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Abstract 
 

The main purpose of this thesis is to study a method for finding the geometric 

relationship between the TCP (tool center point) of a tool attached to the robot 

flange (the last axis) and the robot itself using a camera. 

The proposed method requires the rotation matrix between the reference systems 

related to the robot and the camera and an initial tool positioning moving the robot 

using the manual control system in order to make the TCP detectable by the 

camera. 

The image processing algorithms were designed to find the TCP on the image of 

any symmetric tools. Once identified the TCP on the image, the method to find 

the geometric relationship between robot and the three-dimensional TCP can be 

applied to any tool. 

From a theoretical point of view the TCP computed is not an approximation. Any 

error is due to intrinsic system errors as camera discretization, robot pose 

accuracy and image processing algorithms accuracy. 

The proposed method computes the TCP performing two rotations from the initial 

flange pose around two different rotation axis. There is no constraints about the 

rotation angle but wide rotation will reduce the error amplification. An analysis of 

errors  has been performed to understand limitations of this method. 
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1 INTRODUCTION 

 BACKGROUND 

Usually robots delivered by the manufacturer are calibrated during production. The 

calibration procedure allows to know position and orientation of each axis during a 

movement. 

On last axis (tool flange) can be attached any tool. A point called TCP (tool center 

point) has to be calibrated to move the robot with respect to the tool assembled: it 

is the origin of a reference system representing the tool position and orientation. 

For each tool can be defined a different TCP, meaning that changing a tool the 

relative calibration has to be performed. Furthermore, while the robot is moving, it 

could collide with something thus requiring a new TCP calibration. 

Typically each robot has a manual procedure to calibrate the TCP. It can be 

computed using manual move controls to define four different positions keeping 

the TCP on the same point: for each combination of three of the four flange poses, 

a sphere whose center should be the TCP is computed. Then the TCP estimation 

will be the point that minimize the distance from each sphere center found. The 

result of this method depends on the operator skill to positioning the robot on the 

different poses keeping the TCP on the same position. Usually the accuracy 

achievable is around 0,5𝑚𝑚. 

 OBJECTIVES 

The company Euclid Labs requires an autonomous method to calibrate the TCP of 

symmetric tools using a camera. The Objective is to improve the accuracy of the 

manual method. 

At the request of Euclid Labs no external image processing library have to be used. 

The vision algorithms have to be written with the integrated development 

environment Visual Studio using C# as programming language. 
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Figure 1.1 – Euclid Labs logo 

 

The final demonstration software has to be a window in which every robot 

movements have to be simulated before the real execution. 

 STATE OF THE ART 

1.3.1 Electronic calibration systems 

Some manufacturers develop tool calibration system for robots that uses rotation-

symmetric tools. These systems measure the tool’s position electronically across 

all six dimensions and automatically adjusts the tool’s position using an in-line 

sensor system. On Figure 1.2 is shown advintec TCP-3D designed by Leoni that 

is an istance of these kind of systems. 

 

Figure 1.2 – Leoni TCP calibration system 

 



3 
 

There are several problems regarding these kind of systems that lead to search for 

others solutions: 

 the workspace is restricted 

 there is no user interface 

 “black box” system 

1.3.2 Camera based calibration systems 

There are some patents with several solutions to solve this problem using a camera 

but even in this case there are some restrictions. The common basic idea is to 

move the flange in at least three different poses keeping the TCP on the same 

point and then compute the relationship between TCP and flange defining and 

solving a set of constraints related to these flange poses. 

The easier solution computes the TCP without approximations from a theoretical 

point of view but it requires two robot flange rotations of 90 degree around two 

perpendicular axis [ 3 ] [ 4 ]. The main problem of this solution is that there could 

not be enough space to perform this kind of rotations and an initial TCP 

approximation is required. 

Another solution to compute the TCP makes use of mean squares error algorithm 

[ 2 ] [ 8 ]. In this case there is no restrictions about the rotation angles amplitude 

and it can be applied even without initial TCP approximations but to reach a 

reasonable accuracy many flange poses has to be used to define the system of 

equations. 

A third solution computes the TCP defining a set of equations using several flange 

poses and keeping the TCP on the camera optical axis [ 2 ]. This method requires 

at least four flange poses and allows to define system of second order equations. 

This method has no approximations from a theoretical point of view but second 

order constraints lead to high intrinsic system errors amplification as camera 

discretization and robot pose inaccuracy. 

 SYSTEM SETUP 

System components are: 



4 
 

 Manipulator: KUKA AGILUS1100 SIXX 

 Camera: Blaser Ace acA2040-25gm (2048x2048 pixels) 

 Lens: Goyo GMTHR35028MCN (F/2.8 50mm) 

 Led backlight: PHLOX SLLUB (200 X 200 mm, IP-65) 

 PC: Asus asus n550jk (Intel Core i7-4700HQ (2.40 GHz)) 

Manipulator, camera and PC are connected to a local Ethernet network. 

Manipulator and PC communicate reading and writing two shared variables stored 

on the robot control unit: 

 flag: a Boolean variable that will be set to 𝑡𝑟𝑢𝑒 when a new movement has 

to be performed. Once the movement has been performed it will be set to 

𝑓𝑎𝑙𝑠𝑒. 

 pos: contains the manipulator position to reach. It can be expressed in 

different coordinate systems. 

The PC handles the main software. It elaborates camera images and computes 

manipulator positions. 

The following routine is used to command the manipulator from the PC: 

1. set the new position on the variable pos 

2. set to true the variable flag  

3. suspend execution until the manipulator will set the variable flag to false. 

While the manipulator executes the following loop: 

1. check the variable flag 

2. if flag value is 𝑡𝑟𝑢𝑒 move the active TCP to the new position pos  

3. set flag to 𝑓𝑎𝑙𝑠𝑒. 

The Backlight is an illuminated surface positioned in front of the camera and behind 

the tool with the purpose to enhance the contrast to detect more easily the TCP 

using the camera. 
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 ORGANISATION OF THE DOCUMENT 

0 Errore. Il risultato non 
è valido per una tabella. 

Describes the purpose of this thesis and the 
configuration of the devices used 

1 Errore. Il risultato non 
è valido per una tabella. 

Detailed information about the manipulator and its 
reference systems and a brief description of the 
simulator used 

3 Image processing All the theory regarding image processing algorithms 
used and the explanation of the method used to 
detect the TCP with the camera 

4 TCP calibration Detailed analysis of the method used to calibrate the 
TCP including the interaction between software and 
camera 

5 Results The results obtained with several test to analyse the 
precision and the accuracy of the method proposed  

6 Conclusions Final discussion of the results achieved and possible 
future developments 

A Appendix 
 

Explanation of the least squares method with normal 
equations 

 

Table 1.1 – Organisation of the document 
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2 ROBOTICS 

 KUKA AGILUS1100 SIXX 

This small industrial robot is a 6-axis arm and it have been designed to achieve 

high velocity, at the expense of a reduced payload.  

2.1.1 Description 

The robot is composed of the following components visible in Figure 2.1: 

1. In-line wrist A4, A5, A6 

2. Arm A3 

3. Link arm A2 

4. Rotating column A1 

5. Electrical installations 

6. Base frame 

 

Figure 2.1 – Kuka Agiuls1100 sixx 

 

In-line wrist A4, A5, A6 The robot is fitted with a 3-axis in-line wrist. The in-
line wrist consists of axes 4, 5 and 6. 
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Arm A3 The arm is the link between the in-line wrist and the 
link arm. The arm is driven by the motor of axis 3.  

Link arm A2 The link arm is the assembly located between the arm 
and the rotating column. It houses the motor and gear 
unit of axis 2. 

Rotating column A1 The rotating column houses the motors of axes 1 and 
2. The rotational motion of axis 1 is performed by the 
rotating column. 

Electrical installations The electrical installations include all the motor and 
control cables for the motors of axes 1 to 6. The 
electrical installations also include the RDC box, 
which is integrated into the robot. 

Base frame The base frame is the base of the robot. Interface A1 
is located at the rear of the base frame.  

 

Table 2.1 - Kuka Agiuls1100 sixx components 

  

2.1.2 Technical data 

The robot joints are mechanically and software constrained. The maximum values 

are shown in Table 2.2, with the maximum speed that each axis can achieve. 

Axis Range of motion, 
software limited  

Speed with rated 
payload 

1 +/-170° 360 °/s 

2 +45° to -190° 360 °/s 

3 +156° to -120° 360 °/s 

4 +/-185° 360 °/s 

5 +/-120° 360 °/s 

6 +/-350° 360 °/s 

 

Table 2.2 - Kuka Agiuls1100 sixx technical data 
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The KUKA Agilus Sixx 1100 technical data are listed in Table 2.3. The working 

area is defined by the size of the robot and the values which can assume the joints 

represented in Figure 2.2. 

Max. reach 1,101 mm 

Max. payload 10 kg 

Pose repeatability ±0.03 mm 

Number of axes 6 

Mounting position Floor, ceiling, wall 

Robot footprint 209 mm × 207 mm 

Weight (excluding 
controller), approx 

54 kg 

 

Table 2.3 - Kuka Agiuls1100 sixx technical data 
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Figure 2.2 – Kuka Agiuls1100 sixx size and joint values 

 

 EUCLID LABS SIMULATOR 

The simulator developed by Euclid Labs has a user interface with a window 

containing the manipulator rendering (built using CAD data) and some buttons to 

change the current robot position specifying the value of each axes or setting the 

Cartesian position expressed in the coordinate system selected. 
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Figure 2.3 – Euclid Labs simulator 

 

 COORDINATE SYSTEMS 

2.3.1 Tool Center Point 

The TCP (tool center point) is the reference point of the tool attached to the robot 

flange. Usually the robot movements are programmed defining a path with 

respect to the TCP that can be represented in different coordinate systems. It 

could be any point but typically corresponds to the tool tip, e.g. the muzzle of a 

welding torch. Furthermore, there could be several TCP, but only one at time can 

be active. 

2.3.2 Robot Base frame 

The robot base coordinate system corresponds to its base frame. The red, green 

and blue axis on Figure 2.4 represent the 𝑥, 𝑦 and 𝑧 axis. 

 



12 
 

 

Figure 2.4 – Robot base frame 

 

In this work, the robot base coordinate system corresponds to the world coordinate 

system. 

2.3.3 Wrist frame 

The wrist frame corresponds to the robot flange (the last axis of the robot where 

the tools have to be attached). The origin of the wrist frame is the center of the 

visible flange surface. The red, green and blue axis on Figure 2.5 represent the 𝑥, 

𝑦 and 𝑧 axis. 

 

Figure 2.5 – Wrist frame 
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2.3.4 Tool frame 

The tool frame is the coordinate system in which the origin corresponds to the tool 

center point. The z-axis has usually the same direction of the tool tip and defines 

its work direction. The red, green and blue axis on Figure 2.6 represent the 𝑥, 𝑦 

and 𝑧 axis. 

 

 

Figure 2.6 – Tool frame 
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3 IMAGE PROCESSING 

 PINHOLE CAMERA MODEL 

Pinhole camera model is a projective model that approximate the image acquisition 

process of a digital camera through simple geometric relationships. The purpose 

is to find the relation between image points and their position in the world. It 

performs well as long as the lens is thin and no wide-angle lens is used. 

In Figure 3.1 are shown the relationships between the following coordinate 

systems: 

1. World coordinate system has origin at point 𝑂 and its orientation is given by 

𝑈𝑥, 𝑈𝑦 and 𝑈𝑧. 

2. Camera coordinate system has the origin at point C that is also the focal 

point. Axis 𝑈𝑧
′ is aligned with camera optical axis and its direction points the 

image plane. Plane given by 𝑈𝑥
′  and 𝑈𝑦

′  is parallel to the camera image 

plane. 

3. Image coordinate system has axis 𝑢  and 𝑣  aligned with 𝑈𝑥
′  and 𝑈𝑦

′  of 

camera coordinate system. The origin is the top left corner and the optical 

axis intersect image plane center. 

 

Figure 3.1 – Pinhole camera model 

 

The relationship between these coordinate systems can be represented by the 

following equation: 
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𝑧𝑖 [

𝑢𝑛𝑖
𝑣𝑛𝑖

1
] = [

𝑥𝑖

𝑦𝑖

𝑧𝑖

] = [
𝑅𝑂𝐶 𝑇𝑂𝐶

0 1
] [

𝑋𝑖

𝑌𝑖

𝑍𝑖

1

] ( 3.1 ) 

 

Where [𝑋𝑖, 𝑌𝑖, 𝑍𝑖]
𝑇  represents a point expressed in world coordinate system,  

[𝑥𝑖 , 𝑦𝑖, 𝑧𝑖]
𝑇   is the same point but expressed in camera coordinate system and 

[𝑢𝑛𝑖
, 𝑣𝑛𝑖

]
𝑇
 is the corresponding normalized image coordinate. 𝑅 ∈ ℝ3𝑥3 and 𝑡 ∈ ℝ3 

are the extrinsic parameters and represent rotation and translation from the world 

coordinate system to the camera coordinate system. 

Real camera image plane is usually represented with the following transformation 

from the normalized image coordinate: 

[
𝑢𝑖

𝑣𝑖

1
] = [

𝛼 𝛾 𝑣0

0 𝛽 𝑢0

0 0 1
] [

𝑢𝑛𝑖
𝑣𝑛𝑖

1
] ( 3.2 ) 

 

Where 𝛼 ∈ ℝ and 𝛽 ∈ ℝ are scaling factors from normalized image plane to real 

image plane along 𝑢𝑛  and 𝑣𝑛  directions, 𝛾 ∈ ℝ  represents the skew coefficient 

between 𝑢 and 𝑣 axis and [𝑢0, 𝑣0] ∈ ℝ2  represent the intersection of real image 

plane with optical axis. 

A simplified schema about how the image is acquired by the sensor is shown in 

Figure 3.2. The point (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) expressed in camera coordinate system, 

 

Figure 3.2 – Point projection on image plane 

Where 𝑓 is the focal length. 
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 IMAGE PROCESSING ALGORITHMS 

3.2.1 Grayscale histogram 

The histogram of a grayscale image with 256 levels is a function ℎ𝑓(𝑥) where the 

domain is all the integers contained into the interval [0,255] that for each pixel 

represents the possible values of the grayscale image while the codomain is the 

number of pixels with the corresponding value found: 𝜌 =
𝑛𝑙

𝑘
, 𝑘 ∈ ℝ, 𝑘 ≥ 1 

 

Algorithm 3.1 - Computing the histogram 

 

 

Figure 3.3 - Histogram 

 

3.2.2 Binary image  

Since the tool is in backlight, a threshold value can divide the light background from 

the darker tool. To avoid external light inference, the threshold is not fixed: 

computing the image histogram the threshold  𝑇 can be defined dynamically finding 

the minimum value between the two higher local maximum values, this should 

corresponds to a value between the mean intensity of the background and the 

mean intensity of the tool. 
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1. Set all the elements of the array ℎ𝑓(𝑥) to zero 

2. For each pixel (𝑥, 𝑦) of the image 𝑓, to increment ℎ𝑓(𝑓(𝑥, 𝑦)) by 1 
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Once found the threshold 𝑇 using the histogram, the binary image 𝑏𝑓(𝑥, 𝑦) can be 

computed as follows: 

𝑏𝑓(𝑥, 𝑦) =  {
0 𝑖𝑓 𝑓(𝑥, 𝑦) > 𝑇

1 𝑖𝑓 𝑓(𝑥, 𝑦) ≤ 𝑇
 ( 3.3 ) 

3.2.3 Gaussian filter 

This filter smooth the image convolving a Gaussian kernel 𝐻  with the image itself. 

𝐻 is a matrix of 2𝑘 + 1 × 2𝑘 + 1 elements, with 𝑘 ∈ ℕ, where values are defined as 

follows:  

𝐻𝑖𝑗 =
1

2𝜋𝜎2
 𝑒

−
(𝑖−𝑘−1)2+(𝑗−𝑘−1)2

2𝜎2  ( 3.4 ) 

 

Where 𝜎 is the standard deviation of the probability distribution.  

3.2.4 Sobel operator 

This operator can be used to approximate the image gradient convolving the image 

with two kernels 𝑆𝑥 ∈ ℤ2 and 𝑆𝑦 ∈ ℤ2: 

𝑆𝑥 = [
−1 0 1
−1 0 2
−1 0 1

]              𝑆𝑦 = [
−1 −2 −1
0 0 0
1 2 1

]  ( 3.5 ) 

 

The result is two bidimensional matrix with the same size of the image used as 

input where, for each image pixel (𝑖, 𝑗), the corresponding cells represents an 

approximation of the horizonantal derivative  𝐺𝑥𝑖𝑗
 and the vertical derivative 𝐺𝑦𝑖𝑗

. 

Then (𝐺𝑥𝑖𝑗
, 𝐺𝑦𝑖𝑗

) is the gradient approximation of the image pixel (𝑖, 𝑗) and the 

corresponding gradient magnitude 𝐺𝑖𝑗  and direction 𝜃𝑖𝑗  can be computed as 

follows: 

𝐺𝑖𝑗 = √𝐺𝑥𝑖𝑗
2  + 𝐺𝑦𝑖𝑗

2                    𝜃𝑖𝑗 =   𝑎𝑟𝑐𝑡𝑎𝑛 (
 |𝐺𝑦𝑖𝑗

|

|𝐺𝑥𝑖𝑗
|
) ( 3.6 ) 
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3.2.5 Canny’s Edge Detection 

John F. Canny developed this algorithm in 1986 to detect a wide range of edges in 

images. This edge detector has three main criteria to solve the problem: 

 The detection: false detection should be avoided and important edge should 

not be missed 

 The localization: minimize the distance between the edge detected and the 

edge center 

 The one response: the algorithm should minimize multiple response to a 

single edge 

The basic idea of Canny´s edge detection algorithm is to consider a point in the 

image as an edge if the first derivatives has local maxima along its gradient 

direction. 

The algorithm can be broken down to five different steps: 

1. To remove the noise and obtain better results, the first step of the algorithm 

is to smooth the image with a Gaussian filter. This can be done convolving 

the image with a Gaussian filter. 

2. Compute the image gradient to estimate local edge magnitude 𝐺𝑖𝑗  and 

direction 𝜃𝑖𝑗 for each image pixel (𝑖, 𝑗). Sobel operator can be used for this 

purpose.   

3. Find the edges location using Non-maximum suppression Algorithm:  

a. Round the direction to the nearest multiple of 45°  

b. Compare the gradient magnitude with the one related to the next 

pixel along the gradient direction 

c. Suppress the current pixel value if its gradient magnitude is lower 

The purpose is to find all local maxima in the gradient magnitudes along the 

related gradient directions. 

4. At this point, the image contains the edge detected but there could be some 

spurious response. A way to keep only the true edges is to threshold the 

related gradient magnitude with hysteresis: 

a. If the gradient magnitude is above a high threshold then the 

corresponding pixel is a true edge 
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b. If the gradient magnitude is under a low threshold then the 

corresponding pixel is a false edge 

c. If the gradient magnitude is between the low and high thresholds then 

the corresponding pixel is a true edge only if there is at least one 

other true edge among its neighbours 

5. Feature synthesis approach: The general principle is to start from the 

smallest scale, then synthesise the larger scale outputs that would occur if 

they were the only edges present. Then comparing the large scale output 

with the synthetized edge response, additional edges are marked only if the 

large scale output is significantly greater than the synthetic prediction. 

Different scale for Canny’s edge detector are represented by different 

standard deviation 𝜎 of the Gaussian filter. 

 

Algorithm 3.2 – Canny edge detector 

 

 
 

Figure 3.4 – Binary image 

 
 

Figure 3.5 – Edge found with Canny’s edge 
detection 

 

1. Convolve the image with a Gaussian filter with standard deviation 𝜎 

2. Compute the image gradient  

3. Find the location of the edges using Non-maximum suppression Algorithm 

4. Threshold edges with hysteresis 

5. Repeat steps 1 – 5 with ascending values of  the standard deviation 𝜎 

6. Merge the edges found according to Feature synthesis approach 
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3.2.6 Hough transform 

Conceived by Hough in 1962, in its first version, the purpose was the recognition 

of straight lines. The main idea is that any point on the entire image gives a 

contribution to the overall recognition: given a point, can be defined a sheaf of lines 

and for each couple of points there is only one common line. Computing a discrete 

sheaf of lines for each image point, if a specific line appears 𝑛 times, then there is 

a line on the image with 𝑛 points. 

A bidimensional line can be represented with two parameters, then defining a 

bidimensional matrix where columns and rows corresponds to the first and second 

line parameter, the lines found can be counted incrementing the corresponding 

cell. The result is an accumulation function defined on the lines parameter space. 

Changing the parameter space, this algorithm can be used to find various 

geometric shape. 

A line can be represented in several ways, the most common equation used is 𝑦 =

𝑚𝑥 + 𝑞 where 𝑚 is the gradient of the line, 𝑞 is the y-intercept of the line and (𝑥, 𝑦) 

represent a line point. Changing 𝑚 and 𝑞 all the lines that through the point (𝑥, 𝑦) 

can be defined. With this kind of representation, the parameter 𝑚  increases 

immeasurably when the line become vertical and has small variations when the 

line become horizontal then this representation is not well suited to define a 

discrete parametric space. A suitable line representation could be 𝑟 =  𝑥 sin 𝜃 +

 𝑦 cos 𝜃 where 𝑟 ∈ ℝ is the line distance from the center and 𝜃 ∈ ℝ is the orientation 

of 𝑟 with respect to the abscissas axis. 

 

Figure 3.6 - Hough transform line representation 
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With this representation, for each image point (𝑥, 𝑦) ∈ 𝑡𝑜𝑜𝑙 𝑇 ⊂ ℤ2  , the 

corresponding lines 𝑙𝑖𝑥𝑦
, with 𝑖 ∈ [0,179] can be computed varying the orientation 

𝜃𝑖  from 0 to 179 and computing the corresponding distance 𝑟𝑖 from the center as 

a function of 𝑥, 𝑦 and  𝜃𝑙 

Once all the pixels were analysed, the points in the parameter space that have 

accumulated the most number of "votes" represents the lines that have high 

probability of being present in the image. 

A further step is to keep the lines that have a minimum number of points, the 

decision threshold 𝜌 could be a fraction of the number of points 𝑛𝑙 of the largest 

line found: 𝜌 =
𝑛𝑙

𝑘
, 𝑘 ∈ ℝ, 𝑘 ≥ 1 

 

Algorithm 3.3 – Hough transform algorithm 

 

 
 

 
 

1. Define the parameter space (𝑟, 𝜃) with an accumulation matrix M 

2. Initialize all the M element to zero 

3. For each pixel (𝑥, 𝑦)  compute 𝑟𝑖 =  𝑥 sin 𝜃𝑖 +  𝑦 cos 𝜃𝑖  with 𝜃𝑖 ∈ [0,179] 

and increment by a unit 𝑀(𝑟𝑖, 𝜃𝑖) 

4. Find the points of local maximum of the accumulation matrix M 

5. Ignore lines with a number of matches less than 𝜌  
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Figure 3.7 – Edge image Figure 3.8 – Lines found with Hough 
transform 

 

3.2.7 Thinning 

This is a morphological operator used to reduce the area of an element contained 

into a binary image 𝑋 ∈ ℤ2. The resulting image 𝑋′ ∈ ℤ2  is: 

𝑋′ = 𝑋 ⊘ 𝐵 = 𝑋 / 𝑋 ⊗ 𝐵 
( 3.7 ) 

 

Where 𝐵 = (𝐵1, 𝐵2),  𝐵1 ∈ ℤ2, 𝐵2 ∈ ℤ2, 𝐵1 ∩ 𝐵2 = ∅  is called composite structuring 

element and   𝑋 ⊗ 𝐵 = {𝑥: 𝐵1 ⊂ 𝑋 𝑎𝑛𝑑 𝐵2 ⊂ 𝑋𝑐} is the hit-or-miss transformation.  

In other words, once the thinning operator has been applied, a pixel 𝑥 equal to one 

of the initial image will be zero on the resulting image if the set of surroundings 

pixels 𝐵1 of 𝑥 are equal to one and the set of surroundings pixels 𝐵2 of 𝑥 are equal 

to zero. 

This operator has been implemented convolving the image with eight composite 

structuring elements taken from the Golay alphabet: 

𝐵1 = [
0 0 0
∗ 1 ∗
1 1 1

] 𝐵2 = [
∗ 0 0
1 1 0
∗ 1 ∗

] 𝐵3 = [
1 ∗ 0
1 1 0
1 ∗ 0

] 𝐵4 = [
∗ 1 ∗
1 1 0
∗ 0 0

]  

 

𝐵5 = [
1 1 1
∗ 1 ∗
0 0 0

] 𝐵6 = [
∗ 1 ∗
0 1 1
0 0 ∗

] 𝐵7 = [
0 0 0
∗ 1 ∗
1 1 1

] 𝐵8 = [
0 0 ∗
0 1 1
∗ 1 ∗

]  

( 3.8 ) 

 

3.2.8 Homotopic skeleton detection 

To define what is an image skeleton, maximal ball needs to be specified: A ball 

𝐵(𝑝, 𝑟) ⊂ ℝ𝑛 with radius 𝑟 ∈ ℝ and center 𝑝 ∈ ℝ𝑛 is said to be maximal in a set 

𝑋 ⊂ ℝ𝑛 if and only if there exists no other ball included in 𝑋 and containing 𝐵: 

𝑙𝑒𝑡 𝑋 ⊂ ℝ𝑛𝑎𝑛𝑑  𝐵 𝑏𝑎𝑙𝑙 ⊂ ℝ𝑛, 𝑡ℎ𝑒𝑛 𝐵 𝑖𝑠 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑏𝑎𝑙𝑙 𝑜𝑓 𝑋 𝑖𝑓 

 ∀ 𝐵′𝑏𝑎𝑙𝑙 ⊂ ℝ𝑛, 𝐵 ⊆ 𝐵′ ⊆ 𝑋 ⇒ 𝐵′ = 𝐵 
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The skeleton 𝑆(𝑋)  ⊂ ℝ𝑛  by maximal balls of a set 𝑋 ∈ ℝ𝑛 is the set of the centers 

of its maximal balls: 

𝑆(𝑋) =  {𝑝 ∈ 𝑋 ∶  ∃ 𝑟 ≥ 0, 𝐵(𝑝, 𝑟) 𝑖𝑠 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑏𝑎𝑙𝑙 𝑜𝑓 𝑋 } 
( 3.9 ) 

 

A sequential thinning with the eight composite structuring elements defined in 

section 3.2.7 applied until idempotency is reached, produces a homotopic 

substitute in ℤ2 of the skeleton defined by maximal balls. 

 

 
 

Figure 3.9 – Source image 

 
 

Figure 3.10 – Homotopic skeleton 

 

In some unfortunate cases this algorithm performs a sequential pixel elimination: 

with only one iteration a tool portion become a line due to the tool erosion from only 

one side ( 

Figure 3.12) leading to a false skeleton detection. The problem can be avoided 

adding a flag matrix 𝑀 reinitialized at the beginning of each cycle with false values 

and set to true a cell 𝑀(𝑥𝑖, 𝑦𝑖) when the corresponding image pixel 𝐼(𝑥𝑖, 𝑦𝑖) is going 

to be set to zero. This allows to evaluate a pixel erosion only if the neighbouring 

pixels that have to be analysed have not been deleted during the current cycle. 

The resulting skeleton is a little different but it is well suited for the purpose. 
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Figure 3.11 – Source image 

 
 

Figure 3.12 – Wrong skeleton detection 

 
 

Figure 3.13 – Correct 
skeleton detection 

 

 

 KEY POINT DETECTION 

The TCP projection on the image  can be detected finding tool main direction and 

then searching the minimum point along the found direction. With symmetric tools, 

this point should correspond to the tool tip. 

3.3.1 Tool direction 

The Hough transform 3.2.6 can be used for this purpose. Applying this algorithm 

on the image, the resulting accumulation matrix contains the number of points 

belonging to each line found. A line is represented by the line distance from the 

image center 𝑟𝑖 and the rotation angle 𝜃𝑖 of 𝑟𝑖 with respect to 𝑋 axis (see section 

3.2.6 for more details). 

The direction of a line can be represented by the angle between the 𝑋 axis and the 

line itself as shown in Figure 3.14 

 

Figure 3.14 - Line direction 
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With this representation the line direction can be obtained as 𝜃𝑖
′ = 𝜃𝑖 +

𝜋

2
 since it is 

perpendicular to the direction of 𝑟𝑖.  

Now the problem is which line consider as main tool direction. 

3.3.1.1 Sum of lines direction 

The first idea was to apply the Hough transform on the image containing the edges 

found with Canny’s algorithm and then to find main direction with the following 

method: 

1. Define a new vector of directions 𝐷  that represents all the possible 

directions 𝜃𝑖, where each cell contains the counting of the points of all the 

lines with the corresponding direction. 

2. Then the main tool direction can be found identifying the cell of 𝐷 with the 

maximum value and thereafter calculating the line direction 𝜃𝑙
′. 

In some cases, this method cannot performs well. For instance applying this 

method on a triangular tip of a tool, the direction will be not accurate Figure 3.16. 

 

 
 

Figure 3.15 – Source image 

 
 

Figure 3.16 – Wrong tool directon 

 

3.3.1.2 Largest line 

A way to solve the problem related to 3.3.1.1 is to apply the Hough transform on 

the skeleton of the tool. With a symmetric tool, the main skeleton part is a line 

equidistant from the edges, which can be reasonably considered as tool direction. 
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In this case, to identify the line representing main tool direction, could be easier to 

find the absolute maximum on the accumulation matrix found through the Hough 

transform since it represents the line with more points found on the image that 

should correspond to the main skeleton part. 

 

 
 

Figure 3.17 – Source image 

 
 

Figure 3.18 – Skeleton direction found 

3.3.2 TCP localization 

Once found the tool direction 𝜃′, rotating the image coordinate space 𝑈𝑥𝑦 of 𝜃′ 

anticlockwise, the TCP projection can be found among the tool points of local 

extrema along the new abscissas axis 𝑥′. 

Let 𝑈𝑥𝑦 the initial image coordinate space with origin on image centre, the new 

coordinate space 𝑈𝑥′𝑦′  with the abscissas axis parallel to tool direction has 

coordinates:  

[
𝑥′

𝑦′] = [
cos 𝜃′ −sin 𝜃′

sin 𝜃′ cos 𝜃′ ] [
𝑥
𝑦] ( 3.10 ) 

 

The maximum and minimum points representing the tool along the 𝑥′  axis 

correspond to a point on the tool tip and a point of image borders. Now, evaluating 

these points found expressed in coordinate system 𝑈𝑥𝑦, understand which is the 

image border point is trivial so TCP is determined too. 
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3.3.3 TCP optimisation 

There could be more than one point of extrema that can represent the TCP ( 

Figure 3.19). A way to solve this ambiguity is to calculate the mean of the 

surrounding points along the axis perpendicular to the tool direction: let 𝑇′ ∈ ℤ2 the 

set of the points representing the tool with the coordinate system 𝑈𝑥′𝑦′ ( 3.10 ), 

(𝑥𝑒𝑥𝑡
′ , 𝑦𝑒𝑥𝑡

′ ) ∈ 𝑇′  the point found with TCP localisation (section 3.3.2) and 𝑆 =

 {(𝑥′, 𝑦′) ∈ 𝑇′  ∶  |𝑥′ − 𝑥𝑒𝑥𝑡
′ | < 𝑘, 𝑘 ∈ ℕ} the set of its surrounding points, then the 

TCP is: 

(𝑥𝑡𝑐𝑝, 𝑦𝑡𝑐𝑝) = [
cos−𝜃′ −sin−𝜃′

sin−𝜃′ cos−𝜃′ ] [
𝑥𝑒𝑥𝑡

′

𝑦𝑚𝑒𝑎𝑛
′ ]  𝑤ℎ𝑒𝑟𝑒 𝑦𝑚𝑒𝑎𝑛

′ = 
∑ 𝑦′

(𝑥′,𝑦′)∈𝑆

‖𝑆‖
 ( 3.11 ) 

 

A result of this optimisation can be seen in  

Figure 3.20 where the set 𝑆 is represented by purple pixels while the TCP by grey 

pixels. 

 
 

Figure 3.19 – Keypoint without tcp 
optimisation 

 
 

Figure 3.20 – Keypoint with tcp optimisation 
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4 TCP CALIBRATION 

 TOOL CENTER POINT REPRESENTATION 

Let 𝐹𝑖  the 𝑖𝑡ℎ  position of the robot flange represented with the homogeneous 

transformation matrix ( 4.1 ) expressed in robot base coordinate system. 

𝐹𝑖 = [
𝑅𝑖 𝑇𝑖

0 1
, ] , 𝑖 ∈ [1, 𝑁] ( 4.1 ) 

 

Where 𝑅𝑖 is the three-dimensional rotation matrix from the robot base fame 𝑂𝑤 and 

𝑇𝑖 is the three-dimensional translation vector from the robot base frame 𝑂𝑤. 𝐹𝑖 can 

be obtained with the robot forward kinematics. 

The tool center point can be represented with a further homogeneous 

transformation matrix 𝐻𝑡𝑐𝑝 with respect to the robot flange coordinate system. 

𝐻𝑡𝑐𝑝 = [
𝑅𝑡𝑐𝑝 𝑇𝑡𝑐𝑝

0 1
] ( 4.2 ) 

 

Where 𝑅𝑡𝑐𝑝 is the three-dimensional rotation matrix from the robot flange frame 𝐹𝑖 

and 𝑇𝑡𝑐𝑝 = (𝑇𝑡𝑐𝑝𝑥
, 𝑇𝑡𝑐𝑝𝑦

, 𝑇𝑡𝑐𝑝𝑧
)
𝑇

 is the three-dimensional translation vector from the 

robot flange frame  𝐹𝑖. 

 MINIMUM NUMBER OF EQUATIONS 

A position 𝑝𝑖 ∈ ℝ3 of the TCP expressed in robot base coordinate system can be 

computed as follows: 

𝑝𝑖 =  𝐹𝑖 ∙  𝑡𝑡𝑐𝑝, 𝑖 ∈ [1, 𝑁] ( 4.3 ) 

 

Where the frame 𝐹𝑖  represents a robot flange pose and 𝑡𝑡𝑐𝑝 = (𝑇𝑡𝑐𝑝, 1)
𝑇

 is the 

homogeneous vector representing the TCP with respect to 𝐹𝑖. 

For each couple of different robot flange poses 𝐹𝑖 and 𝐹𝑗, with the TCP constrained 

to be on the same position (𝑝𝑖 = 𝑝𝑗), a TCP constraint can be defined: 
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𝐹𝑖 ∙ 𝑡𝑡𝑐𝑝 − 𝐹𝑗 ∙ 𝑡𝑡𝑐𝑝 = 𝑝𝑖 − 𝑝𝑗 , 𝑖, 𝑗 ∈ [1, 𝑁], 𝑖 ≠ 𝑗 

 

(𝑝𝑖 = 𝑝𝑗) ⇒ [𝐹𝑖 − 𝐹𝑗] ∙ 𝑡𝑡𝑐𝑝 = 𝐷𝑖𝑗 ∙ 𝑡𝑡𝑐𝑝 = 0 

( 4.4 ) 

 

The dimension of 𝐷𝑖𝑗  is 4x4. Since 𝐹𝑖  and 𝐹𝑗  are homogeneous matrix, all the 

values of last row of 𝐷𝑖𝑗 are zero.  

The rank of 𝐷𝑖𝑗 ( 4.4 ) is two, this can be demonstrated but some concepts have to 

be defined. 

Let R a three-dimensional rotation matrix: 

1 Orthonormal basis: in ℝ3  can be represented with a 3x3 matrix in which the 

columns represent three unit vector where each of them is parallel to one and 

only one axis of the three-dimensional space. 𝑅  may be seen as an 

orthonormal basis since it is an orthogonal matrix with determinant equal to 

one. 

2 Axis-angle representation: 𝑅  can be represented with the axis-angle 

representation 𝑒 = (�̂�, 𝜃) where 𝜃  is the rotation around the axis of rotation 

represented by the three-dimensional vector �̂�. As the rotation 𝜃 grows, any 

point rotates around the rotation axis �̂� (Figure 4.1).   

3 Rotation plane: it is a plane defined in ℝ3 in relation with 𝑅, it contains the 

origin of the coordinate system and has the normal perpendicular to the axis 

of rotation �̂� (Figure 4.1).  

 

 

Figure 4.1 – Axis-angle representation 
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4 Difference vector: let 𝑝1 a three-dimensional point and 𝑝2 = 𝑅 ∙ 𝑝1 the point 𝑝1 

rotated with the matrix 𝑅 . A difference vector of 𝑅  is 𝑣12 = 𝑃1 − 𝑃2 . All the 

difference vectors of 𝑅  are contained into its rotation plane since they are 

perpendicular to the axis of rotation �̂� of 𝑅. 

5 Correlated rotation matrix: since a rotation matrix is an orthonormal basis, for 

each couple of rotations matrix 𝑅𝑖 and 𝑅𝑗 exists a correlated rotation matrix 𝑅𝑖𝑗 

that rotates the three unit vectors represented by the columns of 𝑅𝑖 

(Figure 3.2 𝑥, 𝑦, 𝑧)  to a new position defined by the three columns of 𝑅𝑗 

(Figure 3.2 𝑥′, 𝑦′, 𝑧′).  

 

 

6  

Figure 4.2 – Rotation between two coordinate system 

 

 

Statement 4.1: Let 𝑅𝑖  and 𝑅𝑗  two rotation matrix such that 𝑅𝑖 ≠ 𝑅𝑗 . The matrix   

𝑅𝑖 − 𝑅𝑗 has rank equal to two. 

Proof: The columns of  𝑅𝑖 − 𝑅𝑗 can be seen as three difference vectors contained 

into the rotation plane of the correlated rotation matrix  𝑅𝑖𝑗 of 𝑅𝑖 and 𝑅𝑗 Then the 

rank of 𝑅𝑖 − 𝑅𝑗 must be less or equal to two [1]. 

If these difference vectors were parallel then would exist 𝛼 ∈ ℝ, 𝛼 ≠ 0 such that: 

𝑅𝑖1
− 𝑅𝑗1 = 𝛼(𝑅𝑖2

− 𝑅𝑗2) ( 4.5 ) 
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Where 𝑅𝑖1
− 𝑅𝑗1and 𝑅𝑖2

− 𝑅𝑗2 are the first and the second column of 𝑅𝑖 − 𝑅𝑗, but 

since 𝑅𝑖 and 𝑅𝑗 are orthonormal basis: 

𝑅𝑖1
⊥ 𝑅𝑖2

⇒ 𝑅𝑖1
𝑇 ∙ 𝑅𝑖2

= 0 

  
𝑅𝑗1

⊥ 𝑅𝑗2
⇒ 𝑅𝑗1

𝑇 ∙ 𝑅𝑗2
= 0 

( 4.6 ) 

 

Where 𝑅𝑖1
≠ 0, 𝑅𝑖2

≠ 0, 𝑅𝑗1
≠ 0 and 𝑅𝑗2

≠ 0. 

Then if ( 4.5 ) is true, even the following equations are true: 

(𝑅𝑖1
− 𝑅𝑗1)𝑅𝑖2

= 𝛼(𝑅𝑖2
− 𝑅𝑗2)𝑅𝑖2

 

 
𝑅𝑖1

𝑇 𝑅𝑖2
− 𝑅𝑗1

𝑇𝑅𝑖2
= 𝛼𝑅𝑖2

𝑇 𝑅𝑖2
− 𝛼𝑅𝑗2

𝑇𝑅𝑗2 ⇒ 

 
−𝑅𝑗1

𝑇 𝑅𝑖2
= 𝛼𝑅𝑖2

𝑇 𝑅𝑖2
− 𝛼𝑅𝑗2

𝑇 𝑅𝑖2
⇒ 

 
−𝑅𝑗1 = 𝛼𝑅𝑖2

− 𝛼𝑅𝑗2 ⇒ 

 
−𝑅𝑗1

𝑇 𝑅𝑗2 = 𝛼𝑅𝑖2
𝑇 𝑅𝑗2 − 𝛼𝑅𝑗2

𝑇 𝑅𝑗2 ⇒ 

 
0 = 𝛼𝑅𝑖2

𝑇 𝑅𝑗2 − 𝛼𝑅𝑗2
𝑇 𝑅𝑗2 ⇒ 

 
𝛼(𝑅𝑖2

− 𝑅𝑗2) = 0 

( 4.7 ) 

 

Then equation ( 4.5 ) is true if: 

𝑅𝑖2
− 𝑅𝑗2 = 𝑅𝑖1

− 𝑅𝑗1  = 0 

 
( 4.8 ) 

 

But since 𝑅𝑖 ≠ 𝑅𝑗, at most one column of 𝑅𝑗 can be equal to the same column of 𝑅𝑖 

then ( 4.8 ) cannot be true, meaning that even ( 4.5 ) cannot be true then the 

difference vectors cannot be parallel. Since at least two columns of 𝑅𝑖 − 𝑅𝑗 are not 

parallel, 𝑅𝑖 − 𝑅𝑗 has rank grater or equal to two [2]. 

[1] ∩ [2] ⇒ 𝑅𝑖 − 𝑅𝑗  has rank equal to two. 

Qed 
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Statement 4.2: If 𝑅𝑖 ≠ 𝑅𝑗 , the last column of 𝐷𝑖𝑗  ( 4.4 )  𝑇𝑖 − 𝑇𝑗  is a linear 

combination of the submatrix columns  𝑅𝑖 − 𝑅𝑗 of 𝐷𝑖𝑗. 

Proof: 𝑇𝑖  and 𝑇𝑗  can be seen as two vectors 𝑣𝑖  and 𝑣𝐽  expressed in TCP 

coordinate system: 

𝑇𝑖 = TCPw + 𝑣𝑖 
 

𝑇𝑗 = TCPw + 𝑣𝑗  
( 4.9 ) 

 

Where TCPw is the TCP expressed in robot base coordinate system.  

𝑇𝑖 − 𝑇𝑗 = TCPw + 𝑣𝑖 − (TCPw + 𝑣𝑗) = 𝑣𝑖 − 𝑣𝑗 ( 4.10 ) 

 

Since 𝑣𝑗 = 𝑅𝑖𝑗 ∙ 𝑣𝑖 , where 𝑅𝑖𝑗  is the correlated rotation matrix of 𝑅𝑖  and 𝑅𝑗 , then 

𝑣𝑖 − 𝑣𝑗 is a difference vector of 𝑅𝑖𝑗. This means that also 𝑇𝑖 − 𝑇𝑗  is a difference 

vector of 𝑅𝑖𝑗 then it is contained into the rotation plane of 𝑅𝑖𝑗 as the columns of 

𝑅𝑖 − 𝑅𝑗 . Then if 𝑅𝑖 ≠ 𝑅𝑗 , 𝑅𝑖 − 𝑅𝑗  has rank equal to two then 𝑇𝑖 − 𝑇𝑗   can be 

expressed as a linear combination of 𝑅𝑖 − 𝑅𝑗.  

Qed 

Then if 𝑅𝑖 ≠ 𝑅𝑗, 𝑅𝑖 − 𝑅𝑗 has rank equal to two, 𝑇𝑖 − 𝑇𝑗 is a linear combination of 𝑅𝑖 −

𝑅𝑗 and since the last row 𝐷𝑖𝑗 ( 4.4 ) is zero then 𝐷𝑖𝑗 has rank equal to two. 

This means that two flange poses are not enough to solve the system of equations 

𝐷𝑖𝑗 ∙ 𝑡𝑡𝑐𝑝 = 0, at least another pose 𝐹𝑘 is needed.  

[
𝐹𝑖 − 𝐹𝑗

𝐹𝑖 − 𝐹𝑘
] ∙ 𝑡𝑡𝑐𝑝 = [

𝑅𝑖 − 𝑅𝑗 𝑇𝑖 − 𝑇𝑗

𝑅𝑖 − 𝑅𝑘 𝑇𝑖 − 𝑇𝑘
] ∙ 𝑡𝑡𝑐𝑝 = 0 ( 4.11 ) 

 

If 𝑅𝑖 ≠ 𝑅𝑗 and 𝑅𝑗 ≠ 𝑅𝑘 and if �̂�𝑖𝑗 ≠ �̂�𝑖𝑘, where �̂� is the axis of rotation of the respective 

correlated rotation matrix, then the difference vectors represented by the difference 

matrix 𝑅𝑖 − 𝑅𝑗 and 𝑅𝑖 − 𝑅𝑘 in ( 4.11 ) are contained in at least two different rotation 

plane. For each rotation plane, as shown above, there are at least two difference 

vectors linearly independent. Then the matrix defined in ( 4.11 ) has three 
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difference vectors linearly independent or, in other words, the system of equations 

has unique solution. 

 CAMERA BASE CALIBRATION 

A binding to solve equation ( 4.11 ) is that the TCP must be in the same point for 

each flange pose, but using a camera the TCP can be constrained to lie only on a 

line.  

The optical axis 𝑙𝑜 in the three-dimensional space is a line whose projection 

corresponds to the image center. Then, for each flange pose, two coordinates can 

be constrained with fairly accuracy moving the flange on a plane parallel to the 

camera plane in such a way to constraint the TCP to be on the image center. 

Let 𝑊𝜋 the camera base that is a coordinate system with the origin corresponding 

to the center of the camera image plane, with the plane 𝑥𝑦𝜋  aligned with the 

camera plane 𝑥𝑦𝑐 and the z-axis aligned with the camera optical axis: 

𝑊𝜋 = [
𝑅𝜋 𝑇𝜋

0 1
] = 𝑊𝑂 [

𝑅𝑜𝜋 𝑇𝑜𝜋

0 1
] 

( 4.12 ) 

 

Where 𝑅𝑜𝜋 ∈ ℝ3𝑥3 and 𝑇𝑜𝜋 ∈ ℝ3 are the rotation matrix and the translation vector 

from the robot base coordinate system to the camera plane. 

Since the purpose is to move the tool with respect to the current position (then 

without setting absolute positions), only the rotation matrix 𝑅𝜋 is required because 

it allows to define the direction 𝑑𝜋𝑖
∈ ℝ3 with respect to 𝑊𝜋, along which to move 

the flange to constraint the TCP projection to be on the image center keeping the 

flange on the plane 𝑥𝑦𝜋. Let 𝑑𝑐𝑖
∈ ℝ2 the direction given by the vector that connect 

the TCP projection (𝑥𝑖, 𝑦𝑖) on the image plane to the image center (𝑥𝑐, 𝑦𝑐), then: 

𝑑𝜋𝑖 =
(𝑥𝑖 − 𝑥𝑐 , 𝑦𝑖 − 𝑦𝑐, 0)

|(𝑥𝑖 − 𝑥𝑐  , 𝑦𝑖 − 𝑦𝑐)|
 ( 4.13 ) 

 

Note that last value of ( 4.13 ) is zero since the coordinate system 𝑊𝜋 has the plane 

𝑥𝑦 parallel to camera plane. Then the camera base ( 4.12 ) allows to move the 
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flange along direction  𝑑𝜋𝑖 in such a way to constraint the TCP projection to be on 

the image center without changing the z-value. 

There are several methods to find the camera rotation matrix 𝑅𝜋, two of which are 

the following: 

4.3.1 Kuka base calibration 

Kuka provides a procedure to define a new reference system called base. This 

procedure requires the identification of three points 𝑝1, 𝑝2, 𝑝3 ∈ ℝ3 moving the robot 

using the manual control system: 

 𝑝1: origin of the new coordinate system 

 𝑝2: point on x-axis of the new coordinate system 

 𝑝3: point on xy plane of the new coordinate system 

The z-axis direction is defined according to left-hand rule.  

Note that to define the origin with fairly accuracy a pointed tool already calibrated 

have to be used. Here only the rotation 𝑅𝜋 is useful then the base can be defined 

moving a pointed tool on the three points but considering the corresponding flange 

position to set the values 𝑝1, 𝑝2 and 𝑝3, making sure that during the movements 

the flange doesn’t change its orientation. The resulting rotation matrix is the same 

since the flange position can be seen as a constant translation of the tool tip. Then 

the reference system computed will have another origin but the same orientation. 

4.3.2 Base calibration using camera images 

Another way to compute the rotation matrix 𝑅𝜋 is to move the tool on different 

positions contained into a plane of the 3D space expressed in robot base 

coordinate system and recording the TCP position found with the camera. 

Let (𝑋𝑤, 𝑌𝑤, 𝑍𝑤) a flange position expressed in the robot base coordinate system, 

(𝑢, 𝑣) the pixel coordinate representing the TCP, 𝑅𝜋 ∈ ℝ3𝑥3 a rotation matrix, 𝛼 and 

𝛽  the scaling factors from pixel to robot coordinate system unit along 𝑢  and 𝑣 

directions then: 

[
𝑋𝑤

𝑌𝑤

𝑍𝑤

] = 𝑅𝜋 [
𝛼 0 0
0 𝛽 0
0 0 0

] [
𝑢
𝑣
1
] ( 4.14 ) 
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Equation ( 4.14 ) represents the relation between flange positions and 

corresponding TCP found on the image plane. Then the camera rotation matrix 

can be found recording these planar correspondences and then computing 𝑅𝜋. 

 TCP POSITIONING WITH CAMERA 

Let 𝑝𝜋𝑖 ∈ ℝ3 the current flange position expressed in camera base frame 𝑊𝜋 ( 4.12 

), (𝑥𝑖, 𝑦𝑖) the corresponding TCP projection on the camera plane and (𝑥𝑐, 𝑦𝑐) the 

image plane center. The flange position expressed in 𝑊𝜋  such that the TCP 

projection on the camera image plane corresponds to the image center is: 

𝑝𝜋𝑖−𝑐 = 𝑝𝜋𝑖 + [
𝛼(𝑥𝑐 − 𝑥𝑖)
𝛽(𝑦𝑐 − 𝑦𝑖)

0

] 

 

( 4.15 ) 

 

Where 𝛼 and 𝛽 are the scaling factors from pixel to robot coordinate system unit 

along 𝑥 and 𝑦 directions. 

The scaling factor 𝛼 and 𝛽 can be defined considering a flange position (𝑓𝑥, 𝑓𝑥, 𝑓𝑧) 

expressed in camera coordinate system 𝑊𝜋, the corresponding TCP projection on 

the camera plane (𝑥1, 𝑦1), a second flange position (𝑓𝑥 + 𝑑, 𝑓𝑦 + 𝑑, 𝑓𝑧) (that is a 

translation of 𝑝𝜋1 along the plane 𝑥𝑦) and the corresponding TCP projection on the 

camera plane (𝑥2, 𝑦2): 

𝛼 =  
𝑑

𝑥2 − 𝑥1
 

 

𝛽 = 
𝑑

𝑦2 − 𝑦1
 

( 4.16 ) 

 

Note that the plane 𝑥𝑦 is parallel to the camera image plane. 

The problem of this method is that changing the flange depth with respect to to 𝑊𝜋 

(z-component), will change scale factor too. To overcome the problem the following 

algorithm has been used to move the TCP in such a way that its projection on the 

image plane is equal to the image plane center: 
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Algorithm 4.1 – TCP positioning with camera 

Algorithm 4.1 changes dynamically the scale factor if the flange movements to 

position the TCP are too high or too low. 

 TCP COMPUTATION 

Regardless of the method used to compute TCP translation vector, there are two 

main problems: 

1. During early stages no information are known about the tool, then to change 

a flange pose keeping the TCP detectable by the camera, only small flange 

rotation are suitable. The maximum rotation suitable for this purpose is 

related to the tool geometry. 

2. As shown above at least three flange poses are required to solve the system 

of equations ( 4.11 ) and the rotation axis between flange poses must be 

distinct. Assuming that first rotation has the rotation axis equal to the z-axis 

with respect to the reference system 𝑊𝜋 ( 4.12 ), using Algorithm 4.1 the 

TCP can be positioned on the same three-dimensional point of the first 

flange pose. Now the next flange pose must have a different rotation axis, 

1. Get flange position 𝑝𝜋1  and the corresponding TCP projection on the 

camera plane (𝑥1, 𝑦1)  

2. 𝑑𝑥 = (𝑥𝑐 − 𝑥1), 𝑑𝑦 = (𝑦𝑐 − 𝑦1) 

3. Set the flange position 𝑝𝜋2 = 𝑝𝜋1 + [
𝛼𝑑𝑥

𝛽𝑑𝑦

0

] and get the corresponding TCP 

projection on the camera plane (𝑥2, 𝑦2)  

4. If  (𝑥2, 𝑦2) corresponds to the image center then stop. 

5. If  (𝑥𝑐 − 𝑥2) ≥
𝑑𝑥

2
 then 𝛼 = 2𝛼 

6. If  (𝑥𝑐 − 𝑥2) ≤  −
𝑑𝑥

2
 then 𝛼 =

𝛼

2
 

7. If  (𝑦𝑐 − 𝑦2) ≥
𝑑𝑦

2
 then 𝛽 = 2𝛽 

8. If  (𝑦𝑐 − 𝑦2) ≤  −
𝑑𝑦

2
 then 𝛽 =

𝛽

2
 

9. Set 𝑝𝜋1 = 𝑝𝜋2, and (𝑥1, 𝑦1) =  (𝑥2, 𝑦2) 

10. repeat from step 2 
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this means, applying Algorithm 4.1 to move the TCP, it’s final position will 

have a different z-coordinate, then an approximation of TCP can be 

computed using ( 4.11 ). 

The first idea was to estimate a solution with the method of the least squares that 

compute a result minimizing the error of each TCP position related to the flange 

poses used. Studying the detail of this approach, to overcome the problem of the 

third TCP position that have a different z-coordinate, I found another way to solve 

the problem without approximations from a theoretical point of view using three 

flange poses. 

4.5.1 Least squares method 

The least squares method with normal equations A.1 can be used to compute the 

TCP: 

𝑇𝑡𝑐𝑝 = (𝐴𝑇𝐴)−1𝐴𝑇𝑦 ( 4.17 ) 

 

Where 𝐴 is the submatrix of ( 4.11 ) containing the difference 𝑅𝑖 − 𝑅𝑗 and 𝑅𝑖 − 𝑅𝑘 

and 𝑦  represents the last column of ( 6.1 ) containing the difference of the 

translation vectors  with opposite sign: 

𝐴𝑥 − 𝑦 = [
𝑅𝑖 − 𝑅𝑗

𝑅𝑖 − 𝑅𝑘

] 𝑇𝑡𝑐𝑝 − [
𝑇𝑗 − 𝑇𝑖

𝑇𝑘 − 𝑇𝑖

] ( 4.18 ) 

 

As shown above, with 𝑅𝑗 = 𝑅𝑧𝑅𝑖 and 𝑅𝑘 = 𝑅𝑥𝑅𝑖, A has rank three then even 𝐴𝑇𝐴 

has rank three. This means 𝐴𝑇𝐴 is invertible then the system of equations ( 4.11 ) 

can be solved and has unique solution. 

Other flange pose could be used to add equations at ( 4.18 ), but positioning the 

flange after a rotation with Algorithm 4.1 there is no guarantee that the TCP will be 

on the same three-dimensional position. Then the TCP computed will be an 

approximation. 

4.5.2 Analytic solution 

Let 𝑇𝐶𝑃𝑖𝑚𝑔−𝑐 ∈ ℤ2 the image center point, 𝑇𝐶𝑃𝜋−𝑐 ∈ ℝ3 the point used to constraint 

the TCP expressed in coordinate system 𝑊𝜋 whose projection on the image plane 
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must be equal to 𝑇𝐶𝑃𝑖𝑚𝑔−𝑐 and 𝐹1𝜋 the representation of the first flange position 

with the TCP placed on the point 𝑃𝜋1 = 𝑇𝐶𝑃𝜋−𝑐 with a rotation matrix 𝑅1𝜋 and a 

translation vector 𝑇1𝜋. 

A rotation 𝑅𝑧 around the z-axis applied on 𝐹1𝜋 moves the TCP to a new 3D position 

without changing the z-value expressed in coordinate syestem 𝑊𝜋 . Now using 

Algorithm 4.1 the flange can be moved along 𝑥 and 𝑦 axis in such a way to place 

the TCP detected with the camera on the image point 𝑇𝐶𝑃𝑖𝑚𝑔−𝑐. The new TCP 

position 𝑃𝜋2 ∈ ℝ3 will be equal to 𝑃𝜋1, let 𝐹2𝜋 the corresponding flange pose with 

rotation matrix 𝑅2𝜋 = 𝑅𝑧 ∙ 𝑅1𝜋 and translation vector 𝑇2𝜋. 

Note that using the image center point as TCP position constraint, independently 

in which z-coordinate is placed the TCP, if its projection on the image plane is equal 

to 𝑇𝐶𝑃𝑖𝑚𝑔−𝑐 then x-coordinate and y-coordinate will be equal to those of 𝑇𝐶𝑃𝜋−𝑐. 

To found a solution of ( 4.11 ), the next flange rotation has to have a different 

rotation-axis and the TCP has to be placed on 𝑇𝐶𝑃𝜋−𝑐. But using another rotation 

axis the 3D TCP z-value will be not equal to the z-value of 𝑃𝜋1 and 𝑃𝜋2 and the 

information obtained from camera are not enough to move the flange on a third 

pose 𝐹3𝜋 such that the related TCP point 𝑃𝜋3 ∈ ℝ3 is equal to 𝑃𝜋1 and 𝑃𝜋2, only the 

x-component and the y-component will be equal. This means that the z-component 

of the translation vector 𝑇3𝜋 of 𝐹3𝜋 will be affected by error. The following method 

overcome this problem leading to a solution without errors from a theoretical point 

of view: 

Consider now only the first and the second flange poses: 

𝑃𝜋1 = 𝑃𝜋2 ⇒ [𝐹1𝜋 − 𝐹2𝜋] ∙ 𝑡𝑡𝑐𝑝 = [𝑅1𝜋 − 𝑅𝑧 ∙ 𝑅1𝜋 𝑇1𝜋 − 𝑇2𝜋] ∙ 𝑡𝑡𝑐𝑝 = 0 ( 4.19 ) 

 

Where 𝑡𝑡𝑐𝑝 = (𝑇𝑡𝑐𝑝, 1)
𝑇

 is the homogeneous vector representing the TCP 

expressed in robot flange coordinate system, then ( 4.19 ) can be rewritten as 

follows: 

[𝑅1𝜋 − 𝑅𝑧 ∙ 𝑅1𝜋]𝑇𝑡𝑐𝑝 + 𝑇1𝜋 − 𝑇2𝜋 = 0 ( 4.20 ) 
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As shown in Statement 4.1 [𝑅1𝜋 − 𝑅𝑧 ∙ 𝑅1𝜋] has rank equal to two then a solution 

of 𝑇𝑡𝑐𝑝 = (𝑇𝑡𝑐𝑝𝑥
, 𝑇𝑡𝑐𝑝𝑦

, 𝑇𝑡𝑐𝑝𝑧
) cannot be found, however a partial solution can be 

computed. 

If [𝑅1𝜋 − 𝑅𝑧 ∙ 𝑅1𝜋] would have the last column and the last row equal to zero then 

𝑇𝑡𝑐𝑝𝑥
 and 𝑇𝑡𝑐𝑝𝑦

could be computed using the first two rows of the system of 

equations ( 4.20 ) but 𝑅1𝜋 could be any rotation matrix. 

Statement 4.3:  
[𝑅1𝜋 − 𝑅𝑧 ∙ 𝑅1𝜋]𝑇𝑡𝑐𝑝 + 𝑇1𝜋 − 𝑇2𝜋 = 0 

( 4.21 ) 

⇔  
[𝐼 − 𝑅𝑧] ∙ 𝑇𝑡𝑐𝑝

′ + 𝑇1𝜋 − 𝑇2𝜋 = 0 ( 4.22 ) 
 

Where 𝑇𝑡𝑐𝑝
′ = 𝑅1𝜋 ∙ 𝑇𝑡𝑐𝑝.  

Proof: 

Let 𝐴, 𝐵, 𝐶 ∈ ℝ3𝑥3 and 𝐼 ∈ ℝ3𝑥3 the identity matrix then: 

(𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶 ( 4.23 ) 
  

(𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) ( 4.24 ) 
  

𝐼𝐴 = 𝐴𝐼 = 𝐴 ( 4.25 ) 
  

𝑅1𝜋 is a rotation matrix then it is invertible: 

𝑅1𝜋 ∙ 𝑅1𝜋
−1 = 𝐼 ( 4.26 ) 

 

Exploiting properties ( 4.25 ) and ( 4.26 ), ( 4.21 ) can be rewritten as: 

[𝑅1𝜋 − 𝑅𝑧 ∙ 𝑅1𝜋]𝑅1𝜋
−1 ∙ 𝑅1𝜋 ∙ 𝑇𝑡𝑐𝑝 + 𝑇1𝜋 − 𝑇2𝜋 = 0 ( 4.27 ) 

 

Now with ( 4.23 ) and ( 4.24 ), ( 4.27 ) can be rewritten as: 

[𝑅1𝜋 ∙ 𝑅1𝜋
−1 − 𝑅𝑧 ∙ 𝑅1𝜋 ∙ 𝑅1𝜋

−1]𝑅1𝜋 ∙ 𝑇𝑡𝑐𝑝 + 𝑇1𝜋 − 𝑇2𝜋 = 

 
[𝐼 − 𝑅𝑧] ∙ 𝑇𝑡𝑐𝑝

′ + 𝑇1𝜋 − 𝑇2𝜋 = 0 

( 4.28 ) 

 

Where 𝑇𝑡𝑐𝑝
′ = 𝑅1𝜋 ∙ 𝑇𝑡𝑐𝑝. 

Qed 
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There is a bi-unique relation between 𝑇𝑡𝑐𝑝
′  and 𝑇𝑡𝑐𝑝, then finding the solution of 

𝑇𝑡𝑐𝑝
′ , even 𝑇𝑡𝑐𝑝 can be computed. 

𝑇𝑡𝑐𝑝 = 𝑅1𝜋
−1 ∙ 𝑇𝑡𝑐𝑝

′  ( 4.29 ) 

 

[𝐼 − 𝑅𝑧] of ( 4.22 ) has the last row and the last column equal to zero: 

[𝐼 − 𝑅𝑧] ∙ 𝑇𝑡𝑐𝑝
′ + 𝑇1𝜋 − 𝑇2𝜋 = 

 

[
 
 
 
 
1−cos𝛼𝑧 sin 𝛼𝑧 0

− sin 𝛼𝑧 1 − cos 𝛼𝑧 0

0 0 0]
 
 
 
 

[
 
 
 
 
𝑇𝑡𝑐𝑝

′
𝑥

𝑇𝑡𝑐𝑝
′

𝑦

𝑇𝑡𝑐𝑝
′

𝑧]
 
 
 
 

+

[
 
 
 
 
𝑇1𝜋𝑥 − 𝑇2𝜋𝑥

𝑇1𝜋𝑦 − 𝑇2𝜋𝑦

𝑇1𝜋𝑧 − 𝑇2𝜋𝑧 ]
 
 
 
 

= 0 

( 4.30 ) 

 

Where 𝛼𝑧 ∈ (0, 𝜋]  is the rotation angle around the z-axis and 𝑇𝑡𝑐𝑝
′ =

(𝑇𝑡𝑐𝑝
′

𝑥
, 𝑇𝑡𝑐𝑝

′
𝑦
, 𝑇𝑡𝑐𝑝

′
𝑧
). 

Then from ( 4.30 ), the following system of equations can be extracted: 

[
1 − cos 𝛼𝑧 sin 𝛼𝑧

−sin𝛼𝑧 1 − cos 𝛼𝑧

] [

𝑇𝑡𝑐𝑝
′

𝑥

𝑇𝑡𝑐𝑝
′

𝑦

] + [

𝑇1𝜋𝑥 − 𝑇2𝜋𝑥

𝑇1𝜋𝑦 − 𝑇2𝜋𝑦

] = 0 ( 4.31 ) 

 

If 𝛼𝑧 ≠ 0, ( 4.31 ) can be solved since the matrix determinant is grater then zero: 

𝐷𝑒𝑡 [
1 − cos 𝛼𝑧 sin 𝛼𝑧

−sin𝛼𝑧 1 − cos 𝛼𝑧

] = (1 − cos𝛼𝑧)
2 + (sin 𝛼𝑧)

2 = 

 
1 + cos2 𝛼𝑧 − 2cos 𝛼𝑧 + sin2 𝛼 = 2(1 − cos𝛼𝑧) > 0 

( 4.32 ) 

 

[

𝑇𝑡𝑐𝑝
′

𝑥

𝑇𝑡𝑐𝑝
′

𝑦

] =
1

2

[
 
 
 1 −

sin 𝛼𝑧

1 − cos 𝛼𝑧

sin 𝛼𝑧

1 − cos 𝛼𝑧
1

]
 
 
 

[

𝑇2𝜋𝑥 − 𝑇1𝜋𝑥

𝑇2𝜋𝑦 − 𝑇1𝜋𝑦

] ( 4.33 ) 

 

Now, if the third flange pose 𝐹3𝜋 is a rotation along the x-axis with respect to the 

first flange pose 𝐹1𝜋, 𝑅3𝜋 = 𝑅𝑥 ∙ 𝑅1𝜋, even 𝑇𝑡𝑐𝑝
′

𝑧
 can be computed: 
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Considering the TCP constraint resulting from the first and the third flange pose:  

[𝑅1𝜋 − 𝑅𝑥 ∙ 𝑅1𝜋]𝑇𝑡𝑐𝑝 + 𝑇1𝜋 − 𝑇3𝜋 = 0 ( 4.34 ) 

 

Using Statement 4.3, even ( 4.34 ) can be rewritten as follows: 

[𝐼 − 𝑅𝑥] ∙ 𝑇𝑡𝑐𝑝
′ + 𝑇1𝜋 − 𝑇2𝜋 = 

 

[
 
 
 
 
0 0 0

0 1 − cos 𝛼𝑥 sin 𝛼𝑥

0 − sin 𝛼𝑥 1−cos 𝛼𝑥]
 
 
 
 

[
 
 
 
 
𝑇𝑡𝑐𝑝

′
𝑥

𝑇𝑡𝑐𝑝
′

𝑦

𝑇𝑡𝑐𝑝
′

𝑧]
 
 
 
 

+

[
 
 
 
 
𝑇1𝜋𝑥 − 𝑇3𝜋𝑥

𝑇1𝜋𝑦 − 𝑇3𝜋𝑦

𝑇1𝜋𝑧 − 𝑇3𝜋𝑧 ]
 
 
 
 

= 0 

 

( 4.35 ) 

 

Where 𝛼𝑥 ∈ (0, 𝜋] is the rotation angle around the x-axis. 

As mentioned before, any rotation with a rotation-axis not equal to 𝑧, leads to a 

𝑇3𝜋𝑧
 value affected by error, because using Algorithm 4.1 the TCP related to the 

two flange poses cannot be constrained to lie on the same point. But knowing 𝑇𝑡𝑐𝑝
′

𝑦
 

from ( 4.33 ), the second row of ( 4.35 ) can be used to compute 𝑇𝑡𝑐𝑝
′

𝑧
: 

(1 − cos 𝛼𝑥)𝑇𝑡𝑐𝑝
′

𝑦
+ (sin 𝛼𝑥)𝑇𝑡𝑐𝑝

′
𝑧
+ 𝑇1𝜋𝑦 − 𝑇3𝜋𝑦

= 0 ( 4.36 ) 

 

𝑇𝑡𝑐𝑝
′

𝑧
=

𝑇3𝜋𝑦
− 𝑇1𝜋𝑦 − (1 − cos𝛼𝑥)𝑇𝑡𝑐𝑝

′
𝑦

sin 𝛼𝑥
 ( 4.37 ) 

 

Note that in this case 𝛼𝑥 must be less then 𝜋 to find a solution.  

The equations ( 4.37 ) and ( 4.33 ) can be grouped defining the following system 

of equations: 
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[
 
 
 
 
𝑇𝑡𝑐𝑝

′
𝑥

𝑇𝑡𝑐𝑝
′

𝑦

𝑇𝑡𝑐𝑝
′

𝑧]
 
 
 
 

= 

 

[
 
 
 
 
 
 

1

2
−

sin 𝛼𝑧

2(1 − cos 𝛼𝑧)
0

sin 𝛼𝑧

2(1 − cos 𝛼𝑧)

1

2
0

−(1 − cos 𝛼𝑥)

2 sin 𝛼𝑥

sin 𝛼𝑧

(1 − cos 𝛼𝑧)

−(1 − cos 𝛼𝑥)

2 sin 𝛼𝑥

1

sin 𝛼𝑥]
 
 
 
 
 
 

[
 
 
 
 
𝑇2𝜋𝑥 − 𝑇1𝜋𝑥

𝑇2𝜋𝑦 − 𝑇1𝜋𝑦

𝑇3𝜋𝑦
− 𝑇1𝜋𝑦 ]

 
 
 
 

 

 

( 4.38 ) 

 

(1 − cos 𝛼)

sin 𝛼
=

2 sin2 𝛼
2

2 sin
𝛼
2 cos

𝛼
2

= tan
𝛼

2
 ( 4.39 ) 

 

[
 
 
 
 
𝑇𝑡𝑐𝑝

′
𝑥

𝑇𝑡𝑐𝑝
′

𝑦

𝑇𝑡𝑐𝑝
′

𝑧]
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 

1

2
−

1

2 tan
𝛼𝑧

2

0

1

2tan
𝛼𝑧

2

1

2
0

−
1

2

tan
𝛼𝑥

2

tan
𝛼𝑧

2

−
1

2
tan

𝛼𝑥

2

1

sin 𝛼𝑥]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
𝑇2𝜋𝑥 − 𝑇1𝜋𝑥

𝑇2𝜋𝑦 − 𝑇1𝜋𝑦

𝑇3𝜋𝑦
− 𝑇1𝜋𝑦 ]

 
 
 
 

 

 

( 4.40 ) 

 

All the terms of ( 4.40 ) are known then, as shown in Statement 4.3, the solution 

of 𝑇𝑡𝑐𝑝 can be computed as follows: 

𝑇𝑡𝑐𝑝 = 𝑅1𝜋
−1 ∙ 𝑇𝑡𝑐𝑝

′  ( 4.41 ) 

 

Note that the second rotation is around the x-axis but the same reasoning could be 

made rotating the flange around the y-axis. 
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 ERROR ANALYSIS 

Because of the translations performed by the robot and the camera discretization, 

the analytic solution 4.5.2 to compute the TCP has some unavoidable errors. 

Suppose that for each translations difference term of equation ( 4.40 ) there is an 

error 𝜖𝑖 ∈ (−𝜖𝑚𝑎𝑥, 𝜖𝑚𝑎𝑥) where 𝑖 ∈ [1,2,3] is the corresponding row index: 

[
 
 
 
 
𝑇𝑡𝑐𝑝

′
𝑥
+ 𝜖𝑥

𝑇𝑡𝑐𝑝
′

𝑦
+ 𝜖𝑦

𝑇𝑡𝑐𝑝
′

𝑧
+ 𝜖𝑧 ]

 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 

1

2
−

1

2 tan
𝛼𝑧
2

0

1

2tan
𝛼𝑧
2

1

2
0

−
1

2

tan
𝛼𝑥
2

tan
𝛼𝑧
2

−
1

2
tan

𝛼𝑥

2

1

sin 𝛼𝑥]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
𝑇2𝜋𝑥 − 𝑇1𝜋𝑥

+ 𝜖1

𝑇2𝜋𝑦 − 𝑇1𝜋𝑦
+ 𝜖2

𝑇3𝜋𝑦
− 𝑇1𝜋𝑦 + 𝜖3]

 
 
 
 

 

 

( 4.42 ) 

 

(𝜖𝑥, 𝜖𝑦, 𝜖𝑧) is the distance vector from the real solution. This error can be separated 

from equation ( 4.42 ): 

[
 
 
 
 
𝜖𝑥

𝜖𝑦

𝜖𝑧]
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 

1

2
−

1

2 tan
𝛼𝑧

2

0

1

2tan
𝛼𝑧

2

1

2
0

−
1

2

tan
𝛼𝑥

2

tan
𝛼𝑧

2

−
1

2
tan

𝛼𝑥

2

1

sin𝛼𝑥]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
𝜖1

𝜖2

𝜖3]
 
 
 
 

 ( 4.43 ) 

 

Matrix on equation ( 4.43 ) represents the error amplification of the method used 

to compute the TCP as a function of the rotation angle 𝛼𝑥 and 𝛼𝑧. Note that with 

these values tending to zero the errors will tend to infinity. 

The minimum amplification for each error corresponds to the optimal values 𝛼𝑧 =

𝜋 and 𝛼𝑥 =
𝜋

2
 obtaining the following matrix: 
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[
 
 
 
 
𝜖𝑥

𝜖𝑦

𝜖𝑧]
 
 
 
 

=

[
 
 
 
 
 
 
 
1

2
0 0

0
1

2
0

0 −
1

2
1]
 
 
 
 
 
 
 

[
 
 
 
 
𝜖1

𝜖2

𝜖3]
 
 
 
 

 ( 4.44 ) 

 

Since the rotations are centered on the flange, to keep the TCP detectable by the 

camera, the rotation angles must be small, like one or two degrees, but moving 𝛼𝑧 

and 𝛼𝑥  away from optimal values, errors will be amplified. Then applying the 

method described in section 4.5.2 with this kind of rotations, the 𝑇𝑡𝑐𝑝 computed will 

be inaccurate, however the result can be used to set a new rotation center to 

compute the 𝑇𝑡𝑐𝑝  a second time using widest rotations and keeping the tool 

detectable by the camera. 

If the errors amplification were still too high, the error 𝜖𝑧 could be reduced with 

another rotation: after the second rotation around the x-axis with 𝛼𝑥 =
𝜋

2
, the plane 

𝑥𝑧 will be parallel to the camera image plane. Now the same method used to 

compute 𝑇𝑡𝑐𝑝
′

𝑥
 and 𝑇𝑡𝑐𝑝

′
𝑦
 ( 4.30 ) can be used to compute 𝑇𝑡𝑐𝑝

′
𝑥
 and 𝑇𝑡𝑐𝑝

′
𝑧
 replacing 

𝑇𝑡𝑐𝑝
′

𝑦
 with 𝑇𝑡𝑐𝑝

′
𝑧
, performing a the rotation around the y-axis instead of z-axis and  

moving the flange with Algorithm 4.1 along z-axis instead of y-axis. Then replacing 

only the resulting row related to 𝑇𝑡𝑐𝑝
′

𝑧
, ( 4.42 ) can be rewrite as follows: 

[
 
 
 
 
𝑇𝑡𝑐𝑝

′
𝑥
+ 𝜖𝑥

𝑇𝑡𝑐𝑝
′

𝑦
+ 𝜖𝑦

𝑇𝑡𝑐𝑝
′

𝑧
+ 𝜖𝑧 ]

 
 
 
 

=

[
 
 
 
 
 
 
 

1

2
−

1

2 tan
𝛼𝑧
2

0

1

2tan
𝛼𝑧
2

1

2
0

1

2tan
𝛼𝑦

2

0
1

2
]
 
 
 
 
 
 
 

[
 
 
 
 
𝑇2𝜋𝑥 − 𝑇1𝜋𝑥

+ 𝜖1

𝑇2𝜋𝑦 − 𝑇1𝜋𝑦
+ 𝜖2

𝑇4𝜋𝑧
− 𝑇1𝜋𝑧 + 𝜖3 ]

 
 
 
 

 

 

( 4.45 ) 

 

Where 𝛼𝑦 is the rotation around the y-axis. 

In this case with 𝛼𝑦 = 𝜋 the distance vector from the real solution would become: 
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[
 
 
 
 
𝜖𝑥

𝜖𝑦

𝜖𝑧]
 
 
 
 

=

[
 
 
 
 
 
1

2
0 0

0
1

2
0

0 0
1

2]
 
 
 
 
 

[
 
 
 
 
𝜖1

𝜖2

𝜖3]
 
 
 
 

 ( 4.46 ) 

 

However there could be not enough space to perform this kind of rotations. Then 

the first method (only two rotation around z-axis and x-axis without constraints on 

rotations angles) could be more suitable for the purpose. 

For instance 𝛼𝑧 = 𝛼𝑥 =
𝜋

4
 on equation ( 4.42 ) could be the right compromise 

between precision and performance: 

[
 
 
 
 
𝜖𝑥

𝜖𝑦

𝜖𝑧]
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 1

2
−

√2

4 − 2√2
0

√2

4 − 2√2

1

2
0

−
1

2
−

2 − √2

2√2

√2

2 ]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
𝜖1

𝜖2

𝜖3]
 
 
 
 

 ( 4.47 ) 

 

[
 
 
 
 
𝜖𝑥

𝜖𝑦

𝜖𝑧]
 
 
 
 

=

[
 
 
 
 

0,5 −1,21 0

1,21 0,5 0

−0,5 −0,21 1,41]
 
 
 
 

[
 
 
 
 
𝜖1

𝜖2

𝜖3]
 
 
 
 

 ( 4.48 ) 

 

 

In any case, if the errors were too high and there were physics limitations to perform 

wide rotations, the least squares method could be applied to find a better solution 

using a constraints matrix built concatenating the system of equations given by the 

Analytic solution 4.5.2 using different initial positions. 
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5 RESULTS 

 IMAGE RESOLUTION 

The following results have been obtained keeping the tool to roughly 30 𝑐𝑚 in front 

of the camera where one pixel corresponds to approximately 0,021 𝑚𝑚 along both 

x-axis and y-axis. These values has been computed as follows: 

𝑑𝑥 =
1

𝑛 − 1
∑ |

𝑥𝑤𝑖
− 𝑥𝑤𝑖+1

𝑥𝑐𝑖
− 𝑥𝑐𝑖+1

|

𝑛−1

𝑖=1

, 𝑑𝑦 =
1

𝑛 − 1
∑ |

𝑥𝑤𝑖
− 𝑥𝑤𝑖+1

𝑥𝑐𝑖
− 𝑥𝑐𝑖+1

|

𝑛−1

𝑖=1

 ( 5.1 ) 

 

Where 𝑥𝑤𝑖
∈ ℝ is the x coordinate of a random flange position expressed in camera 

base coordinate system ( 4.12 ), 𝑥𝑐𝑖
∈ ℕ is x coordinate of the corresponding pixel 

representing the TCP projected on the camera image plane and 𝑛 = 30 is the 

number of random flange poses considered. 

 TCP ACCURACY 

The accuracy of method 4.5.2 can be computed estimating the TCP translation 

several times using different initial positions and then evaluating the distance 

between the TCP found and the real TCP. 

The rotation angles used are 𝛼𝑧 =
𝜋

8
 around the z-axis and 𝛼𝑥 =

𝜋

8
 around the x-

axis. 
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Figure 5.1 – Accuracy x y axis 

 

Figure 5.2 – Accuracy y z axis 
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Figure 5.3 – Accuracy x z axis 

 

Figure 5.4 – Accuracy x y z axis 
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Figure 5.1, Figure 5.2, Figure 5.3 and Figure 5.4 legend: 

o Blue: TCP found with method 4.5.2 

o Green: mean of all the tool center points found with method 4.5.2. 

𝑇𝐶𝑃𝑚𝑒𝑎𝑛 = (4.11,−21.95,187.58) . 

o Red: TCP found using the manual method explained on section 1.1. 

𝑇𝐶𝑃𝑚𝑎𝑛𝑢𝑎𝑙 = (4.29, −21.72, 187.43).  

o Sphere radius: maximum distance estimated between 𝑇𝐶𝑃𝑚𝑎𝑛𝑢𝑎𝑙  and the 

real TCP.  𝑟 = 0.54 𝑚𝑚. 

𝑇𝐶𝑃𝑚𝑒𝑎𝑛 can reasonably considered as the real TCP since it is the mean of all the 

TCP computed. 

 

 
 

Figure 5.5 – Accuracy x axis 

 
 

Figure 5.6 – Accuracy y axis 

 

 

Figure 5.7 – Accuracy z axis 
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Figure 5.5, Figure 5.6 and Figure 5.7 represent the x, y and z values estimated for 

each accuracy test done. 

 
 

Figure 5.8 – Accuracy - Distance of each 𝑇𝐶𝑃𝑥 

found from 𝑇𝐶𝑃𝑚𝑒𝑎𝑛𝑥
 

 
 

Figure 5.9 – Accuracy - Distance of each 𝑇𝐶𝑃𝑦 

found from 𝑇𝐶𝑃𝑚𝑒𝑎𝑛𝑦
 

 

 

Figure 5.10 – Accuracy - Distance of each 𝑇𝐶𝑃𝑧 found from 𝑇𝐶𝑃𝑚𝑒𝑎𝑛𝑧 

 

Figure 5.8, Figure 5.9 and Figure 5.10 represent the histogram of the distances 

form the mean TCP found along each axis. The results can be modelled by three 

normal distributions: 

𝑋𝑎 = 𝑇𝐶𝑃𝑥 − 𝐸(𝑇𝐶𝑃𝑥)~𝑁(0, 𝜎𝑎𝑥
2) 

 

𝑌𝑎 = 𝑇𝐶𝑃𝑦 − 𝐸(𝑇𝐶𝑃𝑦)~𝑁 (0, 𝜎𝑎𝑦
2) 

 
𝑍𝑎 = 𝑇𝐶𝑃𝑧 − 𝐸(𝑇𝐶𝑃𝑧)~𝑁(0, 𝜎𝑎𝑧

2) 

( 5.2 ) 
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Where the mean of normal distributions are 𝐸(𝑋) = 𝐸(𝑌) = 𝐸(𝑍) = 0 since for any 

random variable 𝑅, 𝐸(𝑅 − 𝐸(𝑅)) = 0. 

Value 
Max distance from 

𝑻𝑪𝑷𝒎𝒆𝒂𝒏 [mm] 

Standard deviation with 

respect to 𝑻𝑪𝑷𝒎𝒆𝒂𝒏  [mm] 

𝑻𝑪𝑷𝒙 0.1346 𝜎𝑎𝑥
= 0.0586 

𝑻𝑪𝑷𝒚 0.2003 𝜎𝑎𝑦
= 0.0889 

𝑻𝑪𝑷𝒛 0.1381 𝜎𝑎𝑧
= 0.0675 

 

Table 5.1 – TCP Accuracy results of each axis 

Note that the standard deviations on Table 5.1 are slightly different because the 

errors along the camera optical axis are more amplified in respect to the other two 

axis (see section 4.6 for details). 

The absolute distance of each 𝑇𝐶𝑃𝑖  found from 𝑇𝐶𝑃𝑚𝑒𝑎𝑛  can be computed as 

follows: 

√(𝑇𝐶𝑃𝑖𝑥
− 𝑇𝐶𝑃𝑚𝑒𝑎𝑛𝑥

)
2
+ (𝑇𝐶𝑃𝑖𝑦

− 𝑇𝐶𝑃𝑚𝑒𝑎𝑛𝑦
)
2

+ (𝑇𝐶𝑃𝑖𝑧
− 𝑇𝐶𝑃𝑚𝑒𝑎𝑛𝑧

)
2
 ( 5.3 ) 

 

Then the random variable that approximates the error can be represented by the 

squares root of the sum of the squares of the normalized random variables 𝑋𝑎, 𝑌𝑎 

and 𝑍𝑎 ( 5.2 ): 

𝐴𝑎 ~ √𝑋𝑎
2 + 𝑌𝑎

2 + 𝑍𝑎
2 ( 5.4 ) 

 

To simplify the accuracy representation, 𝑋𝑎 , 𝑌𝑎  and 𝑍𝑎  should be mutually 

independent and should have the same standard deviation. 

The mutual independence of 𝑋 , 𝑌  and 𝑍  can be evaluated computing the 

correlation index: 
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𝜌𝑎𝑥𝑦
=

𝜎𝑎𝑥𝑦

𝜎𝑎𝑥
𝜎𝑎𝑦

= 0.2077 

 

𝜌𝑎𝑧𝑦
=

𝜎𝑎𝑧𝑦

𝜎𝑎𝑧
𝜎𝑎𝑦

= −0.2104 

 

𝜌𝑎𝑥𝑧
=

𝜎𝑎𝑥𝑧

𝜎𝑎𝑥
𝜎𝑎𝑧

= −0.3412 

 

( 5.5 ) 

 

Where 𝜎𝑎𝑥𝑦
, 𝜎𝑎𝑧𝑦

 and 𝜎𝑎𝑥𝑧
 represent the covariances. The correlation index 

ranges is [−1,1]. When the absolute value of the correlation index is close zero, 

the random variables are independent, then in this case we can assume that 𝑋𝑎, 

𝑌𝑎 and 𝑍𝑎 are mutual independent. 

Now suppose 𝜎𝑎 = 𝜎𝑎𝑥
= 𝜎𝑎𝑦

= 𝜎𝑎𝑧
=  0.0717, that is the mean of the standard 

deviations found during the accuracy test (Table 5.1).  

Statement  5.1: If 𝑋𝑎, 𝑌𝑎  and 𝑍𝑎 are three independent normal distributions with 

zero mean and with the same standard deviation 𝜎𝑎, then the random variable 𝐴𝑎 

has a Nakagami distribution with  𝑚 =
3

2
 and Ω = 𝜎𝑎

2 : 

𝐴𝑎  ~ √𝑋𝑎
2 + 𝑌𝑎

2 + 𝑍𝑎
2 ~ 𝑁𝑎𝑘𝑎𝑔𝑎𝑚𝑖(

3

2
, 3𝜎𝑎

2) ( 5.6 ) 

Proof 

𝑋𝑎~𝑁(0, 𝜎𝑎), 𝑌𝑎~𝑁(0, 𝜎𝑎), 𝑍𝑎~𝑁(0, 𝜎𝑎) ⇒ 
 

𝐴~√𝜎𝑎
2
𝑋𝑎

2

𝜎𝑎
2

+ 𝜎𝑎
2
𝑌𝑎

2

𝜎𝑎
2
+ 𝜎𝑎

2
𝑍𝑎

2

𝜎𝑎
2
 ~ √𝜎𝑎

2χ2+ 𝜎𝑎
2χ2+ 𝜎𝑎

2χ2  

( 5.7 ) 

 

Where χ2 is the chi-square distribution with one degree of freedom. This random 

variable is a special case of the Gamma distribution: χ2 = Gamma(
1

2
, 2). Now using 

the scaling property of the Gamma distribution, ( 5.7 ) can be rewritten as: 

𝐴 ~√Gamma (
1

2
, 2𝜎𝑎

2) + Gamma (
1

2
, 2𝜎𝑎

2) + Gamma (
1

2
, 2𝜎𝑎

2) ( 5.8 ) 
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Since 𝑋𝑎, 𝑌𝑎 and 𝑍𝑎 are mutual independent with the same scale parameter (2𝜎𝑎
2), 

the sum of these Gamma distributions can be rewritten as follows: 

A ~√Gamma (
3

2
, 2𝜎𝑎

2)  ( 5.9 ) 

 

The square root of a Gamma distribution Gamma(𝑘, θ) is a Nakagami distribution 

𝑁𝑎𝑘𝑎𝑔𝑎𝑚𝑖(𝑚, Ω) with parameters 𝑚 = 𝑘 and Ω = 𝑚𝜃 then: 

𝐴 ~ 𝑁𝑎𝑘𝑎𝑔𝑎𝑚𝑖 (
3

2
, 3𝜎𝑎

2) ( 5.10 ) 

 

Qed 

Then the Nakagami distribution 𝑁𝑎𝑘𝑎𝑔𝑎𝑚𝑖(
3

2
, 3𝜎𝑎

2) can be used to approximate the 

accuracy. 

𝑵𝒂𝒌𝒂𝒈𝒂𝒎𝒊(
𝟑

𝟐
, 𝟑𝝈𝒂

𝟐) 

 

𝒎 
3

2
 

𝛀 0.0154 

𝑴𝒆𝒂𝒏 
Γ (𝑚 +

1
2)

Γ(𝑚)
(
Ω

𝑚
)

1
2

= 0.1143 

𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆 Ω(1 −
1

𝑚
(
Γ(𝑚 +

1
2)

Γ(𝑚)
)

2

) = 0.0073 

𝑷𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒅𝒆𝒏𝒔𝒊𝒕𝒚 
 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 

2mm

Γ(m)Ωm
𝑥2𝑚−1𝑒−

𝑚
Ω

𝑥2

=
2 (

3
2)

3
2

Γ (
3
2) (3𝜎𝑎

2)
3
2

𝑥2𝑒
−

𝑥2

2σa
2
 

 

Table 5.2 – TCP Accuracy represented with Nakagami distribution 
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Table 5.2 shows some properties of the Nakagami distribution computed to 

represent the TCP Accuracy. Γ(𝑥) is the gamma function. 

 

 
 

Figure 5.11 – Accuracy - Distances histogram from 

the mean point 𝑇𝐶𝑃𝑚𝑒𝑎𝑛 

 

 
 

Figure 5.12 – Distance of each 𝑇𝐶𝑃𝑦 found from 

𝑇𝐶𝑃𝑚𝑒𝑎𝑛𝑦 

 

Figure 5.11 represents the histogram of the distances between TCP computed and 

real TCP estimate ( 5.3 ), while Figure 5.12 represents the Nakagami distribution 

computed with mean 0.1143 𝑚𝑚 and standard deviation 0.1241 𝑚𝑚. Shapes of 

Figure 5.11 and Figure 5.12 are similar enough to represent the error distribution 

by this model. 

 TCP PRECISION 

The TCP precision of method 4.5.2 can be estimated with the same procedure 

used for estimate the TCP accuracy 5.2, but in this case using the same initial 

position to compute the TCP translations. The rotation angles used are 𝛼𝑧 =
𝜋

8
 

around the z-axis and 𝛼𝑥 =
𝜋

8
 around the x-axis. 

With 65 samples the following results has been obtained: 
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Figure 5.13 – Precision x y axis 

 
 

Figure 5.14 – Precision y z axis 

 

 
 

Figure 5.15 – Precision x z axis 

 
 

Figure 5.16 – Precision x y z axis 

 
The blue points on figures Figure 5.13, Figure 5.14, Figure 5.15 and Figure 5.16 

represent the TCP found while the red point represent the mean. 

 
Figure 5.17 – Precision x axis 

 
Figure 5.18 – Precision y axis 
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Figure 5.19 – Precision z axis 

 

Figure 5.17, Figure 5.18 and Figure 5.19 represent the x, y and z values estimated 

for each precision test done. 

Value 
Max distance from mean 

[mm] 
Standard deviation 

[mm] 

𝑻𝑪𝑷𝒙 0.0622 0.0298 

𝑻𝑪𝑷𝒚 0.0929 0.0427 

𝑻𝑪𝑷𝒛 0.0842 0.0365 

 

Table 5.3 – TCP precision results 

 

 
 

Figure 5.20 – Precision - Distance of each 𝑇𝐶𝑃𝑥 

found from 𝑇𝐶𝑃𝑚𝑒𝑎𝑛𝑥 

 
 

Figure 5.21 – Precision - Distance of each 𝑇𝐶𝑃𝑦 

found from 𝑇𝐶𝑃𝑚𝑒𝑎𝑛𝑦
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Figure 5.22 – Precision - Distance of each 𝑇𝐶𝑃𝑧 found from 𝑇𝐶𝑃𝑚𝑒𝑎𝑛𝑧 

 

As for the accuracy analysis 5.2, the results can be modelled using three normal 

distributions: 

𝑋𝑝 = 𝑇𝐶𝑃𝑥 − 𝐸(𝑇𝐶𝑃𝑥)~𝑁 (0, 𝜎𝑝𝑥
2) 

 

𝑌𝑝 = 𝑇𝐶𝑃𝑦 − 𝐸(𝑇𝐶𝑃𝑦)~𝑁 (0, 𝜎𝑝𝑦
2) 

 
𝑍𝑝 = 𝑇𝐶𝑃𝑧 − 𝐸(𝑇𝐶𝑃𝑧)~𝑁(0, 𝜎𝑝𝑧

2) 

( 5.11 ) 

 

The random variable that approximates the precision can be represented by the 

square root of the sum of the squares of the normalized random variables 𝑋, 𝑌 and 

𝑍 ( 5.2 ): 

𝐴𝑝 ~ √𝑋𝑝
2 + 𝑌𝑝

2 + 𝑍𝑝
2 ( 5.12 ) 

 

To simplify the precision representation, 𝑋𝑝 , 𝑌𝑝  and 𝑍𝑝  should be mutually 

independent and should have the same standard deviation. 

The mutual independence of 𝑋𝑝 , 𝑌𝑝  and 𝑍𝑝  can be evaluated computing the 

correlation index 
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𝜌𝑝𝑥𝑦
=

𝜎𝑝𝑥𝑦

𝜎𝑝𝑥
𝜎𝑝𝑦

= −0.1192 

 

𝜌𝑝𝑧𝑦
=

𝜎𝑝𝑧𝑦

𝜎𝑝𝑧
𝜎𝑝𝑦

= −0.3816 

 

𝜌𝑝𝑥𝑧
=

𝜎𝑝𝑥𝑧

𝜎𝑝𝑥
𝜎𝑝𝑧

= −0.2334 

 

( 5.13 ) 

 

Where 𝜎𝑝𝑥𝑦
, 𝜎𝑝𝑧𝑦

 and 𝜎𝑝𝑥𝑧
 represent the covariances. Given the values found 

even in this case we can assume that 𝑋𝑝, 𝑌𝑝 and 𝑍𝑝 are mutual independent. 

Suppose now 𝜎𝑝 = 𝜎𝑝𝑥
= 𝜎𝑝𝑦

= 𝜎𝑝𝑧
=  0.0363  that is the mean of the standard 

deviations found during the precision test (Table 5.3).  

With these conditions, as shown on Statement  5.1, The Nakagami distribution of 

Table 5.4 can be used to represent the TCP precision. 

𝑵𝒂𝒌𝒂𝒈𝒂𝒎𝒊(
𝟑

𝟐
, 𝟑𝝈𝒑

𝟐) 

 

𝒎 
3

2
 

𝛀 0.0039 

𝑴𝒆𝒂𝒏 
Γ (𝑚 +

1
2)

Γ(𝑚)
(
Ω

𝑚
)

1
2

= 0.0575 

𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆 Ω(1 −
1

𝑚
(
Γ(𝑚 +

1
2)

Γ(𝑚)
)

2

) = 0.0018 

𝑷𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒅𝒆𝒏𝒔𝒊𝒕𝒚 
 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 

2mm

Γ(m)Ωm
𝑥2𝑚−1𝑒−

𝑚
Ω

𝑥2

=
2(

3
2)

3
2

Γ (
3
2) (3𝜎𝑝

2)
3
2

𝑥2𝑒
−

𝑥2

2σp
2
 

 

Table 5.4 – TCP Precision represented with Nakagami distribution 
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Figure 5.23 – Accuracy - Distances histogram from 

the mean point 𝑇𝐶𝑃𝑚𝑒𝑎𝑛 

 

 
 

Figure 5.24 – Distance of each 𝑇𝐶𝑃𝑦 found from 

𝑇𝐶𝑃𝑚𝑒𝑎𝑛𝑦 

 

Figure 5.23 represents the histogram of the distances between TCP computed 

during the precision evaluation and TCP estimate ( 5.3 ), while Figure 5.24 

represents the Nakagami distribution computed with mean 0.0575 𝑚𝑚  and 

standard deviation 0.0424 𝑚𝑚. Even in this case the shapes of Figure 5.23  and 

Figure 5.24 are similar enough to represent the errors distribution by this model. 

 

 

 

 



 

61 
 

6 CONCLUSIONS 

 RESULTS 

The objective of this work was to study a method to compute the tool center point 

of symmetric tools using computer vision.  

Unlike other methods, the solution proposed has several advantages: 

 From a theoretical point of view the result is not approximated. 

 No initial tool information have to be known. 

 It requires three different flange poses that is the minimum number to solve 

the problem. 

 There is no constraints on the rotation amplitude to change flange pose. 

 The system of equations to solve is linear. 

 The vision algorithms are suitable to any symmetric tool. 

To calibrate the TCP an operator has to move the tool on a position detectable by 

the camera, after this the method works autonomously. 

Three different flange poses are required; Initially the rotations to change the flange 

poses have to be centered on the flange itself since no information regarding the 

tool are known. Then to keep the TCP detectable by the camera the rotation angles 

must be small (in this case one degree). The accuracy of this method is 

proportional to the rotation angles, then with small rotations the TCP computed will 

be inaccurate, but the result can be used to set a new rotation center to compute 

the TCP a second time using widest rotations and keeping the tool detectable by 

the camera. 

The accuracy achieved (0,2𝑚𝑚 ), computed with rotation angles of 
𝜋

8
 radians, 

satisfies the requirements since it improves the performance achievable using the 

manual tool center point calibration. 

Increasing the rotation angles until 
𝜋

2
 radians, the accuracy would improve but 

generally the work space may be limited. 
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 FUTURE WORKS 

The method presented doesn’t compute the tool orientation. For this purpose the 

Hough transform applied on the image skeleton could be exploited since it returns 

a line on the image plane that should represent the projection of the tool direction. 

Usually symmetric tools have the z-axis equal to the axis of symmetry. Positioning 

the tool in such a way that the z-axis is parallel to the vertical axis of the image 

plane, if the direction found using image processing doesn’t match the vertical axis 

of the image plane, the tool will have a wrong orientation. 

Computing the angle between the tool direction found using image processing and 

the vertical axis of the image plane, the tool can be adjusted rotating around the 

optical axis by the angle just found and using the TCP as rotation center. 

Obviously on the camera plane there is only a bidimensional projection of the tool, 

then to make sure that the tool has the right direction, a rotation of 90 degree 

around the vertical axis of the image plane has to be performed. Now adjusting a 

second time the direction using the new angle between the tool direction found and 

the vertical axis of the image plane, the tool orientation should be correct. 
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A. APPENDIX 

A.1 LEAST SQUARES METHOD WITH NORMAL EQUATIONS 

This is an optimization technique (or regression) that allows to find a function, 

represented by an optimal curve (or regression curve), which is as close as 

possible to a set of data. In particular, the function found must be the one that 

minimizes the sum of squares of the distances between the observed data and the 

curve that represents the function itself. 

The least squares method can be written as follow: 

min
𝑥

‖𝐴𝑥 − 𝑦 ‖2 ( 6.1 ) 

 

The minimization argument of ( 6.1 ) can be expanded as follow: 

‖𝐴𝑥 − 𝑦 ‖2 = (𝐴𝑥 − 𝑦)𝑇(𝐴𝑥 − 𝑦) = 𝑥𝑇𝐴𝑇𝐴𝑥 − 𝑥𝑇𝐴𝑇𝑦 − 𝑦𝑇𝐴𝑥 + 𝑦𝑇𝑦  ( 6.2 ) 

 

Note that 𝑥𝑇𝐴𝑇𝑦 = 𝑦𝑇𝐴𝑥 is a scalar then the quantity to minimize becomes: 

𝑥𝑇𝐴𝑇𝐴𝑥 − 2𝑥𝑇𝐴𝑇𝑦 + 𝑦𝑇𝑦  ( 6.3 ) 

 

A solution of ( 6.1 ) can be obtained differentiating ( 6.3 ) with respect to 𝑥 and 

placing it equal to 0: 

𝐴𝑇𝐴𝑥 − 𝐴𝑇𝑦 = 0 ( 6.4 ) 
 

The equations ( 6.4 ) are called normal equations.  

𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑦 ( 6.5 ) 
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