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Abstract

With the tremendous growth of mobile devices, e.g, smartphones,
tablets and PDAs in recent years, users are looking for more ad-
vanced platforms in order to use their computational applications
(e.g., processing and storage) in a faster and more convenient
way. In addition, mobile devices are capable of using cloud-based
applications and the use of such technology is growing in popular-
ity. However, one major concern is how to efficiently access these
cloud-based applications when using a resource-constraint mobile
device. Essentially applications require a continuous Internet con-
nection which is difficult to obtain in challenged environments
that lack an infrastructure for communication (e.g., in sparse
or rural areas) or areas with infrastructure (e.g., urban or high
density areas) with restricted/full of interference access networks
and even areas with high costs of Internet roaming. In these situ-
ations the use of mobile opportunistic networks may be extended
to avail cloud-based applications to the user.

In this thesis we explore the emergence of extending cloud-based
applications with mobile opportunistic networks in challenged
environments and observe how local user’s social interactions
and collaborations help to improve the overall message delivery
performance in the network. With real-world trace-driven simula-
tions, we compare and contrast the different user’s behaviours in
message forwarding, the impact of the various network loads (e.g.,
number of messages) along with the long-sized messages and the
impact of different wireless networking technologies, in various
opportunistic routing protocols in a challenged environment.
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Chapter 1

Introduction

The use of the smart mobile devices (e.g., smartphones, tablets and PDAs)

has grown significantly in recent years. These devices become more popular

with users due to the greater proximity/access to data according to the user’s

specific interests [1]. In addition, the rise of cloud-based applications have

significantly enhanced the computing resources (e.g., processing and storage)

to the resource-constrained mobile devices using an available Internet con-

nection [2]. These cloud-based applications are fast replacing the traditional

desktop and mobile applications (e.g., email, document sharing, multimedia

communications, etc.) and the use of such applications by the users have

become more convenient with these devices. Mobile cloud computing [3] has

thus arisen as a means for improving the capabilities of mobile devices with

the abstraction of mobile technology and cloud-based services. There will be

an estimated one trillion cloud-ready smart devices by the end of 20151.

The term ‘cloud’ [4] refers to a hosted service of a configurable dis-

tributed resource pool of networks, servers or storage over the Internet, where

a user can gain an application (e.g., Google2) using a ‘pay as you go’ manner.

The ‘cloud’ can be viewed as an unlimited resource pool e.g., infrastructure,

storage, applications, networks, etc., that are all connected to the users’ com-
1https://www.ibm.com/developerworks/cloud/library/cl-mobilecloudcomputing/
2https://www.google.com/

1



puters (via desktop or smart mobile devices), enabling ubiquitous, on-demand

access to those resources (cf. Fig. 1.1). This can also be considered as “a type

of parallel and distributed system consisting of a collection of interconnected

and virtualised computers that are dynamically provisioned and presented as

one or more unified computing resources based on service-level agreements” [5].

Figure 1.1: The cloud computing architecture is where the users can avail
themselves access to the ubiquitous, on-demand virtual computing resources
(e.g., infrastructure, storage or applications) via an available Internet connec-
tion by using their personal computers or smart mobile devices.

In this thesis, we use three terminologies for describing the tiers on

cloud-based architectures, namely edge clouds [6], cloudlets [7] and infras-

tructure clouds (that by default are designated simply as ‘clouds’) [8]. Edge

clouds can be viewed as, but not limited to, crowdsourcing of mobile de-

vices that cooperate towards providing computation, storage and connectivity.

Cloudlets, in turn, are considered to have an utility-like functionality that

provides latency sensitive computation, increased level of storage and act
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as a proxy to the Internet. The main objective of the cloudlet is to support

resource-intensive and interactive mobile computing applications to the mo-

bile devices in order to gain access to cloud-based applications with lower

latency. Finally, the infrastructure clouds support the well-known highly

available cluster based services.

Mobile cloud computing can be delivered when a mobile device uses

cloud-based services with the help of mobile apps installed inside the mobile

devices and in other cases, when cloud-based applications are running inside

the user’s mobile devices. In former cases, this can be done in two ways;

first, where applications are executed on a nearby infrastructure that acts as

a virtual cloud (e.g., smartphones, tablets) [9] and second, applications are

executed in the real cloud (e.g., Amazon Elastic Cloud Computing (EC2)3).

In the latter case, cloud-based applications run inside the mobile devices

utilising the resources (e.g., mobile platforms, memory or CPUs) in terms of

‘cloudlets’.

However, from the device’s point of view, major constraints of using

these mobile devices are short battery power and limited memory size and

from the network communication’s point of view, the use of cloud-based

applications in these devices need a constant Internet connection [10]. This

is difficult to obtain in areas without a network infrastructure or areas with

low network availability (e.g., in rural or sparse areas), but also in areas

with infrastructure with restricted/full interference access networks (e.g., in

urban and dense areas) as well as places where the cost of Internet roaming

is simply too high (for instance, in places where tourists try to avoid a high

network access cost). In such situations one major concern is how to gain

access to a cloud-based application instead of relying on a fixed infrastructure

for communication or suppressed the network unavailability. For instance,

users (e.g., a tourist) who do not wish to pay a high Internet roaming charge.
3http://aws.amazon.com/ec2/
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1.1 Motivation

To explore the motivation of our research we discuss two use case scenarios:

(1) Bob is travelling to China. He is interested in photography. While

Bob is visiting a rural place he finds that he has taken thousands of photos

and his phone-memory is full, thus he is unable to take more photos. Bob

really does not want to miss this wonderful opportunity to take photographs

in this location and is searching for an Internet connection so that he is able to

store/upload more photos to his cloud-assisted online photo sharing account

(e.g., flicker4). This will allow his other friends to view his photos as well as

allowing him to have more space in the memory of his mobile phone so he

can take additional photos. But Bob finds that there is no Internet connection

available in this location. So he may try to locate someone nearby who would

allow him access to a cloud-assisted online platform to share his photos into

an online account or allow him additional mobile storage so that he can store

extra photos there temporarily.

In the above scenario, Alice may be able to help Bob but only after

she is able to retrieve information about him and the type of service he is

requesting so that their communication can be continued.

(2) Ron is visiting a museum in France and trying to find out the meaning

of an ancient script that is written in a native form of French language. Ron

is able to connect his mobile phone with the Internet where he may share this

script with his online language based social community (e.g., cloudlingual5)

but he does not choose to do so as for the limited bandwidth and high cost of

Internet roaming. So he might think about someone nearby who is able to

translate this native language into English which Ron can understand.

In such a situation, Ron may ask for help with this from the other visitors
4https://www.flickr.com/
5https://www.cloudlingual.com/
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in the museum but there are some common challenges. Ron may not be

able to find others who are able to translate or are even interested in the

subject. Then there is the issue of how Ron will access the information and

what incentives [11] [12] can be offered to entice other users to help Ron

with his query.

The above two scenarios indicate that there is a need of a platform for

Bob, Ron and others who are interested in interacting with one another and

are willing to share information at runtime. However, the challenge is, how

can the information be advertised and retrieved by Bob and Ron? In both cases

the users depend on the local user’s mobile networks to obtain an available

network connection to gain access to a cloud-assisted service/storage. The

term ‘local user’ is a reference to the local people who live near to the current

user.

There are several service related issues (e.g., latency, bandwidth, costs,

energy, shared wireless medium, etc.) that are concomitant to these types

of communications. One of the concerns is how to locate the nearest user

in a physical proximity [13]. In some public wireless networks, finding

the physical proximity of a user is crucial as there are so many different

network environments. A global centralised client-server mechanism may

be adapted for this purpose but it is impractical to implement such a system

in order to trace the user’s movements and matching requests according

to their dynamic and unpredictable behaviours [14]. Also, single points of

failure make significant impacts onto the whole system. Thus, the connection

establishment between the global server and the client cannot be guaranteed.

To this end, there is a need to employ a decentralised network infrastruc-

ture. The most common existing decentralised mobile communications are

the Peer-to-Peer (P2P) network communications technique [15]. Users store

and manage information themselves with the help of their mobile devices

and do not rely on a central component (e.g., a centralised server). This
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communication promises to share information among groups of peers and can

create a collaborative information sharing environment in the absence of an

Internet connection [16]. However, the research is challenging in areas where

a third party user (e.g., a tourist) is allowed the privilege of gaining access to

such collaborative information sharing environments by joining/accessing

locally available mobile networks.

On the other hand, Online Social Networks (OSNs) [17] and Mobile

Social Networks (MSNs) [18] are fast becoming a more popular and integral

part of our daily lives. The OSN is a Web-based communication platform for

building social networking among peers who share similar interests, activities

and backgrounds in real-life connections. MSN is also a networking platform

where individuals connect with each other via their mobile devices to share

common interests. Similar to OSNs, MSNs occur in virtual communities.

Communication over OSN and MSN platforms using mobile devices have

become an easy application for the users [19].

Mobile users however, have been somewhat restricted in the virtual

communities of OSNs and many are unaware of the social opportunities

available to them [20]. Much research has been done to find out the nearby

users and their possible communications in OSNs and MSNs, but most of

them are tightly coupled solutions [21] [22]. When the networks grow, more

devices with different platforms as well as different application models join

in the network. Thus, creating a native mobile application for each of them

is time consuming and inefficient. For example, a user using an application

based on JXTA (Juxtapose)6 is unable to communicate with the other users

who are using a Universal Plug and Play (UPnP)7 based application.

Therefore, there is a need to develop a platform independent, collab-

orative mobile cloud application which can adopt the heterogeneity of the
6https://jxta.kenai.com/
7http://www.upnp.org/
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networks, applications and devices in a challenged environment. To this end,

we envision a more comprehensive and collaborative mobile cloud platform

which can deliver a seamless access to cloud-based services with the help of

locally available mobile networks.

In such cases the use of a mobile opportunistic network [23] may

help to improve the availability and accessibility of information using co-

located users to relay information instead of relying on a fixed infrastructure

for communication. Nodes (users in a real-life) in a mobile opportunistic

network communicate with each other with the help of other nodes. Human

interaction is one of the major parts of such communication as the opportunity

of forwarding any message depends on their nature and behaviour of the

interaction [24].

In this thesis, we address the following research questions:

• Research Question 1: Is it possible to use a mobile opportunistic network

to provide cloud-based services to the user (e.g., a tourist) in a challenged

environment that lacks access to network infrastructure?

• Research Question 2: Do the user’s mobility and their social interactions

help to improve the availability and accessibility of information in a

challenged environment?

1.2 Thesis Statement

We make the following thesis statement:

Mobile opportunistic networks can be used to gain access to cloud-based

applications in a challenged environment with the help of a user’s social

collaborations and interactions, instead of relying on a fixed infrastructure

for communication.
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To support of our thesis statement, we make three contributions. We

demonstrate that:

• Using mobile opportunistic networks, local users’ mobile networks suc-

ceed at integrating tourists’ and cloud networks successfully to build an

integrated mobile opportunistic cloud-based platform, which can be used

to send tourists’ information efficiently. We used real-world trace-driven

simulations to evaluate two options: storing data at well-situated hubs

versus exploiting the mobility of local users, and demonstrated that the

latter improves message delivery performance (cf. Chapter 5).

• Mobile opportunistic networks can improve the overall message delivery

performance using user’s mobility, their interactions and social collabora-

tions even with higher message generation rates and increased message

sizes. Our experimental results showed that, the user’s active partici-

pations and willingness for forwarding messages improves the message

delivery performance in a challenged environment (cf. Chapter 6).

• In a challenged environment, a higher communication range can improve

the overall message delivery performance but when communicating at

a shorter range, users’ interactions and social collaborations can make

a significant impact on data forwarding. We examined how different

wireless networking technologies affect the message forwarding perfor-

mance within the network. Using Bluetooth and Wi-Fi technologies, we

demonstrated that the users’ interactions and social collaborations make

a significant impact on message forwarding in a shorter communication

range (cf. Chapter 7).

1.3 Thesis Outline

This thesis is structured as follows.
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• In Chapter 2, we introduce the background of our research. This includes

the evolution of mobile opportunistic networks and the fundamentals of

mobile ad hoc networks and delay tolerant networking technologies. We

indicate the emergence of extending cloud-based application with mobile

opportunistic networks in challenged environments.

• In Chapter 3, we present the state of the art research in this field. This

includes a detailed up to date survey of the research papers in this field.

We discuss the mobile cloud technology, its applications and we then

classify the different mobile cloud architectures based on their mode

of use, the way they deliver services. Next we discuss the potential for

integrating mobile cloud technology with mobile opportunistic networks.

• In Chapter 4, we introduced a new Mobile-Opportunistic Collaborative

Cloud (MoCC) architecture for extending mobile cloud platforms using

mobile opportunistic networks in challenged environments. The MoCC

consists of two different technologies, which are then combined into a

single one. These are mobile cloud technology and mobile opportunistic

networking technology, by using local users’ mobile networks. We also

explore the many limitations and challenges in such communications.

• In Chapter 5, we explore different modes of user behaviour for message

transferring using mobile opportunistic networks. We examined that, the

local users’ mobile networks succeed at integrating tourists’ and cloud

networks successfully to build an integrated mobile opportunistic cloud-

based platform, which can be used to send tourists’ information efficiently

in a challenged environment.

• In Chapter 6, we compare and contrast the impact of the message genera-

tion rates and the message size in different opportunistic routing protocols

in a challenged environment to determine their performance impact.
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• In Chapter 7, we examine how different wireless networking technologies

affect the network performance while forwarding messages using mobile

opportunistic networks.

• Finally, in Chapter 8, we present our concluding remarks. In this, we

summarise the findings, outcomes and limitations of the proposed research

as well as outline future research directions.

• Publications: While I used the second form of "we" extensively, this

thesis has been written entirely by me. I have been primarily responsible

for all of the core contributions in the experimental designs, implementation

and their analysis of the thesis work. However, I sincerely acknowledge my

co-authors to the following publications.

• S. Pal and T. Henderson, “MobOcloud: Extending cloud computing with

mobile opportunistic networks,” in Proceedings of the 8th ACM MobiCom

Workshop on Challenged Networks, ser. CHANTS’13. Miami, Florida,

USA: ACM, 2013, pp. 57-62. [Online]. Available: http://doi.acm.org/10.

1145/2505494.2505503
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Chapter 2

Background

In this chapter we present the background of the research. In the beginning

we discuss the evolution of mobile opportunistic networks. Then we discuss

the message forwarding in challenged environments that lack an available

infrastructure for communication (e.g., rural or sparse areas) or areas with

an infrastructure where the network connection is not as accessible (e.g.,

restricted/full of interference access networks or a high cost roaming zone).

Finally we present various routing protocols in mobile opportunistic networks.

2.1 The Evolution of Mobile Opportunistic

Networks

There is now one mobile phone for every two people in the world [25]. As

such phones become more powerful and sophisticated, users have started

to use their phones as personal information processing tools rather than

simply for making phone calls. But one large constraint for the mobile cloud

is the requirement for Internet connectivity. Commonly, the connectivity

between these devices requires a fixed infrastructure of wireless networks

(e.g., cellular radio towers or fixed access points). This is a concern in

challenged environments where there is limited network availability, but also

in areas with network connectivity where the cost of accessing the Internet
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is simply too high. In such cases it is possible to use mobile devices for

communicating directly with one another to improve the availability and

accessibility of information using co-located user’s to relay information instead

of relying on fixed infrastructure for communication [26]. In this section

we explore such communications opportunities in scenarios that may not

require an infrastructure networks (e.g., mobile ad hoc networking [27])

or an end-to-end connectivity may never be available (e.g., delay tolerant

networking [28]).

2.1.1 Mobile Ad Hoc Networks

Mobile Ad Hoc Networks (MANETs) are infrastructure-less, self configuring

wireless networks that are formed by the mobile devices without any ex-

ternal interventions. In such networks an end-to-end communication path

must exist between the nodes for delivering messages from source to desti-

nation. In MANETs, nodes are highly dynamic and random i.e., they move

frequently within the networks and change directions often. It is therefore

difficult to predict a node’s location at any certain time. Message forwarding

must take two nodes connected with each other in a physical proximity for

sharing information with one another with the same physical layer wireless

protocol [29].

Communications over MANETs rely upon the wireless links present in

the network, which have a lower capacity of bandwidth utilisation than that

of the traditional wire-based communications. It also experiences higher

delays and loss rates.

Routing in MANETs are challenging due to the node’s arbitrary move-

ments [30]. Routings can be categorised into two classes, they are: topology-

based routing and position-based routing [31]. In the former case (i.e.,

topology-based routing), nodes forward packets using link-information avail-

able within the network. In the latter case (i.e., position-based routing),
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nodes use additional information for packet forwarding. This may include a

node’s physical position which can be obtained through a Global Positioning

System (GPS) [32].

The topology-based routing can further be divided into three approaches.

They are proactive, reactive, and hybrid. The proactive approach uses tradi-

tional routing strategies e.g., Destination-Sequenced Distance-Vector (DSDV)

routing [33], Optimised Link State Routing (OLSR) Protocol [34]. In DSDV,

each mobile node maintains a routing table that lists all the available destina-

tions and updates the table when new information becomes available. The

table contains information (e.g., node’s IP address, hop count to reach that

node) of all the nodes that a node knows directly or through its neighbour.

Nodes use broadcasting or multicasting for updating tables when network

topology changes. In the OLSR routing protocol, a node generates a regular

Hello message to discover its immediate neighbours. This is achieved by

received replies from their neighbors. In this way a source node can find

neighbours located up to two hops away (using the shortest hop forwarding

paths). This routing is helpful when constructing a view of global network

topology, while keeping the view of optimal routing paths to each neigh-

bouring nodes available locally. The fundamentals of this protocol is that

is uses multipoint relays (MPRs), which reduces the message overhead by

forwarding broadcast messages during the message flooding process. This

routing is appropriate for use in dense and large ad hoc networks.

In the proactive approach, nodes maintain information of the available

paths in the network, even the paths that are not currently used. This in

turn consumes unnecessary bandwidth of communication. To address such

limitations, reactive routing provides an alternative approach. In this type of

routing nodes use communication paths that are currently in use. An example

of this routing is Ad-hoc On-Demand Distance Vector (AODV) routing [35].

In AODV, a node transmits topological information to other nodes only on
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demand. When a node transmits traffic to another node, it floods the network

with a route request message. The destination is considered to be found

if the route request message directly reaches the destination node or to an

intermediate node that has a reasonable route entry to the destination node.

However, when a route becomes removed or lost, the AODV again generates

a new request for the node. This approach however, causes an unnecessary

delay in packet forwarding due to the route discovery between the source

and destination for message forwarding for the first data packet.

Finally, the hybrid approach leads to an efficient and scalable routing

by combining the proactive and reactive approaches. An example of this

routing is Zone Routing Protocol (ZRP) [36]. In ZRP, if the packet destination

is the same zone as where it originated then, when employing a proactive

routing approach, nodes immediately transmit the packets using the available

routing table. On the other hand, if the packet destination is outside its

originating zone, then the node uses a reactive routing approach to search

each neighbouring zone in the route to see if the destination is within that

zone. This in turn improves the communication delays within a zone by

speeding up the route discovery process.

2.1.2 Delay Tolerant Networks

Delay Tolerant Networks (DTN) are the communications approach in heteroge-

neous wireless ad hoc network architectures, which help communications in

the absence of a continuous network connection. These types of networks are

also known as disruption tolerant networks, which leverage communications

in ‘occasionally-connected’ networks that may suffer from infrequent or poor

network connections [37]. The fundamental concept of DTN emerges from

Inter-Planetary Networks (IPN) [38], which is introduced for communicating

between spacecrafts, where communications are greatly delayed due to the

vast distance between the Earth and the crafts. In DTN, for a certain period
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of time in communication, an end-to-end communication path is available

between the nodes within the network. However, the end-to-end loss rate is

relatively small. This also generates a high delay for communication.

Nodes in DTN have the least knowledge about the networking scenario.

Communications in DTN use the store and forward paradigm between the

nodes with the absence of a fixed communication infrastructure. A node

stores messages and forwards them until it encounters a sporadic contact with

another node within the network [26]. An advantage of DTN over MANETs

is that, it assures data delivery even in limited network knowledge and high

intermittent connectivity.

DTN is practical to use in places where continuous end-to-end connec-

tivity cannot be assumed [39]. For instance, communication to a spacecraft

or on an interplanetary scale, military communications networks or even

in disaster areas. This may also include areas where the present Internet

protocols do not work well (e.g., in rural or sparse areas without a network

infrastructure but also in areas with infrastructure with full/restricted in-

terference access networks). Consequently, the connectivity in these places

suffer due to the network unavailability.

Routing in DTN can be done in two ways, one is flooding and the other is

forwarding [40]. Both of these routings follow a hop-by-hop communication

technique. Nodes select the next hop dynamically, based on the application

specific scenario and the employed algorithms. In flooding, a node replicates

multiple copies of the same message (to newly-encountered nodes) until

the message reaches its destination. This routing focuses on the fact that,

there is a good chance of bringing the source to the destination, so that the

destination could receive it. On the other hand, in forwarding, nodes have

some relevant knowledge about the other nodes within the network and

select the best possible path to send messages to the destinations. Unlike the

flooding, in forwarding, nodes do not replicate messages for the other nodes.
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In DTN, there are a few sporadic links between the nodes. However, the

challenge is that when the connection disruption is more obvious between

the nodes and all links are sporadic in a network, the use of DTN may not

be appropriate. This premise requires the need for mobile opportunistic

networks.

2.1.3 Mobile Opportunistic Networks

Mobile opportunistic networks are one kind of MANETs that support the char-

acteristics of DTN. But unlike MANETs, there is no end-to-end communication

path available between the users for a message exchange. Connectivity oppor-

tunities in this type of network are fully depends upon the users’ interactions,

mobility patterns and their willingness in message exchange [41]. The user’s

mobility patterns are crucial in this kind of communication, since it helps to

spread information with user’s movements within the network and thereby

improve the scope of message delivery. However, such mobility is considered

challenging due to the sporadic contact of the users and their unpredictable be-

haviour [42]. Moreover, these contact opportunities for message forwarding

are infrequent in challenged environments.

Nodes in such networks act as the receiver and sender to store, carry

and forward messages to the next hope when they are on-the-fly. Unlike the

traditional well established network communications, it does not assume

the existence of an end-to-end route between the source and the destination

nodes [43]. Further, it is possible that the destination node might not even

be present within a network when the message is sent (cf. Fig. 2.1).

As illustrated in Fig. 2.1, node A (located in area A) wants to send a

message to another node, node E. Node E is located in area B when node A

sends the message. The message forwarding decisions in mobile opportunis-

tic networks are taken based on locally available information and contact

opportunities between the nodes located at a reasonably close distance. Thus,
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Figure 2.1: Message forwarding with mobile opportunistic networks. In this,
nodes forward messages based on the store, carry and forward paradigm to
other nodes in a physical proximity when the messages are on-the-fly.

node A forwards this message to another node B, located in the same area as

node A. The typical communication techniques are either Bluetooth or Wi-Fi

communications. After a certain period of time, node B reaches the area D

and forwards the carried message to another node D. Depending upon the

contact opportunities, the message is then moved closer to its destination,

node E which has already moved to area F. Then the message is delivered by

node D to node E. This is to note that, when the message finally reaches its

destination node E, due to the nodes’ high mobility, both the source (node A)

and destination (node E) nodes moved from their initial locations.

However, nodes do not have a unique address across different networks

because of its high mobility. This makes it impractical to have an end-to-end

communication path available between the nodes. On the other hand, in
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a social perspective, a user’s unpredictable behaviour is a common issue

which can degrade the performance of the network through altruism [44].

For instance, users who do not wish to take an active participation in an

opportunistic communication and thereby do not forward data packets or

a selfish user (i.e., a unhelpful user), who takes an active participation but

drops/delays packets that may have a high priority [45]. We further discuss

these issues with their possible countermeasures in Chapter 8.2.

2.2 Message Forwarding in Challenged

Environments

In this section we present the context from the two points of view related

to a challenged environment. One area is without an available network

infrastructure and the other has a limited/full network infrastructure for

communication or even high network access costs. We further relate these

issues to our research motivation for message forwarding in challenged

environments.

As illustrated in the motivation (cf. Section 1.1), Bob and Ron require a

continuous Internet connection for gaining advantage of the cloud-based ap-

plications in a challenged environment. In a challenged environment network

infrastructures (i.e. sporadic connectivity etc.) are particularly problematic

for cloud-applications, as it requires a continuous Internet connection for

communication. This is more likely to occur in places without a network

infrastructure or in places where a network infrastructure is available but the

access cost is simply too high for the users. Moreover, the current Internet

architecture does not support communications in challenged environments

that are characterized by high network delays, where frequent network par-

titions are more obvious. Therefore, the application of pervasive wireless

communications between mobile devices and a direct communication to the
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cloud applications (where available) can be considered as beneficial in terms

of data forwarding in such challenged environments.

Most of the recent research advances in this field focus on the more

efficient routing protocols for delivering packets with higher delivery per-

formance in these highly dynamic mobile opportunistic networks [46]. For

instance, Moon et al. present an architecture for delivering packets by search-

ing possible communication paths using a DTN-based routing mechanism

when an end-to-end communication path does not exists [47].

Similar to the Moon et al. architecture, Joe and Kim present an

evolution-performance for DTN in a challenged environment [48]. This

challenged environment is referenced in an earthquake situation in a city.

Using a ‘DTN message priority routing’, a simulation-based study has been

performed in this paper. The authors compare and contrast the routing per-

formance during the disaster time with the normal scenario. In the message

communication, a threshold value (i.e., high, medium and low) is used to

determine the priority to meet the next node. For each encounter, each node

updates their latest meeting time to determine a node’s contact histories

with the other nodes. For instance, if the meeting time of a node with the

destination node is high then it is assumed that the current node is away

from the destination node. On the opposite line, if this time difference is

very low, it is assumed that this node contacted the destination node recently.

This encounter time is referred to as the ‘Latest Encounter Time’ (LET). This

paper shows a routing protocol that is able to provide an efficient message

delivery during the disaster situations. This routing protocol is designed to

deliver a message with high delivery probability (i.e., low LET value) in the

network. But unlike our motivation (cf. Chapter 6), how the network loads

and message size make an impact on the routing protocols in such challenged

environments is missing in both ([47] and [48]) of the papers.

Ali et al. present a real-time analysis of opportunistic networks in the
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context of disaster scenarios which includes earthquakes, tsunamis, floods,

and storms [49]. A network architecture has been designed that integrates the

available network infrastructure and cloud-assisted information processing

technology during an intermittent connectivity. The proposed architecture

aims to design high bandwidth utilisation for message communication in

disaster situations between the victims, by developing a stable broadcasting

infrastructure (e.g., radio and wireless system) within a shorter time.

In addition, this architecture overcomes the traffic congestion problem

during a disaster by using cloud-assisted information processing techniques.

While this architecture addresses the availability and accessibility of a network

infrastructure during the disaster, it does not provide the impact of network

loads, long-sized messages and different wireless communication techniques

over the network (cf. Chapter 6 and Chapter 7). Our present research,

finds this specific gap and attempts to address this issue in a challenged

environment.

On the other hand, in some cases the available network communication

may be found but from the accessibility point of view, it is not so conve-

nient to use (e.g., places with high roaming costs). In such cases, propos-

als [50] [51] [52] [53] based on the locally available infrastructure for com-

munication may help to avail information within a shorter range which may

be affected with the user’s behaviours and network bandwidth (cf. Chapter 5).

Hung et al. define ‘smart cities’ architecture, where tourists are able

to find cloud-based applications with the help of the nearby user’s mobile

networks [54]. However, this architecture requires a continuous Internet con-

nection to gain the advantages of such cloud-based applications. Unlike our

motivation, this architecture lacks the motivation of using a locally available

network connection for gaining access to such applications when there is

an absence of an Internet connection (cf. Chapter 4). In addition, Canepa

et al. present an architecture to provide information to the tourists through
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the locally available mobile networks [25]. In this communication, tourists

rely upon the local user’s mobile communications platforms for sharing in-

formation within their mobile communication range. But again, unlike our

motivation, what is lacking in this literature is how a tourist gains access to

a cloud-based application seamlessly by extending local user’s mobile net-

work communications (cf. Chapter 5) and how the architecture handles the

increased network loads and varied message sizes (cf. Chapter 6).

Horvitz et al. present an ‘opportunistic planning’ model by identifying

feasible plans and achieving goals for mobile users at the same time he/she

is performing other activities [55]. For instance, a user is visiting a town

and this ‘opportunistic planning’ helps him/her to locate the nearest food

stores or sightseeing places in this town. The fundamental of this model is to

identify one or more goals flexibly adapting to opportunities to a user’s trip

for a specific destination (e.g., a shopping centre or tourist attraction) with

a minimal cost by using the shortest path to the destination. A GPS-based

system and a user’s mobile device connects through a centralised client-server

based system has been used for achieving these results [56].

Sakaguchi et al. further extend the prior ‘opportunistic planning’ model

[55] for a ‘tourism navigation system’, which navigates tourists to the desti-

nation of their preference/choice [57]. This navigation system particularly

recommends some ‘photographic points’ that are situated on the same route to

the tourist’s destination. Using the General Packet Radio Service (GPRS) [58]

technology, this system recommends other nearby sightseeing places by cal-

culating the user’s available time for sightseeing or by calculating the time

left to reach the destination. Unlike the motivation of our present studies

(cf. Chapter 1.1), these two proposals ([55] and [57]) require a continuous

Internet connection with the user’s mobile devices which may be unavailable

is rural places or seem impractical to use if a user is trying to avoid the high

cost of Internet roaming.
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Along a similar line, Rey-López et al. present a recommendation system

for tourists, based on their profiles, interests, locations, schedules and the

amount of time used for visiting a place [59]. Unlike the proposed Horvitz

et al. model [55] and the Sakaguchi et al. system [57], this recommendation

system works independently along with the user’s ongoing route. But again

this is controlled by a centralised system which requires a continuous Internet

connection to establish communications with the user’s mobile devices. Using

Collaborative Filtering (CF) [60] techniques this system provides content-

based recommendations to the users but unlike our proposal, this system

does not focus on impact of different wireless communication technologies

in the network (cf. Chapter 7).

In our research, we address the challenges (i.e., available network

connection for communication, user’s behaviour, increased network loads

and long-sized messages and different wireless communication technologies)

and find solutions where tourists can use mobile opportunistic networks to

gain access to cloud-based applications in challenged environments. This in

turn supports our research motivation in Chapter 1.1. Returning to the use

cases of Bob and Ron, local users who may be interested in sharing information

by using their mobile networks with Bob who lacks an Internet connection or

with Ron who is trying to avoid the high cost of Internet roaming.

2.3 Routing Techniques

Routing in mobile opportunistic networks is crucial for delivering messages

from one node to another. The routers between the nodes create paths

dynamically and adjust accordingly when the opportunity arises to bring

the messages closer to their intended destinations. The routing decision is

taken locally during runtime by the nodes exploiting the ubiquitous wireless

communication capabilities of smart mobile devices [61].

22



Based on the user’s behaviour, routing can be made in two ways [62]

i.e., social-aware routing and social-oblivious routing. In social aware routing,

a user has previous knowledge of the communication, while in social oblivious

routing a user does not have any previous history of encounters. The most

recent routing approaches are based on data replication over multiple paths.

The typical routing algorithms are based on flooding (e.g., epidemic rout-

ing [63]), single-copy (e.g., DirectDelivery routing [64]), simple replication

(e.g., spray and wait routing [65]), history-based encounters (e.g., prophet

routing [66]) and prioritisation (e.g., MaxProp routing [67]).

• Epidemic Routing: In the epidemic routing, each node forwards the

same copy of the message to another node when they meet, until the

message reaches its destination. This may cause a high message delivery

delay due to the node buffer constraint.

• DirectDelivery Routing: In the DirectDelivery routing, a node generates

only one copy of the message during transmission (to avoid flooding

in the network) and the node waits until the message reaches it’s final

destination.

• Spray and Wait Routing: In the spray and wait routing, a source node

generates multiple copies of the same message to a set of nodes called

‘relay’ nodes. The relay nodes are allowed to send copies of these messages

only when they meet with the destination nodes and the message cannot

be forwarded to another relay node within the network.

• Prophet Routing: In prophet routing, each node keeps track of the previ-

ous encounter history and forwards a message to the highest ranking node.

Here the highest rank indicates the most encounters occurring between

the nodes. The Prophet considers the frequency of the past contacts to

maximise the forwarding opportunity to the destination. However, it

restricts the communication for sending message to the nodes that have
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frequent contacts with the destination node. Unlike the Epidemic router,

the Prophet router does not replicate the same message to every newly-

encountered node. It uses a delivery predictability which is a ‘probabilistic

metric’ for message delivery. This delivery predictability indicates a new

node’s likelihood to encounter the destination node, based on its previous

encounters with the destination node to deliver a message.

• MaxProp Routing: In the MaxProp routing, for every new encounter, a

router always checks the greater probability of interactions with the newly-

encountered node by higher delivery likelihood values. The MaxProp

is a history-based routing protocol where each node keeps track of the

previous encounters and determines the future message delivery with a

higher probability that the message reaches closer to the destination. For

the future communication, this routing keeps track of the nodes that have

a higher probability to reach nearer to the destination.

2.4 Summary

In this chapter we have discussed the need for mobile opportunistic network-

ing for communication in challenged environments along with its evolution

and various routing techniques.

We summarise the chapter as follows:

• Mobile cloud technology requires and constant Internet connection for

communication. This is a concern in challenged environments where there

is limited network availability, but also in areas with network connectivity

where the cost of accessing the Internet is simply too high.

• In such situations it is possible to use mobile devices for communicating

directly with one another to improve the availability and accessibility of
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information using co-located user’s to relay information instead of relying

on fixed infrastructure for communication.

• Mobile opportunistic networks are one kind of MANETs that support

the characteristics of DTN. But unlike MANETs, there is no end-to-end

communication path available between the nodes for a message exchange.

• In a technological perspective, concern is, nodes do not have a unique ad-

dress across different networks because of its high mobility. This makes it

impractical to have an end-to-end communication path available between

the nodes. In a social perspective, a user’s unpredictable behaviour is a

common issue which can degrade the performance of the network.

• We find that, the research is promising where we can employ local users’

mobile networks to gain advantages for accessing an available cloud-based

application in challenged environments.

In the next chapter (Chapter 3), we explore the state of the art research

in this field and try to see how recent research advancement addresses several

of the points raised in this chapter.
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Chapter 3

State of the Art

As the motivation of our research is to enhance users’ mobile networks for ex-

tending cloud-based applications in challenged environments, in this chapter

we study the state of the art in mobile cloud technology and its application

scenarios. We classify the available mobile cloud architectures according

to their intent, the way they deliver services, and survey the state of the

art research and issues related to their performance (e.g., battery power,

storage capacity, bandwidth utilisation), environments (e.g., heterogeneity of

networks, user’s collaborations), robustness (e.g., scalability and availabil-

ity of resources) and efficiency (e.g., context aware mobile services, access

costs, energy consumption). Next, we explore the integration of mobile cloud

technology and mobile opportunistic networks.

3.1 The Mobile Cloud Technology

Mobile cloud technology is the combination of mobile technology and cloud-

based applications [68]. It has arisen as a means for improving the capabilities

of mobile devices in terms of processing and storage. Mobile cloud technology

primarily focuses on the user’s mobile devices to access cloud-based services

through wireless network communications [69]. This is achieved when mobile

applications are deployed (i.e., mobile offloading) to the cloud servers or
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cloud-based applications running on the user’s mobile devices e.g., in terms

of ‘cloudlets’ [70].

Mobile data offloading is the process for delivering data from resource-

constraint mobile devices to resource-enhanced cloud servers. Data offloading

can be done in two different ways, first, offloading in a static environment

and second, offloading in a dynamic environment [71]. In static offloading,

the programmers pre-determine the application components and in dynamic

offloading (also called context-aware offloading), the execution location of

the components is not pre-determined.

However, the traditional mobile application models do not support

the development of applications that can execute only on mobile devices

without computation offloading. The data offloading can be done using two

technologies. One is through Femtocell [72] and another is through Wi-Fi

networks [73] (e.g., a Wi-Fi access point). Femtocell, which is an access

point base station, is used for data offloading in an indoor environment. The

major requirements for this is a small base station that helps gain access to

an available Internet connection for data offloading. A femtocell connects

to the service provider’s network via broadband (e.g., cable) to access an

active Internet-based application. The fundamental of a femtocell is that it

allows service providers to extend service coverage at the edge of the cell,

in particular where access would otherwise be limited or unavailable for

the users. But unlike the Femtocell, offloading through a Wi-Fi access point,

works in an outdoor environment using the unlicensed frequency bands.

The major components of the mobile cloud architectures are composed

of mobile devices, mobile networks, Internet access points, cloud servers and the

cloud controllers (cf. Fig. 3.1). As illustrated in Fig. 3.1, mobile devices connect

with the mobile networks via base stations e.g., Base Transceiver Stations

(BTS), access points or satellites. BTS facilitate the wireless communications

between the users and the network. This mobile network then connects with
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Figure 3.1: Mobile cloud architecture is where user’s mobile devices are
connected with the mobile network via different access points. The mobile
network then communicates with the cloud servers using the Internet ac-
cess points (e.g., Wi-Fi access points or fixed fibre links). Finally the cloud
controllers provide the requested cloud-based service to the users.

the cloud servers via an Internet access point to avail cloud-based services

for the users. In the infrastructure clouds, the cloud controllers process

these requests to navigate the packets to the corresponding cloud servers for

providing the requested services to the users [74].

Ubiquity and mobility are two significant features in the mobile net-

works and the core technology of cloud-based application is a centralised

distributed computing service [69]. Traditional infrastructure clouds are

built on clusters of servers. Data is placed in these clusters through layers of

virtualisation and then high-level jobs are executed to process this data. In
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mobile cloud technology, edge clouds applications are used by one or more

mobile devices where data originates and is processed in mobile devices. On

the other way, mobile applications run inside the infrastructure clouds for

offloading computations to the remote cloud servers [75].

3.2 Application Scenarios

In this section we explore different applications of mobile cloud technology

in various real-life scenarios and the challenges they face. This includes

educational sectors, healthcare systems, e-business, mobile gaming, multi-

media applications, online television streaming, wildlife monitoring, disaster

management and urban traffic controlling systems.

• Education: The rapid growth of mobile technology and wireless

communication networks has improved the emergence of mobile learning

(m-learning) technology [76], as it creates a convenient platform for the users

which is easily accessible from virtually anywhere. The fundamental basis of

this m-learning technology is the use of mobile devices for learning purposes

while users are travelling. This technology is based on the electronic learning

(e-learning) technology and the mobility of the devices. Although mobile

devices are portable and easily accessible by the users, there are several

limitations related to the traditional m-learning technology which includes

a weak network bandwidth for communications, low network transmission

rates, limited battery power or even the device’s small screen size.

The use of cloud-based applications with mobile devices has introduced

new ways to solve these limitations [68]. It is now possible to use mobile

devices to control cloud-based applications without maintaining a higher

amount of infrastructure or resources. Utilising a cloud-based application has

several advantages e.g., higher storage capacity, faster processing and the

convenient use of resources that provides learners with more scalable services
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in terms of data accessibility. Thereby improving the m-learning experience

for both out-of-classroom and in-classroom education.

The ‘MobiLearn’1 and the ‘Learning Citizen Cluster’2 are two projects

that are focusing on m-learning technology by exploring the context-sensitive

approaches for mobility of the users. This helps visitors (e.g., tourists) to

improve their knowledge and helps in cultural information interchange in

places e.g., museums, in social communities or to improve the information ac-

cessed through updating recent activities and interests online. These projects

aim at building a common user centric platform for collaborating information

among users, service providers and service developers more easily and the

use of cloud-based applications improves the overall m-learning experience

through these collaborations and social interactions [77]. Various mobile

communication mechanisms can be used for the m-learning process, e.g.,

voice communications, real-life message exchange (e.g., text messages and

emails) and the direct information interchange via document uploading and

sharing between the users. Additionally, by employing a learning portal in the

Internet, users can manage different activities which also support m-learning

management systems.

However, the challenges are to originate the concept of adaptive learn-

ing to build instructional strategies and learning content for the user’s personal

preferences according to their needs as well as providing them with the correct

information [78]. The future research goal would be to integrate heteroge-

neous mobile cloud platforms and various mobile applications seamlessly in

order to provide these types of m-learning technologies to users for a better

utilisation of resources and to further enhance computational capabilities. To

this end, context-aware m-learning technology can be employed to address

such issues for improving the m-learning process [79].
1http://www.mobilearn.org/
2http://www.learningcitizen.net/
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These context-aware systems help to determine the user’s personal

preferences according to their needs through users’ collaborations with one

another in a heterogeneous mobile cloud platform.

• Healthcare: Mobile healthcare (m-healthcare) is a form of elec-

tronic healthcare (e-healthcare) technology that manages patients clinical

records as well as enabling an ubiquitous and uninterrupted access platform

to provide these records to the doctors and caregivers using a mobile-based

application [80]. This technology helps with treatments through constant

observations without the patient’s physical presence being required at the

clinic or hospital. Therefore, m-healthcare technology helps reduce the cost

of medical treatments. The use of cloud-based applications on mobile de-

vices also enables a greater potential in remote healthcare services with a

higher bandwidth utilisation, storage and a more scalable service platform

overcoming the device’s limitations of storage and processing capabilities.

Hoang et al. propose a middleware based m-healthcare architecture,

named ‘MoCAsH’ [81]. This architecture uses mobile sensing technology with

the help of locally available mobile communication infrastructure, and then

processes the data to a central cloud server. However, the proposed model

relies on intelligent mobile agents and context-aware sensor records for the

information processing and storage which requires a continuous network

connection that may be affected by the device’s limited battery capacity and

application scenarios (e.g., in rural areas that lack an Internet connection) .

Tang et al. propose a mobile-based home care management system

through the transmission of Multimedia Messaging Services (MMS) [82].

This system is especially configured for hypertension and diabetes patients

who can generate their own requirements (e.g., requesting doctor’s advice or

seeking advice for a particular medical treatment) through text messages using

their mobile phones. Similar to ‘MoCAsH’ [81], in this system a centralised

cloud-based service management architecture has been introduced to monitor
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all these requirements and process them to the appropriate departments or

doctors according to the patient’s necessity or emergency situations.

However, the exchange of patients’ electronic health records among doc-

tors and caregivers, while storing and transmitting that data using resource-

constrained mobile devices securely, is still a major challenge [83]. To address

this, a security architecture for protecting medical records from unautho-

rised user access can be employed [84]. The proposed architecture uses

cloud-based applications to distribute medical health records and implement

a security protocol for efficient cloud-based resource management inside the

mobile devices. In addition, to overcome the issue of limited battery power of

the mobile devices, the proposed architecture offloads the complex computa-

tional services to the cloud and only executes the final process on the mobile

devices, which reduces the cost of communication. This architecture improves

the overall bandwidth utilisation and reduces the computational complexities

to the mobile devices by providing faster data processing between the user’s

mobile devices.

• E-Business: The use of mobile cloud applications in electronic busi-

ness (e-business) technology is rapidly increasing. These applications allow

users to perform their business transactions over the Internet via their mobile

devices. This approach is an important aspect towards the development of a

faster cloud-assisted e-business technology that enables the adaptability of

the device’s mobility [85]. Furthermore, mobile cloud technology facilitates

these applications e.g., online photo sharing, booking online movie tickets

or even online shopping from a favourite book store. These cloud-based

mobile applications are more popular at present and users can instantly avail

these services even when they are travelling [86]. However, for example, it

may happen that the e-commerce web-sites in the cloud may be situated far

away from their customers. Therefore, a low latency for communications

may cause the company to lose their business revenues.
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Research on how to find the online retail businesses more quickly accord-

ing to the user’s choice and demands is promising. To this end, context-aware,

collaboration-based technology can be employed [87]. This would help find a

collaboration as well as mobile-adaptive local user’s communication platform

that may help users find the specific answers more quickly rather than relying

on a fixed infrastructure for communication.

• Mobile Gaming: Mobile entertainment applications are fruitful for

generating revenue for the enterprises [88]. The global market of mobile

games in 2010 was $66 billion and it is expected to rise to nearly $81 billion by

20163. The concept of mobile gaming is to offload the large scale computing

resources into the infrastructure clouds and to use this application via mobile

devices as an interface. Research is promising in the areas where multiple

mobile users can communicate with each other at runtime in a collaborative

platform without any direct physical involvement. Gaming systems using

mobile cloud technology attract both the users and game developers in many

ways. Users can play the same game over a heterogeneous platform, e.g., a

laptop, mobile device or in tablets. This gaming system reduces the cost for

both the users as well as the developers. But the challenging task is to develop

a cloud-based gaming system over the heterogeneous mobile platforms which

will provide high-quality audio and video streaming as well as to reduce

response delays at runtime [89]. To this end, an open cloud-based gaming

system, named ‘GamingAnywhere’ can be employed [90]. This system is

able to support continuous video streaming and maintains its performance

accordingly. The development of this system is based on cloud-assisted client-

server models but research is lacking on how the users can play such games

using a decentralised mobile cloud platform.

• Multimedia Applications: Video, audio and photographs (e.g., mul-

timedia streaming or photo sharing) have different delivery requirements
3http://www.dfcint.com/wp/?p=311
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in a distributed mobile cloud environment. These applications need to be

synchronised to provide coherent information to the mobile users for their

requirements. The use of these types of multimedia applications are popular

to use or play on the mobile devices because such portable devices are easy to

carry and easy to access [91]. The major challenge is an efficient scheduling

of multimedia data streaming over different mobile cloud platforms. Over

this, an efficient scheduling architecture for massive multimedia data flows

with a heterogeneous mobile cloud platform can be used [92]. The proposed

scheduling architecture tries to mitigate the delays and energy related issues

among the cloud servers. The use of such architecture is promising where

users can share their interests with similar users and applications.

• Online Television Streaming: Internet Protocol television (IPTV)

services like ‘Video On Demand’ (VoD) and ‘Live broadcast TV’ are quite

popular at present [93]. With the advancement of mobile cloud technology,

these services are more in demanded by the users but the concerns are for a

continuous need of an Internet connection, network bandwidth or usability

of the mobile devices to access these services. The major challenges are how

to provide a continuous streaming over these mobile cloud platforms while

the devices are changing network frequently, and the use of these devices in

places with limited connectivity e.g., sparse areas without an infrastructure for

communication or in the urban areas with full interference access networks.

To this end, the traditional P2P mobile communications technique [15] can

be employed. However, the challenge is how to build a mobile cloud assisted

P2P system that is able to provide a high-speed data transfer (i.e., with a high

bandwidth) to the users in the areas that are limited to access an IPTV.

Another issue is the ‘Instant Channel Change’ (ICC) requests in IPTV.

Technologies like IPTV and LiveTV typically follow the multicasting mecha-

nism from the servers using IP multicast, with one group per TV channel. For

each channel change each user needs to join the multicast group associated
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with that particular channel and they need to wait for enough data to be

buffered before the video is displayed, which is time consuming. To address

such issues, the use of a mobile cloud based architecture that provides a

faster deployment of IPTV and LiveTV services over wireless networks can be

beneficial [94]. The future research is encouraging where users can adopt

additional functionalities that are related to improve the latency related issues

and connection protocols for a seamless service to the mobile devices.

•Wildlife Monitoring: The use of mobile cloud technology is promising

in wildlife monitoring and several other related applications, e.g., finding the

location of specific animals or to monitor their behaviour. However, the lack

of infrastructure (e.g., a fixed network connection) faces major challenges in

order to increase the communication opportunities and the throughput in the

system. Applications are promising in these areas where the locally available

P2P network communications can be integrated in such monitoring systems

for an efficient collection of data and access provision of cloud-based services

that may require real-time data management [95].

To address this, a mobile cloud based system on outdoor mobility-

learning activities with the integration of wireless communication technology

can be employed [96]. The proposed system is built on an ad hoc network

communication that is formed with the different mobile users. For example,

using mobile devices and a Wi-Fi network card the users can share infor-

mation between each other. This system is based on a centralised service

oriented architecture and collaboration between the users participating in

this monitoring system.

• Disaster Management: Satyanarayanan presents a view to use mo-

bile cloud technology in cases of disaster/emergency situations [97]. The

potential use of mobile cloud technology are discussed in situations e.g.,

finding a lost child or in a natural disaster like an earthquake or tsunami. In

such cases, local users can help by sharing the real-time information with one

36



another creating a pool of resources to make further decisions accordingly

with the help of the locally available network connections. However, the

challenge is the efficient management of the high data traffic in the network

during the time of a disaster.

To address such issues, an intelligent transportation system for disaster

management with Vehicular Ad Hoc Networks (VANETs) and mobile cloud

technology can be employed [98]. The proposed system is able to collect

information from multiple sources and locations, including from the point of

an incident. It then creates effective strategies to send updated information to

the vehicles and other co-located users alternative routes to the destination.

• Urban Traffic Controlling: Mobile cloud technology is promising

in the use of urban traffic communications and control systems. The cloud-

based applications provide the resources required to use traffic strategies

and efficient control of massive data transportation. Wang et al. present an

agent-based traffic control management system for intelligent vehicular trans-

portation [99]. The system is based on agent-controlled network-enabled

technology. The advantage of this system is that it requires less memory and

processing power to control the agents than the process that is operated

by traditional controlling algorithms. This system deals with a centralised

server-based architecture. However, the challenge is how we can build such

systems in real-time over a decentralised network that connects to a hetero-

geneous mobile cloud platform. Moreover, this system requires a continuous

network connection between the driver’s mobile device and the cloud server

that may be unavailable in rural areas that lack a proper infrastructure for

communication. Xue et al. present a cloud storage-based traffic video detec-

tion system that is capable of processing higher amounts of video streams to

generate the present traffic condition in a given area [100]. A large amount

of storage-resources are required for deploying such a system which increase

the network delays. Research in these areas is promising where we could
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process the data over the cloud and use the mobile devices for streaming the

data at runtime which would reduce the related delays in the network.

To address such issues, a mobile cloud based smart trafficking system

can be used [101]. The proposed system is based on a mobile application

which runs on each driver’s mobile device and a traffic prediction algorithm

which is runs inside the cloud server. This system provides real-time guidance

to the users and reconstructs the traffic model from the gathered data for the

future traffic predictions.

3.3 Classification of Mobile Cloud Architectures

There are several studies carried out showing the classifications of mobile

cloud architectures. For instance, Khan et al. present a classification of mobile

cloud architectures based on the offloading decisions and issues associated

with the application models (e.g., performance, energy) [102]. Rahimi et al.

present another classification of mobile cloud architectures based on the

standard cloud-based service model that includes Infrastructure as a Service

(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS) [103].

The IaaS provides storage, hardware and networking components e.g., servers.

An example of IaaS is Amazon Simple Storage Service (Amazon S3)4. The

PaaS provides user with an integrated environment for building, testing

and deployment of custom applications. An example of PaaS is Microsoft

Azure5. Whereas, the SaaS supports a software distribution with the specific

requirements that happen remotely via an Internet connection. An example

of SaaS is Salesforce6. Fernando et al. present a classification of mobile

cloud architectures based on operational, end user and service levels issues,

and also derive a basic level comparison of the different key issues in mobile
4http://aws.amazon.com/s3/
5https://www.windowsazure.com/en-us
6http://www.salesforce.com/uk/
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cloud technology e.g., context-awareness, application related issues, data

management and security, privacy and trust’s point of view [104].

However, unlike the most of the techniques discussed in these classifi-

cations, we categorise different mobile cloud architectures into three specific

class of architectures according to their mode of use, the intent they deliver

services. They are mobile cloud “Device to Cloud” (D2C) architecture, mobile

cloud “Cloud to Device” (C2D) architecture and mobile cloud “Device to Device”

(D2D) architecture.

In the D2C class of architecture, mobile devices connect to the infras-

tructure clouds with the help of an Internet connection. In the C2D class

of architecture, cloud-based applications run inside the user’s mobile de-

vices may be in terms of cloudlets. Finally, in the D2D class of architecture,

mobile devices create their own ‘cloud environment’ (can be viewed as a

collaborative information sharing environment) with the help of the available

mobile devices located in a physical proximity. A detailed discussion of these

classifications is as follows:

3.3.1 Mobile Cloud “Device to Cloud” (D2C) Architecture

In this class of architecture, mobile devices connect to the infrastructure

clouds with the help of an Internet connection (cf. Fig.3.2). Unlike the

traditional cloud-based applications (e.g., via a desktop or server), the mode

of using the devices are different in this case. As illustrated in Fig.3.2, users

connect their mobile devices to the remote cloud servers with the help of

mobile networks (e.g., wireless access points). According to the ‘mobile cloud

computing forum’7, this type of mobile cloud is referred as an infrastructure

where data storage and processing happens outside the mobile devices, which

moves the computing power and storage away from mobile devices. In fact,

mobile applications for data storage or processing move from mobile devices
7http://www.mobilecloudcomputingforum.com/

39



to a centralised distributed platform where a user can avail such services via

a thin client or a Web browser through the Internet.

Figure 3.2: The D2C class of mobile cloud architecture is where users connect
their mobile devices to the remote cloud servers through mobile networks for
accessing cloud-based applications.

For instance, Li et al. propose a D2C class of mobile cloud architecture

to deploy mobile computations to the remote cloud servers [105]. In this,

mobile agents help to deploy mobile computations to the cloud servers,

executing the data processing outside the mobile devices. In addition, the

mobile agents ensure a secure communication between the user’s mobile

devices and the cloud-based applications using a trust-based mechanism,

which are controlled remotely by the users. However, a major concern is the

available network bandwidth for seamless data offloading between the mobile

agents and the cloud servers. Over this, a lightweight mobile cloud offloading

architecture called ‘MoCa’, which is able to provide dynamic offloading and

enable customer resource managements of specific mobile traffic, can be

employed [106]. This is a context-aware offloading architecture that does not

require any additional network connectivity and performs equally well for

real-life traffic that requires a higher amount of network delays. An example

of game server specific traffic offloading mechanism has been explored in this
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architecture (cf. Fig 3.3). The gaming service provider instantiates a virtual

game-server engine inside a ‘in-network’ cloud-based platform.

Figure 3.3: The ‘MoCa’, a D2C class of mobile cloud architecture is where
users interact with the virtual game servers (referenced as In-Network Cloud
Platform) through the cloud-based mobile networks.

As illustrated in Fig 3.3, the in-network cloud-based platform is an

instance of the infrastructure clouds that makes data transfer easier for the

nearby mobile devices through dynamic data offloading. Mobile networks on

the other hand, also create a software instance of a service provider gateway

(S/P GW) in this cloud-based platform and keep it associated with the game

server engine. Based on the requests from the mobile devices, the mobile

networks send the signals for preparing the game’s specific traffic and then

divert this traffic to the game server engine. However, unlike the present

motivation of our research, one major challenge is that the MoCa requires a

continuous Internet connection for offloading data and managing resources

in the game server engine.
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Another D2C class of mobile cloud architecture, called ‘volare’, is pre-

sented in [107]. This architecture, monitors the resources and context of

the mobile device (e.g., hardware resources, environmental variables and

user preferences), and dynamically adapts cloud-based services accordingly

with the user’s preferences at runtime. Thus, this architecture enables dy-

namic adaptations of the cloud-based resource management and binding

information accordingly with the context of the mobile devices. Further, it

provides a better service provision to the users with a cost benefit approach

(by reducing unnecessarily high provision costs) and efficient bandwidth

utilisation (by managing excess consumption of mobile resources) during

high network traffic. But unlike the scope of our present research, how to

deploy this architecture in a ‘collaborative’ environment to gain benefit from

these advantages in the absence of an Internet connection is missing.

Samimi et al. present a dynamic service-based D2C class of mobile cloud

architecture, called ‘mobile service clouds’ [108]. The goal of this architecture

is to extend the infrastructure clouds service to the places with wireless

Internet connections. This aims to provide efficient services at places that

are away from the traditional wired infrastructures. This architecture helps

for an automatic communication between the users within a network. Major

components of this architecture are the service gateway, service coordinator

and primary proxy. The service gateway is located at the entry point to the

cloud servers. At first, the service gateway accepts the user’s request and

then designates a service coordinator (located inside the cloud server) based

on the requested service. Then the service gateway chooses an appropriate

primary proxy, located at a wireless network edge, to send the results to

the users. The service gateway also establishes a transient proxy for mobile

devices to monitor the service path. Thus, the goal of the primary proxy is

to maintain a service path between two end users. Unlike the ‘MoCa’ [106]

and ‘volare’ [107], this architecture explores the service provision during the
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time of disconnection through techniques such as Forward Error Correction

(FEC). In such techniques, router redirects the communication paths between

the users, regardless of their network connectivity for direct communication,

device or application. This explores user’s collaborations for communications

by maintaining a person-to-person reachability [109].

Klein et al. present a D2C class of mobile cloud architecture based on

the concept of Intelligent Radio Network Access (IRNA) to provide an intelli-

gent network access strategy to the mobile users [110]. The ‘IRNA’ seamlessly

deals with the dynamics and heterogeneity of the available networks based

on the user’s application requirements. This is a context management ar-

chitecture which consists of three main components i.e., the context broker,

context provider and context consumer. The context broker provides a Uni-

form Resource Identifier (URI) of the context provider through which the

context consumer communicates directly with the context providers. The

URI, is a string of characters that keep track the name of the resources and

helps to identify the resources instantly. This reduces unnecessary delays by

speeding up the resource identification process in the network. The context

broker maintains a registry cache for storing the context for the next use, thus

it ensures an instant availability of the context information, which in conse-

quence increase the speed of context data delivery. Context consumers can

also directly connect to the service providers but data delivery speed increases

with the use of the context broker’s interactions. Unlike the ‘volare’ [107],

the advantage of this architecture is that, the use of a URI gives the user

a faster interaction with the service providers in heterogeneous network

environments. The quality of the contexts are controlled with the network

availability, context accuracy as well as on the network delays. For instance,

the smaller network delays increases the quality of context information.

Shen et al. present an intelligent cloud-assisted data access architecture

named ‘E-Recall’ for personal multimedia information management, search-
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ing and sharing for mobile devices [111]. This is a D2C class of mobile

cloud architecture which is based on the coordination between the mobile

devices and cloud-based applications. The main functional modules in this

architecture are: query formulation, cloud-based indexing structure and

user-centric media sharing and publishing. The query formulation module is

responsible for optimising the user’s information collected by different mobile

devices. The cloud-based indexing structure module provides a database

access method for data optimisation, and the last module helps to share

and publish interactive digital multimedia resources (i.e., various formats of

multimedia technological) to the mobile clients. Similar to the ‘MoCa’ [106],

this architecture works seamlessly in dynamic heterogeneous networks. But

unlike the ‘volare’ [107], this framework requires a higher bandwidth of

network utilisation for service delivery. Once again, unlike the scope of our

present research, devices in the ‘E-Recall’ architecture require a constant

Internet connection for communication with one another.

Ou et al. present a D2C class of mobile cloud architecture that supports

dynamic offloading mechanisms in a wireless mobile communication network

(e.g., wireless ad-hoc Local Area Network) [112]. This architecture explores

offloading mechanisms in ‘failure/faults’ circumstances. During failure/faults

only the failed sub-tasks are re-offloaded, which improves the execution time

without re-offloading the whole task once again. Compared with the Samimi

et al. architecture [108], the major limitation of this architecture is that,

it is based on wireless mobile communication networks which may suffer

from connection problems in challenged environments (e.g., rural or sparse

areas with limited connectivity) and any disconnections during the offloading

execution treated a task/sub-task as a failure.

This architecture envisions similar goals with the scope of our present

research by considering user’s mobility in data forwarding. But unlike the

motivation of our research, how to establish an alternative route using locally
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available mobile networks for a seamless communication between the users

during a network disconnection is missing. Similar to the Ou et al. architec-

ture [112] which consider user’s mobility for data offloading, Li et al. present

a D2C class of mobile cloud architecture with user’s mobility-prediction based

offloading method [113]. In this, users in a physical proximity connect with

one another for interactions. But during the connection failures, once again

the complete task needs to be re-offloaded for further processing.

This architecture uses an adaptive probabilistic scheduler [114], which

helps to schedule tasks from various source nodes to the nearby processing

nodes. Further, based on the user’s mobility patterns on different locations in

varied time, this architecture uses two heuristic algorithms for data offloading.

One is the Minimum Execution Time heuristic and the other is the Minimum

Completion Time heuristic. In the former case, a scheduler offloads an

application to the nearby node with the minimum execution time. In the

latter case, a scheduler offloads an application to the nearby node with the

earliest completion time. However, it is challenging to predict a user’s mobility

pattern as this changes with location and time [115]. Unlike the Ou et al.

architecture [112], during disconnections this architecture needs to re-offload

the complete task instead of re-offloading the subtasks.

Chun and Maniatis present a D2C class of mobile cloud architecture

for dynamic partitioning of a task and then offloading the partitions to the

cloud servers [116]. The goal of this architecture is to save energy and ensure

security of the sensitive data carried by the partitions. It structures the tasks

and partitions them using a security algorithm to protect sensitive information

within the task offloads them to the cloud-servers. The proposed architecture

is composed of three phases, they are: application structuring phase, parti-

tioning phase and the security phase. In the application structuring phase,

cloud servers and clients have all of the parts of the applications which are

executed between the client and the cloud servers. The partitioning phase
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contains a partitioning policy to minimise energy consumption. In the last

phase, the proposed architecture executes a security algorithm locally (i.e.,

within the devices, before offload to the cloud servers) to secure sensitive

information. The sensitive information is marked based on the programmer’s

observation. This architecture improves the Ou et al. architecture [112] by

using an efficient dynamic partitioning scheme between the client and the

cloud servers. However, this architecture lacks accuracy as the partitioning

process does not work in the absence of a network disconnection.

Kumar and Lu discuss a partition-based mobile data offloading archi-

tecture for the programming model to reduce energy consumption for the

communication and computational side [117]. In this D2C class of mobile

cloud architecture, transmitted data and network bandwidth are major com-

ponents to calculate the communication costs, whereas the computation cost

is determined by the relative computation time. This architecture offloads

data dynamically as the communication and computational components vary

with the different circumstances. Unlike the Ou et al. architecture [112],

in this architecture, data offloading improves the energy consumption for

both the communication and computation. Similar to the Chun and Maniatis

architecture [116], this architecture minimises energy consumption by using

partition-based data offloading.

Similar to the Kumar and Lu architecture [117], Ravi et al. propose an

energy management architecture for mobile devices [118]. Based on the op-

portunity of the next charging point, this context-aware, energy management

architecture warns the user when it detects a device’s power limitation. The

proposed architecture takes into consideration the current set of applications

that are running in the device, the discharging rate and phone call logs to

predict the unimportant calls and warns user accordingly.

An advantage of this architecture is that it tries to find the important ap-

plications (e.g., phone calls or sending texts) that should not be compromised
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by non-crucial ones (e.g., watching a video or listening to music). The impact

of the social interactions, present locations and various calling patterns for

the different users in various times make it difficult to predict when the next

important phone call needs to be answered. However, along with the simi-

lar line to our research, this architecture has more promise while travelling

in rural areas or in a high cost of Internet roaming zone to determine the

importance of an application. But unlike the scope of our research, this

architecture requires a continuous Internet connection for communication

which is difficult to gain in challenged environments.

In table 3.1, we summarise the various D2C class of mobile cloud

architectures discussed in Section 3.3.1 , with their efficiencies. This includes

context awareness, bandwidth utilisation, latency used, collaborations, cost

efficiency and energy awareness.

Table 3.1: Comparisons between different attributes of mobile cloud architec-
tures based on a D2C class of architecture. H=High, L=Low and M=Medium
represents the efficiency of the networks. (CoAw: Context Awareness, BaUt:
Bandwidth Utilisation, LaUs: Latency Used, CoBo: Collaborations, CoEf: Cost
Efficiency and EnAw: Energy Awareness).

Architectures CoAw BaUt LaUs CoBo CoEf EnAw

[105] L M M No L L
‘MoCa’ [106] H L L No M M
‘Volare’ [107] H L L No H L
[108] M L M No L L
‘IRNA’ [110] M L L No L L
‘E-Recall’ [111] H H H M L L
[112] L H H L L L
[113] H L M H M M
[116] H M M No M H
[117] H L L No M H
[118] H L L No M H
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3.3.2 Mobile Cloud “Cloud to Device” (C2D) Architecture

In this class of architecture, cloud-based applications run inside the user’s

mobile devices (cf. Fig. 3.4). The ‘Open Gardens’8 defines the C2D class

of mobile cloud architecture as ‘the availability of cloud computing services

in a mobile ecosystem. This incorporates many elements including consumer,

enterprise, femtocells, transcoding, end to end security, home gateways and

mobile broadband enabled service’.

Figure 3.4: The C2D class of mobile cloud architecture is where resourceful
cloud-based applications run inside the user’s mobile devices with the help of
the ‘cloudlets’.

As illustrated in Fig. 3.4, cloud-based applications execute in ‘cloudelets’

that are located to the edge of mobile networks [7]. Then the mobile de-

vices access these cloud-based applications through these cloudlets. This

can be done in two ways. First, by using a femtocell and second, by using a

Wi-Fi technology. A femtocell is used to improve cellular reception inside a

building or home (i.e., an indoor network environment) [72], whereas the

Wi-Fi technology works better in an outdoor network environment [73]. The

‘cloudlets’ are executed in the core of the mobile networks. The C2D com-

munication in a cellular network can be observed as a direct communication
8http://www.opengardensblog.futuretext.com/archives/2010/03/mobile/
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between the cloud servers and the mobile devices (i.e., the last link is wireless)

traversing the Base Station (BS) or core network. However, the local user’s

mobile networks and their communications are generally non-transparent

to the cellular network. This can be achieved in two different ways, first

via cellular spectrum (i.e., inband) and second unlicensed spectrum (i.e.,

outband). Cellular network architecture takes multi-core architecture design

for communications, which gives programmers the ability to execute a large

number of concurrent threads in a single processor. This in turn accelerates

the concurrent execution of applications. In a traditional cellular network,

all communications must be done via BS even if the co-located users (i.e.,

mobile devices) are within a range of direct communication.

The aim of the C2D class of mobile cloud architecture is to use cloud-

based mobile augmentation approaches in which resourceful cloud-based

applications are leveraged to enhance the computing capabilities (e.g., pro-

cessing and storage) of the resource-constrained mobile devices [119]. In

this, resource-enhanced cloud-based applications are used to increase and

optimize the resources inside the resource-intensive mobile devices. A big

part of the cloud-based application can be executed in smaller parts as per the

user’s requirements and available various computing resources (e.g., location

of remote cloud servers or nearby mobile nodes).

For instance, Huang et al. present a C2D class of mobile cloud architec-

ture, named ‘MobiCloud’, which provides cloud-based applications to the local

mobile nodes through a cloud-based mobile augmentation approach [120].

This architecture aims at focusing on the use of a systematic approach to

understand the feasibility of integrating both the infrastructure clouds and

MANETs communication technology. The MobiCloud adopt cloud-based

applications to create a virtualised environment for MANETs operation in

multiple service provisioning domains according to the criticality of MANET’s

services and corresponding security requirements. In this architecture, each
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mobile node becomes a service node. A service node can be used as a service

provider or a service broker according to its capability e.g., available com-

putations and communication capabilities. Further, the MobiCloud supports

a particular data offloading using the maximum advantage of each mobile

node in the system that uses cloud-based applications. Two major issues

have been addressed in this architecture, they are: first, the lack of interop-

erability support in a heterogeneous MANETs communication that belongs

to different administrative domains and second, issues related to locations,

communication-privacy, reliability and survivability. However, this architec-

ture is influenced by bandwidth and latency, which are major concerns for a

seamless cloud-based mobile augmentation.

Another C2D class of mobile cloud architecture, named ‘mCloud’, is ex-

plored by Miluzzo et al., where mobile devices become a core component for

executing cloud-based applications [121]. The mCloud architecture is able to

divide the cloud-based computations by slicing up a task into smaller subtasks

to the other mobile devices according to the execution’s requirements. This

helps for parallel data processing and alleviates device’s limitations (e.g.,

CPU, RAM, battery) for executing the whole task in a single device. This

architecture not only addresses the technical perspectives of the C2D commu-

nications but also tries to find issues related to social domains by employing

proper incentive mechanisms to the users to lend their devices for other user’s

computations. Similar to the goal of our present research, this architecture ex-

plores the user’s interactions in social domain for communication. Unlike our

motivation, this architecture does not mention how to collaborate seamlessly

for information exchange in a social domain in a challenged environment.

Along with a similar view to the ‘mCloud’ architecture [121], Shi et al.

explore a C2D class of mobile cloud architecture where cloud-based applica-

tions run inside the mobile devices according to the execution’s requirements

and user’s application requirements [122]. This improves the access speed
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and communication costs by using a resource allocation process and sched-

ules offloading process with a mutual contention establishment with the

cloud servers. This contention establishment improves in making offloading

decisions in variable connectivity and enables an efficient resource manage-

ment mechanism by using a task-allocation algorithm. But again, unlike our

motivation, this architecture requires a constant Internet connection for a

communication establishment between the mobile devices and cloud servers.

Verbelen et al. present a C2D class of mobile cloud architecture using

the ‘cloudlets’ approach, where cloud-based applications have moved nearer

to the user’s mobile devices in the form of ‘small data storage’ [123]. This

architecture is useful to employ areas, where Wide Area Network (WAN)

communications make insufficient connectivity to access cloud-based services

through mobile devices. The cloudlet infrastructure is ‘mobile’ where devices

can join and leave the cloudlets at runtime. Cloudlets are used for mobile

devices due to its widely-dispersed and decentralised Internet infrastructure

and the ability to provide a high bandwidth of network utilisation. This in

turn improves the communication’s latency related issues. Similar to the

Verbelen et al. architecture [123], Koukoumidis et al. present a C2D mobile

class of mobile cloud architecture to improve data access, latency related

issues and efficient energy management procedures for mobile devices [124].

The proposed architecture introduces a ‘pocket cloudlet’ concept, where

full or a part of the cloud-based applications is stored inside the mobile

device. A major benefit of ‘pocket cloudlet’ is that it reduces the bottleneck of

wireless communications and improves latency as well as data access speed at

runtime by increasing the device’s memory capacity. Unlike the Verbelen et al.

architecture [123], ‘pocket cloudlet’ is able to synchronise resources between

edge clouds and mobile devices easily and helps mobile devices with efficient

resource selection and management. This architecture requires a memory to

store the cloud-data, for instance, data can be stored in the mobile cache.
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In table 3.2, we summarise the various C2D class of mobile cloud

architectures discussed in Section 3.3.2, with their efficiencies. This includes

context awareness, bandwidth utilisation, latency used, collaborations, cost

efficiency and energy awareness.

Table 3.2: Comparisons between different attributes of mobile cloud architec-
tures based on a C2D class of architecture. H=High, L=Low and M=Medium
represents the efficiency of the networks. (CoAw: Context Awareness, BaUt:
Bandwidth Utilisation, LaUs: Latency Used, CoBo: Collaborations, CoEf: Cost
Efficiency and EnAw: Energy Awareness).

Architectures CoAw BaUt LaUs CoBo CoEf EnAw

‘MobiCloud’ [120] H M M No M L
‘m-cloud’ [121] M M M No M L

[122] H M M L M M

‘Cloudlets-based ap-
proach’ [123]

H L L M L H

‘Pocket-cloudlets’
[124]

H M L M L H

3.3.3 Mobile Cloud “Device to Device” (D2D) Architecture

In this class of mobile cloud architecture, mobile devices create their own

‘cloud environment’ with the help of the nearby mobile devices located in a

fairly close distance (cf. Fig. 3.5). The term ‘cloud environment’ is referenced

as an information sharing platform that helps sharing information available

locally with one another located in vicinity. The key issue in such communi-

cation is the physical presence of the users carrying the mobile devices within

the network [125].

As illustrated in Fig. 3.5, users communicate with each other within a

network with the help of locally available mobile network communications.

52



Figure 3.5: The D2D class of mobile cloud architecture is where users create
their own ‘cloud environment’ by communicating with one another located
in physical proximity.

The D2D class of mobile cloud architecture enables direct communication

between nearby mobile devices aims at improving information availability,

overall throughput and device’s energy efficiency [126].

For instance, Mtibaa et al. present a D2D class of mobile cloud architec-

ture which enables a scalable and autonomous Mobile Device Centric (MDC)

approach based on the user’s social network relations [127]. The social net-

work relations help to avoid unwanted communications by identifying foreign

users (i.e., the users, who do not have a social relation to a user in the same

network or in successive networks) during the content offloading between

the devices.

The MDC is autonomously grouped and its members are dynamically

associated with each other for information exchange. In this architecture,

devices become content producers, service providers and consumers at the

same time. However, the user’s privacy and security are major concerns

while deploying a seamless service to the users. To this end, strong data

encryption techniques can be employed [128] to secure communication
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between the users from the attackers/hackers who may steal/hack the user’s

sensitive information during data offloading. But unlike the motivation of

our present research, how to extend user’s social relations further to access

cloud-based applications during network disconnections is lacking in the

proposed architecture.

Pedersen and Fitzek present a D2D class of mobile cloud architecture

that explores technical and social aspects [75] in such communication. In this

architecture, mobile devices located in physical proximity connect directly and

create their own ‘networks’ for sharing information between each other. There

are issues relating to P2P communications or overlay network techniques.

However, social aspects deal with cooperation between the users by enforcing

incentives in such cooperation [11] [12]. To this end, the use of proper

incentive mechanisms can mitigate a user’s unpredictable behaviour but in a

real-life application scenario it is more general and hard to avoid.

This architecture explores a user’s mobility during information exchange

but offloading data to the cloud servers is difficult with the absence of an

Internet connection. Thus, similar to the motivation of our present research,

this architecture deals with the user’s mobility patterns for communication.

But unlike the scope of our research, how to offload data to a cloud server in

a challenged environment is lacking.

Similar to the Pedersen and Fitzek [75] architecture, Li et al. present a

D2D class of mobile cloud architecture exploring user’s mobility patterns and

social awareness in data forwarding [129]. The goal of this architecture is

to leverage social-aware D2D communication based on social relationships

and human mobility on an underlying cellular system. But once again, unlike

our motivation, this architecture does not indicate how to enhance these

social relationships and human mobility for gaining access to cloud-based

applications in challenged environments.
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Jin and Kwok present a D2D class of mobile cloud architecture for

collaborative information sharing between users who have similar interests

(for instance, playing the same audio/video files) [130]. This architecture

uses limited network bandwidth for search and share information in places

like a coffee shop, library or other small workplaces with the help of the

nearby user’s mobile networks. The motivation of this architecture is based

primarily on the combined information received from multiple users located

in a close physical proximity, where each user handle a part of the information

e.g., images, sounds or text captions of a video file. Similar to our research,

this architecture is a promising to employ in places where mobile cloud

platforms can be extended within a close range for collaborative information

sharing among a group of users. However, how to enhance this architecture in

places without a network infrastructure is lacking in this research. Moreover,

this architecture does not consider a distribution policy to share large files

between its peers.

Canepa et al. present a D2D class of mobile cloud architecture which

helps user to dynamically locate an alternative route to communicate with

the cloud servers during disconnection of a network service [25]. This archi-

tecture explores the alternative route by locating users in a physical proximity

who may have a stable connection to offer. This connection establishment

can be achieved by using the user’s mobile networks.

In such a way, a user is able to connect their mobile device with the

cloud servers in an ad-hoc manner using another user’s stable network con-

nections. Similar to the Jin and Kwok architecture [130], this architecture

indicates how to get a route for communication via the nearby users who

have a stable network connection. However, unlike the Pedersen and Fitzek

architecture [75], this architecture does not consider user’s mobility, device’s

processing capacity and user’s privacy related issues when communicating

with the nearby users.
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Pal and Henderson present a D2D class of mobile cloud architecture

where users (e.g., a tourist) can choose a service for sharing and storing

their data, according to the available communication infrastructure and with

the help of local user’s mobile networks [131]. The proposed architecture,

named ‘MobOCloud’, explores the use of opportunistic networking in a social

collaboration platform for providing cloud-based applications to the tourists

in areas that lack an Internet connection or places where the cost of Internet

roaming is simply too high.

Local users store, carry and forward tourist’s data to destinations on

behalf of the tourists. This data forwarding process can be done without any

direct interactions between the local users and tourists by keeping the data

in a storage hub. Storage hubs are the static devices located in places where

tourists and locals visit more frequently (e.g., tourist’s attractions, museums,

shopping centres). Tourists store their data in a storage hub and when a

local user visits the place he/she collect that data and forward them to their

intended destinations by allowing tourists to avail a cloud-based application.

The fundamental of storing data at hubs is that it improves battery power

and memory capacity of the mobile devices.

Unlike the Canepa et al. [25] model, the data forwarding in ‘MobO-

Cloud’ architecture depends upon local user’s mobility patterns and their

social interactions. This communication, is however, influenced by several

intermediate users who are willing to store, carry and forward data with the

others within the network. Upon this, attractive incentive mechanisms can

be employed to motivate more users in data forwarding [132].

In table 3.3, we summarise the various D2D class of mobile cloud

architectures discussed in Section 3.3.3, with their efficiencies. This includes

context awareness, bandwidth utilisation, latency used, collaborations, cost

efficiency and energy awareness.
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Table 3.3: Comparisons between different attributes of mobile cloud architec-
tures based on a D2D class of architecture. H=High, L=Low and M=Medium
represents the efficiency of the networks. (CoAw: Context Awareness, BaUt:
Bandwidth Utilisation, LaUs: Latency Used, CoBo: Collaborations, CoEf: Cost
Efficiency and EnAw: Energy Awareness).

Architectures CoAw BaUt LaUs CoBo CoEf EnAw

[127] H M M H M M
[75] H M M H L M
[129] H L L H L M
[130] H L M M L H
[25] M L L H M M
‘MobOCloud’ [131] H L M H H H

3.4 The Integration of Mobile Cloud Technology

and Mobile Opportunistic Networks

The state of the art discussions in Chapter 3.3 and Chapter 1.1 indicate that

there is a need of a constant Internet connection to gain advantage to a

seamless cloud-based application by the users. However, in challenged envi-

ronments it is not so trivial, since such applications rely on the availability

of connectivity. For instance, in sparse or rural areas that lack proper infras-

tructure, and in high density, urban areas, with restricted/full of interference

access networks, connectivity cannot be assumed available. Therefore, we

explore the integration of mobile cloud technology and mobile opportunistic

networks for a collaborative information sharing platform. In this, users can

gain access to cloud-based applications in challenged environments with the

help of local users’ mobile networks and their social collaborations.

A major operation of mobile cloud technology is data offloading/mobile

data augmentation via resource constraint mobile devices. Mobile opportunis-

tic networks help to store, carry and forward data exploring user’s physical
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interactions in a fairly small area. Thus, while integrating mobile cloud tech-

nology with mobile opportunistic networks, this data offloading/mobile data

augmentation can be done with the help of the co-located users’ interactions

exploiting their mobility patterns and social behaviours [133].

In the offloading/mobile data augmentation part, resource constrained

mobile devices discharge data to the cloud servers or cloud-based applications

run in mobile devices [117]. This helps to improve the device’s battery power

and increases computational performance. Traditional computational of-

floading/mobile data augmentation techniques are generally energy unaware

and require improved bandwidth utilisation for communication. Therefore

traditional computational offloading/mobile data augmentation mechanisms

cannot be used directly in case of mobile cloud platforms in challenged

environments because of the device’s limited battery power and available

bandwidth for communication [134]. Thus, present mobile devices require an

application model that supports an efficient computation offloading method

and being optimised for mobile cloud environments in terms of heterogene-

ity, context awareness, application partitioning overhead, network traffic,

data cost, bandwidth and energy consumption in such challenged environ-

ments [135].

User’s mobility, interactions and cooperation and routings for data for-

warding are three significant issues when integrating mobile cloud technology

with mobile opportunistic networks [24]. User’s mobility is important as this

exploits their interactions and cooperation between each other for sharing

similar social interests. Routing strategies (cf. Chapter 2.3), on the other

hand, play an important role for data forwarding between users by selecting

the best possible path available [136].

Most of the recent research has been focused on the development model

of the mobile cloud platforms and mobile opportunistic networks [102] [137]

[138], along with their issues and related challenges in their resources (e.g.,
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battery power, storage) and communications (e.g., user’s mobility, data pri-

vacy [41] [104] [139] [140], but exactly how a mobile cloud platform can

be extended using mobile opportunistic networks in challenged environ-

ments is lacking in present research. Our research addresses this specific gap

where we can use an mobile opportunistic network to gain access to cloud-

based applications in challenged environments that lack an infrastructure for

communication (e.g., in sparse or rural areas) or areas with infrastructure

(e.g., urban or high density areas) with restricted/full of interference access

networks and even areas with high costs of Internet roaming.

3.5 Summary

In this chapter we present the state of the art survey of mobile cloud tech-

nology, their applications, challenges and possible countermeasures. We also

discuss the various mobile cloud architectures according to their mode of use.

Finally, we discuss the emergence of integrating mobile cloud technology

with mobile opportunistic networks to gain access to cloud based applications

in challenged environments.

We summarise our findings are as follows:

• The combination of mobile technology and cloud-based applications de-

liver successful adaptations of services (e.g., processing and storage),

which tends toward a mobile cloud technology.

• There is a need for a constant Internet connection to gain advantage to a

seamless cloud-based application by the users. However, in challenged

environments not so trivial, since such applications rely on the availability

of connectivity.

• In addition, heterogeneity of networks, limited bandwidth, context aware-

ness of the device, limited battery power and memory size as well as
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security and privacy issues to protect user’s data are the major constraints

to overcome for the continuation of delivering better cloud based applica-

tions.

• We find that the use mobile opportunistic networks with the help of local

users’ mobile networks and their social collaborations can be employed

for extending cloud-based applications in challenged environments.

• In our study, we note that how a mobile cloud platform can be extended

by using mobile opportunistic networks in challenged environments is

lacking in present research.

In the next chapter (Chapter 4), we demonstrate the MoCC architecture,

which extends mobile cloud platforms with mobile opportunistic networks.

By using this architecture it may be possible to overcome the limitations of

high Internet access costs or unavailability of network infrastructure, e.g.,

for tourists who may wish to gain access to remote cloud-based applications

with the help of local users’ mobile networks.

60



Chapter 4

Extending Cloud-Based Applications

With Mobile Opportunistic Networks

In this chapter, we devise a new ‘Mobile-Opportunistic Collaborative Cloud’

architecture (MoCC) to extend mobile cloud platforms using mobile oppor-

tunistic networks in challenged environments. Unlike the other traditional

mobile cloud architectures, MoCC focuses on realising a loosely coupled,

context-aware, service-oriented architecture that combines the D2C, C2D and

D2D class of mobile cloud architectures (discussed in Chapter 3.3).

In this chapter, the major contributions are:

• We devise the MoCC architecture which explores a “Device to Device

to Cloud” communication that leverages local users’ mobile network

connections to provide tourists with access to the cloud-based applications

in the absence of infrastructure.

• We discuss the issues and challenges associated with the MoCC archi-

tecture that need to be improved upon for delivering a more scalable,

location-aware and context based service to the tourists in a challenged

environment.
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4.1 The Scope of the ‘MoCC’

In the D2C class of mobile cloud architecture (in Chapter 3.3.1), a mobile

device offloads data to the cloud servers. In the C2D class of mobile cloud

architecture (in Chapter 3.3.2), cloud-based applications run in mobile devices

through mobile data augmentation may be in terms of the ‘cloudelets’. Finally,

in the D2D class of mobile cloud architecture (in Chapter 3.3.3), devices

communicate with one another using locally available network connections

within a fairly close distance. Our proposed architecture goes beyond these

three classes of mobile cloud architectures and gains advantage from each

of them. In this, both the D2C and C2D mobile cloud architectures are able

to communicate with the D2D class of mobile cloud architecture and thus

improve the data offloading/mobile data augmentation with the help of

the locally available network connections. Returning to our motivation (in

Chapter 1.1), the MoCC architecture aims to gain access to a cloud-based

application for Bob and Ron, instead of relying on a fixed infrastructure for

communication or by avoiding a high infrastructural cost of communication

(e.g., a high Internet roaming cost).

The MoCC consists of two different technologies, which are then com-

bined into a single one. These are mobile cloud technology and mobile

opportunistic networking technology, by using the local user’s P2P commu-

nications technology. As illustrated in Fig. 4.1, travellers (e.g., tourists) can

connect their mobile devices with the available mobile networks (cf. in

Fig. 4.1 this is referenced as ‘Local User’s Network Communications’). Local

users (i.e., local people) play an important role in such communications for

information sharing. Unlike the tourists, local users are assumed to have

direct access to the cloud-based applications and can forward/download data

on behalf of the tourists.

Local user’s network communications look into a specific class of ap-
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Figure 4.1: The emergence of a ‘Mobile-Opportunistic Collaborative Cloud’
(MoCC) architecture is where travellers (e.g., tourists) can connect their
mobile devices with mobile networks in proximity (referenced as Local User’s
Network Communications) for information storage and sharing. Travellers
can communicate with each other but this depends upon the local user’s
mobile networks in order to gain access to a cloud-based application. Local
user’s P2P communications technology may be extended to provide such
opportunities by allowing an Internet connection to the traveller.

plication for mobile P2P networks in an opportunistic way. This network

is formed by humans carrying mobile devices that communicate with each

other directly. In such communications, the physical presence of a user to

support real-life collaborations among them is significant for storing, carrying

and forwarding data from the source to destinations. The Bluetooth or IEEE

802.11b Wi-Fi wireless communications technologies are commonly used for

this communication. Next, we discuss the MoCC architecture, followed by

some potential application scenarios.
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4.2 The ‘MoCC’ Architecture

The MoCC architecture consists of the following five basic components, they

are: users, mobile devices, local users’ mobile networks, Internet access points

and cloud servers. The functional levels of the envisioned architecture is

presented in Fig. 4.2.

As illustrated in Fig. 4.2, the level, named ‘user/mobile devices’, is

composed by the users (both the locals and tourists) and their mobile devices.

The level named ‘local users’ mobile networks’ helps the users to communicate

with one another in physical proximity. Only the local user’s mobile devices

are able to connect themselves to cloud servers via an Internet access point

(e.g., Wi-Fi access points or fixed fibre links), tourists need to go through

this to avail a cloud-based application. Between the levels there is a need

of service integration through which services can communicate with one

another. The components of the MoCC architecture are discussed as follows:

4.2.1 User

Users (both the local users and tourists in this case) are defined as those

who are using mobile devices and communicate with one another within a

fairly close distance. While the benefits of cloud-based applications are the

same, users may make their choices according to the service requirements

based on the communication costs or device’s energy requirements to run the

application. Several issues (e.g., disasters, weather and buildings) can affect

this type of communication and user’s personal preferences are important in

this case [141].

4.2.2 Mobile Devices

Mobile devices are the smart mobile devices carried by the users. Smart

phones and tablets are the most popular choices here. Companies are steadily
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Figure 4.2: The functional levels of the envisioned MoCC architecture. The
level named user/mobile devices is composed of users; both the locals and
tourists and their mobile devices. Users communicate with each other using
the local users’ mobile networks. Only the local users can connect their mobile
devices to the cloud servers via Internet access points (e.g., Wi-Fi access points
or fixed fibre links), tourists need to go through this to avail a cloud-based
application. Between each level there is a need for service integration so that
components in each level can communicate seamlessly with one another.

trying to build faster and more resource packed mobile devices in terms

of processor, memory and sensors. Statistics shows that: “worldwide smart

phone sales to end users reached 225 million units, up 46.5 percent from the

second quarter of 2013. Sales of feature phones to end users totaled 210 mil-

lion units and declined 21 percent year-over-year”1. Companies like Samsung,

Nokia, Huawei, HTC, Sony and Apple are several of the leading companies

at present producing smart phones [142]. For instance, sony ‘Xperia S’2

1http://www.gartner.com/newsroom/id/2573415/
2http://www.sonymobile.com/gb/products/phones/xperia-s/
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comes with 1.5GHz dual core processor, 1GB RAM, 32GB data storage sup-

port and 1750mAh battery. Similarly, HTC ‘One X’3 has 1.5Ghz quad-core

processor, 1GB RAM, 32GB data storage support and 1800mAh battery. The

most used mobile operating systems are Apple iOS, Research in Motion (RIM)

Blackberry system (it offers java development environment), Android mo-

bile operating systems, Windows mobile operating system, Nokia’s symbian

platform [143] [144].

These devices are connected to the mobile networks via telecom net-

work providers (e.g., base transceiver station or satellite) or access points

(e.g., Wi-Fi access points or hotspots) that establish and control the connec-

tions and functional interfaces between the networks and mobile devices.

User’s requests and corresponding information (e.g., ID and location) are

transmitted to a central processor that is connected to servers providing mo-

bile network services. Mobile network operators provide services to mobile

users as authentication, authorisation and accounting based on the user’s

data stored in their databases. Then, the user’s requests are delivered to a

cloud server through the Internet. In cloud servers, cloud controllers process

the requests to provide mobile users with the corresponding cloud-based

applications [68] (cf. in Fig. 3.1, in Chapter 3.1).

4.2.3 Local Users’ Mobile Networks

In MoCC, local users are an important part in the formation of the local users’

mobile networks. This is basically a P2P communication networks where

users connect with one another and share information available locally with

their peers [145]. When a node comes within the communication range of

another node, then the opportunity to share information between each other

is likely. User mobility and social interactions are important factors in this

type of communication.
3http://www.htc.com/uk/smartphones/htc-one/
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4.2.4 Internet Access Points

Internet access points are the places where users can connect their mobile

devices with a Web-based application. These access points use either the

traditional mobile network systems (e.g., mobile base station or satellite

communication) or Wi-Fi, 3G and 4G mobile telecommunication technologies.

The Wi-Fi based connections provide a higher bandwidth and lower delays

as compared to a 3G connection which provides a lower bandwidth but a

relatively higher delay [135]. However, 4G connections improve latency and

bandwidth capacity. The 4G networks are capable of providing 100 Mbit/s

(for the Long Term Evolution (LTE) advanced standard) and 128 Mbit/s (for

Wireless Metropolitan Area Networks (WirelessMAN) advanced standard) for

mobile users, where 3G networks support a maximum of 14.4 Mbit/s [68].

Moreover, Samsung introduced the ‘Yes Buzz’4 4G cloud phone which has no

SIM card and allows contacts to be saved and synchronised on the Internet.

4.2.5 Cloud Servers

We consider cloud servers here to be virtualised cloud-based resources. Users

connect their mobile devices with the cloud servers through Internet access

points. While offloading mobile data to the cloud servers, it is important to

select the proper cloud hosting environment for each service (e.g., shared

hosting or dedicated hosting). Specifically, the service must have offloading

supports to enable user’s applications at will [146].

4.3 Potential Applications

We will now discuss the potential applications of the proposed MoCC archi-

tecture. A few of them are as follows:
4http://www.yes.my/v3/personal/devices/buzz.do/
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4.3.1 Searching for Users in Proximity

As discussed in motivation in Section 1.1, our scenario actor Ron is travelling

abroad and wants to know the meaning of an ancient script at a museum.

Ron does not know this particular form of the foreign language. In this case,

Ron may be interested in taking a photo of this script and sharing it with the

nearby mobile users who may be interested in sharing the meaning of this

language so that Ron can understand it.

In this situation, Ron can use a D2C class of mobile cloud architecture

e.g., ‘volare’ [107] (discussed in Section 3.3.1), but this would require a

constant Internet connection for communication. Therefore, in such situations

the architecture MoCC can be employed to find a nearby user who may be

able to find the meaning of the script for Ron. This in consequence, reduces

the communication’s cost in terms of Internet roaming for searching the

information over a cloud-based application. In addition, this removes the

geographical barrier and can avoid the need of an active Internet connection.

This is useful in areas that lack an infrastructure for communications, but

also in areas with high costs of Internet roaming.

4.3.2 Crowdsourcing

Using mobile cloud technology, crowdsourcing [147] can be used for infor-

mation exchange. In this, mobile devices form an environment that could

allow users the ability to find useful information within a shorter range. This

can be achieved with the D2C class of mobile cloud architectures e.g., the ‘E-

Recall’ [111] and the Ou et al. architecture [112] (discussed in Section 3.3.1).

However, the concern is that the mobile devices need a continuous Internet

connection to avail edge clouds resources [148]. Therefore, this indicates that

the MoCC architecture is promising for exploring the locally available mobile

networks, instead of relying on a fixed infrastructure for communication is
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promising. An example would be, using his mobile device; our actor Ron

may be able to locate some interested people in the museum who can share

the required information to understand the meaning of the ancient script.

4.3.3 Sensor Data Applications

Smart phones are able to connect GPS services for finding a specific location.

It is also possible to calculate a device’s location and speed with sufficient

accuracy. This is useful when searching for specific locations e.g., travel

destinations, maps or tourists attractions. This can be done by using the

C2D class of mobile cloud architectures e.g., the ‘MobiCloud’ [120] and the

‘mCloud’ [121] (discussed in Section 3.3.2). Unlike the MoCC architecture,

these C2D architectures require a constant Internet connection that may be

unavailable in rural or spares areas that lack an infrastructure for providing

an Internet connection, but also in urban areas with infrastructure with

full/restricted interference access networks. Therefore, in such areas the use

of the MoCC architecture is promising.

4.3.4 Smart Tourism and Travel

Smart tourism tries to solve the scheduling, planning and recommendations in

the tourism industry [149]. This may be a travel schedule, ticket arrangements

or the booking of a hotel which is helpful to the travelling tourist. For instance,

Hung et al. define a ‘smart cities’ [54] approach, where users can interact

with each other with their mobile devices for real-time travel searches (e.g.,

searching for a tourist’s attraction or a direction to a particular place). This

approach is useful for tourists to find a cloud-based application with the

help of the nearby user’s P2P network communications. But again unlike the

scope of our present research, this architecture requires a continuous Internet

connection to get users connected with one another.
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In such situations the D2D class of mobile cloud architectures can be

employed to avail information locally e.g., the Pedersen and Fitzek architec-

ture [75] and the Jin and Kwok architecture [130] (discussed in Section 3.3.3),

but this is difficult to get information from a global community for which an

Internet connection is required. Therefore, the MoCC architecture is promis-

ing for combining local and global connectivity when travelling in areas with

no Internet connection or in areas with high Internet access costs.

4.4 Issues and Challenges

The emergence of the MoCC architecture is promising for communication

in challenged environments. In short, this new networking trend fuses the

efficient users’ collaborations and interactions with the help of mobile oppor-

tunistic networks to avail cloud-based applications. However, it introduces

several issues and challenges in the network. As the data forwarding in such

a network solely depends upon the user’s direct interactions with one another,

thus security issues and privacy challenges are major concerns [150]. In

this section, we discuss such issues and other associated challenges that are

related to the node’s mobility, heterogeneity of networks and constraints

related to the mobile devices and user behaviour.

4.4.1 High Mobility of the Nodes

A user mobility pattern plays a significant part in transferring information in

a real-life scenario [42]. In the MoCC architecture, nodes expect to send and

retrieve information while they carry out their usual activities. Thus, nodes

are highly dynamic in nature and the devices in the network may rely on

sporadic connections with other nearby mobile devices as an opportunity for

data forwarding, regardless of the availability of network connectivity and of

the surrounding set of neighbouring devices [151] [152].
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An important feature of a mobile opportunistic network is that it does

not keep track of the current network topology. So, the data forwarding

decision is made exclusively based on knowledge available locally [26]. A

routing path between the source and destination may not exist and a node

forwards packet to intermediate nodes until the intended destination is found.

Therefore, it is impractical to establish end-to-end secure routing strategies

for this communication. Consequently, the MoCC architecture requires highly

dynamic security and privacy solutions that do not depend of a predefined

path, and that should take place at every hop. With that in mind, security

schemes could exploit mechanisms analogous to the custody transfer found in

DTN. In this case, the current node sending the message should guarantee a

data delivery to a next hop by employing trust mechanisms which characterise

how reliable the next hop may be [153].

As privacy leakage is inherent to this hop-based scenario (i.e., attackers

explicitly target an individual or a group of individual’s data stored in a cloud

database), relational privacy could be employed while storing and sharing

data in MoCC. Strong relational privacy (e.g., a friendship or contractual as-

sociation) can mitigate data leakage by keeping trusted relationship between

the users participating in data forwarding [154].

In the context of the MoCC architecture, a node should share data with

other nodes following a reliable connection between them. A node should

use secure encryption techniques for storing data in a cloud data centre. The

information provenance mechanism for cloud-based networks that identifies

fault identification and security violations by using the dynamic nature of

the network could be an alternative. This solution is able to maintain the

integrity of electronic-data in storage and archival services while transferring

data from one user to another by dynamic encryption mechanisms [155].

Another alternative to improve hop-based security could be the utili-

sation of a key management framework that enables the bootstrapping of
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local security associations between a node and its neighbours along with the

discovery of the neighbourhood topology [156]. In MoCC, this framework

could prevent ‘sybil attacks’ [157], where node’s reliability is affected by

foreign-attacked nodes. It is imperative that, when addressing the privacy

and security issues concerning the use of cloud-based applications through

different mobile opportunistic contacts, new solutions consider dynamic

mechanisms that could mitigate these arising security threats and attacks,

resulting from how users move within the network.

4.4.2 Heterogeneity of Networks

Heterogeneity here refers to the use of different connectivity means to access

data. In a mobile opportunistic network, mobile devices do not use a unique

type of connectivity all the time [158]. This connectivity is limited (e.g., a

user’s 3G plan) and may vary from place to place (e.g., at home or on the

bus). Such a connection can be provided from a wired network, that has high

bandwidth; from wireless local (school) and/or wide (municipality) area

networks with limited bandwidth; through wireless private area network by

means of Bluetooth; or from the user’s cellular network [135].

Additionally, communication in mobile opportunistic networks depend

upon the node’s mobility and their interactions, and the availability of net-

works to which users connect [159]. In the absence of a global infrastructure,

users roam between and/or connect to different types of networks, constantly

searching for available connections to share information with one another.

Users may still end up victims of malicious users offering ‘free’ connectivity,

but there is strategy to deal with such situations, e.g., the ‘IRNA’ architec-

ture [110]. This architecture seamlessly integrates the device’s dynamics

and heterogeneity of the available networks based on the user’s application

requirements (cf. Chapter 3.3.1).

The lack of a global infrastructure creates the possible threat as users rely
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on different insecure networks for communication. For instance, an attacker

creates vulnerabilities by decrypting a hash which is not strongly protected by

encryptions. This adds a new level of complexity for security systems to these

kinds of networks on which the mobile users easily rely. Therefore, nodes

in MoCC need a seamless integration between the different connectivity

means to which they normally resort. Nodes accessing data via different

network connections should be provided with trusted connectivity, supported

by dynamic routing protocols that follow the node’s trusted encounters for

controlling data exchange at runtime.

4.4.3 Device Constraints

Mobile devices are limited in various ways, e.g., battery lifetime, available

storage or processing power. In mobile opportunistic networks, these limita-

tions are the major constraints for providing a seamless service to users. Due

to the limitations of battery lifetime in these devices, it is not possible to run

the device all the time in challenged environment, e.g., for a tourist who is

travelling in a rural place. Therefore, depending upon the user’s choice, the

device may be configured to shutdown wireless connections, thus affecting

its communication capabilities.

Moreover, keeping track of contact opportunities tends to be more ex-

pensive in terms of energy usage than maintaining existing connections. To

address this battery related constraint, a context-aware battery management

system for mobile devices may be employed [118]. In a challenged environ-

ment this system can save battery power by choosing intermediate devices

that could aid access to cloud space. However, it is difficult to predict the

similar patterns for all the time due to user’s mobility, interactions, present

locations and various calling patterns (cf. Chapter 3.3.1).

Similarly, storage and device processing power may be already com-

mitted locally by the user’s own applications, which makes it hard to share
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with other users at times. As this constant search for the resources can intro-

duce vulnerabilities inside the system (e.g., malicious nodes may offer their

resources to get access to user’s information), users must be provided with

alternatives to get access to different resources that guarantee a secured data

exchange [160]. This type of issue can be solved through a cryptography-

based security architecture for accessing stored data in a cloud-based infras-

tructure [161]. With this architecture, users are in exclusive control of their

private key. In mobile opportunistic networks, this architecture can secure the

unwanted data access from other users in the system. However, it does not

support data confidentiality if the system is compromised by the attackers.

Future research needs to focus on the faster discovery of nearby users’

devices from the perspective of an external user (e.g., a tourist) locating a

safer path which connects to a group of target users with similar interests (e.g.,

users interested in sports, literature, food, etc.) in a challenged environment.

Consequently, such discovery shall help to mitigate the battery related issues

in such communications as only relevant intermediate users are selected in

the communication path.

Additionally, the present mobile opportunistic networks require a strict

security architecture that supports secure/privacy-aware computation of-

floading mechanisms. Upon this, strong data encryption techniques can be

enforced to secure communication between the users from the intruders that

may hack the network during data offloading [128].

This mechanism further ensures that the user’s privacy remains pro-

tected with trust management and private data isolation from unwanted user’s

access of the device and data loss from the lost or stolen devices. For the

former issue (i.e., data isolation from unwanted user’s access), a thin client

like anti-malware/antivirus or strong system password must be installed and

updated frequently to monitor malware. Further, the latter issue (i.e., lost

or stolen devices) can be addressed by employing a secure data processing
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framework [162]. In this framework, the end users have full control over the

data stored in a cloud database (i.e., virtual hard drive). Each mobile device

is virtualised and processes data using a trust-based mechanism. Therefore,

in the context of the MoCC architecture, if a user’s mobile device is lost or

stolen, the data can easily be retrieved or transferred securely into another

system.

4.4.4 Unpredictable User Behaviour

In MoCC, resources are shared among mobile nodes that act as relay entities

for this type of communication. However, in a real-life environment the

exact behaviour of a user is unpredictable [115]. A node can enter or leave

the network at will, they can turn on and off their mobile devices at their

preferences. These are situations which contact opportunities to store and

forward information at runtime are easily lost. Furthermore, these situations

introduce security issues, as users may find themselves in an unknown area

(once they turn their devices back on) and the available contact opportunities

may be towards malicious nodes.

Altruism can also cause uncertainty in many ways for social-based com-

munication. However, in a real-life application scenario, selfish behaviour

is more general and difficult to avoid. Incentive mechanisms can help users

to perform and actively participate in the communication. Over this, mecha-

nisms for detecting selfish behaviour and encouraging cooperative behaviour

are imperative [163]. By employing social knowledge when detecting selfish

nodes in the system, data exchange can easily take place among trusted nodes,

mitigating security issues that arise from uncooperative behaviour.

Incentives may be extended in terms of the social reputation, where

users gain a higher position in the social community based on their satisfactory

behaviour. This helps to encourage other users in engage in the data exchange

process [164]. User behaviour inference and incentive mechanisms can help
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mitigate the effects of unpredictability and lack of cooperative behaviour.

Over this, data exchange can be guaranteed, as data can travel only between

those who are available at the given moment within the network.

In Table 4.1, we present a quick overview of the various issues, chal-

lenges and their potential measures/solutions discussed in Chapter 4.4.

Table 4.1: Highlighting the resulting issues and challenges along with their
potential countermeasures in the MoCC architecture.

Issues Challenges Measures/solutions

High mobility of the
nodes.

Can cause ‘sybil attacks’, where
node’s reliability is affected by
the foreign-attacked nodes.

Requires highly dynamic
security solutions that do
not depend over a prede-
fined path.

Heterogeneity of net-
works.

Data leakage risks due to in
part of the non-trusted data
communication in different
networks.

Requires strong data
encryption mechanisms
to protect sensitive
information.

Device constraints. Limited resources may lead
users to rely on the ’goodness’
of malicious users.

Requires secure context-
aware service manage-
ment systems.

Unpredictable user be-
haviour.

User’s selfish behaviour can af-
fect the overall data communi-
cation and may damage user’s
privacy.

Requires proper incentive
mechanisms for users to
perform accordingly to
reduce altruism in the
communication.

In addition, there are several existing social-aware (i.e., utilising levels

of social relationships besides the physical contact) and social-oblivious (i.e,

focusing solely on the physical contact among users) mechanisms that focus

on the importance of the message forwarding in a mobile opportunistic

network (cf. Chapter 2.3). These mechanisms establish the baseline for the

implementation of novel routing mechanisms that shall be able to forward

messages even upon the unpredictable behaviour of users by looking at trust

and social similarities between these users.

Consequently, research is needed to investigate local user’s social in-
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teractions and group-based community structures for sharing information

to improve the message delivery performance (e.g., for the tourists) in a

challenged environment. It would be helpful to combine content knowledge

(e.g., content type, content interest) with user social proximity within mobile

opportunistic network. This would, in turn, bring benefits to the users for a

faster and better message delivery performance, overcoming the lack of trust

and non-cooperative behaviour that are likely in challenged environments.

4.5 Summary

In this chapter, we introduced an architecture that can be used to extend

cloud-based applications in challenged environments. We also explored the

many limitations and challenges in such communications.

We summarise our findings are as follows:

• We devise a new ‘Mobile-Opportunistic Collaborative Cloud’ architecture

(MoCC) to extend mobile cloud platforms using mobile opportunistic

networks in challenged environments. It consists of the five basic com-

ponents, they are: users, mobile devices, local users’ mobile networks,

Internet access points and cloud servers.

• The MoCC combines the D2C, C2D and the D2D class of mobile cloud

architectures and explores a “Device to Device to Cloud” communica-

tion that leverages local users’ mobile network connections to provide

tourists with access to the cloud-based applications in the absence of

infrastructure.

• We observe that, data forwarding in MoCC is significantly influenced by

the user’s direct interactions with one another. Issues and challenges

related to the user’s security and data privacy, node’s mobility (i.e., nodes

are highly dynamic in nature), heterogeneity of networks (i.e., the use
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of different connectivity means to access data), constraints related to

the mobile devices (e.g., battery power and memory size) and user’s

unpredictable behaviour (for instance, refusal in data forwarding) are

all major concerns for delivering a scalable, location-aware and context

based service to the tourists in a challenged environment.

In the next chapter (Chapter 5), we explore different modes of user

behaviour for message forwarding when using an MoCC architecture.
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Chapter 5

Exploring the Modes of User’s Message

Forwarding Behaviour

In this Chapter we explore the different modes of user’s message transferring

behaviour when using the MoCC architecture (cf. Chapter 4.2). As we dis-

cussed in the state of the art (in Chapter 3), we examine these behaviours in

areas where an ubiquitous network connection is not always available, e.g.,

in remote areas without infrastructure, but also in areas with infrastructure

where the costs of access are too high for users, such as tourists who do not

wish to pay high Internet roaming charges.

In this chapter, the major contributions are:

• We use the MoCC, a “Device to Device to Cloud” architecture, for enabling

tourists to use cloud-based applications without any Internet connection.

• We devise a new tourist-based mobility model according to user behaviour,

their travel interests and activities in different places.

• We evaluate two options for sending tourists’ data into the cloud servers:

storing data at well-situated hubs and exploiting the mobility of local

users.

The goal of this Chapter is two-fold. First, we investigate how to build
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a mobile opportunistic/cloud-based platform for tourists with the help of the

local users’ mobile communications that can enable sending or retrieving of

data to or from the infrastructure clouds. Second, we use mobile opportunistic

cloud-based scenarios to investigate efficient routing algorithms for tourists

to access the remote cloud-based applications.

The research aims to address the following research questions:

• Is it possible to use a mobile opportunistic network to provide cloud-based

services to tourists that lack access to network infrastructure?

• Does the mobility and social interactions of local users help to send tourists’

information efficiently?

• Do local users’ mobile networks succeed at integrating tourists’ and cloud

networks successfully to build an integrated mobile opportunistic/cloud-

based platform?

5.1 Background

In this Chapter, our goal is to understand how we can provide cloud-based

applications in the absence of dedicated network infrastructure. Much re-

search has investigated how to best integrate mobile applications and cloud

infrastructure. These various mobile cloud architectures are characterised as

the following classes i.e., D2C (cf. Chapter 3.3.1), C2D (cf. Chapter 3.3.2)

and D2D (cf. Chapter 3.3.3) mobile cloud architectures. We find that, the

D2C class of mobile cloud architecture does not work well in the absence of

Wireless Wide Area Networks (WWANs). Similarly, the C2D class of mobile

cloud architecture is not well suited to the absence of WWANs. Finally, the

D2D class of mobile cloud architecture requires a constant Internet connection

to access remote cloud-based applications via the user’s mobile devices.
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Most of these architectures study a use case where traditional cloud-

based applications are used on mobile devices, or mobile applications are

used in a cloud-based platform, in the presence of an available and reliable

network infrastructure. Further, unlike our work, most of the architectures

either require an expensive Internet connection or they do not focus on how

tourists can access remote cloud-based services in the absence of an available

network infrastructure.

As illustrated in the MoCC architecture (cf. Chapter 4.2), the tourists’

mobile devices cannot directly access cloud servers but can communicate with

local users; while local users are able to connect their mobile phones with the

Internet to reach cloud severs. Since tourists may be travelling without easy

access to mains power, they may be concerned about their mobile devices’

limited battery and storage resources, and wish to store data before the

power in their devices run out. Therefore, we introduce information storage

hubs which are static devices, situated in tourist spots, where tourists can

store their data without an Internet connection. Tourist spots are places

and attractions where tourists often visit. When local people visit the hubs,

they can then collect data from the hubs and in turn are able to upload the

tourists’ messages to the remote cloud servers (cf. Chapter 4.2.5) using cloud

gateways. We consider that, the cloud gateways are the Internet access points

(cf. Chapter 4.2.4), used to send information to the remote cloud servers.

Cloud gateways are situated in places like a library, a University building,

etc., where local users are able to access Internet connections for their mobile

devices to access cloud-based applications to upload tourists’ messages into

the cloud.

Returning to our motivation (in Chapter 1.1), Bob and Ron have difficul-

ties gaining access to the cloud-based applications. As illustrated in Fig. 5.1,

in such situations, Bob could transfer/store some of his photographs into

an information storage hub, which then will allow the local user to send his
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photographs to their intended destinations using cloud-based services. Ron

may also be able to use the online cloud translator via his mobile device for

translating the meaning of the language, with the help of the mobile devices

available locally.

Figure 5.1: A use case of the MoCC architecture (e.g., cf. 4.3.1), is where
tourists search for local users who may help to store photographs or perhaps
help to understand the meaning of an ancient script. Local users may help
tourists by giving storage or information by providing local mobile network
infrastructures or with the help of the local users’ mobile networks tourists
can avail cloud-based applications.

In order to transfer/store additional information for a tourist in an

information storage hub the tourist could be charged a nominal one-time

only fee, per transaction or a weekly, monthly or yearly subscription for a

more frequent visitor, depending on the tourist’s choice. This would not only

help the tourist to store their extra data to those devices but also benefit the

storage facility in order to increase the probability of data forwarding through

the local users. The individual organizations, companies or local authorities

(e.g., the local council) could be the owners of these storage hubs. The fees

paid to those organizations would be used to maintain those storage hubs.
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Further, we believe that high roaming costs are issues that need to be

overcome. The storage devices (i.e., information storage hubs) could be an

alternative and can be beneficial for the tourists in places with a high Internet

roaming cost. This may not force a network operator to reduce the high cost

roaming charges but the storage devices could be an alternative for a tourist

to avoid the high roaming cost, it would be the tourist’s choice.

5.2 Experimental Analysis

In this section we analyse our proposed experiment with a real-world trace-

driven simulation study. In the beginning, we discuss the evaluation method-

ology along with the performance metric used for the experiment. Then we

explore the simulation setup which includes details for the nodes’ character-

istics and routing protocols involved in the experiment. Next we discuss and

analyse the achieved simulation results.

5.2.1 Evaluation Methodology and Performance Metric

We use the ‘ONE’ (Opportunistic Network Environment) simulator for the

simulation of the proposed experiment [165]. We carry these simulations

using real-world human trace-driven data. This can be obtained from the

‘crawdad’1 data archive. We derive a simulation testbed for a simulation

time of seven days. We ran each simulation 100 times with different random

number generator seeds.

In the experiment, we explore three different modes of message for-

warding behaviour for tourists, namely: Everyone Forwarding (EF), Local

Forwarding (LF) and Pickup and Forwarding (PF). They are discussed as fol-

lows. Note that we assume that all the tourists and local people in the network
1http://crawdad.cs.dartmouth.edu/
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are trusted, although a reputation framework could easily be incorporated,

e.g., [163].

• Everyone Forwarding (EF): Everyone in the network is willing to store

and forward messages for each other. Suppose a tourist sends message to

the network, then every other tourist and local people are able to carry

and forward this message until it reaches its final destination using the

cloud infrastructure.

• Local Forwarding (LF): In this mode of message forwarding, tourists

generate messages but unlike in EF mode, tourists do not store and

forward messages to their destinations. Only local users store and forward

the tourists’ messages for them while both are moving within the network.

• Pickup and Forwarding (PF): As outlined in Chapter 5.1, tourists might

be concerned about their devices’ limited battery and storage. In PF mode,

tourists use the information storage hubs located in tourist spots to store

their messages. These stored messages will then depend upon the local

users to carry and forward them until the messages reach their intended

destinations using the cloud infrastructure. Unlike the LF mode, in PF

mode tourists nodes do not need to interact with local nodes to forward

messages. Instead, interaction takes place via the hubs, an appropriate

incentive framework [11] can encourage local users to act accordingly.

We choose the commonly-used metrics to evaluate the overall routing

performance [166]. They are as follows: (i) Delivery Ratio: The proportion

of the delivered messages to the total number of messages created in the net-

work. (ii) Delivery Cost: The total number of medium accesses, normalised

by the total number of messages created. (iii) Delivery Delay: The total

amount of time to send messages from source to destination.

To test the significant differences among the sample means, we used
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the ANalysis Of VAriance (ANOVA) in our experimental analysis. The use of

ANOVA is aided by the underlying distributions in contrast of more than two

means, when the dependent variable is continuous or fragmented in two, and

the independent (predictor) variable is a set of discontinuous (i.e., discrete)

categories. All simulations are performed in batch mode. This performance

analysis has been done on a computer which has the following configurations

of 2 GB RAM, 500 GB hard disk and an Intel core i3 processor @2.27 GHz.

5.2.2 Mobility Model and Traces

To illustrate the performance of the employed experiment we simulate our

own university town, St Andrews. We design a simulation scenario which

consists of four different node-groups i.e., Tourist Nodes (TN), Local Nodes

(LN), Cloud Gateways (CG) and Information Storage Hubs (IS). They are

discussed as follows:

• Tourist Nodes (TN): In our simulation we used tourists (referenced as

TN). The tourists are defined as those who are travelling or visiting a

place and using their mobile devices and trying to gain access to the cloud-

based services with the help of the locally available mobile networks (i.e.,

mobile devices available locally, cf. Fig. 5.1).

As we lack traces of tourist activity, we develop a new “TouristActivity-

Based” movement model to simulate tourists’ behaviour and nature of

visits in different places. We assume that tourists visit a place, perform

an activity, e.g. taking photos and then move onto another place. Using

publicly-available tourist data2 we prepare the movement model for our

simulation. The various tourists’ activities include visit time, type of at-

tractions (visit places), average time spent in these places, etc. Based on

the tourists’ attractions, we choose different probabilities for 10 different
2http://www.visitscotland.org/pdf/visitorattraction-monitor2009.pdf

85



‘Points of Interests’ (POIs) for tourists. We do the same for all tourists

nodes in our simulation. POIs include historical sites (e.g., St Andrews

Castle, St Andrews Cathedral, etc), entertainment places (e.g., golf club,

cinema, etc) or places that they might visit to collect specific information

about the town (e.g., the tourist information centre). Tourists gener-

ate one message every 9 to 10 minutes while visiting tourist spots. We

generate appropriate POIs for tourists using ‘OpenJUMP’3.

• Local Nodes (LN): Local users (referenced as LN) are an important part

in such communications as they form a local mobile communication

platform for sharing information with their peers within their mobile

communication range. When a TN comes close to LN within this net-

work range the opportunity arises for a possible message communication

exchange and eventually that happens. To simulate the LN, we use the

‘SASSY’ dataset [167]. This dataset is collected in St Andrews with 27

participants equipped with 802.15.4 Tmote Invent sensors and trackers

within a range of 10 metres over a period of 79 days.

• Cloud Gateways (CG): The cloud gateways (referenced as CG) are the

Internet access points, situated in fixed locations, used to send/retrieve

information to/from the remote cloud servers. We situate CG (i.e., static

nodes) in different locations throughout the town (e.g., Computer Science

building, art gallery, student residences, etc) where local users have

Internet connectivity and can forward collected messages to the remote

cloud over the Internet.

• Information Storage Hubs (IS): In the experiment, we situate different

information storage hubs (referenced as IS) in tourist spots throughout

the town (e.g., St Andrews Castle, St Andrews Cathedral) where tourists

can store their messages without having any Internet connection.
3http://www.openjump.org/
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As we explore a challenged environment scenario to deploy the proposed

simulation, we restrict the tourists from gaining access to these CGs. To

this end, in the simulation, the TN cannot directly access the CGs but can

reach/communicate with them through the help of the LN, who have full

access to these CGs. We assume that if a message reaches to the CG, its status

becomes delivered.

5.2.3 Simulation Parameters

Table 5.1 summarises the simulation parameters. The network consists of

100 nodes (27 LN, 60 TN, 6 CG and 7 IS nodes).

Table 5.1: The simulation parameters used in the experiment.

Parameter Value

World Size 4500m X 4500m
Simulation Time 7 days
Movement Model “TouristActivityBased” Movement Model

(cf. Chapter 5.2.2)
Routing Protocols Epidemic; Prophet; MaxProp
Node Buffer Size 200MB
Transmission Speed 250 KBps
Transmission Range 10m
Transmission Medium Bluetooth Interface
Message TTL (Time-To-Live) 1 day
Node Movement Speed Min=0.5 km/h Max=1.5 km/h
Generated Message Size 500 KB to 1 MB

5.3 Results and Performance Evaluation

We now evaluate the routing protocols to determine the performance impact

of the different message forwarding behaviours in the MoCC architecture.

We use the three performance metrics (cf. Chapter 5.2.1) i.e., delivery ratio,
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delivery cost and delivery delay. We use Epidemic as a baseline to compare and

contrast the routing performance with the other two routers (cf. Chapter 2.3).

5.3.1 Delivery Ratio

Fig. 5.2 shows how MaxProp routing improves the message delivery perfor-

mance (median delivery ratio 69.04%) compared with Prophet and Epidemic

routers while everyone in the network is forwarding messages.

Figure 5.2: In EF, ED routing generates large amounts of messages in the
network, although due to the nodes’ buffer size and TTL most messages were
dropped before they reached their destination. MP and PR routing sends
messages by keeping the previous history of delivered messages. This results
in a higher delivery ratio for MP(EF) and PR(EF) than ED(EF). (ED=Epidemic
router, PR=Prophet router, MP=MaxProp router and EF=Everyone Forward-
ing).

Fig 5.3 shows the comparison of delivery ratio of Epidemic, Prophet and

MaxProp routers when tourists’ messages are forwarded by local users, using

their mobility patterns and by storing tourists’ messages into information

storage hubs.
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Figure 5.3: In LF, only tourist nodes generate messages and local nodes for-
ward them when ever nodes encounter each other. In PF, tourist nodes deposit
messages to the static storage hubs then messages were forwarded depending
on the interactions between storage hubs and local users. The result is a higher
delivery ratio for LF than PF modes. (ED=Epidemic router, PR=Prophet router,
MP=MaxProp router, LF=Local Forwarding and PF=Pickup and Forwarding).

We find that the delivery ratio of MaxProp, Prophet and Epidemic

routers increases while using local users’ mobility patterns compared with the

storing of data into hubs. We see that in the first case, the message delivery

ratio of MaxProp router is more than double (median delivery ratio 37.84%)

than in the second case (median delivery ratio 15.83%) (cf. Fig. 5.3). We

believe the reason for this is that the probability of meeting a tourist and

local node is higher when both of them are moving in the network. On the

contrary, the delivery ratio of the Epidemic router decreases when everyone

in the network is forwarding messages (cf. Fig. 5.2), because a large amount

of messages stored by all nodes are dropped, as buffer constraint is a pivotal

factor of this routing performance.

We note that exploring local users’ mobility patterns, the MoCC archi-
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tecture gives a better message delivery performance (µ = 31.69, σ = 5.05)

than storing data into hubs (µ = 14.29, σ = 2.23). But as expected, in the

baseline EF, the message delivery performance (µ = 61.26, σ = 6.22) is

higher; a two-way ANOVA shows significant differences in the overall rate of

the message delivery ratio [F (2,891) = 0.00, p<0.05].

5.3.2 Delivery Cost

Fig. 5.4 shows that the delivery cost of Epidemic routing is higher than the

delivery cost of MaxProp and Prophet routers. The reason is that by Epidemic

routing, a node will generate more copies of a message so that its buffer saves

many copies of different messages, and the buffers therefore fills up.

Figure 5.4: MP and PR routers deliver higher amounts of messages to their
destinations by using encounter histories. This results in lower delivery costs
for MP and PR routers over the ED router in EF mode. (ED=Epidemic router,
PR=Prophet router, MP=MaxProp router and EF=Everyone Forwarding).

Fig. 5.5 presents the results of message delivery costs for the Epidemic,

Prophet and MaxProp routers when we use LF and PF modes of message

forwarding behaviours.
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Figure 5.5: Local users’ mobility patterns in LF mode helped a higher number
of tourists’ messages to reach their destinations than in PF mode. This
resulted in a lower delivery cost for LF mode than PF mode. (ED=Epidemic
router, PR=Prophet router, MP=MaxProp router, LF=Local Forwarding and
PF=Pickup and Forwarding).

We find that the message delivery cost, by using LF (µ = 57.66, σ =

10.43) is lower than message delivery cost of PF (µ = 71.21, σ = 13.12). As

expected message delivery cost is higher when choosing baseline EF (µ =

104.99, σ = 14.28), a two-way ANOVA shows significant differences in the

overall rate of message delivery cost [F (2,891) = 0.00, p<0.05].

5.3.3 Delivery Delay

Fig. 5.6 shows that the delay in Epidemic routing is higher than MaxProp and

Prophet routers when everyone forwards messages in the network.

In the EF mode of message forwarding behaviour, a higher number of

messages are generated in the network. We observe that due to the nodes

buffer constraints, the Epidemic router drops a number of messages in the

network before they are delivered to their destinations, which increases the
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Figure 5.6: In EF, MP and PR routers send messages by keeping an encounter
history of delivered messages, whereas the ED router drops a larger amount of
messages depending on the nodes’ buffer size and TTL. This results in higher
delivery delays for ED(EF) than PR(EF) and MP(EF). (ED=Epidemic router,
PR=Prophet router, MP=MaxProp router and EF=Everyone Forwarding).

overall message delivery delay in EF.

Fig. 5.7 shows that when tourists store their messages into hubs, the

delay of Epidemic, MaxProp and Prophet routers are largely higher than that

of forwarding data using local users mobility patterns. This is reasonable

because the copies of messages reaching their destinations are faster than in

the later case. The reason for the increase of the delay is that by storing data

into hubs, each copy of a message has to wait for a longer period of time to

reach its destination, as this depends on the encounters between hubs and

local nodes. We find that PF has a higher message delivery delay (µ = 3.47,

σ = 0.10) than LF (µ = 3.06, σ = 0.10). As expected message delivery delay

is higher when choosing the baseline EF (µ = 3.99, σ = 0.52), a two-way

ANOVA shows significant differences in the overall rate of message delivery

delay [F (2,891) = 0.00, p<0.05].
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Figure 5.7: In LF, tourists’ messages reach their destinations using local users’
mobility patterns. In PF, tourists nodes deposit messages into the storage hubs
and those messages are forwarded depending on the interactions between the
storage hubs and the local users. This resulted in higher delivery delays for
PF over LF. (ED=Epidemic router, PR=Prophet router, MP=MaxProp router,
LF=Local Forwarding and PF=Pickup and Forwarding).

5.4 Discussions

In this section we have summarised the lessons learned from the above

simulation study. We outline our results as follows:

• As a baseline, EF mode of message forwarding behaviour provides the

best message delivery performance in the MoCC architecture, but at the

same time it increases the message delivery cost and delays.

• By storing data into hubs, the PF mode of message forwarding behaviour

may lead to dramatically lower routing performance for our proposed

MoCC architecture.

• Exploring local users’ mobility patterns, the LF mode of message forward-
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ing behaviour provides the optimal message delivery performance when

considering message delivery cost and delays.

Further, it is probable that tourists nodes may be unwilling to share

their phone memories with other nodes due to the lack of battery power or

memory size, e.g., in the PF mode they are storing their messages into well

situated information storage hubs and in the LF mode they depend upon

local users’ mobility patterns to deliver their messages. Our results indicate

that the best possible solution is for a tourist to share their messages with

any available local node while they are both moving within the network.

Designing a protocol that can provide appropriate incentives is therefore

needed [164].

Returning to our motivation scenarios (cf. Chapter 1.1), message de-

livery performance will be higher for Bob in an EF case. Ron however, is

interested in getting the information as soon as possible. As we see that the

message delivery delay is minimum in the LF mode that would be the best

choice for him. Further refinement is needed to find a protocol that can meet

the requirements of both applications, or perhaps a QoS-like mechanisms for

declaring appropriate forwarding strategies is required.

In general, the null hypothesis for ANOVA indicates that, the sample

means are closely similar and obtained by extracting the samples from the

same population. In our simulation, we used three different message for-

warding behaviours (i.e., Everyone Forwarding (EF), Local Forwarding (LF),

and Pickup and Forwarding (PF)) against three different routing protocols

(i.e., Epidemic, Phophet and MaxProp). The test allowed us to measure the

differences among the various means by examining the ratio of variability

among three conditions and variability within each of them, i.e., three mes-

sage forwarding behaviours provide statistically different results for the three

routing protocols [168]. In addition to this, we employed this test to analyse

the proposed experimental design because; it can be viewed as an extension
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of the t-test that is used for comparing more than two groups. Therefore, we

used a “two-way ANOVA” to examine the impact of more than two simultane-

ously independent (predictor) variables in the population, i.e., the sample

means of various groups are obtained from the same population, and the

factors that are significantly affecting the performance characteristic are also

explored [169].

Our work can also be extended to future research to investigate many

areas, e.g.,

• While sharing information, tourists and local users may not wish to share

some of their personal information with each other. How, by using MoCC

will it possible to mitigate users’ privacy concerns while maintaining the

same routing performance? In general, mobile opportunistic networks

involve reliance on intermediate and unknown nodes, who may attempt

to surveil or modify data being sent through the network. Therefore a

potential research project is to investigate the privacy requirements for

tourist’s information (cf. Chapter 4.4.1).

• Limited battery power for small devices (e.g., cellphones, tablets, PDAs,

etc.) can curtail communications. Therefore more research is needed to

investigate that how will this affect the message delivery performance in

the MoCC infrastructure, when exploring the local users’ mobility patterns

(cf. Chapter 4.4.3).

5.5 Summary

In this chapter, we explored the use of mobile opportunistic networking in

the MoCC architecture (a “Device to Device to Cloud” architecture) that

gives tourists access to cloud-based applications via local users’ network

connections. We observed that:
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• Firstly, it is possible to use remote cloud-based applications in a situation

where there is no Internet connection and by avoiding the high costs of

such infrastructure when available.

• Secondly, users’ mobility and their interactions/collaborations have greatly

influenced the overall message delivery performance within the network.

• Thirdly, by using a “Device to Device to Cloud” architecture, tourists can

efficiently send messages to a cloud-assisted destination with the help of

the local users’ mobile communication networks.

We summarise the chapter as follows:

• We evaluated two potential options for transferring tourists’ messages to

the cloud services, by storing data at well-situated hubs and exploiting

the mobility of local users.

• We demonstrated the potential for using local users’ mobility techniques

improves the message delivery performance rather than storing data into

hubs. We observed however, that minimising delivery costs and delay

may not necessarily be an indicator that a routing protocol will perform

better than a protocol with a higher delivery cost and delay.

• We evaluated protocol performance with three different proposed modes

of message transferring behaviours in three different routing protocols,

they are the Epidemic, Prophet and the MaxProp routing protocols. The

MaxProp routing protocol consistently perform well across the simula-

tions.

• Our current experiments have only looked at one-way communication,

where tourists are offloading messages to their destinations with the help

of local users. But in the future we would like to investigate where tourists

can also download information using the MoCC architecture.
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In the next chapter (Chapter 6), we plan for more comprehensive

experiments with real-life traces, to examine how the network performs with

the changes of network load (e.g., number of messages) along with the long-

sized messages when employing the MoCC architecture. This will in turn

help to understand and make improvements in the performance of tourists’

message forwarding techniques in challenged environments.
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Chapter 6

Exploring the Impact of Network Loads

and Message Size in Message Forwarding

In this chapter, we explore how the overall network performs with the changes

of network load (e.g., number of messages) along with the long-sized mes-

sages when using the MoCC architecture.

In this chapter, the major contributions are:

• We evaluate the performance of the MoCC architecture in different op-

portunistic routing protocols with the varied (decreasing or increasing)

network loads and message sizes generated by the nodes.

• With real-world trace-driven simulations, we compare and contrast the im-

pact of the message generation rates and the message size in a challenged

environment to see this performance impact.

The goal of this chapter is twofold. First, we vary message numbers

and sizes to explore the overall impact made in message forwarding using the

MoCC architecture in a challenged environment (cf. Chapter 2.2). Second,

we employ real-world trace-driven data sets to observe the impact of local

user’s social interactions and collaborations in message forwarding in such

cases.
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The research aims to address the following research questions:

• How do the routing performances vary with the different network loads

and message sizes generated by the nodes within the network?

• Does the network perform accordingly when the number or size of mes-

sages changes (decreases or increases) within the network?

• Do the mobility, interactions and social collaborations of local users make

an impact on the overall message delivery performance in such scenarios?

6.1 Background

In mobile opportunistic networks, nodes select the next hop of message

delivery with the information and contact opportunities available locally [24].

However, in a challenged environment these contact opportunities are more

infrequent because of the lack of available users to establish a communication

(cf. Chapter 4.4.4), or due to the device related constraint (e.g., battery

power and limited memory size) (cf. Chapter 4.4.3).

Returning to our motivation (in Chapter 1.1), Ron searches for a nearby

user who may be able to help him understand the meaning of the ancient

script or help him to access a cloud-assisted online language translation

community. Along with a similar line, suppose Alice is travelling to Chicago.

She has a craving for a certain type of food at a very specific food store which

she cannot locate. She is trying to find the store by using her mobile device

but realises that the cost of Internet roaming in this area is simply too high. In

this situation Alice would look for a nearby user who would be able to answer

her specific question. This may result with the user passing the information

on to Alice based on their local knowledge or on behalf of Alice, they are

willing to search for this information on the Internet.
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In the first scenario, Ron may take a picture of the manuscript and

broadcast it over the network. However, the photo turns out to be a high

resolution picture that requires a higher bandwidth to transfer. A nearby user

can help Ron to find the meaning of the manuscript or help Ron to send it to

his preferable cloud-assisted destination, but from the network bandwidth

utilisation point of view this may not be a choice for that user because he/she

may not have the capability for a higher bandwidth transfer or the message

transfer cost becomes too high for him/her.

In the second scenario, Alice may anxiously be looking for this food

store information and re-sends her same queries multiple times within the

same network. This results in a nearby user receiving several copies of the

same request that may fill his/her buffer capacity that he/she has kept for

the other applications. This may also impact the receiving of other user’s

requests that may be more urgent than Alices.

In both the cases, Ron and Alice do not have any direct access to the

Internet instead they fully depend upon the local users’ network connections

to gain the opportunity to access an Internet connection. The local users can

connect their mobile devices with an Internet access point (cf. Chapter 4.2.4)

in various places seamlessly (e.g., at home, library etc.).

Therefore, in the context of the availability and accessibility point

of view, the previously mentioned situations reflect the same fundamental

question: how the various network loads and message size make an impact

on the overall message delivery performance when users are communicating

in a challenged environment? There are several studies carried out showing

the routing performances in different challenged scenarios based on the user’s

behaviours or different wireless network techniques [170] [171] [172] [173],

but how the different network loads and message sizes impact the overall

message delivery performance is lacking. Our motivation is therefore to see

the overall network performances in such challenged environments with the
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changes of network loads (e.g., number of messages) and message sizes when

using the MoCC architecture.

6.2 Experimental Analysis

In this section we analyse our proposed experiment with a real-world trace-

driven simulation study. In the beginning, we discuss the evaluation method-

ology along with the performance metric used for the experiment. Then we

explore the simulation setup which includes details of the nodes’ characteris-

tics and routing protocols involved. Next we discuss the achieved simulation

results.

6.2.1 Evaluation Methodology and Performance Metric

We use the ‘ONE’ simulator for the simulation of the proposed experiment

[165]. We carry out these simulations using real-world trace-driven data.

In the experiment, we simulate with two different settings of parameters

for the generated message sizes and message generation rates. In the first set

we used the message sizes of 256kB and 1MB. These particular message sizes

were chosen because they are the standard for a text and an image, in varying

degrees of message sizes. Messages are originated in randomly chosen nodes

with a message size of 256kB and 1MB, and are created throughout the

simulation time. In the second set we varied the message generation rate of

1 and 5 messages per 10 minutes (msg./mins.).

We derive a simulation testbed for a simulation time of one day. We ran

each simulation 10 times with different random number generator seeds. This

is to note that when we varied the message sizes at that point we kept the fixed

message generation rates to the node groups. Alternatively, when we varied

the message generation rates we fixed the message size. We choose the three
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commonly-used metrics to evaluate the overall routing performance [166].

They are: Delivery Ratio, Delivery Cost and Delivery Delay (cf. Chapter 5.2.1).

All simulations are performed in batch mode. This performance analysis has

been done on a computer which has the following configurations of 2 GB

RAM, 500 GB hard disk and an Intel core i3 processor @2.27 GHz.

6.2.2 Simulation Setup

In this section we discuss the simulation settings used for the proposed

experiment.

We design a simulation scenario which consists of three different node-

groups i.e., Tourist Nodes (TN), Local Nodes (LN) and Cloud Gateways (CG)

(cf. Chapter 5.2.2).

As we explore a challenged environment scenario to deploy the proposed

simulation, we restrict the tourists from gaining access to these CGs. To this

end, in the simulation, the TN cannot directly access these CGs but can

reach/communicate with them through the help of the LN, who have full

access to these CGs. We assume that if a message reaches the CG, its status

becomes delivered.

To illustrate the performance of the network, we simulate our own

University town of St Andrews, comprised of tourists, students and local

users. We choose a world size of 4500mX4500m for the simulation purpose

and the network consists of 100 nodes (27 LN, 65 TN and 8 CG). We set the

TTL value as half of a day for the message. We use a medium buffer of 200MB

for the LN and TN. In the case of the CG we use unlimited buffer space.

When varying the message sizes, we keep a fixed message generation

rate. For instance, in both of the following cases for the 256kB and 1MB

of message size, the message generation rate is fixed to 1msg./10mins. On

the other hand, when we vary the message generation rates for the nodes
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(i.e., the 1msg./10mins. and 5msg./10mins.), we fix the message sizes to

the 512kB. We choose this message size of 512kB rather than the 256kB and

1MB because it will then conflict with the former simulation by repeating it.

The TN are generating messages and the other LN and TN are willing to

store, carry and forward these messages to their intended destinations (i.e.,

CG in this case) while both LN and TN are moving within the network. But

as we discussed earlier with regards to the challenged environments, a TN

can only forward a message closer to the destination but the message will

finally be delivered to a CG with the help of a LN.

To simulate the TN, we use a tourist-based movement model (cf. Chap-

ter 5.2.2). This model is based on the tourist activities throughout St Andrews.

In this model, a tourist visits several places of interests (e.g., St Andrews

museum, St Andrews castle, St Andrews cathedral, information centres, Golf

course, etc.) and performs some activities (e.g., taking photos). On the

other hand, to simulate the LN, we use the ‘SASSY’ dataset [167]. We situate

CG (i.e., static nodes) (cf. Chapter 5.2.2) in different locations throughout

the town (e.g., Computer Science building, library, student residences, etc.)

where local users (LN) have Internet connectivity and can forward collected

messages to the remote cloud servers over the Internet.

We assume that the nodes in the network are trusted and forward

messages for attractive incentives e.g., social reputation or money [53]. Fur-

thermore, all nodes in the simulation use the Bluetooth broadcast interface

for information interchange, given that the availability of the networks for

communications might be lacking/restricted in a challenged environment.

To see the overall message delivery performance in the network, we employ

three relevant opportunistic routing protocols for our simulations. They are

the Epidemic, Prophet and the MaxProp (cf. Chapter 2.3). We use the Epi-

demic routing as a baseline to compare and contrast the routing performance

with the Prophet and the MaxProp routings.
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6.3 Results and Performance Evaluation

In this section we outline the results achieved from the simulation-based

studies.

6.3.1 Delivery Ratio

Fig. 6.1 presents the results of message delivery ratio for the Epidemic, Prophet

and MaxProp routers when we vary the message sizes for the nodes.

Figure 6.1: The MaxProp router performs consistently with the increased
message sizes than the Epidemic and Prophet routers. Results show that for
the 256kB of message the median message delivery ratio for the MaxProp
router is 71.53% and for the 1MB of message the median message delivery
ratio is 65.97%. (ED=Epidemic router, PR=Prophet router and MP=MaxProp
router).

With the increased message sizes, we find that the MaxProp router

consistently gives the best message delivery performance in the network.

For instance, in the case of the 256kB of message size the median message

delivery ratio is 71.53%, where in the case of the 1MB message size the

median delivery ratio becomes 65.97%. The improvement made in the case
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of the 256kB message size is 5.53% greater than that of the 1MB message size.

The median message delivery ratio for the Epidemic router in the case of the

256kB of message size is 61.81% and for the 1MB of message size it is 56.94%.

In addition, with the Prophet router in the case of the 256kB of message size,

the median message delivery ratio is 54.86% and for the 1MB of message

size it is 51.04%. Compared with the Prophet router, both the Epidemic and

MaxProp routers give the better message delivery performance with a higher

message delivery ratio. However, when the message size increases, we see

that the performance for all three routers decreases. This is due to the node’s

buffer constraint.

Fig. 6.2 presents the results of message delivery ratio for the Epidemic,

Prophet and MaxProp routers with different message generation rates for the

nodes.

Figure 6.2: The MaxProp router performs better in the message delivery by
using node’s encounter histories. Results show that for the 1msg./10mins.,
the median message delivery ratio for the MaxProp router is 68.41% and
for the 5msg./10mins. the median message delivery ratio becomes 51.67%.
(ED=Epidemic router, PR=Prophet router and MP=MaxProp router).
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In this simulation, we take into consideration two possible scenarios (cf.

Chapter 6.2.2). First, in a lower message generation rate (1msg./10mins.)

and second, in a higher message generation rate (5msg./10mins.). For

instance, a user may create/broadcast one message per ten minutes but at

certain periods of time it can be increased to five messages per ten minutes

(i.e., generating/broadcasting a message every two minutes). This is possible

in cases where a user visits a tourist-attraction place and takes photos more

often (and save the images) which increases the number of messages.

Back to the results (cf. Fig. 6.2), we see that for the 1msg./10mins.,

the median message delivery ratio for the MaxProp router is 68.41% and

it decreases to 51.67% for 5msg./10mins. Additionally, in the case of the

1msg./10mins., the median message delivery ratio for the Epidemic router is

60.42% and for the 5msg./10mins., it becomes 43.74%.

Interestingly enough, we note that the Prophet router gives the low-

est message delivery performance for the first case (i.e., node’s generating

1msg./ 10mins.). In such cases, the Prophet router is affected by the node’s

limited buffer size and their message delivery capability (based on a higher

delivery predictability) diminishes with the employed TTL value. But in the

second case (i.e., node’s generating 5msg./10mins.), the message delivery

performance decreases substantially for the Epidemic router compared to

other routers. Because the Epidemic router generates a larger amount of

messages (as it replicates messages with flooding-based routing mechanisms)

due to its buffer constraint, it drops most of the packets before they reach

their destination nodes.

Furthermore, we also observe that the MaxProp router consistently

gives the better message delivery performance with a high message deliv-

ery ratio for both the case of increased message size (1MB) and a higher

number of message generation rates (5msg./10mins.). This is because the

MaxProp router keeps track the previous encounter histories to interact with
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the next node that has a higher encounter frequency, which means the newly-

encountered node has a greater chance to deliver the message faster to the

destination.

In summary, the lower message size (256kB) gives the better per-

formance in the network (µ=63.01, σ=8.19) than the increased (1MB)

message sizes (µ=57.89, σ=7.34). With the lower message generation

rates (1msg./10mins.), the overall message delivery performance is better

(µ=60.63, σ=7.50) than the increased (5msg./10mins.) number of message

generation rates (µ=47.16, σ= 5.21). A two-way ANOVA shows significant

differences in the overall rate of the message delivery ratios in both the cases

[F(2,81) = 0.00, p<0.05].

We find that, when the network load (i.e., the number of messages

in this case) and the message size increases, the overall message delivery

performance reduces for the Epidemic router due to the node’s buffer con-

straint. In the case of the Prophet router the message delivery ratio is also

affected by the node’s limited buffer size and the TTL value, where messages

are dropped before they reach their intended destinations. But unlike the

Epidemic router, the Prophet router does not replicate the same message

to every newly-encountered node. It uses a delivery predictability which

is a ‘probabilistic metric’ for message delivery. This delivery predictability

indicates a new node’s likelihood to encounter the destination node, based

on its previous encounters with the destination node to deliver a message.

Thus, in the case of the Prophet router the nodes required a higher delivery

predictability to successfully deliver a message, thereby reducing the encoun-

tering opportunities with other nodes that have lower delivery predictability.

Thus, the low encountering opportunities result in low message delivery

performance in the network.

However, in the case of the MaxProp router, using the social strength

and storing previous encounter histories, the nodes increase the chances
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for delivering more packets efficiently (i.e., by using low hop counts) to the

destinations which in turn increase the overall message delivery ratio in the

communication.

6.3.2 Delivery Cost

Fig. 6.3 shows the results of the message delivery cost for the Epidemic,

Prophet and MaxProp routers when we vary the message sizes for the nodes.

Figure 6.3: The Epidemic router replicates a larger amount of messages
which increases the message delivery cost. Results show that for the 256kB
of message the median message delivery cost for the Epidemic router is
189.60 and for the 1MB of message the cost is 156.71. (ED=Epidemic router,
PR=Prophet router and MP=MaxProp router).

In this case, we use two types of message sizes i.e., the 256kB and

the 1MB. The ‘cost’ is determined by the number of messages replicated to

successfully deliver a message from source to destination. We see that, for the

256kB of message size, the median message delivery cost for the Epidemic

router is 189.60 and for the 1MB of message it is 156.71. For the MaxProp

router, the median message delivery cost for the 256kB of message size is
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146.32 and for the 1MB of message size the median message delivery cost is

reduced by 26.76 and it then becomes 87.24.

Moreover, in the case of the 256kB of message size, the median mes-

sage delivery cost for the Prophet router is 105.55. This is the least cost as

compared to the median message delivery cost of the Epidemic and MaxProp

routers for the same message size (i.e., 256kB). This is due to the fact that the

Prophet router follows a high probabilistic-based solution for message delivery.

The message only delivers when the probability of a newly-encountered node

has a higher chance for a successful encounter with the destination node. This

is determined by the previous encounter histories between the nodes. In the

context of our present simulation, with fewer contacts for message delivery

less replicated messages are generated causing lower message delivery cost

for the Prophet router.

We find an interesting fact in the message delivery cost for the 1MB of

message size. We notice that the median message delivery cost in the case

of the MaxProp router is relatively lower than the Prophet router (with a

difference of 10.16). We observe that with the increase in message size and a

node’s limited buffer constraint, the nodes in the MaxProp router hold fewer

messages for delivery. Furthermore, by using the user’s social contacts and

interactions these messages are successfully delivered to their destinations

faster by creating lesser number of replications. Therefore, in this case it

reduces the overall message delivery cost.

Fig. 6.4 shows the results of message delivery cost for the Epidemic,

Prophet and MaxProp routers with the different numbers of message genera-

tion rates for the nodes.

We see that the median message delivery cost for the case of the

1msg./10mins. with the Epidemic router is 170.80 and it reduces to 143.94

for the 5msg./10mins. Upon this, we notice that the Epidemic router gen-
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Figure 6.4: The Epidemic router has a higher number of message delivery
costs than the MaxProp and Prophet routers. Results show that for the
1msg./10mins., the median message delivery cost for the Epidemic router is
170.80 and for the 5msg./10mins. the cost is 143.94. (ED=Epidemic router,
PR=Prophet router and MP=MaxProp router).

erates numerous amounts of messages in the network as it replicates the

same copy of the message when it encounters a new node, until the mes-

sage reaches its destination. Thus, this large amount of message replication

increases the message delivery cost in this router.

On the other hand, for the MaxProp router the median message delivery

cost for the 1msg./10mins. is 127.46 and in the case for the 5msg./10mins.

is 109.53. Both of these results find less cost in the MaxProp router compared

with the Epidemic router. We observe that, the MaxProp router increases the

message delivery performance by keeping track of the previous encounter

histories with the other nodes. In such cases a node that is able to send

a message to the destination with low hop counts receives a high priority.

Therefore, the results show, the MaxProp router delivered messages with

fewer copies of the replications than the Epidemic router.
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Finally, the median message delivery cost for the Prophet router is

less than the Epidemic and MaxProp routers in both of the simulations. For

instance, the median message delivery cost in the case of the 1msg./10mins.

is 101.10 and it becomes 98.27 for the 5msg./10mins.

In summary, the smaller message size (256kB) gives the lowest in

message delivery cost (µ=146.75, σ=35.41) than the higher (1MB) message

sizes (µ=114.32, σ=31.51). Likewise, we find that, with the smaller mes-

sage generation rate (1msg./10mins.) the overall message delivery cost is

higher (µ=133.52, σ=28.72) for the increased (5msg./10mins.) message

generation rate (µ=114.73, σ= 21.06). A two-way ANOVA shows significant

differences in the overall rate of the message delivery cost in both cases

[F(2,81) = 0.00, p<0.05].

We observe that the nodes using the Epidemic router generates a higher

numbers of messages in the network which in turn increases the overall

message delivery cost. On the other hand, the MaxProp router can be thought

of as an optimisation of the Epidemic router to better cope with non-ideal

conditions e.g., in limited buffer size. In such cases, a message should be

delivered when the predictability of newly-encountered nodes have a greater

probability to reach their destination, than the node currently carrying the

message. This is determined by counting the numbers of previous interactions

with each other. Moreover, by using social relations along with the node’s

encountering histories, the MaxProp router delivers messages to the desti-

nations with low hop counts. Thus, with the lesser number of replications

the MaxProp router reduces the message delivery cost significantly less than

the Epidemic router. But in the case of the Prophet router, nodes not only

keep the history of previous encounters but also determine the probability of

future encounters between the nodes that have frequent contacts with the

destination nodes. Thereby it reduces random encounters and the replication

of the messages.
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6.3.3 Delivery Delay

In Fig. 6.5 we can see the message delivery delays for the Epidemic, Prophet

and MaxProp routers when we vary the message sizes for the nodes.

Figure 6.5: The Epidemic router drops a higher amount of messages due to its
buffer constraint. Results show that for the 256kB of message size, the median
message delivery delay for the Epidemic router is 158.96 (minutes) and for the
1MB of message size, the median message delivery delay is 188.56 (minutes).
(ED=Epidemic router, PR=Prophet router and MP=MaxProp router).

We evaluate the performance with two sets of message sizes i.e., 256kB

and 1MB. For the 256kB of messages the median message delivery delay for

the Epidemic router is 158.96 minutes and for the 1MB of message size it

becomes 188.56 minutes. To this end, we find that due to the node’s buffer

constraints the Epidemic router drops a number of messages in the network

before they are delivered to their destinations, which increases the overall

message delivery delay in message forwarding. Likewise, in the case of the

increased message size (1MB), the node’s limited buffer size in the Epidemic

router drops more packets which significantly increases the message delivery

delay. Along a similar line, due to the buffer constraints, the MaxProp router
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drops packets in both cases resulting in a median message delivery delay of

136.30 minutes for the 256kB of message size and 185.52 minutes for the

1MB of message size.

However, in the case of the Prophet router the median message delivery

delay for the 256kB of message size is 143.58 minutes. Interestingly enough,

we notice that in the case of the 1MB of message size, the Prophet router

gives the lowest message delivery delay in the network (i.e., 163.02 minutes)

compared with the Epidemic and the MaxProp routers. We observe that the

Prophet router only selects messages that have higher contact/encounter

histories with the destination nodes. Therefore, along with the fewer replica-

tions and the possible delivery opportunities closer to the destination, in this

case it reduces the overall message delivery delay in the network.

Fig. 6.6 shows the results of the message delivery delays for the Epi-

demic, Prophet and MaxProp routers with the different message generation

rates for the nodes.

When we vary the message generation rates to 1msg./10mins., the

median message delivery delay for the Epidemic router is 150.74 minutes

and for the 5msg./10mins it is 180.35 minutes. In both the cases we observe

similar routing performances. We also observed that due to the node’s buffer

limitations, the Epidemic router drops a large amount of message which

caused high message delivery delays in the network.

We further find that, with the increased network load, the Prophet

and MaxProp routers perform in a similar way for both cases. The median

message delivery delay is relatively low for the Prophet router as compared

to the MaxProp router. For the 1msg./10mins., the median message delivery

delay for the Prophet router is 137.10 minutes and it is 148.25 minutes for

the MaxProp router. Along the same line, for the 5msg./10mins., the median

message delivery delay for the Prophet router is 146.84 minutes and it is
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Figure 6.6: The MaxProp and Prophet router have a relatively lower mes-
sage delivery delay than the Epidemic router. Results show that for the
1msg./10mins., the median message delivery delay for the Epidemic router is
150.74 (minutes) and for the 5msg./10mins., the median message delivery
delay is 180.35 (minutes). (ED=Epidemic router, PR=Prophet router and
MP=MaxProp router).

157.01 minutes for the MaxProp router.

In summary, the smaller message size (256kB) gives the best perfor-

mance in message delivery delay (µ=143.73, σ=16.45) than the longer

(1MB) of message sizes (µ=178.21, σ=16.85). Likewise, with the lower mes-

sage generation rates (1msg./10mins.), the overall message delivery delay is

lower (µ=142.16, σ=15.30), and it increased for the higher (5msg./10mins.)

message generation rates (µ=175.44, σ= 38.09). A two-way ANOVA shows

significant differences in the overall rate of the message delivery delay in

both cases [F(2,81) = 0.00, p<0.05].

We observe that, due to the node’s buffer constraint in the Epidemic

router, nodes drop a higher number of messages which increase the overall

message delivery delay for the Epidemic router. This resulted in a number
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of unsuccessful deliveries as the nodes drop packets before they reach their

destinations. For the Prophet router, while selecting the next forwarder, a

node reduces the unnecessary message dropping by controlled replications

that leads to lower message delivery delays in the employed simulation.

6.4 Discussions

In this section we have summarised the lessons learned from the above

simulations study. We outline our results as follows:

• The Epidemic router increases the message delivery ratio, but at the same

time it increase the network cost and message delivery delays throughout

the simulations.

• We observe that the MaxProp router gives the best message delivery per-

formance by delivering a greater number of messages to the destinations.

This increases the message delivery ratio for this router.

• In the Prophet router the message delivery ratio is lower than the MaxProp

and Epidemic routers. In addition the message delivery cost and delays

in the Prophet router are also low as compared to the other two routers.

• We observe that, for the increased message size (1MB), the MaxProp router

gives the overall best performance within the network. On the other hand,

for the increased number of network loads (i.e., number of messages), the

message delivery cost and delays are relatively low for the Prophet router

compared with the Epidemic and MaxProp routers.

• Returning to our motivation and problem statement in Chapter 6.1, Bob

may want to have the meaning of the script instantly while he is waiting

at the museum, and in such a case the MaxProp router would be the

best solution for him. On the other hand, for Alice, who is searching for
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information about a local food store in a particular region, the Prophet

router seems to be the best solution for her in this situation. Alice could

also use the MaxProp router but from the message cost and delay point of

view Alice may not wish to choose this router because the Prophet router

has a lower message delivery cost and delays than the MaxProp router.

Furthermore, this ensures conserving the battery power for her mobile

device. To sum it up, for getting the best message delivery ratio MaxProp

is the best solution for both of them.

• Based on our findings in this state-of-the-art research we find that two

aspects related to our studies are significant for future research. First,

message compression techniques [174] could be used in such communica-

tions. This could help Bob to transfer his message more quickly even in a

limited bandwidth utilisation for message transfer. Second, further inves-

tigation could be made towards the acknowledgement-based broadcast

algorithms [175] where Alice would receive an acknowledgement from

the other users who receive a copy of Alice’s message. This would help

Alice to improve message delivery cost and save energy by not re-sending

the same message to the others who already have her message. However,

what combination of performance metrics would be chosen for optimal

results for the best QoS is difficult to predict. It fully depends upon the

situations and designer’s choice.

• In addition, research must be focused on security and privacy issues [176]

related to these communications (cf. Chapter 4.4). The high mobility of

nodes [177] [178] and different networking platforms for communica-

tions [135] should also be taken into consideration. However, the need

for incentive-based framework [163] for the users’ participations in such

communications needs to be addressed. This would help to motivate

others to become active participants in message forwarding.
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6.5 Summary

In this chapter, we have examined how the overall network performs with the

changes of network load (e.g., number of messages) along with the long-sized

messages when using an MoCC architecture. We summarise the chapter as

follows:

• To observe the network performance, we used different network loads

(e.g., decreasing or increasing message generation rates by the nodes)

along with varied message sizes (e.g., shorter and longer) generated by

the nodes.

• For the first set of simulations we varied the message sizes while keeping

a fixed network load. For the second set of simulations we varied the

network load with different message generation rates while keeping a

fixed message size. We employed the Epidemic, Prophet and the MaxProp

routers to see these performance changes.

• Our experimental results showed that in challenged environments, the

MoCC architecture improved the overall message delivery performance

using the user’s interactions and collaborations even with higher message

generation rates and increased message sizes.

• We found that, in the case of the MaxProp router, the local user’s mobility

and interactions improved the overall routing performance even with the

increased message sizes and network loads. This resulted in a high mes-

sage delivery ratio for the MaxProp router. The Prophet router was useful

in cases where the message delivery cost needed to be low. Moreover, in

the case of the Epidemic router, while it improved the message delivery

ratio, at the same time it significantly increased the message delivery cost

and delays in the network.
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In the next chapter (Chapter 7), we plan for more comprehensive

experiments to examine how different wireless networking technologies

make an impact to the message forwarding performances when using the

MoCC architecture.
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Chapter 7

Exploring the Impact of Different

Wireless Communication Techniques in

Message Forwarding

In this chapter, employing real-life trace-driven simulations, we examine

how different wireless networking technologies make an impact to the user’s

message forwarding performance when using the MoCC architecture.

In this chapter, the major contributions are:

• We use Bluetooth and Wi-Fi wireless communication techniques to see

the impact of different communication ranges to the routing performance

in the MoCC architecture.

• We examine how the potential of user’s willingness to actively participate

in message forwarding makes an impact to the overall message delivery

performance with the varied communication’s ranges (shorter and longer).

The goal of this chapter is twofold, first, we vary different wireless

communications ranges to see the overall impact in routing performances

within the network and second, to collate the information to understand how

user’s social interactions significantly impact over the message forwarding in

the MoCC architecture.
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The research aims to address the following research questions:

• Is there any significant impact made to the overall message forwarding

performance within the network due to the varied communication ranges

between the nodes?

• How do the users’ collaborations and interactions influence the message

forwarding performance in the MoCC architecture, when we vary the

communication ranges for the nodes?

7.1 Background

In this chapter we analyse the routing performances in the MoCC with the

two different wireless networking technologies. They are Bluetooth and Wi-Fi

wireless networking technologies. Bluetooth is a wireless technology standard

for communicating in a shorter range, typically 10 metres. On the other hand,

Wi-Fi is a local area wireless networking technology for communicating in a

range of typically 100 metres.

There are several studies carried out showing the routing performances

in different challenged scenarios. For instance, Nakamura et al. presents a

model for collecting information during disaster time, by taking into con-

sideration the user’s realistic mobility patterns [179]. A simulation-based

experimental study has been performed to evaluate the proposed informa-

tion gathering model during the time of a disaster. In addition with the

user’s mobility, the authors also introduce an autonomous adaptable protocol

combining the geographical routing in MANETs and the store, carry and

forward scheme of mobile opportunistic networks. Unlike the motivation

of this chapter, the Nakamura et al. model does not indicate the impact of

different communication ranges that may affect the network performances in

a challenged environment.
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Hummel and Hess present a mobility-pattern based approach for mes-

sage forwarding in mobile opportunistic networks [180]. Using the different

users behaviour and characteristics (e.g., daily routines, evening activity, shop-

ping interest, etc.) a simulation-based study has been performed to see the

effect of opportunistic forwarding within the network. This study is mainly

done with the two different forwarding metrics, namely, ‘short connection

time’ and ‘long connection time’. Similar to the Nakamura et al. model [179],

this approach takes into consideration the user’s mobility patterns for in-

formation interchange. But unlike the present scope of our research, how

different wireless communication technologies make an impact on the routing

performances as well as affect to the overall message forwarding within the

network is lacking in this study.

In [181], authors discuss the concept of Pocket Switched Networks

(PSN) which connects nearby mobile users for information interchange in

a delay tolerant manner. An in-house (an academic working environment)

experiment is carried out with the Bluetooth enabled devices for collecting

the real-life users’ traces of forty one participates in a conference, to monitor

their mobility patterns. This research focuses on the environment that may

lack an end-to-end network topology for connectivity between the mobile

users. In PSN, instead of finding an end-to-end path between the source

and destination, nodes forward data with ‘hop-by-hop’ using user’s mobility

patterns. Once again, unlike the scope of our present research, PSN does not

present the view of how a longer communication range may affect the overall

message forwarding performance.

A social-networking based mobility model is described in [182]. In

this model, authors explore the idea of social networking for specific node

groups according to their higher ‘social attractivity’. The ‘social attractivity’ is

defined as the number of friends in a specific area at a certain time. However,

this can be changed according to the user’s movements (e.g., fast or slow),
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daily life routine (e.g., going to a specific restaurant or shopping centre),

as well as on the time of the day (e.g., office time is good to meet with

colleagues but in the evening time a person may want to share his/her time

with their friends or family members). While this model focuses on the social

connectivity for information interchange, it does not focus on the impact of

different wireless networking technologies that can be used by the users for

various communications (e.g., indoor and outdoor activities). Returning to

our motivation (cf. Chapter 1.1), Bob and Ron are looking for a help from the

users available locally. Having said this, in this chapter, we aim to address the

gaps in the state of the art research and examine the overall communication

performance vary with the different wireless communication ranges for Bob

and Ron.

7.2 Experimental Analysis

We examine the employed experiment with a real-world trace-driven simula-

tion study. In the beginning, we discuss the evaluation methodology along

with the performance metrics used for the experiment. Then we explore the

simulation setup which includes details for the nodes’ characteristics and

routing protocols involved in the experiment. Next, we discuss the achieved

simulation results.

7.2.1 Evaluation Methodology and Performance Metrics

We use the ‘ONE’ simulator for the experiment [165], over a period of one day.

In the first set of experiments we used Bluetooth communication techniques

(within a range of 10 metres), and for the second set of experiments we

used Wi-Fi communication techniques (within a range of 100 metres), for

all the nodes. We ran each simulation 10 times with the different random

generator seeds used for the movement model. We use three commonly-used
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metrics to evaluate the overall routing performance [166]. They are: Delivery

Ratio, Delivery Cost and Delivery Delay (cf. Chapter 5.2.1). The performance

analysis is done on a computer which has the following configurations of 2

GB RAM, 500 GB hard disk and an Intel core i3 processor @2.27 GHz.

7.2.2 Simulation Setup

In the experiment, we simulate our own University town, St Andrews. For

the simulation purpose we use two sets of node groups in the network, they

are referred to as the Local Nodes (LN) and Tourist Nodes (TN). The LN

represents the local users who are familiar with places (e.g., shopping centre,

library, information centre, etc.) in the town. The TN represents the tourists

who are travelling to those places.

The LN uses real-life user traces. We use the ‘SASSY’ traces for this

purpose [167]. On the other hand, TN moves with the ‘shortest path map-

based movement’ model in the network. TN generates message into the

network and both the TN and LN are willing to share and forward these

messages until they reach their indented destinations while both the TN

and LN are moving within the network. The network consists of 60 nodes

in total (27 LN and 33 TN) and we assume that they all are trusted. We

impose specific POIs for the TN (cf. Chapter 5.2.2). These POIs are assigned

in some significant spots throughout the town (e.g., St Andrews Cathedral,

St Andrews Castle, St Andrews museum, Old Course Golf course, etc.) where

tourists visit more frequently. In the case of LN, we do not impose any

synthetic characteristics because our intention is to make the LN purely

rely upon the real-life mobility traces, to observe the potential impact of

users’ interactions and social communications in data forwarding. We use

three opportunistic routing protocols in the employed simulations, they are,

the Epidemic, DirectDelivery and the MaxProp (cf. Chapter 2.3). We use

the Epidemic routing as a baseline to compare and contrast the routing
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performance with the DirectDelivery and MaxProp routings. We choose the

DirectDelivery routing to see the communication performance for Bob and

Ron with the least cost.

Table 7.1 summarises the list of simulation parameters used in the

experiment.

Table 7.1: The simulation parameters used in the experiment.

Parameter Value

World Size 4500m X 4500m
Simulation Time 1 day
Movement Model ‘Shortest Path Map-Based

Movement’
Routing Protocol Epidemic; DirectDelivery;

MaxProp
Node Buffer Size 200MB
Transmission Speed 250 KBps
Transmission Range 10m & 100m
Transmission Medium Bluetooth & Wi-Fi
Message TTL 1/2 day
Node Movement Speed Min=0.5 km/h Max=1.5

km/h
Generated Message Size 500 KB to 1 MB

7.3 Results and Performance Evaluation

In this section we analyse the results achieved from the simulation-based

studies. To evaluate the overall message delivery performance, we use the

three performance metrics that are described in Chapter 5.2.1, i.e., Delivery

Ratio, Delivery Cost and Delivery Delay [166].
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7.3.1 Delivery Ratio

Fig. 7.1 shows the message delivery ratio in case of the Bluetooth communi-

cation scenario.

Figure 7.1: The message delivery ratio in the ‘Bluetooth’ communication
scenario. The MaxProp router gives the better performance by using users’
interactions and collaborations.

We find that for the Bluetooth communication scenario (cf. Fig. 7.1),

the median message delivery ratio for the Epidemic router is 88.53%, whereas

in the case of the DirectDelivery router it decreases to 50.21%. We note that,

in the Epidemic router, nodes are replicating multiple copies of the same

messages to every newly-encountered node. This improves the message

delivery ratio for the Epidemic router. But in the case of the DirectDelivery

router, a node creates only one copy of the message until it reaches its

destination, which reduces its message delivery ratio.

We note that the median message delivery ratio for the MaxProp router

is 93.88%. Because the MaxProp router keeps the previous encountered

histories and forwards messages to a newly-encountered node that has a
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higher probability to get closer to the destination node. Therefore, message

delivery performance has been improved considerably in this case using users’

interactions.

Fig. 7.2 shows the message delivery ratio in case of the Wi-Fi communi-

cation scenario.

Figure 7.2: The message delivery ratio in the ‘Wi-Fi’ communication scenario.
The median message delivery ratio for the Epidemic and MaxProp routers
are almost the same.

For the Wi-Fi communication scenario (cf. Fig. 7.2), the median message

delivery ratio for the Epidemic and MaxProp routers are almost the same.

They are 98.73% and 98.98% respectively. With the achieved results, we

can indicate that the message forwarding with a wider communication range

uses the greater contact probability between the nodes. This consequently

increases the overall message delivery ratio in the network. It should be

noted that, we use real-life trace-driven data for our simulations to see the

potential effects of user’s interactions and social collaborations within the

network. And we observe that these interactions help in message forwarding

which in turn increase the message delivery ratio for the Maxprop router.
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7.3.2 Delivery Cost

Fig. 7.3 shows the message delivery cost in case of the Bluetooth communica-

tion scenario.

Figure 7.3: The message delivery cost in the ‘Bluetooth’ communication
scenario. The Epidemic router generates a large number of messages, which
increase the message delivery cost for this router.

In the case of the Bluetooth communication scenario (cf. Fig. 7.3), the

median message delivery cost for the Epidemic router is 40.48 and in the

case of the MaxProp router it becomes 24.16. The Epidemic router generates

a large number of messages in the network which increase the message

delivery cost for this router. The MaxProp router forwards messages based

on the previous encounter histories and does not replicate messages. This

reduces the median message delivery cost for this router compared to the

Epidemic router. The message delivery cost for the DirectDelivery router is

zero, because it only generates a single copy of the message in the network.

Fig. 7.4 shows the message delivery cost in case of the Wi-Fi communi-

cation scenario.
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Figure 7.4: The message delivery cost in the ‘Wi-Fi’ communication scenario.
The DirectDelivery router only generates a single copy of the message which
results zero message delivery cost for this router.

For the Wi-Fi communication scenario (cf. Fig. 7.4), the median message

delivery cost for the Epidemic router is 138.03, and for the MaxProp router

it is 56.33. We note that, the Epidemic router replicates a higher amount of

messages which increase the message delivery cost compared to the MaxProp

router. Same as the Bluetooth scenario above, the median message deliver

cost for the DirectDelivery router in the Wi-Fi scenario remains zero.

7.3.3 Delivery Delay

Fig. 7.5 shows the message delivery delay in case of the Bluetooth communi-

cation scenario.

We find that the median message delivery delay for the epidemic router,

in case of the Bluetooth scenario (cf. Fig. 7.5) is 87.36 minutes, and for

the MaxProp router it reduces to 61.47 minutes. By contrast, the median

message delivery delay in the case of the DirectDelivery router has increased

to 205.5 minutes. We note that due to the node’s buffer constraints, the

Epidemic router drops a large amount of messages in the network which
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Figure 7.5: The message delivery delay in the ‘Bluetooth’ communication
scenario. The DirectDelivery router only generated single copy of the message
in the network and for searching the entire network for the destination node
has increased the overall message delivery delay.

results in a higher message delivery delay. The DirectDelivery router generates

one copy of the message in the network, but it is unpredictable as to when

this message would finally reach to its destination. Therefore, searching

the entire network has increased the overall message delivery delay for

the DirectDelivery router. However, the user’s social collaborations and

interactions help the overall message delivery performance in the MaxProp

router by finding the destinations faster.

Fig. 7.6 shows the message delivery delay in cases of the Wi-Fi commu-

nication scenarios.

For the Wi-Fi communication scenario (cf. Fig. 7.6), the median message

delivery delay is low for the MaxProp router (16.22 minutes). Whereas, for

the Epidemic router it increases to 21.44 minutes. But the median message

delivery delay is high for the DirectDelivery router which is 61.23 minutes.

Likewise the Bluetooth scenario, higher amounts of the generated messages
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Figure 7.6: The message delivery delay in the ‘Wi-Fi’ communication scenario.
The median message delivery delay is minimum for the MaxProp router as it
delivers messages faster by keeping the previous encountered histories and
users’ interactions.

increases the overall message delivery delay for the Epidemic router compared

to the MaxProp router. In the case of the DirectDelivery router, the message

delivery delay is higher due the fact that it generated only one copy of the

message. Compared to the Bluetooth scenario the wider communication

range (i.e., the Wi-Fi scenario) helps to improve the contact opportunities

between the nodes which is why Wi-Fi scenarios give better performance in

overall message forwarding process.

7.4 Discussions

In this section we have summarised our findings based on the achieved exper-

imental results. We have learned that the message forwarding in the MoCC

architecture (cf. Chapter 4) is greatly influenced by the different wireless

communication ranges. We outline our results as follows:

132



• It is feasible for message communication using user’s mobility patterns

and social interactions by using both of the technologies (i.e., Bluetooth

and Wi-Fi in this case) but in the case of a shorter communication range,

the user’s social interactions greatly influence the message forwarding

performance.

• The MaxProp router gives the best message delivery performance com-

pared to the Epidemic and DirectDelivery routing.

• In a wider communication range the overall message delivery ratio is

almost similar for the Epidemic and the MaxProp routings. We understand

that this is because there is a high probability that the nodes are getting

in contact with each other more easily. Returning to our motivation

(cf. Chapter 1.1), this type of communications range may improve the

message forwarding performance for Bob who is visiting a rural place.

• However, in the case of the MoCC architecture, users’ interactions within

a shorter range are more promising and therefore users’ interactions and

willingness for cooperation in message forwarding is important. Returning

to our motivation (cf. Chapter 1.1), this type of communications range

may improve the networking performance for Ron who is trying to find

out the meaning of an ancient script in a museum. Perhaps, attractive

incentive mechanisms [11] can be enforced in such communications to

encourage user’s participation in message forwarding.

7.5 Summary

In this chapter we have discussed the impact of message delivery performance

when we vary the wireless communication ranges between the nodes.

We summarise the chapter as follows:
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• We evaluated comparisons between various opportunistic routing proto-

cols in different wireless communication technologies (e.g., Bluetooth

and Wi-Fi). We used real-life trace-driven simulations to compare and

contrast the performance of these routing protocols by exploring user’s

social collaborations and interactions.

• We used three different routing protocols i.e., Epidemic, DirectDelivery

and MaxProp for our simulation. We noticed that the MaxProp router

gives the optimum message delivery performance in the network.

• Our results showed that local user’s social interactions and collaborations

helped to improve the overall message delivery performance in the net-

work. Moreover, we observed that when communicating in a shorter

range, users’ interactions and collaborations are significant for data for-

warding. This in turn supports the need for user’s active participations

and willingness to share/forward messages within the network.

In the next chapter (Chapter 8), we conclude the thesis by combining the

findings we have made in this thesis. We also outline the research directions

for the further work .
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Chapter 8

Conclusion

Rapid growth in cloud and mobile markets has led to huge demands to access

cloud-based applications through smart mobile devices (e.g, smartphones,

tablets or PDAs). Several advantages (e.g., portability and the accessibility of

using seamless cloud-based services) make these devices a more convenient

means for communication in daily life. But major constraints to these devices

from the device’s point of view are shorter battery power and limited memory

size, and from the communication’s point of view, the difficulty is accessing

a continuous Internet connection, especially in challenged environments.

For instance, areas that lack an available infrastructure for communication

(e.g., rural or sparse areas) or areas with an infrastructure where the net-

work connection is not as accessible (e.g., urban areas or dense areas with

restricted/full of interference access networks) or even areas with high costs

of Internet roaming. In such challenged environments, mobile opportunistic

networks may help users to gain access to an available network connection for

communication via local users’ mobile networks. We have therefore examined

the following thesis:

Mobile opportunistic networks can be used to gain access to cloud-based

applications in a challenged environment with the help of a user’s social col-

laborations and interactions, instead of relying on a fixed infrastructure for

communication.
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To test the thesis, we have considered the following research questions:

• Research Question 1: Is it possible to use a mobile opportunistic network

to provide cloud-based services to the user (e.g., a tourist) in a challenged

environment that lacks access to network infrastructure?

• Research Question 2: Do the user’s mobility and their social interactions

help to improve the availability and accessibility of information in a

challenged environment?

To address the first question, in Chapter 3 we surveyed the field of

mobile cloud technology. We then explored the possibility of extending

mobile cloud platforms using mobile opportunistic networks in challenged

environments. We devised a detailed classification of the different mobile

cloud architectures according to their mode of use. They are mobile cloud

“Device to Cloud” (D2C) architecture, mobile cloud “Cloud to Device” (C2D)

architecture and mobile cloud “Device to Device” (D2D) architecture. In

Chapter 4 we proposed a new Mobile-Opportunistic Collaborative Cloud

(MoCC) architecture that integrates the D2C, C2D and D2D class of mobile

cloud architectures to form a “Device to Device to Cloud” communication

that leverages local users’ mobile network connections. We found that, it is

feasible to use the MoCC architecture to avail a cloud-based application in

rural/sparse areas that lack an Internet connection for communication or

in urban/dense areas full of interference access networks or even in a high

Internet roaming cost zone, instead of relying on a fixed infrastructure for

communication.

To address the second question, in Chapter 5 we examined the different

modes of user’s message transferring behaviour when using the MoCC archi-

tecture. We found that the potential for using local users’ mobility techniques

improves the overall message delivery performance within the network. In

Chapter 6 we examined how the overall network performs with the changes
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of network load (e.g., number of messages) along with the large-sized mes-

sages when we employ the MoCC architecture. Once again we found that,

in challenged environments, a “Device to Device to Cloud” communication

improves the overall message delivery performance using user’s interactions

and social collaborations even with higher message generation rates and

increased message sizes. Finally, in Chapter 7, we examined how different

wireless networking technologies affect the message forwarding performance

in the MoCC architecture. We found that a higher communication range

improves the overall message delivery performance but when communicating

in a shorter range, users’ interactions and collaborations are significant for

message forwarding.

8.1 Contributions

In Chapter 4, we introduced a new Mobile-Opportunistic Collaborative Cloud

(MoCC) architecture for extending mobile cloud platforms using mobile

opportunistic networks in challenged environments. The MoCC consists of

two different technologies, which are then combined into a single one. These

are mobile cloud technology and mobile opportunistic networking technology,

by using the local user’s P2P communications technology.

In Chapter 5, we demonstrated that using the MoCC architecture, local

users’ mobile networks succeed at integrating tourists’ and cloud networks

successfully to build an integrated mobile opportunistic cloud-based platform,

which can be used to send tourists’ information efficiently in a challenged

environment. Using publicly-available tourist data, we develop a new “Touris-

tActivityBased” movement model to simulate tourists’ behaviour and nature

of visits in different places. We used real-world trace-driven simulations to

evaluate two options: storing data at well-situated hubs versus exploiting the

mobility of local users, and demonstrated that the latter improves message

delivery performance.
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In Chapter 6, we demonstrated that, the MoCC architecture can improve

the overall message delivery performance using a user’s mobility, their inter-

actions and social collaborations, even with the higher message generation

rates and increased message sizes generated by the nodes. Our experimental

results support the need for the user’s active participations and willingness to

share/forward messages in a challenged environment.

Finally in Chapter 7, we used the MoCC architecture to investigate

the impact of various opportunistic routing protocols in different wireless

communication technologies in a challenged environment. We employed

the Bluetooth and Wi-Fi technologies in this case. We demonstrated that

users’ interactions and social collaborations can make a significant impact on

message forwarding in a shorter communication range.

8.2 Future Research Directions

Throughout the thesis, we have discussed several research issues related to

the social and technological domains of the MoCC architecture. However,

there are several open research questions and issues which future research

would need to address. Therefore, we conclude the thesis by pointing these

several potential research questions, open issues and avenues for future work.

• User’s Privacy and Security: Returning to our motivation (cf. Chap-

ter 1.1), users may not be interested in sharing information (e.g., their present

location or name) with the other users. Users may be concerned about their

own privacy and data confidentiality that could be leaked, stolen or even

tampered with by others [183]. Due to the absence of a centralised controlled

system over the users (cf. Chapter 2.1.3), it is impractical to employ a fixed

security solution in such communication [26]. We indicate the open research

questions for the future research are as follows:

• How can we preserve the privacy and confidentiality of user’s data while
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keeping the same routing performance in the network?

• What are the issues that need to be addressed for preserving the privacy

and confidentiality, and how to monitor them while transferring data

through mobile opportunistic networks?

• How can a heterogeneous mobile cloud platform preserve user’s relational

privacy in data sharing?

Upon this, a dynamic privacy-aware framework can be enforced [154],

which can mitigate data leakage in such communications by using user’s

relation-privacy. In this, users keep a secure, dynamic and reliable data

communication only between the trusted users (e.g., between close friends).

• Heterogeneity of Networks: Nodes belonging to a heterogeneous

network rely on various communication technologies and protocols [159].

In the MoCC, nodes do not depend upon a global infrastructure. This is due

to the fact that connections may vary from place to place, e.g., rural and

urban areas (cf. Chapter 2.2). This raises the requirements for an improved

authentication and trust establishment mechanism in data forwarding. In

relation to this, we indicate the open research questions for the future research

are as follows:

• How can we secure communications for a node travelling via different

network addresses in a heterogeneous network?

• How to design a reputation-based framework guaranteeing the use of

reliable relations in data forwarding in heterogeneous mobile cloud plat-

forms?

To this end, a mechanism that allows detecting dynamic changes of

the computing environment according to the user’s preferences could be

employed [184]. This would enable a resource-constrained mobile devices

139



a unique solution for authentication by identifying non-trusted users and

enforces a secure session management between user’s mobile devices and

cloud servers across heterogeneous mobile cloud platforms.

• Node Mobility Management: In mobile opportunistic networks

nodes are extremely mobile and disruptions in paths are frequent. It is

thus impractical to establish a stable end-to-end route for communication

between nodes during data transmission [42]. To this end, we indicate the

open research questions for the future research are as follows:

• How can we keep the routing solutions highly dynamic and flexible, and

not dependent on a predefined path?

• How can a third-party user efficiently detect a minimum path that connects

a group of target users on a collaborative mobile cloud platform with the

minimum number of Web accesses needed for online discovery e.g., to

find a cloud-based applications?

• How to build a framework which effectively spreads the congestion con-

dition of high-centrality nodes to the entire network by social influence

to notify data sources of the congestion situation so that the other nodes

can adjust the data generation rate to relieve network congestion?

Consequently, when extending mobile cloud platforms using mobile

opportunistic networks, this requires a highly dynamic solution for communi-

cation. To address such issues, a ‘hop-based’ communication mechanism can

be employed [185]. This mechanism helps to establish a stable communica-

tion using a hop-to-hop message delivery to the neighbouring nodes.

• Dynamic Resource Management: Resource management is vital as

this helps users offloading data to infrastructure clouds [117]. In a traditional

on-premise application deployment model, a user’s private data is stored

within a secure boundary based on an organisation’s policy and fixed security
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infrastructure. But in the MoCC, users must overcome the inherent uncer-

tainty of an available contact opportunity, making them rely upon locally

available infrastructures while hoping for the secure and efficient handling

of their data [186]. We indicate the open research questions for the future

research are as follows:

• How can we efficiently offload data at runtime that helps to improve the

battery power and bandwidth utilisation within the network?

• How can we enhance dynamic resource management to effectively adjust

congested conditions at runtime to reflect situational changes to the

participants (nodes/users)?

• How to provide context-aware service discovery of nearby users (in prox-

imity) that supports trustworthy service discovery based on social interac-

tions?

To this end, the mechanisms based on privacy-preserving data mining

technique can be employed [187]. This technique helps a better classification

analysis of stored data based on a privacy-preserving manner by using a

decision tree classifier. In this, the service provider keeps the user’s sensitive

data protected during data the mining process. Furthermore, for battery

conservation the best approach would be to totally depend on the class of

applications [188].

• Unpredictable User Behaviour: In the MoCC, unpredictable user

behaviour can lead to a higher delay or drop messages during the communi-

cation [189]. To this end, we indicate the open research questions for the

future research are as follows:

• Do proper incentive mechanisms help users to transfer messages actively

within the network?

141



• How do social reputations help others to encourage the transfer of mes-

sages accordingly?

Upon this, incentives for participating in message communication can

be employed [12]. Incentives could be social reputations or in terms of

money. Moreover, mechanisms for detecting a user’s selfish behaviour and

encourage them to participate in message forwarding by providing attractive

incentives are imperative [163].

Finally, we outlined the open issues and the future research directions

with their possible countermeasures on the state of the art research advance-

ments in these areas. In future, we plan for more comprehensive experiments

with real-life data sets to address the related open research questions and

issues that are raised in this thesis, which will in turn help to further our

understanding towards making improvements in the performance of data-

forwarding techniques in real-life scenarios.
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Appendix A

List of Acronyms

AODV : Ad-Hoc On-Demand Distance Vector

BTS : Base Transceiver Stations

C2D : Cloud to Device

CF : Collaborative Filtering

CPU : Central Processing Unit

D2C : Device to Cloud

D2D : Device to Device

DSDV : Destination-Sequenced Distance-Vector

DTN : Delay Tolerant Network

E-Business : Electronic Business

EC2 : Amazon Elastic Cloud Computing

E-Healthcare : Electronic Healthcarehhh

GPRS : General Packet Radio Service

GPS : Global Positioning System

ICC : Instant Channel Change

IP : Internet Protocol

IPTV : Internet Protocol Television

IRNA : Intelligent Radio Network Access

JXTA : Juxtapose

LET : Latest Encounter Time

LTE : Long Term Evolution
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MANETs : Mobile Ad Hoc Networks

MANs : Metropolitan Area Networks

M-Learning : Mobile Learning

MMS : Multimedia Messaging Services

MoCC : Mobile-Opportunistic Collaborative Cloud

MSNs : Mobile Social Networks

OSNs : Online Social Networks

P2P : Peer-to-Peer

PDA : Personal Digital Assistant

POIs : Point of Interests

PSN : Pocket Switched Networks

QoS : Quality of Service

RAM : Random Access Memory

S3 : Simple Storage Service

SIM : Subscriber Identity Module

UPnP : Universal Plug and Play

URI : Uniform Resource Identifier

VANETs : Vehicular Ad Hoc Networks

VoD : Video On Demand

WAN : Wide Area Network

WWANs : Wireless Wide Area Networks

ZRP : Zone Routing Protocol
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Appendix B

Dataset and Data Tables

B.1 Dataset Details

We use the SASSY (St Andrews Sensing SYstem) dataset [167] for our

simulation-based study. This dataset is collected in St Andrews with 27

participants (22 undergraduate students, 3 postgraduate students, and 2

members of staff of University of St Andrews) equipped with 802.15.4 Tmote

Invent sensors and trackers within a range of 10 metres over a period of 79

days. Table B.1 presents the dataset statistics.

Table B.1: The SASSY dataset statistics.

Total Num-
ber of Nodes

Number
of Nodes ≥1
Edge

Clustering Co-
efficient

Social Links Encounters

27 27 0.771 254 29,909

Nodes select destinations on a predefined path (e.g., roads) from ran-

dom POIs to reach them. Each Invent device broadcasts bacon every 6.67

seconds. When this bacon is received by the other devices, they store the re-

lated information e.g., the timestamp, the device ID form a Sensor Encounter

Record (SER) and the information gets uploaded to the central database

located at the Computer Science building in the University. In addition, a
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Self-Reported Social Network (SRSN) topology has been generated using the

participants ‘Facebook’1friend lists.

B.2 Movement Model

We develop a new “TouristActivityBased” movement model to simulate tourists’

nodes e.g., tourists’ behaviour and nature of visits in different places (cf. Chap-

ter 5.2.2). We focus St Andrews town for this purpose. We collect publicly

available tourist data2 (year of 2009) and prepare the movement model for

our simulation. When we develop the movement model, we consider various

tourists’ activities which include visit time, type of attractions (visit places),

average time spent in these places, etc. A few of them are discussed as follows

(cf. Table B.2):

Table B.2: The issues considered for the “TouristActivityBased” movement
model.

Issues Remarks

Types of visitors National and international.
Admission policy Free or pay
Visit places “The Museum/Art Gallery category demonstrated the strongest

presence in terms of concentration of number of attractions, par-
ticularly in the free admission sector”2. This helps us to select
the appropriate POIs for the tourists.

Types of visit purposes School, college, university, business, organizational visit and
personal interest.

Average ‘dwell’ time This indicates the average time spent in a place. “Overall visitors
spent an average of 1 hour 21 minutes at participating visitor
attractions. Visitors spent longest in other category attractions at
2 hours 44 minutes”2.

We assume that tourists visit a place, perform an activity, e.g. taking

photos and then move onto another place. Based on the tourists’ attractions
1https://www.facebook.com/
2http://www.visitscotland.org/
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(cf. Table B.3), we choose different probabilities for 10 different ‘Points

of Interests’ (POIs) for tourists. We do the same for all tourists nodes in

our simulation. POIs include historical sites (e.g., St Andrews Castle, St

Andrews Cathedral, etc), entertainment places (e.g., Golf course) or places

that they might visit to collect specific information about the town (e.g., the

tourist information centre). We generate appropriate POIs for tourists using

‘OpenJUMP’3.

Table B.3: The tourists’ attractions statistics in St Andrews.

Attractions Category of the
Place

Number of
Visitors

Admission
Policy

Owner

St Andrew’s Castle Castle/Fort 55,163 Pay Historic
Scotland

British Golf Museum Museum/Art
Gallery (includes
Science/Technol-
ogy Centre)

43,990 Pay Charity or
Trust

St Andrews Mu-
seum

Museum/Art
Gallery (includes
Science/Technol-
ogy Centre)

43,556 Free Local
Authority

St Andrew’s Cathe-
dral

Historic Monumen-
t/Archaeological
Site

30,162 Pay Historic
Scotland

MUSA - St Andrews Museum/Art
Gallery (includes
Science/Technol-
ogy Centre)

25,434 Free University

Gateway Galleries Museum/Art
Gallery (includes
Science/Technol-
ogy Centre)

5,500 Free University

In the movement model, tourists are moving on the St Andrews roads

and they have some POIs. If they are not at those POIs, they will first walk
3http://www.openjump.org/
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with the ‘shortest path’ to reach these POIs and then stay there until a certain

time. A tourist can visit one place at a time.

// get path for the next location
@Override
public Path getPath() {
if (mode == WALKING_PLACE_MODE) {
// Trying to find the place
SimMap map = super.getMap();
if (map == null) {
return null;
}
Path p = new Path(generateSpeed());
MapNode to = pois.selectDestination();// select POIs

List<MapNode> nodePath = pathFinder.getShortestPath
(lastMapNode, to);

for (MapNode node : nodePath) {
// create a Path from the shortest path to reach the nearest POIs
p.addWaypoint(node.getLocation());

}
lastMapNode = to;
mode = AT_PLACE_MODE;
return p;

}
else {
Path p = new Path(1);
MapNode to = pois.selectDestination();
List<MapNode> nodePath = pathFinder.getShortestPath
(lastMapNode, to);
//going towards the POIs
mode = WALKING_PLACE_MODE;
return p;}
}
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In our simulation, we use the following settings for the POIs for the

tourists.

# Start scenario settings
# Group and movement model specific settings
# pois: Points Of Interest indexes and probabilities
(poiIndex1, poiProb1, poiIndex2, poiProb2, ... )

...

# Define Group2 (Tourist in St Andrews Town)
Group2.movementModel = TouristActivityBasedMovement
Group2.groupID = Tourist_NodeNo_

...

Group2.pois = 1,0.2,2,0.2,3,0.2,4,0.1,5,0.1
PointsOfInterest.poiFile1 = data/StACastle.wkt

PointsOfInterest.poiFile2 = data/StAGolfClub.wkt
PointsOfInterest.poiFile3 = data/StAMuseum.wkt
PointsOfInterest.poiFile4 = data/StAMUSA.wkt
PointsOfInterest.poiFile5 = data/StAGatewayBuilding.wkt
...

# wkt = Well-Known Text format
# End scenario settings

Nodes (locals and tourists) are moving throughout the town of St

Andrews (cf. Chapter 5.2.2). We use the following simulation setting file for

them.

# Map based movement -movement model specific settings
MapBasedMovement.nrofMapFiles = 1
MapBasedMovement.mapFile1 = data/StAroads.wkt
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Figure B.1: A map of the St Andrews town along with the various places of
attractions.2

Figure B.2: A screenshot of the employed simulation, where locals and tourists
nodes are moving within the St Andrews town (cf. Chapter 5.2.2).

B.3 Data Tables

In this section we present data tables which include the achieved simulations

results. Due to the word limitations of the thesis, we present a few of them.

They are as follows:
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Table B.4: Simulation results for the experiment 5.3.1 (10 runs). The message
delivery ratio for the PF, EF and LF modes of message transferring behaviours
(cf. Fig. 5.2 and Fig. 5.3).

Epidemic Router Prophet Router MaxProp Router
PF EF LF PF EF LF PF EF LF

17.34 57.4 27.43 11.69 63.05 27.24 15.17 67.3 39.87
15.36 60.32 29.88 12.72 58.44 25.45 16.31 70.22 40.9
14.99 55.61 30.73 13.38 57.4 29.78 15.55 67.77 39.02
15.65 57.02 30.25 10.27 58.06 26.11 16.02 68.71 36.19
16.68 55.89 31.86 11.78 56.27 26.58 16.59 72.2 36.95
14.8 53.53 32.61 9.52 59.47 25.07 15.65 73.33 34.68
15.08 55.51 32.99 10.37 58.15 27.14 16.78 75.31 37.23
16.12 56.74 30.16 9.99 60.04 24.03 14.61 66.64 38.08
16.78 52.78 31.2 11.78 62.96 27.05 16.12 69.56 36.85
15.83 57.4 29.97 13.1 58.91 25.07 16.59 68.99 34.31

Table B.5: Simulation results for the experiment 6.3.1. The message delivery
ratio for the varied message sizes (cf. Fig. 6.1).

Epidemic Router Prophet Router MaxProp Router
256kB 1MB 256kB 1MB 256kB 1MB

64.58 56.94 58.33 52.78 70.14 64.58
61.81 61.11 47.22 47.92 76.39 71.53
61.81 56.25 47.92 45.83 71.53 63.89
62.5 56.94 54.86 49.31 75 70.83
59.03 53.47 54.17 47.22 77.08 67.36
59.72 52.08 55.56 52.08 71.53 67.36
66.67 60.42 55.56 52.78 67.36 64.58
61.11 56.94 54.86 50 70.14 62.5
63.89 58.33 54.17 52.08 64.58 64.58
63.89 55.56 58.33 52.78 74.31 68.75
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Table B.6: Simulation results for the experiment 6.3.2. The message delivery
cost for the varied message sizes (cf. Fig. 6.3).

Epidemic Router Prophet Router MaxProp Router
256kB 1MB 256kB 1MB 256kB 1MB

195.44 152.40 99.95 89.46 150.19 94.04
177.43 154.38 116.59 113.50 136.43 85.12
193.58 158.85 109.86 104.35 144.83 80.99
186.76 158.21 108.85 97.77 135.62 79.78
193.25 162.98 113.63 96.94 140.05 83.74
208.92 164.48 105.55 94.68 146.32 89.36
179.62 150.95 103.86 94.83 148.01 109.41
192.29 160.17 100.69 89.57 153.70 94.91
181.56 155.21 100.32 95.96 149.81 97.24
186.91 149.96 101.45 89.50 140.99 80.89

Table B.7: Simulation results for the experiment 7.3.1. The message delivery
ratio for the Bluetooth and Wi-Fi communications (cf. Fig. 7.1 and Fig. 7.2).

Epidemic Router DirectDelivery Router MaxProp Router
Bluetooth Wi-Fi Bluetooth Wi-Fi Bluetooth Wi-Fi

88.78 98.47 46.94 94.39 94.39 98.47
88.78 97.96 48.47 94.9 92.86 98.98
88.27 98.98 44.39 97.45 94.9 98.98
87.76 98.47 52.04 96.43 91.48 98.47
90.31 98.98 57.14 97.45 94.9 98.98
84.18 98.98 42.35 96.43 90.82 98.98
89.8 98.47 58.16 97.45 94.39 98.47
93.37 99.49 60.2 94.9 95.92 99.49
83.67 98.98 36.73 93.88 93.37 98.98
87.24 97.96 52.55 94.9 93.37 98.47
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