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Summary 9	  

The ability to attract mates, acquire resources for reproduction, and successfully outcompete 10	  

rivals for fertilisations may make demands on cognitive traits - the mechanisms by which an 11	  

animal acquires, processes, stores, and acts upon information from its environment. 12	  

Consequently, cognitive traits potentially undergo sexual selection in some mating systems. 13	  

We investigated the role of cognitive traits on the reproductive performance of male rose 14	  

bitterling (Rhodeus ocellatus), a freshwater fish with a complex mating system and alternative 15	  

mating tactics. We quantified the learning accuracy of males and females in a spatial learning 16	  

task and scored them for learning accuracy. Males were subsequently allowed to play the 17	  

roles of a guarder and a sneaker in competitive mating trials, with reproductive success 18	  

measured using paternity analysis. We detected a significant interaction between male mating 19	  

role and learning accuracy on reproductive success, with the best performing males in maze 20	  

trials showing greater reproductive success in a sneaker role than as a guarder. Using a cross-21	  

classified breeding design, learning accuracy was demonstrated to be heritable, with 22	  

significant additive maternal and paternal effects. Our results imply that male cognitive traits 23	  

may undergo intra-sexual selection. 24	  
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1. Introduction 27	  

Cognitive traits, the neuronal processes concerned with acquiring, processing, retaining, and 28	  

using information [1-3], equip an individual with the capacity to solve novel tasks. Cognitive 29	  

traits may be favoured under natural selection if they influence individual fitness, for example 30	  

through enhanced foraging ability or food caching [1]. Cognitive ability may also potentially 31	  

undergo sexual selection [4,5]. Sexual selection is selection that acts on differences in fitness 32	  

among individuals due to the number and identity of their mates, and is a powerful form of 33	  

selection that shapes mating system evolution [6]. Hitherto, sexual selection has not been 34	  

considered a major driving force in the evolution of cognition [1]. However, cognitive traits 35	  

have the potential to influence mate finding, mate choice or success in fertilization, depending 36	  

on the selective forces generated by a particular mating system. Variance in male reproductive 37	  

success is typically greater than in females and often results in the evolution of elaborate 38	  

phenotypic traits in males. In the case that cognitive traits undergo sexual selection, a 39	  

prediction is that selection for cognitive ability will be stronger in males than females, in the 40	  

same way that other traits, such as nuptial coloration, weapons or alternative mating 41	  

behaviours, are typically more strongly expressed in males than in females. For selection to 42	  

act on cognitive traits, there must also be heritable variation with consequences for fitness 43	  

[3,4,7].  44	  

 Some recent studies have implicated a role for male cognitive abilities in the capacity 45	  

to attract mates, successfully father offspring and efficiently perform parental care, 46	  

particularly in birds [8-12]. In Drosophila melanogaster it was shown that male cognitive 47	  

traits were eroded under relaxed sexual selection, demonstrating a potentially significant role 48	  

of cognition in the mating system of this species [13]. The results of this study imply a 49	  

heritable basis to cognitive traits, and that their expression can carry a fitness cost in some 50	  

circumstances. However, little emphasis has so far been placed on several key aspects of 51	  
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cognition, namely understanding how cognitive traits evolve, how they are associated with 52	  

reproductive success, or what trade-offs constrain their evolution.  53	  

 Here we investigated the role of cognitive ability in the mating system of rose 54	  

bitterling (Rhodeus ocellatus), freshwater fish that spawn their eggs in the gills of living 55	  

mussels. Dominant males aggressively defend territories to monopolize mussels and perform 56	  

elaborate courtship towards females [14,15]. Females place their eggs into the gills of a 57	  

mussel through its exhalant siphon. Males fertilize the eggs by ejaculating over the inhalant 58	  

siphon of the mussel, with water filtered by the mussel carrying the sperm to the eggs. Pre-59	  

oviposition ejaculations, whereby males release sperm over a mussel before a female spawns, 60	  

are common. Bitterling spermatozoa remain viable within a mussel gill for an unusually 61	  

prolonged period and are capable of fertilizing eggs at least 14 minutes after ejaculation 62	  

[16,17]. The risk of sperm competition in bitterling is high [18]. Males that control access to 63	  

mussels enjoy high reproductive success and male dominance is determined by body size 64	  

[19,20], with smaller, subordinate males adopting alternative mating tactics. The dominant 65	  

‘guarder’ and subordinate ‘sneaker’ mating tactics are not fixed and male mating behaviour is 66	  

opportunistic, with males capable of playing either role depending on environmental context 67	  

[21,22], which is the typical situation in teleost fishes [15]. The sneaker tactic commonly 68	  

involves pre-oviposition ejaculations [14,15,17], with male reproductive success determined 69	  

by how males distribute their ejaculates among mussels in relation to the distribution of 70	  

spawning females, the spatial distribution of mussels, and the distribution of rival ejaculates 71	  

[17], while minimizing the risk of sperm depletion [18].  72	  

 The bitterling mating system, therefore, would appear to favour males that can match 73	  

their mating role to the local environment, and that have the spatial cognitive ability to 74	  

distribute their ejaculates optimally among mussels to maximize their reproductive success 75	  

[17]. In particular, sexual selection for spatial cognition would be predicted to operate more 76	  

strongly on males in a sneaker role, since guarder males typically enjoy higher fertilization 77	  
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success than sneakers, with sneaker success linked more directly to an ability to anticipate 78	  

spawning events with pre-oviposition ejaculations. Here we examine the potential role of 79	  

cognitive traits in mating system evolution by testing the predictions that: 1.  performance in a 80	  

spatial learning task predicts male reproductive success; 2. spatial cognitive ability favours 81	  

males performing alternative mating tactics; 3. performance in a spatial learning task is 82	  

heritable.  83	  

 84	  

2. Materials and methods 85	  

(a) Study system 86	  

Experimental R. ocellatus used in trials were the second generation descended from 200 wild-87	  

caught fish from the River Yangtze basin, China. During the experiment they were 18 months 88	  

old. Prior to experiments, fish were housed in stock aquaria measuring 600 (length) x 300 89	  

(width) x 400 (depth) mm. For learning trials, groups of 16 randomly selected males and 90	  

females were taken from stock aquaria. The same 16 males were subsequently used in 91	  

competitive mating trials to assess the reproductive success of males of known performance 92	  

in spatial learning ability. To quantify the heritability of spatial cognition, males and females 93	  

from the same stock as the learning and mating trials were used, though not the same 94	  

individuals. Stock and holding aquaria, as well as maze and mating trial aquaria, were all 95	  

housed in an environmentally controlled room with a 16:8 h light: dark cycle at 23 °C. Fish 96	  

were fed a mixture of commercial dried fish flake food and bloodworm (Chironomus spp.) 97	  

twice daily.	   98	  

 99	  

(b) Learning accuracy 100	  

Learning accuracy was quantified using maze apparatus for fish [19,20], comprising a square 101	  

plastic box with opaque walls measuring 500 (length) x 500 (width) x 300 (depth) mm. A 102	  
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central chamber (300 x 300 mm) with opaque walls was connected to four outer chambers by 103	  

separate 50 mm wide openings (figure S1a). The walls of each outer compartment were a 104	  

different colour, either red, blue, green or black, to act as clear landmarks for navigation. The 105	  

choice of experimental colours was based on cyprinid colour vision, which is tetrachromatic 106	  

[21]. Each outer chamber had a 40 mm diameter Petri dish placed at its farthest corner. A 107	  

webcam, connected to a laptop computer, was suspended directly above the maze so that a 108	  

fish in the maze could be observed remotely without disturbance. 109	  

Test fish were individually housed in holding aquaria measuring 300 (length) x 200 110	  

(width) x 220 (depth) mm. Each fish was randomly assigned to either the red, blue, green or 111	  

black chamber as a reward chamber. To measure learning accuracy, each fish was given a 112	  

single familiarity trial before testing. A food reward of 5-8 live whiteworms (Enchytraeus 113	  

spp.) was placed in the Petri dish in the test chamber to which the test fish was assigned. To 114	  

control for the effect of olfactory cues, water in which whiteworms were stored, and infused 115	  

with their odour, was pipetted into all test chambers immediately prior to each test. The test 116	  

fish were gently transferred to a clear plastic release cylinder in the central compartment of 117	  

the maze and allowed at least 2 min. to settle. The cylinder was then raised remotely, freeing 118	  

the fish and enabling it to explore the maze. All fish located and ate the food reward within 119	  

two hours of release.  120	  

On the day following their familiarity trial, the fish was returned to the release 121	  

cylinder for the start of the trial proper. A record was kept of the frequency with which the 122	  

fish made an error and entered a chamber without a food reward, scored as occasions when 123	  

the fish passed at least halfway through the chamber entrance. If after 10 min. the fish had not 124	  

located the food reward, it was gently guided into the rewarded chamber with a hand net and 125	  

allowed to feed. After feeding, fish were transferred back to their holding aquaria. Fish were 126	  

not fed prior to testing and so were motivated to locate the food reward. Every fish was tested 127	  

once each day for 7 days, with the total number of errors over this period summed as a 128	  



	   7	  

learning accuracy score. After completion of 7 trials, fish were measured for Standard Length 129	  

(SL; tip of the snout to the base of the tail fin). 130	  

 131	  

(c) Emergence trials 132	  

To control for the potentially confounding effects of variation in 'shyness-boldness' sensu 133	  

[23], a behavioural assay was performed. The assay measured time to emerge from a refuge 134	  

(for simplicity, hereafter referred to as 'emergence time'), estimated as the time taken for an 135	  

individual to emerge from shelter in a novel environment [23]. 136	  

Tests followed an established protocol [24] and were conducted in glass aquaria 137	  

measuring 300 (length) x 200 (width) x 200 (depth) mm. Test aquaria had a gravel substrate 138	  

and water to a depth of 150 mm. The aquarium was bisected with a sliding opaque partition 139	  

placed 100 mm from one end. Artificial plants that reached the water surface were placed 140	  

behind the screen to provide a refuge area of dense submerged vegetation. The remaining 200 141	  

mm section of the aquarium was bare of cover (figure S1b). Fish were gently released into the 142	  

vegetated end of the test aquarium. After a 5 min. acclimation period, the partition was raised 143	  

allowing the fish to explore the whole aquarium. An observer recorded the time taken for the 144	  

fish to emerge a full body length from the vegetated end into the open part of the aquarium. A 145	  

fish that failed to emerge within 10 min. was assigned a score of 600s. After completion of a 146	  

trial, the test fish was returned to its holding aquarium. On the following day, the fish was 147	  

retested using the same protocol. Repeatability was high (r = 0.61). The mean of the two 148	  

emergence scores was used as an index of shyness-boldness for that individual.	   After 149	  

completion of trials, males were retained singly in their holding aquaria for testing in 150	  

competitive mating trials. Females were returned to stock aquaria and were not used further. 	  151	  

 152	  

(d) Competitive mating trials 153	  
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The reproductive success of the 16 males used in learning and emergence trials was measured 154	  

in mating trials by permitting them to compete with rivals for fertilizations, acting in the role 155	  

of both a guarder and a sneaker. Rivals were from the same stock of fish, but played no other 156	  

role in the study. Trials were performed in an aquarium measuring 1250 (width) x 300 157	  

(length) x 300 (depth) mm. Two size-matched Unio pictorum mussels were placed in sand-158	  

filled cups and situated at each end of the aquarium. The aquarium had a sand substrate and 159	  

was furnished with 20 artificial plants, distributed haphazardly, to add environmental 160	  

heterogeneity. 161	  

 The focal male was gently released into the aquarium and randomly assigned either a 162	  

guarder or a sneaker role. In the case the male was to play the role of a guarder, a rival male 163	  

was released into the test aquarium that was 20% (by SL) smaller than the focal male. If the 164	  

male was to play the role of a sneaker, the rival was 20% larger. Male mating role in R. 165	  

ocellatus is determined by relative body size [25]. The two males were left for 24 h to 166	  

establish dominance roles. In every case the larger male played the role of guarder and the 167	  

smaller individual acted as a sneaker during matings. After 24 h, a female in reproductive 168	  

condition (with an extended ovipositor) was selected from a stock tank and gently released 169	  

into the aquarium. After 1 h (which is sufficient time for repeated spawning acts) the female 170	  

was captured, measured and a small portion of the tail fin was removed and fixed in 95% 171	  

ethanol. A second female was then released and the process repeated.  172	  

After completion of a trial, a finclip was taken from the focal and rival male and fixed 173	  

in ethanol for paternity analysis. The focal male was returned to his holding aquaria. The 174	  

Total Length of the mussels was measured and their gills checked for eggs. If eggs were 175	  

present, the mussel was dissected and the eggs allowed to develop in a water-filled 70 mm 176	  

diameter Petri dish in an incubator at 23 °C for five days. After five days, the embryos were 177	  

fixed in ethanol for parentage analysis. Rival males and females were released in stock tanks 178	  

and were not used again in trials. 179	  
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Focal males were again tested a minimum of two days after the first trial (mean ± s.d. 180	  

of 2.8 ± 1.0 days), but in the opposite role to the one they played in their first trial. Thus, focal 181	  

males that had played a guarder role subsequently played the role of a sneaker, and vice versa, 182	  

with the order in which they played these roles randomised and using a new rival male and 183	  

pair of females. Finclips were collected from the rival male, both females, and fertilized eggs 184	  

were incubated and subsequently fixed in ethanol. It was not necessary to finclip focal males 185	  

again. At completion of trials, all 16 focal males had engaged in competitive matings with a 186	  

rival in both a guarder and sneaker role. The study generated a total of 439 fertilized embryos. 187	  

Of these, a total of 416 embryos (95%) survived five days to fixation in ethanol, with a mean 188	  

(± SE) of 13.0 (± 1.2) embryos per trial. 189	  

 190	  

(e) Parentage analysis 191	  

For parentage analysis, DNA was extracted from ethanol preserved tissue using established 192	  

methods [26]. A set of 8 microsatellite loci [26,27] was chosen on the basis of their variability 193	  

and informative value and combined in two multiplex PCR reactions, with a mean of 13 194	  

(range: 6-23) alleles per locus. The length of the DNA fragments was analysed using 195	  

GeneMapper® software. DNA was successfully extracted and analysed for a total of 408 196	  

embryos. Of these, paternity was assigned with 95% confidence for 364 embryos in Cervus 197	  

3.0 (error rate set to 0.01) [28]. In one replicate, only three eggs were recovered and data for 198	  

this replicate were excluded from the subsequent analysis. All other embryos were included in 199	  

analyses, with a mean of 12 (range: 5-25) embryos per replicate. For one male, a fin clip from 200	  

a rival male was not properly fixed when the focal male played a guarder role. In this case 201	  

paternity could only be estimated with 95% certainty for the male in a sneaker role but not as 202	  

a guarder. Because of the paired nature of our subsequent analysis, this replicate was excluded 203	  

from the dataset. 204	  

 205	  
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(f) Heritability: in vitro fertilisations 206	  

The heritability of learning accuracy was measured using a North Carolina Type II breeding 207	  

design using in vitro fertilizations (IVF) to generate a series of replicated half-sib families 208	  

[29]. Eight blocks, each with a set of 2 × 2, male × female, factorial crosses were conducted 209	  

using fish from the same stock. Within each block, both males were crossed with both 210	  

females, with a replicate of each cross. This design generated 2 replicates of 4 families of 211	  

maternal and paternal half-siblings, in each of eight blocks, with a total of 64 replicated 212	  

families in the final combined design. A comparable design was used successfully in previous 213	  

heritability studies with R. ocellatus [30], and permits the relative contribution of additive and 214	  

nonadditive genetic effects for a trait of interest to be measured, and to identify maternal and 215	  

paternal contributions to additive genetic variance. 216	  

To generate crosses, experimental females were isolated until they ovulated a batch of 217	  

eggs; obvious from the female’s extended ovipositor. The eggs were gently stripped from the 218	  

female and divided into approximately two equal groups in separate 70 mm diameter Petri 219	  

dishes containing freshwater (mean = 8.0 ± 3.1 s.d. eggs per group). Sperm was stripped from 220	  

the two experimental males by gently pressing their abdomens and mixed in 9 ml of teleost 221	  

saline [31]. A 1 ml subsample of this sperm solution was diluted with a further 9 ml of saline. 222	  

Sperm suspensions were pipetted over the eggs and the covered Petri dishes were left on the 223	  

laboratory bench for 30 min. The fertilized eggs were washed in freshwater and the long axis 224	  

of every egg measured under a binocular microscope (Nikon Eclipse E200) with an eyepiece 225	  

micrometer to the nearest 0.1 mm. They were subsequently incubated at 23 °C until the yolk 226	  

sac was absorbed and the fish began exogenous feeding, a period of approximately 30 days. A 227	  

daily record was kept of embryo survival. After the onset of exogenous feeding, fish were 228	  

transferred in family groups to aquaria measuring 300 (length) x 200 (width) x 210 (depth) 229	  

mm and fed twice daily on formulated zebrafish granules, supplemented with live Artemia. 230	  

 231	  
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(g) Heritability: offspring learning accuracy 232	  

Offspring learning accuracy was assayed after approximately 12 weeks (mean = 86.3 ± 2.9 233	  

s.d. days) with a simplified version of the learning trials used for adults. A simplified design 234	  

was used to facilitate screening of a large number of fish. Mean (± s.e.) offspring SL at this 235	  

age was 21.8 (± 1.9) mm. A single fish was tested from each family generated from factorial 236	  

crosses, with 64 fish tested in total. Fish were sexually immature and were selected randomly 237	  

from each family.  238	  

Learning accuracy was measured in a series of dichotomous choice chambers. These 239	  

comprised a glass aquarium measuring 300 (length) x 200 (width) x 220 (depth) mm 240	  

containing 7 L of fresh water. Halfway along the aquarium there was a sliding partition that 241	  

retained the test fish in the rear portion of the aquarium (figure S1c). The front of the 242	  

aquarium was partitioned into two 70 x 100 mm choice chambers, with 40 mm openings at 243	  

each side. A single 30 mm diameter Petri dish was situated immediately inside each choice 244	  

chamber, such that they could not be seen from outside the chamber. A red and blue plastic 245	  

marker, measuring 5 x 5 mm, was attached to the front of the aquarium, so that it was visible 246	  

to the test fish from the rear of the aquarium as landmarks for navigation. The side of the 247	  

aquarium on which the blue or red markers were attached was randomised. Test fish were 248	  

randomly assigned to either the red or blue chamber as a reward chamber.  249	  

To minimise isolation stress while confined at the rear of the aquarium, fish were able 250	  

to see neighbours in adjacent aquaria. However, the front half of aquaria were screened from 251	  

neighbours with an opaque barrier. Thus, when making the decision to enter the test chambers 252	  

at the front of the test aquarium, the fish were visually isolated from their neighbours. This 253	  

conformation ensured fish were not visually isolated between trials, but could not be 254	  

influenced by the behaviour of neighbours during trials. 255	  

To measure learning accuracy, fish were initially given a familiarity trial. Test fish 256	  

were introduced to the test chamber on the day prior to the start of trials, but not fed. The 257	  
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following day, a food reward of 5-8 live whiteworms was placed in the Petri dish in the test 258	  

chamber to which the test fish was assigned (red or blue). To control for the effect of potential 259	  

olfactory cues, water in which whiteworms were stored, and infused with odour, was pipetted 260	  

into both chambers. The central partition was raised and the fish allowed to explore both 261	  

chambers and feed on the whiteworms. All fish located and ate the food reward within two 262	  

hours of release.  263	  

On the day following the familiarity trial, the fish were confined behind the central 264	  

partition. Whiteworms were replaced in the Petri dish and the partition removed. A record 265	  

was kept of the frequency with which the fish made an error and entered a chamber without a 266	  

food reward, scored as occasions when the fish passed at least halfway through the chamber 267	  

entrance. If after 10 min. the fish had not located the food reward, it was gently guided into 268	  

the rewarded chamber with a hand net and allowed to feed. After feeding, fish were confined 269	  

at the back of the aquarium, behind the partition. Fish were not fed prior to testing and so 270	  

were motivated to locate the food reward. Every fish was tested once each day for 6 days, 271	  

with the total number of errors over this period summed as a learning accuracy score.  272	  

 273	  

(h) Statistical analysis 274	  

Before applying statistical models a data exploration was undertaken following the protocol 275	  

described in [32]. The data were examined for outliers in the response and explanatory 276	  

variables, homogeneity and zero inflation in the response variable, collinearity between 277	  

explanatory variables and the nature of relationships between the response and explanatory 278	  

variables. Data analyses were performed using R [33]. 279	  

 Sex difference in learning accuracy was modelled using a generalised linear model 280	  

(GLM) with log-link function to preclude negative fitted values. Assuming estimates of 281	  

learning accuracy (accuracyi) were Poisson distributed with mean µi , the model contained a 282	  
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linear effect for fish length (sl), emergence time (emg) and sex (fSex) as main terms and took 283	  

the form: 284	  

 285	  

accuracyi ~ Poisson(µi) 286	  

E(accuracyi) = µi  and var(accuracyi) = µi 287	  

ηi = β1 + β2 x sli + β3 x emgi + β4 x fSexi 288	  

log(µi) = ηi 289	  

  290	  

 Male reproductive success from competitive mating trials was modelled using a 291	  

binomial generalised linear mixed model (GLMM) with an observation level random 292	  

intercept. Male length (SL) was collinear with emergence time, and rival SL was collinear 293	  

with male mating role. Consequently emergence time and rival SL were dropped from the 294	  

analysis [32]. The model took the form: 295	  

 296	  

 successij ~ Binomial(πij, Nij) 297	  

 E(successij) ~ Nij x πij 298	  

 var(successij) ~ Nij x πij x (1 - πij) 299	  

 ηij = β1 + β2 x slij + β3 x musselij + β4 x fRoleij : β5 x accuracyij + mi + εij 300	  

 logit (πij) = ηij 301	  

 mi ~ N(0, σ2
male) 302	  

 εij ~ N(0, σ2
ε) 303	  

 304	  

 Successij is the reproductive success in the jth competitive mating trial for male i out 305	  

of the Nij trials conducted. πij is the probability of successful fertilisation of eggs by male i in 306	  

the jth competitive mating trial. The model contained a linear effect for male SL (sl) and 307	  

mussel length (mussel) as main terms and an interaction between male mating role (fRole) and 308	  
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learning accuracy (accuracy). The random intercept mi was included to introduce a correlation 309	  

structure between observations for the same male. εij is an observation level random effect to 310	  

accommodate overdispersion in the data [32,34]. Continuous covariates were standardized to 311	  

enhance numerical optimisation of the model [32]. In the model, the interaction between male 312	  

role and learning accuracy measured the contribution of learning accuracy to reproductive 313	  

success in the roles of guarder and sneaker. As an additional measure of this effect, the 314	  

difference in reproductive success of males playing a sneaker compared with guarder role was 315	  

correlated with learning accuracy. 316	  

 The colour of the test chamber in learning trials, and the order in which males played 317	  

either a sneaker or guarder role in competitive mating trials made no significant contribution 318	  

to models and were dropped from analyses. 319	  

 In the analysis of the heritability of learning accuracy, two-way ANCOVA was used 320	  

for each 2 × 2 factorial block to compare effects of sire, dam, and their interaction on learning 321	  

accuracy at 12 weeks. Under this design the kth offspring phenotype from cross i × j takes the 322	  

form: 323	  

  324	  

 zijk = µ + si + dj + Iij + eijk 325	  

 326	  

µ is the mean population phenotype and si and dj  are the additive effects on phenotype from 327	  

the ith male (sire effect) and jth female (dam effect) respectively. Iij is the non-additive sire × 328	  

dam interaction and eijk is the deviation of observed phenotype of the kth offspring of male i 329	  

and female j from model predictions, and comprises phenotypic variance resulting from 330	  

segregation, dominance and environment [29]. The model assumes within family variance is 331	  

uncorrelated with among family variance, with total phenotypic variance the sum of sire, dam, 332	  

interaction and error variance: 333	  

 334	  
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 σ2
z = σ2

s  + σ2
d  + σ2

I + σ2
e 335	  

 336	  

Sums of squares were combined to calculate mean squares and degrees of freedom for all 337	  

families combined [29]. Because the amount of egg yolk can significantly affect offspring 338	  

fitness [15,35], egg size was included as a covariate in the analysis as a maternal effect. 339	  

Narrow-sense heritability (h2) was estimated as VA/VP, where VA is additive genetic variance 340	  

and VP total phenotypic variance [29]. 341	  

 342	  

2. Results 343	  

(a) Sex differences in learning accuracy 344	  

Males showed significantly better learning accuracy in maze trials than females (table 1). 345	  

Mean (± s.e.) learning accuracy score for males was 8.6 (± 0.74) errors and for females 11.0 346	  

(± 0.84). There was no significant effect of fish SL or emergence time (table 1) on learning 347	  

accuracy, and no sex difference in body size (t30 = 1.47, p = 0.153) or emergence time (t30 = 348	  

1.30, p = 0.202). 349	  

 350	  

(b) Male reproductive success and learning accuracy 351	  

There was a significant interaction between male mating role and learning accuracy in 352	  

predicting reproductive success in competitive mating trials (table 2). When males played a 353	  

sneaker role, learning accuracy predicted mating success, but not as a guarder (figure 1). 354	  

There was a significant correlation between the difference in reproductive success in the 355	  

sneaker role compared with territorial (sneaker - territorial) with learning accuracy (t13 = 2.68, 356	  

p = 0.019). Overall, male reproductive success was significantly higher in a dominant guarder 357	  

role than as a subordinate sneaker (table 2), though some males performed better in the role of 358	  

sneaker than as a guarder (figure 2). Mean mussel size weakly predicted male reproductive 359	  
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success (table 2). There was no significant contribution of male SL to reproductive success 360	  

(table 2). 361	  

 362	  

(c) Heritability of learning accuracy 363	  

Learning accuracy showed significant additive male and female effects (table 3). There was 364	  

no male × female interaction on learning accuracy. Narrow-sense heritability of learning 365	  

accuracy was estimated as h2 = 0.27.  366	  

 367	  

4. Discussion 368	  

Darwin was the first to recognize that cognitive traits potentially undergo sexual selection [6]. 369	  

Our results demonstrated a link between male performance in a spatial task and reproductive 370	  

success, which depended on mating context. Accuracy of learning predicted the reproductive 371	  

success of males adopting sneaky mating tactics, but not the success of males playing a 372	  

dominant, guarder mating role. We also measured significant paternally and maternally 373	  

inherited additive genetic variance for learning accuracy, raising the possibility that spatial 374	  

cognition may undergo sexual selection in rose bitterling.  375	  

 Our findings implicate a possible causal link between male performance in a spatial 376	  

learning task in the capacity to fertilize the eggs of females in a competitive environment, and 377	  

especially in the role of a sneaker. The mechanism by which spatial cognition might 378	  

contribute to male reproductive success was not directly measured in this study. However, 379	  

male reproductive success in bitterling is closely linked to the way the male distributes 380	  

ejaculates in space and time, particularly for sneakers [16,17,26,36,37]. In nature and in the 381	  

lab, male bitterling systematically patrol mussels in their own territory, as well as those of 382	  

their neighbours, examine the exhalant siphons of mussels and frequently ejaculate over them 383	  

(termed pre-oviposition ejaculation) [14,15]. Non-territorial males also engage in the same 384	  
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behaviour, which takes place even in the absence of females, though the presence of a female 385	  

who is ready to mate significantly increases the rate of male inspection and ejaculation 386	  

[17,37]. Males appear to obtain information about the presence of their own, and possibly 387	  

rival spermatozoa by examining mussel siphons, which may provide them with cues about 388	  

how to distribute their sperm among mussels [17,37,38]. To maximize their reproductive 389	  

success, males must anticipate female oviposition decisions, as well as the ejaculatory 390	  

behaviour of rivals, often among numerous mussels distributed over a wide area, and place 391	  

their sperm into particular mussels at appropriate time intervals to minimize their risk of 392	  

sperm depletion [17,18,38,39]. Males also modulate ejaculation size [39-41] in response to 393	  

the intensity of sperm competition. Thus in the bitterling mating system, optimizing the size, 394	  

distribution and timing of ejaculates may impose cognitive demands on males, particularly 395	  

those playing sneaker mating tactics, which selects for enhanced spatial cognitive ability. 396	  

For selection to operate on cognitive traits a requirement is that they must show 397	  

heritable variance. The heritability of cognitive ability has rarely been estimated, though 398	  

where it has, it appears to be significant [4,5]. In humans, more than half of individual 399	  

differences in intelligence are attributed to additive genetic variation [42,43]. For other taxa, 400	  

systematic analyses of cognition are lacking [3-5,7]. Our estimates of heritability of 401	  

performance in a spatial learning task in rose bitterling indicated that approximately one 402	  

quarter of variance in learning accuracy was heritable. The heritability of learning accuracy 403	  

was wholly additive, and both maternally and paternally inherited. Significant additive 404	  

variance for learning accuracy implies that the trait would respond positively to directional 405	  

sexual selection. It also implies that selection on spatial learning in the study population has 406	  

not been consistently strong, since variance in a trait is typically depleted under strong 407	  

positive selection [29]. However, while spatial cognitive ability may enhance fitness in some 408	  

circumstances, the evolution of cognitive traits face constraints and need not always 409	  

experience positive selection. Thus there are potential trade-offs between the fitness benefits 410	  
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of enhanced cognitive performance, and costs associated with cognitive traits [44]. In a wild 411	  

population of great tits (Parus major), parents that were able to solve a cognitive task 412	  

produced larger clutches than those that failed to solve the task [9]. Task solvers spent less 413	  

time foraging and foraged over a smaller area than non-solvers, implying that they were more 414	  

efficient foragers than non-solvers. However, solvers were more sensitive to disturbance and 415	  

were more likely to desert offspring. The result was that, on average, solvers and non-solvers 416	  

fledged a similar number of offspring. In a lab population of the guppy (Poecilia reticulata), 417	  

artificial selection on brain size enhanced cognitive ability in females, but not males, despite 418	  

brain size responding to artificial selection in both sexes. Larger-brained individuals paid a 419	  

fitness cost in term of producing fewer offspring, potentially as a trade off between 420	  

energetically expensive brain tissue and investment into other organs [45]. In the present 421	  

study, cognitive traits were favoured when males played a sneaker role, but not in a guarder 422	  

role, implying there may be a trade-off in the traits that make a successful sneaker and 423	  

guarder. The guarder role in bitterling typically generates higher reproductive success than the 424	  

sneaker role, though this varies with fish density [16,26].  425	  

A prediction from our results is that those males suited to a guarder role will have 426	  

greater reproductive success at low densities, where the reproductive success of guarder is 427	  

known to be greatest [16,26]. In contrast, males with superior cognitive ability would be 428	  

predicted to perform better at high male densities, where sperm competition and male ability 429	  

to optimally distribute their ejaculates plays a more critical role in male reproductive success 430	  

[16,26,36,46,47]. A predicted outcome is that selection on male cognitive traits will vary 431	  

among populations, and within populations among breeding seasons, thereby maintaining 432	  

variance for cognitive traits. Bitterling populations occur at highly variable densities [48] and 433	  

males exhibit wide variation in behavioural and morphological traits [36], offering 434	  

exceptional material for examining selection on cognitive traits in nature. Further 435	  

investigation of the role of cognitive traits in species that express alternative mating tactics 436	  



	   19	  

will demonstrate the generality of our conclusions for other mating systems. It would also be 437	  

informative to examine domain specificity in rose bitterling and establish whether learning 438	  

accuracy can predict enhanced fitness in other contexts. 439	  

In conclusion, this study demonstrates a potential role for spatial cognitive traits in the 440	  

mating system of a fish. Male performance in a spatial learning task showed additive genetic 441	  

variance and may undergo intra-sexual selection, particularly under environmental conditions 442	  

that favour the expression of alternative mating tactics. This is the first non-human study to 443	  

show genetic variance for spatial cognitive ability with a direct link to reproductive success.  444	  
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Table 1. Summary of the generalised linear model for Poisson distributed data to 567	  

examine sex differences in learning accuracy in rose bitterling (Rhodeus ocellatus). 568	  

Nobs = 32. 569	  

 570	  

Model parameter Estimate s.e. z P 

Intercept 1.510 0.591 2.55 0.011 

sl 0.014 0.010 1.36 0.171 

emg -0.001 0.001 -0.32 0.750 

sex(female) 0.289 0.127 2.27 0.023 

 571	  

Table 2. Summary of the generalised linear mixed-effects model for binomial 572	  

distributed data to examine mating role differences in the reproductive success of 573	  

male rose bitterling (Rhodeus ocellatus). Individual males were fitted as random 574	  

intercepts, with standard deviation of 0.75. An observation level random intercept 575	  

was included in the model with standard deviation of 0.43. Nobs = 30. 576	  

 577	  

Model parameter Estimate s.e. z P 

Intercept -0.223 0.297 -0.77 0.441 

role(guarder) 1.054 0.327 3.23 0.001 

accuracy -0.739 0.372 -1.97 0.047 

sl 0.560 0.307 1.82 0.068 

mussel 0.434 0.200 2.17 0.030 

role(guarder) x accuracy	   0.754	   0.335	   2.25	   0.024	  
 578	  

579	  
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Table 3. ANCOVA for rose bitterling (Rhodeus ocellatus) offspring learning accuracy for in 579	  

vitro fertilizations. 580	  

	  581	  

Source df SS MS F p variance % 

Egg size 8 5417 677.1 1.88 0.118 39.6 8 

Female (F) 8 6741 842.6 3.74 0.040 30.2 6 

Male (M) 8 10964 1370.4 6.09 0.010 63.1 13 

F x M 8 1801 225.2 0.63 0.747 0 0 

Error 21 7561 360.1   360.1 73 
 582	  

Figure Legends 583	  

Fig. 1. Fitted values for male reproductive success against standardized learning accuracy 584	  

scores for males playing a guarder and sneaker role in competitive mating trials modelled 585	  

using a binomial GLMM. Grey bands indicate 95% confidence intervals around the fitted line. 586	  

Black circles are observed values for male reproductive success. Note that a low 587	  

standardized learning score indicated completion of the maze task with few errors. 588	  

Fig. 2. Observed reproductive success of males playing a guarder and sneaker role in 589	  

competitive mating trials. Linked black circles are the same individual, open circles represent 590	  

mating role means (± s.e.).  591	  
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Cognitive ability is heritable and predicts the success of an alternative mating tactic 

C.	  Smith	  et	  al.	  Online	  Appendix	  

	  

1. Supplementary figures 

Figure S1. Diagrams showing plan view of test apparatus for: (a) adult maze trials, 

showing release cylinder (S) in central compartment and Petri dish containing food (R) in 

reward compartment; (b) test tank for measuring emergence speed, showing refuge area 

containing artificial plants (P), sliding opaque partition (S), and open area (O); (c) juvenile 

maze trials, showing removable barrier (S) and Petri dish containing food (R) in reward 

compartment. 
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