figures 6.1, 6.2 and 6.3 display the keypoints detected with the different extrac-

tors and the feature matching found using the consistent descriptors. The selected

57

58 CHAPTER 6. RESULTS

(a)

(b)

Figure 6.1: An example of feature detection and description using SIFT algorithm.
In detail: (6.1a) keypoints extracted using the SIFT algorithm; note that at each
keypoint is assigned one orientation based on local image gradient directions; (6.1b)
matches detected using the SIFT descriptor and the Brute Force matcher.

landmarks appears to be well distributed in the area of the image, although rel-

atively few landmarks are selected close to the cameras. The matching locations

were then detected in the corresponding right image using stereo matching. As de-

scribed in 4.3.1, some matches were discarded at this step through examination of

the correlation score and the gap between the 2D points and the 3D reprojected

one.

6.1. IMAGE PROCESSING 59

(a)

(b)

Figure 6.2: An example of feature detection and description using SURF algorithm.
In detail: (6.2a) keypoints extracted using the SURF algorithm; (6.2b) matches
detected using the SURF descriptor and the Brute Force matcher.

60 CHAPTER 6. RESULTS

(a)

(b)

Figure 6.3: An example of feature detection and description using FAST and BRIEF
algorithms. In detail: (6.3a) keypoints extracted using the FAST algorithm; (6.3b)
matches detected using the BRIEF descriptor and the Brute Force matcher.

6.1. IMAGE PROCESSING 61

An intuition evaluation criterion for detectors and descriptors is the percentage

of matched inliers in all the matched points. The detection of few or even some

wrong correspondences will lead to failure in motion estimation indeed. The graph

in figure 6.4 and table 6.2 show the percentage of matched inliers obtained using

different feature detectors and descriptors.

in
lie

rs
/m

at
ch

es
 [%

]

0,00%

8,50%

17,00%

25,50%

34,00%

frame
1 2 3 4 5 6

SIFT SURF FAST+BRIEF

Figure 6.4: Matched inliers percentage using different feature detectors and descrip-
tors for each image pair.

Matches Inliers Inliers/Matches [%]

SIFT 1019 316 30.98
SURF 2352 680 28.92

FAST+BRIEF 5046 1294 25.64

Table 6.2: Average percentage of matched inliers in all the matched points found
using the different feature detectors and descriptors.

The localization error must be the most useful criterion in motion estimation, so

we also evaluate the relationships of different detectors and descriptors with the error

between the estimated position and the true one. It is a comprehensive criterion

to represent performance of detectors and descriptors, because accuracies of feature

detection and descriptor will all affect the localization error. Figures 6.5 and 6.6

display the errors in the motion estimation, highlighting the error computed as the

62 CHAPTER 6. RESULTS

difference between the estimated position and the correct one in the ground truth,

the percentage error and the error cumulated at each step.

The sample iterations in Ransac may be another interested criterion to eval-

uate the performance of descriptors. The iteration number indicates how easily

Ransac is able to obtain accurate initial motion estimation and thus it is a direct

measure of time spent for outlier removal. Table 6.3 shows the iteration number of

Ransac for different descriptors.

frame Iterations number Consensus set size

SIFT

1 11/10000 139
2 12/10000 138
3 24/10000 113
4 13/10000 125
5 12/10000 139
6 19/10000 124

SURF

1 8/10000 97
2 9/10000 90
3 7/10000 89
4 12/10000 92
5 11/10000 98
6 8/10000 120

FAST + BRIEF

1 31/10000 184
2 44/10000 182
3 34/10000 170
4 39/10000 172
5 10001/10000 7
6 55/10000 168

Table 6.3: Ransac iterations number and consensus set size for different detectors
and descriptors. Note that when the number of iterations exceeds the maximum,
there aren’t enough inliers that fit the model and the motion estimation fails.

As can be seen the accuracies of the different feature detectors and descriptors

are similar. However, while SIFT and SURF have proven to be reliable with all

the datasets used, FAST and BRIEF gave random bad results sometimes. This is

because the Ransac step exceed the maximum number of iteration allowed. The

output is then a wrong model since none of the ones considered agrees with a quite

large consensus set. This probably happens because the descriptor failed the feature

matching or tracking step.

6.1. IMAGE PROCESSING 63

(a) Error relative to the ground truth. (b) Percentage error.

(c) Cumulative error.

Figure 6.5: A comparison between different detectors and descriptors accuracy on
the translation sequence. Graph 6.5a shows the error computed as the difference
between the estimated position and the correct one in the ground truth, while 6.5b
displays this percentage error; finally 6.5c shows the error cumulated at each step.

64 CHAPTER 6. RESULTS

(a) Error relative to the ground truth. (b) Percentage error.

(c) Cumulative error.

Figure 6.6: A comparison between different detectors and descriptors accuracy on
the rotation sequence. Graph 6.6a shows the error computed as the difference be-
tween the estimated position and the correct one in the ground truth, while 6.6b
displays this percentage error; finally 6.6c shows the error cumulated at each step.

6.1. IMAGE PROCESSING 65

Because visual odometry is a real-time application, we also compared the exe-

cuting time for different detectors and descriptors using the same hardware. In this

experiment, all the detectors and descriptors are implemented to process the same

image sequence, with a resolution of 2040⇥ 1086 px. We recorded the average exe-

cuting time of each detector and descriptor to process a pair of images. The results

averaged over the number of image pairs are shown in table 6.4, that illustrates the

times required on the Jetson TK1 to process the software main steps highlighting

the image processing stages.

The experimental results show SIFT detector and descriptor spend much more

time in computation than other detectors and descriptors, while FAST detector and

BRIEF descriptor are much faster then SURF, but take too long on matching and

tracking steps.

Therefore all these results suggest that SURF may be a proper solution for

stereo visual odometry when considering the robustness, accuracy and executing

time in all.

Execution time [s]

SIFT SURF FAST+BRIEF

Loading images 0.144789 0.144789 0.144789
Images demosaicing 0.027656 0.027656 0.027656
Images undistortion 0.498810 0.498810 0.498810
Detector 6.902458 2.141598 0.055885
Descriptor 6.621392 3.074577 0.134562
Matching 0.269174 0.342911 2.136082
Tracking 0.279834 0.345526 2.036842
[R|t] computation 14.087950 5.915622 4.558575

Total time 14.753033 6.578997 5.222868

Table 6.4: Comparison of times required on Jetson TK1 to perform the software main
steps using different feature detectors and descriptors on 2040⇥1086 px images. Note
that the [R|t] computation time includes the image processing steps (i.e., detection,
description, matching and tracking).

Because we are interested in real-time performance we chose to use the Jetson

TK1 GPU for the image processing stages. OpenCV [12] contains different feature

detectors, e.g., SIFT, SURF, BRISK, FREAK, STAR, FAST, ORB. All of these

66 CHAPTER 6. RESULTS

have implementation on CPU, but only SURF and ORB on GPU. We have chosen

SURF because it is actually the only scale/rotate-invariant feature detector with

GPU support in OpenCV. In detail, SURF_GPU contains a fast multi-scale Hessian

keypoint detector and implements Speeded Up Robust Features descriptor.
tim

e
[s

]

0,0000

4,0000

8,0000

12,0000

16,0000

frame
1 2 3 4 5 6

SIFT SURF FAST+BRIEF SURF on GPU

Figure 6.7: Different detector and descriptor times on Jetson TK1 for each image
pair. These times includes the detection, the description and the matching steps on
two 2040⇥ 1086 px images.

We tested the GPU implementation of SURF on the same sequence of 2040⇥

1086 px images and on a resize version of 1020⇥543 px images. Table 6.5 shows the

results. Figure 6.8 displays the motion estimation error using different images size

and shows the loss of accuracy that occur removing the undistortion stage. Note

that accuracy worsens slightly reducing the image size: the average error increases

from 0.6% to 0.84% halving the image size.

6.1. IMAGE PROCESSING 67

(a) Error relative to the ground truth. (b) Percentage error.

(c) Cumulative error.

Figure 6.8: A comparison between the motion estimation accuracy on images of
different size on the translation sequence No.1. Graph 6.8a shows the error com-
puted as the difference between the estimated position and the correct one in the
ground truth, while 6.8b displays this percentage error; finally 6.8c shows the error
cumulated at each step.

68 CHAPTER 6. RESULTS

Execution time [s]

2040⇥ 1086 px 1020⇥ 543 px

Loading images 0.144789 0.141727
Images demosaicing 0.027656 0.011658
Images undistortion 0.498810 0.124475
Detector + Descriptor 1.154352 0.587790
Matching 0.039996 0.010242
Tracking 0.042186 0.011710
[R|t] computation 1.248073 0.337477

Total time 1.907913 0.614721

Table 6.5: Comparison of times required on Jetson TK1 to perform the software
main steps using the implementation on GPU of SURF for different image size: the
first column refers to 2040⇥ 1086 px images, while the second one to 1020⇥ 543 px
images. Note that the [R|t] computation time includes the image processing steps
(i.e., detection, description, matching and tracking).

(a) Hypothesis.

(b) Consensus set.

Figure 6.9: Example of (a) a subset of four points used to determine the model
parameters (hypothesis) and (b) the consensus set that fits this model used in the
Ransac outlier-rejection step.

6.2. MOTION ESTIMATION ACCURACY 69

6.2 Motion estimation accuracy

As described in chapter 3 three different motion estimation algorithms were tested.

We will refer to them as Kneip, Gao and EPnP. Each algorithm was run on the same

set of input images. These algorithms were performed inside a Ransac scheme,

followed by a non-linear optimization.

Figure 6.9 displays an example of four point Ransac hypothesis with the rel-

ative consensus set, while table 6.6 shows an average value of the iterations needed,

of the output inliers number and of the time required by the Ransac scheme using

the different algorithms.

Iterations number Inliers number Time [ms]

Kneip algorithm 11.00 105.67 0.39772
Gao algorithm 10.67 104.59 0.66118
EPnP algorithm 18.17 106.17 4.25493

Table 6.6: Ransac parameters using different algorithms. These results represents
the mean value of the data collected for each sequence step.

As mentioned in the previous section, the most useful criterion in motion es-

timation must be the localization error. We then evaluate the three algorithms

measuring the error between the estimated position and the true one. A sample

calculation based on the expected vehicle translation and rotation rates allows us to

compute this position error. Figures 6.11 - 6.18 summarize the errors in the motion

estimation for each dataset, highlighting the error computed as the difference be-

tween the estimated position and the correct one in the ground truth, the percentage

error and the error cumulated at each step. Figure 6.19 and 6.20 show the errors on

the three axis.

Note that the error relative to the ground truth may be either positive or

negative and therefore has a zero mean. The cumulative error is a more significant

parameter to evaluate the algorithms accuracy instead, since some methods show an

higher variance then others. Moreover the results for each run are slightly different

because of the random nature of Ransac.

The graphs show that the non-linear optimization significantly improves the

70 CHAPTER 6. RESULTS

(a) Cameras path on x � z plane for the
translation test No.1.

(b) Cameras path on x � z plane for the
rotation test No.1.

Figure 6.10: Different stereo-camera paths corresponding respectively to a transla-
tion sequence and a rotation one. The red dots represent the left camera, while the
blue ones the right camera. The arrows illustrates the cameras orientation at each
step. The initial position of the left camera is defined by the coordinates (0, 0).

motion estimation precision, while we can’t notice any appreciable difference among

the three algorithms. Furthermore, their computational costs are comparable within

the whole process.

Table 6.7 and 6.8 illustrate different tests performed on the image sequences

showing the average error in the motion estimation process. The cross symbol

indicates some configuration where the motion estimation fails because Ransac

iterations exceed the limit without finding a proper consensus set. As you can see

from the tables, this may occur if the step size is too small. Figure 6.14a shows

an example of this occurrence: suddenly the error abruptly increases because the

software ignores a wrong measure.

Figure 6.10 shows the camera paths of translation sequence No.1 and rotation

sequence No.1.

6.2. MOTION ESTIMATION ACCURACY 71

Average error [mm]

Step size [mm] KNEIP GAO EPnP

Translation sequence No.1

10 7 7 7
20 0.98 1.05 1.09
50 1.05 1.11 1.21

100 1.12 1.69 0.90
200 1.92 0.72 1.01
300 3.45 2.28 2.12

Translation sequence No.2

10 7 7 7
20 7 7 7
50 1.26 1.09 1.29

100 1.30 1.00 1.06
200 2.12 1.62 1.89
300 2.57 2.55 2.91

Table 6.7: Average errors on the translation sequences obtained using different step
sizes. The cross symbol indicates that the algorithm fails in one or more motion
estimation step. This is because the Ransac iterations exceed the limit without
finding a proper consensus set.

Average error [deg]

Step size [deg] KNEIP GAO EPnP

Rotation sequence No.1

1 0.024 0.023 0.020
2 0.020 0.020 0.022
5 0.035 0.044 0.027

10 0.047 0.030 0.079
15 0.063 0.059 0.068
20 0.055 0.054 0.033

Rotation sequence No.2

1 7 7 7
2 0.034 0.038 0.033
5 0.041 0.057 0.034

10 0.039 0.059 0.060
15 0.055 0.040 0.031
20 0.081 0.031 0.037

Table 6.8: Average errors on the rotation sequences obtained using different step
sizes. The cross symbol indicates that the algorithm fails in one or more motion
estimation step. This is because the Ransac iterations exceed the limit without
finding a proper consensus set.

72 CHAPTER 6. RESULTS

(a) Error relative to the ground truth. (b) Percentage error.

(c) Cumulative error.

Figure 6.11: A comparison between different algorithm accuracies on the translation
sequence No.1. Graph 6.11a shows the error computed as the difference between the
estimated position and the correct one in the ground truth, while 6.11b displays this
percentage error; finally 6.11c shows the error cumulated at each step.

6.2. MOTION ESTIMATION ACCURACY 73

(a) Error relative to the ground truth. (b) Percentage error.

(c) Cumulative error.

Figure 6.12: A comparison between different algorithm accuracies on the translation
sequence No.2. Graph 6.12a shows the error computed as the difference between the
estimated position and the correct one in the ground truth, while 6.12b displays this
percentage error; finally 6.12c shows the error cumulated at each step.

74 CHAPTER 6. RESULTS

(a) (b)

(c)

Figure 6.13: Cumulative errors calculated by adding the absolute errors for some
different step sizes on the translation sequence No.1.

6.2. MOTION ESTIMATION ACCURACY 75

(a) (b)

(c) (d)

Figure 6.14: Cumulative errors calculated by adding the absolute errors for some
different step sizes on the translation sequence No.2.

76 CHAPTER 6. RESULTS

(a) Error relative to the ground truth. (b) Percentage error.

(c) Cumulative error.

Figure 6.15: A comparison between different algorithm accuracies on the rotation
sequence No.1. Graph 6.15a shows the error computed as the difference between
the estimated position and the correct one in the ground truth, while 6.15b displays
this percentage error; finally 6.15c shows the error cumulated at each step.

6.2. MOTION ESTIMATION ACCURACY 77

(a) Error relative to the ground truth. (b) Percentage error.

(c) Cumulative error.

Figure 6.16: A comparison between different algorithm accuracies on the rotation
sequence No.2. Graph 6.16a shows the error computed as the difference between
the estimated position and the correct one in the ground truth, while 6.16b displays
this percentage error; finally 6.16c shows the error cumulated at each step.

78 CHAPTER 6. RESULTS

(a) (b)

(c) (d)

Figure 6.17: Cumulative errors calculated by adding the absolute errors for some
different step sizes on the rotation sequence No.1.

6.2. MOTION ESTIMATION ACCURACY 79

(a) (b)

(c) (d)

Figure 6.18: Cumulative errors calculated by adding the absolute errors for some
different step sizes on the rotation sequence No.2.

80 CHAPTER 6. RESULTS

(a) Error relative to the ground truth. (b) Percentage error.

(c) Cumulative error.

Figure 6.19: Illustration of the error on the three axis on the translation sequence
No.1. Graph 6.19a shows the error computed as the difference between the estimated
position and the correct one in the ground truth, while 6.19b displays this percentage
error; finally 6.19c shows the error cumulated at each step.

6.2. MOTION ESTIMATION ACCURACY 81

(a) Error relative to the ground truth. (b) Percentage error.

(c) Cumulative error.

Figure 6.20: Illustration of the error on the three axis on the rotation sequence
No.1. Graph 6.20a shows the error computed as the difference between the estimated
position and the correct one in the ground truth, while 6.20b displays this percentage
error; finally 6.20c shows the error cumulated at each step.

82 CHAPTER 6. RESULTS

6.3 Acquisition frequency

The employed acquisition frequencies (i.e., 10mm for the translation tests and

0.5 deg for the rotation ones) are relatively high for the slow motion of the vehi-

cle. The visual odometry algorithm can use every acquired image or it can skip

one or more frames every motion evaluation. In this way different motion step sizes

were compared. Figures 6.21 - 6.24 shows the Kneip and the Gao algorithms on the

translation and rotation sequences with different step sizes.

We can note that the accuracy improves as the step size between two image pairs

increases despite the visual odometry algorithm estimates and integrates sequential

frame-to-frame motions. Regarding the translation sequence, the precision improves

increasing the step size from 20 to 200 mm and then slightly worsen with the 300

mm step, while for the rotation sequence the accuracy gets considerably better when

moving from 3

� step size to 15

�.

We can clearly deduce that the algorithm introduces a constant error at each

step and thus the cumulative error increases for small step sizes. Moreover, the

visual odometry algorithm must have a sufficient image overlap in order to match

features and then the step size shouldn’t become too large.

As mentioned in section 6.2 we also noted that if the step size is too small,

e.g. 10mm or 20mm, Ransac iterations may exceed the limit and the result is not

reliable.

6.3. ACQUISITION FREQUENCY 83

(a) Error relative to the ground truth. (b) Percentage error.

(c) Cumulative error.

Figure 6.21: Illustration of Kneip algorithm with different step sizes on translation
sequence No.1. Graph 6.21a shows the error computed as the difference between
the estimated position and the correct one in the ground truth, while 6.21b displays
this percentage error; finally 6.21c shows the error cumulated at each step.

84 CHAPTER 6. RESULTS

(a) Error relative to the ground truth. (b) Percentage error.

(c) Cumulative error.

Figure 6.22: Illustration of Gao algorithm with different step sizes on translation
sequence No.1. Graph 6.22a shows the error computed as the difference between
the estimated position and the correct one in the ground truth, while 6.22b displays
this percentage error; finally 6.22c shows the error cumulated at each step.

6.3. ACQUISITION FREQUENCY 85

(a) Error relative to the ground truth. (b) Percentage error.

(c) Cumulative error.

Figure 6.23: Illustration of Kneip algorithm with different step sizes on rotation
sequence No.1. Graph 6.21a shows the error computed as the difference between
the estimated position and the correct one in the ground truth, while 6.21b displays
this percentage error; finally 6.21c shows the error cumulated at each step.

86 CHAPTER 6. RESULTS

(a) Error relative to the ground truth. (b) Percentage error.

(c) Cumulative error.

Figure 6.24: Illustration of Gao algorithm with different step sizes on rotation se-
quence No.1. Graph 6.22a shows the error computed as the difference between the
estimated position and the correct one in the ground truth, while 6.22b displays this
percentage error; finally 6.22c shows the error cumulated at each step.

6.4. DATASETS 87

(a) Stereo-camera path.

(b) (c)

Figure 6.25: Example of images of the rotation sequence and computed path: the
two locations marked in figure 6.25a indicate the position of the left camera which
capture the images 6.25b and 6.25c.

6.4 Datasets

Let us finally observe how the motion estimation accuracy change according to the

sequence considered. In our evaluation, four different datasets of stereo frames are

adopted. As described in chapter 5, we tested two translation and two rotation se-

quences. These datasets are collected in different laboratory positions, with changes

on scale, viewpoints and illumination conditions.

Figures 6.26 - 6.29 display the obtained precision. As can be seen the results

are comparable and stable, demonstrating the robustness of the algorithm.

88 CHAPTER 6. RESULTS

(a) Error relative to the ground truth. (b) Percentage error.

(c) Cumulative error.

Figure 6.26: Illustration of Kneip algorithm with different translation sequences.
Graph 6.26a shows the error computed as the difference between the estimated
position and the correct one in the ground truth, while 6.26b displays this percentage
error; finally 6.26c shows the error cumulated at each step.

6.4. DATASETS 89

(a) Error relative to the ground truth. (b) Percentage error.

(c) Cumulative error.

Figure 6.27: Illustration of Kneip algorithm with different rotation sequences. Graph
6.27a shows the error computed as the difference between the estimated position and
the correct one in the ground truth, while 6.27b displays this percentage error; finally
6.27c shows the error cumulated at each step.

90 CHAPTER 6. RESULTS

(a) Error relative to the ground truth. (b) Percentage error.

(c) Cumulative error.

Figure 6.28: Illustration of Gao algorithm with different translation sequences.
Graph 6.28a shows the error computed as the difference between the estimated po-
sition and the correct one in the ground truth, while 6.28b displays this percentage
error; finally 6.28c shows the error cumulated at each step.

6.4. DATASETS 91

(a) Error relative to the ground truth. (b) Percentage error.

(c) Cumulative error.

Figure 6.29: Illustration of Gao algorithm with different rotation sequences. Graph
6.29a shows the error computed as the difference between the estimated position
and the correct one in the ground truth, while 6.29b displays this percentage error;
finally 6.29c shows the error cumulated at each step.

92 CHAPTER 6. RESULTS

Chapter 7

Conclusions

In the present work the attention is focused on visual odometry, that is an important

technique in the robotic field. The low cost, small size, lower power needs, and high

information content of modern cameras make them attractive sensors to address the

problem of motion estimation.

We presented a software that can determine three-dimensional motion of a

vehicle incrementally using the data collected by a stereo-camera.

The developed class implements a visual odometry algorithm using a 2D-to-3D

method. Different motion estimation algorithms have been considered (i.e., Kneip,

Gao and EPnP) inside the Ransac outlier rejection scheme that allows to ensure

accurate motion estimation at each step in the presence of outliers. A non-linear

optimization has also been applied. We also reviewed a variety of detector and

descriptor formulations and sensitivity of solutions to environment conditions and

frequency acquisition.

The algorithm presented has been thoroughly tested and has shown perfor-

mance that is promising for real-time applications. For example, the NVIDIA Jet-

son TK1 can process two 1020 ⇥ 543 px images and obtain the 3D vehicle pose in

about 0.6 s. Experiments on hundreds of real stereo pairs have demonstrate an high

degree of reliability and an accuracy of better than 1% over 1350mm of travel and

better than 0.5% over 90�.

We presented the capabilities and limitations of pure visual odometry. One of

the disadvantages is related to the fact that visual odometry accumulates error as

93

94 CHAPTER 7. CONCLUSIONS

the robot moves, so that some periodic update is beneficial. Stereo visual odometry

algorithm described is therefore intended to augment rather than replace the sensors,

and to work with higher-level pose estimators that fuse data from multiple sources.

However this integration is beyond the purpose of this work and is not taken into

account.

As described the experimental tests were performed inside our laboratory which

is a closed environment. We should evaluate the robustness of these techniques using

real rover images captured in rocky terrain, similar to the surface that a rover would

encounter on Mars. A future development has been described in 5.1 and involves

the application of the software on a fully functional terrain rover. In this way we

could appraise the software performance using real rover images captured in outdoor

environment with the rover undergoing six degree-of-freedom motion.

Bibliography

[1] D.Nister, O.Naroditsky, J.Bergen. Visual odometry. In Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pages 652–659, 2004.

[2] D.Scaramuzza, F.Fraundorfer. Visual odometry. Part I: The First 30 Years and
Fundamentals. IEEE Robotics & Automation Magazine, pages 80–92, December
2011.

[3] H.Moravec. Obstacles avoidance and navigation in the real world by a seeing
robot rover. PhD thesis, Stanford Univ., Stanford, CA, 1980.

[4] Y.Cheng, M.W.Maimone, L.Matthies. Visual odometry on the Mars Explo-
ration Rovers. In SMC, pages 903–910. IEEE, 2005.

[5] D. Nistér, O.Naroditsky, J.R.Bergen. Visual odometry for ground vehicle ap-
plications. J. Field Robotics, 23(1):3–20, 2006.

[6] M.Agrawal, K.G.Konolige. Real-time Localization in Outdoor Environments
using Stereo Vision and Inexpensive GPS. In ICPR, pages III: 1063–1068,
2006.

[7] C.F.Olson, L.Matthies, M.Schoppers, M.W.Maimone. Rover navigation using
stereo ego-motion. Robotics and Autonomous Systems, 43(4):215–229, 2003.

[8] N.Sünderhauf, K.Konolige, S.Lacroix, P.Protzel. Visual Odometry Using Sparse
Bundle Adjustment on an Autonomous Outdoor Vehicle. In Paul Levi, Michael
Schanz, Reinhard Lafrenz, and Viktor Avrutin, editors, AMS, Informatik Ak-
tuell, pages 157–163. Springer, 2005.

[9] A.Howard. Real-time stereo visual odometry for autonomous ground vehicles.
pages 3946–3952. IEEE, 2008.

[10] T.S.Huang, A.N.Netravali. Motion and Structure from Feature Correspon-
dences: A review. Proceedings of IEEE, 82(2):252–268, feb 1994.

[11] Y.Ma, S.Soatto, J.Kosecka, S.S.Sastry. An Invitation to 3-D Vision: From
Images to Geometric Models. Springer-Verlag, 2005.

[12] OpenCV: Open-source computer vision library, available at http://opencv.

org.

95

http://opencv.org
http://opencv.org

96 BIBLIOGRAPHY

[13] D.Scaramuzza, F.Fraundorfer. Visual odometry. Part II: Matching, Robustness,
Optimization, and Applications. IEEE Robotics & Automation Magazine, pages
78–90, June 2012.

[14] N.Govender. Evaluation of feature detection algorithms for structure from mo-
tion. In 3rd Robotics and Mechatronics Symposium (ROBMECH 2009), 2009.

[15] K.Mikolajczyk, C.Schmid. Scale & affine invariant interest point detectors.
2004.

[16] Y.Jiang, Y.Xu, Y.Liu. Performance evaluation of feature detection and match-
ing in stereo visual odometry. Neurocomputing, 120:380–390, 2013.

[17] D.G.Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004.

[18] H.Bay, T.Tuytelaars, L.J.Van Gool. SURF: Speeded Up Robust Features. In
ECCV, pages I: 404–417, 2006.

[19] E.Rosten, T.W.Drummond. Machine Learning for High-Speed Corner Detec-
tion. In ECCV, pages I: 430–443, 2006.

[20] M.Calonder, V.Lepetit, C.Strecha, P.Fua. BRIEF: Binary Robust Independent
Elementary Features. In Kostas Daniilidis, Petros Maragos, and Nikos Paragios,
editors, ECCV (4), volume 6314 of Lecture Notes in Computer Science, pages
778–792. Springer, 2010.

[21] M.Pertile, M.Magnabosco, S.Debei. Calibration of a vision-based system for
displacement measurement in planetary exploration space mission. Journal of
Physics: Conference Series, 238(1), 2010.

[22] M.A.Fischler, R.C.Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Com-
mun. ACM, 24(6):381–395, 1981.

[23] D.Nister. A minimal solution to the generalised 3-point pose problem. In Proc.
IEEE Conf. Computer Vision and Pattern Recognition, pages 560–567, 2004.

[24] R.M.Haralick, C.N.Lee, K.Ottenberg, M.Nolle. Review and Analysis of Solu-
tions of the Three Point Perspective Pose Estimation Problem. International
Journal of Computer Vision, 13(3):331–356, December 1994.

[25] L.Kneip, P.T. Furgale, R.Siegwart. Using multi-camera systems in robotics:
Efficient solutions to the NPnP problem. In ICRA, pages 3770–3776. IEEE,
2013.

[26] R.M.Haralick, C.N.Lee, K.Ottenberg, M.Nolle. Review and Analysis of Solu-
tions of the Three Point Perspective Pose Estimation Problem. International
Journal of Computer Vision, 13(3):331–356, dec 1994.

BIBLIOGRAPHY 97

[27] J.A.Hesch, S.I.Roumeliotis. A direct least-squares (DLS) method for pnP. In
Dimitris N. Metaxas, Long Quan, Alberto Sanfeliu, and Luc J. Van Gool, edi-
tors, ICCV, pages 383–390. IEEE, 2011.

[28] Laurent Kneip, Paul Timothy Furgale. OpenGV: A unified and generalized
approach to real-time calibrated geometric vision. pages 1–8. IEEE, 2014.

[29] Gao, Hou, Tang, Cheng. Complete solution classification for the perspective-
three-point problem. IEEETPAMI: IEEE Transactions on Pattern Analysis
and Machine Intelligence, 25, 2003.

[30] L.Kneip, D.Scaramuzza, R.Siegwart. A novel parameterization of the
perspective-three-point problem for a direct computation of absolute camera
position and orientation. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pages 2969–2976, 2011.

[31] V.Lepetit, F.Moreno-Noguer, P.Fua. EPnP: An accurate O(n) solution to the
PnP problem. International Journal of Computer Vision (IJCV), 81:155–166,
February 2009.

[32] P.H.S.Torr, A.Zisserman. MLESAC: A new robust estimator with application
to estimating image geometry. Computer Vision and Image Understanding,
78(1):138–156, 2000.

[33] OpenGV: A library for solving calibrated central and non-central geometric vi-
sion problems, available at http://laurentkneip.github.io/opengv/index.
html.

[34] M.Pertile, S.Chiodini, S.Debei, E.Lorenzini. Laboratory calibration and com-
parison of three visual odometry systems. IX Congresso MMT, pages 48–55,
2014.

[35] M.Pertile, S.Chiodini, S.Debei. Comparison of visual odometry systems suitable
for planetary exploration. Journal of Physics: Conference Series, pages 232–
237, 2014.

	List of Figures
	List of Tables
	Introduction
	General problem
	Introduction
	Camera model
	Camera calibration
	Lens distortion

	Feature detection and matching
	Feature detection
	Feature description
	SIFT
	SURF
	FAST

	Triangulation

	Motion estimation
	Introduction
	The P3P problem
	Outliers rejection
	Ransac algorithm

	Procedure
	Image processing
	Triangulation
	Motion estimation
	Outlier rejection
	Non-linear optimization
	Trajectory reconstruction

	Experimental set-up
	The MORPHEUS project

	Results
	Image processing
	Motion estimation accuracy
	Acquisition frequency
	Datasets

	Conclusions
	Bibliography

