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1 Introduction

1.1 The need for Thermonuclear Fusion

The increasing demand for new energy production, expecially from rapidly industri-
alized countries, as well as the request of reducing the emissions and the environmen-
tal impact, has put the world in a difficult energy situation. A further complication
is that, as well known, the present reserves of natural gas and oil will be exhausted
in few decades.

Thermonuclear fusion exploits the energy surplus that is released when two light
nuclei merge together into a heavier nucleus. Nuclear fusion has many attractive
features in terms of safety, fuel reserves and minimal damage to the environment,
hence it is a potential candidate to have a major role in the energy production of
the future. In contrast with fission reactors, where it is needed to maintain a chain
reaction in a large mass of fuel, fusion reactors must be continuosly fed with a small
amount of fuel with a rate following the consumption needs, making catastrophic
accidents like meltdown impossible. Fusion reactors do not produce greenhouse
emissions like CO2 nor other harmful chemicals. Attention must be paid to the
emission of high energy neutrons by fusion reactions, which cause the activation
of the exposed materials of the structure. However, the resulting nuclear wastes
have the advantage of possessing only short-lived elements. With careful design and
choice of materials, the level of radioactivity left by a fusion power plant after it has
been closed for 100 years could be comparable to that of a coal fired power plant.
Fusion has also disadvantages, the primary ones being related to the scientific and
engineering challenges that are inherent in the fusion process. In particular, the
requirement of confining a sufficient quantity of plasma for a sufficient long time at
a sufficient high temperature has been the focus of the fusion research for the past
60 years.
Finally, a fusion reactor is inherently a complex facility and the ultimate question
is whether a fusion reactor will be competitive with other power sources. Costings
have been made for a number of reactor designs with a range of results: these typ-
ically lies in the range 1-3 times the cost of a fission reactor. However, there are
many unknown variables, such as the future technological and economics develop-
ments and it is clearly difficult to predict the cost of fusion energy and its economic
competitivity with respect to other sources 30-50 years in the future.
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1.2 Relevant Fusion Reactions

Unlike fission reactions, where an isotope of Uranium (U235) is bombarded with a
slow neutron, thermonuclear fusion reactions involve two colliding light elements
that fuse together, generating a heavier one and releasing energy in form of kinetic
energies of the products.
The amount of energy released equals the difference of binding energy of the final
and initial nuclei. This process is possible because the binding energy of light nuclei,
as shown in fig. 1, is an increasing function with respect to the mass number, thus
the released energy is positive, for nuclei up to Fe56.

(a)

Figure 1: Binding energy per nucleon vs mass number

The reactions relevant for fusion research involve hydrogen isotopes Deuterium
(D), Tritium (T), or Helium (He3). A few are listed as follows:

2D + 2D→3 He + 1n + 3.27 MeV (1.1a)

2D + 2D→
{

3T + 1H + 4.03 MeV
4He + 1n + 17.6 MeV

(1.1b)

2D + 2D→4 He + 1H + 18.3 MeV (1.1c)

As a reference, the D-T reaction releases 17.6 MeV, or 3.52 MeV per nucleon, to
be compared to 0.9 MeV per nucleon for a typical U235 fission reaction and to 0.9
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eV of the combustion reaction of gasoline. 1 Kg of this fuel would release 108 kWh
of energy, providing the requirements of a 1GW power plant for a day.

Deuterium is present naturally in ocean water, it can be easily extracted at a very
low cost and it is virtually inexhaustible. Tritium is a radioactive isotope with a
half life of about 12 years, hence it is not available naturally on Earth and must
be obtained from a reaction involving Li6. Geological estimates indicate that the
reserves of Li6 are of the order of 104 years at the present energy consumption rate.

Tritium may be bred from lithium using the neutron induced fission reactions:

Li6+ n → T + He4 + 4.8 MeV (1.2a)

Li7+ n → T + He4+ n - 2.5 MeV (1.2b)

The vacuum vessel of a D-T fusion reactor is surrounded by a blanket composed of
a compound of lithium, which has the purpose of absorbing the neutrons produced
by the fusion reaction, allowing both the trasmutation of lithium to tritium and the
conversion of the neutrons energy to heat.

Figure 2: Experimentally measured cross sections for the D-T, D-He3 , and D-D
fusion reactions

Fig.2 shows the reaction rates for the three main reactions. It is clear the the
D-T reaction is the most promising one, since it has the highest cross section except
at impractical high energies.
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The nuclear fusion reaction takes place due to the short-ranged nuclear force, the
two nuclei must be very close to each other, making the inter particle Coulomb
potential very repulsive and thus greatly reducing the likelihood of the reaction.

1.3 Confinement and Energy Balance of a Confined Plasma

The strategy behind all current fusion research is to confine the particles in a region
of space for times long enough such that the particles can perform fusion reactions.

The thermonuclear power per unit volume produced in a D-T plasma is:

pf = ndnt〈σv〉Ef (1.3)

where nd and nt are the deuterium and tritium densities, 〈σv〉 is the reactivity
rate average of the cross section times the relative speed of the particles over a
Maxwellian distribution and Ef is the energy released in a single fusion reaction,
namely 17.6 MeV.

In an open system like a plasma there is a continuous loss of energy, through
transport to the walls and radiation processes, which has to be balanced by heating
in order for the process to be self-sustainable. For a thermalized plasma, the energy
density per unit volume is w = 3nT and its time evolution is an energy balance
equation:

dw

dt
= pH + pα − pL − pR (1.4)

The first term, pH , includes any external supplied power. pα is obtained from
eq.(1.3), retaining only the energy of the alpha particles (Eα = 3.5 MeV), since the
neutrons leave the plasma without interaction. pR is the energy lost by radiation,
the main contribution of which is given by the Bremsstrahlung radiation that can
be expressed as:

pb = αbn
2T 1/2 Wm−3 (1.5)

where αb is a constant equal to 5.35 · 10−37 Wm3keV −1/2 and the temperature is
expressed in keV. Bremsstrahlung radiation is caused by Coulomb two-body colli-
sions inside the plasma, thus it is an intrinsic and unvoidable term. The last term
pL, the power lost by transport phenomena, is the most difficult to quantify and it
is empirically described through the energy confinement time τE:

PL =
W

τE
(1.6)

where W = wV is the total thermal energy of the plasma and τE represents the
relaxation time of the plasma energy due to heat conduction. Experimentally, when
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the fusion power term is negligible, it can be estimated from:

τE =
W

PH − PR
(1.7)

Figure 3: Schematic diagram of power flow inside a fusion reactor

The energy balance of the reactor is represented schematically in Fig.3. In a
steady state power balance, assuming negligible heat conduction losses and no ex-
ternal heating, it is straightforward to derive a minimum value, sometimes referred
as ideal ignition, of the temperature:

T ≥ 4.4 keV (1.8)

Note that the corresponding value for D-D reactions is much higher, approximately
30keV. More realistically, in order to reach ignition the alpha power heating has to be
sufficiently large to balance the combined Bremsstrahlung and thermal conduction
losses, without the need of an external heating:

pα = pL + pb (1.9)

which can be easily expressed as

nτE ≥
12T

〈σv〉Eα − 4αbT 1/2
(1.10)
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Figure 4: nτE condition necessary to reach ignition

At typical temperatures of about 10-20 keV, where the ignition curve is near
its minimum (see Fig.4), the reactivity can be expressed using an approximated
formula, giving a condition in the so called triple product:

nτET ≥ 3 · 1021m−3sMeV (1.11)

As an example, with T ' 10 keV and n ' 1020m−3, the confinement time should
be at least 3s. Altough ignition is a convenient condition, since the plasma would
be self sustainable so that the external power source could be switched off, it is not
necessary to obtain a positive energy balance. It is useful, to this regard, to consider
the parameter Q, defined as the ratio of the thermonuclear power produced to the
heating power required:

Q =
Pf
PH
' 5Pα

PH
(1.12)

Thus, Q = 1 is the condition, called break-even, where the fusion power equals the
external heating. At ignition, where PH is reduced to 0, Q→∞.
It is possible to obtain a positive balance with a large Q without reaching ignition.
However, the supplied power is a cost on the system that involves recycling of the
power and a consequent loss of efficiency.

1.4 Paths to Ignited Plasmas

The confinement occours naturally in stars, where the gravitational force balances
the kinetic pressures. However, gravity is a very weak force compared to the nuclear
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one. The fusion power density in the core of the Sun is only 270 watts per cubic
meter, many order of magnitude lower than that required for a commercial power
plant.

Different approaches are needed in order for fusion to be viable on human-relevant
scales, and two of them have been pursued.
One is inertial confinement: a small solid target made of deuterium and tritium is
heated with laser beams leading to the evaporation of the external surface and the
implosion of the internal part of the target. The increasing density, over 1000 times
higher than that of normal liquid D-T, makes fusion reactions possible.

The second path is provided by magnetic confinement: a gaseous D-T mixture
is heated up to temperatures relevant for the triggering of fusion reactions. At
temperatures of interest, the gas is fully ionized, constitutes a neutral plasma made
by ions and electrons. Material walls thus surround laboratory device but cannot
be used directly to maintain confined plasmas, instead magnetic confinement is
needed.
As will be discussed later, the average motion of any charged particle embedded
into a magnetic field is dominantly aligned along the magnetic field line, whereas its
orthogonal motion is relatively slow. Hence, a viable strategy is to tailor magnetic
field configurations able to confine plasmas.
This is practically achieved by closing magnetic field lines onto themselves into the
doughnut-shaped (toroidal) configuration typical of magnetic confinement devices,
that will be described more extensively in the next section.

1.5 Particle Dynamics in a Magnetized Plasma and the Prob-
lem of Transport

Plasmas, being made of charged particles, can sustain self-produced flowing currents,
that is, they can produce further magnetic fields in additions to those externally
imposed. The resulting magnetic configuration can thus be different from the design
one.
Indeed, some concepts of confinement devices, like the Reversed Field Pinches, rely
on virtually stable magnetic configurations that are mostly self-produced by the
plasma itself. There is in principle a premium in attaining such configurations, since
they require the lesser effort (i.e., power comsumption) from the external circuitry.
On the other hand, this is achieved at the expense of a magnetic topology which
is now not known a priori. The basic element within this discussion is provided by
magnetic flux surfaces. They will be explained in more detail in the next chapter.
For the purpose of this paragraph, it is important that magnetic field lines lie in
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each of these surfaces. There is not a component of B perpendicular to the surface.
Accordingly, as long as the identification between field line and particle trajectory
holds, i.e. drifts and collisions aside, flux surfaces define also barriers to the the
particle dynamics: as we will discuss later, they are KAM tori of Hamiltonian
systems. The best configuration for confinement is one where all magnetic surfaces
are nested and detached from material walls since it minimizes the flux of matter
and energy away from the core plasma 1

In actual scenarios, one encounters a mixture of (i) good flux surfaces, (ii) ergodic
regions, i.e., regions where magnetic field lines wander erratically filling the whole
available volume. Regions (i) and (ii) have wildly different transport properties, in
particular stochastic zones (ii) act as short-circuits, effectively transferring mass and
energy across distants regions via parallel streaming. (iii) Finally, a fraction of field
lines may intercept the material walls (so called open field lines). These, too, act as
efficient loss mechanisms.

It arises therefore the need of investigating what the dynamics of plasmas turns out
to be within such scenarios. The full self-consistent problem, where the magnetic
topology and the plasma evolution are computed together self-consistently repre-
sents ultimately the main question of equilibrium and heat and/or matter transport
in confined plasmas, and is still an overwhelmingly complicated question.
In most devices one may reconstruct, at least approximately, the magnetic field
starting from experimental measurements carried out using coils at the plasma edge,
polarimetry and motional Stark effect in the core plasma.
On the basis of this knowledge plasma dynamics may be approximately inferred
from the behaviour of a small number of test particles evolving within a given back-
ground magnetic field.
However, the trajectory of a charged particle can be approximated with the un-
derlying magnetic field line only in a first approximation, under the hypothesis of
homogeneous field.
The unavoidable existence of inhomogenities and curvature produces additional drift
motions as we shall see in the next chapters.
Two-body Coulomb scattering must finally be accounted for, it causes impulsive de-
flections of the particles from the original trajectory. In a high-temperature plasma,

1The whole issue in an actual fusion reactor, is made much more complicated by the fact that
conflicting demands are in order. From the one hand we wish to keep confined as much as possible
the fuel, i.e. the hydrogen isotopes, as well as the energy needed to ignite it. On the other hand,
it is necessary to extract the ashes of the combustion, i.e., the helium, alongside with the energy it
carries along, since it the useful output of the fusion process. Also impurities, i.e., trace elements
of atoms other than hydrogen, coming from the walls, need to be quickly removed, since they
contribute to cool the plasma by radiation.
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however, Coulomb collisions are relatively weak, the collision frequency scales like
(temperature)−3/2, thus particles spend most of their time travelling along trajec-
tories dictated by the background magnetic field alone, with two-body collisions
intervening as sporadic perturbations: in a typical present-date laboratory plasma,
an electron is allowed to make 10-100 toroidal revolutions along the major circum-
ference between successive scattering events.

1.6 Outline of the Thesis

We are finally led to the purpose and content of this thesis. We note first of all that
the intrinsic multiscale nature of plasmas force any investigation of the dynamics of
charged particles to span an extremely wide range of time and length scales.
Concerning length scales, for instance, one goes from the electron Larmor radius
(radius of the gyration along the magnetic field line), which in a typical labora-
tory plasma may be of order 10−4 m, to the total path travelled between, e.g., two
Coulomb collisions ≈ 102÷3 m, with the further issue that particle trajectories may
be highly irregular and possibly chaotic over some regions.
These complications call for special care in handling with the numerical integration
of equations of motion.
The first fundamental simplification comes from the acknowledgment that the Lar-
mor gyration of the particle around the local magnetic axis, which is extremely
faster than any other time scale involved, can be averaged out, and the exact tra-
jectory of the particle replaced by the motion of its gyration center, which moves
over extremely longer time scales (guiding center theory).
The price to be paid is that the local inhomogenities sampled by the particles during
its full evolution must now be retained as suitable averages in a new set of equations
of motion for the guiding center. This topic will be addressed in Chapter 2.

It is well known that an accurate integration of the equations of motion greatly
benefits from algorithms incorporating any conservation law that the particle is
known to obey, since they prevent by construction the cumulative effect of accumu-
lation of numerical errors over long integration times. Symplectic algorithms exploit
the conservation properties built into those systems whose evolution is described by
some Hamiltonian.
Luckily, it has been shown that the guiding center equations of motion do possess
a Hamiltonian structure, thereby allowing for the development of symplectic inte-
grators. Within this framework, time integration of a trajectory corresponds to a
mapping from initial Hamiltonian phase space coordinates to final ones, it is a kind
of canonical transformation, i.e., a transformation that preserves the form of Hamil-
ton’s equations.
On the other hand, it may be shown that the guiding center dynamics in generic
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magnetic fields does not possess one single global canonical structure, but just a
local one: the form of the mapping from initial to final coordinates depends from
the point. This makes unpractical standard algorithms that instead rely on the
postulate of the existence of a global canonical structure of the Hamiltonian.

One intriguing possibility recently suggested is to use variational symplectic in-
tegrators. These integrators are shown to possess in many cases good long time
preservation properties, when applied to a noncanonical problem, thus in principle
allow to override the previous shortcomings of canonical integrators. On the other
hand a complete understanding of the theoretical and mathematical aspects involved
with these integrators is yet not available. The aim of this thesis is to present an
investigation of this topic.

The thesis is structured as follows. Chapters 2-3 are introductory. The main
role of Chapter 2 is to provide the näive guiding center theory as encountered in
standard textbooks. However, as corollary, some other basic concepts are introduced
that will be useful later, in particular to scrutinize the results of Chaper 5.

Chapter 3 revisits the theory of the guiding center, this time within a Hamiltonian
setting. This part, too, reviews standard material in textbooks.

Numerical integrators rely on a discretization of the equations of motion. There-
fore, chapter 4 starts entering the main topic of the thesis by revisiting the symplectic
integrators, with particular attention to canonical systems, this time with attention
to the discrete aspects of the mechanics. Symplectic integrators are studied from a
variational (Lagrangian) and from a Hamiltonian point of view. Finally, the corre-
spondence between discrete integrators and continuous theory is established. This
material comes from relatively new literature of the past 10 years. The basic el-
ements of the theory of Hamiltonian systems, necessary for an understanding of
the chapter, are separately summarized in Appendix A, for the convenience of the
reader.

Chapter 5 is the core of the thesis, where we tackle the integration of non canon-
ical Hamiltonian systems with symplectic algorithms. Some general properties and
behaviour of this class of integrators are outlined in this chapter. The starting point
is provided by recent published papers ([20] [21]) which have been further extended
in an original way in this thesis.

Finally, chapter 6 deals with the original application of the theory developed in
the previous chapter to the non canonical guiding center theory in terms of some
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numerical excercises. Different discretizations approaches are proposed, and their
stability properties assessed.

16



2 Charged particles motion in electromagnetic fields:

the guiding-center picture

Consider a particle of mass m and charge q in an electromagnetic field. Its motion
can be directly determined from the Lorentz force:

m
dv

dt
= q (E + v ×B) (2.1a)

dx

dt
= v (2.1b)

Eqs.(2.1) are a set of coupled ordinary differential equations and they constitute a
quite complex problem since B(x, t) and E(x, t) are in general functions of space and
time; however, the basic idea of magnetic confinement theory can be demonstrated
by studying the particle motion in a uniform, time independent magnetic field.
Assume the following fields configuration in a cartesian coordinate system: E = 0,
B = Bez.
Taking the scalar product of (2.1) with v yields:

1

2
mv · v = const. ≡ W (2.2)

Solving explicitely eq.(2.1) for the z-component leads to:

dvz
dt

= 0 (2.3)

The full set of Newton’s law reduces to:

dvx
dt

= ωcvy (2.4a)

dvz
dt

= −ωcvx (2.4b)

dvz
dt

= 0 (2.4c)

where ωc = qB/m is the gyro-frequency, sometimes referred as the Larmor
frequency.

Eqs.(2.4) can be clearly separated into a uniform motion along the field lines of a
guiding center

xgc = (x0, y0, z0 + v‖t) (2.5)
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and a circular motion, the gyromotion, around the field lines, with frequency ωc
and gyroradius rL = mv⊥/qB.
For a typical fusion plasma, the gyroradius is of the order of mm for ions, depending
upon their energy, and is correspondingly scaled by the square root of the ratio of
the masses for electrons at the same energy. Note that the direction of the gyromo-
tion is opposite for opposite charges.

Figure 5: Trajectory of charged particles in a uniform magnetic field.

The combined parallel and perpendicular motion yields a helical motion around
the magnetic field lines, as shown in fig.5.

2.1 Magnetic moment

The gyromotion of the charged particles produces a magnetic field that, from Am-
pere’s law, is directed antiparallel to the B field (diamagnetism of the plasma). The
magnetic moment associated is easily computed as:

µ =
(
−q ωc

2π

)
(πr2

L)B̂ = −W⊥
B

b (2.6)

where b is the unit vector parallel to the magnetic field. As a consequence, a plasma
of particle density 2n possesses a diamagnetic behaviour, quantified by means of the
ratio of the kinetic to the magnetic pressure, β:

β =
nW⊥
B2/2µ0

= −δB
B

(2.7)
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2.2 Drift across a magnetic field

When the magnetic field is not uniform and constant, solution of eqs.(2.1) can differ
substantially from the helical trajectory. The underlying assumption of guiding
center theory is that the variations of B and E occur on a length scale longer
than the gyroradius and on a time scale slower than the gyrofrequency. When this
condition is satisfied, it is still possible to decouple the motion of the guiding center
from the gyromotion. As it will be shown in the next sections, the main consequence
of the variations of the field is the existence of drifts of the guiding center motion.

2.2.1 Curvature Drift

Figure 6: Charged Particle gyrating around a curved magnetic field

Let’s consider a magnetic field constant in time and with a small curvature RC ,
as sketched in fig.6. We can write the Lorentz force (eq. 2.1) and split the parallel
and perpendicular components of the velocity with respect to the magnetic field:

q(v×B) = m
dv

dt
= m

dv⊥
dt

+m
dv‖
dt

=

= m
dv⊥
dt

+mb
dv‖
dt

+mv‖
db

dt

(2.8)

The last term can be rewritten as:

mv‖
db

dt
= mv‖v · ∇b (2.9)

If we average the last expression over one gyro orbit, the fast perpendicular oscil-
lating motion cancels out and only the parallel component remains non vanishing:
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mv‖v · ∇b = mv2
‖b · ∇b = −mv2

‖
RC

R2
C

(2.10)

Hence, returning to equation (2.8), the parallel component remains unaffected by
the curvature, while an average centrifugal force FC arises in the perpendicular di-
rection:

m
dv⊥
dt

= FC + q (v ×B) (2.11)

where FC is:

FC = −mv2
‖
RC

R2
C

(2.12)

The perpendicular velocity can now be broken into two parts, v⊥ = vc + vgc

such that the effect of vgc is to cancel out FC

FC + q(vgc ×B) = 0 (2.13)

Hence, the motion perpendicular to the magnetic field comprises of a circular motion
vc and a drift of magnitude

vgc =
1

q

FC ×B

B2
= −

mv2
‖

qR2
C

RC ×B

B2
(2.14)

2.2.2 Gradient Drift

Consider now the case in which the magnetic field is non uniform in space, but
still along the same direction, B = B(x)uz. Assuming small variations, we can
approximate the magnetic field along a gyro orbit with:

B ' B0 + x̃ · ∇B (2.15)

where x̃ represents the gyration motion around the gyrocenter. The equations of
motion for the perpendicular component of the velocity now read:

m
dv⊥
dt

= q(v⊥ ×B0) + q[v⊥ × (x̃ · ∇)B] (2.16)

The last term can be averaged over one gyro orbit:

F ≡ q[v⊥ × (x̃ · ∇)B] = qvyx
∂

∂x
B − qvxy

∂

∂y
B (2.17)
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At first order, vx and vy are purely oscillatory (eq. 2.4) and the average in eq.
(2.17) is an integral over a period of square of cosines and sines, hence:

F = −qv
2
⊥

2ωc
∇⊥B = −µ∇⊥B (2.18)

The force F produces a drift in the gyrocenter motion similar to that in the
previous section (but now the component of the velocity perpendicular to B enters,
rather than the parallel one)

v∇⊥ =
µ

q

B×∇⊥B
B2

(2.19)

Magnetic mirror On the other hand, the presence of a parallel gradient B ‖ ∇B,
causes a phenomena known as magnetic mirror.
Using cylindrical coordinates, we can notice from the divergence condition on the
magnetic field that a parallel gradient implies that the radial component of the field
must be not null:

0 = ∇ ·B =
1

r

∂

∂r
(rBr) +

∂B

∂z
(2.20)

Assuming the gradient to be constant over a gyro orbit, equation (2.20) can be in-
tegrated to give:

Br = −1

r

∫ r

0

r′
∂Bz

∂z
dr′ = −1

2
r
∂Bz

∂z
(2.21)

The z-component of the Lorentz force is then computed from eq.(2.21) at the Lar-
mor radius:

Fz = −qu⊥Br = −q
2
u⊥rL

∂Bz

∂z
= −µ∂Bz

∂z
(2.22)

Using (2.6) and (2.22), we can write the conservation of total kinetic energy,
which still holds since the magnetic field is time independent, as:

0 =
d

dt

(
1

2
mv2
‖ +

1

2
mv2
⊥

)
= −µdB

dt
+
d(µB)

dt
= B

dµ

dt
(2.23)

Therefore, both the total kinetic energy and the magnetic moment are constants
of the motion.
From (2.6), it is clear that the fraction of kinetic energy due to orthogonal motion
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Figure 7: Inversion of parallel velocity due to mirror effect

has to increase when the particle moves into a region of higher B, leading eventually
to the inversion of the parallel velocity when the magnetic field is sufficiently high
(fig.7). More specifically, a particle is reflected when the ratio of the orthogonal to
the parallel velocity exceeds a critical value:

v⊥
v‖

>

(
Bmax

B
− 1

)− 1
2

(2.24)

Actually, a simple linear device which exploits the mirror effect to confine the
charged particles along the magnetic lines, could be designed. In fact, this was one
of the earliest magnetic fusion configuration, known as the mirror machine. Two
coil generates a magnetic field with a maximum under each coil and a minimum in
the midway. However, the mirror machine in practical experiments does not work as
expected. Particles not fulfilling Eq. (2.24) are lost from the machine, and Coulomb
collisions, as well as the presence of both macroscopically and microscopically in-
stabilities, contribute to continuosly replenish this region of the particles’ velocity
space at a rate that prevents the maximum theoretical energy gain factor Q from
rasing above 1.

The approach that proved to be the most promising is to close the magnetic field
lines in a toroidal configuration, in which a set of toroidal field coils encircling the
plasma produce a toroidal field Bφ. The coordinate system used in this configuration
is sketched in fig.8.
The curvature and nonuniformity of the magnetic field cause the particles to drift
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Figure 8: Toroidal (r, θ, φ) coordinate system

vertically with a velocity

vd =
rLv⊥

2

B×∇B
B2

+
mv‖
qB

RC ×B

R2
CB

(2.25)

which is in the opposite direction for ions and electrons. This charge separation
results in an electric field that produces a drift directed radially outward:

vd =
E×B

B2
(2.26)

Figure 9: Charged particles gyrating around magnetic field lines in a toroidal device

In order to avoid particles hitting the wall, it is necessary to superimpose an
additional magnetic field in the poloidal direction (θ), resulting in a helical magnetic
field, as shown in fig.9. In this way, particles are carried outward in the upper
poloidal orbit and inward otherwise, thus balancing the E×B drift.
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2.3 Flux Surfaces

A surface defined by a function f(x) = const is said to be a flux surface, or a
magnetic surface, if at any point the magnetic field lies within the surface. Mathe-
matically, B · ∇f = 0.
The existence of flux surfaces is important since it is a necessary condition for the
stability and thus the confinement of the plasma. Flux surfaces provide a barrier to
charged particle that is penetrable only by their relatively slow, perpendicular drift
motion.

Let’s introduce generic coordinates (r, θ, φ), such that θ and φ are periodic with
period 2π.
The vector potential associated with the magnetic field can be expressed in a con-
travariant basis as:

A = Ar∇r + Aθ∇θ + Aφ∇φ (2.27)

Defining the scalar functions G, ψ and ψp such that ∂rG = Ar, ψ = Aθ − ∂θG,
ψp = Aφ − ∂φG, eq.(2.27) can be rewritten as:

A = ∇G+ ψ∇θ − ψp∇φ (2.28)

The magnetic field is then:

B = ∇×A = ∇ψ ×∇θ −∇ψp ×∇φ (2.29)

It is easy to verify that ψ and ψp are both flux functions if ψp depends only on ψ:
ψp = ψp(ψ).
In this case, the safety factor can be defined as:

1

q(ψ)
=
dψp
dψ

(2.30)

Eq. (2.29) is said to be a flux representation of the magnetic field. The coor-
dinates (ψ, θ, φ) that permit this representation are called flux coordinates. The
magnetic surfaces (ψ = const.) consist topologically of nested tori (fig. 10) and
in general they differ from the toroidal coordinates, θ and φ not being the usual
geometrically defined angular variables.
Only in the case of an axisymmetric magnetic field, the toroidal coordinates are
good flux coordinates.
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Figure 10: Toroidal and poloidal magnetic surfaces

The term flux function can be justified computing the toroidal and poloidal flux
through a magnetic surface:

1

2π

∫
d3x(B · ∇φ) =

1

2π

∫
dψdθdφ = 2πψ (2.31a)

1

2π

∫
d3x(B · ∇θ) =

1

2π

∫
dψpdθdφ = 2πψp (2.31b)

Therefore, ψ and ψp represent the magnetic flux per unit angle that passes
through these surfaces.

The magnetic field lines on the θ-φ plane are defined by

dθ

dφ
=

B · ∇θ
B · ∇φ

=
1

q(ψ)
(2.32)

The safety factor q(ψ) thus defines the field helicity in the θ, φ variables on the
surface ψ.

2.4 Trapped Particles

As already stated in the previous sections, the magnetic field produced by the field
coils is nonuniform. Using Ampere’s law and taking the line integral of Bφ around
any close loop inside the plasma, it is easy to verify that the magnetic field falls off
as 1/R across the confinement region.
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Figure 11: Toroidal magnetic field variation along a poloidal orbit

Hence, the magnetic field along a poloidal orbit of radius r has a maximum and
a minimum value (see fig.11):

Bmax = B0
R0

R0 + r
(2.33a)

Bmin = B0
R0

R0 − r
(2.33b)

Following the discussion of section 2.2.2, a particle is trapped if its parallel ve-
locity v‖ at θ = 0 satisfy the condition:

v2
‖

v2
< 1− Bmin

Bmax

' 2
r

R0

(2.34)

The trajectory of a trapped particle in the poloidal plane, shown in fig.12, is
referred as the ”banana” orbit. Note that the orbit shifts outward or inward with
respect to the magnetic surface, depending on the sign of the initial parallel velocity.

Altough the fraction of trapped particles is usually small, it is the dominant con-
tribution to the heat and transport losses inside the plasma. This can be explained
by the fact that the parallel velocity of trapped particles is small and the orbital
period is long, raising the probability to drift off the flux surface due to gradient
and curvature forces.
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Figure 12: Trapped particle orbit projected onto the poloidal plane
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3 Hamiltonian guiding center theory

3.1 Introduction

The original theory of the guiding center motion, as presented in the introductory
chapter (chapter 2), has many disadvantages, as it doesn’t clearly possess an energy
conservation law, Noether theorem can’t be applied and the motion of the particles
is not consistent with the Liouville theorem.
In the 80’s, flux coordinates ψ, ψp were used to obtain a canonical Hamiltonian the-
ory of the Guiding Center, so that the equations of motion are described by the
Hamilton’s equations.
Although this theory has the advantage to be easily applicable to symplectic in-
tegrators, the main difficulty is that the Darboux-Lie theorem (appendix A.4.2)
guarantees that canonical coordinates are well defined only locally: global canonical
coordinates, defined in the whole region of integration, can be found only for par-
ticular choices of the magnetic field configuration.
This thesis will focus on the non canonical theory, following the work of Littlejohn
[17], who derived coordinates valid in the whole space, starting from an extended
variational principle.
For a full review of Hamiltonian theories of the guiding center, see Cary and Brizard[4].

In this chapter, we’ll use the notion found in appendix A to build an Hamiltonian
theory of the guiding center.
Of course, this theory possesses all the properties we need, such as the Liouville
theorem, energy conservation and the Noether’s theorem.
We’ll start by showing that every Hamiltonian system descends from an extended
variational principle in which we can define an extended Lagrangian, the so called
phase-space Lagrangian.
We’ll then present a non canonical guiding center theory using this formalism. In
chapter 6 we’ll apply the variational symplectic integrator to this Lagrangian.

3.2 Phase-space Lagrangian formalism

Given a regular Lagrangian system (eq. A.67), or equivalently a canonical Hamilto-
nian system, we already know that the equation of motions can be derived from a
variational principle in the configuration space Q, namely the Hamilton’s principle.

From the Darboux theorem (section A.4.2), every non canonical system can be
brought in canonical coordinates, at least locally. However, this method arises dif-
ficulties in finding a suitable change of coordinates.
One can wonder if a generic Hamiltonian system can be derived directly from a
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variational principle in its symplectic manifold. The answer is given in this section.
A more deeper treatment can be found in literature, for example in [9], [19], or [4]
for the phase-space Lagrangian formalism.

3.2.1 Phase-space variational principle

Let’s start with a canonical Hamiltonian system with Hamiltonian H. The Hamil-
ton’s equations (eqs. A.102) are equivalent to the stationarity of the following
integral:

δ

∫ t1

t0

(q̇(t) · p(t)−H(q(t), p(t))) dt (3.1)

The proof of this fact will be given in the following subsection.
Note that q, p are treated as independent variables, while in the Hamilton’s principle
only the varible q is meant to be varied arbitrarily, as long as the endpoints of the
curve are kept fixed. For this reason, we call this variational principle extended.
We can wonder which are the conditions to impose at the endpoints to guarantee
the correct dimensionality of the problem.
In this regard, Goldstein [9] pointed out that fixing the endpoints on the curve p(t)
is irrelevant, since the integral (3.1) is independent of the derivative ṗ of p: Fixing
or not the endpoints on p(t) gives exactly the correct equations of motion.
For an Hamiltonian system on a symplectic manifold (M,Ω), the extended varia-
tional principle reads:

δ

∫ t1

t0

(Θ−Hdt) = 0 (3.2)

where Θ, known as the symplectic 1-form or the Cartan form, is a differential 1-form
such that its exterior derivative is the symplectic form:

Ω = −dΘ (3.3)

3.2.2 Phase-space Lagrangians

The phase-space Lagrangian is defined to be the argument of the integral (3.1):

L(q, q̇, p, ṗ) = q̇ · p−H(q, p) (3.4)

The variational principle then reads:

δ

∫ t1

t0

L(q(t), q̇(t), p(t), ṗ(t))dt = 0 (3.5)
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Note that although ṗ is a variable, the Lagrangian does not depend on it and that
all four variables are completely independent.
Since Euler-Lagrange equations are second-order equations, one can wonder if the
problem remains physically the same, as we are doubling the space of variables and
hence the degrees of freedom of the system.
As we’ll see right now, Euler-Lagrange equations of a phase-space Lagrangian must
be first-order equations.
For a canonical system (3.4), they are easily computed:

0 =
d

dt

∂L
∂q̇
− ∂L
∂q

= ṗ+
∂H

∂q
(3.6)

0 =
d

dt

∂L
∂ṗ
− ∂L
∂p

= −ṗ+
∂H

∂p
(3.7)

which are just the Hamilton’s equations, as expected.
For a generic Hamiltonian system, denoting by z ∈ M local coordinates of M , the
phase-space Lagrangian is:

L(z, ż) = Θi(z)żi −H(z) (3.8)

Note that both the Hamiltonian and the matrix of the 1-form Θ do not depend on
ż (by definition the 1-form is a map Θ : M → T ∗M).
Thus, the Euler-Lagrange equations are:

0 =
d

dt

∂L
∂ż
− ∂L
∂z

=
∂Θi(z)

∂zj
żj − ∂Θj(z)

∂zi
żj +

∂H

∂zi
(3.9)

The first term is just the matrix of the external derivative of Θ, namely the sym-
plectic 2-form (Ω = −dΘ). Hence:

Ωij(z)żj = −∂H
∂zi

(3.10)

where Ωij is:

Ωij =
∂Θi

∂zj
− ∂Θj

∂zi
(3.11)

Inverting the matrix Ωij we find:

żj = −(Ωij(z))−1∂H

∂zi
= Bij(z)

∂H

∂zi
(3.12)

where B(z) is the Poisson tensor. Hence the Euler-Lagrange equations of the phase-
space Lagrangian (3.8) are just the equations of motion found in the classical Hamil-
tonian theory (eqs. A.88 and A.97).
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Note that a phase-space Lagrangian is always singular, since

∂L
∂ż∂ż

= 0 (3.13)

At this point, the phase-space Lagrangian formalism constitutes a way to rewrite
an hamiltonian system with a Lagrangian or a variational framework.

In chapter 5 and 6 we will build an integrator starting from these phase-space
Lagrangians.
Such integrators, unlike continuous phase-space Lagrangians, have the unique fea-
ture of behaving like regular Lagrangian systems or, equivalently, like canonical
hamiltonian systems on a doubled space T ∗M , the cotangent bundle of M . There-
fore, the degrees of freedom are twice the ones of the original system, and one of
the critical points is how these integrators and their flows can be related to the
continuous hamiltonian flow in M .

Constraints The theory of non canonical hamiltonian system can be treated from
a different point of view. Singular Lagrangians are relevant in other areas of theo-
retical physics, specially in field theory. The quantization of these systems led Dirac
and Bergmann to the development of the so called Dirac-Bergmann theory of con-
straints (see for example Bergmann [2] and Leon [6]).
The fact that for a singular Lagrangian the Legendre transform is not invertible
with respect to the conjugate momenta pz means that there exist non trivial rela-
tions (constraints) between the coordinates of the phase-space T ∗M .
It can be proved that every phase-space Lagrangian, or equivalently every hamilto-
nian system, can be seen as a canonical Hamiltonian system in the extended phase
space T ∗M , subjected to primary constraints induced by the Legendre transform.
In coordinates, this means that the coordinates z ∈M and the conjugate momenta
are related by the constraints:

φ(z, p) = Θ(z)− p = 0 (3.14a)

p ≡ ∂L
∂ż

(3.14b)

This formulation is important for our purposes, since we will see that the conserva-
tion of these constraints remains valid in some cases in the discrete theory and this
fact will be important for a better understanding of our integrators.

Review To summarize, our problem can be studied with four different formula-
tions:
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• A non canonical Hamiltonian system on the manifold M .

• A canonical Hamiltonian system defined on T ∗Q, with dim(T ∗Q) = dim(M).
From the Darboux-Lie theorem, this system is well defined only locally.

• A phase-space Lagrangian system on on the tangent bundle TM . It is neces-
sarily singular and a regular second order vector field does not exist.

• A constrained canonical Hamiltonian system on T ∗M . The constraints are
defined by the Legendre transform of the phase-space Lagrangian.
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3.3 Non canonical guiding center theory

The aim of a guiding center theory is to decouple the motion of the guiding center
of the particle from its gyration motion.
For a constant magnetic field, this is done easily since the particle performs a simple
circular motion, as we have seen at the beginning of chapter 2. For this case, we
can choose the coordinates of the guiding center and the gyration angle (X, ζ) as:

x = X + ρêρ (3.15a)

v = uû + wŵ (3.15b)

where ρ is the displacement vector, u and w are the velocities parallel and per-
pendicular to the magnetic field and ê1 and ê2 are fixed coordinates where the
gyration motion takes place.

With the aid of figure 13, the unit vectors êρ and êw are found to be:

êρ = cos(ζ)ê1 − sin(ζ)ê2 (3.16a)

êw = − sin(ζ)ê1 − cos(ζ)ê2 (3.16b)

Figure 13: Guiding center coordinates. ê1 and ê2 represent the fixed frame. êρ and
ŵ represent the moving frame. û is the unit vector parallel to the magnetic field.
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A full set of guiding center coordinates is then (X, u, w, ζ).
For a general electromagnetic field, the starting point is to maintain the same trans-
formation (3.15) and find a Lagrangian whose gyration motion can be decoupled
from the rest.

Consider a charged particle in an electromagnetic field. Its motion is described
by the Lorentz force (2.1). Alternatively, we can write the Lagrangian of the system:

L(x, ẋ, t) =
1

2
mẋ2 +

e

c
ẋ · A(x, t)− eΦ(x, t) (3.17)

where A and φ are respectively the vector and the scalar potential:

∇×A = B

−∇φ = E
(3.18)

Normalizing the constants such that m = c = e = 1 we can rewrite (3.17) as:

L(x, ẋ, t) =
1

2
ẋ2 + ẋ · A(x, t)− Φ(x, t) (3.19)

The canonical Hamiltonian is easily found with the Legendre transform:

ẋ = p−A (3.20a)

H(x, p, t) =
1

2
(p− A(x, t))2 + Φ(x, t) (3.20b)

From section (3.2), we can write the phase-space Lagrangian simply as:

L(x, p, ẋ, ṗ) = ẋ · p−H(x,p) (3.21)

Since the phase-space Lagrangian formalism is obtained from a variational princi-
ple, we can choose arbitrary coordinates. Using the velocity v ≡ ẋ instead of the
momenta, equation (3.21) reads:

L(x,v, ẋ, v̇) = (v + A) · ẋ−
(

Φ +
m

2
v2
)

(3.22)

The theory of Littlejohn relies on the small gyroradius and slowly varying fields
approximation. For this reason, an ordering parameter ε is added to the Lagrangian:

L(x,v, ẋ, v̇) =

(
v +

1

ε
A(x, εt)

)
· ẋ−

(
Φ(x, εt) +

m

2
v2
)

(3.23)
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The physical significance of the parameter ε is that for small values, the electromag-
netic fields depend weakly on time and they dominate over the other kinetic energy
terms.
A first order Lagrangian is then obtained by expressing every term of the Lagrangian
(3.23) in gyroradius coordinates (3.15) with respect to ε and by retaining only the
ε−1 and ε0 terms.

Returning to the definition of the guiding center coordinates (3.15), we can ob-
serve that X and ρ are not uniquely determined for a general field configuration.
Often, ρ is chosen to be:

ρ =
w

B
êρ (3.24)

so that, remembering that the magnetic field has a O(ε−1) dependence, we can write:

x = X + ε
w

B
êρ (3.25)

Other choices of the displacement vector ρ are possible, and they lead to slightly
different results (see Cary[4]).

By substituting the new coordinates in the Lagrangian (3.23), one can show that
the first orders dependences on the gyration angle can be removed by a gauge trans-

formation on the Lagrangian

(
L→ L+

df

dt

)
, to give:

L(X, u, µ, ζ, Ẋ, u̇, µ̇, ζ̇, t) = A†(X, t) · Ẋ + µζ̇ − µB(X, t)− u2

2
− Φ(X, t) (3.26)

where µ is the magnetic moment: µ =
w2

2B
and A† is the modified vector potential:

A†(X, t) = A(X, t) + ub̂(X, t) (3.27)

We can recognize that the Lagrangian (3.26) is a phase space Lagrangian, or equiva-
lently has an Hamiltonian structure, by splitting the first terms proportional to the
first derivatives of the coordinates from the Hamiltonian terms:

L = A† · Ẋ + µζ̇ −H(X, u, µ, ζ, t) (3.28a)

H(X, u, µ, ζ, t) = µB +
u2

2
+ Φ (3.28b)
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If we try to compute the Euler-Lagrange equations for the gyroangle ζ, we im-
mediately notice that the magnetic moment is constant along the solution, so that
we can safely remove the gyroangle dependency by imposing the constancy of the
magnetic moment:

L(X, u, Ẋ, u̇, t) = A†(X, t) · Ẋ− µB(X, t)− u2

2
− Φ(X, t) (3.29)

This phase-space Lagrangian is the starting point of our variational symplectic
integrator. In chapter 6 we will directly discretize this Lagrangian to find a suitable
integrator. The symplectic one-form of the Lagrangian (3.29), which represents the
conjugate momenta, is just:

Θi =

(
A†

0

)
(3.30)

The symplectic matrix of the Lagrangian (3.29) is easily found by deriving the sym-
plectic one-form, as in eq. (3.12):

Ωij =


0 −B†z B†y b̂x
B†z 0 −B†x b̂y
−B†y B†x 0 b̂z
−b̂x −b̂y −b̂z 0

 (3.31)

where B† is the modified magnetic field:

B† = ∇×A† = B + u∇× b̂ (3.32)

The Hamiltonian equations of motion take the form:

Ωij ż
j = −∂H

∂zi
(3.33)

Solving further the equations of motion for u, we immediately find that, along a
solution curve:

u = b̂ · Ẋ (3.34)

Hence, the variable u is the velocity parallel to the magnetic field, as we expected.
The full equations of motion read:
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Ẋ =
uB† − b̂× (E− µ∇B)

b̂ ·B†
(3.35a)

u̇ =
B† · (E− µ∇B)

b̂ ·B†
(3.35b)

In equations (3.35), the fields have been assumed to be independent of time for
simplicity. This assumptions will hold for the rest of this thesis.
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4 Discrete Mechanics

4.1 Introduction

Symplectic Algorithms In the study of magnetized plasmas, it is often neces-
sary to carry out simulations in a time scale much longer than that of the guiding
center motion. In particular, the evaluation of the confinement of particles and their
diffusion inside a fusion device, requires the integration of the particle trajectory over
a very long time.

With standard integrators, such as the fourth-order Runge-Kutta, the error is
guaranteed only to be small in each time steps, but it often accumulates coherently,
resulting in large errors after long time. As a result, such numerical integrators has
usually been limited to simulations over a limited time.

Figure 14: Comparison between the energy error of a fourth order Runge-Kutta and
a symplectic method for a mechanical system

Symplectic integrators implicitly possess global conservation properties: momenta
associated to symmetries are exactly preserved and the energy presents excellent long
time stability features.
These properties make them ideal for simulating systems, either conservative or
dissipative and forced, with very long time steps.
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Fig.14 shows an example of the energy evolution for a mechanical system. The
symplectic method, unlike Runge-Kutta, conserves exactly the energy within a small
bounded error.

Symplectic integrators were first introduced by De Vogelaere in 1956 [7] and re-
discovered in 1983 by Ruth [24]. Further developments were made in the following
years by, for example, Forest and Ruth [8]. Longtime behaviour of symplectic meth-
ods for oscillatory and dissipative systems was studied by Hairer [10], Reich [22] and
Benettin and Giorgilli [1].

A different approach using a variational view of discrete mechanics has been pro-
posed in the ’70s by Cadzow [3]. This method, which is the one used in this thesis,
has been further developed recently by Marsden and West for dynamic systems with
a well defined Lagrangian. [19]

Discrete Mechanics Since the aim of symplectic integrators is to discretize and
to conserve the relevant quantities of continuous Lagrangian and hamiltonian me-
chanics, we’ll follow a similar path of the continuous case (appendix A).
We’ll see that the continuous and the discrete theories are strictly related. In par-
ticular, the flow of a symplectic integrator is determined by its generating function
(called the discrete Lagrangian) and that the two theories are formally equivalent
when the generating function is computed exactly.
In practical cases, this is not generally possible and we’ll show that approximations
of the generating function leads to integrators whose energy is close to the original
one.

Symplectic integrators are presented from a Lagrangian and an Hamiltonian point
of view. Subsequently, we’ll show that the two theories are largely equivalent.

This chapter covers almost only canonical systems, for which a regular Lagrangian
is well defined. The reason of this choice is that symplectic integrators for canonical
systems are easy to build and they have been extensively studied in the last decades.

In chapter 5 and 6 we’ll apply the concepts of this chapter to non canonical systems
and in particular to the non canonical guiding center theory.

4.2 Discrete Lagrangian mechanics

Unlike standard integrators, where the equations of motion are derived and dis-
cretized, variational symplectic integrators start from discretizing the ac-
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tion integral followed by extremizing it to obtain a set of discrete Euler-
lagrange equations.

In the discrete case, rather than the tangent bundle TQ 3 (q, q̇), a time step
h ∈ R and the discrete state space Q×Q 3 (qk, qk+1) are used.
Note that the two spaces are locally isomorphic through the transformation

(qk, qk+1)→
(
qk,

qk+1 − qk
h

)
(4.1)

In the same way as in the continuous case (section A.3.1), we need a way to
define a good discretization of second order vectors v ∈ Q̈. Given an element
w ∈ (Q×Q)× (Q×Q), the discrete second order manifold is:

Q̈d =

{
w = ((q0, q1), (q′1, q2)) ∈ (Q×Q)× (Q×Q)

∣∣∣∣q1 = q′1

}
(4.2)

This is equivalent to the condition
dx

dt
= v of the continuous case (A.49). To sum-

marize, we have the following correspondences:

TQ→ Q×Q (4.3)

T (TQ)→ (Q×Q)× (Q×Q) (4.4)

Q̈→ Q̈d (4.5)

In the same way, we can give a discrete version of a curve q(t) in the path space
C(Q), that is, a collection of points qd = {qk}Nk=0. The space of all these collections
is called the discrete path space Cd(Q).
The next step is to discretize the Lagrangian and the action of the system:

L(q, q̇)→ Ld(q0, q1, h) (4.6a)

S(qt) =

∫ T

0

L(q, q̇)dt→ Sd(qd) =
N−1∑
k=0

Ld(qk, qk+1, h) (4.6b)

where h is the time step which represents the time interval between two consecutive
points qk, qk+1. In this work, we will limit to constant time steps, so that hN = T .
Ld : Q×Q → R and Sd : Cd → R are the discrete Lagrangian and the discrete
action. The discrete Lagrangian has to be chosen so as to resemble as much as
possible the continuous Lagrngian, at least with low time steps h.
In this spirit, we can define the exact discrete Lagrangian in this way:
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LEd (q0, q1, h) =

∫ h

0

L(q(t), q̇(t))dt (4.7)

where q(t) is a solution curve which passes through q0 and q1: q(0) = q0, q(h) =
q1. Performing the sum in eq. (4.6), the discrete action turns out to be the contin-
uous action written in coordinates (q(0), q(T ), rather then (q(0), q̇(0).
Note that computing the exact discrete Lagrangian for a solution q(t) obviously
requires the knowledge of the exact solution.
A priori, the exact discrete Lagrangian has no particular properties over other dis-
cretization choices. However, we will see in section 4.5 that this discretization gen-
erates the exact solution, and for this reason it can be use as a link between the
continuous system and a particular discretization.

We can build the variations of the discrete action as the external derivative of the
action, applied to a variation δqd ∈ TqdCd(Q):

dSd · δqd =
N−1∑
k=1

[D1Ld(qk, qk+1, h) +D2Ld(qk−1, qk, h)] · δqk

+D1Ld(q0, q1, h) · δq0 +D2Ld(qN−1, qN , h) · δqN

(4.8)

where D1 and D2 are the derivatives with respect to the first and second term.
Then, again, we can identify the first and last terms respectively with the discrete
Euler-lagrange map DDEL : Q̈d → T ∗Q and the discrete Lagrangian 1-forms
Θ±d : Q×Q→ R:

DDELLd((qk−1, qk), (qk, qk+1)) = D2Ld(qk−1, qk) +D1Ld(qk, qk+1) (4.9)

=
∂

∂qk
(Ld(qk−1, qk) + Ld(qk, qk+1)) (4.10)

Θ+
d (qk, qk+1) = D2Ld(qk, qk+1) (4.11a)

Θ−d (qk, qk+1) = −D1Ld(qk, qk+1) (4.11b)

If we fix the endpoints of the discrete curve qd, such that δq0 = δq1 = 0, the boundary
terms vanish and the summation term in eq.(4.8) forces the discrete Euler-lagrange
map to vanish at each timestep, giving the discrete Euler-lagrange equations,
which are the starting point for the variational symplectic algorithm:

D1Ld(qk, qk+1, h) +D2Ld(qk−1, qk, h) = 0 (4.12)
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In coordinates q = (q1, .., qi, .., qn) equation 4.12 is rewritten as:

∂

∂qi(k)
[Ld (q(k), q(k + 1), h) + Ld (q(k − 1), q(k), h)] = 0 (4.13)

These equations define a way to find, for each time step, the unknown
variables qk+1 from qk and qk−1.
The fact that the continuous Euler-Lagrange equations are second-order in q is re-
flected in the discrete version by the requirement of the knowledge of two points in
order to find the next one.
The discrete Lagrangian map FLd

: (Q × Q) → (Q × Q) is the flow of the discrete
Lagrangian vector field XLd

: Q×Q→ (Q×Q)× (Q×Q):

DDEL ◦XLd
= 0 (4.14)

FLd
(qk−1, qk) = (qk, qk+1) (4.15)

Note that the initial conditions of the integrator are given by a point in Q × Q
(q0, q1), rather than q(0), q̇(0).
The Lagrangian map can be evaluated at an arbitrary time step by composing it k
times from the initial conditions:

(FLd
)k(q0, q1) = (qk, qk+1) (4.16)

One difference from the continuous mechanics is that there are two different La-
grangian 1-form and this will be reflected to the fact that there are two different
Legendre transforms.
However, we can notice that removing the fixed endpoint condition, the external
derivative of the action along a solution of the discrete Euler-lagrange equation
takes the form:

dLd = Θ+
Ld
−Θ−Ld

(4.17)

Thus, taking another derivative of Ld, we find out that there is a unique 2-form
Ωd : (Q×Q)× (Q×Q)→ R, the discrete Lagrangian symplectic form:

dΘ+
Ld

= dΘ−Ld
≡ ΩLd

(4.18)

Following the same method of the continuous case, the discrete symplectic two-
form ΩLd

is shown to be conserved by the discrete map:

dSd = (FN−1)∗Ld
Θ+
Ld
−Θ−Ld

(4.19)

Hence, using eq.(4.18):
(FN−1)∗Ld

ΩLd
= ΩLd

(4.20)

42



The discrete Lagrangian form has the following coordinate expression:

ΩLd
(qk, qk+1) =

∂2Ld

∂qik∂q
j
k+1

dqik ∧ dq
j
k+1 (4.21)

From the discrete Euler-Lagrange equations (4.12), we can observe that the solutions
are uniquely defined at every time step if the first term is invertible with respect to
qk+1.
Hence, the matrix of the discrete symplectic 2-form must be non singular to give
rise to the discrete Lagrangian flow:

det

(
∂2Ld

∂qk∂qk+1

)
6= 0 (4.22)

Although we haven’t related yet a continuous system to its discretization, it is worth
to point out that the conditions of non singularity of the symplectic forms are not
equivalent a priori, so that a continuous system can be singular, while its discretiza-
tion can be regular, and vice versa.

4.2.1 Discrete Noether Theorem

As in the continuous case (section A.3.4) , we can start by defining an action of a
Lie Group Φ : G×Q→ Q and its lift:

ΦQ×Q
g (qk, qk+1) = (Φg(qk),Φg(qk+1)) (4.23)

The infinitesimal generator of a Lie algebra element g is given by

ξQ×Q(q0, q1) = (ξQ(q0), ξQ(q1)) (4.24)

where ξQ is an infinitesimal generator on Q and it is the same as in the continuous
mechanics:

ξQ(q) =
d

dg

(
ΦQ
g (q)

)
· ξ (4.25)

If the action ΦQ×Q leaves the discrete Lagrangian invariant:

Ld ◦ ΦQ×Q
g = Ld (4.26)

then the following discrete momentum map is conserved:

JLd
(qk, qk+1) · ξ = Θ±Ld

· ξQ×Q(qk, qk+1) (4.27)
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JLd
◦ FLd

= JLd
(4.28)

This theorem is of great importance and represents a striking difference from a stan-
dard integrator: if the discrete Lagrangian is symmetric under some trasformation,
the quantities associated to Noether theorem are guaranteed to be exactly conserved.
We can expect that the same argument doesn’t hold for the energy. Fortunately,
we will see that a symplectic integrator exhibits energy errors that remain globally
bunded for indefinite times.

As in the continuous case, perhaps the simplest example of the Noether theorem is
that of an ignorable variable qm. In this case, the action Φg is just a translation
along the axis:

Φg(qk, qk+1) = (qk + gex, qk+1 + gex) (4.29)

From eq. (4.26), this condition is easily rewritten as

∂

∂qmk
Ld(qk, qk+1) = − ∂

∂qmk+1

Ld(qk, qk+1) (4.30)

then, for every time step k, l, the same quantities are conserved:

∂

∂qmk
Ld(qk, qk+1) =

∂

∂qml
Ld(ql, ql+1) (4.31a)

∂

∂qmk+1

Ld(qk, qk+1) =
∂

∂qml+1

Ld(ql, ql+1) (4.31b)

As we will see in the next subsection, this is just the conservation of the discrete
conjugate momenta. The same conservation law will be derived immediately from
eq. (4.30) using the so called momentum matching.

4.2.2 Discrete Legendre transforms and momentum matching

Given a discrete Lagrangian, the Legendre transforms F± : Q×Q→ T ∗Q are defined
by:

F+
Ld

(qk, qk+1) ≡ (qk+1, p
+
k+1) = (qk+1, D2Ld(qk, qk+1))

F−Ld
(qk, qk+1) ≡ (qk, p

−
k ) = (qk,−D1Ld(qk, qk+1))

(4.32)

Hence, the discrete Euler-Lagrange equations (4.12) can be seen as an equivalence
condition on the Legendre transforms of two consecutive time steps. This is called
the momentum matching:

0 = D1Ld(qk, qk+1, h) +D2Ld(qk−1, qk, h) = −p−k + p+
k (4.33)
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Thus, there is only one conjugate momentum pk:

pk = p−k = p+
k (4.34)

Solving the discrete Euler-Lagrange equations is equivalent to find the momentum
pk with (4.32a) and to invert it with respect to qk+1 using eq. (4.32b):

pk+1 = D2Ld(qk, qk+1)

pk+1 = −D1Ld(qk+1, qk+2)
(4.35)

Denoting by FHd
the discrete Hamiltonian map, which brings (qk, pk) to (qk+1, pk+1),

both the Lagrangian and Hamiltonian maps can be represented in terms of the Leg-
endre transforms, as sketched in fig.(15):

FLd
= (F−Ld)−1 ◦ F+Ld (4.36a)

FHd
= F+Ld ◦ (F−Ld)−1 (4.36b)

Using equations (4.36), the symplecticity of the flow (4.20) can be rewritten as

F ∗Hd
ΩH = ΩH (4.37)

where ΩH is

ΩH = (F−1
− )∗ΩLd

(4.38)

In coordinates, we can write ΩH from (4.21) just by inverting qk+1 with the Legendre
transform:

ΩH =
∑
i

qi ∧ pi (4.39)

Hence, although the space Q × Q is not directly related to TQ, we have found the
important property that the integrator derived from the discrete Euler-Lagrange
equations conserve the canonical symplectic form ΩH in T ∗Q.

Recalling the last subsection, we can observe that the invariance along an axis
(4.30) can be written in terms of the momenta as:

p−k−1 = p+
k (4.40)

so that, using eq. (4.34), we immediately find, for every time step:

pk−1 = pk (4.41a)

45



q0, q1 q1, q2

q0, p0 q1, p1

F−

FL

ΩLd

F+

F−

FHd

ΩH

Figure 15: Discrete Lagrangian and Hamiltonian maps and their relations with the
Legendre transforms

4.2.3 Examples of Discretization

In section 4.5 we will show that the exact discrete Lagrangian, defined in (4.7), is
the best choice for a discretization. For now, we will take this as an assumption.
Since the exact discrete Lagrangian is just a formal expression and can’t be computed
practically, the simplest method to find a discretized Lagrangian, or equivalently to
approximate the integral in eq.(4.7), is accomplished by assuming a constant value
of the Lagrangian over a time step. More specifically, the Lagrangian is evaluated
at the following space and velocity points:

q̇(t) ' qk+1 − qk
h

(4.42a)

q(t) ' qα = (1− α)qk + αqk+1, α ∈ [0, 1] (4.42b)

The most common values of α are α = 0, 1, 1/2:

L0
d(qk, qk+1) = hL

(
qk,

qk+1 − qk
h

)
(4.43a)

L1
d(qk, qk+1) = hL

(
qk+1,

qk+1 − qk
h

)
(4.43b)

L
1/2
d (qk, qk+1) = hL

(
qk + qk+1

2
,
qk+1 − qk

h

)
(4.43c)

The latter discretization is called the midpoint rule, which is in general more
precise than any other choice of α, as we will show in the following paragraph.

Order of the approximation In order to compute quantitatively the difference
between the approximated and the exact Lagrangian, the latter can be expressed in
a Taylor series in powers of h, expanding the continuous Lagrangian at t = 0 and
computing the definite integral of each term in eq.(4.7):

LEd (q0, q1) = hL(q(0), q̇(0))+
1

2
h2

(
∂L

∂q
(q(0), q̇(0)) · q̇(0) +

∂L

∂q̇
(q(0), q̇(0)) · q̈(0)

)
+O(h3)

(4.44)
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Applying the same method to the approximated discrete Lagrangians (4.43), we
find:

Lαd (q0, q1) = hL(q(0), q̇(0))+
1

2
h2

(
2α
∂L

∂q
(q(0), q̇(0)) · q̇(0) +

∂L

∂q̇
(q(0), q̇(0)) · q̈(0)

)
+O(h3)

(4.45)
Clearly, with every choice of α, the two Lagrangians are equal up to the first term,
thus they are a first order approximation in h. Only the midpoint rule (α = 1/2) is
a second order approximation and hence generally preferable.
For particular Lagrangians, however, it is possible to obtain second and higher order
approximations using methods different from the midpoint rule.
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4.3 Discrete Hamiltonian mechanics

A different approach to symplectic algorithms is given by Hamiltonian integrators,
whose aim is to build a solution of the system which conserves exactly the symplec-
tic form, starting directly from the Hamiltonian and the hamilton’s equations.
A common approach is by using generating functions of the system. The following
treatment can be found in literature in standard books and articles (for example
Hairer [11]).

Given a canonical Hamiltonian system, we already know from the continuous
mechanics (section A.4.5) that the Hamiltonian H : T ∗Q → R and the generating
function S1(q0, p1) is related through the Hamilton-Jacobi equation:

H

(
q0 +

∂S1

∂p1

(q0, p1, h), p1

)
− ∂S1

∂h
(q0, p1, h) = 0 (4.46)

where h is the time step.
If a generating function is known, the Hamiltonian flow can be built from (A.123)
with the following equations:

p1 − p0 = − ∂

∂q0

S1(q0, p1, h) (4.47a)

q1 − q0 =
∂

∂p1

S1(q0, p1, h) (4.47b)

Again, this could be a good integrator, the solution of which being the exact solu-
tion, but of course the explicit knowledge of a generating function is not practically
possible.
Fortunately, we can expand a generating function in a Taylor serie to obtain differ-
ent generating functions. Specifically:

S1(q0, p1, t) = hS1
1(q0, p1) + h2S1

2(q0, p1) +O(h3) (4.48)

The equations of motion (4.47) are then rewritten as:

p1 − p0 = − ∂

∂q0

(
hS1

1(q0, p1) + h2S1
2(q0, p1) +O(h3)

)
(4.49a)

q1 − q0 =
∂

∂p1

(
hS1

1(q0, p1) + h2S1
2(q0, p1) +O(h3)

)
(4.49b)

By comparing the terms of the expansion with the Hamilton-Jacobi equation,
every term can be easily computed. For example, the first one and the second one
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are:

S1
1(q0, p1) = H(q0, p1) (4.50a)

S1
2(q0, p1) =

1

2

(
∂H

∂p

∂H

∂q

)
(q0, p1) (4.50b)

Of course, truncating the serie won’t give rise to a solution to the Hamilton-Jacobi
equation for the Hamiltonian H, since the correct solution is the whole generating
function S1.
However, by virtue of the linearity of equations (4.47), we can notice that the trun-
cation is a generating function itself, hence the corresponding flow must conserve
the canonical symplectic form.

This constitutes a starting point for the construction of a symplectic integrator.
The two simplest examples, the symplectic Euler integrators, are built with the
generating functions S1 and S2, for which the same arguments hold, truncated to
the first term: 

p1 − p0

h
= −∂q0H(q0, p1)

q1 − q0

h
= ∂p1H(q0, p1)

(4.51)


p1 − p0

h
= −∂q0H(q1, p0)

q1 − q0

h
= ∂p1H(q1, p0)

(4.52)

Comparing (4.47) with (4.51), it is immediate to see that the flows of the symplectic
Euler methods are first order in h, relative to the exact flow.
By using similar arguments, it is possible to prove that this slightly more sophis-
ticated example, the Hamiltonian midpoint rule, is symplectic and its flow is
second order: 

p1 − p0

h
= −∂q̃H(q̃, p̃)

q1 − q0

h
= ∂p̃H(q̃, p̃)

(4.53)

where q̃ and p̃ are:

q̃ =
q0 + q1

2
, p̃ =

p0 + p1

2
(4.54)
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4.4 Lagrangian and Hamiltonian integrators correspondence

Although Lagrangian and Hamiltonian integrators, as presented in these sections,
are constructed in a different way, they are strictly related. We start by giving a
direct relation for the simplest methods, the Euler and the midpoint. In a second
stage, we will seek for a general relation.

Defining qα and pα by

qα = (1− α)q0 + αq1 (4.55a)

pα = αq0 + (1− α)q1 (4.55b)

Recall that simple first order Lagrangian methods can be constructed using the fol-
lowing discrete Lagrangian:

Lαd (q0, q1) = hL

(
qα,

q1 − q0

h

)
(4.56)

The conjugate momenta are easily computed with the discrete Legendre transforms
(eq. 4.32):

p0 = − ∂

∂q0

Lαd (q0, q1) = −h(1− α)
∂

∂q
L

(
qα,

q1 − q0

h

)
+

∂

∂q̇
L

(
qα,

q1 − q0

h

)
(4.57a)

p1 =
∂

∂q1

Lαd (q0, q1) = hα
∂

∂q
L

(
qα,

q1 − q0

h

)
+

∂

∂q̇
L

(
qα,

q1 − q0

h

)
(4.57b)

Rearranging them, we find:

p1 − p0

h
=

∂

∂q
L

(
qα,

q1 − q0

h

)
(4.58a)

pα =
∂

∂q̇
L

(
qα,

q1 − q0

h

)
(4.58b)

The last equation is just the continuous Legendre transform, written in dis-
cretized variables.
If the Lagrangian is regular, denote by H the Hamiltonian of the correspondent
canonical system. Then, by inverting (4.58b) and remembering the form of the
hamilton’s equations, we get:

q1 − q0

h
=
∂H

∂p
(qα, pα) (4.59a)

p1 − p0

h
= −∂H

∂q
(qα, pα) (4.59b)
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For α = 0, 1 we reobtain the Hamiltonian symplectic Euler methods (4.51), while
for α = 1

2
we get the midpoint rule (4.53).

It is worth noting again that this relation holds only for regular Lagrangian sys-
tems, such that the continuous Legendre transform equation (4.58b) is invertible
(for a singular Lagrangian the canonical Hamiltonian is not even defined).

Generating functions Nonetheless, it is possible to find a link between La-
grangian and Hamiltonian algorithms for every regular integrator, even for the ones
that derive from a singular Lagrangian. Lall and West [14] showed this in the context
of optimal control theory. Here we give an explanation using generating functions.

Recalling the last sections, a variational integrator with discretete Lagrangian
Ld conserves the canonical symplectic form, if written in coordinates (qk, pk):

F ∗Hd
ΩH = ΩH (4.60)

Also, the integrator is governed by the equations:

p0 = − ∂

∂q0

Ld(q0, q1) (4.61a)

p1 =
∂

∂q1

Ld(q0, q1) (4.61b)

Comparing this to equations (A.117), we can immediately recognize that the
discrete Lagrangian is a generating function for the discrete flow.

Hence, given a generic symplectic integrator, we can find the generating func-
tions Ld(x0, x1), S1(x0, p1) or S2(x1, p0) and build the correspondent Lagrangian or
Hamiltonian integrator, in form of the Euler symplectic method.

If a discrete Lagrangian Ld is already known, i.e. by discretizing the continuous ac-
tion with some method, we can find the Hamiltonian integrator symply by changing
coordinates as we did with equations (A.123).

Defining the right and left Hamiltonian H+(q0, p1) =
S1(q0, p1)

h
, H−(q1, p0) =

S2(q1, p0)

h
, equations (A.123) read:
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(ΩH)Symplectic integrator

(H+(q0, p1),ΩH)Symplectic Euler

(Ld(q0, q1),ΩLd
)Discrete E-L

(H−(q1, p0),ΩH)Symplectic Euler

S1

Figure 16: Relation between Lagrangian and Hamiltonian integrators

H+(q0, p1) =
p1 · (q1(q0, p1)− q0)− Ld(q0, q1(q0, p1))

h
(4.62)

H−(q1, p0) =
p0 · (q1 − q0(q1, p0))− Ld(q0(q1, p0), q1)

h
(4.63)

where q1 and q0 are inverted with the discrete Legendre transforms F±.
Of course, this is just a formal relation: in practice writing H+ or H− explicitly with
respect to the discrete Lagrangian is possible only when the Legendre tranforms can
be easily inverted.
The equations for H+ and H− are respectively (4.51) and (4.52).
This scheme is skecthed in fig. (16)

One can immediately show that for a Lagrangian Euler method (qα, α = 0, 1),
the right and left Hamiltonian are just the continuous Hamiltonian. Hence a La-
grangian Euler method is just an Hamiltonian Euler method, as we have already
checked in the last section.
For a Lagrangian midpoint rule, one obtains a different Hamiltonian H ′. This is
expected, since the midpoint rule is a second order integrator, hence its generating
function includes the first (H) and other terms in the taylor expansion in (4.48).
Fig. (17) illustrates this behaviour.

Example As a reference, let’s consider a simple one dimensional system with an
elastic potential. The Lagrangian and the Hamiltonian are:
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Euler(q0, q1) Hamiltonian Euler

Ld

Midpoint(q1/2) Hamiltonian Midpoint

H

H′

H

Figure 17: Relation between Lagrangian and Hamiltonian methods

L(x, ẋ) =
1

2
mẋ2 − 1

2
kx2 (4.64a)

H(x, p) =
p2

2m
+

1

2
kx2 (4.64b)

The discrete Lagrangian, for the midpoint rule, reads:

L
1/2
d (q0, q1) = hL

(
q1/2,

q1 − q0

2

)
= h

(
m(x1 − x0)2

2h2
− 1

8
k(x0 + x1)2

)
(4.65)

The discrete momentum p1 is:

p1 =
∂

∂q1

Ld(q0, q1) = h

(
m(x1 − x0)

h2
− 1

4
k(x0 + x1)

)
(4.66)

Applying eq. (4.62), we get the following expression for H+:

H+(x0, p1) = −2 (hkp1x0 + kmx2
0 + p2

1)

h2k − 4m
(4.67)

Note that H+ is just the continuous Hamiltonian H(x0, p1) when h is set to 0. This
agrees with our assumption that the generating function of the discrete flow is a
truncation of the Taylor serie of the generating function of the exact continuous
flow.

We can try to compute directly the first two terms of the generating function S1:

S1
0(x0, p1) + hS1

1(x0, p1) =
hkp1x0 + kmx2

0 + p2
1

2m
(4.68)

Hence, comparing the two expressions, the midpoint rule is a second order method,
as we expected:

H+(x0, p1) = S1
0(x0, p1) + hS1

1(x0, p1) +O(h2) (4.69)
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4.5 Discrete-Continuous correspondence

In the last section we proved that the discrete Lagrangian is a generating function
for the discrete flow. Recall that the exact discrete Lagrangian is defined by:

LEd (q0, q1, h) =

∫ h

0

L(q(t), q̇(t))dt (4.70)

Of course, this is just the action of the system computed in a time step [0, h], which
is, remembering when we defined the generating functions in continuous mechanics
(section A.4.5), the Jacobi solution of the Hamilton-Jacobi equation.
Thus, it is a generating function for the continuous flow, too, and we conclude that
the discrete Euler Lagrangian equations of an exact discrete Lagrangian give exactly
the continuous solution.

More specifically, if qk and q(t) are respectively a solution for LEd and for L, and
h is a fixed time step, there is an exact mapping between them, when the same
initial conditions are used:

qk = q(hk) (4.71)

pk = p(hk) (4.72)

The main goal of this section is to study how the discrete and continuous flow are
related when a discretization of the Lagrangian to some order is used. This can be
done easily both in the Lagrangian and Hamiltonian side.

Given a Lagrangian L and its exact discretization LEd , let’s say we have a discrete
Lagrangian of order r:

Ld(q0, q1) = LEd (q0, q1) +O(hr+1) (4.73)

Fixing two points q0, q1 and denoting by q(t) an exact solution which passes through
them, we can relate the exact and the discrete Legendre transforms by substituting
(4.70) into (4.73) and computing the discrete Legendre transform:

F−Ld(q0, q1) = − ∂

∂q0

Ld(q0, q1) =

= −
∫ h

0

(
∂L

∂q
− d

dt

∂L

∂q̇

)
∂q(t)

∂q0

dt− ∂L

∂q̇

∂q(t)

∂q0

∣∣∣∣h
0

+O(hr+1)

(4.74)

Since q(t) is a solution, the first term vanishes, while the second term is null at q(h):

F−Ld(q0, q1) =
∂L

∂q̇
(q(0), q̇(0)) +O(hr+1) (4.75)
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The same result holds for the right Legendre transform:

F+Ld(q0, q1) =
∂L

∂q̇
(q(h), q̇(h)) +O(hr+1) (4.76)

Remembering that the discrete Lagrangian and Hamiltonian flows are just a com-
position of the Legendre transforms, we can invert equations (4.75) and (4.76) to
find:

FHd
= FH +O(hr+1) (4.77)

In particular, for the exact discrete Lagrangian, the discrete and the continuous
flows are equal. This is just what we proved before.
Equation (4.77) tells us that the integrator is consistent with the original problem:
when the time step h approaches 0, the discrete flow gets closer to the exact solution.

In the Hamiltonian formulation, the result is immediate.
If the generating function of the discrete flow agrees up to the r term with respect
to the exact generating function:

S ′1(q0, p1) = hH+(q0, p1) =
r∑
i=1

hiS1
i (q0, p1)+O(hr+1) = S1(q0, p1)+O(hr+1) (4.78)

then, from the equations for S1, the Hamiltonian flow is of order r (equation 4.77).

4.5.1 Conservation of Energy

One of the main features of the symplectic integrators is their ability to bound the
energy error for indefinitely long time. This behaviour is due to the fact the discrete
flow is interpolated almost exactly by a slightly modified Hamiltonian system whose
energy is close to the original one.
This result was proved in the 90’s by Benettin and Giorgilli[1], Reich[22] and Hairer[10]
by backward error analysis.

Assume we have a symplectic integrator, consistent to order r with an Hamilto-
nian system (M,ΩM) with Hamiltonian H:

F ∗HΩM = ΩM (4.79a)

F ∗Hd
ΩM = ΩM (4.79b)

FHd
= FH +O(hr+1) (4.79c)
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Following the discussion of section A.4, the discrete flow FHd
must be locally

Hamiltonian.
It can be proved (see Hairer [11]) that the Hamiltonian H ′ relative to the discrete
flow, called the modified Hamiltonian, can be expressed as a serie with respect
to h, where the first term is the Hamiltonian H:

H ′ = H + hrHr+1 + hr+1Hr+2 + ... (4.80)

Unfortunately, at high orders in h, the serie (4.80) has usually divergent terms. In
practice, one has to truncate it to an order N :

H ′N = H + hrHr+1 + ...+ hN−1HN (4.81)

Then, under weak assumptions on the flow, we have the following important result
for the discrete flow zk of the integrator (see references at the beginning of this
section for the proof):

H ′N(zk+1) = H ′N(zk) +O(e
−k
2h ) (4.82a)

H(zk+1) = H(zk) +O(hr) (4.82b)

The first equation tells us that the Hamiltonian system with Hamiltonian H ′N
interpolates almost exactly the discrete flow, while the second is the statement that
the energy error of the discrete flow is bounded for all time steps.
Note that the last equation can be easily checked by studying the energy bounding
when h is varied.

4.6 Review

In section 4.2 and 4.3, we have seen that given a canonical Hamiltonian system or a
Lagrangian system, the construction of a symplectic integrator is easy: starting from
a Lagrangian, one can discretize the action to find an integrator which conserves
exactly a symplectic form ΩLd

on Q×Q.
Using the discrete Legendre transforms (eq. 4.32), the Hamiltonian flow is defined
in a natural way and it is easily proved to conserve the canonical symplectic form
on T ∗Q.
The same can be done in the Hamiltonian side by truncating the generating function
of the continuous flow in its Taylor expansion. The generating function thus found
generates a canonical symplectic transformation.

We have seen in section 4.4 that the two methods are equivalent: given a generating
function of an Hamiltonian integrator, the correspondent discrete Lagrangian is
found by a change of coordinate. Figure 18 summarizes these facts.
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L(ΩL) H(ΩH)

Ld(ΩLd
) S1(ΩH)

F

F±Ld

Figure 18: Continuous and discrete Lagrangian and hamiltonian systems and their
relations. ΩL and ΩLd

are the continuous and the discrete Lagrangian symplectic
forms. ΩH is the canonical symplectic form. F and FL are the continuous and the
discrete legendre transforms. The discrete Lagrangian Ld and the function S1 are
the generating functions of the Lagrangian and the hamiltonian integrators.

Finally, in the last section we proved that a symplectic integrator which con-
serves the same symplectic form of an Hamiltonian system and it is consistent with
its flow is interpolated by a Hamiltonian system with energy close to the original
one.
Note that this happens independently on the symplectic form considered, so it ap-
plies to canonical systems as well as non canonical ones.
Figure 19 summarizes this last statement.

Figure 19: The original Hamiltonian system and its discretization along with the
interpolating modified Hamiltonian system (H ′N))
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5 Variational phase-space integrators

5.1 Introduction

In chapter 4 we saw that given an Hamiltonian system (ΩM ,M) with Hamiltonian
H, the main requirement of a symplectic integrator is to conserve exactly the same
symplectic form and to be consistent with the continuous system. (eqs. 4.79)
In this case, the integrator is interpolated almost exactly by a modified Hamiltonian
system whose energy is close to the original one and bounded for exponentially long
times.

We also showed that for canonical systems, the construction of such integrators
is easy, at least for low order schemes, such as Euler symplectic or the mipoint rule.
In fact, given a regular Lagrangian, or a canonical system, the discrete Euler-
lagrange equations applied to a particular discretization give rise to a flow which
conserves exactly the same canonical form.
Hence, if the discretization is consistent with the original problem, and this is the
case for the midpoint rule or the Euler symplectics, as we proved in section 4.2.3,
the energy will be correctly bounded.

However, for general non canonical systems, integrators that conserve exactly
the non canonical symplectic structure are difficult to find and there are no general
techniques (see Hairer [11] and Karasözen [13]).
Usually, one should make use of the Darboux-Lie theorem and resctrict to canonical
coordinates, where a symplectic integrator can be easily applied. Canonical coordi-
nates, though, are often difficult to find.

5.1.1 Continuous theory

The phase-space variational integrators are based on the idea that every Hamilto-
nian system can be obtained from a variational principle (see section 3.2.1).
In particular, the equations of motion are equivalent to the Euler-lagrange equations
of the phase-space Lagrangian:

L = Θ(z) · ż −H(z) (5.1)

where Θ is the Hamiltonian one-form (eq. 3.30) and H is the Hamiltonian of the
system.
The fact that this Lagrangian is necessarily singular means that in the continuous
limit a regular flow (z0, ż0)→ (z(t), ż(t)) does not exist.
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In practice, the flow of the system is F : z0 → z(t) which arises from the non
canonical hamiltonian system or from the first order Euler-Lagrange equations of
the phase-space Lagrangian.

Alternatively, we can study the system (see section 3.2.2) as a constrained canon-
ical system in the extended phase-space T ∗M . The constraints which arises from
the degeneracy of the Legendre transform are:

φ(z, p) = Θ(z)− p = 0 (5.2a)

p ≡ ∂L
∂ż

(5.2b)

5.1.2 Discrete theory

As we will see shortly, variational integrators applied to a phase-space Lagrangian
are in general regular.The fact that these integrators are obtained from the discrete
Euler-lagrange equations guarantees that the discrete flow conserves exactly the
Lagrangian symplectic form ΩLd on M×M or equivalently the canonical symplectic
form on T ∗M .

This is very different from the continuous limit: in that case, the phase-space
Lagrangian is singular and the flow conserves the (non canonical) symplectic form
on the smaller space M . Therefore, the main problem is how the discrete flow can
be related to the continuous non canonical Hamiltonian flow in M , since the main
requirement of a symplectic integrator is to conserve exactly the same symplectic
form of the original continuous problem.

Since the integrator is defined in M ×M , the degrees of freedom are twice the
ones of the continuous case, so that particular attention must be paid on how the
initial conditions are chosen.
Also, since the discrete flow conserves the canonical symplectic form on T ∗M , one
can wonder if the integrator behaves as a discrete version of the Dirac-Bergmann
theory and in particular if it conserves the Dirac constraints (5.2).
These aspects will be analyzed in the following sections.
Figure 20 summarizes the spaces we will have to deal with.
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M

TM (Phase-space L, singular) T ∗M (Constrained) T ∗Q (Darboux-Lie)

M ×M (discretization Ld, regular) T ∗M(Constrained?)

Figure 20: Hamiltonian, Lagrangian and phase-space Lagrangian systems and their
relation

Summary Numerical integrations of non canonical systems using this variational
approach were performed in a limited number of cases in the past and the theoretical
aspects are still mainly unexplored.
Rowley and Marsden [23] studied a point vortex, while Qin and Guan [20] applied
the variational integrator to the non canonical guiding center theory. The next
chapter (chapter 6) is based mainly on the latter work.

In the following sections, we will study some general properties of the variational
integrators applied to a phase-space Lagrangian.
We will show that integrators of Hamiltonian systems with a constant symplectic
form conserve the Dirac constraints (eq. 5.2), thus their flow can be projected to
the original submanifold M .
Also, for a general Hamiltonian system, the flow of the variational integrator splits
in two distinct parts which are interpolated by two different modified canonical sys-
tem in T ∗M .

5.2 General Properties

5.2.1 Midpoint Rule

We limited our discussion to the midpoint discretization, as it is already a diffi-
cult task. Higher order methods, such as symplectic Runge-Kutta discretizations,
constitute a good subject for future investigations.
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Remember from section 4.2.3 that the midpoint is defined as:

Ld(zk, zk+1) = hL
(
z̃k,

∆zk
h

)
= Θ(z̃k) ·∆zk − hH(z̃k)

(5.3)

where z̃ and ∆z are:

z̃k =
zk + zk+1

2
(5.4a)

∆zk = zk+1 − zk (5.4b)

Regularity For a regular Lagrangian system the Legendre tranform must be in-
vertible:

det

(
∂2L
∂ż∂ż

)
6= 0 (5.5)

The condition of regularity for the discretized midpoint rule is slightly different:

det

(
∂2Ld

∂zk∂zk+1

)
6= 0 (5.6)

For a phase-space Lagrangian, this matrix is a sum of the symplectic matrix and
other terms:

∂2Ld
∂zk∂zk+1

=
Ω(z̃k)

2
+M(zk, zk+1, h) (5.7)

Since the symplectic matrix Ω is invertible by definition, the midpoint rule is in
general regular.

Correspondent Hamiltonian method In section 4.4 we proved these two state-
ments:
(i) Every regular symplectic integrator can be brought in Hamiltonian Euler form
by using the generating function of its flow.
(ii) The Euler symplectic and the midpoint rule are equivalent to their correspondent
Hamiltonian method if and only if the continuous Legendre transform is invertible.

For the latter argument, we conclude that the midpoint rule, applied to a phase-space
Lagrangian, can’t be treated as an Hamiltonian midpoint rule, as the regular La-
grangian case, rather one should find the correspondent Hamiltonian Euler method
with equations (4.62).
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5.2.2 Local correspondence between discrete and continuous flows

In chapter 4 we studied the order of the discrete Lagrangian and its Legendre trans-
form by expanding the exact discrete Lagrangian in series of h and by comparing
each term with a particular choice of the discrete Lagrangian (see eqs 4.44 and 4.45).
If we try to apply the same arguments to a phase-space Lagrangian, we immedi-
ately notice that an exact discrete Lagrangian is not well defined, at least in the
whole space M ×M , since a continuous solution required in the definition of LEd is
completely determined by a single point, hence given two generic points z0 and z1,
a solution curve passing through them doesn’t exist in general.

One possible solution is to restrict our attention only to pairs of points consistent
with a solution, so that a continuous solution curve which passes through them does
exist. Since our purpose is to study an integrator whose flow is, hopefully, close to
the continuous flow, we extend the definition of the exact discrete Lagrangian to
points near a solution, in this way:

LEd (z0, z̄1, h) =

∫ h

0

L(z̄(t), ˙̄z(t))dt (5.8)

where z̃1 is a point close to a consistent point z1 and z̄(t) is a curve close to a solution
z(t) passing through z0 and z1:

z̄1 = z1 +O(hN) (5.9a)

z̄(t) = z(t) +O(tN) (5.9b)

where the notation o(hN) indicates that the displacement from the exact solution is
small with respect with the time scale.
This situation is sketched in fig.21. Note that when the two points are consistent,
the curve used is just the continuous solution.

With reference to equations (4.44) and (4.45), we can notice that the form of
the Taylor expansion is independent on the choice of the curve, so that Lαd is still
consistent with the exact discrete Lagrangian up to the first order generally and to
second order for the midpoint rule:

Lαd (z0, z1) = LEd (z0, z1) + o(hr) (5.10)

for every points (z0, z1) ∈M ×M .
The next question is how the discrete Legendre transforms are related to the con-
tinuous one.
Rewriting eq. (4.74) one can easily show that the term inside the integral gives rise
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Figure 21: Curves used in the defintion of the exact discrete Lagrangian

to a term o(hN), so that:

F−Lαd (z0, z1) = − ∂

∂z0

(
LEd (z0, z1) +O(hr)

)
=

= −
∫ h

0

(
∂L
∂z
− d

dt

∂L
∂ż

)
∂z(t)

∂z0

dt− ∂L
∂ż

∂z(t)

∂z0

∣∣∣∣h
0

+O(hN) +O(hr) =

=
∂L
∂ż

(z0) +O(hN) +O(hr)

(5.11)
This leads to the following results:

• If two consistent points are chosen, either by imposing the continuous con-
straint φ(z0, p0) = 0 or by choosing two points (z0, z1) consistent with the
continuous solution, the exact discrete Lagrangian, which is univocally defined
in this case, gives rise to the continuous flow. In particular, the constraints
φ(zk, pk) are conserved for every step.

• If two consistent points are chosen, an approximation of the exact discrete La-
grangian, such as Lαd , gives rise to a flow O(hr) with respect to the continuous
flow.
If the initial points are selected with an O(hN) integrator, the error is domi-
nated by the smaller order.

• If two generic points are chosen, the continuous and the discrete Legendre
transforms are not related.
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This means that if the initialization is (almost) consistent, the flow of the inte-
grator is, at least locally, close to the continuous one.
It is worth to stress that, at this point, the behaviour of the relevant quantities such
as energy error are not guaranteed to behave well globally in time.

These facts have an important consequence:

• When the time step is set to zero, the integrator is not, in general, the iden-
tity transformation.
This can be trivially seen in the Lagrangian form just by setting as initial
condition z0 6= z1.
In the Hamiltonian form, the integrator is the identity only when the con-
straints are imposed (φ = 0).

5.2.3 Flow Splitting

Just as we did in chapter 4, we can try to expand the Hamiltonian flow in a serie of
powers of h.
From the last section, our integrator is not in general a near the identity map, unless
the constraints are imposed.
Therefore, we can write the Hamiltonian flow as:

z1 = z0 + gz(φ(z0, p0)) +O(h) (5.12a)

p1 = p0 + gp(φ(z0, p0)) +O(h) (5.12b)

where the condition on the constraints implies g(0) = 0.
This behaviour is quite problematic since an integrator should be consistent with
an Hamiltonian system, and hence it should be a near the identity map, in order to
be interpolated by a modified Hamiltonian system.
One possible solution arises if the constraints are conserved: in this case the function
g(z, p) is always 0 for every time step and it is possible to study the equations of
motion in the constrained submanifold (i.e. M).
As we will see shortly, this happens only in few cases, namely when the symplectic
form is constant.

Let’s start by writing the discrete Euler-Lagrange equations in position-momentum
form for the midpoint rule, as we did in eqs.(4.57) with the discrete Legendre trans-
forms:
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p0 = −h
2

∂L
∂z

(
z̃0,

∆z0

h

)
+
∂L
∂ż

(
z̃0,

∆z0

h

)
(5.13a)

p1 =
h

2

∂L
∂z

(
z̃0,

∆z0

h

)
+
∂L
∂ż

(
z̃0,

∆z0

h

)
(5.13b)

Bringing the time step to 0 and writing explicitly all terms of the phase-space
Lagrangian (5.1), equation (5.13) reads:

p0 = Θ(z̃0)−ΘT
(1)(z̃0)

∆z0

2
(5.14a)

p1 = Θ(z̃0) + ΘT
(1)(z̃0)

∆z0

2
(5.14b)

where Θ is the Hamiltonian one-form (eq. 5.1) and Θ(k) is its k-derivative. Since z0

and p0 are variables and can be chosen arbitrarily, (z1, p1) is in general different from
(z0, p0): it is straightforward to show that eq. (5.14) is the identity transformation
only if the constraints (eq. 5.2) at time step 0 are imposed:

p0 = Θ(z0) (5.15)

There is, however, a different phenomena which we call flow splitting, that
occurs for every system discretized with the midpoint rule, regardless of which sym-
plectic form is chosen.

Writing equations (5.13) for two consecutive time steps, and substituting the
explicit expression for a general phase-space Lagrangian, we find:

p1 = Θ(z̃1) +
h

2
∇H(z̃1)−ΘT

(1)(z̃1)
∆z1

2
(5.16a)

= Θ(z̃0)− h

2
∇H(z̃0) + ΘT

(1)(z̃0)
∆z0

2
(5.16b)

Performing a Taylor expansion around the point z1, we find the following expres-
sions:
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p1 = Θ1 +
h

2
∇H1 +

∞∑
k=1

[
Θ1(k)

k!
−

ΘT
1(k)

(k − 1)!
+
h∇H1(k)

2k!

] k-times︷ ︸︸ ︷(
∆z1

2
, . . . ,

∆z1

2

)
(5.17a)

= Θ1 −
h

2
∇H1 +

∞∑
k=1

[
Θ1(k)

k!
−

ΘT
1(k)

(k − 1)!
+

(−1)kh∇H1(k)

2k!

](
−∆z0

2
, . . . ,

−∆z0

2

)
(5.17b)

At first sight, this may seem complicated. However, we can notice that the two
expressions are sum of terms with equal or opposite sign, so that we can write:

p1 −Θ1 = f(z1,∆z1, h) = f(z1,−∆z0,−h) (5.18)

Hence, at h = 0, the only way to satisfy the latter equation is to make the other
arguments equal:

∆z0 = −∆z1 (5.19a)

As a consequence, we get:

z2 − z0 = ∆z1 + ∆z0 = 0 (5.20a)

z̃0 = z̃1 (5.20b)

p2 − p0 = ∆p0 + ∆p1 = ΘT
(1)(z̃1)∆z1 + ΘT

(1)(z̃0)∆z0 = 0 (5.20c)

Hence, the Hamiltonian flow is splitted in two parts, both of which have a con-
tinuous limit regardless of which initial points are chosen:

z2 = z0 +O(h) (5.21a)

p2 = p0 +O(h) (5.21b)

This may indicate that in a general case, in particular when the initial constraints
are not conserved, one should study the two flows separately and find an interpo-
lating Hamiltonian. A basic simulation showing the splitting at h = 0 is reported
in figure 22.

5.3 Constant symplectic form

Before discussing the variational integrator for the guiding center theory, we start by
studying a simpler case, that of an Hamiltonian system with a constant symplectic
form, or equivalently, with a linear one-form.
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Figure 22: Flow splitting for a general initialization at h=0

The reason of this choice is not only due to simplicity: as we will see, in this case
the symplectic integrator is guaranteed to behave correctly in every situation.
Furthermore, we can choose examples in which the discrete flow is explicitly invert-
ible and this will simplify the whole analysis.

Returning to the expansion made in eqs (5.17), we can notice that the condition
on the constancy of the symplectic form implies that only the first two terms of Θ(z)
are not null, so that we can write:

p1 −Θ1 =
h

2
∇H(z̃1) + Ω

(
∆z1

2

)
(5.22a)

p1 −Θ1 = −h
2
∇H(z̃0)− Ω

(
∆z0

2

)
(5.22b)

Rewriting eq.(5.22a) for the timestep 0, we get:

p0 −Θ0 =
h

2
∇H(z̃0) + Ω

(
∆z0

2

)
= −(p1 −Θ1) (5.23)

Hence, the quantity φk = pk − Θk is inverted at each step and it is conserved by
both parts of the splitted flow:
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pk+1 −Θk+1 = −(pk −Θk) = pk−1 −Θk−1 (5.24a)

φk+1 = φk−1 (5.24b)

We will see that this invariance of φ is caused by a translational Noether symmetry
along the z axes.
It was proved by Jalnapurkar [12] that the projection of the flow of a variational
integrator induced by a conserved Noether current conserves the projection of the
canonical symplectic form and can be written as a solution of a set of reduced
discrete Euler-Lagrange equations.
If we initialize the integrator imposing the constraints (φ(z0, p0) = 0) then φk = 0
for every step. In this case, the integrator is not splitted and we can study both the
whole flow or each part separately.
Inverting the discrete Legendre transforms (eqs.5.22) for φ = 0, we get:

∆z0 = −2Ω−1

(
∞∑
k=0

h

2

∇H0(k)

k!
(∆z0/2, . . . ,∆z0/2)

)
(5.25a)

= −hΩ−1 (∇H0) + o(h2) (5.25b)

Hence, the projection of the integrator is symplectic and it is consistent with the
original continuous problem:

ż = −Ω−1∇H (5.26)

When a generic initialization is performed, the flow is splitted and it is possible to
define a good projection for each part.
In this case, however, additional terms dependent on the value of φ arise for each
term in the time step expansion of the flow.
It is possible that these terms have a small influence on the interpolating Hamilto-
nian, at least when the value of φ(z, p) is small.

5.3.1 Canonical case

If we restrict to the canonical case, we find an additional property: the projection
of a midpoint phase-space integrator, built by imposing the constraints as initial-
ization, is just a midpoint rule applied to the standard Lagrangian.

Let’s start by rewriting the phase-space Lagrangian of a canonical system with La-
grangian L and Hamiltonian H:

L(z, ż) = L(x, p, ẋ, ṗ) = ẋp−H(x, p)

= ẋp− ẋ(x, p)p+ L(x, ẋ(x, p))
(5.27)
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In this case the Hamiltonian one-form is just:

Θ(x, p) =

(
p
0

)
(5.28)

Following eq.(5.2), the continuous constraints are:

φ(x, p, px, pp) =

(
px

pp

)
−Θ(x, p) =

(
px − p
pp

)
(5.29a)

where pz = (px, pp) are the momenta conjugated to x and p:

(
px

pp

)
=

 ∂L
∂ẋ
∂L
∂ṗ

 (5.30)

Discretization Since we are dealing with only the midpoint discretization, let’s
simplify the notation by saying that given a function f , [f ]Dk is its discretization
with the midpoint rule, i.e.:

[f(x, ẋ)]Dk = f

(
x̃k,

∆xk
h

)
= f

(
xk + xk+1

2
,
xk+1 − xk

h

)
(5.31)

As sketched in figure 23 and 24, the flows of the standard and the phase-space in-
tegrators are then found by matching the discrete Legendre transforms (see section
4.2.2):

pz0 =

[
−h

2

∂L
∂z

+
∂L
∂ż

]0

D

pz1 =

[
h

2

∂L
∂z

+
∂L
∂ż

]0

D

(5.32)

for the phase-space integrator, and

p0 =

[
−h

2

∂L

∂x
+
∂L

∂ẋ

]0

D

p1 =

[
h

2

∂L

∂x
+
∂L

∂ẋ

]0

D

(5.33)

for the standard integrator. Also, since L is a regular Lagrangian, the midpoint rule
applied to L is regulated by the equations (4.58) and (4.59). In particular:
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[p]D =

[
∂L

∂ẋ

]
D

(5.34a)

[ẋ]D =

[
∂H

∂p

]
D

= [ẋ(x, p)]D (5.34b)

Figure 23: Legendre transforms and flows of the standard integrator

Figure 24: Legendre transforms and flows of the phase-space integrator

Now, let’s fix an initial point (x0, p0) and let (x1, p1) be the following step found
with the standard midpoint rule.
Computing the momenta px0 and pp0 with the left Legendre transform of the phase-
space integrator (eq. 5.32) and using eqs. (5.27) and (5.34), we find:
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px0 =

[
−h

2

∂L
∂x

+
∂L
∂ẋ

]
D

(5.35a)

=

[
p− h

2

∂L

∂x
− h

2

∂ẋ

∂x

(
∂L

∂ẋ
− p
)]

D

(5.35b)

=

[
∂L

∂ẋ
− h

2

∂L

∂x

]
D

= p0 (5.35c)

pp0 =

[
−h

2

∂L
∂p

]
D

(5.36a)

=

[
−h

2

(
ẋ− ẋ(x, p) +

∂ẋ

∂p

(
∂L

∂ẋ
− p
))]

D

= 0 (5.36b)

The constraints (5.29) are therefore respected.
The contrary is obviously true: if the initial points of the phase-space integrator are
chosen by imposing the constraints φ = 0, the points (x1, p1) are just the ones found
by evolving the standard integrator.
Studying the right Legendre transform, we find the identical result, so that the
projection of the phase-space integrator is just the standard one.

5.3.2 Example: One-dimensional spring

Let’s consider a one dimensional problem with an elastic potential. The standard
and the phase-space Lagrangians are:

L(x, ẋ) =
1

2
mẋ2 − 1

2
kx2 (5.37a)

L(x, p, ẋ, ṗ) = ẋp− p2

2m
− 1

2
kx2 (5.37b)

The discretizion of the phase-space Lagrangian with the midpoint rule gives:

Ld(x0, p0, x1, p1) =
4m(p0 + p1)(x1 − x0)− h (km(x0 + x1)2 + (p0 + p1)2)

8m
(5.38)

Hamitonian Flow The discrete Euler-Lagrange equations can be solved explic-
itly. The Hamiltonian flow, written in powers of h is:
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x1 = −2pp0 + x0 +
px0
m
h+ o(h2) (5.39a)

p1 = −p0 + 2px0 + (kpp0 − kx0)h+ o(h2) (5.39b)

px1 = px0 + (kpp0 − kx0)h+ o(h2) (5.39c)

pp1 = −pp0 (5.39d)

If we impose the constraints at the step 0, we immediately recognize that the
integrator has a continuous limit, it is consistent with the continuous Hamilton
equations and the constraints are conserved (pp1 = 0, px1 = p1):

x1 = x0 +
p0

m
h+ o(h2) (5.40a)

p1 = p0 − kx0h+ o(h2) (5.40b)

px1 = p0 − kx0h+ o(h2) (5.40c)

pp1 = 0 (5.40d)

Splitted Flow Lagrangian One interesting aspect arises if we try to write the
Lagrangian of a single part of the splitted flow, which is the composition of two
consecutive steps.
One can easily show that this is just the sum of two consecutive discrete Lagrangians
with the middle point (z1) explicited with respect to the other two points:

Lsd(z0, z2) = Ld(z0, z1(z0, z2)) + Ld(z1(z0, z2), z2) (5.41)

For this problem we find the following Lagrangian:

Ld(x0, p0, x2, p2) = − 1

16hkm

[
h2k

(
(p0 − p2)2 + km(x0 − x2)2

)
−

− 4m
(
(p0 − p2)2 + km(x0 − x2)2

)
+ 8hkm(p0 − p2)(x0 + x2)

]
(5.42)

One can again show, by computing the Legendre transforms, that the constraints φ
are conserved.
Looking at the Lagrangian we have just found, we can see that it is invariant under
translations along the p axis in M ×M . This is the reason of the conservation of pp.
The conservation of px − p follows from the fact that translations along the x axis
leave the Lagrangian invariant up to terms proportional to (p2 − p0) which cancel
out in the discrete action sum (eq. 4.6).
Equivalently, the discrete Euler-lagrange equations for these terms are always null.

More generally, it can be easily proved that two Lagrangians that differ by a total
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time derivative of linear or quadratic forms give rise to discrete Lagrangians with
the same discrete Euler lagrange equations:

L̃(q, q̇) = L(q, q̇) +
d

dt
f(q)

DDELL̃d(q0, q1) = DDELLd(q0, q1)
(5.43)

where f(q) is a linear or a quadratic form:

f(q) =
n∑
i=1

aiqi +
n∑

i,j=1

bijqiqj (5.44)

Of course, this implies that equivalent continuous Lagrangians can give rise to dif-
ferent discrete integrators.

Numerical Results For our test, we chose k = m = 1 and h = 0.1 which is about
h ' T

65
, where T is the period of the orbit.

A first simulation was performed imposing the constraints as initial conditions. The
results as sketched in fig. 25.
The error on the energy was checked by comparing the continuous Hamiltonian at
a step to its initial value at step 0:

dEk
E0

=
H(zk)−H(z0)

H(z0)
(5.45)

The small oscillations seen in the energy error and in the conservation of con-
straints are due to numerical errors, so they’re all exactly conserved.
Of course, while the conservation of constraints are just what we expected, the fact
that the energy is exactly conserved is just a fortunate coincidence of this problem
and won’t happen in general.

A different simulation is sketched in fig. 26. This time, we chose the points z0

and z1 to be consistent with the continuous solution. We call this a “Lagrangian”
initialization.
In practice, z1 was computed using a different, non symplectic integrator, with a
small time step so that z1 is almost exactly consistent with the solution.
We can notice that the energy is not exactly conserved as before, but the long time
behaviour is still bounded.
As we expected from the theory, the integrator is splitted in two parts, each of which
conserves the quantity φ.
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(a) (b)

(c) (d)

Figure 25: 1D spring integrator with constrained initialization. (a) is the energy
error, (b) is the evolution of x. The conservation of constraints are plotted in (c)
and (d)
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(a) (b)

(c) (d)

Figure 26: 1D spring integrator with Lagrangian initialization.
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6 Guiding Center Integrators: Numerical Results

6.1 Introduction

In the last chapter, we studied the behaviour of a variational symplectic integrator
when applied to a phase-space Lagrangian.
In particular, we proved that its flow is in general splitted in two parts each of which
admits a continuous limit.
Particular attention must be paid to the conservation of the continuous constraints.
In this regard, we saw that for a Hamiltonian system with a constant symplectic
form, such as canonical systems, the constraints are conserved and a good projection
can be defined, such that it is symplectic and consistent with the original continuous
problem.
The same simple arguments do not hold for a non constant symplectic form: the
Taylor expansion made in eqs.(5.17) doesn’t stop at the first terms and additional
terms with the same sign arise. Hence, equation (5.22) does not hold and the con-
straints φk = Θk − pk are not conserved and it is not possible to define a trivial
projection to the submanifold M .
However, we will see that the integrator does still possess good long-term conserva-
tion properties. The reason of this behaviour is still unknown.
It is possible that non trivial quantities dependent on the time step h are conserved
by each part of the splitted flow.

In this chapter, we will study the variational symplectic integrator applied to
the non canonical guiding center theory.
We will follow the guidelines given by Qin and coworkers in a series of paper ([20]
and [21]), where different versions of the integrator were studied, in particular an
explicit linearization of the flow.
We want to anticipate here that all the integrators are very sensible to the initial
conditions, and it is not clear at the moment which is the best choice of initializa-
tion, given a particular choice of the algorithm.
The complete understanding of the theory underlying these types of integrators for
non constant symplectic forms is of great importance, since it can lead to better
choice of initial conditions and possibly to new versions of the algorithm.

Let’s start by recalling some basic results of the non canonical guiding center
theory of chapter 3.
The guiding center Hamiltonian one-form and symplectic form are given by:
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Θ =

(
A†

0

)

Ω =


0 −B†z B†y b̂x
B†z 0 −B†x b̂y
−B†y B†x 0 b̂z
−b̂x −b̂y −b̂z 0


where A† and B† are respectively a modified vector potential and a modified

magnetic field:

A†(X, t) = A(X, t) + ub̂(X, t) (6.1a)

B† = ∇×A† = B + u∇× b̂ (6.1b)

The resulting phase-space Lagrangian is given by:

L(x, u, ẋ, u̇) = Θ(x, u) · (ẋ, u̇)−H(x, u)

= A† · ẋ−H(x, u)
(6.2)

where H(x, u) is the non canonical Hamiltonian:

H(x, u) =
u2

2
+ µB (6.3)

The equations of motion read:(
ẋ
u̇

)
= −Ω(x, u)−1∇H(x, u) (6.4)

or equivalently:

Ẋ =
uB† − b̂× (E− µ∇B)

b̂ ·B†
(6.5a)

u̇ =
B† · (E− µ∇B)

b̂ ·B†
(6.5b)

With equations (6.5) we can easily build a standard, i.e. non symplectic, inte-
grator, such as Euler or Runge-Kutta.
We can use these integrators as a direct comparison with the symplectic ones. Also,
since they share the same degrees of freedom of the continuous system, they can be
used to build an initialization starting from a point z0.
Finally, they are useful as a first guess for the solution of the implicit equations of
the variational integrator.
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6.2 A few reference magnetic field configurations

In this thesis, the variational integrators were tested with three different magnetic
field configurations: a uniform magnetic field, a tokamak configuration and a force
free magnetic field.

6.2.1 Reference Case A: Two Dimensional Uniform Magnetic Field

As a first example, we can choose a magnetic field directed along the z axis and
dependent weakly on the other two variables:

A(x) = −0.05

3
y3êx +

(
0.05

12
x3 + x

)
êy (6.6a)

B(x) = 1 + 0.05

(
x2

4
+ y2

)
êz (6.6b)

(6.6c)

Since there is no dependence on the z axis, the third component of the modified
vector field (see eq.6.2) is a conserved quantity:

∂L
∂ż

= A†z = Az + ub̂z = u = const. (6.7)

The variable z appears in the Lagrangian only with a term kż and it can be
safely dropped and we get the following reduced Lagrangian:

L(x, y, ẋ, ẏ) =

(
Ax
Ay

)
·
(
ẋ
ẏ

)
− µB(x, y) (6.8)

Hence, the magnitude of the magnetic field along an orbit is conserved and the
dynamics in the x-y plane is a closed orbit with equation:

x2

4
+ y2 = const (6.9)

From the theory presented in chapter 4, we expect that a symplectic integrator
should conserve exactly the quantities associated with Noether symmetries, in this
case the velocity u, while the magnitude of the magnetic field, which represents the
energy, should possess good long time bounding properties.

Parameters We chose the time step such that the integrator completes one orbit
of period T in about 50 steps: h ' T

50
, which turns out to be h ' 1× 106.

The initial position of the particle is chosen to be x0 = (0.05, 0, 0) with an initial
velocity u0 = 3.9× 10−4.
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6.2.2 Reference Case B: Tokamak magnetic field

As a more complicated example, we can choose a typical magnetic field configuration
used in tokamak fusion reactor. Denoting by z the toroidal coordinate and by x, y
the coordinates of the poloidal plane, the vector potential and the magnetic field
are:

A = −B0R0ln

(
R0 + x

R0

)
ŷ +

B0

2q(R0 + x)

[
2R0(R0 + x)ln

(
R0 + x

R0

)
− 2R0x− 2x2 − y2

]
ẑ

(6.10a)

B = − B0y

q(R0 + x)
x̂ +

B0

q

2R0x+ 2x2 − y2

2(R0 + x)2
ŷ− B0R0

R0 + x
ẑ (6.10b)

In this case, the magnetic field is toroidally symmetric and its field lines are
almost circular concentric in the poloidal plane, as illustrated in fig. 27.
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Figure 27: Magnetic field lines for the tokamak B configuration (section 6.2.2)

As before, the fact that the fields are toroidally symmetric implies that the rel-
ative conjugate momentum, which is the z-th component of the modified vector
potential, is a conserved quantity:

A†z(x, u) = Az(x) + ub̂(x) (6.11)

The dynamics in the poloidal plane is a closed orbit which can be elliptic or a banana
orbit if the energy of the particle is sufficiently low so that the parallel gradient drift
is enough to bounce back the particle (see section 2.4).

79



Parameters The magnetic field and the minor radius B0, R0 are chosen to be
normalized to unity with a safety factor q = 2 and a magnetic moment of µ =
2.25× 10−6.
Using the same initial conditions of the configuration A, the particle performs ba-
nana orbits in the poloidal plane.
The time step used is h = 800 which corresponds to h ' T

50
. Summing up:

h 800
R0 1
B0 1
q 2
µ 2.25× 10−6

x0 (0.05, 0, 0)
u0 3.9× 10−4

6.2.3 Reference Case C: force-free field

The equilibrium state of a plasma is described by the equilibrium of the magnetic
and pressure forces:

J×B = ∇p (6.12)

Also, the condition of null divergence of the magnetic field and the Ampere’s law
read:

0 = ∇ ·B (6.13a)

J = ∇×B (6.13b)

When the kinetic pressure of a plasma is negligible, its magnetic field assumes the
following form at equilibrium:

0 = J×B = (∇×B)×B (6.14)

hence, the curl of the magnetic field must be parallel to the field:

∇×B = aB (6.15)

where a is a parameter that can depend in principle on the space. These types of
magnetic field are called force-free and they are first-order approximations of the
ones found in astrophysics or in the RFP fusion reactor, where the condition on the
kinetc pressure is almost satisfied.
In our case we assume the parameter a to be constant. The magnetic field in this
case is said to be linear force-free.

80



The solution of equation (6.15) was first given by Namikawa [26] and Chan-
drasekhar [5].
Using the fact that the magnetic field has null divergence, we can express eq.(6.14)
as:

∇2B + a2B = 0 (6.16)

which is the vector Helmholtz equation. It was proved by Chandrasekhar and
Namikawa that given a solution ψ of the scalar Helmholtz equation:

∇2ψ + a2ψ = 0 (6.17)

then a solution in cylindrical coordinates (r, θ, z) of the force-free equation (6.15)
can be found with:

B =
1

µ
∇× (∇× ẑψ) +∇× ẑψ (6.18)

where µ is the magnetic moment. The corresponding vector field is then:

A =
1

a
∇× ẑψ + ẑψ (6.19)

Since we are assuming periodicity along the toroidal and polodial axes, we can
express a generic solution in terms of the poloidal and toroidal numbers and it turns
out that each term is just the Bessel function:

ψ(r, θ, z) =
∑
m,n

Jm (ran) eimθ+inz (6.20a)

an =
√
a2 − n2 (6.20b)

Reference Case C1: Axial Symmetric field Using equation (6.18) we can find
the first term (n = 0,m = 0) in expansion (6.20):

B00(r, θ, z) = B0J1(ar)êθ +B0J0(ar)êz (6.21)

the vector potential is:

A00(r, θ, z) =
B0

a
J1(ar)êθ +

B0

a
J0(ar)êz (6.22)

As illustrated in figure 28, the toroidal magnetic field is inverted at a specific
radius point, that is ar ' 2.4. This is a typical behaviour found in the RFP
experiments.

81



Similarly to the tokamak configuration, when the energy of the particle is sufficiently
low the dynamics in the poloidal plane is a closed banana orbit.
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Figure 28: Field lines in the poloidal plane (a) and in the (z, r) plane (b) of the
magnetic field configuration C1

Reference Case C2: Asymmetric field We tried a slightly more sophisticated
configuration by adding small perturbations with numbers (n = 1,m = 1) and
(n = 1,m = 2):

B(r, θ, z) = B00(r, θ, z) + αB11(r, θ, z) + βB12(r, θ, z) (6.23)

where B11 and B12 are found to be:

B11(r, θ, z) =

[
a1

a
J0(a1r) +

a− 1

ar
J1(a1r)sin(θ + z)

]
êr

+

[
−a11J0(a1r) +

a− 1

ar
J1(a1r)cos(θ + z)

]
êθ

+

[
a2 − 1

a
J1(a1r)cos(θ + z)

]
êz

(6.24)
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B12(r, θ, z) =

[
2a2

a
J0(a2r) +

a− 2

ar
J1(a2r)sin(θ + 2z)

]
êr

+

[
−a12J0(a2r) +

a− 2

ar
J1(a2r)

]
cos(θ + 2z)êθ

+
[a2

a
J1(a2r)cos(θ + 2z)

]
êz

(6.25)

Note that the condition on the coefficients (6.20b) requires that the constant a
must be greater than 2 for the perturbations to exist.
The effect of the perturbations on the field lines is plotted in fig. (29).
Note that we don’t expect anymore closed orbits in the poloidal plane since the
magnetic field is not perfectly symmetric along the toroidal axis.
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Figure 29: Field lines in the poloidal plane (a) and in the (z, r) plane (b) of the
magnetic field configuration C2

Parameters We chose the parameter a to be a = 3, which leads to a reasonable
RFP configuration. The radius r is assumed to be normalized to the minor radius
of the reactor.
The velocity of the particle is selected to produce elliptic orbits for the symmetric
version and banana orbits for the perturbed version.
The time step h corresponds to h ' T

50
, where T is the period of the orbit.
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h (C1) 240
h (C2) 600
a 3
x0 (0.05, 0, 0)
u0 (C1) 3.9× 10−4

u0 (C2) 3.9× 10−5

α 0.01
β 0.01

6.3 Initialization

The choice of the initial points plays an important role, since different initializations,
as we already saw in the last chapter, can lead to very different flows.
In the following, we will use two different initializations.

Denoting by z = (x, u) the coordinates of the phase-space, recall from section
4.2.2 that for a variational integrator we can study two different flows: the La-
grangian flow (z0, z1)→ (z1, z2) and the hamiltonian flow (z0,p0)→ (z1,p1) .
Hence, this two flows induce two natural initializations: we call them Hamiltonian
and Lagrangian initialization:

• Hamiltonian Initialization: given an initial point z0, p0 is selected by im-
posing the constraints:

φ0 = p0 −
∂L
∂ż

= p0 −Θ0 = p0 −
(
A†(x0)

0

)
≡ 0 (6.26)

• Lagrangian Initialization: given an initial point z0, z1 is selected by evolv-
ing the continuous system to z1.
In practice, an additional integrator, such as RK4, must be used. Of course,
the point z1 can be find with arbitrary precision, for example by choosing
small timesteps of the auxiliary integrator.

We recall that the initial points z1 and p0 are related by the left Legendre transform
(see paragraph. 4.2.2).
It makes sense, for the reasons we saw in the last chapter, that the Hamiltonian ini-
tialization might be the most correct one, since it guarantees that the flow is close
to the continuous one for at least one time step and for the fact that it produces the
correct result for the case of constant symplectic forms.
However, we will see that this is not always the case.
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6.4 Numerical Schemes and Results

In the following, the continuous phase-space Lagrangian (eq. 6.2) is discretized with
different methods: the midpoint rule, which produces generally the best results, a
slightly modified version along with an explicit linearization, both suggested by Qin
[20] and a midpoint discretization applied to a reduced Lagrangian.
Finally, new explicit linearizations are proposed and we will show some interesting
benefits over the old algorithms.

For now on, we will refer to zi as the coordinates of the phase-space

z = (x, u) (6.27)

and to z̃ and ∆z as the midpoint discretization of z and ż:

z̃k =
zk + zk+1

2
∆zk = zk+1 − zk

(6.28)

Also, by fi,j we denote the derivative of the i-th component of the function f
with respect to the j-th component:

fi,j(z) =
∂fi(z)

∂zj
(6.29)

Energy error Every integrator was tested by checking the conservation of the
energy: denoting by H0 and by Hk the hamiltonian evaluated at the time step 0
and k, the energy error is defined as:

dE

E0

=
Hk −H0

H0

(6.30)

6.4.1 Implicit Scheme 1: Midpoint Rule

The discretization of the guiding center Lagrangian (6.2) with the midpoint rule
(see eq.4.43c) leads to the following expression:

Ld(z0, z1) = A†(z̃0) ·∆x0 − hµB(x̃0)− hũ
2
0

2
(6.31)

Recall from eq. (4.57) that the left and right discrete Legendre transforms for
the midpoint rule are:
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pk =
∂L
∂ż

(
z̃k,

∆zk
2

)
− h

2

∂L
∂z

(
z̃k,

∆zk
2

)
pk+1 =

∂L
∂ż

(
z̃k,

∆zk
2

)
+
h

2

∂L
∂z

(
z̃k,

∆zk
2

) (6.32)

For the guiding center we get the following expressions:

px
0 = −1

2

(
A†i,j(x̃0)

)
· (∆x0) + A†j(x̃0) +

h

2
µB,j(x̃0) (6.33a)

pu0 = −1

2
b̂(x̃0) · (∆x0) +

h

2
ũ0 (6.33b)

px
1 =

1

2

(
A†i,j(x̃0)

)
· (∆x0) + A†j(x̃0)− h

2
µB,j(x̃0) (6.33c)

pu1 =
1

2
b̂(x̃0) · (∆x0)− h

2
ũ0 (6.33d)

Given an initial points x0, u0, p
x
0 , p

p
0, the first two equations of (6.33) are inverted to

find the points x1, u1 and the momenta px1 , p
p
1 are found with the last two equations.

Of course, this is a way to compute the Hamiltonian flow.

It is equivalent to start with two points x0, u0,x1, u1 and find x2, u2 by matching
the momenta of eqs (6.33):

1

2

(
A†i,j(x̃0)

)
· (∆x0) +

1

2

(
A†i,j(x̃1)

)
· (∆x1) + A†j(x̃0)− A†j(x̃1)− h

2
µ [B,j(x̃0) +B,j(x̃1)] = 0

(6.34a)

1

2
b̂(x̃0) · (∆x0) +

1

2
b̂(x̃1) · (∆x1)− h

2
(u2 + 2u1 + u0) = 0 (6.34b)

In either way, the resolution of the flow requires the inversion of an implicit equa-
tion.
This is done by using an auxiliary integrator, in our case RK4 applied to the contin-
uous equations of motion (3.35), and by converging to the implicit equations (6.33)
with sufficiently high number of Newton iterations. Usually, three or four iterations
are enough to guarantee a good accuracy.

We expect for the field configurations A,B and C1, for which there is a trans-
lational symmetry along the z axis, that the corresponding discrete momentum is
conserved by the integrator:

pzk =
∂L
∂ż

(
z̃k,

∆zk
2

)
= A†z(x̃k) = const. (6.35)
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Also, since the Lagrangian is independent from u̇, we expect that the conjugate
momentum of u is inverted at each step. In fact, from the definition of the discrete
Legendre transforms (eqs. 6.32), we get:

puk = −h
2

∂L
∂u

(
z̃k,

∆zk
2

)
= −puk+1 (6.36)

Of course, this is just a particular case of the previous chapter, where we considered
constant symplectic forms, or equivalently linear Cartan one-forms Θ.
In particular, if we restrict to the Hamiltonian initialization, for which the con-
straints are imposed at the first step (see paragraph 6.3), we expect that pu should
be exactly conserved.

Initialization In section (6.3), we said that different initializations can lead to
different results.
At a first stage, the midpoint discretization was tested with a Lagrangian initializa-
tion, so that given a point z0, the point z1 was found with a RK4 integrator applied
to the equations of motion (6.5) with a small time step in order to guarantee the
best accuracy.
Figure 30 illustrates the results for a tokamak configuration B.
The energy error oscillates with increasing amplitude and it becomes very inaccurate
even after few steps.
This bad behaviour is similar for the other field configurations and is shared by all
the implicit schemes we tested. This agrees with the discussions of the previous
chapter, where we proved that, at least with simple cases, the Hamiltonian initial-
ization was the most correct one. Hence, in the following we’ll focus only on the
Hamiltonian initialization.
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(a) (b)

Figure 30: Energy error (a) and particle orbit in the poloidal plane (b) for the
midpoint rule with Lagrangian initialization applied to field configuration B.

Numerical Results Figure 31 shows the numerical results for the 2D field con-
figuration A and the tokamak field B.
In both cases the momenta pu and pz are exactly conserved as expected. The energy
is well bounded for long times, in particular for the configuration A the energy is
exactly conserved.

For the tokamak field B we lowered the time step to h = 10 and plotted in figure
33 the conservation of the energy and the x component of the constraints:

φx = px − A†x (6.37)

We immediately notice that the constraint is not exactly conserved. As a conse-
quence, the flow is splitted in two parts. The same behaviour happens for all the
integrators we used in the rest of the thesis.

Unfortunately, the behaviour of the midpoint rule with the force-free fields C1
is slightly worse.
As shown in figure 34, the flow of the integrator is splitted in two parts with distinct
energy.
While the momenta pz and pu are exactly conserved as expected, the energy of each
part has a noticeable drift.
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(a) (b)

(c) (d)

Figure 31: Midpoint rule applied to field configuration A. (a) is the energy error, (b)
is the particle trajectory in the (x, y) plane, (c) and (d) are the z and u components
of the discrete momentum (eq. 6.35)

For the configuration C2, the particle performs small banana orbits in the poloidal
plane and a bigger elliptic closed orbit. The results are plotted in figure 35. A zoom
of the trajectory with a low time step is reported in diagram (c) to highlight the
banana orbits.
In this case, the energy is bounded correctly for long times and the momentum pu

is correctly conserved, while the momentum pz is only bounded. This is expected,
since the perturbations (eqs. 6.24) break the toroidal symmetry.

89



(a) (b)

(c) (d)

Figure 32: Midpoint rule applied to field configuration B. (a) is the energy error, (b)
is the particle trajectory in the (x, y) plane, (c) and (d) are the z and u components
of the discrete momentum (eq. 6.35)
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(a) (b)

Figure 33: Energy error (a) and x component of the constraints (eq. 6.37) (b) for
the field configuration B with low time step (h = 10)
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(a) (b)

(c) (d)

(e)

Figure 34: Midpoint rule applied to field configuration C1. (a) and (b) are the
energy error respectively for the whole splitted flow and for a single part, (c) is the
particle trajectory in the (x, y) plane, (d) and (e) are the z and u components of
the discrete momentum (eq. 6.35)
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(a) (b)

(c) (d)

(e)

Figure 35: Midpoint rule applied to field configuration C2. (a) is the energy error,
(b) is the particle trajectory in the (x, y) plane, (c) is a zoom showing the banana
orbits, (d) and (e) are the z and u components of the discrete momentum (eq. 6.35)
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6.4.2 Implicit Scheme 2: Three dimensional Lagrangian

We have already seen in chapter 2 that the continuous equations of motion can be
solved trivially for u to give:

u = b̂ · ẋ (6.38)

It is quite easy to show that the Euler-Lagrange equations for the guiding center
phase-space Lagrangian with the velocity u explicited with respect to the other vari-
ables are equivalent to the original Euler-Lagrange equations.
Thus, it is reasonable to wonder how a variational integrator would behave if applied
to such Lagrangian:

L(x, ẋ) = A(x) · ẋ +
1

2
(b(x) · ẋ)2 − µB(x) (6.39)

The midpoint discretization gives:

Ld(x0,x1) = A(x̃0) ·∆x0 +
1

2h
(b(x̃0) ·∆x0)2 − hµB(x̃0) (6.40)

The discrete integrator is then defined by matching of the discrete momenta:

pk =
∂L
∂ẋ

(
x̃k,

∆xk
2

)
− h

2

∂L
∂x

(
x̃k,

∆xk
2

)
pk+1 =

∂L
∂ẋ

(
x̃k,

∆xk
2

)
+
h

2

∂L
∂x

(
x̃k,

∆xk
2

) (6.41)

It is important to stress that this new Lagrangian is still degenerate (the degrees
of freedom of the guiding center are two, hence a regular Lagrangian must be de-
fined in a two dimensional space), and it doesn’t correspond to a phase-space or an
Hamiltonian formalism.
This is reflected to the fact that the Legendre transform is singular and new primary
constraints arise. In fact, the Legendre transform reads:

p ≡ ∂L
∂ẋ

= (b̂ · ẋ)b̂ + A (6.42)

Hence, it is straightforward to show that there are two constraints:

φ =

 Ax +
bx

bz
(pz − Az)− px

Ay +
by

bz
(pz − Az)− py

 (6.43)

Also, from the Hamiltonian function of the original 4D system, we know that
the following function H is conserved:
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H =
u2

2
+ µB =

(b̂ · ẋ)2

2
+ µB =

‖p−A‖2

2
+ µB (6.44)

This function is conserved along the orbits of the particle. However, it is important
to stress that we can’t just apply hamilton’s equations to this function, as one could
think, since the function H is identical in form to an Hamiltonian of a charged par-
ticle in an electromagnetic field.
In fact, the Lagrangian 6.39 does not possess an hamiltonian structure: it is neither
a regular Lagrangian nor a phase-space Lagrangian. The only correct equations
are the Euler-Lagrange equations for this Lagrangian, which are not the hamilton’s
equations for H.
These equations are again a set of implicit equations and have to be solved with a
first guess integrator.
The procedure used is the following: we can map a point (x,p) to a 4D point
z = (x, u) with the following equation:

u = ‖p−A‖ (6.45)

Hence, we can find the velocity u0 from a point (x0,p0) of this 3D integrator, RK4
is applied to find the following point x1, u1 and finally Newton’s method allows to
converge to the implicit equations.
Alternatively, we can find the velocity u0 from x0 and the 4D momenta pz0 by impos-
ing the 4D constraints (eq. 6.26). Finally, the point z1, p

z
1 is found with one of the

linearizations explained afterwards and Newton iterations are used for converging
the implicit equations.
We chose the latter method, since it gives the best results and it is the most perfor-
mant.

Since all variables are velocity dependent, we expect that only the conjugate
momenta relative to Noether symmetries are conserved.
Hence, field configurations A,B and C1 which are toroidally symmetric should con-
serve the z component of the discrete momentum:

pzk =
∂L
∂ż

(
x̃k,

∆xk
h

)
=

1

h
(ˆ̃bk ·∆xk)b̃

z
k + Ãzk = const. (6.46)

Numerical Results Figure 36, 37, 38 and 39 show the numerical results respec-
tively for the field configurations A,B, C1 and C2.
The toroidal conjugate momentum pz is correctly conserved for the fields A,B and
C1. Also, the energy is bounded for long times for all the cases in consideration.

95



(a) (b)

(c) (d)

Figure 36: 3D Midpoint rule applied to field configuration A. (a) is the energy error,
(b) is the particle trajectory in the (x, y) plane, (c) is the z component of the discrete
momentum (eq. 6.46), (d) is the first component of the constraints (eq. 6.43)
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(a) (b)

(c) (d)

Figure 37: 3D Midpoint rule applied to field configuration B. (a) is the energy error,
(b) is the particle trajectory in the (x,y)plane, (c) is the z component of the discrete
momentum (eq. 6.46), (d) is the first component of the constraints (eq. 6.43)

97



(a) (b)

(c) (d)

Figure 38: 3D Midpoint rule applied to field configuration C1. (a) is the energy
error, (b) is the particle trajectory in the (x,y)plane, (c) is the z component of the
discrete momentum (eq. 6.46), (d) is the first component of the constraints (eq.
6.43)
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(a) (b)

(c) (d)

Figure 39: 3D Midpoint rule applied to field configuration C2b. (a) is the energy
error, (b) is the particle trajectory in the (x,y)plane, (c) is the z component of the
discrete momentum (eq. 6.46), (d) is the first component of the constraints (eq.
6.43)
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6.4.3 Semiexplicit Scheme

In the original papers of Qin ([20] and [21]) a slightly different discrete Lagrangian
was used, apparently for stability reasons and for other reasons that will be clear
after the linearization done in the following paragraphs:

Ld(z0, z1) =
A†1 + A†0

2
·∆x0 − h

u0u1

2
− hµB0 (6.47)

The main differences are the modified vector potential and the magnetic field eval-
uated exactly at each step rather than at the midpoint and the velocity term in the
Hamiltonian.
We can notice that this has no longer a midpoint discretization form. Of course,
the flow of the variational integrator applied to this modified Lagrangian is still
symplectic and the discrepancy from the flow of the original midpoint Lagrangian
is small.

Instabilities This integrator has shown to produce instabilites in all the magnetic
field configuration we used. This behaviour is illustrated in figure 40, where a
tokamak configuration was used. The instabilities are characterized by oscillations
which are initially small and increase exponentially in times, breaking the integrator
in a small amount of time and hence making it unusable in practice. Furthermore,
they’re present in some of the explicit schemes we will study below.
Squire and Qin [25] suggested that these instabilities could be due to an incorrect
behaviour of the conserved symplectic forms when the time step is brought to 0,
and that they could be mitigated by searching for particular gauge transformations
of the Lagrangian.

In the following paragraphs, we will suggest new explicit linearization of the
symplectic integrator which are apparently free from instabilities.
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(a)

(b)

Figure 40: Instabilities produced by the linearized integrator with field configuration
B. (a) is the particle trajectory in the poloidal plane (x, y), (b) is the energy error
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6.4.4 Explicit Scheme 1

The purpose of this section is to find an explicit integrator which remains close to
the solution. Of course, such an algorithm would be much faster than an implicit
one. The standard technique is the linearization of the implicit scheme.

Let’s start with equations (5.16):

p1 = Θ(z̃1) +
h

2
∇H(z̃1)−ΘT

(1)(z̃1)
∆z1

2
(6.48a)

= Θ(z̃0)− h

2
∇H(z̃0) + ΘT

(1)(z̃0)
∆z0

2
(6.48b)

The idea of the linearization is to expand these equations around z1, as we did
in eqs (5.17) and to retain only the first two terms of the symplectic forms and the
first term of the Hamiltonian:

p1 = Θ1 +
h

2
∇H1 + Ω1

∆z1

2
(6.49a)

= Θ1 −
h

2
∇H1 − Ω1

∆z0

2
(6.49b)

Hence, starting from two points z0,p0, we can find z1 and p1 with the following
explicit equations:

z1 = z0 + 2Ω−1
0

(
p0 −Θ0 −

h

2

(
µ∇B0

u0

))
(6.50)

p1 = Θ1 − Ω1
∆z0

2
− h

2

(
µ∇B0

u0

)
(6.51)

Alternatively, subtracting eqs. (6.49), we can find the equations for z2 in La-
grangian form:

Ω1

2
(z2 − z0) + h

(
µ∇B1

u1

)
= 0 (6.52)

Following the same discussion done in the previous sections, we can notice that
the integrator will still be splitted in two parts.
Again, the constraints will not be conserved as the symplectic form is not constant.

A legitimate question is what does happen if we choose to retain also the term
linear in ∆z in eq. (6.48). We will see in section 6.4.7 that this will have beneficial
effects on the integrator.
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Out of all of the linearizations we tried, the Lagrangian initialization performed
much better than the Hamiltonian one, in contrast with the behaviour of the implicit
integrators.
The Hamiltonian initialization proved to possess frequently drifts in the energy error
and to be always imprecise. For this reason, we will use the Lagrangian initialization
for all the linearized integrators.

Numerical Results Figure 41 shows the linearization applied to the 2D field A.
The energy is bounded for long times and the momenta pz and pu are exactly
conserved. The conservation of momenta in this case is just a fortunate coincidence
and it is a consequence of the simplicity of the magnetic field considered.
All the other field configurations are unstable, similarly to the semiexplicit scheme.
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(a) (b)

(c) (d)

Figure 41: 3D Midpoint linearization applied to field configuration A. (a) is the
energy error, (b) is the particle trajectory in the (x,y)plane, (c) is the z component of
the discrete momentum (eq. 6.46), (d) is the u component of the discrete momentum
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6.4.5 Explicit Scheme 2: Qin’s Version

Starting from the semiexplicit Lagrangian (eq. 6.47), one can easily show that the
linearization of all terms give rise to the same equations of the linearized midpoint
Lagrangian with the exception of the quadratic velocity terms in the Hamiltonian.
This modified velocity has proven to give better stability results than the original
linearization.

The new discrete equations in position-momentum form take the following form:

p1 = Θ1 +
h

2
∇H1 + Ω−1

∆z1

2
(6.53a)

= Θ1 −
h

2
∇H1 − Ω+

1

∆z0

2
(6.53b)

where Ω± are the following modified symplectic forms:

Ω± =


0 −B†z B†y b̂x
B†z 0 −B†x b̂y
−B†y B†x 0 b̂z
−b̂x −b̂y −b̂z ∓h

 (6.54)

The Lagrangian form reads:

Ω−1
2

(z2 − z1) +
Ω+

1

2
(z1 − z0) + h

(
µ∇B1

u1

)
= 0 (6.55)

Writing explicitly the symplectic terms we get:
1

2

[
A†i,j1 − A†j,i1

]
(xi2 − xi0)− bj1

2
[u2 − u0] = hµB,j

1

1

2
bi1(xi2 − xi0) =

h

2
(u2 + u0)

(6.56)

Eventually, we can decouple the spatial part of the symplectic form from the
velocity by substituting the velocity terms in the first three equations:

1

2

[
A†i,j1 − A†j,i1

]
(xi2 − xi0)− bj0

2

[
2u0 −

bi1
h

(xi2 − xi0)

]
= hµB,j

1

1

2
bi1(xi2 − xi0) =

h

2
(u2 + u0)

(6.57)

so that the system can be solved by inverting a 3× 3 matrix and by evaluating
the velocity equation.
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Numerical Results Similarly to the original linearization (section 6.4.4), the
force-free configurations C1 and C2 are always unstable.
However, the region of instability of the tokamak field B is slightly smaller for this
version and the instabilities proved to be very sensible to the initial conditions used.

Figure 42 and 43 show the results for the 2D field A and the tokamak field B
with a Lagrangian initialization applied to the initial point

z0 = (x0, u0) = (0.08461, 0.00228, 4.51147,−0.00057) (6.58)

which proved to produce a stable flow.

The energy is bounded for both cases. Note that the z component of the mo-
mentum is no longer conserved, since the discrete Noether theorem is guaranteed to
work only with the implicit symplectic integrator.
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(a) (b)

(c) (d)

Figure 42: Qin linearization applied to field configuration A. (a) is the energy error,
(b) is the particle trajectory in the (x,y)plane, (c) is the z component of the discrete
momentum (eq. 6.46), (d) is the u component of the discrete momentum
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(a) (b)

(c) (d)

Figure 43: Qin linearization applied to field configuration B. (a) is the energy error,
(b) is the particle trajectory in the (x,y)plane, (c) is the z component of the discrete
momentum (eq. 6.46), (d) is the u component of the discrete momentum
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6.4.6 Explicit Scheme 3

In the same spirit of section 6.4.2, we tried a different version of the linearization
made by Qin.
The term u2−u0 that appears in equations (6.57) is just the discretization of terms
proportional to the derivative of u in the Taylor expansion of the one-form Θ.
This term was substituted by:

u2 − u0

2h
' b̂ · ẍ ' bi1(xi2 − 2xi1 + xi0)

h2
(6.59)

This approximation seems quite rude; however, we will see that this integrator has
some interesting properties.
Writing explicitly the discrete Euler-Lagrange equations, we get:

1

2

[
A†i,j1 − A†j,i1

]
(xi2 − xi0)− bj1b

i
1

h
[xi2 − 2xi1 + xi0] = hµB,j

1

1

2
bi1(xi2 − xi0) =

h

2
(u2 + u0)

(6.60)

or equivalently in position-momentum form:

p1 = Θ1 +
h

2
∇H1 + Ω−1

∆z1

2
(6.61a)

= Θ1 −
h

2
∇H1 − Ω+

1

∆z0

2
(6.61b)

Ω± =


0 −B†z B†y 0
B†z 0 −B†x 0
−B†y B†x 0 0

−b̂x −b̂y −b̂z ∓h

∓ 2bibj

h
(6.62)

Numerical Results Figure 44, 45, 46 and 47 show the numerical results for the
configurations A,B,C1 and C2.
Unlike the previous cases, the integrator is stable for every configuration we tested.
The energy is bounded for long times and the momenta pz and pu are conserved
only in the 2D field configuration and bounded in the other cases.
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(a) (b)

(c) (d)

Figure 44: Modified Qin linearization applied to field configuration B. (a) is the
energy error, (b) is the particle trajectory in the (x,y)plane, (c) is the z component of
the discrete momentum (eq. 6.46), (d) is the u component of the discrete momentum
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(a) (b)

(c) (d)

Figure 45: Modified Qin linearization applied to field configuration B. (a) is the
energy error, (b) is the particle trajectory in the (x,y)plane, (c) is the z component of
the discrete momentum (eq. 6.46), (d) is the u component of the discrete momentum
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(a) (b)

(c) (d)

Figure 46: Modified Qin linearization applied to field configuration C1. (a) is the
energy error, (b) is the particle trajectory in the (x,y)plane, (c) is the z component of
the discrete momentum (eq. 6.46), (d) is the u component of the discrete momentum
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(a) (b)

(c) (d)

Figure 47: Modified Qin linearization applied to field configuration C2b. (a) is the
energy error, (b) is the particle trajectory in the (x,y)plane, (c) is the z component of
the discrete momentum (eq. 6.46), (d) is the u component of the discrete momentum
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6.4.7 Explicit Scheme 4: First order Hamiltonian

When we performed the truncation of the Taylor serie in equation 6.49, we chose to
exclude the first order term of the Hamiltonian.
We can wonder how the linearization behave if we truncate the series to the first
order, so that we can write:

p1 = Θ1 +
h

2
∇H1 + Ω1

∆z1

2
+
h

2
∇H1(1)

∆z1

2
(6.63a)

= Θ1 −
h

2
∇H1 − Ω1

∆z0

2
+
h

2
∇H1(1)

∆z0

2
(6.63b)

where ∇H1(1) is the Hessian of the Hamiltonian. Matching the momenta we get:

Ω1

2
(z2 − z0) + h

(
µ∇B1

u1

)
+
h

4

(
µB,i,j(x1) 0

0 1

)
(z2 − 2z1 + z0) = 0 (6.64)

As we will see shortly, the effect of these new terms is the removing of the
instabilities typical of the original linearizations.

Dropping the magnetic terms We tried a sightly modified version by removing
the second derivative of the magnetic field, so that eq. (6.64) is rewritten as:

Ω1

2
(z2 − z0) + h

(
µ∇B1

u1

)
+
h

4

(
0 0
0 1

)
(z2 − 2z1 + z0) = 0 (6.65)

The integrator thus found is almost unchanged. Computationally, this leads to
a more effective algorithm, since the second derivative of the magnetic field could
be expensive to compute, specially for the force-free configuration.

Numerical Results Figure 48, 49, 50 and 51 show the numerical results for the
field A,B,C1 and C2.
The energy is bounded for all the configurations, the momenta pz and pu are only
conserved for the 2D field and bounded for the other cases.
In all the tests we performed, no instabilities were observed.
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(a) (b)

(c) (d)

Figure 48: Linearization with first order Hamiltonian applied to field configuration
A. (a) is the energy error, (b) is the particle trajectory in the (x,y)plane, (c) is the
z component of the discrete momentum (eq. 6.46), (d) is the u component of the
discrete momentum
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(a) (b)

(c) (d)

Figure 49: Linearization with first order Hamiltonian applied to field configuration
B. (a) is the energy error, (b) is the particle trajectory in the (x,y)plane, (c) is the
z component of the discrete momentum (eq. 6.46), (d) is the u component of the
discrete momentum
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(a) (b)

(c) (d)

Figure 50: Linearization with first order Hamiltonian applied to field configuration
C1. (a) is the energy error, (b) is the particle trajectory in the (x,y)plane, (c) is the
z component of the discrete momentum (eq. 6.46), (d) is the u component of the
discrete momentum
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(a) (b)

(c) (d)

Figure 51: Linearization with first order Hamiltonian applied to field configuration
C2. (a) is the energy error, (b) is the particle trajectory in the (x,y)plane, (c) is the
z component of the discrete momentum (eq. 6.46), (d) is the u component of the
discrete momentum
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6.5 Review and comparison with RK4

Figure 53 shows the energy error for the field configuration B plotted as a function
of time for the fourth order Runge-Kutta, the implicit scheme 1 and the explicit
scheme 4.
In the case of RK4, the energy quickly decays, showing the inefficiency of this inte-
grator for high time steps and high integration times.
All the symplectic integrators bounds the energy for long times, with the exception
of the midpoint rule applied to the force-free configuration C1, which presents a
small energy drift. The reason of this behaviour is unknown.
Note that the linearizations studied in this thesis has the same, and sometimes even
better, accuracy than the non linearized midpoint rule.

The quantities associated to Noether symmetries are exactly conserved only with
the non linearized integrators, both the 4D (section 6.4.1) and the 3D version (sec-
tion 6.4.2). In the explicit versions, the Noether quantities are not exactly conserved,
but still bounded.

It is worth noticing that all the implicit integrators require an Hamiltonian initial-
ization, since the Lagrangian initialization produces very high drifts in the energy
error.
This behaviour is the opposite for the linearized versions, which require a Lagrangian
initialization to work correctly.
The complete comprehension of the theoretical aspects of this subject is very im-
portant and could lead to a better choice of the initialization.

The following table summarizes all these properties.
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Integrator Section Energy Bounding Noether Initialization
RK4 No No -
Implicit 1 6.4.1 Yes (for A,B,C2) Yes Hamiltonian
Implicit 2 6.4.2 Yes Yes Hamiltonian
Semiexplicit 6.4.3 No† Yes Hamiltonian
Explicit 1 6.4.4 No† No Lagrangian
Explicit 2 6.4.5 No† No Lagrangian
Explicit 3 6.4.6 Yes No Lagrangian
Explicit 4 6.4.7 Yes No Lagrangian

Table 1: Comparison between the numerical integrators used in this chapter for the
error bounding (see section 4.5.1), the conservation of Noether quantities (section
4.2.1), and the initialization used (section 6.3).
† Altough the energy seems to be bounded, exponential oscillations which grows very rapidly in a
small amount of time are present (see section 6.4.3)

6.5.1 Stability Analysis

The explicit scheme 1 (section 6.4.4) and the Qin’s version (section 6.4.5) are usually
unstable and thus unusable in many cases.
However, we have found two linearizations, the explicit scheme 3 (section 6.4.6)
and 4 (6.4.7) which are apparently free from instabilities, at least with the cases we
studied.

One way to show the stability properties of these integrators is by studying the
Lyapunov exponents. Usually, the Lyapunov exponents are used to study the
rate of separation of infinitesimally close trajectories of a dynamical system.

Specifically, if the starting points of two trajectories are separated by a small
quantity δx0, the separation of the trajectories evolves approximately as:

|δx(t)| ' eλt|δx0| (6.66)

where λ is the Lyapunov exponent. For a discrete multidimensional system, it
can be shown [15] that the whole spectrum of Lyapunov exponents can be found
with:

λi(z0) = limk→∞
1

2k
ln|µi

(
ΦT
kΦk

)
| (6.67)

where Φk is the product of the jacobians of the discrete flow from the initial
point to the time step k:

Φk = F ′(zk) · · · F ′(z0) (6.68)

and µi denotes the i-th eigenvalue.
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The maximum value of the Lyapunov exponents, called the maximal Lyapunov
exponent (MLE), is useful to study the stability or the chaotic behaviour of a
system. In particular, if the MLE is negative or zero, the system is stable, and it
is conservative if the MLE is zero. A positive MLE is an indication of a chaotic
system, where two initial nearby points will diverge to an arbitrary separation, no
matter how close they are.

Numerical results The Lyapunov exponents of the stable versions of our inte-
grator have been analyzed with the above method with different initial conditions,
and all of them have proved to be Lyapunov stable. Figure 52 shows the MLE for
the tokamak configuration B, tested with the explicit scheme 4.

Figure 52: Maximal Lyapunov Exponent for the Explicit Scheme 4 (Section 6.4.7)
and magnetic configuration B.

6.5.2 Computational Costs

Since the implicit integrators require generally two to four Newton iterations for the
convergence plus an explicit first guess and one iteration requires one evaluation of
the magnetic fields, we expect that these integrators should be slightly more costly,
but still comparable, to RK4, which requires four field evalutions.
In particular, the 3D version of the midpoint rule should be slightly faster than the
4D version since we have one less degree of freedom.
The explicit integrators are the most efficient ones. By comparing eqs. (6.52) and
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(6.4), we recognize at once that an explicit integrator is equivalent to an Euler
method. A typical simulation of a tokamak like magnetic field for 2×104 orbits was
performed by the integrator in about 10 to 20 seconds in an old notebook.

6.5.3 Source Code

All the numerical simulations in this thesis are performed with a code written in C
language. The source code can be found in internet at https://github.com/m3l7/
Symplectic-Guiding-Center.
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(a)

(b)

Figure 53: Comparison between RK4 and the variational symplectic integrators
for the tokamak field configuration B. (a) is the energy error, (b) is the particle
trajectory in the poloidal (x,y) plane.
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7 Summary and Outlook

This Thesis dealt with the problem of numerical integration of Hamiltonian systems,
in particular for the motion of the guiding center of charged particles in electromag-
netic fields, for which the different time scales involved require simulations with high
time steps and long integration times.

Symplectic integrators are well known since some decades and their ability to
conserve the geometry of an Hamiltonian system for indefinitely long times is a
crucial feature that fits well for our purposes. Under this regard, this work explored
a new technique, based on variational integrators, for the integration of non canonical
Hamiltonian systems.

Every Hamiltonian system can be described by a variational principle, or equiv-
alently by an extended, or phase-space, Lagrangian. The first order Euler-Lagrange
equations which arises from this Lagrangian are exactly the Hamilton’s equations.
The basic idea underlying this thesis is to apply a variational symplectic integrator
to these phase-space Lagrangians.

The standard theory of variational integrators can’t be applied in this context:
a variational integrator behaves always as a regular Lagrangian system rather than
a phase-space one. As a consequence, the degrees of freedom of a discretized phase-
space Lagrangian are twice the ones of the original continuous system and the dis-
crete flow is proven to conserve an extended canonical structure, different from the
original non canonical one.
For this reason, the role of choosing the initial additional variables is important:
different initializations can lead to very different discrete flows.

Some properties of these integrators have been shown: altough the discrete tra-
jectory is not a near the identity map, it is splitted in two separate smooth parts.
Also, for simple cases, namely when the symplectic structure is constant in space,
it was shown that the integrator is constrained, it is not splitted and its projection
is a symplectic integrator of the original Hamiltonian system.

The variational symplectic integrator was then applied to the non canonical
guiding center theory. The benefit of this theory over the canonical one is that
simple global coordinates are guaranteed to exist, without the need of patches.
Different versions of the variational integrator, both implicit and linearized, were
proposed and all of them were tested with three configurations: a uniform magnetic
field, a tokamak configuration and a force-free magnetic field.

The experimental results are quite satisfactory for many integrators that were
tested. In particular, the implicit versions, for a specific choice of initial points,
which we called the Hamiltonian initialization, bounds the energy for indefinitely
long times and conserve exactly the quantities associated to Noether symmetries.
A reduced three dimensional implicit version was proposed. It is based on the idea
that the velocity can be solved analitically separately from the other variables.
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On the other hand, the linearizations need to be initialized in a different way,
called the Lagrangian initialization. Altough they are very fast, they suffer from
numerical instabilities which make them hard to use in a practical scenario. However,
two new linearizations, which are apparently free from these instabilities, at least
with the magnetic field configurations we studied, were proposed.

In conclusion, we proposed four candidates of possible integrators: the implicit
scheme 1 (section 6.4.1) which bounds the energy and conserves the Noether sym-
metries, the explicit scheme 4 (6.4.7) which bounds both the energy and the Noether
symmetries and it is as fast as an Euler method and two reduced integrators, the
implicit scheme 2 (6.4.2) and the explicit scheme 3 (6.4.6) which can work only in
the guiding center context since they exploit the reuction of the system by solving
independently the velocity with respect to the other spatial variables.

There are some open issues left. First, the theoretical results found for the
constant symplectic case should be extended to the most general situation: it would
be interesting to find conserved quantities, at least with a suitable initialization, for
which the discrete flow can be projected in the original continous manifold. Even
though this won’t be possible, it should be possible to understand which is the best
initialization for a given problem and a given discretization.
Also, this work dealt only with the midpoint rule discretization: an analysis with
higher order discretization schemes, such as Runge-Kutta symplectic integrators, is
needed.

Last, it would be interesting to obtain a better understanding of the stable
linearizations proposed, both from a numerical point of view, since these versions
were tested in a quite limited number of magnetic field configurations, and from a
theoretical persective.
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Appendices

A Continuous Mechanics

A.1 Introduction

In this appendix, some basic concepts of classical mechanics, both from Lagrangian
and Hamiltonian point of view, are studied. Particular attention is paid to the geo-
metric formulation of these two theories, since our algorithms are based on the direct
discretizations of the geometrical objects underlying the theories of hamiltonian and
Lagrangian mechanics.

Lagrangian mechanics was introduced in the late ’700 by Euler and Lagrange.
One of the main reasons that led to the formulation of this theory was to seek for
equations of motion invariant under coordinate transformations, so that arbitrary
coordinates could be introduced without loosing the formal results of the theory.
These equations are now known as the Euler-Lagrange equations.
In the early ’800 Hamilton extended the theory by noting that the Euler-Lagrange
equations were equivalent to a variational principle, which is now called the Hamil-
ton’s principle.

The Lagrangian theory constitutes the main building block of this thesis, in par-
ticular the integrators we deal with in chapters 5 and 6 are based on the discretization
of the variational principle applied to the guiding center theory.

However, the Lagrangian setting, as it is generally known, is not sufficient to
describe our problem, and we need a generalization of it, which is given by the
Hamiltonian mechanics or by the the theory of phase-space Lagrangians.

This section is organized as follows: first, the geometrical mathematical founda-
tions of Lagrangian and Hamitonian mechanics are given.
Then, the Lagrangian and the Hamiltonian theories along with their variational
principles are presented from a geometrical point of view.

The notions of this section can be easily found in standard mechanics textbooks,
for example [18] and [16].
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A.2 Geometric Foundations of Mechanics

In this section some basic concepts of differential geometry are given, in particular
the theory of manifold and differential forms, which will be useful for the compre-
hension of the following sections, when a geometric formulation of Lagrangian and
Hamiltonian systems will be developed.
The aim of this chapter is to focus the reader on the geometric structures that
characterize a dynamical system. These structures constitute the starting point of
the geometric, or symplectic, integrators, since their exact conservation is one of
the main reason of their exceptional good behaviour, in particular of the long term
energy conservation.
For reasons of simplicity, we will restrict to time independent, finite dimensional
systems.

A.2.1 Manifolds

Intuitively, a manifold of dimension n is a set M such that the neighbourhood of
every point looks like a subset of Rn. More precisely, for every point m ∈M , there
is an open neighbourhood, Um, homeomorphic to Rn, namely with a continuous
invertible map φm : M → Rn.
Note that the map φm defines local coordinates on M and we can denote them
with (x1, ..., xn) = φm(x). The set (Um, φm) is said to be a chart on M . For
simple manifolds, like the euclidean space, one chart is sufficient to get a global
parametrization, but of course this is not true for more complex manifolds, for
example the sphere S2.
Our aim is to find a way to define functions and derivatives of functions globally on
a manifold.
Two charts (U1, φ1), (U2, φ2) are compatible if their transition function, defined on
the intersection U1 ∩ U2, is C∞:

g12 : φ1(U1 ∩ U2)→ φ2(U1 ∩ U2) (A.1a)

g12 = φ2 ◦ φ−1
1 (A.1b)

A manifold M is said to be smooth, or differentiable if it is covered by a
collection of compatible charts (Ui, φi): M =

⋃
i Ui.

Hence, given a smooth manifold, there is a way to assign coordinates to every point
and we can change the coordinate system whenever the intersection of two charts is
non empty simply by using the transition functions gij. We can then define what is
the meaning of differentiable.

A function on a smooth manifold f : M → R is differentiable, or smooth, if
the function f ◦ φ−1 is C∞.
Similarly, a function between two manifold f : M → N is differentiable if given
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Figure 54: Charts on a manifold and their transition function

two charts on M and N , the function φ ◦ f ◦ ψ−1 is C∞. Furthermore, f is a
diffeomorphism if it is invertible and both f and its inverse are differentiable.

A.2.2 Tangent vectors and Tangent space

In the theory of dynamical systems, we will have to deal with vectors and curves
and we will have to perform derivatives. Hence, we need a way to define rigorously
these object in a manifold.

Let’s consider two curves on a manifold M:

γ1, γ2 : R→M (A.2)

such that they map to the same element of the manifold at t = 0. We say that the
the two curves are equivalent if their velocity at t = 0 is the same:

γ1(0) = γ2(0) (A.3a)

d

dt
(φ ◦ γ1)(0) =

d

dt
(φ ◦ γ2)(0) (A.3b)

The set of all curves passing on a point m ∈ M , with the equivalence relation
(A.3b), is a vector space of dimension dim(M), and it’s called the tangent space
TmM .
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Hence, a vector v ∈ TmM can be imagined as the set of curves which pass through
m and has the same direction in m. It can be then represented by coordinates in
Rn using the components of the derivative:

vi =
dxi

dt

∣∣∣∣
t=0

=
d

dt
(φ ◦ γ)i

∣∣∣∣
t=0

(A.4)

The tangent bundle TM is the union of the tangent spaces of the manifold M :

TM =
⋃
m

TmM (A.5)

An element of the tangent bundle, which has dimension 2n, is a point of M together
with a vector in its tangent space. Hence, we can find local coordinates as:

(x1, ..., xn, v1, ..., vn) ∈ TM (A.6)

A.2.3 Cotangent space

There is an alternative definition of the tangent space that reveals a connection
between tangent vectors and functions defined on a manifold.
Let f : M → R be a differentiable scalar function on a manifold. The partial deriva-
tives ∂

∂xi
are linear operators defined as:(

∂

∂xi

)
f =

∂(f ◦ φ−1)

∂xi
(A.7)

It can be proved that the following set

(e1, ..., en) =

(
∂

∂x1
, ...,

∂

∂xn

)
(A.8)

is a basis of a vector space, the tangent bundle, such that every element v ∈ TmM
can be uniquely written as:

v =
∑
i

vi
∂

∂xi
(A.9)

If a vector of the tangent space is applied to a function, we obtain the directional
derivative:

v(f) =
∑
i

∂(f ◦ φ−1)

∂xi
vi (A.10)

Hence, the relation (A.9) is intuitively equivalent to the fact that specifying the
directional derivatives completely determines a vector.
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The differential of a function f : M → R is a linear map df : TmM → R. Hence,
it is an element of the dual of the tangent space, the cotangent space: df ∈ T ∗mM .
It assigns a vector to the directional derivative of the function:

df(v) ≡ v(f) =
∑
i

∂(f ◦ φ−1)

∂xi
vi (A.11)

Identifying the function that gives the i-th coordinate of an element of a manifold
as xi, we get immediately the relation:

dxi(
∂

∂xj
) =

∂

∂xj
xi = δij (A.12)

This means that the dual base of

(
∂

∂x1
, ...,

∂

∂xn

)
is (dx1, ..., dxn), which is a base

for the cotangent space T ∗mM . Thus, every differential, or covector, can be written as:

df =
∂f

∂xi
dxi (A.13)

As before, we can take the disjoint union of the cotangent spaces to obtain the
cotangent bundle:

T ∗M =
⋃
m

T ∗mM (A.14)

In a (co)tangent bundle, there are two functions that are implicitly defined: the
natural projection τM : TM → M , which gives the point m associated to an
element of the (co)tangent bundle, and its inverse, called the fiber, which assigns
to a point its tangent space.

A.2.4 Lifts and vector fields

We can generalize the notion of the differential to functions between manifolds: given
a smooth function f : M → N , the derivative is the function Tmf : TmM → Tf(m)N :

Tmf(v) =
d

dt
f(γ(t))

∣∣∣∣
t=0

(A.15)

where γ(t) is a curve that represents the vector v. It is immediate to verify that this
definition reduces to the differential when f is a scalar function.
As a particular case, we can take as function a curve on a manifold, seen as a func-
tion that assign a point in M to another point in M .
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Precisely, the tangent lift of a curve assigns a curve in the tangent space to a curve
in the manifold, in this way:

Tγ(t) =

(
γ(t),

d

dt
γ(t)

)
(A.16)

We can then define what is a vector field, that is, a function X : M → TM which
gives a vector in the tangent space for every point in the manifold. An integral curve
of a vector field is a curve γ such that its tangent lift is the vector field:

Tγ(t) =

(
γ(t),

d

dt
γ(t)

)
= (γ(t), X(γ(t))) (A.17)

Of course, for a given vector field, there are infinite integral curves that satisfy
(A.17). We can get a particular curve by specifying the initial condition γ(0) = m0.
The flow φt(m) : R ×M → M of a vector field is the collection of integral curves
that pass through m at t = 0. It is differentiable with respect to both m and t and
it is a one-parameter group of transformations on M :

φt+t′ = φt ◦ φt′ (A.18)

Pull back and Push forward Given a vector field on a manifold, there is a
natural way to induce a vector field on a different manifold, when a diffeomorphism
between the two manifolds is available. This method can be extended to other
mathematical objects, as we will see later for differential forms.
Precisely, let M,N be two manifolds, X : N → TN a vector field and ϕ : M → N
a diffeomorphism. The pull back of X is a vector field on M defined as:

(ϕ∗X)(m) = (Tϕ−1 ◦X ◦ ϕ)(m) (A.19)

In other words, given a point m ∈M , get the correspondent point in N through ϕ,
apply the vector field X and return to the manifold M with the lift of the inverse
of the diffeomorphism.

The push forward is just the inverse of the pullback:

ϕ∗ = (ϕ∗)−1 (A.20)

A.2.5 Differential Forms

The theory of differential forms allows to implicitely define vector calculus opera-
tions, like integrals, curl and div, in a manifold, indepentently from coordinates.
We have already studied a differential form, the differential defined in (A.11). This
notion can be generalized as follows:
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A differential k-form on a manifold M selects at each point m ∈ M a skew
symmetric k-multilinear function TmM × ...× TmM → R, that is,

αm(av1 + bv′1, v2, ..., vk) = aαm(v1, v2, ..., vk) + bαm(v′1, v2, ..., vk) (A.21)

with v1, v
′
1, ..., vk ∈ TmM , and such that whenever two arguments are interchanged,

α changes its sign.
Note that the differential of a function df is a differential one-form. The contrary is
not necessarily true.

Product of forms Given a k-form and a j-form, we can multiply them with the
wedge product, which gives a (k + j)-form:

(α ∧ β)(v1, ..., vk+j) =
(k + j)!

k!j!
A(α(v1, ..., vk)β(vk+1, ..., vk+j)) (A.22)

where A is the alternating operator:

A(α(v1, ..., vk)) =
1

k!

∑
σ

sgn(σ)α(vσ(1), ..., vσ(k)) (A.23)

Remembering the notation used for the tangent and cotangent base, a k-form
can be representend in the following way:

αm = αii,...,ik(m)dxi1 ∧ ... ∧ dxik (A.24)

where a sum over the index ij is performed (from 1 to dim(M)), with the condition
i1 < ... < ik.
Hence, one-forms and two-forms are written respectively as:

Θm = Θi(m)dxi (A.25a)

ωm =
(
ωij(m)dxi ∧ dxj

)
(i<j)

=
1

2
ωij(m)dxi ∧ dxj (A.25b)

Note that ω is represented by an antisymmetric matrix:

ωij(m) = −ωji(m) (A.26)
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Interior Product Given a k-form and a vector v ∈ TmM , we can build their
contraction as a (k − 1)-form in this way:

ivα(v2, ..., vk) = α(v, v2, ..., vk) (A.27)

The same definition can be extended straightforwardly to a vector field X : M →
TM :

iXα(v2, ..., vk) = α(X(m), v2, ..., vk) (A.28)

Exterior Derivative Given a k-form α written in coordinates representation
(A.24), its exterior derivative dα is a (k + 1)-form given by:

dα =
∂αi1,...,ik
∂xj

dxj ∧ dxi1 ∧ ... ∧ dxik (A.29)

One can immediately show that the exterior derivative is a linear operator and
that d2α = 0 for every k-form α. Keeping in mind this fact, the following definitions
are given:
a k-form α is closed if dα = 0 and exact if there is a (k − 1)-form ω such that
dω = α. Obviously, an exact form is always closed, but not every closed form is
exact.
However, it is possible to prove that every closed form α is locally exact, so that
for every point m ∈ M , there is an open neighbourhood in which α = dω for some
(k − 1)-form ω. This is just the statement of the Poincaré lemma.

Remembering the general representation of the differential:

df =
∂f

∂xi
dxi (A.30)

we can notice that it is the exterior derivative of the 0-form f , hence it is an exact
(and closed) one-form.

Pull back and Push forward The idea of pull-back and push-forward used pre-
viously for vector fields can be applied easily for differential forms:
If α is a k-form on a manifold N , its pull-back under the diffeomorphism ϕ : M → N
is a k-form on M :

(ϕ∗α)m(v1, ..., vk) = αϕ(m)(Tmϕ(v1), ..., Tmϕ(vk)) (A.31)

For 0-forms f : M → R, the pull-back is computed as:

(ϕ∗f)(m) = (f ◦ ϕ)(m) (A.32)
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An interesting property of pull-backs is that they commute with the exterior
derivative:

ϕ∗(dα) = d(ϕ∗α) (A.33)

As before, the push-forward is just the inverse of the pull-back:

ϕ∗ = (ϕ−1)∗ (A.34)

A.2.6 The Lie Derivative

We already know how to perform derivatives of vector fields and differential forms in
a manifold, namely with the exterior derivative. There is another, slightly different
and perhaps more direct, way to accomplish the same task.
The basic idea is to study how a differential form or a vector field changes along the
flow of a vector field.

Given a k-form α and a vector field X on a manifold M , the Lie derivative of
α along X is a k-form defined as:

LXα =
d

dt
ϕ∗tα

∣∣∣∣
t=0

= lim
t→0

1

t
((ϕ∗tα)− α) (A.35)

where ϕ∗t is the pull-back under the flow of X, seen as a smooth function from M
to itself.
The following important relations hold for the Lie derivative:

d

dt
ϕ∗tα = ϕ∗tLXα (A.36)

LXα = diXα + iXdα (A.37)

In particular, the last one (A.37), which relates Lie derivatives and external deriva-
tives, is known as Cartan’s magic formula.
Thus, we can observe, from (A.37) or directly from (A.35), that the Lie and the
external derivatives agree when a scalar function (0-form) is used and both return
the directional derivatives along the vector field:

X(f) ≡ LXf = df(X) (A.38)

Given two vector field X and Y , the Poisson-Lie Bracket is the unique vector
field [X, Y ] such that, for every smooth scalar function f , the following equivalence
holds:

[X, Y ](f) = X(Y (f))− Y (X(f)) (A.39)
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Intuitively, the Poisson-Lie Bracket is the directional derivative of Y in the direction
generated by X.

A.2.7 Volume Forms

A manifold of dimension n is called orientable if there exists a differential n-form
µ which is not null for every point in the manifold. In this case µ is said to be a
volume form. A diffeomorfism ϕ : M → M is called volume preserving if the
volume form is conserved under the pullback of ϕ:

ϕ∗µ = µ (A.40)

More generally, the pullback of a k-form is a k-form, so we can write the pullback
of ω as a combination of a function of ϕ and ω:

ϕ∗µ = J(ϕ)ω (A.41)

Hence, J(ϕ), referred as the Jacobian of ϕ, must be 1 for a volume preserving
transformation.
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A.3 Lagrangian Mechanics

A.3.1 Introduction

We start by giving some basic notions on the spaces we will deal with: recall that
the tangent lift of a curve γ : R→ Q is:

Tγ(t) = (γ(t), γ̇(t)) =

(
γ(t),

d

dt
γ(t)

)
(A.42)

Denote by C([t0, t1], Q) the spaces of C2 curves (the path space) from the real in-
terval [t0, t1] to the manifold Q and by C(q0, q1, [t0, t1], Q) the path space of curves
with fixed endpoints:

C(q0, q1, [t0, t1], Q) =

{
γ ∈ C([t0, t1], Q)

∣∣∣∣γ(t0) = q0, γ(t1) = q1

}
(A.43)

The path space is itself a smooth manifold, and we can build a tangent vector to a
curve in the same way as we did in (A.4).
If γε : R→ C is a curve in C, such that γ0(t) = γ(t), then a tangent vector w ∈ TγC
to a curve γ is:

w =
d

dε
γε

∣∣∣∣
ε=0

(A.44)

Thus, for every t, w(t) is a vector in the tangent space of Q: w(t) ∈ Tγ(t)Q, so that
w is just a curve in TQ:

TγC([t0, t1], Q) = C([t0, t1], TQ) (A.45)

Intuitively, if we change slightly a curve in the path space, w represents the varia-
tions of the curve. For this reason, we can write δγ in place of w.
One can immediately show that if we keep the endpoints fixed, as in (A.43), the
variations at the endpoints are null:

TγC(q0, q1, [t0, t1], Q) =

{
w ∈ C([t0, t1], TQ)

∣∣∣∣w(t0) = w(t1) = 0

}
(A.46)

We already know that the equations of motion for a mechanical system are second
order differential equations. For this reason we’ll have to deal with vectors in the
tangent of the tangent space T (TQ). Given an element (x, v) in TQ, we can build
a vector in its tangent space by deriving a curve that passes through (x, v):

(x, v),

(
d

dt
x,
d

dt
v

)
∈ T (TQ) (A.47)
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Hence, for a generic element in T (TQ) it is not guaranteed that
d

dt
x = v. The

correct manifold is a submanifold of T (TQ), the so called second order manifold
Q̈:

Q̈ =

{
w ∈ T (TQ)

∣∣∣∣TτQ(w) = τTQ(w)

}
(A.48)

The function TτQ(w) takes an element (x, v) ∈ TQ, projects it to the configuration
manifold Q and returns its tangent lift:

TτQ(w) =

(
x,
d

dt
x

)
≡ τTQ(w) = (x, v) (A.49)

This it just the requirement we were seeking for.
In the same way, a second order vector field X : TQ→ T (TQ), satisfies:

TτTQ ◦X = id (A.50)

A.3.2 The variational principle and the Euler-Lagrange equations

We are now ready to study the relevant quantities of Lagrangian mechanics.
Let Q be a smooth manifold (the configuration manifold). The Lagrangian L :
TQ→ R is a scalar function on the tangent bundle:

L(q, v) (A.51)

The action S : C([t0, t1], Q)→ R is defined as:

S(qt) =

∫ t1

t0

L (q(t), q̇(t)) dt (A.52)

where q(t) is a curve in the path space and q̇(t) is its tangent lift. Since the action
is a scalar function on a smooth manifold, we can take its differential (the exter-
nal derivative) dS : C → T ∗C, which is a directional derivative along a variation
δqt ∈ TqtC, to give:

dS(qt)δqt =
d

dε
S(qt,ε)

∣∣∣∣
ε=0

=

=

∫ t1

t0

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
· δqidt+

[
∂L

∂q̇i
· δqi

]t1
t0

(A.53)
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where qt,ε is a curve that represents the variation δqt:

d

dε
qt,ε = δqt (A.54)

and, at every time t, δqi is the i-th component of the vector δq(t) ∈ TQ:

δqi ≡ dxi(δq(t)) (A.55)

Intuitively, given a curve on the manifold, we change the curve by small vari-
ations δq retaining the endpoint fixed, and we observe how the action (eq. A.52)
varies. Figure 55 illustrates the curve and its variations.

Figure 55: A curve q(t) and its variation with fixed endpoints

The first and second term of equation (A.53) are referred respectively as the
Euler-Lagrange map DEL : Q̈ → T ∗Q and the Lagrangian one-form ΘL :
TQ→ T ∗(TQ):

DEL =
∂L

∂q
− d

dt

∂L

∂q̇
(A.56)

ΘL =
∂L

∂q̇i
dqi (A.57)

The arguments of these maps, q̈ ∈ Q̈ and q̇ ∈ TQ are evaluated by lifting the curve
qt at every t.

We can now state the Hamilton’s variational principle from a geometric point
of view: let S be the action of the system restricted to the path space with end-
points fixed (A.43). qt ∈ C(q0, q1, [t0, t1], Q) is a solution if the exterior derivative of
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S vanishes for every δqt ∈ TqtC(q0, q1, [t0, t1], Q):

dS(qt)δqt = 0 (A.58)

From (A.53), the Lagrangian one-form is a boundary part that vanishes when vari-
ations to the action with fixed endpoints are imposed. The Hamilton’s principle
is then equivalent to the vanishing of the Euler-Lagrange map, for every time
t ∈ [t0, t1]:

DEL(q̈) = 0 (A.59)

Equivalently, we can define the Lagrangian vector field as the second order
vector field X : TQ→ T (TQ) which satisfies the Euler-Lagrange equations:

DEL ◦X = 0 (A.60)

Hence, its flow FL : TQ × R → TQ gives the state of a system following the
euler-lagrange equations after a time T:

F T
L (q0, q̇0) = (q(T ), q̇(T )) (A.61)

If qt is a solution and we remove the condition on the endpoints, the first term
of equation (A.53) vanishes, while the contribution from the boundary term is still
not null.
It is easy to show that the Lagrangian one-form computed at t1 is just a pull-back
under the Lagrangian vector field, so that:

dS(qt) = F ∗t ΘL(q0, q̇0)−ΘL(q0, q̇0) (A.62)

Hence, taking another derivative of S and remembering that d2 = 0 for a differ-
ential form:

(F T
L )∗dΘL = dΘL (A.63)

The conserved two-form ΩL = −dΘL is referred to as the Lagrangian symplectic
form. We can write it in coordinates to give:

ΩL(q, q̇) =
∂2L

∂qi∂q̇i
dqi ∧ dqj +

∂2L

∂q̇i∂q̇i
dq̇i ∧ dqj (A.64)

It will be clear that for a symplectic integrator there is a discrete analogous of the
Lagrangian symplectic form and the same conservation law applies as well.
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More generally, we talk of a symplectic form Ωq : TqQ× TqQ→ R on a mani-
fold Q when it is closed:

dΩq = 0 (A.65)

and non degenerate, such that the map Ω[
q : TqQ→ T ∗qQ is an isomorphism:

Ω[
q(v) = Ωq(v, ·) (A.66)

The degeneracy condition is equivalent to the matrix associated to the 2-form, as in
(A.26), being singular.
We can write the Lagrangian symplectic two-form in matrix form: A

(
∂2L

∂q̇i∂qj

)
∂2L

∂q̇i∂q̇j

− ∂2L

∂q̇i∂q̇j
0


where A is the alternating operator, defined in (A.23). It follows that ΩL is non
degenerate only if:

det

(
∂2L

∂q̇∂q̇

)
6= 0 (A.67)

As was already stated in the first section, only in this case the Lagrangian vector
field XL is guaranteed to be uniquely determined and hence to give a solution to
the system.
When condition A.67 holds, the Lagrangian L is said to be regular, otherwise it is
said to be singular or degenerate.
Therefore, for singular Lagrangians, a second order vector field does not exist gen-
erally. However, for special singular Lagrangians (see chapter 3.2), the so called
phase-space Lagrangians, one can find a first order vector field that represents
the solution of the Euler-Lagrange equations.

Mechanical systems For classical mechanics problems, the Lagrangian usually
takes the form of the kinetic energy minus the potential energy:

L(q, q̇) =
1

2
m||q̇||2 − V (q) (A.68)

One can immediately show that in this case the Euler-Lagrange equations are just
the Newton’s second law:

d

dt
(mq̇) = −∂V

∂q
(A.69)
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A.3.3 Legendre transform

Given a Lagrangian L : TQ → R, the Legendre transform is the function
FL : TQ→ T ∗Q, such that, for two vectors v, w ∈ TqQ:

FL(v) · w =
d

dε
L(v + εw)

∣∣∣∣
ε=0

(A.70)

Note that TqQ is a vector space, so it makes sense to sum two vectors and to mul-
tiply them by a scalar. The point q ∈ Q remains unchanged.
Written in a local chart, so that v = (qi, q̇i) ∈ TQ, the Legendre transform takes
the form:

FL(qi, q̇i) =

(
qi,

∂L

∂q̇i

)
= (qi, pi) (A.71)

where pi ∈ T ∗qQ are known as the conjugate momenta.
The Legendre transform is useful to relate the Lagrangian and Hamiltonian formal-
ism. We can use it in the Lagrangian theory to relate the symplectic form directly
to the Lagrangian vector field in what follows:
if v is a vector in the tangent bundle, v ∈ TQ, the energy function is the map
E : TQ→ R:

E(v) = FL(v) · v − L(v) (A.72)

Then, it can be proved that, for all v ∈ TQ and w ∈ Tv(TQ), the Lagrangian vector
field (such that DEL ◦ XL = 0), the symplectic form and the energy function are
related by:

iXL
ΩL(v) · w = dE(v) · w (A.73)

Often, equation (A.73) is used as a geometric definition of Lagrangian systems, with-
out passing through the variational framework and the Euler-Lagrange equations:
given a regular Lagrangian L, there is a unique second-order vector field XL, which
satisfies eq. (A.73).
From (A.73), it is easy to show that the energy function is conserved along a solu-
tion, yielding the conservation of the energy:

F ∗LE = E (A.74)

A.3.4 Symmetries and Noether’s theorem

The study of simmetries has been a main research topic in theoretical physics since
the last century. One of the most important results, the Noether theorem con-
stitutes the basic tools for modern physics theories. Noether theorem, derived by
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Emmy Noether in 1915, states that for every symmetry of a Lagrangian system,
there is an associated conservation law.

Consider a Lie group, that is, a manifold M with a group structure and such
that the group multiplication:

µ : G×G→ G (A.75)

is C∞. The left translation map Lg : G→ G is defined as:

Lg(h) = gh (A.76)

The Lie algebra of G, g, is the vector space TeG, together with a Lie Bracket
structure (see section A.2.6), that is, given two elements ξ, η ∈ TeG:

[ξ, η] = [Xξ, Xη](e) (A.77)

where Xξ is a vector field defined as:

Xξ(g) = TeLg(ξ) (A.78)

Now, consider a Lie Group G which acts on Q by an action Φ : G×Q→ Q and
on TQ by its tangent lift, defined as:

ΦTG
g (q, q̇) =

(
Φg(q),

∂Φg

∂q
(q)q̇

)
(A.79)

The infinitesimal generator ξTQ : TQ → T (TQ) on TQ corresponding to a Lie
algebra element ξ ∈ g is

ξTQ(q, q̇) =
d

dg

(
ΦTQ
g (q, q̇)

)
· ξ (A.80)

If a Lagrangian system is invariant under the lift of the action Φ:

L ◦ ΦTQ
g = L (A.81)

then the momentum map JL : TQ→ g∗, defined as:

JL(q, q̇) · ξ = ΘL(q, q̇) · ξTQ(q, q̇) (A.82)

is conserved by the Lagrangian flow:

JL ◦ F T
L = JL (A.83)
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Example Perhaps, the simplest example of the Noether theorem is the case of
a Lagrangian that has no dependence on a variable qi. The Lagrangian is then
invariant under the lift of the action φα with correspondent generator ξ:

φα(q) = q + αei (A.84a)

ξ(q) = ei (A.84b)

which is a translation along the axis ei. The quantity pi(q, q̇), referred as the
conjugate momentum of qi, is conserved:

pi(q, q̇) =
∂L

∂q̇i
(A.85)

For mechanical systems (A.68), pi = mq̇i is just the linear momentum of the particle.

143



A.4 Hamiltonian mechanics

The basic idea of Hamiltonian mechanics is to study a mechanical system using the
coordinates q and their conjugate momenta p, rather than the velocities q̇. This can
lead to advantages in some situations.
The Hamiltonian formulation admits a wider range of coordinate transformations,
leading for example to the study of non canonical systems. This point can be treated
in some extent in the Lagrangian side by extending the space of coordinates, giving
rise to the so called phase-space Lagrangian formalism. (see chapter 3)
Second, Hamiltonian systems possess a direct and simple geometric interpretation,
thus studying some of their properties is easier in this context.

Recall from section A.2 that a symplectic form Ω is a 2-form which is closed
(dΩ = 0) and non degenerate, such that Ω[ is an isomorhpism.
A smooth manifold M , together with a symplectic form (M,Ω) is called a sym-
plectic manifold.

Given a symplectic manifold (M,ΩH), we talk of a Hamiltonian system if there
is a vector field XH : M → TM and a function H : M → R, such that:

iXH
ΩH = dH (A.86)

XH and H are referred respectively as the Hamiltonian vector field and the
Hamiltonian.
Note that equation (A.86) is similar to equation (A.73). We will see that the two are
strictly related for canonical systems. Just as in that case, the Hamiltonian function
H represents the energy of the system.
By definition, the evolution of the system satisfies:

ż = XH(z) (A.87)

Writing equation (A.86) in coordinates, we find:

żi = XH(z)i = −(Ω−1
H )ij

∂H

∂zj
(A.88)

where Ωij
H is the matrix of the 2-form ΩH .

From Cartan’s formula (A.37) and (A.35), and from the fact that both ΩH and dH
are closed forms, we get:

d

dt
ϕ∗tΩH = ϕ∗tLXH

ΩH = ϕ∗t (iXH
dΩH + diXH

ΩH) = 0 (A.89)

where ϕt is the flow of the Hamiltonian vector field. Hence, we have proved that
the Hamiltonian symplectic form is conserved along the flow:
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ϕ∗tΩH = ΩH (A.90)

Similarly, if X is a vector field whose flow is symplectic (eq. A.90), we can rewrite
eq. (A.89):

0 =
d

dt
ϕ∗tΩH = diXΩH (A.91)

Therefore, from Poincarè lemma (section A.2.5), there exists locally a function H
which satisfies

iXΩH = dH (A.92)

In conclusion, the flow of an Hamiltonian vector field is symplectic, and a symplectic
map is (locally) Hamiltonian.

A.4.1 Poisson brackets and tensor

Given two functions F,G : M → R, the Poisson brackets and the Poisson ten-
sor, which associates a point z ∈ M to a contravariant skew-symmetric 2-tensor
B : T ∗zM × T ∗zM → R, are defined by:

{F,G} (z) = Bz(dFz,dGz) = Ωz(XF (z), XG(z)) (A.93)

where XF and XG are the Hamiltonian vector fields associated to F and G.
The evolution of a function is related to the Poisson brackets by:

d

dt
(F ◦ ϕt) = {F,H} ◦ ϕt (A.94)

so that, using the Hamiltonian, we get the conservation of energy by skew-
simmetry:

d

dt
(H ◦ ϕt) = {H,H} ◦ ϕt = 0 (A.95)

As we did for differential forms, we can express the Poisson tensor in coordinates,
using a basis of the tangent space and an antisymmetric matrix:

Bz = Bij(z)
∂

∂zi
∂

∂zj
(A.96)
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Hence, the evolution of the system, in terms of the Poisson tensor, has the following
coordinate representation:

żi = {zi, H} = Bz(dz
i,dH) = Bij(z)

∂H

∂zj
(A.97)

Comparing this with equation (A.88), we see that the matrices of the Poisson tensor
and the Hamiltonian symplectic form are related by:

Bij = −(Ω−1)ij (A.98)

A.4.2 Canonical systems

Let the manifold M of the previous section be the cotangent bundle T ∗Q of some
smooth manifold Q. Note that the dimension of M = T ∗Q is 2dim(Q). Denot-
ing by (qi, pi) local coordinates on T ∗Q, the following (locally) constant 2-form
ΩH : T (T ∗Q)× T (T ∗Q)→ R is obviously a symplectic form:

ΩH =
∑
i

dqi ∧ dpi (A.99)

Hence, the symplectic form ΩH , together with a function H : T ∗Q→ R is an hamil-
tonian system, and it is called an hamiltonian canonical system.
The matrix associated with (A.99) is usually denoted by J:

J =

(
0 1

−1 0

)
The canonical symplectic form is exact, since it is the external derivative of the
following canonical one-form ΘH : T (T ∗Q)→ R:

ΘH =
∑
i

pidq
i (A.100)

ΩH = −dΘH (A.101)

If H is the Hamiltonian of a canonical system, we can use formula (A.88) to obtain
the equation of motion in coordinates:

q̇i =
∂H

∂pi
(A.102a)

ṗi = −∂H
∂qi

(A.102b)

which are known as the Hamilton’s equations
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One can wonder if it is possible to choose canonical coordinates for every man-
ifold. The answer is given by the Darboux-Lie theorem, which states that for
every symplectic manifold (M,Ω), there are local coordinates at every point, such
that m = (qi, pi) ∈M , and Ω = ΩH .
This is equivalent to say that a symplectic manifold looks like T ∗Q for some smooth
manifold Q in the neihbourhood of every point. Note that this also means that the
dimension of a symplectic manifold must always be even.

A.4.3 Liouville Theorem

One of the fundamental characteristics of Hamiltonian systems is that there is a
volume form, called the Liouville measure, that is conserved by the Hamiltonian
flow:

ω = Ω ∧ ... ∧ Ω (A.103)

ϕ∗tω = ω (A.104)

where the wedge products in (A.103) are performed n times. When canonical coor-
dinates are available, the Liouville measure takes the form:

ω = dqi ∧ ... ∧ dqn ∧ dpi ∧ ... ∧ dpn (A.105)

This is of great importance, for example, in statistical mechanics, so that the Liou-
ville theorem is just the statement that the distribution function in the phase-space
T ∗Q is constant along a solution.

A.4.4 Correspondence between Hamiltonian and Lagrangian mechanics

We have already seen that a regular Lagrangian system, for which the regularity
condition (A.67) holds and a second order vector field XL exists, can be written as:

iXL
ΩL(v) = dE(v) (A.106)

Hence, every regular Lagrangian system is also Hamiltonian, defined on the sym-
plectic manifold (TQ,ΩL).
Recall that the Legendre transform maps the tangent bundle to the cotangent bun-
dle: FL : TQ→ T ∗Q and that we can write it in coordinates as:

FL(qi, q̇i) =

(
qi,

∂L

∂q̇i

)
= (qi, pi) (A.107)

Using the legendre transform, we can find canonical coordinates given a Lagrangian
system. The symplectic forms and the vector fields are related just by pull-back
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under the Legendre transform:

ΘL = (FL∗)ΘH (A.108)

ΩL = (FL∗)ΩH (A.109)

XL = (FL∗)XH (A.110)

F t
L = (FL)−1 ◦ F t

H ◦ (FL) (A.111)

so that we can compute the Lagrangian flow by going to the cotangent bundle, com-
puting the Hamiltonian flow and returning back to the tangent bundle. Finally, we
can obtain the Hamiltonian from the Lagrangian with:

H(q, p) = FL(q, v) · v − L(q, v) (A.112)

Writing eq. (A.112) in coordinates, we find:

H(q, p) =
∑
j

pj q̇
j(q, p)− L(q, q̇(q, p)) (A.113)

Note that with singular Lagrangians, q̇ can’t be inverted with respect to (q, p), thus
in those cases the last equation doesn’t make sense.

A.4.5 Generating functions

Given a canonical Hamiltonian system, we can relate it to the Lagrangian formalism
with a different approach.
Fixing a time t, the Hamiltonian flow F t

H : T ∗Q→ T ∗Q is a symplectic transforma-
tion, since it conserves the canonical symplectic form, hence we can write:

(F t
t )
∗ΩH − ΩH = d(ΘH − (F t

t )
∗ΘH) = 0 (A.114)

Therefore, by Poincarè lemma, there exists locally a funtion S, the generating
function of the flow F t

H , such that:

dS = ΘH − (F t
t )
∗ΘH (A.115)

Denoting by (q0, p0) and by (q1, p1) the coordinates respectively on T ∗Q and on
T ∗Q, transformed by F t

H (i.e. (q1, p1) = F t
H(q0, p0)), we can write equation (A.115)

in coordinates (q0, q1):

p0dq0 − p1dq1 =
∂S

∂q0

dq0 +
∂S

∂q1

dq1 (A.116)

148



thus:

p0 =
∂S

∂q0

(A.117)

p1 = − ∂S
∂q1

(A.118)

This means that if we know a generating function S(q0, q1) of the Hamiltonian flow,
we can find (p0, p1) from (q0, q1) by equations (A.117). We can generalize this no-
tions as follows:

The graph of F t
H is a subset of T ∗Q × T ∗Q. We can extend the symplectic 1-form

to a 1-form on T ∗Q× T ∗Q:

Θ̂ = τ ∗1 ΘH − τ ∗2 ΘH (A.119)

where τ is the projection from T ∗Q× T ∗Q to the first and second cotangent bundle
respectively. Then, if i is the inclusion map, from the graph of F t

H to T ∗Q × T ∗Q,
the analogous of equation (A.114) is:

d(i∗Θ̂) = 0 (A.120)

Hence, there is a function S : (T ∗Q× T ∗Q)→ R, such that:

i∗Θ̂ = dS (A.121)

Note that, being S defined on T ∗Q × T ∗Q, we can choose any local coordinates.
The choice S(q0, q1) gives equations (A.117). Generally, choosing coordinates (q0, p1)
and (q1, p0), a slightly different but of course equivalent definition of the generating
functions, S1 and S2, is given: (see [11] for further reference)

q1 · dp1 + p0 · dq0 = d(p1 · q0 + S1(q0, p1)) (A.122a)

p1 · dq1 + q0 · dp0 = d(p0 · q1 − S2(q1, p0)) (A.122b)

Comparing equations (A.122) and (A.116), we can relate the three generating func-
tions as follows:

S1 = q1 · p1 − p1 · q0 − S = p1 · (q1 − q0)− S (A.123a)

S2 = p0 · q1 − p0 · q0 − S = p0 · (q1 − q0)− S (A.123b)

Note that knowing explicitly a generating function from another one is not feasible
in practice, since the knowledge of the Hamiltonian flow is needed.

149



The generating functions and the Hamiltonian of the system are related through the
Hamilton-Jacobi equation:

H

(
q0,

∂S

∂q0

(q0, q1, t)

)
+
∂S

∂t
(q0, q1, t) = 0 (A.124)

A similar equation holds for S1:

H

(
q0 +

∂S1

∂p1

(q0, p1, t), p1

)
− ∂S1

∂t
(q0, p1, t) = 0 (A.125)

Knowing a generating function from the Hamiltonian, and vice versa, is difficult for
the same reason as before. Jacobi found out that the action of the system, expressed
in coordinates (q0, q1), is a solution, the Jacobi’s solution, to the Hamilton-Jacobi
equation:

S(q0, q1, t) =

∫ q1

q0

L(q(τ), q̇(τ))dτ (A.126)

where q(t) is a solution to the Lagrangian system which passes through q0 and q1:
q(0) = q0, q(t) = q1.
Eq.(A.126) is very important for our purposes, since this thesis deals with numerical
integrators whose flow are generated by an approximation of the Jacobi’s solution.
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