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Abstract

This thesis studies continuous variable mixed states with the aim of better understanding
the fundamental behaviour of quantum correlations in such states, as well as searching for
applications of these correlations. I first investigate the interesting phenomenon of discord
increase under local loss and explain the behaviour by considering the non-orthogonality
of quantum states. I then explore the counter-intuitive result where entanglement can be
created by a passive optical beamsplitter, even if the input states are classical, as long as
the input states are part of a larger globally nonclassical system. This result emphasises
the importance of global correlations in a quantum state, and I propose an application of

this protocol in the form of quantum dense coding.

Finally, I develop a quantum digital signature protocol that can be described entirely
using the continuous variable formalism. Quantum digital signatures provide a method
to ensure the integrity and provenance of a message using quantum states. They follow
a similar method to quantum key distribution (QKD), but require less post-processing,
which means they can sometimes be implemented over channels that are inappropriate for
QKD. The method I propose uses homodyne measurement to verify the signature, unlike
previous protocols that use single photon detection. The single photon detection of previ-
ous methods is designed to give unambiguous results about the signature, but this comes
at the cost of getting no information much of the time. Using homodyne detection has the
advantage of giving results all the time, but this means that measurement results always
have some ambiguity. I show that, even with this ambiguity, the signature protocol based
on homodyne measurement outperforms previous protocols, with the advantage enhanced
when technical considerations are included. Therefore this represents an interesting new

direction in the search for a practical quantum digital signature scheme.
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Introduction

Towards the end of the 19th century, the classical theories of mechanics, thermodynamics
and electromagnetism were considered to be the most important in physics. These theories
all shared the common principle of determinism. That is, if one knows the initial conditions
of a system one can exactly predict all future behaviour. However, this idea was completely
turned on its head at the start of the 20th century with the advent of quantum theory,
which introduced quantum uncertainty as an inherent property of all quantum systems.
Heisenberg described this with his uncertainty principle, in which a measurement on one
observable will often give a second observable unpredictable results. In particular, one can
never know both the position and momentum of a quantum particle exactly.

Perhaps the strangest feature of a quantum state is the possibility of non-local be-
haviour [19], which is impossible in the classical realm. This seems to contradict Einstein’s
theory of special relativity, which states that no interaction can propagate faster than the
speed of light. However due to the indeterministic nature of quantum mechanics, it can
coexist with relativity without conflict. The first mathematical description of non-local
correlations was the idea of quantum entanglement. In an entangled state of two particles,
the individual particles cannot be said to have their own properties. Instead, we can only
describe the global properties of the state. The result of this is that a measurement on
one particle will instantaneously change the state of the other particle, no matter how far
apart they are. However, whoever possesses the other particle cannot tell that the state
has changed until he knows the measurement results on the first particle, which can only
be learnt through the transmission of a conventional message. Therefore the transfer of
information is limited by the speed of light, which is consistent with special relativity.
Nevertheless, this is a counterintuitive result and the mechanism by which it occurs is
still a matter of debate. However the result is undeniable and is regularly observed in
laboratories throughout the world, for example in tests of Bell’s inequalities [13, [14].

One of the fundamental questions still unanswered is, how do we define the boundary
between the classical and quantum worlds? For a long time, entanglement was considered
as the defining property of a multipartite quantum state. However experiments have
shown that some multipartite states that are not entangled can still show signs of quantum
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behaviour [20]. In fact entanglement, non-locality and non-classicality are only equivalent
for pure quantum states. In the more general case of a mixed quantum state, we require
a new description of non-classicality. This has led to the introduction of quantum discord
[158] as an attempt to describe all non-classical correlations in a general mixed quantum
state.

Quantum information theory is the attempt to use non-classical correlations to manip-
ulate information as we desire. Correlations could potentially be used to carry out secure
communication and faster computation, amongst other things. Entanglement has been
identified as a useful resource for quantum communication [I18], however its necessity for
mixed state quantum computation is unclear [54]. Recently quantum discord has also been
shown to have potential uses in computation [I36], and it could also have applications in
quantum metrology [32]. Quantum infomation theory can be studied in either discrete
variables, e.g. qubits and single photons, or continuous variables, e.g. light modes. This
thesis focuses on the continuous variable case.

This thesis has two main aims. Quantum correlations between two states have been
extensively studied; however, when correlations are shared between three or more states
they are less well understood. I investigate quantum correlations in multimode mixed
states with the aim of further understanding the fundamental behaviour of entanglement
and quantum discord in these conditions. Understanding this behaviour is necessary as
quantum protocols are developed that work in the real world, which inevitably involves
mixed states. The second aim of this thesis is to advance the field of quantum digital
signatures by developing a new signature protocol based on coherent states and homodyne
detection, whereas previous protocols are based on single photon detection. Such protocols
could become a widespread part of future quantum communication networks due to the
importance of digital signatures.

The structure of this thesis is as follows. Chapter 1 gives an introduction to quantum
optics and provides the main tools required to study continuous variable systems in this
thesis. Chapter 2 introduces the theory of entanglement, including how it can be identified
and quantified. Chapter 2 also introduces nonclassical correlations beyond entanglement,
with a focus on quantum discord. In Chapter 3, I investigate the phenomenon of discord
increase under local loss, and seek to identify the primary physical reason for the increase.
In Chapter 4, I study situations where entanglement can be created by a beamsplitter,
even if the modes input to the beamsplitter are classical. I then provide an application
for this process in terms of dense coding. In Chapter 5, I introduce the field of quantum
digital signatures and describe the most important developments in the field so far. I then
propose a quantum digital signature protocol based on homodyne measurements, opening
up the study of quantum digital signatures to protocols entirely working with continuous
variables.



1.1. Introduction to Quantum Optics

1.1 Introduction to Quantum Optics

In 1900, Planck asserted that light is a quantum object in his explanation of blackbody
radiation [26]. Light shows wave-like properties, for example diffraction and interference.
It can also be shown to have a particle nature, i.e. photons, as shown by Einstein in
his description of the photoelectric effect [63]. Light also has a great ability to carry
information and is used in telecommunication today. The quantum nature of light as well
as its ability to contain information makes it an ideal candidate for studying quantum
information theory. The basics of quantum optics, the quantum language of light, have
been discussed in many excellent resources [137, [39, [77]. Here I introduce those parts that
are most relevant to our investigation of continuous variable quantum information theory.

1.1.1 Quantisation of the electromagnetic field

I begin with a classical description of electromagnetism. In a dielectric medium the physi-
cal quantities of light are described by the electromagnetic field strengths, the electric field
E, the displacement field D, the magnetic field H and the magnetic induction B. These
are then linked by the constitutive equations, D = eegE and B = uuoH, where ¢y is the
permittivity of free space, € is the permittivity of the material, pg is the permeability of
free space and p is the permeability of the material. In his seminal work, Maxwell linked
these together to give his famous equations which can be written in differential form as

V-D=0, V-B=0, VXE:—a—B, VXH:a—D, (1.1)
ot ot
with the additional boundary conditions that the fields vanish at infinity. Note that these

Maxwell’s equations apply in regions with zero charges or currents.

Together with Newtonian mechanics, Maxwell’s equations represented a period where
it was thought that everything was deterministic and it was only a matter of time before
Physics would provide a complete description of the universe. With the observations of
Planck and Einstein in the early 20th century, it became clear that this was no longer
true, and in fact quantum uncertainty must play a role. To convert Maxwell’s equations
into the quantum regime, we can make the simple assumption that the classical fields
are in fact the expectation values of the quantum observables, e.g. (E) = E. Using this
assumption it can be seen that due to their linearity, Maxwell’s equations still hold for the
quantum field strengths. Thus, simply by replacing the electric field strengths with their
quantum equivalents, we can use Maxwell’s equations to describe the quantum behaviour
of light.

In classical electromagnetism the field strengths are often represented by the vector
potential. We can do the same in the quantum case by introducing the operator of the
vector potential A. In doing this, we assume that the fields can be rewritten as

oA

D —
ot’

B=VxA. (1.2)

By doing this, the middle two Maxwell’s equations immediately hold. Since the electro-
magnetic field is gauge invariant we can introduce the Coulomb gauge

V-eA =0, (1.3)
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which ensures that the first of Maxwell’s equations also holds. Finally by rewriting the
final Maxwell’s equation in terms of the vector potential, we obtain the wave equation
1 9%A

94

In deriving this equation, the speed of propagation of electromagnetic waves in a vacuum
emerges as ¢ = 1/,/10€.

We can now express the vector potential A as a mode expansion by writing

Ar =3 (Ak(r,t)&k + A;(r,t)aﬁ) . (1.5)
k

In this expression, Ag(r,t) forms a complete set of classical waves that obey the Coulomb
gauge , Maxwell’s equations and the boundary conditions. For example the
plane waves A exp(ik-r —iwt) satisfy all these conditions. All of the quantumness of light
is contained in the operators dL and ag, which are the creation and annihilation operators

of mode k respectively, with the imposition that they are mutually adjoint.

We can now assume, as we did with Maxwell’s equations, that the quantum Hamilto-
nian of the electromagnetic field can be found by taking the classical expression for the
Hamiltonian and replacing the electromagnetic field strengths by their operator equiva-
lents. By doing this we find the quantum Hamiltonian to be

A 1 A A A A

H:/ (E-D+B-H)dv (1.6)
2 Jv

with the volume integral taken over the entire space. By using the constitutive equations,

writing in terms of the vector potential (1.2 and inserting the mode expansion (/1.5)), the

Hamiltonian can be written as

P e N
H= B Z huwy, (alak + akaT) . (1.7)
k=0
Finally, we can use the Bose commutation relation [137]

[ak,ag,} = S (1.8)

to write the Hamiltonian as

o
H=>"huw <a£ak + ;) : (1.9)

k=0
The electromagnetic field energy is thus the sum of the energies of the individual modes.
The bosonic operators a; and &L can be thought of as the annihilation and creation
operators of photons respectively in mode k. An important result of the quantisation
process is that the vacuum state |0), that is the state with no photons, has non-zero
energy. This can be seen by calculating the energy in the vacuum as (0|H|0) = 0 h—g’“,
which is clearly non-zero. In fact, the energy is infinite, which is usually dealt with by
some renormalisation process. This result is a manifestation of Heisenberg’s uncertainty

principle, a consequence of which is that the vacuum contains random fluctuations. The

4
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result is that the electromagnetic field possesses energy even when there are no photons
present. This is known as the zero-point energy and results in experimentally confirmed
phenomena, for example the Casimir force [36], which causes two parallel conductors
separated by the vacuum to feel an attractive force.

Now that the electromagnetic field is quantised and creation/annihilation operators
have been introduced we can move onto alternative representations of continuous variable
quantum states. In what follows, i = 1 unless otherwise stated.

1.1.2 Quadrature states

In the following discussion I restrict to single mode representations where the subscript &
has been dropped for convenience. I start by introducing the quadrature operators & and
P, which can be written in terms of the creation and annihilation operators as

X 1 (AT . A { A .
r=— a—i—a), :—(aT—a). 1.10
7 P="7 (1.10)
These quadratures are often considered to be the in-phase and out-of-phase components of
the electric field amplitude with respect to a reference phase. The operators are canonically
conjugate and satisfy the commutation relation

[#,p] = i. (1.11)

Although these operators have no relation to the position and momentum of a photon,
this commutation relation allows us to treat £ and p as perfect examples of position and
momentum-like properties. In fact, by expressing the photon number operator # = afa in
terms of the quadrature operators, we obtain the equation

j;2

:?4_

~

H=n+

A2
D
—. 1.12

N | —

This equation represents the energy of a quantum harmonic oscillator of unity mass and
frequency; the single mode is thus the electromagnetic oscillator with position & and
momentum p!

We can now introduce the quadrature states |x) and |[p) as the eigenstates of the
quadrature operators. That is

#|z) = z|x), Plp) = plp). (1.13)

These states are both orthogonal and complete:

(ale’) = 6z — =), {plp') = (p — P, /wkw@wm—/“meup—l (1.14)

—00 —0o0

and are linked together by the Fourier transformation

o)== [ ewimldn, )= = [ ep(rimladn (119

These quadrature states are not physical as they are not truly normalisable, however they
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can be used to define the quadrature wave functions

v(@) = (@), D(p) = (pl). (1.16)

Unlike the quadrature states, these are physical with their moduli squared giving the
probability distributions of the pure state 1) for each of the quadratures.

1.1.3 Coherent states

Ideal laser light is a coherent electromagnetic wave that is the closest possible analogue to
a classical electromagnetic wave. Since it has a well-defined amplitude the coherent states
are defined as those that are eigenstates of the annihilation, or amplitude, operator a,

ala) = ofa). (1.17)

Coherent states were first suggested by Schrodinger [I79] as a response to a claim by
Lorentz that quantum mechanics was not consistent with classical behaviour of light.
They were then considered in mathematical detail by Roy J. Glauber [90] [88], which is
why coherent states are sometimes known as Glauber states.

It can be seen that the photon number distribution for a coherent state is given by the
Poissonian distribution as
_ | a‘Qn

n!

elol?, (1.18)

n

This is exactly the same probability distribution that we would get from a set of randomly
distributed classical particles. Therefore a Poissonian distribution is essentially classical
which allows us to say that coherent states give us the most classical quantum description
of light.

It is important to note that the quantum vacuum is itself a coherent state, as it satisfies
Eqn. (1.17)) for « = 0. To more clearly examine the link between the vacuum and coherent
states, consider the displacement operator

N

D(a) = exp(aa! — a*a). (1.19)

Using this operator, a coherent state can be written, and therefore thought of, as a dis-

placed vacuum state

la) = D(«)|0). (1.20)
To study this link in more detail, we can break up the amplitude « into its real and
imaginary parts

1 )
a=—(xo+ipo), (1.21)

V2
and therefore express the displacement operator in terms of the quadratures

D = exp(ipoT — izop). (1.22)

The values of g and pg are the displacements of the vacuum in the amplitude and phase
quadratures respectively. By varying these two values, it is possible to create any possible
coherent state. Using this operator and the fact that coherent states are just displaced
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vacuum states, we obtain the position wave function of a coherent state

_ 2 ;
Yalz) = 1Y exp <_(f'32~"‘ff)) +ipox — ngxo) . (1.23)
Similarly, the momentum wave function is
7 1 (p—po)? . iPoxo
¢a(P) =T exp _T —1Xop + 5 . (124)

These wavefunctions show us that the quadrature probability distributions |, (x)|? and
1o (p)|? are Gaussian with the same width as the vacuum; they are simply shifted by
the real values xg and pg. This means that only vacuum noise, which is impossible to
eliminate, disturbs the quadrature amplitudes of a coherent state. Therefore coherent
states possess the minimum possible uncertainty allowed by quantum mechanics. This is

part of the reason that coherent states are such a valuable experimental tool.

1.1.4 Squeezed states

One of the basic assertions of quantum mechanics is that all quantum systems inherently
contain uncertainty. In quantum optics this is demonstrated by Heisenberg’s uncertainty
principle [104]

AzAp > % (1.25)

In a vacuum or coherent state we know that the position and momentum quadratures have
the same uncertainty and Heisenberg’s uncertainty principle is saturated. This means the
uncertainties in the x and p-quadratures are given by Az = Ap = 1/v/2.

States that saturate Eqn. are called minimum uncertainty states for obvious
reasons. Previously, we saw that coherent states are such states with equal uncertainty in
the position and momentum quadratures; however these are not the only type of minimum
uncertainty state. In a brilliantly simple proof [163] (translation [164]), Pauli demonstrated
that a minimum uncertainty state |¢) that saturates Eqn. must also satisfy the
equation . 5

x
5@05(33) + B
where A%z is the variance of the position quadrature. Eqn. allows us to have states
where the variance in one quadrature reduces below 1/2 as long as the variance in the
conjugate quadrature increases accordingly. States of this form are known as squeezed
states and are important in many quantum protocols.

(z) =0 (1.26)

To parametrise the squeezing I introduce the real parameter r so the variances can be
written as

1 1
A2 _ - —2r AQ i
T 28 s P 5

Just as coherent states can be expressed as displaced vacuum states, so squeezed states
can be expressed as squeezed vacuum states by introducing the squeezing operator

S(r) = exp [g (&2 - dm)] . (1.28)

e’ (1.27)
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Figure 1.1: On a plot of position x and momentum p, a classical system could be represented
as a point with an exact position and momentum. In a quantum system there is always inherent
uncertainty in each of the quadratures. In the phase-space representation, the width of the ellipse
in each quadrature gives the variance in that quadrature. (a) A vacuum state has equal uncertainty
in each quadrature so is represented by a circle. It is also a minimum uncertainty state so the
variance in each quadrature is 1/2. The vacuum state is centred on the origin. (b) A coherent
state has the same uncertainty as the vacuum so can again be represented as a circle, however the
coherent state is not centred on the origin. In this way we see why we can say that the coherent
state is a displaced vacuum. (c) A squeezed state has reduced uncertainty in one quadrature and
increased uncertainty in the other. Therefore we represent a squeezed state by an ellipse. In this
case the vacuum has been squeezed in the Z-quadrature and anti-squeezed in the p-quadrature.

Applying this operator to the vacuum results in the squeezed vacuum state

[

Applying the displacement operator to a squeezed state changes the average value of the
quadratures without altering their variance. In fact, all minimum uncertainty states are
displaced squeezed vacua, as long as the squeezing can take place in any direction. Due to
the nonlinearity in Eqn. , squeezing is not a passive operation; it alters the number
of photons in a state, which means that even a squeezed vacuum carries more energy than
the vacuum itself.

S(r)[0). (1.29)

Finally, it is important to note that, unlike coherent states, squeezed states are com-
pletely non-classical. The reduction of the noise in one of the quadratures is one illustration
of its quantum properties. Another, is that if a squeezed vacuum is split on a beamsplitter,
entanglement between the two outgoing modes is established [128, 29]. Entanglement is
the strongest indicator of a quantum system, and the fact that it can be simply produced
using a squeezed state, whereas it is impossible to create using passive operations on coher-
ent states, is an obvious demonstration of the quantumness of squeezed states. Note that
the quantumness of squeezed states can also be seen without the need for entanglement.
This quantumness can be used, for example to implement measurements with accuracy
beyond the classical limit. This nonclassicality can be observed from the photon statistics
of squeezed states, for example in the second order correlation function [147].

A depiction of a vacuum state, coherent state and squeezed state in phase-space is seen

in Fig.

1.1.5 Thermal States

The final class of states introduced here is the set of thermal states. Historically a thermal
state is one that is in thermal equilibrium with either its source or its environment. A

8
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thermal state is in a state of maximal disorder so it has high entropy and is a mixed state.
In the context of this work, this means that a thermal state is one that maximises the von
Neumann entropy

S = —Tr(plogp) (1.30)

for fixed energy Tr(pa'a) = n, where 7 > 0 is the mean number of photons. The thermal
state that satisfies this condition is one that has equal variance in both quadratures, where
the variance depends on the mean photon number. Combining thermal states with the
displacement and squeezing operators produces a class of states important for this thesis,
namely the set of Gaussian states.

1.1.6 Purity

An important concept in quantum information theory is the purity of a quantum state.
If a quantum state is pure it can be represented by a wavefunction |¢), however if it is
mixed it must be represented by a density operator p. The purity of a quantum state p is
defined as

P = tr(p?), (1.31)

where P satisfies the relation 0 < P < 1, with P = 1 corresponding to a pure state. The
von-Neumann entropy S(p) in Eq. can also be used to differentiate between pure
and mixed states, with the condition that S(p) = 0 for pure states and S(p) > 0 for mixed
states. Since the von-Neumann entropy can be interpreted as the disorder in a system, this
means that pure states have zero disorder, in other words we have perfect knowledge of pure
states. Mixed states, on the other hand, always involve some classical ignorance; they are
essentially an admission that we have lost information about a state. This information is
lost via interactions with the unmeasured “environment” and is difficult to recover in most
situations. All mixed states can be thought of as part of a larger pure state that holds all
the information that has been lost to the environment. Of course in any real experiment,
studied systems are constantly interacting with the environment and are therefore almost
always in a mixed state. Therefore understanding the properties of mixed states, and how
best to make use of them, is of vital importance in quantum information theory.

1.2 Quasiprobability distributions
1.2.1 Wigner Function

In classical mechanics, a state is entirely defined by its canonical position and momentum
quadratures. The quadratures define a phase space and the dynamics of a system are
defined by a trajectory in canonical phase space. For an uncertain classical system the
statistics of the position x and momentum p components can be defined by a phase space
distribution W (z,p). This distribution gives the probability of finding a particular pair
of = and p values after a simultaneous measurement. Once these results are known, a
classical system is represented by a single point in phase space. In a quantum system
the situation is more complicated. Heisenberg’s uncertainty principle tells us that we can
never precisely observe both position and momentum simultaneously. So we may think
that the idea of a quantum phase space is a non-starter. However, we are familiar with
using the idea of a quantum state to calculate observables despite the fact that the state
has no physical meaning by itself. In the same way, we can use a quantum phase space
distribution to calculate physical observables in a classical-like fashion.
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Classically we consider the phase space distribution as a joint probability distribution,
however in the quantum case we can no longer do this. The most obvious reason is that in
the quantum case it is impossible to know both x and p at the same time, which can lead
to a negative phase space distribution. Instead, this quantum phase space distribution
is called a quasiprobability distribution and certain conditions are imposed on it so that
it is useful for calculating observables [25]. This work follows the method of Leonhardt
[137] to derive a useful form for the quasiprobability distribution describing a quantum
state. In a classical probability distribution the marginal distributions give the probability
distributions for the individual quadratures, i.e.

/_OO W (z, p)dz = pr(p), /_Oo W (z, p)dp = pr(z) (1.32)

where pr signifies a probability distribution. This is also required to hold for a quantum
quasiprobability distribution. For a function to be considered a quasiprobability distribu-
tion it must also be normalised

/OO W (x,p)dxdp =1 (1.33)

and real as a representation of Hermitian operators. Finally, if the density matrix p de-
scribing the quantum state is rotated by an angle 6, then the quasiprobability distribution
should transform as

W(z,p) — W(zcos — psinf, xsinf + pcosb). (1.34)

This relation means that the position probability distribution pr(z,#) can be calculated
for all angles # using the equation

pr(z,0) = (z|U0)pUT(0)|z) = / W (z cos@ — psin6, xsin @ + pcos 8)dp. (1.35)

The first part of this equation follows from the definition of a probability density, and the
second part is a generalisation of equation for any projection angle. This equation
ensures that the equations in are satisfied; = 7/2 reduces to the first equation
and 6 = 0 reduces to the second. Equation also ties W (x, p) to quantum mechanics
for the first time by introducing a connection to the density matrix. To fully understand
the importance of this relationship, the Fourier transformed quasiprobability distribution

W (u,v), called the characteristic function, has to be introduced:
~ o0 [o.¢]
W(u,v) = / / W (z,p) exp(—iux — ivp)dxdp, (1.36)
—0o0 —00
as does the Fourier transformed position probability distribution

pr(&,0) = /OO pr(z, d) exp(—ix)dx. (1.37)

—00

Inserting the second part of equation (|1.35) into ((1.37)) results in the equation

pr(&,0) = /_OO /_OO W (2, p') exp(—ifx)dxdp, (1.38)

10
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where 2’ and p’ are the rotated quadratures
2 =xcosf —psinf, p =axsinh+ pcosé. (1.39)

Since x = 2’ cos € + p’sin @ from (1.39)), the right hand side of ([1.38)) is just the definition
of the characteristic function in a transformed coordinate system, i.e.

pr(€,0) = W (& cosf, Esinh). (1.40)

This means that the Fourier transformed position probability distribution is simply the
characteristic function in polar coordinates.

We can now go back and use the first part of Eq. (1.35)) to make use of the quantum
nature of the quasiprobability distribution. Inserting it into Eq. (1.37)) results in

pi(c.0) = | " @0 (0)507 (0) ) exp(—itd)de
o0 (1.41)

= tr {pﬁ*(@) exp(—igge)ﬁ(e)} .

Now, since the second line of this equation causes a rotation of the quadrature operators,
and the Fourier transformed probability distribution is the characteristic function in polar
coordinates, we get the result

W (u,v) = tr {pexp(—iuz — ivp}. (1.42)

This means that the characteristic function is the quantum Fourier transform of the density
operator. Since the characteristic function is defined as the Fourier transform of W (z, p),
the quasiprobability function W (x, p) must be very closely related to the density operator
p. In fact, they are both one-to-one representations of the quantum state and so can be
used interchangably to calculate properties of the quantum state.

There are many possible quasiprobability functions that are consistent with most of the
above, but the only function for which the marginal distributions give the true statistics
of the quadratures is the Wigner function. The Wigner function was first proposed by
Eugene Wigner in 1969 [220], and can be written in terms of x and p as

W(z,p) = L /OO exp(ipx) <1’ - % p

)
= . 1.4
o | x + 5 dq (1.43)

This was “chosen from all possible expressions, because it seems to be the simplest” [220].
The Wigner function is a quasiprobability distribution that forms a classical-like phase
space distribution for quantum mechanics. It is derived from Eq. by application of
the Baker-Campbell-Hausdorff formula

exp(—iut — ivp) = exp (%) exp(—iut) exp(—ivp). (1.44)

The most important property of the Wigner function is the overlap formula, which when
written for two Hermitian operators p and O, takes the form

Tr [[)0] =27 /_Z W,(x,p)Wo(x,p)dxdp. (1.45)

11
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This means that one can calculate the expectation value of any operator Oina quantum
state p using only the Wigner function. Thus the Wigner function can be used to calculate
expectation values of physical observables, which is the intended purpose for our quantum
phase space distribution. An important property of the Wigner function is that it is not
necessarily positive. This is one of the reasons why it can only be called a quasiprobability
distribution. In fact this property of the Wigner function has a useful physical interpreta-
tion. Negativity of the Wigner function for a quantum state is often used as a signature of
nonclassicality [144], although not all nonclassical states have a negative Wigner function.

1.2.2 Nonclassicality in Quantum Optics

As stated previously, there are many possible quasiprobability distributions that can be
chosen to represent a quantum state. The Wigner function is the most commonly used,
partially because it has a simple description, but also because it is a good compromise
between a classical phase space distribution and a quantum mechanical representation.
However, there are a number of other possibilities, some of which are particularly useful.

One of these representations is called the () function, defined as
1 o0 [o.¢]
Q(z,p) = - / / W(a',p') exp (—(z — ) = (p = p')?) da’dp'. (1.46)
T J—00J-0

From the overlap formula (1.45)) it can be seen that the @ function defines the overlap
between the Wigner function of the state p and that of a coherent state, i.e. it gives the
probability distribution for finding the coherent states |«) in the state p, because

Q(a.p) = o-tr{pla){al} = 5 -{algla) (1.47

From this, it can be seen that the ) function must always be positive. This means that
all the negativities that could be present in the Wigner function no longer exist in the
Q@ function. For this reason the @ function is sometimes called the smoothed Wigner
function. Since this smoothing eliminates all the negativities, they must be localised to
small areas of the Wigner function. The @ function also has an application in calculating
anti-normally ordered expectation values of the form tr{paa'}.

Normally ordered expectation values play an important role in some areas of quantum
optics [147] and a quasiprobability distribution for normal ordering is desirable. Similarly
to the way that smoothing the Wigner function gives the quasiprobability for anti-normally
ordered states, the Wigner function is obtained by smoothing the quasiprobability function
for normal ordering, i.e.,

Wz, p) / / (0,0~ exp (~ (& — 70)* ~ (p — po)?) dzodipo (1.48)

where P(xg,po) is the P function, the quasiprobability distribution for normal ordering.

The P function is also often known as the Glauber-Sudarshan due to its close relation-
ship to coherent states [89, [199]. This was famously expressed in the optical equivalence
theorem [129]

p—/ / (x,p)|a){a|dxdp. (1.49)

12
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This equation shows that the P function is the decomposition of the density operator into
coherent states. This means that if the P function is positive everywhere, then the state
can be written as a statistical mixture of coherent states. In Eq. we saw that the
Wigner function is the smoothed P function; this means that the P function is even more
ill-behaved than the Wigner function, which itself can already be negative. Therefore the
P function can have some very strange behaviour, including derivatives of the Dirac delta
function. In fact, the behaviour of the P function has a very important role in quantum
optics. States that have a completely positive P function are considered classical, and
all others are thus nonclassical. This emphasises the consideration of coherent states as
the classical states, since only those that can be expressed as a statistical mixture of
coherent states are considered classical. Note that the P function, the () function and the
Wigner function are all one-to-one correspondences to the quantum state p, and therefore
knowledge of any one of these functions is enough to completely describe the quantum
state.

It is important to note here that there are two different notions of nonclassicality
used in this thesis and in the study of quantum optics. There is the definition stated
above based on the behaviour of the P function. This relates to the nonclassicality of an
individual quantum state, with squeezed states in particular being considered nonclassical.
In addition, there is a definition that deals with the nonclassicality of correlations and is
closely related to quantum discord, which is introduced in detail in Chapter 2. In this
thesis, the term “nonclassical” is used to refer to both types of nonclassicality, and it should
be inferred from context which definition is intended. Ferraro and Paris [73] provide a
detailed discussion on the relationship between the two definitions.

1.3 (Gaussian States

1.3.1 Definition of a Gaussian State

Up to this point, I have focussed on describing quantum states that consist of a single
optical mode, for example squeezed states and coherent states. Since most interesting
phenomena involve states of more than one mode, it is clearly necessary to be able to
describe states with multiple modes, in principle up to an arbitrary number N, although
two- and three-mode states are most important for this thesis. To aid discussion the vector
of quadratures

X = (L1,P1, . &N, DN) T, (1.50)

is introduced, where the quadratures are defined in terms of the bosonic field operators in
Eq. (1.10). The construction of this vector allows the commutation relations between all
the quadratures to be written in a concise way

[T, 5] = i, (1.51)
where the matrix € of the form
N
_ _ 0 1
k=1
has been introduced, which is known as the symplectic form.

Some of the most important characteristics of a quantum state p are its statistical
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moments. The first moment is the mean value of the quadratures

X

(%) = tr(%p), (1.53)
and the second moment is the covariance matrix V defined as
‘/ij = <A£1Af] + A.@]A.@> , (1.54)

where Az; = &; —(2;). The diagonal elements of the covariance matrix are the variances of
the individual quadratures, and the off-diagonal terms describe the correlations between
different quadratures, both within a single mode and between different modes.

The first two statistical moments have a particular importance for the class of Gaussian
states. Gaussian states are those that have a Gaussian Wigner function, i.e. one of the
form
exp[—1/2(x —x)TV~1(x — %)]

2m)NVdet V

A Gaussian state is always fully described by its first two statistical moments, which is why
the Wigner function depends only on these. This is in contrast to non-Gaussian states,
where all the statistical moments must be known to fully characterise the state, which
is not very useful considering there are infinitely many of them! This property clearly
demonstrates the appeal of Gaussian states. States that are close to being Gaussian
states are well approximated by their first two statistical moments. How close a state is
to a Gaussian state can be determined by studying the higher order statistical moments.
The appeal of Gaussian states is further enhanced by the fact that most quantum optical
states in practical use are Gaussian, or at least close approximations. In fact it is difficult
to create states that have significant non-Gaussianity and there is a strong area of research
that aims to produce them. Photon number states and “Schrédinger cat” states are two
popular examples of non-Gaussian states that have practical uses and are therefore of
interest. For a rigorous review of quantum information theory with Gaussian states, see,
for example, [216].

W(x) =

(1.55)

1.3.2 Symplectic Analysis

In most cases, the mean value of quadratures doesn’t affect the properties of a quantum
state, therefore for Gaussian states the most important quantity is the covariance ma-
trix. One crucial example of the importance of the covariance matrix is in a version of
Heisenburg’s uncertainty principle [194]

V +i2 >0, (1.56)

which follows from the commutation relations in Eq. . As can be seen above, the
symplectic form comes into the uncertainty relation along with the covariance matrix. In
fact the symplectic group, of which the symplectic form is a part, provides the framework
for investigating Gaussian states, and it gives its name to the branch of mathematics used
to study them, symplectic analysis.

In any dynamic situation, quantum states undergo transformations that need to be
described. Since the focus of this thesis is on Gaussian states, the class of Gaussian trans-
formations, i.e. transformations that preserve the Gaussian nature of a quantum state,
must be introduced. It turns out that all Gaussian channels are unitary operations gen-
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erated from Hamiltonians H by U = exp(—z'lﬁI /2) where H are second order polynomials
of the field operators. In terms of the quadrature operators, the unitary operations U can
be fully described by the mapping

(S,d): % — S% +d, (1.57)

where d is a vector of real numbers and S is a 2N x 2N real matrix. Crucially, any
operation must preserve the commutation relations, which happens in this case when the
matrix S preserves the symplectic form, i.e.,

sQs” = q. (1.58)

Transformations of this form are called symplectic transformations and this further empha-
sises the importance of the symplectic form in the study of Gaussian states. Upon action
of a Gaussian unitary operation, the statistical moments of a quantum state transform as

X — Sx +d, V — SvsT, (1.59)

Since we are mostly interested in the covariance matrix, it can be seen that the matrix S
is the most important characteristic of a Gaussian transformation.

Probably the most important result in symplectic analysis is Williamson’s theorem
[222]. It shows that any covariance matrix V can be put into a diagonal form using a
symplectic matrix S such that

N
V =SvesT, Ve = Pud, (1.60)
k=1

where the diagonal matrix V& is the Williamson form of V and 1 is the two-dimensional
identity matrix. The N positive real numbers v are the symplectic eigenvalues of V and
can be calculated as the magnitude of the eigenvalues of the matrix ¢€2V. The symplectic
eigenvalues are important as they can be used to calculate a number of fundamental
properties of a system. For example, the uncertainty relation is equivalent to the statement
v, > 1, i.e. the symplectic eigenvalues of a physical quantum state must be greater than or
equal to one. The symplectic eigenvalues can also be used to calculate the von-Neumann
entropy of a Gaussian state [108], using the equation

SO =S o) gl = (5 Yiow (250 ) - (55 ) 1oe (55 ) - o

k=1

From this equation and remembering that the von-Neumann entropy is zero for a pure
state, it can be seen that the symplectic eigenvalues of a pure state are all equal to one,
whereas for a mixed state at least one of them is greater than one. The purity, P, of a
Gaussian state can also be more easily calculated directly from the covariance matrix V
by the equation P = 1/v/det V, which means that det V = 1 for pure states and det V > 1
for mixed states.

Williamson’s theorem has a useful application in calculating the purification of a mixed
state [109], where the purifying modes contain all the information lost about the original
modes. Given a Gaussian state with covariance matrix V that is diagonalised by S as in
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(1.60), a purification of this state has the covariance matrix

V  SC
V, = [ CTsT vo } , CE@\/yg—laz, (1.62)

N
k—1

where o, = diag(1, —1) is the Pauli-z matrix. For a general mixed state, there are many
possible purifications of which this is only one of them. A purification that is of particular
interest is the one of smallest dimension; unfortunately this method doesn’t always give
that purification, and it is often difficult to determine the purification with the fewest
number of modes. Caruso et al. [35] developed a method to calculate the minimum
number of modes required for a purification.

1.3.3 Common Symplectic Transformations

There are a number of symplectic transformations on Gaussian states that have particular
importance. For a single-mode Gaussian state the most important transformations are
displacement, rotation, and squeezing.

The displacement operation is described by the displacement operator defined in Eq.
, which is the complex version of the Weyl operator. It has no effect on the covariance
matrix of a Gaussian state and only changes the mean values of the quadratures by a
displacement X — X + d, where a = (29 + ipg) and d = (zg,po)’. Application of an

arbitrary displacement operation onto the vacuum results in the class of coherent states.

The squeezing operation is described by the squeezing operator defined in Eq. (1.28)).
It transforms the covariance matrix as V — S(r)VS(r)7, where

S(r) = ( e; 5 ) (1.63)

is the symplectic map describing the squeezing operation. Application of the squeezing
operation to the vacuum results in a state with zero mean values of the quadratures and
covariance matrix V = S(2r), where the variance in one quadrature is reduced below the
vacuum level and the variance is increased in the other. In other words, applying the
squeezing operation to the vacuum creates the class of squeezed states.

Phase rotation of a Gaussian state results in the mixing of quadratures, and therefore
introduces correlations between the quadratures of a single mode. It is described by the
symplectic map
(1.64)

—sinf cosf

R(0) = (

It has no effect on the mean value of the quadratures, and can accurately be thought of as
a rotation of the Wigner function. Combining the rotation operation with the squeezing
operation allows for squeezing in any direction.

cos@ sind >

Any general one-mode Gaussian state can be created by applying a combination of
squeezing, displacement and rotation to a thermal state [216]. This demonstrates the
importance of the three described operations. Thermal states have a covariance matrix
V = (2 + 1)I with 7 > 0, where 7 = 0 corresponds to a vacuum or coherent state. A
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general one-mode Gaussian state is therefore a state with mean d and covariance matrix
V = (27 + 1)R(A)S(2r)R(0)7, (1.65)

where 1 = 0 gives a general pure one-mode Gaussian state.

1.3.4 Two-mode Gaussian States

Now we want to study two-mode Gaussian states and study correlations between different
light modes. A general two-mode Gaussian state is created by interactions between general
one-mode Gaussian states. For this thesis, the most important transformation describing
an interaction between two modes is the beamsplitter interaction. This transformation is
described by the operator

B(0) = expl0(alb — abh)], (1.66)

where @ and b are the annihilation operators of the two modes and @ is related to the
transmissivity of the beamsplitter by the relation 7 = cos?#. In terms of covariance
matrices, the symplectic matrix describing the interaction is

B(r) = < —\/\%x V{;ITI ) (1.67)

The beamsplitter operation hybridises the two input modes and each of the output modes
can be thought of as a superposition of the two input modes, with the weighting of the
superposition dependent on the transmissivity of the beamsplitter. The beamsplitter
operation is a passive operation, as can be seen by the linearity of the beamsplitter operator
in Eq. , which means that it preserves the photon number of the input beams. As
well as describing the mixing of two modes, the beamsplitter is also useful to describe
loss in a Gaussian channel, where the reflectivity p = (1 — 7) quantifies the loss and the
reflected mode represents the lost part of the beam.

The partial trace is another operation on multi-mode Gaussian states that is of par-
ticular interest. Given a two mode state pap the partial trace over mode B has the action
tre(pap) = pa, where p4 is the state of mode A. The partial trace removes any infor-
mation about mode B and just leaves the marginal state of mode A. The partial trace is
often used to describe loss, as it models the elimination of part of a state. The definition
of the partial trace can be trivially extended to include more modes and tracing over dif-
ferent modes. It is useful to note that applying the partial trace to a pure state, in general
results in a mixed state, except for the case that the traced out mode is uncorrelated with
the remaining mode or modes. The covariance matrix of a state after a partial trace is
simply the covariance matrix of the state before the partial trace, but with the entries
related to the traced-out mode deleted, which results in a covariance matrix with reduced
dimension.

An important two-mode Gaussian state is the two-mode squeezed state, with applica-
tions in many quantum optics experiments [28]. It can be created by mixing two orthog-
onally squeezed states on a balanced (7 = 1/2) beamsplitter. This results in a state with
zero mean and a covariance matrix of the form

_( cosh(2r)I  sinh(2r)o,
Sa(r) = < sinh(2r)o, cosh(2r)I ) ' (1.68)
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This state is also known as an Einstein-Podoslki-Rosen (EPR) state due to the nature of
the correlations between the quadratures of the two modes. Note that this is the standard
form of the EPR state, and the original squeezed modes could be at any angle, as long
as they are orthogonal, resulting in a state with a different covariance matrix but the
same entanglement properties. In the limit of  — oo the result is an ideal EPR state
with perfect correlations between the modes, i.e., T4 = Zp and p4 = —pp. Finally, it is
interesting to note that taking the partial trace of an EPR state results in a thermal state
for the remaining mode as can be seen from Eq. and the definition of a thermal
state. Due to this, it can be said that the EPR state is the purification of a thermal state.

1.3.5 Standard Form

Two-mode Gaussian states provide the simplest oppurtunity to study the global proper-
ties of a quantum state, and fortunately they can be simply characterised by analytical
formulae. The covariance matrix of a two-mode Gaussian state pap can be written in

block form
A C

where A is the covariance matrix of the state p4, B is the covariance matrix of the state
pp and C describes the correlations between the two modes. A ;B and C are all 2 x 2 real
matrices. The symplectic eigenvalues {v_, v, } of this matrix are given by

A+ A2 — 4detV
vy = \/ ¢ , (1.70)

2

where A = det A +det B+2det C, is the sum of the determinants of the 2x2 submatrices
[185]. The terms det A, det B, det C and det V are called symplectic invariants of the state
because they are unchanged after symplectic transformations. Importantly, this means
that the symplectic eigenvalues of a state are invariant under the operation of symplectic
transformations. Given a covariance matrix written in this form, the uncertainty principle
is equivalent to the conditions [I83] [171]

V >0, detV > 1, A <1+detV. (1.71)

In addition, it is always possible to convert the covariance matrix of any two-mode
Gaussian state into the form

[ al C (e 0
vo(5 ). ee(u0). i

where ¢; > |c2| and a, b, ¢; and co are all real numbers. This is known as the standard form
[60, 193] and the covariance matrix of any two-mode Gaussian state can be put in this form
using a series of local symplectic transformations. Note that the symplectic invariants of
a state in standard form are the same as they are in any other form. An important class
of states, since they simplify calculations, are those that satisfy the condition ¢y = *co,
known as two-mode squeezed thermal states [83].
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1.4. Quantum Measurement

1.4 Quantum Measurement

1.4.1 Properties of Quantum Measurements

One of the most important properties of quantum mechanics is the difference between
quantum and classical measurement. A classical measurement can be thought of as record-
ing the state of a classical system before the measurement. It generally leaves the state
of the system unperturbed and it is possible to measure the state of all observables si-
multaneously. In addition, if the exact state of the system is known, it is possible to
deterministically predict the outcome of all measurements. Quantum measurements on
the other hand follow none of these properties, except in the case where the system is in
an eigenstate of the measurement operator.

One of the fundamental principles of quantum measurements is that they disturb the
measured system. The measurement outcome tells us the state of the system after measure-
ment, but doesn’t tell us what the state was before measurement. Rather than recording
the state of the system prior to the measurement, a quantum measurement projects the
state onto a new state. In addition, an observable of a quantum state only has a definite
value if the quantum state is in an eigenstate of the measurement operator corresponding
to that observable. This means that performing a second measurement can change the
state so that the new state is no longer in an eigenstate of the first measurement, which
means that the result of the first measurement is no longer valid. In other words, it is im-
possible to simultaneously observe different observables, unless those observables commute
with each other. Another consequence of this property is that even if the state of a system
is known before a measurement, it is only possible to probabilistically predict the mea-
surement outcome, unless the initial state was an eigenstate of the measurement. These
properties play a crucial role in the security of many quantum cryptographic schemes. In
particular, they limit the potential performance of an adversary, which can lead to the
guaranteed security of quantum information protocols. The interested reader is referred
to one of the many excellent comprehensive books on quantum measurement, for example
[31].

Mathematically, a quantum measurement is described by a set of operators { E;} sat-
isfying the completeness relation ), Ej FE; = I, where [ is the identity operator. Each FE;
corresponds to a possible measurement outcome i. For a measurement performed on an
input state p that gives an outcome i, the state is projected into the new state

At

pi = %, pi = tr(pE| E;), (1.73)

bi
where p; is the probability of measuring the outcome i. If we only care about the result of
a measurement, and not the state after the measurment, we can introduce II; = EZT FE; and
describe the measurement as a positive operator-valued measure (POVM) [123] described
by the new set of operators {II;}. For a continuous variable system where quantum mea-
surements can have a continuous outcome, p; becomes a probability distribution and sums
are replaced by integrals. Here we are particularly interested in Gaussian measurements,
which are defined as having a Gaussian probability distribution of outcomes. In fact, if a
Gaussian measurement is made on N modes of an N + M mode Gaussian state, the clas-
sical measurement outcomes follow a Gaussian distribution and the remaining M modes
remain in a (generally different) Gaussian state.
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Figure 1.2: The signal is mixed with the local oscillator at a balanced beamsplitter. The pho-
tocurrent difference of the outgoing beams is proportional to the quadrature zy with the phase set
by the local oscillator.

1.4.2 Quantum Optical Measurements

The most important Gaussian measurement in quantum optics is balanced homodyne de-
tection [228], which is effectively a measurement of the rotated quadrature &y = & cosf —
psin®, where § = 0 corresponds to the #-quadrature and # = 37/2 corresponds to the
p-quadrature. Other values of 8 allow any rotated quadrature to be measured. The
measurement operators of homodyne detection are projectors onto the required quadra-
ture basis, e.g. |x)(z|, and the resulting outcome has a probability distribution given by
the appropriate marginal distribution of the Wigner function, e.g. P(z) = [ W (z,p)dp.
Practically, homodyne detection is realised following the procedure in Fig. [1]. The
signal state is interfered on a balanced beamsplitter with a coherent laser beam. The laser
beam is known as the local oscillator and must be intense enough to give a precise phase
reference, and be powerful enough to be treated classically by ignoring the quantum fluc-
tuations. After the beamsplitter, the photocurrents I; and I of the outputs are measured
and then subtracted from each other to give the photocurrent difference I5;. It is assumed
that the signal and local oscillator have a fixed phase reference, which is normally a safe
assumption since they generally come from the same source, but must be ensured in an
experiment. The bosonic operators of the output modes are given by

. 1 . R 1 .
a) = E(al —aro), ah = E(al + aro), (1.74)

where a; is the amplitude of the signal and app is the complex amplitude of the local
oscillator. The photocurrent difference I»1 is proportional to the photon number difference
given by

o1 = Mg — N = Otzod + OéLofLT. (175)
Using the definition of &9 = Zcosf — psinf from Eq. we see that the measured
photocurrent difference Is; is proportional to Zg since it can be shown from the above

equation that
fia1 = V2|aro| . (1.76)

A homodyne detector thus measures the quadrature component &g, where the phase 6 is
provided by the local oscillator and can be adjusted by adding a phase shift to the local
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oscillator. Note that the value of |azo| can be determined by keeping track of the photon
sum current, which is important since |azo| is not generally known.

Homodyne measurements are particularly important when restricted to Gaussian quan-
tum information theory since any Gaussian measurement can be achieved using only homo-
dyne detection, linear optics and Gaussian ancilla modes [7§]. One important extension of
homodyne detection is heterodyne detection [229]. Heterodyne detection is implemented
by first splitting the signal mode on a balanced beamsplitter where the other input is
a vacuum mode, then performing homodyne detection on conjugate quadratures at the
output [213]. Theoretically, it corresponds to a projection onto coherent states, so the
measurement operators are E(a) = 7~ /?|a)(a|. Homodyne and heterodyne detection are
the most common measurements used in quantum optics with applications ranging from
quantum key distribution to quantum state tomography.

1.4.3 Local Quantum Measurements

Often, part of a quantum system is measured to gain information that can be used while
further processing the rest of the system. Therefore we need a way to describe the state of
a subsystem after the rest of the system has been measured. For Gaussian states, this can
be done using covariance matrices by considering a system consisting of two subsystems
A and B, each consisting of an arbitrary number of modes. Here we restrict ourselves to
the case where subsystem B has only one mode for simplicity, noting that this result can
be generalised to more than one mode in the measured system.

Before measurement, the covariance matrix of the system can be written in block
form as in Eq. , but with the matrix A no longer restricted to be that of a single
mode. The state of subsystem A after Gaussian measurement of subsystem B then has a
covariance matrix given by [65] [74]

A=A - C(B+o0y)'CT, (1.77)

where oy depends on the quantum measurement performed. For an arbitrary Gaussian
measurement, og is the covariance matrix of an arbitrary one-mode pure Gaussian state,
i.e. o9 = R(f)diag{\,1/A}RT (6), where A > 0 and R(6) is given in Eq. (L.65). To extend
this to the case of N modes in subsystem B, o should be the covariance matrix of an
arbitrary N-mode pure Gaussian state. Note that the covariance matrix of subsystem
A after the measurement depends only on the type of measurement performed and not
on the measurement outcome obtained. In contrast, the displacement vector of the state
depends on the outcome of the measurement. Note also, that if subsystems A and B are
uncorrelated, measurement of mode B has no effect on subsystem A as should be expected.

For homodyne detection of the z-quadrature of mode B, the corresponding matrix
describing the measurement is g with § = 0 and A — 0. For homodyne detection of the
p-quadrature, § = w/2 and A — 0, or equivalently § = 0 and A\ — oo. For heterodyne
detection, @ = 0 and A = 1. In this way, the state of a subsystem after measurement on
the remaining mode can be calculated for the most important Gaussian measurements.

1.5 Common Experimental Techniques

During my PhD, I have worked with experimental groups, describing the results of ex-
periments with theoretical models. Therefore it has been important that I understand
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commonly used experimental techniques and the sources of error that can be introduced.
In this section, I give a brief summary of some of the most important techniques in modern
experimental quantum optics. For a more complete overview, see, for example, [3§].

1.5.1 Stokes Operators

Due to their technical convenience, experiments in quantum optics often use Stokes oper-
ators, a quantum version of the classical Stokes parameters [196], instead of position and
momentum operators. Stokes operators describe continuous variable polarisation states,
and are of particular interest since they can be measured by direct detection [132], polar-
isation is preserved in free space [103], and it is easy to map polarisation states to spin
states and vice versa [97]. Stokes operators are described by

= ala, + alay, Sy =ala, —ala
0 x Y 1 rUx y @y (178)

Sy = alay + alay, Sy = i(ala, + alay),
where a, and a, are the bosonic annihilation operators describing the x and y orthogonal
polarisation modes. The operator Sy commmutes with the other three, and is proportional
to the intensity of the described mode. The other Stokes operators obey the commutation
relations

1S}, Sk] = €jw2iS), gk, 1=1,2,3. (1.79)

Therefore it is impossible to measure simultaneously exact values of any two of these
operators. From the commutation relations, the variances of the Stokes operators are
bound by the uncertainty relations

ViV > [(Si)]?, i#j#k, (1.80)

where V; = <S’JQ> - (§j>2. Physically, from Eq. (1.78), it can be seen that S is the operator

for linear polarisation, S, is the operator for diagonal polarisation, and Ss is the operator
for circular polarisation.

To draw a parallel with the previously introduced position and momentum operators,
one can prepare the state with a strong excitation in one of the operators, for example
gg, which is the case that will be considered from now on. This means that the state is
circularly polarised, and the S3 operator is essentially classical with |<5’3>\2 > 0, whereas
in contrast (S1) = (Sp) = 0. From the relations in Eq. (1.80), it can be seen that the
variance of Ss is unbounded, supporting the idea that it is classical, whereas the variance
of S and Sy follow the relation V3 Va > |(S3)|2. It is often useful to renormalise the Stokes
operators to simplify the uncertainty relation. For a strong excitation of S, the Stokes
operators are renormalised to [97]

S, Sy
V1Ss] V183

With the renormalised operators, the uncertainty relation is V{V, > 1. Since this relation
has the same form as the Heisenburg uncertainty principle in Eq. , Sy and S, can
be thought of as being closely related to the position and momentum quadratures. In
addition, the strong excitation of 5’3 allows the $1-S5 plane (often called the ”dark plane”
[132]) to be interpreted as the quadrature phase space.

>

SRS

U
S

(1.81)
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Figure 1.3: The initial coherent state (bottom right) travels through a medium with a Kerr
nonlinearity. The higher amplitude parts of the coherent state experience a greater refractive
index, and therefore those parts experience a greater phase shift. This causes the circle in phase
space to be converted to an ellipse, with a variance in one direction that is lower than the coherent
variance. Therefore a squeezed state has been created.

1.5.2 Polarisation Squeezing

For polarisation squeezing, the polarisation fluctuations must be reduced below some level,
however unlike for quadrature squeezing there is no unique squeezing criterion [142]. By
assuming a strong excitation in Sg, S, and S, are analogous to the quadrature operators
and so polarisation squeezing is easy to define. With this condition, the coherent polari-
sation state is the one where Vi = Vo = [(S3)]. More importantly, squeezed polarisation
states can be defined as those that have a variance in one operator that is less than the
coherent state variance. For a state squeezed in the S; operator, this means V; < |(S3)],
and therefore conversely, Vo > \(Sg)] This is important, because the easiest way to pro-
duce entanglement in continuous variable quantum information theory is by splitting a
squeezed state on a beamsplitter.

Experimentally, polarisation squeezed states can be produced by exploiting the Kerr
nonlinearity of optical fibres [100]. The Kerr nonlinearity is a X(g) nonlinearity, which
means it is most easily observable in media that demonstrate inversion symmetry, where
all the even orders of the electromagnetic susceptibility are zero. The optical Kerr effect
occurs when a bright beam travels through an optical fibre with a Kerr nonlinearity. It is
characterised by an intensity dependent refractive index [38]

3 Re(x®)
n =ng + nal, Nng = Z n%q%c , (1.82)

where Y is the third order electromagnetic susceptibility and I is the intensity of the
electromagnetic field. The creation of squeezed light using the Kerr effect can be intuitively
understood by considering the diagram in Fig. [38]. Since different amplitudes of the
coherent state exhibit a different refractive index, as the state travels through the medium,
the different parts of the coherent state experience a different phase shift, causing the
initially circular coherent state to become a squeezed elliptical state.

This method has been used to create polarisation squeezed states in many different
experiments [I88] [101], and, importantly, it is possible to produce states that are squeezed
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Figure 1.4: The initial state (here a squeezed state) is sent through an electro-optical modulator
that displaces the squeezed state by some amount. These states are mixed together in post-
processing to produce a Gaussian mixed state of the displaced modes. Credit: Vanessa Chille.

in different directions by application of a phase shift to one of the squeezed states. This
allows this method to be used for experiments that involve creating entanglement by
mixing two orthogonally squeezed states on a beamsplitter [191] [91].

1.5.3 Production of Correlated Mixed States

It is often of interest to study multimode correlated mixed states in quantum optics exper-
iments. These states can be produced in a number of ways, but here I focus on a method
that uses correlated modulation, as this is what was done in the experiments discussed
later in this thesis [40, [50].

The method for producing a mixed state is shown in Fig. The first step in corre-
lated modulation is to perform a random displacement on a quantum state. Theoretically,
this is done by applying a displacement operator to a quantum state, with a random value
for the displacement. Experimentally, displacement is achieved by first passing the state
through an electro-optical modulator. By applying a sinusoidal frequency to the electro-
optical modulator, the size of the displacement can be varied. A phase matched electronic
local oscillator, with the same frequency as that applied to the electro-optical modula-
tor, is then used to down-mix the Stokes measurement signal, resulting in the desired
displacement of the quantum state.

Next, the measurement results from different displaced states are digitally mixed to-
gether, leading to a mixed state with increased uncertainty in the displaced quadrature.
As long as the different displacements that were mixed together follow a Gaussian distri-
bution, the resultant mixed state is also Gaussian. This means the symplectic formalism
for Gaussian states can be applied, as it can be for pure states.

Now, to get a correlated mixed state, the method above has to be followed for two
different states, where the displacement applied to the two states is the same at each run
of the experiment. Finally, by mixing together the results for the two states, ensuring
that the displacements follow the same Gaussian distribution, the result will be a two-
mode correlated Gaussian mixed state. This state can then be further processed to study
complicated protocols involving more than two modes.
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M2,® | pps

Figure 1.5: A Stokes measurement is performed by first passing the beam through a rotatable
half-wave plate. The mode is then split on a polarising beamsplitter. The photocurrents are
measured at each of the outputs of the beamsplitter. The photocurrent difference is proportional
to the required Stokes operator. Varying the angle of the half-wave plate changes what Stokes
operator is being measured. A phase shift of 0 gives measurement of the S, operator, a phase shift
of \/2 gives measurement of the Sy operator and a phase shift of 3\/4 gives measurement of Ss.

1.5.4 Stokes Measurements

One of the main benefits of Stokes operators is the ease with which they can be measured.
Whereas for accurate homodyne detection, it is important to have a phase-matched local
oscillator at all times, this is not necessary for Stokes operators. This is because the strong
excitation of the S3 operator can be used as an inbuilt local oscillator instead [132]. This
is automatically phase-matched with the quantum state since it travels along with it, and
therefore removes the technical difficulty of ensuring the local oscillator is phase matched
at all times. Therefore Stokes measurement is effectively a direct detection.

A depiction of a Stokes measurement procedure is found in Fig. When the half-
wave plate has a rotation angle of ® = 0, the polarising beamsplitter splits the polarisation
mode corresponding to a, into one output of the beamsplitter, and the polarisation mode
corresponding to a, to the other. The photocurrent at one output of the beamsplitter is

thus proportional to dldx, and the photocurrent of the other output is proportional to

&Ldy. The photocurrent difference I_ is thus proportional to dldz — dz,&y. Therefore from
Eq. , we have I_ « S;. The proportionality is dependent only on the intensity of
the initial state, and therefore can be found simply by calculating the sum photocurrent.
The S, operator is found by rotating the waveplate by an appropriate angle, and following

the same procedure.

1.6 Summary of Chapter 1

In Chapter 1, I have introduced the basics of quantum optics, starting from the funda-
mental theoretical principles, moving through some of the most useful tools to analyse
continuous variable states, and finally building up to some commonly used experimental
methods. The material introduced here will form the basis for much of the work that
follows.

The Wigner function provides an important tool to visualise quantum optical states
and understand their properties. Symplectic analysis is the main work-horse for studying
Gaussian states, and will be used extensively in Chapters 2 to 4. The properties of quantum
measurements are some of the fundamental differences between classical and quantum
physics, and their importance will repeatedly be evident. Understanding commonly used
experimental techniques is vital whenever theoretical models are compared to experimental
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results, particularly when it comes to describing errors that appear in experiments.
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Quantum Correlations

2.1 Entanglement

Since the early days of the theory of quantum mechanics, it has been recognised that the
Copenhagen interpretation leads to curious predictions about the nature of reality. This
was most famously presented in 1935 when Einstein, Podolsky and Rosen presented their
paper questioning the completeness of quantum mechanics [64]. They introduced a state of
two subsystems with perfect correlations in both position and momentum, meaning that
if one subsystem is measured, the state of the other subsystem is immediately known,
no matter how far apart the subsystems are. Einstein called this “spooky action at a
distance”, which contradicted the idea of locality. He further argued that if the measuring
party could choose between two different measurements, and since the two systems are
unable to interact instantaneously, this would lead to the possibility “to assign two different
wave functions to the same reality”. Thus quantum mechanics leads to a contradiction,
since it should not be possible for a system to have two different realities at once.

This paper was part of the motivation for Schrodinger’s famous triplet of papers later
that year [I80] (translation [204]), where he first introduced the term “entanglement”
[181]. He said that when two quantum systems interact, they can no longer be described
by a representation of individual systems. Instead it is only possible to describe the whole
state of the two systems. This he called “the characteristic trait of quantum mechanics”,
now known as entanglement. With this property, the contradiction in Einstein’s earlier
paper is addressed, since measurement on one system causes the wavefunction of the
other to collapse into a single reality. This “spooky action at a distance” is a crucial
part of quantum theory, introducing the idea of nonlocality, which contrasts with the
relativistic assumption of the finite propagation time of all effects. However, this apparent
contradiction is resolved by considering the transfer of information between two parties.
Only when a conventional message is sent between the two parties can any information be
transferred. Therefore information can at best be transferred at the speed of light, which
means the no-signalling theorem is satisfied and quantum mechanics and special relativity
can coexist peacefully.
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Quantum entanglement remained a controversial issue until Bell’s statistical tests for
nonlocality [19], which are described in the next section, were used to experimentally
confirm the presence of nonlocality in quantum mechanics [13]14]. Recently there has been
an increased interest in quantum entanglement through the field of quantum information
theory [I17, 116, 37]. Thanks to the description of entanglement in terms of entropic
quantities, it is now possible to investigate the utility of entangled quantum states for
information processing tasks. Entanglement is a vast resource, with a wide range of
applications, including quantum cryptography [67, 52], quantum computation][127, 189,
66], quantum dense coding [139] and quantum teleportation [21J, [75].

2.1.1 Nonlocality

John Bell led a reemergence of interest in quantum entanglement when he introduced Bell’s
inequalities [I9]. These inequalities built on the Einstein-Podoslky-Rosen paper of 1935
by starting with the same assumptions of locality and reality, and deriving a restriction on
the statistics of measurement results. In doing this, it follows that if there is a violation
of the inequality, then at least one of the assumptions of locality or reality must be false.

Consider the case where Alice and Bob have a pair of quantum particles, created
via some quantum experiment. They each have two measurement devices described by
non-commuting bases (A; and As for Alice, and B; and By for Bob), and they can
independently choose which one to use. They simultaneously observe the two particles by
performing a measurement with one of their devices. Assuming that each measurement
can have the outcome of +1 or -1, Bell’s inequality states that for a state obeying locality
and reality,

(A1By) + (A1B2) + (A2B1) — (A2Bs) < 2. (2.1)

This inequality is independent of the measurement apparatus used, and only depends on
expectation values of the results. Inspired by Bell’s work, there have been similar inequali-
ties derived, most importantly the Clauser-Horne-Shimony-Holt (CHSH) inequalities [46].
Bounds like Bell’s inequality have proven experimentally difficult to violate, and it was
Aspect [13| [14] that provided the first strong evidence of violation of a Bell inequality.
Recently [87, 106, [186], experiments have been performed that provide a loophole-free vi-
olation of Bell’s inequalities, thus providing the strongest evidence yet that a local-realist
view of the Universe can be ruled out. An additional achievement of Bell’s inequalities
was to rule out local hidden variable theories that describe experimental results by some
underlying unknown variable. Even today there are still some popular hidden variable
theories, however all must allow for some nonlocality [I12], thus cementing the idea of
nonlocality in quantum mechanics.

It has been shown that all pure entangled states must violate a Bell inequality [86],
however there are some mixed states that are entangled, but do not violate a Bell inequal-
ity, for example the Werner state [218].

2.1.2 Separability Criteria

Although Schrédinger introduced entanglement in 1935, it took until 1989 for a formal
definition of an entangled state to be produced [218]. More exactly, a separable state was
defined, and any state that is not separable is considered to be entangled. A quantum
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state pap is separable if it can be written as a convex mixture of product states, i.e.,

pAB =Y PiPA; © PB (2.2)
J

is a separable state, and any state that cannot be written in this way is entangled. This
fits in with Schrédinger’s description of an entangled state, since for an entangled state
it is not possible to define a local description of the state; instead, it is only possible
to give a global description. This definition also has a useful interpretation in terms of
state preparation. Any separable state can be prepared by local operations and classical
communication (LOCC) [206], whereas an entangled state must be produced by some
quantum interaction between the two reduced states [21§].

Using only Eq. , it can be seen that it is practically impossible to show that
a state is entangled, since one would have to show that all possible arrangements of Eq.
are ruled out. Thankfully a number of useful tools have been developed to practically
determine whether a system is entangled or not.

For this thesis, the most important of these tools is the Peres-Horodecki criterion
[166] [116], also called the positive partial transpose criterion (PPT). It states that for a
separable quantum state, pap = Zj PjpA,;jQPB,j, the partial transpose pﬁj‘g = Zj pjﬁij@
PB,j, is also a physical density matrix. Analogously, pﬁBB must be a physical density matrix.
Taking the transpose of a quantum state is equivalent to performing a time reversal of that
state. For an individual quantum object, time reversal leads to a valid quantum state,
however for an entangled state, time reversal can lead to an unphysical state. Therefore
the PPT criterion is a necessary condition for separability. For Gaussian states, it was
shown that for states of 1 x N modes, i.e. 1 mode in system A and N modes in system
B, the PPT criterion is a necessary and sufficient criterion for separability [219].

Simon extended the PPT criterion to bipartite Gaussian states [193]. He showed that
for Gaussian states, the partial transpose of a state described by the covariance matrix V

1S

V=MViy,  Av=(@ 1Y) el (2.3)

where V is the covariance matrix of the partially transposed state, agj ) = diag(1, —1),
and the transpose is taken with respect to mode j. The physicality of the state is checked
using a version of Heisenberg’s uncertainty principle. The state is separable if

V 4 iQy > 0, (2.4)

where Q is defined in Eq. (1.52)). A further nice result of Simon’s work is that any two-
mode Gaussian state in the block form of Eq. (1.69) that satisfies det C > 0 is separable.
This gives a convenient first check of the separability of a two-mode Gaussian state.

Duan et al. [60] developed an additional criterion for continuous variable states in
terms of the quadrature operators. For a continuous variable state with two modes A and
B the operators 4 and 9 can be constructed

. . 1. . . .
0= lalga + ~ip, 0= lalpa — b5, (2.5)

where a is some positive real number. Duan’s criterion states that a separable state must
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satisfy, for all a, the inequality

. . 1
(A7)?) + ((AD)?) > a® + e (2.6)
The advantage of this criterion is that measurement of correlations between quadratures is
not required, whereas these measurements are required for criteria based on the covariance
matrix. Experimentally, this means that fewer measurements are required to determine
whether a state is entangled.

2.1.3 Entanglement Measures

We are now able to determine whether a given state is entangled, but it is often desirable
to quantify the amount of entanglement present in a state. For pure Gaussian states, it
is easy to quantify the entanglement shared between two parties. This is done using the
entropy of entanglement, given by the von-Neumann entropy of the reduced states. For
a pure state |¢) with reduced states pa p = Trp a(|¢)(¢|), the entropy of entanglement is
23]

Ev(|¢)) = S(pa) = S(pB). (2.7)

The entropy of entanglement defines the number of pairs of entangled bits, i.e., singlet
states, that can be extracted from an entangled state.

This quantification of entanglement leads to an interesting result about mixed states.
All mixed states have non-zero entropy, and they can be purified by extending to a larger
system. The entropy of entanglement therefore tells us that every mixed state is entangled
to its purifying subsystem. If you have a pure entangled state that undergoes loss to the
environment, the entanglement will decay and eventually disappear. But since the remaing
state is mixed, it must be entangled to the subsystem that purifies it. The entanglement
has not disappeared, it has simply spread out to a larger system. If all the losses could
be recovered the entanglement could be restored. Practically, of course, this is impossible,
but it does raise an interesting question about entanglement. Most of what we see is in a
mixed state, so does that mean that almost everything is entangled to something, and if
we could observe its purification by possessing everything that it has interacted with, we
would see that entanglement is much more prevalent than it first appears? The study of
mixed states could help us understand how to use this spread-out entanglement effectively.

In mixed states it is much more difficult to quantify the entanglement of a given
state, largely because every mixed state has an infinite number of possible pure-state
decompositions. This has led to numerous different methods to quantify entanglement in
mixed states, each best suited to a different purpose. Some important properties that a
good entanglement measure must satisfy are given below [206].

e E(p) =0 for a separable state, and E(p) > 0 for an entangled state.

e E(p) is invariant under local unitary transformations, i.e.,
B(Ur @ U)p(U] @ UF)) = E(p). (28)

e F(p) must be nonincreasing under LOCC operations, i.e.,
E(Orocc(p)) < E(p). (2.9)
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Entanglement of Formation

Closely related to the pure state entropy of entanglement, one of the most commonly used
entanglement measures is the entanglement of formation [23], defined as

Ep(p) = min > ppBEv(|k)), (2.10)
{Prdr}

where the minimisation is taken over all possible decompositions p = >, pr|or)(¢r|. The
asymptotic regularisation of the entanglement of formation is the same as the entangle-
ment cost, which defines the minimum number of singlets needed to prepare the states by
LOCC [99]. Due to the potentially infinite number of possible decompositions, this opti-
misation is generally difficult to carry out. Exact results are known for the entanglement
formation for two-qubit states [225], Werner states [211], and isotropic states in arbitrary
dimension [203]. In continuous variables, the Gaussian entanglement of formation [224]
is a useful quantity, where the Gaussian entanglement of formation GEp(p) is defined in
the same way as the entanglement of formation, but with the minimisation carried out
over Gaussian decompositions. Interestingly, for symmetric two-mode Gaussian states, the
Gaussian entanglement of formation has been shown to be equivalent to the entanglement
of formation [R1], and it is an open question as to whether this is true for all Gaussian
states. Adesso and Illuminati [6] provided a useful method to calculate the Gaussian
entanglement of formation for bipartite Gaussian states.

Distillable Entanglement

Many quantum information protocols, for example teleportation, rely on entanglement
shared between two quantum states held by Alice and Bob. However, often when maxi-
mally entangled states are distributed between two parties, the entanglement is degraded
by losses to the environment. It is desirable for Alice and Bob to be able to improve
this entanglement. In 1996, Bennett et al. [22] 23] provided a method to achieve this
entanglement purification. If Alice and Bob share N copies of a bipartite mixed state p
containing noisy entanglement, they can extract M ideal Bell pairs by performing LOCC
operations. The optimal fraction M /N that can be achieved in the limit of large N defines
the distillable entanglement Ep(p), i.e.,

M
Ep(p) = lim —. 2.11
Pl) = 1By N N 211

Over the years, many distillation procedures have been developed [I18] in both the dis-
crete variable [56] and continuous variable [159] settings. For Gaussian states, distillable
entanglement can be defined, but since Gaussian entanglement cannot be distilled using
Gaussian operations [65], it is almost impossible to calculate. However it has been shown
that entanglement in bipartite Gaussian states can be distilled if and only if the state has
a non-positive partial transpose [79]. States that possess entanglement that cannot be dis-
tilled are called bound entangled states [114]. There are numerous examples of such states
[44], but it is not yet known whether there are states with a negative partial transpose
that cannot be distilled.
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Logarithmic Negativity

Another useful measure of entanglement in Gaussian states is the logarithmic negativity
[209], which defines by how much a quantum state violates the PPT criterion. It is defined
by
Ex(p) =) max{—log(),0}, (2.12)
k

where 7}, are the symplectic eigenvalues of p7s. Since for all separable states 7, > 1,
the logarithmic negativity is zero for separable states. It has also been shown to be
nonincreasing under LOCC [I73]. The obvious appeal of the logarithmic negativity is its
ease of calculation. In addition, it provides an upper bound on the distillable entanglement
described above [209].

2.1.4 Entanglement in Multimode States

For a bipartite continuous variable state, it is comparatively easy to say whether the state
is entangled; either the two modes are entangled, or the state is separable. However when
more modes are included the situation becomes more complicated. The obvious next step
is to look at three-mode states made up of modes A, B and C. In a three-mode state
there are numerous different bipartitions that can be entangled, and the entanglement
can be between two individual modes, or delocalised between three modes. Thankfully,
the PPT criterion is a necessary and sufficient test for entanglement across any of these
partitions [219], which means that the separability properties of a three-mode state can
be fully qualitatively characterised.

To do this, it must first be recognised that there are three different bipartitions that
can be entangled. A state is called A — BC biseparable if mode A is separable from
modes BC' taken together, with a similar definition holding for the other two bipartitions.
Separability across the A — BC' bipartition can be tested by taking the partial transpose of
mode A and checking if the new matrix satisfies the uncertainty relation. By considering
all the possible ways in which a three-mode state can be biseparable, this leads to five
possible classes that a three-mode state can fall in to [80]:

e Class 1: Fully inseparable states are those which are not biseparable under any of
the three bipartitions.

e Class 2: One-mode biseparable states are separable under only one of the bipartitions.

e Class 3: Two-mode biseparable states are separable under exactly two of the three
bipartitions.

e Class 4: Three-mode biseparable states are separable with respect to all three bipar-
titions, but they cannot be written as a mixture of tripartite product states.

e Class 5: Fully separable states can be written as a mixture of tripartite product
states.

In addition, within some of the classes, there are different cases with respect to two mode
entanglement. For example, consider a class 2 state where A is entangled with BC, B is
entangled with AC but C is separable from AB. Mode A may or may not be entangled
with mode B if mode C was traced out, and this set of classes makes no distinction between
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these two types of state. Finally, note that the PPT criterion can be used to distinguish
between all these classes, except for classes 4 and 5. A more complicated criterion is
needed to distinguish between these two classes [80].

2.2 Quantum Discord

An important question in quantum mechanics has always been, where is the quantum-
classical boundary? The question applies for correlations just as it does for physical
states. For a long time it was thought that entanglement was equivalent to any quan-
tum correlations, and separable states were just classically correlated. This is true for
pure states, however for mixed states the situation is more complicated. Entanglement is
fundamentally a consequence of the superposition principle, however superposition is not
the only feature unique to quantum mechanics. One of the other fundamental properties
in quantum mechanics is the fact that not all observables are simultaneously observable.
Mathematically this is a consequence of the non-commutativity of certain observables, for
example position and momentum. This means that, even in a separable state, measure-
ment of one part of the state can disturb the rest, in contrast to what one would expect
classically. Therefore the correlations may have a quantum nature, despite the state being
separable.

The study of quantum correlations beyond entanglement became more prevalent after
observations that the deterministic quantum computation with one quantum bit (DQC1)
protocol [130], which allows the normalised trace of a unitary operator to be calculated
more quickly than classically possible, appears to work without the presence of entangle-
ment. It was quickly recognised that more general nonclassical correlations could assist
with the speed-up in this protocol [134]. Later it was shown that quantum correlations be-
yond entanglement, measured by quantum discord, were present at the end of the protocol
[55], thus suggesting that such quantum correlations could provide the figure of merit for
this protocol. Since then, discord has been identified as playing a role in many informa-
tion processing protocols (see Section [2.2.3), including the phenomenon of entanglement
distribution by separable states [I98] and the measurement of information encoded into
quantum states [96].

There are numerous measures of nonclassical correlations beyond entanglement that
have been developed in recent years [I54]. These nonclassical correlations are mostly
dependent on the properties of quantum measurement and often depend on some op-
timisation over all possible measurements. The most popular of these measures is the
quantum discord [I58, [105], discussed further in the following sections. Understanding
these measures helps to define the boundary between quantum and classical correlations.

2.2.1 Definition of quantum discord

Quantum discord [I58|, [105] was originally defined in terms of entropic quantities, however
states that possess discord can also be defined in a similar way to entangled states. A
bipartite state p4p with classical correlations can be written in the form [160]

pap =) pala){al © b)(b], (2.13)
ab
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where {|a)} and {|b)} form an orthonormal basis for systems A and B respectively. Any
state that cannot be written in this form possesses quantum discord [53]. From this and
Eq. it can immediately be seen that any entangled state must also possess quantum
discord, however the converse is clearly not true. The definition also suggests an interpre-
tation of quantum correlations; a state possesses quantum correlations if measurement on
one subsystem disturbs the state of the other [154].

Ollivier and Zurek [I58] originally defined quantum discord in terms of different def-
initions of the mutual information. Classically [49], the mutual information is defined
as

I(A, B) = H(pa) + H(pp) — H(pap), (2.14)

where H(p;) = — Zj pi—j log(pi=;) is the Shannon entropy. The Shannon entropy is the
uncertainty of a random event, which means that the mutual information represents how
much less uncertain a joint event is than the two individual events. In other words it is a
measure of the total correlations between the two events. Using Bayes’ rule

PA,B=b

PAB=b = s (2.15)
PB=b

the classical mutual information can be rewritten as

Jc(Av B) = H(pA) - ZPB:bH(me:b)» (216)
b

with a similar expression holding where A and B are swapped round. From this equation,
the mutual information can be interpreted as the average reduction of the uncertainty of
A after a measurement on B. Classically this is equivalent to the previous definition of
mutual information, however it should be evident that this is not the case in the quantum
realm due to the properties of quantum measurements.

Ollivier and Zurek [I58] studied what happens when these expressions are converted
to the quantum regime. The first expression for mutual information is generalised simply
by converting the Shannon entropies to von-Neumann entropies S, such that the quantum
mutual information is defined as

I(pag) = S(pa) + S(pB) — S(pan)- (2.17)

This measure of the quantum mutual information defines the total correlations present
in a state, as measured by the minimum amount of local noise that has to be added to
convert the state into a product state.

However converting J,. into the quantum regime is not so easy, due to the difficulties
surrounding quantum measurements. Namely, the state of A after a measurement on
B depends on the measurement performed. Bearing that in mind, the classical mutual
information converted to the quantum regime can be expressed as [105]

T (pap) = S(pa) — inf > piS(Pyp);
A o ) (2.18)
T (pan) = S(pp) — int > piS(Pipa).

The infimum is taken because the measurement is chosen that minimises the uncertainty
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in A (B) after a measurement on B (A). In other words, it is the measurement that
maximises the information gained about A. Note that a left-facing arrow means that the
measurement is performed on mode B, and a right-facing arrow means that the measure-
ment is performed on mode A. These quantities are usually called the one-way classical
correlations, and are generally different to one another. The infimum minimises the en-
tropy over all POVM measurements [154], and in general it is difficult to find the optimal
measurement, especially for continuous variable states. Note that for uncorrelated states,
measurement on one subsystem gives no information about the other subsystem, so the
classical correlations are zero. Also, note that that the quantum mutual information is
never smaller than the one-way classical correlations.

In a classical system, the one-way classical correlations must be the same as the quan-
tum mutual information. Therefore any difference between these quantities is evidence of
the quantum nature of the correlations. This led to the definition of one-way quantum dis-
cord as the difference between the quantum mutual information and the one-way classical
correlation [I5§],

D (pap) =I(paB) — J* (pan)
S(pp) = S(pap) + {iﬁl_f}zpiS(png); (2.19)

D7 (paB) = 1(paB) — J " (paB)

S(pa) — S(pas) + {igf}z PiS (P 4)- (2.20)

Clearly, the above definitions for discord are asymmetric since they depend on which part
of the state is measured. A symmetric version of quantum discord, sometimes called the
two-way quantum discord, is defined as

D(pap) = max{D* (pap), D~ (pan)} (2.21)

This quantity is only equal to zero for states that can be written in the form of Eq. ,
i.e., the only states with zero discord are those that have only classical correlations. This
definition gives an interpretation for quantum discord as those correlations that cannot
be accessed by local measurements [158].

2.2.2 Properties of quantum discord

We have already seen that quantum discord is non-zero for all states that have nonclassical
correlations. However, there are some states for which one of the versions of one-way
quantum discord is zero. Namely, for a state pap,

D7 (pap) =0 i pap =3 pilidil © o (2.22)

D (pap) =0 it pap= > pipa; @ i), (2:23)
J

where {|i)} and {|j)} are orthonormal bases for modes A and B respectively. To see
that this is the case, consider the state pap = D, pi|i)(i| ® pp;. Now if a projective
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measurement into its orthonormal basis is performed on mode A, the new state is
Pap =D (K)(kl @ Dpap(|k) (k| 1),

k

= 3 pulk) (kli) (1K) (4] © i
- (2.24)
k

= PAB-
In other words, there is a measurement on mode A that leaves the state of mode B
unchanged, therefore the one-way quantum discord is zero. States of this form are often
called “classical-quantum states” [I15]. Note that the two-way quantum discord is not
generally zero, since a measurement on mode B will in general disturb the state of mode

A.

Similar to entanglement, there are a number of properties that should be satisfied by
a good measure of quantum correlations. Some of these properties are given below, all of
which are satisfied by quantum discord [154].

e D(pap) = 0 for all states of the form of Eq. (2.13)) and D(pap) > 0 for states not
of that form.

e D(pap) is invariant under local unitary transformations, i.e.,
D((Ur ® Ua)pap(Uf ® UJ)) = D(pa)- (2.25)

However, in contrast to entanglement, there are local nonunitary operations that can lead
to increase, or even emergence, of discord. This is discussed in detail in Chapter 3.

2.2.3 Interpretations of quantum discord

The definition of discord has a strong mathematical motivation, however it is also desir-
able to have a physical interpretation of quantum discord. In recent work, many such
interpretations have been found that give discord, and other nonclassicality measures, a
quantifiable interpretation. As mentioned previously, the DQC1 protocol was the first
instance where discord was suggested as a possible figure of merit of a quantum protocol.
This result has since been confirmed experimentally using photons [I136] and nuclear mag-
netic resonance (NMR) [162, [I5]. Since then, further protocols have been found where
discord provides the figure of merit of a protocol.

Quantum metrology

One area where discord has been found to be particularly applicable is quantum metrology.
For example, a measurement scheme inspired by the DQC1 protocol has been devised
that uses highly mixed states to perform quantum metrology [32]. The discord present
at the output of the scheme can be thought of as the quantum resource that enables
the performance of the protocol. In addition, it has been shown that discord provides
a resource for phase estimation of an unknown quantum state [84]. The importance of
discord to quantum metrology was also extended to the case of optical interferometry using
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Gaussian probe states [3]. In that work, discord is identified as the essential characteristic
that probe states must possess to be sensitive to a variety of local dynamics.

Quantum illumination

Quantum illumination [I40] is a related protocol to quantum metrology. In quantum
illumination, one part of a maximally entangled state is sent through a noisy region for
target detection. If there is an object present, the sent state is reflected and detected with
the kept part of the entangled state using a joint measurement. Surprisingly, even though
there is no entanglement left at the end of the scheme, an entangled source improves the
performance of the protocol. Weedbrook et al. [217] showed that the quantum advantage
of the protocol is quantified by quantum discord, demonstrating that discord is the resource
underlying the performance of quantum illumination.

Discord consumption

Another interpretation of quantum discord related to quantum metrology is its importance
to information decoding [96]. Consider a two-mode quantum state pap that then has
a signal encoded into mode A, resulting in the state pap . If one is restricted to local
measurements on the two modes, i.e., if the two modes cannot interfere, then the maximum
amount of information about the signal that can be gained is I.. Now if one can also
interfere the two modes and therefore perform global measurements, then the maximum
amount of information that can be gained is I,. In [96], it was shown that

D" (pa) = I(pap) < 1g — 1. < D" (pap) — D* (pan)- (2.26)

This means that the advantage that a global measurement has over local measurements
is upper bound by the discord consumed when the signal is encoded. Note that as the
strength of the signal increases, the correlations in the state pap tend towards 0. In the
case of an infinitely strong signal, Eq. reduces to I; — I. = D (pag). The discord
present in the initial state defines the maximum advantage that a global measurement can
have over local measurements. In other words, quantum discord defines the correlations
that can only be utilised using a coherent operation.

Quantum discord in quantum communication

It has been observed that many quantum communication protocols originate from a sin-
gle “mother” protocol [2], thus providing a hierarchical structure of such protocols. The
“mother” protocol achieves both quantum-communication assisted entanglement distilla-
tion and state transfer simultaneously. This and related protocols, such as state merging
[115], require entanglement to be successful; however Madhok and Datta [145] showed that
discord is important when such protocols operate in a noisy environment. They found that
quantum discord quantifies the minimum loss in performance due to decoherence. This
shows that the optimum state to use in these protocols is dependent on both entanglement
and quantum discord.

Entanglement distribution and discord

Quantum discord also has an interpretation in terms of entanglement distribution using
an ancilla mode [51], 167, [72]. Entanglement distribution is where Alice and Bob want to
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Alice Bob

Bob Alice i Bob Alice

Figure 2.1: Alice initially holds modes A and C, and Bob holds mode B. Initially, there could
be some entanglement shared between Alice’s modes A and C and Bob’s mode B. Alice then
distributes mode C to Bob. For entanglement to be distributed, the discord between mode C and
modes A and B must be non-zero. At the end of the procedure, Bob holds modes B and C and
Alice holds mode A. If successful, the entanglement between Alice and Bob will have increased
during the protocol.

establish or increase entanglement between them. This can only be done by transmitting
a quantum state between them. Consider the case shown in Fig. where Alice holds
modes A and C, and Bob holds mode B. In an attempt to establish entanglement, Alice
sends mode C' to Bob. The amount of entanglement present between Alice and Bob after
the distribution of mode C' is bounded by the amount of discord between the sent mode
and the other two, as shown in the equation [198, [41]

Ea.cp(p) < Ep.ac(p) + Dapjc(p)s (2.27)

where the notation D 4 B‘C(p) means that the measurement is performed on mode C. In
this equation, entanglement (discord) is quantified by the relative entropy of entanglement
(discord). In the case where Alice and Bob initially share no entanglement, the entangle-
ment at the end is upper bounded only by the discord that is distributed. This highlights
the important relationship between discord and entanglement in mixed states. Note that
for pure states, Eq. reduces to the Araki-Lieb inequality [11]

1S(pa) — S(pB)| < S(pan)- (2.28)

2.2.4 Gaussian quantum discord

Due to the optimisation procedure required, quantum discord is generally difficult to
calculate explicitly for most states. This problem becomes even greater in the continuous
variable regime, since it is necessary to calculate the overlap of the relevant state with all
possible one-mode Wigner functions. For this reason, the study of quantum discord in
continuous variable states has been focussed on Gaussian states.

Since discord is invariant under local unitary transformations [I54], it is sufficient to
calculate the discord of a state in the standard form of Eq. (1.72). A Gaussian version
of discord is defined by carrying out the optimisation over generalised Gaussian POVM
measurements on the relevant subsystem. In fact, it is even sufficient to restrict the
measurement to pure Gaussian states [184]. This simplifies the calculation vastly, and an
analytical solution for Gaussian quantum discord has been found for squeezed thermal
states [83] and for all two-mode Gaussian states [5].

38



2.2. Quantum Discord

Using the entropic equation for discord in Eq. (2.19), and the formula for entropy in
Eq. (1.61), the Gaussian discord of a state in the standard form can be written as [5]

Dg (pa) = g(b) — g(vs) — g(v4) + g, /inf det ), (2.29)

where oq is the covariance matrix of the Gaussian measurement on B, and ¢ is the state
of A after the measurement on B:

e:a1—<co+ CO )(b1+ao)1(co+ 0 ) (2.30)

C_

For a one-mode Gaussian measurement, oy corresponds to an arbitrary pure one-mode
Gaussian state, i.e., a rotated squeezed state: oo = R(0)diag{\, 1/A\}RT(6), where A > 0
and R(6) is the rotation matrix defined in Eq. The optimal value of det e is found
by optimising over all Gaussian measurements to be [5]

( 2c,c? + (b2 —1)(dety — a?) + 2\c+c_\\/c302_ + (b2 — 1)(dety — a?)

CENE
if(det v — a?b?)? < (b? + 1)c2 % (det v + a?);
inf = (2.31)
0 a?b? — A c? + dety — \/cic‘i + (dety — a?b?)? — 2¢2.c% (a?b? + det )
2b2
otherwise.

States that are members of the second category have homodyning as their optimal mea-
surement, but for states in the first category a more general measurement is required
involving projections onto squeezed states. A similar expression for the right discord can
easily be defined by swapping a and b in the above equation.

With this expression it is therefore possible to analytically calculate the Gaussian
quantum discord of any two-mode Gaussian state. Since the Gaussian discord restricts
the optimisation to Gaussian POV Ms, it follows that

D (pap) < D§ (pas). (2.32)

There are some states for which it has been proven that Gaussian discord is equivalent to
the true discord [I72], and it is conjectured that Gaussian discord is indeed the true discord
for two-mode Gaussian states, with this suggestion supported by numerical evidence [82,
157].

It is interesting to note that there are very few Gaussian states for which the Gaussian
discord vanishes. Only states with covariances matrices of the form v = v4 @ vp have
zero Gaussian discord [5]. This means that any correlated Gaussian state has nonclassical
correlations, in contrast to the qubit scenario where it is easy to write a purely classically
correlated state. This is a consequence of the fact that all Gaussian states are non-
orthogonal to each other due to the infinite extent of their Wigner functions.
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2.2.5 Koashi-Winter relation

As the study of nonclassical correlations beyond entanglement developed, it became clear
that the relationship between nonclassicality and entanglement is an important area of
study. For pure states, the idea of nonclassicality and entanglement are equivalent, with
quantum discord being equal to entanglement of formation. In mixed states, they are not
the same, however it is possible to find relationships between them, as has been shown in
the case of entanglement distribution.

An important result in the study of entanglement is that states can only become
entangled up to a certain degree. In addition, if two systems A and B are maximally
entangled, then neither A or B can be entangled at all to any other party [47]. This
property was named monogamy of entanglement and is an important difference between
classical and quantum correlations. In fact, Koashi and Winter [I31] showed that if two
states are maximally entangled, they cannot even be classically correlated to another state!
Consider a three-mode state papc; the degree by which the modes can become correlated
is limited by the Koashi-Winter relation [131]

S(pa) > Er(pag) +J" (pac), (2.33)

where the equality holds if p4pc is a pure state. Similar expressions also hold by swapping
B and C and by taking all permutations of the three modes. This gives a set of six
equations that demonstrate how the correlations between the three modes can be shared.
As Koashi and Winter discussed, these equations show that the entropy of a state is a
measure of its ability to form correlations.

The Koashi-Winter relations demonstrate an important link between classical correla-
tions and entanglement, and due to the close relation between discord and classical corre-
lations, they also show how to link discord to entanglement. By application of the various
Koashi-Winter relations it is possible to derive a number of useful relations. Fanchini et
al. [71] used them to demonstrate their “quantum conservation law” for a tripartite pure
state

Ep(paB) + Er(pac) = D (pap) + D* (pac). (2.34)

This shows that the sum of the entanglement of formation between particular subsystems
is the same as the sum of the discord between the same subsystems. A chain rule can also
be derived that relates entanglement to the discord of the three systems [70]

Ep(pap) = D" (paB) + D" (ppc) — D~ (pBo)- (2.35)

A Gaussian version of the Koashi-Winter relations can also be written, simply by
replacing the classical correlations and entanglement of formation by their Gaussian ver-
sions. Since this provides a relationship between Gaussian entanglement of formation and
Gaussian discord, results that are known for one can be applied to the other. For example,
it is known that for symmetric two-mode Gaussian states, the Gaussian entanglement of
formation is equal to the true entanglement of formation [8I]. Therefore, for any two-
mode Gaussian state that has a three-mode purification with AC' or BC' symmetric, the
Gaussian discord must be the true discord [5].
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2.3 Summary of Chapter 2

In this chapter, I have discussed the notion of quantum correlations, starting by describing
quantum entanglement, before introducing quantum correlations beyond entanglement
with a focus on quantum discord. Quantum entanglement is known to have numerous
applications in quantum information protocols, and recently, quantum discord has been
shown to be important in many protocols involving mixed states. The relationship between
entanglement and discord, particularly in mixed states, is of interest as the search for
implementable quantum protocols continues. The Koashi-Winter relation provides a useful
way to relate entanglement to discord and suggests the two are closely connected.

In the next two chapters I aim to advance understanding of discord and entanglement
by studying their behaviour in multipartite mixed-state systems. In this way, I hope to
shine a light on some interesting features of quantum correlations in mixed states. This
is important because all realistic protocols run in noisy environments resulting in mixed
states. By understanding all possible forms of correlation present, we can maximise our
ability to utilise them effectively.
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Entangled states have no local description and therefore an interaction between states is
required to create entanglement. It is impossible to create entanglement using local oper-
ations and classical communications [118]. It therefore follows that it is also impossible to
increase entanglement using local operations. This is the reason that entanglement distri-
bution requires transmission of a quantum state between different parties. Entanglement
is invariant under local unitary operations [I18], however nonunitary local operations can
reduce entanglement by degrading the correlations, for example by dissipation.

Whereas entanglement can be seen as a consequence of the superposition principle,
discord [I58, [105] is related to the non-commutativity of observables and, in mixed states,
can be created by local operations and classical communication. For example, discord can
be created by correlated modulation of two quantum states as described in Section [1.5.3]
Similarly to entanglement, quantum discord is invariant under local unitary operations
[154], but it can change under local nonunitary operations. However, unlike entanglement,
discord can increase under local operations [197), B4]. This can only occur under local
operations on the measured part of the state; discord can never increase if the operation
is on the unmeasured system. In addition, discord can even be created from a classically
correlated state by local operations or even loss [42] [120]. This is surprising, as loss is
normally considered to decrease the quality of a quantum state, but if loss can increase
discord, perhaps loss can sometimes be made useful.

3.1 Discord increase with discrete variables

Streltsov et al. [197] described the conditions by which discord in a discrete variable
system can increase under the action of a noisy channel, where a noisy channel is one that
can be described by a completely positive trace preserving map. Consider the classically
correlated state of two qubits

pee = 50404 ®107) (07| + 1414 © 1By 17| (3.)
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From this state, a quantum correlated state can be created by applying a local noisy
channel to mode A. A local measurement on mode A, followed by a replacement, leads to
the state

p= 510104 @ 0207 + |44 (+ 4] @ 1P) (17, (32)

where |[+4) = %(\0) + |1)). After this operation, the states that make up mode A
form a non-orthogonal basis, which means there is now discord present in the state if the
measurement is performed on mode A. The quantum channel needed to implement this
change is the completely positive trace-preserving map

p=Na(pec) = ElpElL + EQPE;L (3.3)

with local Kraus operators E; = [04)(04] and Ey = |[+4)(14]. The state in Eq. is
called quantum-classical because it has zero right discord, while the left discord is nonzero.
This operation shows the ease with which discord can be created using local operations
on a discrete variable state.

Streltsov et al. [197] went further by showing which channels could possibly cause an
increase in discord. For qubits, they showed that a channel can cause discord increase only
if it is neither semi-classical nor unital. A unital channel is one that maps the maximally
mixed state %]l onto itself, i.e., A(%]l) = %]l. A semi-classical channel is one that maps all

input states into a state that is diagonal in the same basis
Ase(p) =D p(k)|k) (K| (3.4)
k

This is not to say that a channel that is neither semi-classical nor unital will always cause
an increase in discord. It just means that there is at least one state that will undergo
an increase in discord when passed through this channel. It can be easily seen that the
channel in Eq. is non-unital by applying it to the maximally mixed state p = %IL
For larger finite-dimensional systems it has been shown that the only operations that can
never create discord are local commutativity-preserving operations [119].

An example of a situation where dissipative loss results in the emergence of discord
was shown by Ciccarello and Giovannetti [42]. Consider the state

po = %!0A><0A| ® [+P)(+7| + %\1A><1A| ® |-By (-2, (3.5)

where |+4) = %(|0> +11)). Clearly this is a classically correlated state since it is diagonal
in two local orthonormal bases. Now mode B is subject to a dissipative Markovian bath,
while mode A remains untouched. This channel is described by the quantum map

Apo) = EopEj + E1pE], (3.6)

where Ey = |05)(08] + /T=p|18)(18] and E1 = /p|0B)(15|. If |1) is the state with
one photon and |0) is the state with zero photons, then this can be thought of as a lossy
channel with probability p that the photon will be lost. Application of this channel to
po results in a state with non-zero discord. This can be seen because the channel acts
differently on the two parts of mode B in pg. This results in a state that is no longer
diagonal in a local orthonormal basis, and therefore it possesses discord.
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3.2. Discord increase with continuous variables

In summary, we have seen that for qubits, not only can discord be increased by local
operations, it can even be created. Loss, normally considered to be a negative, can result
in the establishment of quantum correlations. This is in marked contrast to the situa-
tion with entanglement and demonstrates one reason why quantum correlations beyond
entanglement are of interest.

3.2 Discord increase with continuous variables

For Gaussian states, the relevant quantity to study quantum correlations is Gaussian
quantum discord [5, 83]. Similarly to the discrete case, Gaussian quantum discord is
unaffected by local unitary operations, but can change under the action of local non-
unitary channels. In addition Gaussian quantum discord can increase under local loss
[43, [146], as was seen for discrete variables. Note that the only states with zero Gaussian
discord are product states [5, [[52]. This means that a local loss channel cannot create
Gaussian discord; it can only increase what is already there. Gaussian quantum discord
is equal to quantum discord for states studied here [172], which justifies its use.

In the remainder of this chapter, I study situations where quantum discord increases
under local loss. Quantum correlations beyond entanglement are a promising resource for
quantum information protocols. Therefore it is important to understand their fundamental
properties, for example discord increase, so they can be effectively used. I investigate under
what conditions discord increase is most pronounced, and what physical reason there is
for this increase.

3.2.1 Discord increase scheme

The easiest way to create Gaussian discord is by splitting a thermal state on a beamsplitter,
as was studied in detail in [29]. The behaviour of discord under local loss is then studied
by implementing a variable loss channel on the output mode B and calculating the discord
at the output. The basic situation is presented in Fig. An experiment based on this
scheme was carried out in [40], with a similar experiment performed in [146]. The input
state can be varied by changing the noise added to each quadrature in order to investigate
the behaviour of discord after loss. The transmission of the first beamsplitter can also be
varied, resulting in an asymmetric state p4p after the first beamsplitter. By studying how
discord is affected by loss in all these cases, we can gain a better understanding of why
discord increases under local loss.

The state before the beamsplitter is a one-mode Gaussian state described by the co-

variance matrix
Ve, O
w=(5 4 ) (37)

where V., > 1 are the uncertainties in the z- and p-quadratures after the noise is added.
Splitting this state on a beamsplitter with transmission 7" results in the state

AB = RT(]l - 71) R271 +7%1 ) '

where T2 + R?> = 1. Mode B is then sent through an attenuating beamsplitter with
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Figure 3.1: A thermal state is prepared by symmetrically modulating a coherent state in the
x— and p—directions. Alternatively, modulation can be performed asymmetrically to produce a
squeezed thermal state. The state is then split on a beamsplitter (BS) with transmission T to

produce the discordant state p4p. Mode B undergoes local loss resulting in the state p4p/, which
generally has a different amount of Gaussian discord than the initial state.

variable transmission 75 to give the final state p4p/ with covariance matrix

o T2~ + R21 TRT(1 — ) (3.9)
YAB = ToRT(1 — 1) T3(R?y +T21)+R3 )° '

where T3 + R3 = 1. Now the Gaussian quantum discord can be calculated using the
method in [5] and plotted as a function of T for various T', V, and V,, to study how this
influences the discord increase.

What affects discord increase?

Here I first study how the parameters in the state of affect the phenomenon of discord
increase, before explaining the behaviour in the next subsection. First I look at the case
of an input thermal state with V, = V,, = V split on a balanced beamsplitter T 2 = %
Fig.|3.2| (a) shows the discord plotted against attenuation for various numbers of thermal
photons in the input thermal state, where attenuation is defined as Att = 1—T%. The first
thing to notice is that as V increases the total amount of discord increases. For low V,
there is no discord increase, but once V' exceeds about 5.8 shot noise units, discord increase
does occur. One shot noise unit is the experiementally measured minimum uncertainty
of a vacuum state. As V increases, the increase in discord becomes more pronounced,
and the maximum value of discord occurs at a higher value of attenuation, as can be seen
more clearly in Fig.|3.2| (b), where the curves have been normalised to start from the same
point. This shows that it is necessary to have enough thermal noise in the initial state
in order to observe an increase in discord, and increasing thermal noise accentuates the

discord increase effect.

The next case I study is that of input states with constant V, = 32 but varying V},, split
on a balanced beamsplitter. These states are often called squeezed thermal states because
they can be created by applying a squeezing operation to a thermal state. Fig. |3.2] (c)
shows the discord plotted against attenuation for states with varying V},. The first thing
to note is that the overall value of discord decreases as V}, decreases. The more interesting
result is seen more clearly in Fig. 3.2| (d), normalised so that the curves start from the
same value of discord. As V), decreases, initially the discord increase dies away until it is
no longer observable, however when V), decreases further, the discord increase is recovered
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Figure 3.2: (a) Discord increase with loss for thermal states with various initial thermal noise,
where the left discord D¥ (pap) is plotted in each graph. Red: V=4, Orange: V=8, Green: V=16,
Blue: V=32, Purple: V=64. (b) Same graphs as (a) but normalised to start from the same value
of discord. (c) Discord increase with loss for squeezed thermal states with various initial V}, and
constant V,=32. Purple: V,=32, Blue: V,=16, Cyan: V,=8, Green: V,=4, Orange: V,=2, Red:
Vp=1. (d) Same graphs as (c¢) but normalised so that they start from the same value of discord.
(e) Discord increase with loss for thermal states with initial V=32 and varying first beamsplitter
transmission. Purple: T2=1/2, Blue: T%=1/3, Cyan: T?=1/4, Green: T?=1/6, Orange: T?=1/9,
Red: T?=1/12. (f) Same graphs as (e) but normalised so that they start from the same value of
discord.
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Chapter 8. Discord Increase Under Local Loss

until it is at its most prominent at V,, = 1. This effect shows that the behaviour of discord
under loss is difficult to explain and has many different influencing factors.

Finally, I consider the case in which the transmission 7" of the initial beamsplitter
is varied. Fig. 3.2 (e) shows the discord increase for varying levels of transmission. The
initial value of discord decreases as the transmission decreases, but it can be clearly seen in
Fig.[3.2|(f) that the discord increase becomes steadily more pronounced as the transmission
decreases, with the maximum value occurring at a higher level of transmission.

Analysis of discord increase

To analyse the causes of discord increase we first need an interpretation of discord. One
interpretation of quantum discord is related to information gained by local measurements
[158]. Mutual information is how much shared information is stored in the modes, and the
one-way classical correlations are the information gained about A after a measurement on
B. Therefore discord, being the difference between them, is the shared information that
cannot be gained by local measurement. It is therefore closely related to the uncertainty
about mode A after a measurement on mode B. With this interpretation, we can try to
explain the phenomenon of discord increase.

The first effect to note from Fig. (a) is that increasing the modulation of the input
thermal state increases the initial value of the discord. This is because, with a higher
modulation there is more uncertainty in the quadratures of each mode. Therefore there
is more information to be gained about one mode using the other, so the correlations
between the mode are larger. Therefore mutual information, classical correlations and
quantum discord all increase with increasing thermal noise.

In Fig. (b) we see that increasing the thermal noise also increases the level of the
discord increase. This can be explained by remembering that a thermal state can be
thought of as a mixture of non-orthogonal overcomplete coherent basis states. Increasing
the thermal noise means the coherent states making up the mixture are more distinguish-
able. When loss acts on mode B, these states become less distinguishable, which means
that a local measurement will give less information about the state of mode A. This ex-
plains why discord increases under the action of local loss for high enough thermal noise.
However discord increase doesn’t occur for low thermal noise, because loss also degrades
the total amount of correlation between the modes. There is a balancing act between the
positive and negative effects that loss has on discord. This also explains why discord has
to drop to zero as attenuation reaches one, because at that point there is no correlation
between the modes, so there is no shared information between modes A and B.

In Fig. (c) we again see that reducing the modulation decreases the initial discord
in the system. This is for the same reason as the thermal state case. Also, as expected
from the above explanation, decreasing the modulation results in a reduction in the discord
increase until the increase is no longer observable. However, at some point the discord
increase is revived and the increase is most apparent when there is no modulation in the
p-quadrature, i.e., V=1, as seen in Fig. [3.2| (d). To explain this we need to consider the
fact that discord depends on the optimal measurement that maximises the information
gained about mode A. In the thermal state (purple curve), the optimal Gaussian mea-
surement is heterodyne detection and since the thermal noise is high enough, discord is
seen to increase with loss. In the case of no modulation in the p-quadrature, the optimal
Gaussian measurement is homodyne detection of the z-quadrature, and since the thermal
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3.2. Discord increase with continuous variables

noise in that quadrature is high enough, there is again an observable discord increase with
loss. The increase for the red curve is greater because, with homodyne detection, no ad-
ditional vacuum noise is added by a beamsplitter before measurement, and therefore the
measurement is effectively performed on a noisier thermal state, resulting in a larger dis-
cord increase. In between these two cases, the optimal measurement is more complicated.
In essence, the reduction of the noise in the p-quadrature (from purple to red) suppresses
the discord increase, but the switch towards homodyne detection means that the discord
increase related to the z-quadrature is accentuated. It is only for low V), that the latter
takes precedence resulting in a revival of the discord increase.

In Fig. (e) we see that reducing the transmission decreases the total amount of
discord present before loss. This could come from two effects. First, less of the light is
transmitted to mode A, so there is less information to gain about mode A by a measure-
ment on mode B. Second, the amplitude in mode B is higher, so a local measurement
gives more information than it would for smaller modulation, resulting in a lower value
for discord. It is likely that these two effects combine to give the observed reduction in
quantum discord.

In Fig. (f) it is clear that using a beamsplitter with lower transmission results
in a larger increase in discord. This is for the same reason that noisier thermal states
experience greater discord increase. As the transmission decreases, the thermal noise in
mode B grows, which means the component states are relatively distiguishable. When
loss acts on mode B the states become less distinguishable, so a local measurement gives
less information about mode A, which causes an increase in discord.

In conclusion there are three main effects that explain the observed behaviour. First,
increasing the thermal noise increases the total amount of information available, so the
value of discord goes up. Second, discord increases with loss because the states become
more indistinguishable meaning local measurements give less information. This is balanced
by the fact that loss reduces the total shared information, which explains why discord
increase is not always observed. Finally, discord depends on the optimal measurement
and when this measurement changes, this can lead to complicated behaviour as seen in
Fig. (d). These three effects all fit in with the interpretation of discord as shared
information that cannot be accessed by local measurements, justifying its use in this case.

3.2.2 Experimental results

An experiment was carried out to investigate whether discord can be observed to increase in
a realistic environment [40)], and whether experimental imperfections can affect the degree
of this increase. This was done using two different methods, one starting from a coherent
state, and one starting from a squeezed state. The experimental setup for each of these is
shown in Fig. [3.3] The experiment was implemented using Stokes operators [38] with a
high excitation of the S3 operator so that the S;-Sy plane (the “dark plane” [I32]) can be
thought of as analogous to the Z-p plane. In both cases, a coherent state was first produced
using a soliton laser with pulse length ~200 fs at a wavelength of 1559 nm (repetition rate:
80 MHz). For the experiment involving a squeezed state, the coherent state was then sent
through a polarisation maintaining fibre (FS-PM-7811, Thorlabs, 13 m), exploiting the
nonlinear Kerr effect to generate polarisation squeezing in the Sy direction as described
in Section |1 Thermal noise was added to each of the states by modulating the Stokes
observable S@ Wlth an electro-optical modulator (EOM) as described in Sectlon The
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Figure 3.3: Experimental setup for discord increase. EOM: electro-optical modulator, HWP: half-
wave plate, QWP: quarter-wave plate, WS: Wollaston prism, BS: beamsplitter. In the experiment
involving a mixture of coherent states, the polarisation squeezer is removed. Figure reproduced
from [40]

modulated Stokes observable Sy was adjusted before the EOM by a half-wave plate, and
after the EOM by a quarter-wave plate.

The mode was then split on a balanced beamsplitter into two modes A and B, with
mode B sent through a variable attenuator. The Stokes observables were then measured
as described in Section The polarising beamsplitter was realised using a Wollas-
ton prism and the photocurrents were measured using PIN photodiode detectors. The
Stokes measurement results were used to calculate the covariance matrix by considering
all possible combinations of the measurement results. From this the discord was calculated
following the method in Section

For the coherent state case, the modulation in the 5’9 direction resulted in a V, value
of 7.1, and since no modulation was carried out in the other direction V}, = 1. The results
for the discord as a function of attenuation are presented in Fig.|3.4] (a). For the squeezed
state case, the modulation in the Sy direction resulted in a V, value of 9.84, and the
antisqueezing in the §9+7r /2 direction meant that Vj, = 38.4. The results for the discord as
a function of attenuation are presented in Fig. [3.4] (b).

In both graphs of Fig. a theoretical model is fitted to the experimental data. The
ideal theoretical model with the appropriate parameters doesn’t fit the data very well,
however when imperfect common mode rejection (CMR) is included, similarly to [146],
the theoretical model is improved. Stokes measurement is based on the photocurrent
difference between two beams, and with ideal common mode rejection anything shared
between the beams will be cancelled out. This is crucial for the accurate performance of
Stokes measurements and homodyne detection [195]. However in a realistic case the CMR
will never be perfect and therefore there will always be additional noise present in the
measured operators.

To account for this imperfection, we add noise to the theoretical Stokes measurement
results to give the operators that are actually measured. The new operators are now

Si = Sis+ Sin, (3.10)

where Sm is the theoretical Stokes measurement result, g@ N is the additional noise that
comes from imperfect CMR, and S; is the measured Stokes operator. Since the noise is
completely uncorrelated to the ideal result, these operators give a covariance matrix that
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Figure 3.4: (a) Experimental results for discord of modulated coherent state, V,, = 7.1, V,, = 1.
(b) Experimental results for discord of modulated squeezed state, V, = 9.84, V,, = 384. In
both cases a theoretical curve including imperfect CMR is fitted. Note that the theoretical model
matches the experimental data less well at high loss. This is because at low light level the accuracy
of some of the components is less reliable.

can be written in the form
Y ="+ YCMR (3.11)

where 7; is the theoretical ideal covariance matrix from Eq. (3.9)), yopRr is the noise
matrix coming from imperfect CMR, and ~ is the covariance matrix that should give
results matching the theory.

To calculate yopp we can first note that the 571 N for each of the modes are com-
pletely uncorrelated and therefore yo\[r is a diagonal matrix. Second, after the first
beamsplitter, the two modes are symmetric and the imperfection in the CMR should be
the same for both 5'1 and 5'2. Therefore before the loss, the matrix should have the same
value on the diagonal. Finally it has to be noted that the biggest contributor to the noise
comes from the local oscillator, so the noise is proportional to the amplitude of the local
oscillator. For a Stokes measurement the local oscillator travels along with the mode and
therefore also undergoes loss when mode B is attenuated. Therefore the noise coming from
the imperfect CMR is also attenuated by the loss. Taking all this together, the matrix
describing the imperfect CMR  is

N 0 0 0
0 N 0 0 5

WCMR = 0 0 T22N 0 B T2 + R2 = 1, (3.12)
0 0 0 TiN

where T5 is the transmission related to the attenuation of mode B, and NV is the additional
variance caused by the imperfect CMR. This matrix was added to the covariance matrix of
Eq. to give the covariance matrix used to calculate the theoretical curve in Fig. |3.4
with N optimised to give the best fit to the experimental data.

In both graphs of Fig. it can be seen that discord increase is observed, but it
is a relatively modest increase. The increase is larger in the squeezed state case, but
this is only because of the larger values of V, and V), and has nothing to do with the
original squeezed state. The modest increase is due to the fairly small values of V, and V,,
rather than experimental effects. In fact, the experimental increase is larger than the ideal
theoretical increase. This is because the imperfect CMR amplifies the discord increase,
since the noise in mode B decreases with attenuation, as can be seen in Eq. . This
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Chapter 8. Discord Increase Under Local Loss

shows the importance of separating effects that are a genuine property of the state, and
effects that arise from imperfections in the measurement technique.

The phenomenon of discord increase by local loss is an interesting effect and is in
stark contrast to the behaviour of entanglement under purely local lossy conditions. It
suggests that loss can be used as a positive control mechanism in mixed states, enriching
the quantumness possessed by the state. This idea is supported by other work, where it
was shown that controlled dissipation can lead to entanglement [124] [155]. It has even been
shown that particular forms of environmental dissipation can drive a system to a steady-
state that is useful for quantum computation [208]. In both of these cases, dissipation
occurs from different parts of the state to a common reservoir, so is consistent with the
fact that entanglement must decrease under local loss. Optimism about the phenomenon
of discord increase should be cautious, as it is not yet clear whether this effect will be
useful or if it is just another unusual property of quantum discord.

3.3 Purification of the discord increase state

All quantum information experiments occur in open quantum systems, which means that
correlations arise between the studied system and the environment. These correlations
are unobservable, but they are still of interest, and could even be useful. By purifying a
quantum state, we can gain insight into the correlations with the environment and perhaps
determine how best to use them.

The state pap after the first beamsplitter in the discord increase scheme of Fig. can
be purified by the addition of a third party E that carries all the information about the
state that is imprinted on the environment. The state 1)) 4pp is a pure state with pap =
Tre(|Y)ape(¥|). As mode B is attenuated, more information is lost to the environment,
and this information has to be absorbed by E giving a new E’ to maintain the purification.
In general E’ would have to be a two-mode state to guarantee that the purification can be
maintained, however in this case, since one of the symplectic eigenvalues of p'; 5 is equal
to one, it is possible to maintain the purification using a one-mode E’ for all values of loss
[109]. This makes it possible to analyse the flow of correlations between mode A and the
environment E’ during the attenuation.

Analysing the flow of correlations between p4p and the environment for the discord
increase scheme is complicated by the fact that there are two environmental modes. To
calculate entanglement it is necessary to combine these two modes into one, which can be
done by purifying the two-mode state y4p [174]. However this is a complicated calculation
and leads to an unintuitive purification that isn’t in the simplest form. Instead, the discord
increase scheme can be rewritten so that the final state p/,; emerges from a pure state
while there are only ever three modes present in the scheme.

The first step to achieve this purification is to bring the second beamsplitter in front
of the first, so that the loss happens before mode A is split into two modes. As long as
the transmissions of the beamsplitters are correctly adapted, the final state will be the
same. A representation of this is shown in Fig. where we have restricted ourselves to
the case where the first beamsplitter in the discord increase scheme is balanced.

To find the required values of 77 and 715 in Fig. one simply has to start with
an initial mode A with covariance matrix v; = diag(V;,V,), and calculate the resultant
covariance matrix y4ps after the two beamsplitters with transmission 77 and T5. This
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Figure 3.5: On the left is the original discord increase scheme. On the right is the new scheme
with the second beamsplitter brought in front of the first. In both cases the initial purification is
the same two-mode squeezed state. The additional environmental mode E’ is required because of
the loss at the lossy beamsplitter. T3 2 have to be found so that the final two-mode state pap: is
the same in both cases.

results in the covariance matrix
1-72
L+ TP (n —1)  —TPT3 [ 7 (n — 1)
YAB' = . (3.13)

1-T2
T3\ |7z (m —1) 1+ THA = T3)(n — 1)

Comparison of this matrix with the one calculated in Eq. (3.9) with T2 = R? = 1/2,

2
we get the simple conditions T2T% = % and 1T§2 = 72. Some simple algebra gives the
2

solutions of these as
T2+ 1 2 1

T2 = T2 = —— . 3.14

Swapping the order of the beamsplitters has still left a four-mode scheme with two
environmental modes; however, if we take mode A’ after the first beamsplitter in the right
side of Fig. [3.5 as the starting point, we can rewrite it as a three-mode scheme. This is
because mode A’ is a one-mode state and therefore has a simple two-mode purification.
Splitting mode A’ on a beamsplitter with the required transmission will result in the
final state from the discord increase scheme, but with a three-mode purification allowing
properties such as entanglement with the environment to be calculated.

The initial mode A’ has the covariance matrix

V. 0 , 1+ 72 1— 72
YA = ( 0 ‘/p/ > 5 Vl’,p — TVLP + 2 . (315)

States of this form have a simple purification of the form

V! 0 VIV =1 0
_ /! _
0 Vo 0 Valp =1 (3.16)

! —
TaB = VIV 0 v, 0
0 VA 0 1%

To get the final state for discord increase, the last step is to pass mode A’ through the T
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beamsplitter, which results in the three-mode pure state with covariance matrix

1 T 1
— +1 — (1 — —(Co,
5(n+1) 2 5 (L =) —
, _ T T 9 T
= —(1 — — +1)+ pl ————=Co, , 3.17
YABE 2( 'Yl) 9 (71 ) P 112 ( )
e T oy
Vitrz ° Vit B
where
Ve O A1 9 9
= — p — /! _ —

Tracing out mode F gives the same state as for the discord increase scheme, and it can
be easily verified to be a pure state by checking that it has vanishing von-Neumann entropy.
Therefore the three-mode purification of the state that exhibits discord increase has been
successful and it can now be used to investigate the flow of correlations between modes
A, B and the environment during loss. This method provides a relatively simple way to
calculate the purification and gives the pure state in a form that is easy to understand.

3.4 Flow of correlations

From the Koashi-Winter relation [I31] we know that in a three-party pure state, classical
correlations and entanglement are related by

S(pa) = J"(paB) + Er(par), (3.19)

where Ep is the entanglement of formation defined in Section [2.1.3] Due to the close
relationship between classical correlations and quantum discord, it is therefore also possible
to study the dynamics of quantum discord and entanglement, and see where they are
related. Comparing the dynamics of discord and entanglement in an open system could
help draw deeper insight about the phenomenon of discord increase by loss.

The purification of p/y 5 calculated in the previous section can be used to analyse the
flow of correlation between the modes during the attenuation. The Gaussian versions of
each of the terms in Eq. can be calculated for the state with covariance matrix (3.17))
by taking the appropriate partial trace. Fig. [3.6] shows how the Gaussian entanglement
of formation and classical correlations are affected by loss. The Gaussian entanglement of
formation was calculated using the method of Adesso and Illuminati [6]. It can be seen from
Fig. that the entanglement of formation between mode A and the environment rises
with increasing attenuation. This rise is matched by the fall in classical correlations. Thus
during loss there is a flow of correlations from the classical correlations between modes A
and B to entanglement between mode A and the environment. It can be seen from the
graph, and confirmed numerically, that the entanglement and classical correlations always
add up to the entropy of mode A, as predicted by the Koashi-Winter relation.

As we have seen earlier, the increasing entanglement with the environment is accompa-
nied by an increase in discord between modes A and B. In addition, if the loss is applied
to mode A, the discord D (pap) and the entanglement with the environment GEr(par)
both decrease. This shows that in this case the increase in entanglement is related to the
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Figure 3.6: GEr(pag): Gaussian entanglement of formation between mode A and the environ-
ment, J (pag): classical correlations between modes A and B as measured by mode B, S(p4):
entropy of mode A, all for V, = V,, = 32. These are plotted against attenuation for the state in

Eq. .

discord increase. As loss acts on mode B, the entanglement between mode A and the
environment increases. This results in a decrease in classical correlations between modes
A and B, which is accompanied by discord increase. Olivares and Paris [I57] studied
the relationship between Gaussian discord and Gaussian entanglement of formation in a
three-mode pure state, where they found the relationship

D" (paB) + S(pr) = S(pB) + Er(par). (3.20)

This demonstrates the relationship between the dynamics of discord and entanglement
with the environment. As expected, in this work this equation is satisfied, with the
increase in entanglement accompanied by discord increase. Only when loss becomes high,
and S(pp) drops rapidly, does the discord start to decrease. This shows how important the
behaviour of entanglement with the environment is to discord dynamics, however the local
entropies also play a part. Therefore the behaviour of discord depends on an interesting
mixture of entanglement with the environment and local entropies.

In the qubit case, system-environment interactions have also been shown to have some
relationship to discord increase. Discord increase can be achieved between two parties A
and B by applying an entangling operation to mode A and some additional environmental
mode [202]. In this work they also show that the discord increase emerges as a by-product
of changes to the other correlation measures. A recent experiment has also been carried
out that studies the flow of correlations between a two-qubit state and the environment
[7], where they show that the decay of entanglement in a system is accompanied by the
growth of multipartite entanglement and discord.

3.5 Alternative analysis of discord increase

The method of purification used in Section also opens up a new avenue to interpret the
phenomenon of discord increase. In what follows I consider the case where V; = V) = V' to
ease discussion, however the results would be similar if this restriction was lifted. During
the purification, we saw that the discord increase scheme can be rewritten as simply
splitting a thermal state on a beamsplitter, where both the size of the thermal state and
the transmission of the beamsplitter depend on the level of attenuation. The situation
is represented in Fig. [3.7 and this means that discord increase with loss can instead be
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Figure 3.7: Mode A’ is a thermal state with variance V,; = V, that depends on the loss. It is
split on a beamsplitter with transmission 75 that also depends on the loss. The final state can be
used to study discord increase as long as both the initial variance and the transmission are varied
correctly.

interpreted in terms of splitting a thermal state on an asymmetric beamsplitter.

To do this analysis one has to be aware of how the initial variance and transmission
depend on loss. From Eq. , the variance V' is a decreasing function of loss. It
decreases from V with no loss to V; L for complete attenuation. From Eq. , the
transmission increases from T3 = % for no loss to T3 = 1 for complete attenuation. To
study the behaviour of discord, we can consider both of these effects individually.

First we look at how varying the transmission of the beamsplitter affects the discord
behaviour. We only need to consider the case where T3 > 3, since those are the values
that are needed to compare to the discord increase scheme. In fact, T2 < % corresponds to
the case when loss is applied to mode A, or it gives the behaviour of D7 (p4p) when loss
is applied to mode B. Therefore by considering all values of transmission we can study

the right and left-discord simultaneously.

Fig. shows the discord as a function of T for a range of thermal states. Increasing
T2 from 0.5 to 1 is the same as applying loss in the original discord increase scheme. As
can be seen in Fig. (a), increasing the variance of the thermal state increases the
total amount of discord, and it also increases the level of the discord increase. For larger
thermal noise, the maximum of discord also occurs at a higher value of transmission, which
explains why the maximum of discord was achieved at a higher loss level in the original
discord increase scheme. In this case, increasing 75 means mode B has less thermal noise,
which gives a higher level of discord since the basis states making up the mixture are less
distinguishable. In Fig. [3.8|(b) the discord as a function of T% is extended to the full range
of transmission values. Reducing transmission from T3 = 0.5 to T = 0 represents the
behaviour of the right-discord in the discord increase scheme as loss is increased. Clearly
the discord always decreases during this change, which, combined with the fact that the
starting variance also reduces with loss, means that the right-discord can never increase
as a result of loss on mode B.

It is important to note that any thermal state with V' > 1 will give an increase in
discord as T% is increased from 0.5 to 1. However discord increase through loss only hap-
pens if the variance is high enough. This is because the variance of the initial thermal
state reduces to model increasing loss. This reduces the total discord, so there is a bal-
ance between increasing the discord with increasing 75, and decreasing the discord with
decreasing V’. Fig. shows a contour plot demonstrating this behaviour. The black
lines are the path, from bottom to top, followed by a state as loss is increased in the
discord increase scheme. The value of discord varies along the black line in the same way
as it varies in the discord increase scheme with increasing loss. In the left-most black line
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3.5.  Alternative analysis of discord increase
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Orange: V' = 16, Green: V'=32, Blue: V' = 128, Purple: V' = 1024. (a) shows the behaviour
between 0.5 < T% < 1. (b) extends the graph down to T3 = 0.

Figure 3.8: Discord D (p/y5) as a function of T for the scheme in Fig. Red: V' =

corresponding to V' = 4, it can be seen that the discord immediately begins to fall. For
the third line from the left V' = 12 it is clear that discord initially rises. This increase
becomes even larger for lines further to the right, indicating the larger increase in discord
for larger thermal states.
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Figure 3.9: Contour plot of D (pyp) against V’ and T3. Black lines: from bottom to top, the
path of a state with V=4, 8, 12, 16, 20, 26, 32, 38, 44 from left to right. The discord change along
that path is the discord change observed in the discord increase scheme. Note that V = V' at
T? = 0.5. V is the variance from the original discord increase scheme and remains constant along
each black line.

This graph gives a visualisation of the balance between two different effects related
to discord increase. From T3 = 0.5, discord increases as you move up and to the right
of the graph. Therefore moving up along the black line contributes to discord increase,
but moving to the left results in a decrease in discord. At low V, the movement to the
left cancels out the small increase in discord that would be observed from moving up
the graph, however for larger V, discord increases faster moving up the graph than the
reduction caused by moving to the left. Therefore discord increase is observed for larger V'
but not for small V. This demonstrates that the complicated behaviour of discord increase
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Chapter 8. Discord Increase Under Local Loss
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Figure 3.10: A mixture of two coherent states with equal amplitude is sent through a balanced
beamsplitter. Loss is then applied to mode B by a variable attenuating beamsplitter.

under local loss can be understood by considering the simpler case of splitting a thermal
state.

3.6 Mixture of two coherent states

In previous sections I have discussed that the phenomenon of discord increase is closely
related to the non-orthogonality of states. States that are more non-orthogonal are less
distinguishable, and therefore a local measurement reveals less of the shared information
between two modes. Since loss on mode B makes the states more non-orthogonal, this
can result in discord increase. With Gaussian states, it is quite difficult to picture this
because each Gaussian state is a continuous mixture of coherent states with different
amplitudes, and therefore talking about the non-orthogonality of the states in the mixture
is complicated. Here I consider the simpler case of a mixture of two coherent states with
the same amplitude but opposite sign. This makes it easier to think about the overlap of
the two states making up the mixture as loss is applied.

The situation we consider is presented in Fig. .10} The state is initially prepared as
a mixture of two coherent states p4 = 3(|a)(a| + | — a)(—a|). This state is then split on
a balanced beamsplitter resulting in the two-mode state

=3 (55, (G2 ), Gl 150, (Bl [, (3

PAB = S | | == — = = — = = = = =
2\[vV2/4\V2 V2/ 5 \V2 V2/ 4 \V2 V2/ 5\ V2

In this state, if mode B is in the state |a/v/2), then mode A must be in the same state.

However since |a/v/2) and —|a/v/2) are non-orthogonal, it is impossible to deterministi-

cally identify the state of mode A with a measurement on mode B. Therefore the state

possesses some discord. Intuitively, for high « the overlap of the states is small, so the

discord must be small. Similarly, for a = 0 there are no correlations between the states
and the discord is zero.

®

> . (3.21)

Now consider the case where loss is applied to mode B, modelled here as a beamsplitter

with transmission T'. The new state is
Py 1( a> <a ®T04> <T04+‘—a> <—a®’—Toz> <—Ta>
AB — & — —— —— —— — = T — .
s \va/ \val? v/ \val Tlvea\va IR
3.22
As loss increases, the amplitude of the coherent states in mode B decreases, which means

their overlap increases. If « is initially high enough this should mean that as the states of
mode B become more non-orthogonal, the discord will grow, as in the Gaussian case. To
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3.6. Mizture of two coherent states

check if our intuition is correct, we need to be able to calculate the discord for this state.
However, since the state is non-Gaussian, it doesn’t make sense to use Gaussian discord;
instead we need to use a different method to calculate discord.

3.6.1 Calculation of Discord

To calculate the discord of the state p/yp in (3.22), I follow the method in [85] that
gives a reliable method to calculate the quantum discord for an arbitrary two-qubit state,
where the measurement on mode B is restricted to projective measurements. This method
can also be used to calculate the discord present in the mixture of two coherent states
considered here. For this method there are a number of operations on the expression for

x5 in Eq. (3.22) that must be followed:

e calculate the Gram-Schmidt orthonormalisation of ¢/, 5

e express the state in Bloch form

e convert to Bloch normal form

e use the method of [85] to get an expression for conditional entropy

e optimise the conditional entropy to calculate the discord

To get the Gram-Schmidt orthonormalisation of p/y 5, we first need the orthonormal

B (3, 15),)

where Ny = (1 — exp(—2a2))_%, Np = (1-— exp(—2T2a2))_%. Now the coherent states
are expressed in terms of the orthonormal vectors as

Ta Ta
— = |u1)B, ——= =vI1- G*QT%‘Z\U2>B + e_T2a2|u1)B-
V2/ B V2/ 5

Inserting these expressions into Eq. (3.22) gives an expression for p/;5 in terms of or-
thonormal vectors. After doing this, the state can be written in matrix form as

vectors. These are easily calculated to be

o 2

lui)a =

(3.23)

(3.24)

14+ a%c® a’cd abc® abed

g 1 a’cd a’d? abed abd?
PaB = 2 abc? abed b bled |

abed abd? bled b2d?

(3.25)

where the rows and columns are in the order |uj,uq), |u1,ug), |ug, u1), |ug, ug) and

a=e, b=+v1-a2 c=eT% g=\1-c. (3.26)
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Chapter 8. Discord Increase Under Local Loss

Now that I have calculated the Gram-Schmidt orthonormalisation, the next step is to
express it in Bloch form. A state is in the Bloch form if it is expressed in the Bloch basis
as [207]

3
1
p= Z Z RijO'Z' K 0oj, (3.27)
i,j=0

where R;; = Tr[p(0; ® 0;)], 0o = 12 and o;(i = 1,2, 3) are the Pauli matrices. By careful
inspection of the individual elements of Eq. (3.25) the state p'; is expressed in Bloch
form with the Bloch matrix R given by

2

1 cd 0 c
| ab 2abcd 0 ab(c? — d?)
R=| ; 0 0 (3.28)
a? cd(@®—b*) 0 1+2a%c® —a®—c?

To calculate the discord of this state, it is necessary to convert it into the Bloch normal

form [143]
1
p= 1 (14+Zai0i®12+Zbi12®0i+zci0i®0i> : (3.29)

Any arbitrary two-qubit state can be converted into this form [143], and therefore any
two-qubit state can be completely described by three three-dimensional column vectors
@={a;}, b= {b;} and @= {¢;}. It can be seen from Eqs. (3.27) and (3.29) that converting
a state to Bloch normal form requires the lower 3 ® 3 block matrix of the Bloch matrix R
to be diagonalised. Since local unitary operations p' = (Us ® Ug)p(Ua ® Up)' correspond
to multiplication of the Bloch matrix R with orthogonal matrices,

1 0 1 0
v (LS )R(3 ) a0

the normal form can be found by calculating the singular value decomposition of the lower
3®3 block matrix T' of R. From Eq. (3.28) it can be seen that the lower 3® 3 block matrix
is

2abed 0 ab(c? — d?)
T= 0 0 0 . (3.31)
cd(a®> —b*) 0 1+2a%c? —a?—c?

The singular value decomposition for this matrix is found by expressing T = 04CO%,
where O4 p are orthogonal matrices. The columns of O4 are the normalised eigenvectors
of TTT, and the columns of Op are the normalised eigenvectors of T7T. These are
calculated to be

b 0 —a d 0 —c
Oy = 01 0 , Op= 01 O (3.32)
a 0 b c 0 d
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3.6. Mizture of two coherent states

The Bloch normal form is now found by calculating R’ as in Eq. (3.30)), resulting in

1 ¢ 0 O
a ac 0 O

R = 00 0 0 (3.33)
0 0 O bd

The three three-dimensional column vectors that define the state are thus @ = (a, 0, O)T,
b= (c,0,0)T and ¢ = (ac,0,bd)”. With these vectors, the discord in the state can now be
calculated.

The entropies of pp and psap are easily found from the eigenvalues of the density
matrix but calculation of the conditional entropy of mode A after measurement on B is
more difficult. An expression for conditional entropy was found in [85] by first introducing
the vector X = (z,y,2) with & = 2cos(0)sin(h) cos(¢), y = 2cos(f)sin(f) sin(¢) and
z = 2cos?(f) — 1. This vector describes the possible projective measurements on mode B
and all possible measurements can be found by varying the angles # and ¢. To simplify
the expression for S the vectors my = {a; +¢;X;} are also introduced. With these vectors,
the conditional entropy S can be written in the form

ST PR i | ) ( i | >
4{( )K 1-5-%) % 1-5-X

+<1+|m|>log2 (1+M>] +(1+0b-X)x
: 1-b-X

[(1|m_,+|_,>log2 <1|m_,+|_,>+ (1+|m_,+|_,)10g2 <1+|m_’+|_‘>}}
1+b6- X 1+b- X 1+b6- X 1+0-X
(3.34)

This expression depends on # and ¢ and thus depends on the measurement performed on
mode B. The last step for calculation of quantum discord is to minimise this term over
all possible measurements. The final expression for quantum discord is therefore

D (flag) = S(0l) — S(ilas) + 1yin 50,0, (3.35)
where plp = Tra(pyp)-

3.6.2 Behaviour of quantum discord

The expression for S in Eq. can be numerically minimised on Mathematica, which
allows the behaviour of discord to be plotted for this state. The behaviour of discord
is shown in Fig. for varying levels of initial coherent state size and attenuation.
The first thing to note is that for low «, there is no observable discord increase. This
result is similar to that in the Gaussian case, where modulation had to be large enough to
observe discord increase. When « reaches about 0.7, discord increase becomes observable.
This effect is small at first but quickly becomes more pronounced. Note that discord
increase is observed at a much smaller amplitude with two coherent states than with
Gaussian-distributed coherent states, where a modulation of about 5.8 was required for
discord increase. This is because for Gaussian distributed coherent states, even with a
large modulation there are still many coherent states with small amplitude. This means
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Chapter 8. Discord Increase Under Local Loss

Figure 3.11: Discord behaviour for the split mixture of coherent states after loss on mode B as a
function of coherent state amplitude and attenuation. There is a “ridge of discord” where discord
reaches its maximum, outside of which the discord is close to zero.

the modulation has to be much higher to achieve the same “average non-orthogonality”
as the two coherent state case.

For high «, the discord is very close to zero for low loss. This is because the states have
very little overlap, so a measurement on B will have very little uncertainty about the state
of mode B. Since mode A and B are either both |a) or both |—a), a measurement on mode
B will gain almost all the shared information between the two modes, meaning the discord
must be very small. As loss increases, the states of mode B become less distinguishable,
so a measurement on mode B will leave more uncertainty about mode A, and the discord
must increase. Note that increasing « only has a small influence on the maximum level of
discord. This shows that the biggest influence on the total level of discord is the overlap
of the measured states, rather than the amplitude of the states in the other mode.

The most striking feature of Fig. is the “ridge of discord”, the small area where
discord increases rapidly from about zero to a maximum value, then drops rapidly to
zero again. This ridge suggests there is an optimal non-orthogonality between the states
making up the mixture in mode B. Again there is a balance; if the amplitude is too
high, a measurement on mode B can reveal almost all the shared information, but if the
amplitude is too low, there is not enough shared information between the modes. Just
like Goldilocks, discord requires the conditions to be “just right” in order to reach its
maximum value.

Since quantum key distribution (QKD) relies heavily on the non-orthogonality of
states, it is interesting to ask whether this graph can give any information about the
security of QKD. When there is no loss on mode B, this situation is similar to the case
of QKD running at a loss level of 50%. In that scenario, mode B would be attributed
to an eavesdropper, and mode A given to one of the participants in QKD. Interestingly,
at a loss level of 50% the optimum amplitude that maximises the key rate in QKD has
been found to be about o = 0.7 [201], which is similar to the amplitude that gives the
maximum discord as measured on mode B. This suggests that the amplitude for optimal
key rate is similar to that which maximises the discord. The study of the role of discord
in QKD is interesting, although it is likely that the efficiency of QKD protocols cannot be
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3.7. Summary of Chapter 3

explained by discord alone. It has been shown by Pirandola [I69] that secret key rate is
upper bounded by quantum discord.

By studying the behaviour of discord under loss for a discrete mixture of coherent
states, we have gained greater understanding about what causes discord increase. With
a mixture of two coherent states, rather than a continuous Gaussian mixture, the impor-
tance of the non-orthogonality of the constituent states is given greater clarity. The same
phenomenon underlies the discord increase in both cases, but it is much easier to visualise
when only two coherent states make up the mixture.

3.7 Summary of Chapter 3

In this chapter I have investigated the phenomenon of discord increase under loss using
a variety of methods. I first described how loss can increase, or even introduce, discord
in a discrete variable setting. I then studied under what conditions discord increase can
occur, and what affects the size of the increase. By purifiying the state involved in discord
increase, I discussed how discord increase could be related to the flow of correlations
to the environment. I then gave an alternative viewpoint to study discord increase in
terms of splitting a thermal state on an unbalanced beamsplitter. Finally I calculated
discord increase for a discrete mixture of coherent states, rather than a Gaussian mixture.
This brought greater focus on the non-orthogonality of the states making up the mixture,
identifying it as the primary driver of discord increase. Non-orthogonality of states is one
of the most important contributors to quantum correlations beyond entanglement, and
has many applications, particularly in quantum cryptography.
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Entangling Power of a Beamsplitter

A beamsplitter is an important optical device that has applications in many optics ex-
periments. A beamsplitter superimposes incident light modes and can therefore be used
to investigate interference effects, for example in the Hong-Ou-Mandel experiment [113].
Quadrature amplitudes are also superimposed by the action of a beamsplitter and there-
fore correlations can arise between the output modes. We have already seen in the previous
chapter how a beamsplitter can be used to create discord between two modes, simply by
inputting a thermal state to one port of the beamsplitter. More importantly, a beam-
splitter is frequently used as a continuous variable entangler [75 [191], transforming a
pair of input modes into an entangled state. This is most commonly achieved by mixing
two modes that are squeezed in conjugate quadratures on a beamsplitter, resulting in an
entangled state carring Einstein-Podolski-Rosen correlations [64]. States created in this
way are used in many continuous variable experiments, including quantum teleportation
[75, ©4], dense coding [139] and quantum cryptography [175] 190] 62].

However, the beamsplitter is a passive operation [I77] that doesn’t affect the photon
number of the input state, which means entanglement can only be created from Gaussian
states if the incident modes carry some initial nonclassicality [226] [128]. If the states
incident on a beamsplitter are statistical mixtures of coherent states, the output states
are also classical [29]. Nonclassicality of Gaussian states is equivalent to squeezing [28,
2106], and therefore the incident states must be squeezed in order to get entanglement at
the output. While for pure states squeezing is a necessary and sufficient condition for
entanglement, a stricter condition must be met if the input state is mixed [223].

In this chapter, I investigate counterintuitive situations where a beamsplitter can create
entanglement even if the state input to the ports of the beamsplitter is completely classical.
This is only possible if the input state is correlated to an additional mode or modes, and
is most interesting when the full input state is completely separable. In the separable
case the correlations are measured by quantum discord, and they perform a crucial role
in the performance of the protocol. The work in this chapter is primarily based on work
presented in [50].
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Figure 4.1: Mode A is prepared in a squeezed state and mode B is a coherent state. Correlated
displacements are performed on the two modes to create a correlated mixed state. Mode A is
mixed on a balanced beamsplitter with the vacuum resulting in a three-mode state.

4.1 Entanglement by splitting an individually classical mode
on a beamsplitter

In the first protocol that demonstrates the entangling power of a beamsplitter, the initial
separable state is two-mode and is prepared by correlated random displacements in one
quadrature of a squeezed state and a vacuum state. After the displacements, assuming
the displacements are large enough, the squeezed state is classical since it has a positive
P-function, which means splitting it on a beamsplitter will not result in entanglement
between the output modes [220, [128]. Instead it creates a three-mode state in which
the output modes of the beamsplitter are individually separable, but each output mode
is entangled with the remaining two modes. Therefore, even though the input mode to
the beamsplitter is classical, entanglement has emerged at the output demonstrating the
entangling power of a beamsplitter.

4.1.1 Theoretical description

The protocol is depicted in Fig. Initially, Alice holds mode A squeezed in its position
quadrature 4 and Bob holds mode B in the vacuum state. The respective covariance

matrices read as yg = 1 and

where V, = 2((Az4)%) < 1, V, = 2((Apa)?), and V,V,, > 1. Modes A and B are then
displaced as
TpA—>Ta+2, ITp—>Ip+7X, (4.2)

where the classical displacement Z is distributed with a Gaussian distribution with zero
mean and variance (¥2) = o2, After the displacements modes A and B are in a Gaussian
state with covariance matrix

Ve+202 0 202 0

B 0 Vv, 0 0

VAB = 202 0 1+20% 0
0 0 0 1
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4.1.  Entanglement by splitting an individually classical mode on a beamsplitter

The state was created by local operations and classical communication (LOCC) and there-
fore it is separable. The variance o2 is chosen such that the squeezing in mode A is de-
stroyed, i.e., V. + 202 > 1. In addition, the state has to be nonclassical because otherwise
it would be a convex mixture of coherent states which cannot yield entanglement by split-
ting one of its parts on a beam splitter. A Gaussian state is nonclassical if and only if
the lowest eigenvalue of its covariance matrix is less than one[223]. The eigenvalues of the

covariance matrix (4.3 are Ay = 1, Ay =V},

1
M= (1 +40% +V, £/1 + 1604 — 2V, + Vf) : (4.4)

and therefore the state is nonclassical if and only if Ay < 1. Rearrangement of Eq.
for A4 shows that this condition is equivalent to V, < 1. As long as mode A is initially
squeezed, the state with covariance matrix is nonclassical, and therefore suitable for
the protocol.

Mode A is now mixed with a vacuum state 7o = 1 on a balanced beamsplitter. Note
that since mode A is no longer squeezed, it is impossible for the beamsplitter to create
entanglement between the two output modes. The beamsplitter transforms the two-mode
state into a three-mode state with covariance matrix

5(ya+1) %WAB 3(ya—1)
YA'BC! = \%'YAB B %'YAB , (4.5)
3(ya—1) %’VAB (va+1)

where y4 = diag(V, + 202, V,), v = diag(1 + 202,1), and y4p5 = diag(202,0).

To check whether the protocol has worked it is necessary to check whether the expected
separability properties are observed in the final state. The first thing to note is that
this state was prepared by LOCC across the B|AC bipartition, and therefore mode B
is separable from modes AC' and also from each mode individually. Thus we just have
to check the other bipartitions for their separability properties, which is done using the
positive partial transpose (PPT) criterion described in Sec. [2.1.2] The separability of
modes A’ and C’ after the beamsplitter is assessed by tracing out mode B and checking
the physicality of the partially transposed state. The eigenvalues of 7},“0, + 1§29 are

)

1
/\12:§<Vx—|—202+1i\/(Vx+202—1)2+4>,

1 (4.6)
)\3’4:2<V})+1:|: (‘/},—1)24-4).

These two sets of eigenvalues are of the same form, and as long as V;+202 > 1 and V, > 1,
the minimum eigenvalue Ay, > 0 and the state is separable. This agrees with what we
would expect since a classical mode split on a beamsplitter cannot create entanglement.

The last cases to check are the A|BC and C|AB splittings, but since modes A and
C are perfectly symmetric, it is only necessary to check one of these cases. Only two
of the eigenvalues of ’yi‘?BC, + 1823 depend on V), and they are always positive if V}, > 1
as it is in this case. The other four are solutions of a fourth-order polynomial equation
so an analytic solution has not been found for them. However the minimum eigenvalue
Amin = 0 when V, = 1, and when V,, < 1, Amin < 0 no matter what value of 202 is chosen.
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Chapter 4. FEntangling Power of a Beamsplitter

Therefore, any state of the form that has V; < 1 will be entangled across both the
A|BC and C|AB bipartitions after splitting mode A on a balanced beamsplitter. Note
that in a realistic scenario when the correlations between modes A and B are not perfect,
the squeezing of mode A will have to be suitably strong to account for any imperfections
in order to observe entanglement creation.

In this section I have described the theoretical situation whereby entanglement can
be created by splitting a fully classical state on a beamsplitter. The correlations between
modes A and B before the beamsplitter make this possible. Since the two modes are
individually classical, but form a nonclassical state when taken together, the correlations
between the modes must carry some quantumness. This quantumness is captured by
quantum discord, and is particularly interesting because the correlations are only present
in one quadrature. This is in contrast to many previous experiments on quantum discord
[146], 96l 210], and supports the work in [40] where it was found that correlations in one
quadrature can lead to quantum behaviour.

A similar effect has been seen for discrete variables, where a CNOT gate can generate
entanglement by acting on part of a three-qubit fully separable state [4]. The discord
present between two of the initial modes (where the third mode is the control of the CNOT)
determines how much entanglement can be activated in the process. In the continuous
variable case, a beamsplitter can sometimes be used to activate entanglement. However
not all discordant states are suitable for entanglement activation by a beamsplitter [152];
additional nonclassicality in the form of global squeezing is also necessary.

The fact that global squeezing before the beamsplitter is a vital component of the
protocol relates to work by Ferraro and Paris [73], where different notions of nonclassi-
cality were discussed. In quantum optics, negativity of the P-function is considered the
indicator of nonclassicality, whereas in quantum information the most general indicator of
nonclassicality is quantum discord. In [73], they showed that the two notions of classicality
were maximally inequivalent. This means that the set of states without quantum discord
that are also classical according to the P-function has zero measure. However for this
scheme, the original state with covariance matrix must possess both squeezing and
discord, thus demonstrating the importance of both of these forms of nonclassicality to
the performance of the protocol. In particular, it is the squeezing that is converted into
entanglement; discord has to be present because there must be some correlation between
the two modes prior to the beamsplitter so that the squeezing that is destroyed by the
displacements can be recovered.

4.1.2 Experimental implementation

An experiment was carried out in [50] to demonstrate the principle of entanglement cre-
ation by splitting a classical state and verify that it is achievable under realistic conditions.
The experimental setup for the protocol is shown in Fig. The yellow circles and el-
lipses are the states for the entanglement from discord protocol and all the experimental
methods are the same as for the discord increase experiment. The correlated displacements
were realised by digitally mixing together differently displaced states in a correlated man-
ner, as described in Section [1.5.3] resulting in a mixed state before the beamsplitter. After
the experimental results were combined, the measured covariance matrix of the final state
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4.1.  Entanglement by splitting an individually classical mode on a beamsplitter

Figure 4.2: Experimental scheme. EOM, and EOM,: electro-optical modulators implementing
displacement of quadratures & (white horizontal arrow) and p (white vertical arrow). BS: balanced
beam splitter, SM;: Stokes measurement on mode j. The yellow circles and ellipses represent the
states of the entanglement from discord protocol, and the blue circles and ellipses are the states for
the entanglement distribution protocol. The yellow (blue) modulators EOM, (EOM,) are applied
to both protocols (only to the entanglement distribution protocol).

was found to be

542 023 334 —0.73 4.06 0.04
0.23 19.28 0.00 0.00 045 17.29

| 334 o000 343 -—054 306 —0.03
TABC =1 073 0.00 -054 1.2 —0.67 0.01
4.06 045 3.06 —0.67 4.73  0.55

0.04 17.20 —0.03 0.01 055 17.70

(4.7)

The measurement errors for the elements of the covariance matrix lie between 0.002 and
0.023. The approximate values used for the experiment were V, = 0.61, V,, = 38.4 and
202 = 9.23. There are a few things to note about this experimental covariance matrix.
First, since V.V, > 1, the initial state of mode A is highly mixed. This is because of
additional phase noise in the p-quadrature that comes from guided-acoustic-wave Brillouin
scattering in optical fibres used during the squeezing process. Second, the correlations are
not perfect between modes A and B before the beamsplitter, in contrast to the theoretical
case. This can be seen in the (3,3) entry of y4pc since it is less than 1 + 202.

To verify whether the required separability properties are present, even with these
imperfections, it is necessary to check the PPT criterion [193] on the various bipartitions.
To ease this discussion I will use the notation )\Zj = min[eig(yij +iQ3)]. First the three-
mode separability properties can be checked by taking the partial transpose with respect to
each mode in turn and checking the PPT criterion. The results for this are shown in Table
From this table, it can be seen that the state is entangled across the A|BC splitting
as well as the C|AB splitting, while it remains separable across the B|AC' splitting. Since
mode B is separable from modes AC, this also implies that mode B is separable from
modes A and C individually. The last thing to check is that modes A and C' are separable
from each other, which is true since for y4c = Trp(yapc) the minimum eigenvalue is
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j A B C
Aiue | —0.022 +0.001 | 0.069 +0.001 | —0.022 +0.001

Table 4.1: Minimum eigenvalues for the three mode separability properties.

)\i‘?} = 0.84 £ 0.01 > 0. Therefore the experimentally measured state with covariance

matrix (4.7)) fulfils all the required separability properties.

It is important to note that a beamsplitter can only create three-mode entangle-
ment if there is some nonclassicality before the beamsplitter that remains throughout
the whole procedure [223] [121]. In this case, the nonclassicality is global squeezing that
is present at the end as evidenced by minleig(yapc)] = 0.91 £0.01 < 1. An interest-
ing property of the covariance matrix (4.7) is that the minimum eigenvalue of y4¢ is
min[eig(yac)] = 0.91£0.01 < 1. This suggests that the reduced state after the beamsplit-
ter is squeezed, even though the state split on the beamsplitter has high variance in both
the z- and p-quadratures. However this is just an artifact originating in imperfections in
the experiment. Since the vacuum is input at one of the ports of the beamsplitter, it is
very close to a squeezed state, so even small errors could make the output state appear
squeezed.

This experiment has demonstrated that entanglement can be formed by splitting a
classical state on a beamsplitter, as long as it is part of a larger state. The resultant entan-
glement does not occur between the outputs of the beamsplitter, but is instead three-mode
entanglement between one output mode and the remaining two modes. These separability
properties do not exist for pure states, and therefore require an initially mixed state. To get
an idea about the degree of the mixedness of the experimental state, the purity of the co-
variance matrix can be calculated. This is found to be P = 1/4/det(yapc) = 0.01090,
which shows that the state is highly mixed, since P = 1 for pure states. This experiment
has also shown that the effect is robust against noise and experimental imperfections.

4.1.3 Conditions for the scheme to work

In the previous sections I have described a particular protocol where entanglement can be
created by splitting a classical part of a two-mode state on a beamsplitter. It is interesting
to study whether this property is widespread, or if it takes a specific set of circumstances
for this effect to take place. Consider a general two-mode state that possesses no Z-p

correlations
aj 0 C1 0

. 0 a9 0 C2
YaB = C1 0 b1 0
0 C2 0 b2

(4.8)

To achieve the required separability criteria, the state must satisfy a number of conditions.
It must be a physical state, a separable state and a nonclassical state. In addition, splitting
mode A on a beamsplitter must result in entanglement. This must occur while modes A
and B are individually classical, i.e., a2 > 1 and b1 > 1. A state is physical if its
minimum symplectic eigenvalue is greater than or equal to one. A state with covariance
matrix has minimum symplectic eigenvalue

1
Vmin = \/ﬁ\/A-i- - \/A?‘r - 4(albl - C%)(a2b2 - C%), (49)
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where Ay = ajas + bibs + 2c1co. A state is separable if the minimum eigenvalue of its
partial transpose is greater than or equal to one. For a state with covariance matrix (4.8)),
its partial transpose has minimum symplectic eigenvalue

. — 1 2 2 2
Vmin = ﬁ\/A_ - \/A_ - 4(@1[)1 - Cl)(CLQbQ — 02), (410)

where A_ = ajas + b1bs — 2c1¢. A state is nonclassical if its minimum eigenvalue is less
than one. The minimum eigenvalue of y4p is

)\min = i:i 9

1
n— <ai +b; — \/((I@ — bi)2 + 4CZ2> . (4.11)
In addition to modes A and B being classical and physical, these three conditions must be
satisfied if a state is to produce entanglement by splitting a classical part of a separable
state. Now I will look at a number of frequently used states to see if it is common for
these conditions to be simultaneously satisfied.

The first class of states I look at are isotropic states. An isotropic state has a covariance

matrix of the form 21) (1)
cosh(2r)l sinh(2r)o,
Tiso =V < sinh(2r)o, cosh(2r)1 ) ’ (4.12)

where v > 1. From Eq. it can be seen that this state is physical for all v > 1. From
Eq. , the minimum symplectic eigenvalue of the partial transpose is Dyin = ve 2".
Therefore the state is separable if v > €?". The minimum eigenvalue is calculated using
Eq. to be ve™2", so for the state to be non-classical v < €?". Therefore no isotropic
state can be both separable and non-classical, so isotropic states are not suitable for this
scheme.

Symmetric two-mode squeezed thermal states can have a covariance matrix of the form

al c1
YSTS = ( el al ) . (4.13)

From Eq. , the minimum symplectic eigenvalue of the state is vy, = a — ¢. Therefore
for a physical state ¢ < a — 1. Since Det(C) > 0, where C is the off-diagonal block matrix
describing the correlations, physical states of this form are always separable. From ,
the minimum eigenvalue is Ay, = a — ¢. This coincides with the minimum symplectic
eigenvalue which means physical states of this form are never non-classical.

The other form for symmetric two-mode squeezed thermal states is

- al co,
YSTS = ( al ) . (414)

co,

Since taking the partial transpose is equivalent to flipping the sign of the momentum
quadrature, we see that this covariance matrix is simply the partial transpose of the
previous form for a squeezed thermal state. This means that the criteria for a physical
state and a separable state have swapped for this class compared to the previous class
of squeezed thermal states. Since the previous form of squeezed thermal states could
never be both physical and nonclassical, a state of this form is never both separable and
nonclassical. Therefore neither of the classes of symmetric squeezed thermal states can be
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used to create entanglement by splitting a classical state.

Surprisingly, we have found that a number of commonly used states can never be
suitable for this form of entanglement creation. Motivated by the state used in the previous
section, I will now look at general states with no momentum correlations (c2 = 0 in Eq.
(4.8)) and try to find conditions that a state must satisfy to be suitable for the scheme.
From Eq. , for the state to be physical we get the condition

3 < <a1 - ;) <b - b12> : (4.15)

Since co = 0, Ay and A_ are the same, and therefore the condition for separability is the
same as that for physicality. From Eq. , for the state to be nonclassical we get the
condition

¢ > (ap —1)(by — 1). (4.16)

These conditions can be satisfied simultaneously, as long as at least one of as or by is
greater than 1. To check if the state can truly become entangled, we need to look at the
symplectic eigenvalues of the partial transpose after mode A is passed through a balanced
beamsplitter. The minimum symplectic eigenvalue of this state with mode A or C partially
transposed is

N 1

VUmin = ﬁ ai + biby — \/((11 — b1b2)2 + 4b26%. (4.17)
For entanglement across the A : BC' and the C : AB splitting Dy < 1. This results in
the criterion for entanglement

¢t > (ag — 1) <b1 — b12> . (4.18)

Comparing this to the criterion for non-classicality, we see that this is a tighter criterion
with the two coinciding when by = 1. We already know a1 > 1 and by 2 > 1. Combining
Eqgs. (4.15) and (4.18]) we get the additional conditions as > 1 and b; > é. The second
of these means either by 2 > 1. This gives us the final set of criteria for states with ca = 0
that become entangled after mode A is split on a balanced beamsplitter as

1
CLlZl, a2>17 b1,2217 b1>b77
2

<a1 — a12> <b1 — b12> > > (ag — 1) <51 — b12> . (4.19)

For particular values of a; 2 and by 2, these equations give a range of values for ¢; that
are both physical and give a state that can become entangled. The correlations have to
be strong enough so that the state is nonclassical, but not so strong that it is entangled
or unphysical. Note that increasing by has no affect on the range of ¢; values consistent
with the scheme, but it does mean that there are more nonclassical states that do not
become entangled by a balanced beamsplitter. It is likely that alternative operations
could create entanglement for such states. However any nonclassical state with by = 1
becomes entangled if mode A is split on a beamsplitter. It is also interesting that the
condition for entanglement is independent of as, so no matter how much excess noise
exists in the p-quadrature of mode A, the state can still become entangled.
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4.2. Entanglement distribution by separable states

Figure 4.3: Depiction of the entanglement distribution protocol. Solid lines: The first two steps
of the protocol considered here. Dotted lines: The final step of the protocol, described in [I53], that
localises the entanglement to two-mode entanglement. Initially, modes A and C' are orthogonally
squeezed states and mode B is the vacuum, then correlated displacements are added to the modes.
Modes A and C' are mixed on a beamsplitter resulting in a three-mode state that is entangled
across the A|BC splitting but separable otherwise. For the full protocol, modes B and C' are
mixed on a beamsplitter to localise the entanglement between modes A and B.

4.2 Entanglement distribution by separable states

The protocol described in the previous section is based on a similar principle as the
protocol for entanglement distribution by separable states described in [I51) [153], and
implemented in [167]. Here, I briefly describe the first two steps of the protocol in order
to draw comparisons with the scheme in the previous section and further highlight the
entangling power of a beamsplitter. Entanglement distribution by separable states was first
proposed for qubits in [51] and for CV in [I51] [153]. It was experimentally demonstrated
simultaneously for qubits [72] and for CV [167 212].

4.2.1 Theoretical Scheme

Whereas in the previous scheme the initial state consisted of two modes, in this protocol
the initial state is a three-mode state. The protocol is depicted in Fig. 4.3] Initially, mode
A is in a position-squeezed state, mode C is a momentum-squeezed state and mode B is
the vacuum. This means 2(22) = 2(p%) = exp(—2r) and 2(p?) = 2(&%) = exp(2r) where
r > 0 is the squeezing parameter. These modes are then displaced by

iA—&a+T, Pc—pPc—p, &p—ip+V2E, pp— Pp+ V2P, (4.20)

where T and p are uncorrelated classical displacements following Gaussian distributions
with zero mean and variances (72) = (p?) = 02 = (e?" —1)/2. Note that the displacements
add enough noise to destroy the initial squeezing present in modes A and C', meaning that
each mode is individually classical. Next, modes A and C' are mixed on a balanced
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beamsplitter to create a new correlated three-mode state. Since modes A and C' are
classical and uncorrelated, the two output modes must be separable. The covariance
matrix of the state after the beamsplitter is

(cosh(2r) + o)1 2020, (sinh(2r) — 0?)o,
YABC = 2020, (1+40%)1 —20%1 . (4.21)
(sinh(2r) — 0?)o,  —20%1 (cosh(2r) + o?)1

The separability properties of this state can be checked by the PPT criterion. The state
is clearly separable across the B|AC bipartition since it was created by LOCC across this
splitting. The state is entangled across the A|BC bipartition for 7 > 0 and ¢ > 0. The
state is separable across the C|AB bipartition for 7 > 0 as long as 202 > e?" — 1, which is
why it was chosen as 202 = (¢?" — 1) in this case. Therefore this scheme has demonstrated
the effect where two uncorrelated classical states mixed together on a beamsplitter result
in entanglement, as long as they are suitably correlated to a third mode. This is a similar
effect to that discussed in the previous section and further demonstrates the entangling
power of a beamsplitter.

4.2.2 Experimental Implementation

The full entanglement distribution scheme in this form was implemented experimentally in
[167], and the first two steps were given greater focus in [50]. A schematic of the protocol
implemented in [50] is shown by the blue circles and ellipses of Fig. The steps of
the experiment were carried out as described in the previous section. Measurement of the
Stokes operators gave the covariance matrix of the final state as

2090 110 517 859 —-7.80 -—1.68

1.10 2531 —-5.04 —-6.76 1.00 14.64

_ 5.17 —5.04 1187 —-0.45 4.95 4.49
TABC = _859 —6.76 —0.45 18.88 —8.61 6.04
—-7.80 1.00 495 =861 20.68 0.80

—-1.68 14.64 449 6.04 0.80 24.65

(4.22)

The required separability properties can be checked using the PPT criteria. The relevant
eigenvalues needed to find the three-mode separability properties are shown in Table

This shows that after the beamsplitter, the state is entangled across the A|BC' bipar-
tition but separable across the C|AB and B|AC bipartitions, as predicted by the theory.
Therefore the experiment has shown that entanglement can be generated by mixing two
uncorrelated classical states on a beamsplitter, as long as they are suitably correlated to
a third mode. Note that since there is only entanglement across one bipartition, it is
impossible for there to be two-mode entanglement. For example if modes A and C were
entangled, there would have to be entanglement across both the A|BC and C|AB split-
tings. This shows that the generated entanglement is genuine three-mode entanglement
not caused by a nonclassical state entering one of the ports of the beamsplitter. Similarly
to the previous protocol, there must be some global nonclassicality to allow entanglement
to be created. In this case it is global squeezing, which is quantified by the eigenvalue
min[(eig(yapc)] = 0.609 £+ 0.003 < 1.

Due to the specific entanglement properties of the state with covariance matrix (4.22]),
the state can be used for entanglement distribution by separable states. As was shown in
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j A B C
)‘Z;jBC —0.144 + 0.001 | 0.351 £0.002 | 0.528 + 0.003
Table 4.2: Minimum eigenvalues )\? = min[eig(’ygj + iQ3)] for the three mode separability
properties.

Section the entanglement that can be generated in this way is upper-bounded by
the relative entropy of discord between mode C' and modes AB, as measured by mode C.
This demonstrates the importance of discord to the performance of this scheme.

In both of the described protocols, the final states can be further processed to localise
the entanglement into two-mode entanglement. This can be achieved by the action of a
beamsplitter on two of the modes, thus further demonstrating the entangling power of a
beamsplitter. This effect has been shown theoretically for the entanglement sharing pro-
tocol of [I50], and experimentally demonstrated in the entanglement distribution protocol
of [167].

The previous two protocols both demonstrate an important property of a beamsplitter.
A beamsplitter can create entanglement even if the input modes are uncorrelated and
classical, as long as the modes are suitably correlated to an additional mode. This brings
into sharp focus the importance of global correlations when considering nonclassicality.
To determine if a state is nonclassical, it is not sufficient to look at the individual mode; it
is important to consider all the correlations the state possesses. States that at first appear
unsuitable for quantum information processes, could actually be useful if they possess
appropriate global correlations. This is an important area of research as the quest for
quantum information protocols that are robust in open quantum systems continues.

4.2.3 Transformation between entanglement classes

The two protocols described also demonstrate the power of a beamsplitter to transform
states between the entanglement classes described in Section In both of the proto-
cols, the states are initially in class 5, the class of three-mode fully separable states. In
the first protocol, the first beamsplitter transforms the state into class 2, the class of one-
mode biseparable states. A second beamsplitter can be used to localise the three-mode
entanglement across A|C'B into two-mode entanglement between modes A and C. This
property was demonstrated in the entanglement sharing protocol [150].

In the second protocol the first beamsplitter transforms the state from class 5 into class
3, the class of two-mode biseparable states. Similarly, a second beamsplitter can be used
to localise the entanglement into two-mode entanglement between modes A and C'. In this
instance, the entanglement can’t be localised by LOCC, thus demonstrating the advantage
that a beamsplitter has for localising entanglement. This property was demonstrated in
the entanglement distribution by separable states protocol [167].

4.3 Collaborative dense coding

The previous states have three-mode entanglement but no two-mode entanglement. This
means that in order to make use of this entanglement one must have access to all three
modes. This opens up the possibility of quantum information protocols that require three
parties to collaborate. Here I investigate one such protocol called “collaborative dense
coding” that requires three parties to work together to decode information more efficiently
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Figure 4.4: Collaborative dense coding schemes for a state from the entanglement from discord
section (orange circles and ellipsis) and the entanglement distribution by separable states sec-
tion (blue circle and ellipses). BS: balanced beam splitter, UBS: unbalanced beam splitters with
transmissivities 77 and T3, HM;:homodyne measurement on i-quadrature.

than classically possible.

Standard quantum dense coding [24], 27] involves only a sender Alice and a receiver
Bob, who share a two-mode entangled state. Alice encodes a message on to her mode and
sends it to Bob. The maximum amount of classical information that can be transmitted
over this channel is well-established [IT1], I82]. However Bob is able to make use of
the initial entanglement to gain more information about the message than is classically
possible. In the qubit case [24, [148], during the messaging stage Bob receives two bits
of information for every qubit Alice sent. This is twice as good as the classical limit of
one bit of information per bit sent. The cost of this is that Alice and Bob have to share
a quantum resource in the form of an entangled qubit pair, so overall they have shared
two qubits and transferred two bits of information. However the entangled pair could
have been distributed at any point in the past, and so at the time when the message
was sent, two bits of information have been sent with the distribution of one qubit, thus
demonstrating the advantage of quantum dense coding.

A similar result has been found for continuous variables [27, [139] [I76], where the
quantum resource Alice and Bob initially share is a pair of EPR beams. Some time later,
Alice encodes a signal into each of the quadratures of her EPR beam and sends it to Bob.
Bob interferes this beam with his EPR beam, and because of the EPR correlations can
gain more information than classically possible. In the asympotic limit of high photon
number, Bob can gain twice as much information as the classical limit [27], giving an
analogous result to the qubit case.

A controlled dense coding scheme has been proposed [98] and experimentally demon-
strated [125], in which a controller Charlie controls the rate at which Bob can receive
information. In controlled dense coding Alice, Bob and Charlie hold a pure state that pos-
sesses genuine tripartite entanglement, for example a Greenberger-Horne-Zeilinger (GHZ)
[93] state for discrete variables or an analogue of the GHZ state for continuous variables
[205]. In these cases the control of information capacity is accomplished by a measurement
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on Charlie’s mode.

In the “collaborative dense coding” described here, the three parties share a mixed
state that only has entanglement spread between three modes, as described in the previous
sections. Charlie controls the capacity by interference of the collaborating mode with that
of the receiver. If Charlie does not allow his mode to be used by the receiver Bob, it is
impossible for the information transmission capacity to exceed the classical limit, so this
is truly an example of collaborative dense coding.

The scheme for collaborative dense coding is shown in Fig. One of the two states
described in the previous sections is prepared by an additional party David to emphasise
that none of the parties need to have control of the state preparation for the protocol to
work. Modes A, B and C are then distributed to Alice, Bob and Charlie respectively. Alice
encodes a signal xg, pp chosen from a random Gaussian set to the 2- and p-quadratures
of mode A, where the variance of the signal is 2(z3) = 2(p2) = Vs. She then sends mode
A to Bob who is tasked with gaining as much information about the signal as possible.
Assuming Charlie collaborates, Bob now has all three modes and can use them in any way
to decode the signal with maximum efficiency. Bob’s first step is to superimpose modes
B and C on an unbalanced beamsplitter with transmission 77 where 17 + Ry = 1. After
this, the quadratures of the modes have been transformed as &'y » = VT1dp,c+tvVRidce B,
where @ = x, p. This beamsplitter has the result of localising the three-mode entanglement
between modes A and BC' to two-mode entanglement between mode A and B. Bob then
measures the p-quadrature of mode C’ with outcome p and displaces the mode B’ by
Py — D’ + gp, where the gain g is chosen to maximise the capacity of the scheme. This
measurement and displacement further strengthens the entanglement between modes A
and B’ to aid with the decoding capacity. Finally, Bob superimposes modes A and B’ on a
second unbalanced beamsplitter with transmissivity T» where T5 + Ro = 1, and measures
the Z-quadrature of output mode A and the p-quadrature of output mode B.

The capacity for this channel is calculated using the formula for channel capacity of
a state with Gaussian distributed signal of power S, and Gaussian distributed noise of
power N, C = (1/2)In(1+ S/N) [187]. In this scheme there are two measurements giving
information about different signals, so the channel capacity is

1 Vs Vs

where N, are the variances of the noises in the measured quadratures normalised by
the attenuation the measured signal has experienced from the second beamsplitter. This
noise can be calculated by calculating the quadratures at the end of the scheme. For the
entanglement from discord scheme the normalised noises in the measured quadratures are
found to be

oo (L [RiRe) (1 Ry JRi
In=1y,e <ﬁ+ 2T2>”<\/§“/T2 V5 VT

0 [TiRo . (o)( 1 R1R2>
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=l (G (Va5 ) ) oy (v -avm)
+4@)<;2+v€i<vq?+gv@;>>, (4.24)

where r is the squeezing parameter, T is the correlated displacement and xEO), pl(-o) are the

vacuum quadratures of mode i. These are connected to N, by 2(23) = Ny, 2(p%) =
N,. Similar expressions for the noise can be found for the entanglement distribution by
separable states scheme.

The behaviour of channel capacity against maximal average photon number is the

quantity that is of most interest. In this case, mode A after the signal is encoded is the
most intense mode travelling through the channel. The average photon number 7 of a
beam is given by [1706]
Vi+Voe 1
B
where V. _ are the variances of the two quadratures. For the entanglement from discord
scheme, called protocol 1 from now on, the noise from correlated displacements is chosen
to be as small as possible while still retaining the relevant separability properties, so
2(z?) = 1 — e~ ?". For the entanglement distribution scheme I consider two cases for the
noise from the correlated displacements. The first is the case where the noise is at its
smallest value such that mode C' is separable from modes AB after the first beamsplitter,
2(x?) = 2(p?) = e®" — 1, called protocol 2 from now on. The second case is that where the
noise is just large enough to destroy the squeezing before the first beamsplitter, 2(z2) =
2(p?) = 1—e~2" called protocol 3. In this second case, the state after the first beamsplitter
has the same entanglement properties as the state from the entanglement from discord
scheme. This gives three different schemes that have average photon number

n =

(4.25)

AV et -1
= . :

2V + 2% 472" — 3
= 1 ,

2V +er -1
= 1 ,

ni

no ns (4.26)
where n; is the average photon number for protocol 1, ne is the average photon number
for protocol 2, and ng is the average photon number for protocol 3.

The capacity of the different schemes is calculated by numerically maximising Eq.
at fixed average photon number for each of the schemes. The maximisation is
carried out over r, Vi, T1 2 and g, and the results are plotted for varying photon number
in Fig. The results for the different protocols are shown alongside the capacity for
coherent state communication with heterodyne detection C°" = log,(1 + ) [227] and
squeezed state communication with homodyne detection C*7 = log, (1 +27) [227]. O is
the maximum information that can be decoded without any squeezing or nonclassicality,
so anything above this line is evidence of dense coding. As can be seen, the capacity of
each of the protocols exceeds the classical capacity for sufficiently high photon number. C*
exceeds C" for 7 > 0.36, and C?3 exceed C°" for i > 0.44; therefore each of these states
is suitable for collaborative dense coding. In fact, C® even exceeds C*¢ for sufficiently high
photon number n > 11.28, which is a similar result to the capacity of controlled dense
coding in [125]. In that case the dense coding was achieved using a pure three-mode
state. Here, I have shown that even if there is a lot of additional noise at the start of the
protocol, the correct decoding procedure can still achieve a high channel capacity. Note
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Figure 4.5: Solid coloured lines: channel capacities C', C? and C?® for protocols 1, 2 and 3.
Dashed lines: channel capacities for protocols 1 and 3 with no interference between modes B and
C. Black lines: €9, C°" are the capacities of squeezed and coherent state communication.

that to achieve a capacity beyond C°" using this method, there must be entanglement
between the two modes before the final beamsplitter (if the signal is ignored).

The dashed lines in Fig. show the case where mode B is measured and the results
fed forward, but modes B and C never interfere (77 = 0 in Fig. . For protocol 1, the
capacity in this case exceeds C°" when 7 > 1.38, and for protocol 3 the capacity exceeds
Cc" when 7 > 1.46. However for protocol 2 measurement on mode B without interference
can never exceed the classical capacity. This is because the state is separable across the
C|AB bipartition, and measurement and feed-forward of results on mode B is an LOCC
operation that can never increase entanglement. This means modes A and C' are separable,
so the capacity can never exceed the coherent state capacity. The other two capacities do
exceed C°" because measurement and feed-forwarding can localise entanglement between
two modes. This is only possible if there is entanglement across at least two of the three
bipartitions.

From Fig. it is clear that the capacities of the protocols obey the hierarchy C3 >
C? > C" for all values of . It is clear that C3 exceeds C? because the added noise is
lower in protocol 3 than in protocol 2. These capacities are both greater than C' because
protocols 2 and 3 involve squeezing in both quadratures, whereas protocol 1 only has
squeezing in a single quadrature. This additional squeezing increases the photon number
of the state, but the benefit to the capacity of having squeezing in both quadratures
exceeds this cost. In addition the squeezing in both quadratures means that measurement
of the Z- and p-quadratures reveals the same amount of information, whereas in protocol
1 more information is gained about the Z-quadrature. This symmetric decoding is more
efficient, which contributes to the increased capacity of protocols 2 and 3.

It is also worth noting the importance of the first beamsplitter interaction for the
performance of collaborative dense coding. If a signal was encoded into mode A before
the first beamsplitter, the coherent capacity cannot be beaten. This is because the signal
is not encoded on to part of an entangled state, so dense coding is not possible. Finally, it
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is important to note that the absence of any of the modes in any of the protocols, makes
it impossible to achieve a capacity greater than C" without any additional quantum
resources. This is because all the entanglement is three-mode entanglement, and so it
requires collaboration of all three parties to achieve dense coding.

4.4 Summary of Chapter 4

In this chapter I have discussed two protocols that demonstrate the entangling power of a
beamsplitter. In each of them, entanglement has been created by mixing two uncorrelated
classical beams on a beamsplitter, with entanglement emerging between at least one of
the output modes and the remaining two. For the scheme to work, the state before the
beamsplitter must have some global nonclassicality, quantified by global squeezing, and it
must also possess quantum discord between the modes, while remaining fully separable.
This shows the importance of each of these classifications of nonclassicality. Although it is
global squeezing that is converted into entanglement, discord has to be there to ensure that
the state possesses some correlations before the entangling beamsplitter. Interestingly,
I have shown that there are some common classes of two-mode states that are never
nonclassical and separable at the same time. However it seems likely that for states that
are more mixed, the window in which states can be both nonclassical and separable is
bigger. I also discussed how the beamsplitter is used in these protocols to transform
between the different classes of three-mode entanglement.

Finally, I have demonstrated an application for these protocols in the form of collabo-
rative dense coding. To use the three-mode entanglement for dense coding all three parties
must work together. To do this the power of a beamsplitter is further demonstrated as
it’s used to localise the three-mode entanglement into two-mode entanglement that can
be used for dense coding.
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A signature provides a method that ensures the authorship of a message and guarantees
the integrity of its content. There have been many examples throughout history, from the
wax seal of the middle ages to the chip-and-pin system today. One obvious example of a
signature is the one on the back of your credit card or in your chequebook. Ideally this
can only be produced by you, so anything bearing this signature must have originated
from you. However the obvious problem with this is that anyone can observe the exact
signature, and so a skilled forger can recreate it almost exactly. Therefore the importance
of securing signatures against forgery is clear to see.

Recently, as more and more communication occurs online, digital signatures have be-
come prevalent. These are based on the same principle as other signatures but can be
transmitted through the use of computers. However currently used classical digital signa-
ture schemes are only secure if one assumes that an adversary has limited computational
power. At the moment, this assumption is probably safe, but with the advent of quantum
computers many currently used schemes would become immediately insecure. This leads
to the requirement for signature schemes that are unconditionally secure, and one possi-
bility for this is a quantum digital signature (QDS). The security of QDS schemes is based
on the fundamental principles of quantum mechanics and therefore provides unconditional
security. The security of QDS is based on the same principles as security in quantum key
distribution (QKD), in particular the non-orthogonality of quantum states.

In this chapter I introduce the properties of a signature scheme and briefly describe
currently used classical digital signatures. I give an overview of work done so far on quan-
tum digital signatures, focussing on the differences between schemes. I then introduce a
protocol that provides a secure quantum digital signature through the use of homodyne
detection, and describe its experimental implementation. Finally, I compare the per-
formance of this scheme with previous work that uses discrete measurement techniques,
showing that homodyne detection provides an advantage.
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5.1 Introduction to signatures

Digital signature protocols, introduced by Diffie and Hellman in 1976 [58], aim to guarantee
the author of a message and also its content. In addition, if one party accepts a signed
message, he must be sure that a future party will also accept the message. To be considered
secure a signature scheme must satisfy three properties [200]:

1. Unforgeability: Only the creator of the signature can send a message and have it
successfully accepted as being genuine.

2. Non-repudiation: Once a message is signed, the signer cannot deny that the message
originated from them.

3. Transferability: If someone accepts a signature, he must be confident that any future
recipients will also accept the message. He must be sure of this without the need to
interact with any other party.

In what follows, I restrict to the simplest case with three parties involved in the signature
scheme, a distributor Alice and two recipients Bob and Charlie. Alice will send a signed
message first to Bob, who then forwards the signed message to Charlie. In the three-party
setting, the notions of non-repudiation and transferability are equivalent. In contrast to
the case for QKD, where Alice and Bob are assumed to be honest, in a signature protocol
any of the involved parties could be dishonest. In analogy to a signature on a cheque,
Alice is the owner of the cheque and wishes to pay Bob, who wants to bring the cheque
to Charlie, the bank. When Bob receives the cheque he must be sure that the bank will
also accept it; this is transferability. When Charlie (the bank) receives the cheque from
Bob, he must be sure that the cheque was signed by Alice; this is unforgeability. Recent
work has began to extend QDS to more than three parties [12], but this adds additional
complications, e.g. how to deal with colluding adversaries and dispute resolution.

In the case of a conventional handwritten signature, Alice has previously distributed
her signature to the other parties before sending the message some time in the future.
In both classical and quantum digital signature schemes, there are also two stages, a
distribution and messaging stage. In both cases the distribution stage will often be in the
form of public key distribution, where all parties are assumed to have access to the public
key. In the messaging stage Alice sends her message along with a signature, or private key.
All other parties can compare the private key to the public key to verify the signature,
but it is impossible to determine the private key from the public key, so only Alice could
have signed the message with the private key. Security of this form is often based on a
one-way function that converts a private key to a public key. From the private key, the
function can easily be used to calculate the public key, however given the public key it is
almost impossible to determine the private key.

5.2 Previous digital signature protocols

5.2.1 Classical signature schemes

Most commonly used classical signature schemes are based on one-way functions. An
example of a one-way function is prime factorisation; given two prime numbers it is easy
to calculate their product, but it is computationally difficult to calculate the prime factors
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from their product. This provides the idea behind the Rivest-Adleman-Shamir (RSA)
encryption scheme [161], where the product of two prime numbers is the public key, and
the prime factors are the private key. Any honest party with access to the correct public
key will agree on the result, thus confirming transferability of the message. Only the author
of the public key could have access to the private key, thus confirming that the signature
cannot be forged. Other classical signature schemes that follow the same principle as
the RSA scheme are the digital signature algorithm (DSA) [68] and the elliptic curve
digital signature algorithm (ECDSA) [126]. Instead of using prime factorisation, these
schemes make use of the assumed computational difficulty of finding discrete logarithms.
Interestingly, it has been shown that RSA, DSA and ECDSA can all be efficiently broken
by quantum computers [I89]. This means that all these schemes will be insecure in a
world with quantum computers, making it necessary to develop new signature schemes.

A similar cryptographic tool to one-way functions are hash functions, which can also
be used for digital signature schemes. Hash functions are essentially functions that map
a longer message = to a shorter string h(x), called a hash. To be useful for a signature
scheme, the hash function h(z) must also satisfy the following properties [161]:

1. Given h(z) it must be difficult to find z, i.e., the hash function is a one-way function.
2. Given z; it should be difficult to find x5 such that h(z1) = h(x2).

3. It should be difficult to find any distinct pair 1, x2 such that h(z1) = h(z2).

These hash functions only provide computational security since there are no known one-
way functions that are provably more difficult to invert than compute.

Currently existing quantum digital signature schemes are closely related to hash-based
signature schemes. Lamport [I35] introduced a one-time signature scheme that is com-
putationally secure and uses a hash function that satisfies the above properties. Most
importantly, for the chosen hash function there must be a sufficiently low probability that
two different inputs will map to the same output. For example if Alice wants to send a
signed bit in the future she can choose two random inputs kg, k1 and apply the suitable
hash function f. The public key is {(0, f(ko)), (1, f(k1)}. Assuming the hash function
has been correctly chosen to be one-way, it is impossible for a forger to identify kg or k;
given the public key. If Alice wants to send a signed message b, she will send (b, k), and
the recipient will apply f to ks, accepting the message only if f(k;) matches the previ-
ously distributed public key. After the message, kj is known so the public key has to be
discarded, making this a one-time signature scheme. Merkle [149] extended the one-time
signature scheme so it can be reused, however it can still only be used a limited number
of times before it loses its security. Due to this inefficiency, hash functions have mostly
been ignored in favour of ECDSA-based digital signature schemes. However hash based
signature schemes are gaining popularity since a quantum algorithm has not yet been
found to break them [§].

5.2.2 Quantum one-way function

All currently used classical digital signature schemes rely on computational security [§]
and could therefore be broken by a quantum computer given enough time. However in
quantum mechanics there are provably secure one-way functions, so signature schemes
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based on such quantum one-way functions can have information-theoretic security and
remain secure, even against attacks from quantum computers.

Gottesman and Chuang [92] proposed a signature scheme based on a quantum analogue
of the Lamport-Diffie one-time signature scheme described in the previous section. This
scheme makes use of a quantum one-way function f that converts classical information
k into a quantum state [ig). The |¢y) for different values of k£ must be non-orthogonal
to each other for this to be a secure one-way function. The classical information & fully
describes the quantum state [¢y), and it is easy to prepare |y) given k. However due to
Holevo’s theorem [110], it is impossible to determine the exact state of |¢), and therefore
k, given a copy of the quantum state |¢). Therefore f(k) = |¢y) provides a one-way
function that is provably secure due to the laws of quantum mechanics. The basis of
the security against forgery comes from the fact that the possible [1x) come from a non-
orthogonal set. This makes it impossible to identify which state |¢;) was prepared without
prior knowledge of k. By making the signature a long string of such states it can be made
arbitrarily unlikely that a forger has sufficient knowledge about {k} to successfully forge.

A signature scheme based on a quantum one-way function is therefore possible and
most QDS schemes are based on this idea. They only differ in what states [ix) they
use, how they secure against repudiation, and how they verify the signature. In the next
section I describe how QDS schemes have developed to where they are today. So far most
work has focussed on QDS schemes that assume authenticated quantum channels between
participants, however recently steps have been taken to loosen this assumption [9], and
this is described in Section

5.2.3 Quantum digital signature schemes

In this section I describe the most important developments in QDS in the last fifteen years.
I leave a more complete description of a QDS protocol and security analysis for Section
here focussing on the differences between different schemes.

Original idea

In 2001, Gottesman and Chuang [92] introduced the idea of quantum digital signatures
based on a one-way function that converts classical information into quantum states. The
exact quantum states used to make up the signature are not overly important; as long as
the chosen states are non-orthogonal, the signature will be secure against forgery. This is
because Holevo’s theorem [I10] limits the amount of information an eavesdropper can gain
about an n-qubit state, |¢,) = 212281 a;li), to Tn bits, where T is the number of copies
of |1,,) available. As long as the total amount of information needed to fully describe the
state L > Tn, the scheme will be secure against forgery for a sufficiently long string of

n-qubit states.

To secure against repudiation and transferability, Gottesman and Chuang use a SWAP
test [30] to ensure that Bob and Charlie are given the same quantum states by Alice. A
SWAP test is a way to compare two quantum states |fx) and |fi) to test if they are the
same. The states |f) are |fy/) are prepared along with a single ancilla qubit in the state
(|0) +11))/v/2. These states are passed through a Fredkin gate that performs a controlled
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swap on the states, where the ancilla is the control. This causes the transformation

j§|fk>|fk/><o> + 1)) — \}5

The ancilla mode is then passed through a Hadamard gate. This transforms the state to

(F)lFu)10) + | fi) Fi) 1)) - (5.1)

((F L) + L)L) + ([ fd [ frr) = [Fr) [FD)1)) - (5.2)

N |

Clearly, if the two states are the same a measurement on the ancilla mode will never give
the state |1), so a measurement of |0) is considered to pass the SWAP test. Given realistic
imperfections, the SWAP test will fail sometimes even if the states are the same, so in
reality some limit is set on the number of failures that can occur before the SWAP test is
failed.

Bob and Charlie use this SWAP test to guard against repudiation in the following
way. Alice distributes two copies of each public key to Bob and Charlie. Bob and Charlie
each perform a SWAP test on their two keys to ensure that they are the same. If they
both succeed, one of them (say Charlie) passes one of his keys to the other (Bob), who
performs a SWAP on the received state and one of his copies. If the SWAP test passes Bob
and Charlie know they have the same states. The crucial point is that Bob and Charlie’s
shared state is symmetric from the point of view of Alice, so there is nothing she can do
to make it more likely for one to fail than the other. If the second recipient uses a looser
criterion to accept the signature than the first recipient, this guards against repudiation
by Alice, and guarantees transferability.

In the messaging stage, Alice sends the classical information about the public key
along with a message to Bob. Bob uses this information to prepare the quantum state
described by the classical information. To authenticate the message Bob uses a SWAP test
to ensure it is the same as the original public key. If the number of discrepencies is below
some threshold he accepts the message and forwards to Charlie, who uses a SWAP test to
check the signature. This method has the obvious drawback that it requires a long-term
quantum memory, especially since there will often be a long time between distributing the
public key and signing the message. However it provides a template for a QDS scheme
that future protocols have followed with only minor adjustments.

Quantum digital signatures with linear optics

Apart from the problem of quantum memory, the above signature scheme is complicated
by the difficulty to implement the SWAP test. This was improved upon by Andersson et
al. [I0] who described a QDS protocol involving linear optics and coherent states. Rather
than qubits, the public key is made up of phase-encoded coherent states, and the private
key is the phases of the individual coherent states. Security against forgery follows from
the fact that the coherent states are non-orthogonal so a forger can never perfectly identify
the phases of the coherent states.

Verification of the signature is achieved by determining whether two coherent states
are different from each other. In the messaging stage, Alice distributes her private key
containing the phases of the coherent states in the public key. The recipient Bob can easily
prepare the appropriate coherent states |3) and compare with the states |a) he received
during the distribution of the public key. This is done by passing the two states through
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Figure 5.1: A multiport used to symmetrise the states received by Bob and Charlie. BS: balanced
beamsplitter. Bob (Charlie) splits the state they received from Alice on a balanced beamsplitter,
keeping one of the outputs and sending the other to Charlie (Bob). Bob (Charlie) compares the
half he kept with the half he received from Charlie (Bob) to compare that they are the same.
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a balanced beamsplitter, after which the outputs of the beamsplitter will be |(a + 3)/v/2)
and |(a— 8)/v/2). Therefore if the states are the same there will be no photons present in
the “dark” port, so any clicks in that output indicate that the states were not the same.
As long as the number of mismatches is lower than a certain threshold, the signature is
accepted.

Security against repudiation is again provided by symmetrising the states held by Bob
and Charlie. Rather than a SWAP test, this is done using a multiport shown in Fig.
No matter what states Alice sends to Bob and Charlie, the output ports labelled [14) will
have the same output. If Alice sends the same states (as in the figure), the other ports
will be “dark” so any photons detected there indicate that the states were not the same
or there has been some attack on the multiport. This guarantees that the state held by
Bob and Charlie is symmetric from Alice’s point of view so there is nothing she can do to
make repudiation likely.

A proof-of-principle experiment was implemented to demonstrate this idea by Clarke et
al. [45]. As signature states they used phase-encoded coherent states, and secured against
repudiation using a multiport. The phase-encoded coherent states were chosen from a
variety of sets, ranging from 2 to 32 possible phases. They got around the requirement
for quantum memory by sending the state produced by the private key at the same time
as the public key. However in a realistic signature protocol, there can often be weeks or
even longer between distribution of a public key and signing of a message. It is clearly
infeasible with current technology to achieve memories of this length, so a QDS protocol
that doesn’t require quantum memory is needed for a practical signature scheme.

Quantum digital signatures without quantum memory

Dunjko et al. [61] proposed a method that allows quantum digital signatures to be achieved
without the need for quantum memory. Instead of storing the states making up the
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Figure 5.2: (a) Unambiguous state discrimination. The state |¢) received from Alice is mixed
on a balanced beamsplitter with the coherent state |a). If a photon is detected in the upper arm,
it is concluded that |¢) is not |-a), and if a photon is detected in the lower arm the state |t¢)
is not |a). (b) Unambiguous state elimination. The state [¢)) received from Alice is split on a
balanced beamsplitter. One output is mixed on another balanced beamsplitter with |«), and the
other output is mixed on another balanced beamsplitter with |i). For each of the outputs at
which a photon is detected, one of the states is eliminated.

public key, they suggested immediately measuring the states on receipt. In the messaging
stage the measurement results are compared with the signature to determine whether the
message is genuine. This works because a forger will inevitably have errors when he tries
to forge a signature, so the measurement results will be better correlated with Alice’s
signature than it could ever be with a forger’s. Security against repudiation is again
achieved using a multiport.

The protocol involves two identical strings of coherent states, where each element is
randomly chosen by Alice to be either |a) or | — «). They are sent through a multiport to
Bob and Charlie who immediately measure the received states using unambiguous state
discrimination (USD) [122, 57, [165]. In this case USD is performed as in Fig. [5.2 (a) [16]
by mixing the received states [¢)) on a balanced beamsplitter with the state |«). Using
this method some elements of the public key can be determined perfectly. This comes at
the cost of gaining no information about other elements. The elements for which a result
is known are used to check the authenticity of a later received signature.

Collins et al. [48] implemented an experiment demonstrating a QDS scheme without
quantum memory based on the above protocol. They used as the signature states the
set {|a), |-a), [ia), |-ia) }, and as a measurement procedure unambiguous state elimination
(USE) [18, [I7] rather than USD. A procedure for USE is shown in Fig. (b) and
works in much the same way as USD but not all incorrect states have to be eliminated
to get a result. Every photon detection event allows one state to be eliminated, and this
infromation can be used to check the signature. Using this method they were able to
demonstrate a signature scheme that works without quantum memory, but the required
signature length was about L = 10 to sign a single bit with a security level of 0.01%.
Although this length is impractical, this experiment demonstrates that quantum signatures
are realisable with current technology.
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Quantum digital signatures without a multiport

In the protocol described above, one of the biggest sources of loss was the multiport used
to symmetrise the state. These losses become particularly pronounced as the distance
between the two recipients increases. Wallden et al. [215] have proposed a QDS procedure
that removes the requirement for a multiport. They show that rather than symmetrising
the quantum state between Bob and Charlie, it is sufficient to symmetrise the measurement
results. Bob and Charlie achieve this by randomly forwarding half of their measurement
results to the other party, secretly from Alice. This could be achieved, for example,
using a standard QKD link. In this way, the measurement results they use to check the
signature are symmetric from Alice’s point of view so she cannot cause repudiation. They
demonstrate this using BB84 states [20], however the same principle holds for phase-
encoded coherent states.

Donaldson et al. [59] performed an experiment similar to the one in [48], but with the
symmetrisation procedure carried out by swapping measurement results rather than using
a multiport. Using this and some other improvements, the signature length required to
sign a one-bit message at a security level of 0.01% is L ~ 4 x 10°. This length is much
more practical and means that a one-bit message could be signed in about 40 seconds,
however there is still a lot of progress to be made before quantum digital signatures can
compete with their classical counterparts.

In [215], it was also shown that a QDS protocol can be realised using classical secret
keys distributed over a QKD link. However this is unlikely to be the most efficient way
to produce quantum signatures, because a QDS scheme is similar to a QKD scheme but
without the requirement to perform reconciliation and privacy amplification. One effect
of this is that QDS schemes can be implemented at loss levels where QKD can no longer
be performed [9].

5.3 Quantum digital signatures with homodyne measure-
ment

In previous quantum signature schemes, recipients use unambiguous quantum measure-
ments, such as unambiguous state discrimination [61] or unambiguous state elimination
[48], to obtain information about the distributed quantum state sequences. The measure-
ment records are later, in the messaging stage, checked against the signature received with
the message. In the ideal case, the unambiguous nature of the measurements means that
any mismatches can be attributed to a malicious party, and the signature can be rejected.
More realistically, however, there are always some errors, which means that messages will
be accepted if the number of mismatches lies below some threshold. A disadvantage of
unambiguous measurements is that a lot of the time they produce no result. Therefore,
using some other type of measurement, which more often produces a result, could be ad-
vantageous. The increased detection rate, however, comes at the cost of an increased error
rate. It is therefore of interest to investigate whether or not this leads to a more efficient
scheme in practice.

In this section, I describe a quantum signature scheme that uses continuous variable
(CV) quantum homodyne detection instead of single photon detectors. Similar to before,
the measurement is performed as soon as the state is received, meaning no quantum mem-
ory is necessary, and the measurement results are used to eliminate some of the possible
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Figure 5.3: Depiction of the scheme. The numbered parts relate to the corresponding stages
in the main text. Green dashed lines indicate classical communication. Red/blue lines indicate
communication with quantum states.

states sent. In contrast to previous schemes, the continuous nature of homodyne detection
makes it impossible to eliminate any state with certainty. Instead, it can only be said that
it is less likely to be one state than another. For this reason, this measurement technique
is called “ambiguous state elimination”. Even with this ambiguity it is possible to perform
a quantum signature scheme, because a forger will always have more mismatches with the
measurement results than the author of the signature. Security against repudiation is
guaranteed by swapping measurement results in the same way as in [215].

5.3.1 Description of the protocol

The protocol for quantum digital signatures using homodyne measurement is described
below and represented in Fig. and follows the template of the QDS protocol in [215]

Distribution stage: 1-4

1. For each possible future one-bit message k = 0,1, Alice generates two identical copies
of sequences of phase-encoded coherent states, QuantSigy = ®ZL:1|¢II‘3><¢II‘3|, where |2/)lk> is
a randomly chosen phase-encoded coherent state, Wf} = |aei¢f), (ﬁf € {0, /2, 7, 37 /2},
and L is a suitably chosen integer. The state QuantSigs is called the quantum signature,
and the sequence of phases PrivKeyy = (qﬁ’f, ¢’Z) is called the private key.

2. Alice sends one copy of QuantSigy, to Bob and one to Charlie, for each possible message
k=0and k =1.

3. Bob (Charlie) measures the states received from Alice by performing homodyne detec-
tion [137] in both the Z- and p-quadrature. He records the result of the measurement and
the associated position in the sequence [. For each quadrature, the sign of the measured
result determines which state is eliminated. For example if a positive result is measured,
then the state | — ) or | — i« is eliminated, depending on the measured quadrature. In
this way, Bob (Charlie) eliminates two states, one in each quadrature, for each signature
element. The sequences of eliminated states will be used to verify a later message and is
called the eliminated signature.

4. Symmetrisation: Bob (Charlie), for each element [ of QuantSigy, randomly chooses
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with equal probability to either forward the measurement results and position to Charlie
(Bob) or not, secret from Alice, who should not learn the positions of the forwarded results.
The resulting sequences of measurement outcomes, after the forwarding procedure, form
Bob’s and Charlie’s “eliminated signatures”. Bob (Charlie) keeps the results obtained
directly from Alice, and the results forwarded to him by Charlie (Bob) separate. Therefore,
he has an eliminated signature in two parts, each of length L/2.

The homodyne measurement will, even in the ideal case, eliminate the sent state
some of the time. If everybody follows the protocol, the probability that this happens
depends on the overlap of the coherent states and thus on their amplitude, and is peqr =
%erfc (a / \/Q) in the ideal case with no loss or experimental imperfections, where erfc(x)
is the complementary error function. For o = 0, this probability equals one half, and
as « increases, it quickly drops towards zero. Due to these fundamentally unavoidable
errors, this measurement protocol is an example of “ambiguous state elimination”. Since
measurements are performed immediately on receipt of the states, no quantum memory
is required, just as in [48], 61].

Messaging stage: 5-7
5. To send a signed one-bit message m, Alice sends (m, PrivKey,,) to Bob.

6. Bob checks whether (m, PrivKey,,) matches both parts of his stored eliminated sig-
nature by counting how many elements of Alice’s private key were eliminated during the
distribution stage. If there are fewer than s, L/2 mismatches in each of the two parts of his
eliminated signature, where s, is the authentication threshold, Bob accepts the message
and forwards it to Charlie.

7. Charlie tests for mismatches in the same way as Bob, but with a higher verification

threshold s,, to protect against repudiation. Charlie accepts the message if there are

fewer than s,L/2 mismatches in each of the two parts of his eliminated signature, with
1

Perr < Sg < 8y < 5-

Essentially, the security of this protocol comes from two main effects. First, it is
impossible for a forger to perfectly determine the signature states since they come from
a non-orthogonal set. Therefore the distributor Alice always has an advantage over any
other party. Second, the forwarding of measurement results ensures that, from Alice’s per-
spective, Bob’s and Charlie’s measurement records follow the same statistics. This means
that if Charlie uses a higher verification threshold s, than Bob’s authentication threshold
Sq, then Alice’s probability to repudiate can be made arbitrarily small by choosing the
signature length L large enough. A detailed security analysis for individual forging attacks
and repudiation is found in the following section.

Note that it is important for Bob and Charlie to keep the two halves of their measure-
ment results separate. If Bob tries to forge a message to Charlie, he can ensure that, for
the measurement results he forwarded to Charlie, there are no errors between the forged
signature and Charlie’s measurement results. At some level of loss, the number of mis-
matches in a forged signature of length L /2 is less than for a genuine signature of length L,
so the signature scheme would be insecure beyond that loss level. This is guarded against
by testing each part of the signature separately, and the signature is only accepted if both
halves pass the test. Essentially, the results Charlie received directly from Alice guard
against forgery by Bob, and the measurement results he received from Bob guard against
repudiation.
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5.3.2 Security analysis

A quantum digital signature scheme must be secure against both repudiation and forgery.
The scheme is secure if the probability that the signature can be repudiated or forged
decays exponentially with the length of the key. In addition, the scheme should be robust,
which means that if all parties behave as they should, the protocol runs as intended with
high probability. The analysis below follows the same methods as in [59].

Security against repudiation: For successful repudiation, Charlie must reject a mes-
sage that Bob has already accepted. Due to the random swapping of measurement results
between Bob and Charlie, the measurement statistics they share are symmetric, which
provides security against repudiation. No matter what cheating strategy Alice adopts,
including strategies involving entangled states, Bob and Charlie will have the same proba-
bility p to observe a mismatch in the messaging stage. Alice has control over p, but cannot
cause a difference between Bob’s and Charlie’s measurement statistics.

To achieve successful repudiation, Alice can manipulate the states sent to Bob and
Charlie to try to cause a disagreement between them. Alice has full control over the
probability of a mismatch between the private key and Bob’s and Charlie’s eliminated
signatures. The probability of a mismatch is called pp for states first sent to Bob, and pco
for states first sent to Charlie.

For successful repudiation, Bob must accept the message for both length L/2 parts of
his signature and Charlie has to reject the message in at least one part of his signature.
Since P(AN B) < min{P(A), P(B)} and P(AU B) < P(A) + P(B), we can write

Prep = P((AN B) N (C' U D)) < min{min{ P(A), P(B)}, P(C) + P(D)}, (5.3)

where P(A) (P(B)) is the probability that Bob will accept the message using the L/2
states received from Alice (Charlie), and P(C) (P(D)) is the probability that Charlie will
reject the message due to the L/2 states received from Bob (Alice).

Using Hoeffding’s inequalities [107], which bound the probability that the empirical
mean of L independent random variables deviates from their expected mean, the proba-
bilities, P(A) and P(B), that Bob will accept the message, for the length L/2 parts of his
eliminated signature received from Alice and Charlie respectively, are

P(A) < exp[—(ps — s4)’L], P(B) < exp|—(pc — sa)’L], (5.4)

where s, is the authentication threshold. Similarly, the probabilities P(C') and P(D) that
Charlie will reject the message for the length L/2 parts of his eliminated signature received
from Bob and Alice respectively are

P(C) < exp[—(sy —pB)2L], P(D) < exp|—(s, — pc)?L], (5.5)

where s, is the verification threshold and s, > s,.

Now we can take p = max{pg,pc}. In that case exp[—(p—s,)?L] = min{P(A), P(B)}.
In addition, 2 exp[—(s, — p)2L] > P(C) + P(D). Combining these two equations with Eq.

(5.3), we get

Prep < min{2exp[—(p — sa)2L], 2 exp[—(sy — p)2L]}, (5.6)

where the first term in the minima has been doubled for simplicity, noting that this slightly

91



Chapter 5. Quantum Digital Signatures

loosens the tightness of the bound on the repudiation probability.

Alice’s optimal choice of p is the one that maximises the smaller of these two terms,
that is, p = % With this choice, her repudiation probability is bounded as

o2
Prep < 2exp [—(8”43“)4 : (5.7)

This decays exponentially with the length of the signature and thus the scheme is secure
against repudiation.

Security against forging: Since s, > sq, it is easier to forge a message that is claimed
to be forwarded, than one that is claimed to come directly from Alice. Bounding the
probability for the former also bounds the probability for the latter. Therefore, we will
consider the case where Bob attempts to forge a message that he is forwarding to Charlie,
claiming he received it from Alice. Since the protocol is symmetric with respect to the
two recipients Bob and Charlie, this also bounds Charlie’s probability to forge messages.

To successfully forge, Bob must ensure that he doesn’t, in the messaging stage, declare
any of the states that Charlie has eliminated, with fewer than s,L/2 errors in each length
L/2 part of Charlie’s eliminated signature. Since Bob can control what he forwards to
Charlie in the distribution stage, Bob can completely control the number of mismatches for
these positions. If he so wishes, he can cause no mismatches in those positions. Therefore
it is the measurement results which Charlie did not forward to Bob that Bob has to try to
guess. The measurement results Charlie received through Bob are used to protect against
repudiation, whereas the measurement results Charlie obtained for states directly received
from Alice are used to test for forgery by Bob, and vice versa.

Assuming that Bob cannot interfere with the quantum states which Alice sends to
Charlie, Bob’s best forging strategy will involve measurements on the copies of these
states that Bob legitimately received from Alice. Based on this, Bob will make a best
guess when later declaring to Charlie what these states supposedly were. The optimal
measurement Bob should make to forge is limited only by what is possible in quantum
mechanics, not by any considerations of what measurements are practical to realise, and
is not the same measurement as he would make if honestly following the protocol.

The fact that the possible states Alice can send are non-orthogonal provides the ba-
sis of the security of the scheme. As in [48], the optimal individual measurement Bob
can perform is a minimum-cost measurement, minimising Bob’s “cost” associated with
mismatches. Since the states sent by Alice are uncorrelated with each other, collective
forging strategies, where measurements on successive signature states can depend on the
results obtained in previous measurements, provide no advantage over individual forging
strategies, where Bob simply repeats the same optimal measurement for each signature
state [48]. The most general type of forging attack are coherent forging attacks, where
Bob can measure any number of signature states in an entangled basis. While intuitively
the protocol should remain secure also against coherent forging, this analysis is not in
general straightforward. Proof of security against coherent forging attacks is therefore left
for future work, noting that it has been shown that for BB84 signature states, coherent
attacks provide no advantage [214].

To prove security against individual and collective forging, we need to bound Bob’s
minimum cost for a measurement on an individual signature state, which in this case is
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identical to Bob’s probability to cause a mismatch for a single signature element. This is
done following the method in the supplemental material of [59], resulting in a lower bound
on the minimum cost C;y,, depending on the cost matrix, which can be determined either
theoretically or from experimental data, and p;in, which is the minimum probability for
a forger to incorrectly identify a state received from Alice. pn depends on the overlap
of the signature states and is calculated from the eigenvalues of their Gram matrix. For
the states considered here, the minimum probability is [4§]

4
1
Pmin = 1-— T6| Z \ )\i|2, (58)
=1

where A1 o = 2 exp(—a?)[cosh(a?) £ cos(a?)] and A3 4 = 2 exp(—a?)[sinh(a?) £sin(a)?] are
the eigenvalues of the approptiate Gram matrix. Here, we are assuming that the forger
Bob has access to the states Alice sends before any losses or imperfections have acted on
them. This is not true for an honest Charlie, whose measurements on the states is subject
to loss and imperfections.

To find the minimum cost for a forger, the cost matrix is required. In a cost matrix,
the rows correspond to the state sent by Alice, and the columns correspond to the states
eliminated. The entries of the matrix are the probabilities that a state is eliminated for a
given signal state. The cost matrix in the ideal theoretical case where the signature states
are sent through a lossy channel with transmission 7' is

DPerr 1/2 1- Derr 1/2
1/2 DPerr 1/2 1-— DPerr
C = , 5.9
1 — perr 1/2 Perr 1/2 ( )
1/2 1 = perr 1/2 Perr

where pe,, = erfc (ﬁa), and the rows and columns follow the ordering |a), |ia), | —

a),| —ia). Each of the rows adds up to 2 because two states are eliminated every time a
state is sent. A detailed calculation for the minimum cost of an experimental cost matrix is
shown in Section [5.3.3] Essentially, the minimum cost is the probability that a forger will
make an error p,,i,, multiplied by the minimum cost of an error, added to the probability
that the correct state will be eliminated in the absence of a forger p,.. The cost of a
declaration is the difference between the probability that the declared state is eliminated
and the probability that the sent state is eliminated. Combining all this with the cost
matrix in Eq. , the minimum cost is found to be

1
Cmin = Perr + Pmin (2 _perr> . (510)

The probability of a successful forgery is the probability that Charlie measures fewer
than s,L/2 errors in the results for the L/2 states received directly from Alice during
forgery by Bob. Using Hoeffding’s inequalities [107], the probability of a successful forgery
is therefore

Dforg < €XP [—(C’mm - sv)QL] . (5.11)

This probability decays exponentially with respect to signature length as long as Chun >
Sy-
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Robustness: A QDS scheme is only useful if it only fails with small probability. If
all parties are honest, then Bob should accept the message as being genuine, except with
small probability. The message is rejected if Bob detects more than s,L/2 errors in either
of the length L/2 parts of his eliminated signature, which using Hoeffding’s inequalities
occurs with probability

Pfail < 2exp [_(Sa - perr)QL} ) (512)

where pe, is the probability that an honest recipient, following the protocol, will eliminate
the state actually sent by Alice. If, as is normally the case, pe.. for the states sent to Charlie
is different to that for those sent to Bob, then pe,. should be taken as the maximum of
those probabilities. Since Charlie’s rejection threshold is less strict than Bob’s, Charlie’s
rejection probability is much smaller than Bob’s. For the protocol to be robust, we thus
have to choose s, > s4 > Pepr-

Taking everything together, the protocol can be made secure and robust as long as an
honest Charlie is able to distinguish a “fake” declaration by Bob from a declaration made
by Alice, in terms of the average number of mismatches Charlie sees. This occurs when
Bob’s optimum probability to cause a mismatch, Cp,;p, is greater than the probability pey
that Alice’s true declaration will cause a mismatch. Aslong as Cipin > Perr, the thresholds
Su, Sq and the signature length L can be chosen so that the scheme is as secure as desired
against forging and repudiation for all displacement amplitudes.

If it is assumed that all parties are equally likely to be dishonest, then the level of
security can be defined by setting the terms in the exponentials of Egs. (5.7, (5.11)) and
to be equal to each other. This is achieved when s, = perr + (Crnin — Perr)/4, and
Sy = Perr +3(Crmin — Perr) /4. Note that Bob and Charlie can each determine s, and s, only
using their own experimental data. This gives an upper bound for the total probability
for the scheme to fail in any one of these ways of

2
P(failure) < 2exp (—%L) ) (5.13)
where g = Ciin — Perr can be determined from experimental results. The figure of merit
used to characterise the quality of a QDS scheme is the length 2L required to sign a one-bit
message for a particular security level. In this thesis, to facilitate comparison with earlier
realisations [48], 59], the security level chosen is that the probability of failure is < 0.01%.

5.3.3 Experimental implementation

To show that the protocol is feasible with current technology, an experiment was carried
out over a real free-space urban link [I68],[102]. The experiment was performed using Stokes
operators with a bright excitation in the Sy direction. Stokes operators were used because
polarisation is maintained over a free-space channel and the S5 excitation provides an in-
built local oscillator, which aids with homodyne detection. The signal states |+a), |+ia)
were prepared using electro-optical modulators to displace the states in the “dark” (Sl-S’Q)
plane, then repeatedly transmitted through a free-space channel between the buildings of
the Max Planck Institute and the University of Erlangen-Niirnberg [168, 102, 132]. The
length of the channel was approximately 1.6 km. During the measurements the channel
transmission fluctuated between 50 % and 85 % due to scintillation. At the receiver the
signal was split on a balanced beam splitter to measure both the Sy and Sy operators.
Simultaneously, the transmission was recorded for each state. The experiment was imple-
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Figure 5.4: Signature length for & = 0.48. Black curve: theoretical model. Blue dots/bars:
results from the data attributed to Bob. Red triangles/bars: results from the data attributed to
Charlie. The error bars calculated are statistical. The errors naturally increase with decreasing
transmission since g from Eq. decreases. In addition, less data was available at lower
transmission values, as can be seen in the inset histogram, resulting in significantly larger errors.
The data used for each point comes from a small range of transmissions, but horizontal error bars
are omitted for clarity.

mented for three different signal amplitudes, o = 0.48, @ = 0.93, and o = 1.63, and the
first (second) half of the measurement time is attributed to Bob (Charlie). To take into
account the varying transmission, Bob’s (Charlie’s) measurement data was sorted into 32
subchannels according to the measured transmission [168), [102]. Depending on the sign of
the quadrature measurement values, for each signal state, two of the possible sent states
were eliminated.

For each set of data, the sequence of eliminated states was used to produce a cost matrix
[214] that gives the probability that each state was eliminated for a particular signal state.
For each cost matrix, the minimum difference between an off-diagonal element of the cost
matrix (probability of eliminating a “wrong” state) and the diagonal element of that row
(probability of eliminating the sent state) was calculated. This difference was multiplied
by the appropriate p,.;» to obtain the parameter g from for that cost matrix. The
minimum probability that a forger will incorrectly identify the state is ppi, from .
For each g, the signature length 2L to sign a one-bit message with a failure probability
of 0.01% was calculated. In Fig. the length L is plotted against transmission 7" with
T+ R=1 for a = 0.48.

An example of the measured cost matrix is shown with errors below. This matrix is
Bob’s data for o = 0.48 at a transmission level of T'= 0.600 (T+R=1) and is given by

0.3767 0.5028 0.6233 0.4972 0.015 0.019 0.015 0.019

C = 0.4929 0.3682 0.5071 0.6318 4 0.008 0.013 0.008 0.013 (5.14)
0.5979 0.496 0.4021 0.504 0.013 0.019 0.013 0.019 |- '
0.4957 0.6204 0.5043 0.3796 0.014 0.020 0.014 0.020

The above cost matrix can be used to bound the minimum cost of a minimum-cost mea-
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surement performed by a forger, by following the method in the supplemental material of
[48].

To find an analytical bound on the minimum cost, the cost matrix in Eq. is
manipulated to the form of an error-type cost matrix. This is done because the minimum
cost of an error-type cost matrix is proportional to p;n, the minimum probability to
incorrectly identify the state, with the proportionality given by the off-diagonal elements
of the cost matrix. An error-type cost matrix has zeros on the diagonals of the cost
matrix, and all the off-diagonal terms are equal. It is called error-type because a correct
declaration has zero cost, and an incorrect declaration always has the same cost.

To get to this form, two properties of cost matrices are used. First, subtracting a
constant row matrix from a cost matrix reduces the cost by a constant, while leaving the
minimum-cost measurement unchanged. Second, the cost of a cost matrix C;; is lower
bound by the cost of a cost matrix CZ{ ; that is strictly smaller than it Cf, ; < Cij

I define ij = Cj;, a constant row matrix for which the elements in each row are

equal to the diagonal elements of the matrix C; ;. I then define C’,i ;= Cij — C{fj, which
has the same minimum-cost measurement as C; j, but with the minimum cost reduced by
C" = 1/4%,Ci;. Finally 1 define the cost matrix Cf’j that is strictly smaller than Cj
for all 4, 7 such that C’Z{ j = min; CZ(J- for all ¢ # 7, and with zeros on the diagonal. This
final cost matrix Cf,j is of error-type, for which the minimum cost C7lnin is proportional to
the minimum error probability p,,i,. Using this argument the minimum cost of the cost
matrix ((5.14)) can be lower bound as

Cmin > Ch + Cl

min:®

(5.15)

Starting from ([5.14)), the subsequent cost matrices are

0.3767 0.3767 0.3767 0.3767
ch — 0.3682 0.3682 0.3682 0.3682 (5.16)
| 0.4021 0.4021 0.4021 0.4021 |’ '

0.3796 0.3796 0.3796 0.3796

0 0.1261 0.2466 0.1205
0.1247 0 0.1389 0.2636
0.1958 0.0939 0 0.1019 |~
0.1161 0.2408 0.1247 0

0 0.0939 0.0939 0.0939
;| 0.0939 0 0.0939 0.0939
¢ = 0.0939 0.0939 0 0.0939 |~ (5.18)

0.0939 0.0939 0.0939 0

C'= (5.17)

From , C" = 0.3817. This is the cost for an honest scenario; it is the probability
that Charlie will eliminate a state that Alice sent if all parties are honest. From ,
the minimum difference between the probability of eliminating the sent state, and the
probability of eliminating another state is 0.0939. This difference therefore gives the
advantage of declaring the sent state at the messaging stage. The minimum cost for
matrix is the product of that advantage and the minimum probability to incorrectly
identify a state pm,. For this state o = 0.48, so from Eq. , DPmin = 0.4373. The
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Figure 5.5: (a) Signature length for @ = 0.93. (b) Signature length for @ = 1.63. Black curve:
theoretical model. Blue dots/bars: results from the data attributed to Bob. Red triangles/bars:
results from the data attributed to Charlie. The error bars calculated are statistical.

minimum cost of the matrix C; ; is finally
Cin = 0.3817 4+ 0.0939 x 0.4373 = 0.42276, (5.19)
and the parameter g used to calculate the signature length is
g = Chnin — C" = 0.04106. (5.20)

This corresponds to a required signature length of L = 94000 for a security level of 0.01%.

In all experimental graphs, errors in the signature length were calculated using the
statistical errors of the elements in the cost matrices. The errors in the length were
calculated by first adding the errors of the diagonal elements, and subtracting the errors
of the off-diagonal elements. This gives a new cost matrix C’ from which a new parameter
¢’ can be calculated as above, with ¢’ < g. This new ¢’ is then used to calculate a new
length L' > L, which is the worst-case scenario for the required signature length. The
length L’ gives the top of the error bar in Figs. and

Second, the error bars in the diagonal elements are subtracted, and the errors in the
off-diagonal elements are added to give a new cost matrix C” that has a new parameter
g" > g. This new ¢” is then used to calculate a new length L” < L, which gives a best-case
scenario for the required signature length. The length L” is used for the bottom of the
error bar in Figs. [5.4 and 5.5

Note that to ensure the required security when running a full signature protocol, the
longest length L’ should be used for the signature length, as this is the worst case scenario.
This means it is important to minimise the errors in the cost matrix by taking a large
number of measurements to calculate the cost matrix. In this experiment, insufficient data
was available at some transmission levels, which led to the large error bars seen.

The experimental results for « = 0.93 and o = 1.63 are shown in Fig. Increasing
« gives a better cost matrix, but also makes a forger’s guess easier. There is a balance
between these two effects, with the optimal o found by maximising g in Eq. .
This is theoretically predicted to be maximal when o & 0.5, which is supported by the
experimental results.

It is important to compare the performance of this scheme to previous results. The
first realisation of a QDS scheme without quantum memory was in [48]. In that work
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they found that a signature length of about 2L ~ 10'* was required to sign a one-bit
message. Part of the reason this was so high is that there were significant losses in the
multiport and they didn’t use the optimum «. This experiment was improved upon in
[59], where they swapped measurement results instead of using a multiport, and used an
improved value of «, as well as a few other minor changes. With these improvements,
the new signature length required was about 2L ~ 4 x 10°, over four orders of magnitude
better than the previous result. The channel producing this signature length was a 500 m
optical fibre, corresponding to a loss level of about 35 %. However, even with this improved
signature length, it would take about 40s to sign a one-bit message. Both of these previous
experiments were implemented using single-photon detectors, and a large part of the reason
for the high signature length is the inefficiency of such detectors, particularly for low
amplitude states.

For the protocol involving homodyne detection described here, it can be seen from
Fig. that the signature length to sign a one-bit message at a similar loss level is
2L ~ 2 x 10°. This is over four orders of magnitude shorter than for single photon
measurements, demonstrating the great advantage of using homodyne detection. Part
of the advantage comes from the improved efficiency of homodyne detection, but it is
also interesting to ask whether there is also a fundamental advantage of this ambiguous
measurement scheme. To answer this, a theoretical model is needed to compare both
schemes in the ideal theoretical case, which is prvided in the next section.

The current experiment was run at a clock rate of 2.2 MHz, meaning that it takes
approximately 0.1 s to sign a one-bit message, a large improvement on previous work.
There is currently a plan to increase the clock rate into the GHz range, and this isn’t
expected to increase the required signature length. This means that about 10* one-bit
messages could be signed in just 1 s, a vast improvement on previous results and one that
could provide a practically useful signature protocol.

5.3.4 Theoretical models

The decisive factors that determine the required signature length are the minimum error
probability of a forger pmin, and the cost matrix. Since the same states are used for
the schemes based on unambiguous and ambiguous state elimination, any difference in
performance is determined from the cost matrix. The cost matrix for the homodyne
detection scheme is shown in Eq. and the associated minimum cost given in Eq.
(5.10). Therefore the parameter g used to calculate the signature length in Eq. is
g = pmm(% — Derr). Noting that erfc(z) is the complementary error function, and can be
written as erfc(x) = 1—erf(z), where erf(z) is the error function, this can be written as

min T
g= p2 erf<\/2a> (5.21)

A higher g gives a shorter signature length and therefore the optimal « is the one that
gives the highest g. In this case g is maximal when a = 0.5. The black curve calculated
in Fig. [5.6]is plotted by fixing a = 0.5 and calculating L from the resulting g.

I now consider the case where single photon detection is used for unambiguous state
elimination. With no experimental imperfections, the correct state will never be elimi-
nated, and the other states will be eliminated with probability dependent on the overlap
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Figure 5.6: Black (solid) curve: Signature length for an ideal ambiguous measurement scheme.
Red (dotted) curve: Signature length for an ambiguous measurement scheme with realistic im-
perfections. Blue (dot-dashed) curve: Signature length for an ideal unambiguous measurement
scheme.

of the states. The ideal cost matrix is calculated to be
0
) (5.22)

Qo
Qo 3
o 38

q
p
q p
where p = 1 —exp(—Ta?), ¢ = 1 —exp(—Ta?/2). From this, the minimum cost is bounded
as before to be Cihin = pming- Since the diagonal elements are 0, Cp;n = g, and g
is used to calculate the required signature length. Since this protocol follows the same
template as the one involving homodyne detection, the security analysis is the same,
and the signature length can be calculated from ¢ using Eq. . Again, a higher
g gives a shorter signature length and therefore the optimal « is the one that gives the
highest g. The blue curve in Fig. [5.6] is plotted by using the optimal « at each level
of transmission, which in this case is @ ~ 0.7. As can be seen in Fig. the signature
length for homodyne measurements is less than that for single photon measurements. This
is largely because the optimal a for homodyne measurements is smaller, which means a
forger will necessarily make more errors. This shows that ambiguous measurements give
a fundamental advantage over unambiguous state elimination in this case, even though
they result from more errors. Approximately one order of magnitude of the advantage is
due to fundamental reasons, and the remaining three orders of magnitude are due to the
improved technical performance of homodyne detection.

In addition, a theoretical model can be created to take into account realistic exper-
imental imperfections that occur in the homodyne detection scheme. The experimental
imperfections included in the model are: imperfect detection efficiency, additional vari-
ance introduced by the electro-optical modulator, and electronic noise that increases the
variance at the measurement stage. The probability for an operator to be measured with
an opposite sign to its amplitude depends only on its amplitude and variance, and is given
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by

0
Perr = /OO ¢(x)dx = %erfc (%) ) (523)

where V() = (¢?) — (¥)2. Ideally, under loss, the amplitude of a Stokes operator de-
creases linearly with T, and the variance decreases with v/T. By using renormalised Stokes

operators S*; =5 /A/ \(5’3>|, this allows them to be used instead of quadrature operators,

where the amplitude decreases with v/T, and the variance remains constant. However,
when imperfections are included, the amplitude and variance don’t necessarily follow the
ideal form, so their behaviour has to be calculated separately.

The effect of each imperfection can be included in Eq. to create a model of
the protocol with experimental imperfections. The additional variance introduced by the
electro-optical modulator increases the variance of the states to € > 1. The imperfect
transmission decreases the amplitude from o — T« and the variance from ¢ — Te. The
imperfect detector efficiency effectively decreases the amplitude of the measured quadra-
tures and the local oscillator. This means the measured amplitude is reduced to nT'a and
the variance is reduced to nT'e, where nn < 1 is the detection efficiency. The beamsplitter
used for heterodyne detection also decreases the amplitude and variance by a half. Fi-
nally the electronic noise introduced by the measurement increases the variance, and this
increase is independent of transmission. Therefore the final variance is V = %nTe + elect,
where elect is the size of the electronic noise relative to the original variances V7o at T' = 1.
Inserting all this information into Eq. the probability of eliminating the distributed
state is

1
Perr = 1el"f(j 577Ta

2 \ /%nTc + elect

All of these parameters can be determined from experimental results, with elect measured
by looking at the variance as a function of transmission and extrapolating to the point
where T' = 0. In all experiments, n = 0.856 and € = 1.01, and elect varies between 0.04
and 0.08. The theoretical model also takes into account the fact that the modulation of
the Stokes operators Sy and Sy had a slightly different amplitude. The lower amplitude
of S was used to calculate the guaranteed advantage from the cost matrix, and the
higher amplitude of Sy was used to calculate Pmin- The encoding always has some phase
imperfections; however, since this only has a small effect on the signature length, it is not
included in the model for simplicity.

(5.24)

The cost matrix including experimental imperfections is the same as that in Eq.
but with the new p¢,» above. With this new cost matrix the required signature length
can be calculated. This model was used for the black curves in Figs. and and it
can be seen that it fits the data well, at least for the measured transmission range. More
data is required to determine whether there are other experimental effects that need to
be included at lower transmission ranges. The theoretical model used for the data in Fig.
is also shown as the red curve in Fig. [5.6, This shows that even taking into account
realistic experimental imperfections, the scheme based on heterodyne detection performs
better than the one based on single photon detection could ever do. This advantage even
increases for lower values of T' where an actual signature scheme would likely be performed.

In this section, I have introduced a new quantum signature protocol based on ho-
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Figure 5.7: Four phase-encoded coherent states for alternative QDS protocol. |aexp(i@)), ¢ =
{m/4,3m /4,57 /4, Tr/4}.

modyne detection. This has been performed experimentally over a fluctuating free-space
channel, and the required signature length is four orders of magnitude lower than pre-
vious work. I have shown that approximately one order of magnitude of the advantage
comes from theoretical effects, and the rest comes from improved technical performance.
This scheme provides a new avenue towards a practical quantum digital signature scheme,
however more work is required to relax the assumption of authenticated quantum channels.

5.3.5 Alternative schemes based on homodyne measurement

The suggested QDS protocol based on homodyne detection used the coherent states {|a), |-
a), icr), |-ia)} as the state alphabet. These states were chosen to aid direct comparison
with previous work, however it is possible that other state alphabets or elimination proce-
dures could be useful. Here I consider a number of protocols that follow the same method
as previously described, but with different states or elimination procedures.

The first procedure I consider uses the same states, but homodyne detection in a
random quadrature is performed rather than heterodyne detection. The advantage of this
is that the measured state has a higher amplitude than in the heterodyne case, but as a
drawback only one state is eliminated at a time. The cost matrix for this case is

Perr 1/4 1/4 — Perr 1/4
1/4 DPerr 1/4 1/2 — Perr
C = , 5.25
1/2 — Perr 1/4 Perr 1/4 ( )
1/4 1/2 — Perr 1/4 DPerr

where peqr = %erfe (\/T a). From this cost matrix, the parameter g used to calculate the

signature length using Eq. (5.13)) is g = Pin (1 —erfc (\/Toz)), where ppin is defined in
Eq. (5.8), which can be written in terms of the error function as

g= piin erf (\/T ) . (5.26)

I also consider a QDS scheme using the four phase-encoded coherent states in Fig.
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Using these states, pnin is the same as in the previous case, because the states are
the same, just rotated by m/4. However the elimination procedure can be different and
I consider two scenarios here. The first is where measurement results in one quadrant
eliminate the state in the opposite quadrant. Therefore only one state is eliminated at a
time, but the correct state is rarely eliminated. The cost matrix in this case is

pgw perr(l - perr) (1 - parr)z perr(l - perr)
C — pe’/‘r(l - pe7‘27") pgm« perr(12_ perr) (1 - perr)2 ’ (527)
(1 - perr) perr(l - perr) pem« perr(l - perr)
parr(l - perr) (1 - pe’/‘r)z perr(l - perr) pgrr

where perr = %erfc (@a). From this cost matrix, g from Eq. (5.13)) is calculated to be

g = Pmerfe (@a) (1 — erfc (@a)), which is written in terms of the error function as

Pmin (VT VT
g = 5 erf <2a> <1 —erf <2a>> . (5.28)

Another possible elimination scheme is to eliminate all states that aren’t in the quad-
rant of the measurement results. This is essentially the same as identifying the state as
being the one in the measured quadrant. The advantage of this is that three states are
eliminated per measurement, but the correct state is eliminated more often. The cost
matrix for this scenario is

1- (1 _perr)2 1 _perr(l _perr) 1 _pzrr - perr(]- B perr)
C = 1 _perr(l - perr) (1 - perr)Q 1- perr(l - perr) 1- pgrr
1- Pgrr 1- perr‘(l - perr) (1 - perr)2 1- perr(l - perr) ’
11— perr(l - perr) 1- pgw 1- perr(l - perr) (1 - parr)z
(5.29)

where pep, = %erfc (?a). From this cost matrix, g from Eq (5.13)) is calculated to be

2
g ="tz 23 erfc (4&) + erfc (@a) > This can be more simply expressed in terms

of the error function as

g = pr;merf (?a) (1 + erf (?a)) . (5.30)

Comparison with the expression for ¢ in Eq. (5.28]) shows that this is always larger than
the case where one state is eliminated. Therefore it is better to eliminate three states
in this case. This difference reduces as T reduces, since the error function tends towards

Z€ero.

The last signature scheme I consider here is one based on two signature states {|«a), | —
a)}. Since these states are different to those in the previous schemes, the error probability
for a forger is different. In this case the minimum error probability is

2
1 2
Pming = 1 — Z‘ §‘1: Vil?, (5.31)
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Signature Length

00 02 04 06 08 10
Transmission

Figure 5.8: Red line: Original scheme based on heterodyne detection using g from Eq. .
Orange line: Scheme using original states and homodyne detection in a random quadrature using
g from Eq. . Purple line: Scheme based on new four state protocol, where one state is
eliminated per measurement, calculated using g from Eq. . Black line: Scheme based on new
four state protocol, where three states are eliminated per measurement, calculated using g from
Eq. . Blue line: Scheme based on two coherent states using g from Eq. .

where \; o = 1 &+ exp(—2a?) are the eigenvalues of the Gram matrix. The elimination
scheme is to measure the z-quadrature, and eliminate the opposite state to the measured
quadrature. This results in a cost matrix

DPerr 1- DPerr
C= , 5.32
( 1- DPerr DPerr > ( )

where pe,r = Serfe(v/Ta). From this cost matrix, g from Eq. (5.13) is calculated to be
g = Ppming2(1 — erfc(v/Ta)), which written in terms of the error function is

9 = Pmin2 erf(VTa). (5.33)

The expressions for g in Eqs. [5.21] [5.26] [5.28] [5.30] [5.33] are used to calculate the
required signature length against transmission, and the results are shown in Fig. As
can be seen, the original QDS protocol (red curve) has the shortest signature length of them
all, however the difference between the schemes is often small. With the original states, it is
clearly better to perform heterodyne detection (red curve) rather than homodyne detection
on a random quadrature (orange curve). Fortunately this is also easier to implement
technically, since the measurement procedure remains constant.

For the new four-state protocol, eliminating three states (black curve) is always better
than eliminating one state (purple curve), as expected, but this difference does reduce
with reducing 7. At high values of T, there is very little difference between eliminating
three states and using the original scheme, but this difference increases with reducing 7.

Interestingly, the two-state protocol (blue curve) only requires a slightly longer sig-
nature than the original protocol, at all values of transmission. Therefore the two-state
protocol is a competitive alternative to the original four-state protocol, especially when
technical difficulty is considered. For example, the signature length in the experiment
described in Section [5.3.3| was increased because the displacement in the two Stokes pa-
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rameters was different. This wouldn’t be a problem in the two-state protocol, which
could mean the two-state protocol would require a shorter signature length in a realistic
environment.

The signature lengths of the different four-state protocols can be compared at low
transmission levels, by using erf(x) ~ 1.12z for small z. The optimal value of « for all the
four-state protocols is « = 0.5. Using this it can be seen that g for the original protocol
is about /2 times bigger than g for the other four-state protocols. Since L o 1/¢%, the
signature length at low levels of transmission is approximately half that of the other four-
state protocols, which is supported numerically. Comparison with the two-state protocol
is more difficult because the error probability of a forger is different, however by inserting
the approximate optimal values for «, the schemes can be compared. Doing this it is
found that ¢ for the original four-state protocol is approximately 10% larger than for the
two-state protocol. This means the required signature length is about 20% shorter for
the original four-state protocol than for the two-state protocol. This is of course in the
ideal case, and it may be that this difference reduces or even vanishes when technical
considerations are included.

In this section I have calculated the signature lengths for a number of protocols to
compare their efficiency. The original scheme requires the shortest signature length, but a
protocol based on two phase-encoded coherent states provides a competitive alternative.
It would be interesting to see how the two compare in realistic experimental conditions.
It is possible that other schemes could outperform the proposed ones. For example, a
scheme based on more phase-encoded coherent states, or even Gaussian distributed co-
herent states, could provide an advantage. However developing an elimination scheme
for such states becomes complicated, and it would need to be shown that a minimum-
cost measurement is the optimum measurement for a forger in order to use this security
analysis.

5.4 Summary of Chapter 5

In this chapter, I have introduced the concept of quantum digital signatures and described
the most important developments in the field. The most successful QDS protocols to
date are based on coherent states and single photon detection, however these require a
relatively long signature length to securely sign a message. Here I propose a new signature
scheme based on coherent states and homodyne detection. The advantage of this scheme
is that every measurement gives a usable result, but this comes at the cost of an increased
error rate. I have shown that even with the increased error rate, this new quantum
signature protocol outperforms old schemes. When technical considerations are included,
the advantage reaches more than four orders of magnitude. This shows that QDS schemes
based on homodyne detection provide a valuable area of research in the pursuit of improved
signature protocols. Finally, I compared the proposed protocol to some alternative schemes
based on homodyne detection. I found that the original scheme requires the shortest
signature length, however the length required by a protocol based on two coherent states
is comparable. Since the two-state protocol is simpler, it may even require a shorter length
when technical considerations are included.
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Before concluding this thesis, I first provide some suggestions for future work.

6.1 Future work

6.1.1 Quantum digital signatures with unauthenticated quantum chan-
nels

The QDS protocol with homodyne detection described in the previous chapter assumed
that Alice, Bob and Charlie possess authenticated quantum channels between them. This
is the same as was done for most previous work, but it is an unrealistic assumption and
should be replaced by a security analysis that allows unauthenticated channels. In previous
protocols, Alice sent the same quantum signatures to Bob and Charlie, however this is not
necessary. The assumption of authenticated quantum channels means that nobody can
interfere with the quantum message, nor can they access any of the losses in the channel.
This means that if different signatures are sent to Bob and Charlie, no other party can
know anything about the signature. Therefore a forger’s only strategy is to randomly guess
each signature state, which gives a trivial security analysis. To account for this, the same
states were sent to Bob and Charlie, which means that a forger could have a perfect copy
of the quantum signature. By relaxing the assumption of authenticated channels, Alice
can send different states to Bob and Charlie. This means no other party has a perfect
copy of the signature; instead, a forger’s ability to forge must be bound using parameter
estimation of the quantum channel. Since a forger has a worse copy of the signature than
with authenticated quantum channels, the signature length should decrease by relaxing
this assumption. However with an unauthenticated quantum channel, a forger can also
influence what is received by Bob or Charlie, using, for example, an intercept and resend
attack. Further work is required to put a limit on how much a forger can achieve in this
way.
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Unauthenticated channels and discrete measurements

Amiri et al. [9] have recently shown that parameter estimation techniques similar to those
used in quantum key distribution can be used to provide security for quantum digital
signature schemes with unauthenticated quantum channels. In particular, they show that
a forger’s error probabillity can be lower bound using parameter estimation. Let the
ith element of the private key be represented by the binary random variable X;. Eve’s
auxiliary quantum system corresponding to each element of the key is denoted by F;.
Results from [221] show that

H(X;|E;) < H(X;|E") ZP H(X;|E =) (6.1)

The inequality is a result of the Holevo bound, and the equality follows from the definition
of conditional entropy. H(X;|E;) gives Eve’s uncertainty about the element X; given pos-
session of the corresponding state F;. Since the different elements of X are uncorrelated,
the optimal collective attack is a collection of individual attacks, so H(X;|E;) is Eve’s
uncertainty about X; if she is limited to collective attacks.

If Eve’s measurement returns an outcome E’ = r, then X; = b with probability
1—p, > 1/2. Eve’s best guess is then X; = b, which has an error probability of p,. Eve’s
average error probability is therefore

pe =Y P(E =r)p,. (6.2)

The concavity of the binary entropy shows that

h(pe) = h (Z P(E" = r)pr) > P(E'=r)h(p,), (6.3)

where h(p) = —plogp — (1 — p)log(1 — p) is the binary entropy. Finally, since X;|E’ = r
is a classical random binary variable, there must be some p, < 1/2 for which H(X;|E' =
r) = h(p,). Using Egs. and (6.3)), this gives a bound on the error probability of a
forger:

h(pe) >ZP H(X;|E' =r) > H(X,|Ey). (6.4)

In [9], they use a parameter estimation protocol based on decoy states that has been
used in QKD [I41]. An expression for H(X;|E;) is known for the protocol [133] 33], so a
bound for the forger’s error probability can be found. A bound for the error probability
of an honest recipient must also be found using experimental data, for example using cost
matrix analysis. As long as a forger has a higher erro probability than an honest party, a
full signature scheme can be realised without the requirement of authenticated quantum
channels.

Unauthenticated channels and homodyne measurements

An obvious next step is to extend QDS schemes using CV measurement to include unau-
thenticated quantum channels. For a signature protocol using unauthenticated quantum
channels, Bob (Charlie) sends the quantum signature to Alice. This is because Eq. (6.4))
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gives a bound on the error probability of a forger trying to determine the classical informa-
tion encoded in a quantum state. The forger’s task is to guess Bob’s (Charlie’s) classical
information, so to use this method Bob (Charlie) must encode the classical information
on the quantum states. In this way, Eq. will give a forger’s error probability about
Bob’s (Charlie’s) classical information. Both the forger’s error probability and Alice’s error
probability have to be calculated using parameter estimation. As long as the forger’s error
probability is higher than Alice’s, the signature protocol is secure with unauthenticated
quantum channels. The rest of the signature protocol and security analysis can proceed
in the same way as previously. By using two phase-encoded coherent states |a), | — a) as
the possible signature states, Eq. is also applicable in the continuous variable case.
A lower bound for H(X;|F;) must be found using parameter estimation.

The bound in Eq. can be rewritten in terms of accessible information by con-
sidering the definition of mutual information between a classical variable and quantum
state:

I(Xi, ;) = H(X;) — H(Xi|E)). (6.5)

The accessible information I,.. gives an upper bound on the amount of information Eve
can gain about the classical information X;, I(X;, E;) < I4c.. Inserting this to the above
equation and rearranging gives a lower bound for H(X;|E;) and therefore a new lower
bound on h(p.):

H(X;) — H(Xi|E;) < Iaee,
H(X;|E;) > H(X;) — Lace, (6.6)
h(pe) Z H(Xz) - Iacc-

Note that since X; is a classical random variable with two possible outcomes of equal
probability, H(X;) = 1. To find the error probability of a forger, an upper bound for I,
has to be found using parameter estimation.

The accessible information in the case of a passive beamsplitter attack on the two
coherent states |a),| — ) is known and presented in [192] as

1 1
Loce = 5 (1 F V1o f2) log (1 TV f2)+§ (1 /1o f2) log (1 /1o f2) . (6.7)
where f is the overlap between the states held by Eve after the beamsplitter:
f=(—V1-71alVl—7a)=exp(-2(1 - ’7’)0[2) . (6.8)

This expression for the overlap can easily be adapted to include excess noise € > 1 in the
channel between Alice and Bob (Charlie) by making the change o — ea.

This expression for the accessible information can be used to calculate the signature
length required when Eve is restricted to a beamsplitter attack. However more work is
required to extend to more general attacks. A few results for CV QKD that may be useful
for this task are given below:

1. If Alice sends a mixture of coherent states with low amplitude, the state sent is very
close to a Gaussian state, so it’s acceptable to use results that apply for Gaussian
states [138].
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2. Gaussian attacks are the optimal collective attack in CV quantum cryptography if
the channel is estimated using the covariance matrix[76} [156].

3. Gaussian channels are characterised by the channel transmission 7 and the excess
noise € [95]. See also Pirandola et al. [170] for a complete characterisation of Gaus-
sian attacks.

4. It has been shown that coherent attacks provide no advantage over collective attacks
[178], as long as the measured states have low amplitude, as they do here.

If these results hold for quantum digital signatures, then Eq. (6.7)) could be used to bound
the error probability for a general attack by a forger.

In this section, I have outlined a possible path to provide security without authenticated
channels for a two-state quantum signature protocol based on homodyne measurement.
Beyond this, a security analysis for other signature alphabets is desirable, e.g. for the
original four-state protocol. Further analysis of the most general attacks is also required.
Signature protocols with unauthenticated quantum channels where Alice sends the signa-
ture to Bob (Charlie) should also be investigated, although a different method to find the
error probabilities is required.

6.1.2 Other possibilities for quantum digital signatures

The field of quantum digital signatures is still in its early stages, especially when com-
pared to the vast amount of research about quantum key distribution. Therefore, there
remains significant progress to be made in both theoretical description and experimental
implementation. Currently, Christoph Marquardt’s group in Erlangen is performing an
experiment that implements the quantum stages of a QDS protocol with a clock-rate in
the GHz range. Assuming the technical performance of this experiment is as good as
previously, this would allow messages of about 10* bits to be signed in a second over a
quantum channel with a length of about 10 km. In future experiments, it would be inter-
esting to extend the channel length to much further distances to investigate the behaviour
of signature protocols at high loss.

The obvious next step on the theory side is to investigate how different attacks by Eve
affect the security of a quantum signature scheme. In addition to this, it is important to
consider different signature alphabets and measurement techniques to see what signature
protocols have the best security under attacks from an eavesdropper. This could include
extension to Gaussian state alphabets, in which case it would seem more natural to base
security on mutual information rather than state elimination. So far efforts to base security
on mutual information have been frustrated by the difficulty to find Eve’s optimal strategy.

One advantage that QDS has over QKD is that signature protocols are possible at loss
levels unsuitable for QKD [9]. This means that QDS could be tested on communication
channels that are not yet suitable for QKD. For example, recently, quantum signals have
been distibuted using satellites [69], and this channel could be used for a quantum signature
scheme. Due to the low transmission level of this channel, a lot of data would be required to
verify the security of the channel, however there is no fundamental reason why signatures
could not be performed in this way. This could open up the possibility of a global quantum
signature distribution channel.

It is important to note that currently classical digital signature schemes perform well,
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so there is no need for quantum digital signatures. However, if a quantum computer
was developed, classical signatures would become insecure. Due to the importance of
signatures to global communication, it is important to have a practical quantum digital
signature protocol prepared for such an eventuality.

6.1.3 Nonclassical correlations and multimode entanglement

Pure states are the fundamental class of states, with mixed states simply being a result
of a lack of information about a globally pure state. In a pure state, entanglement and
nonclassical correlations are equivalent notions, so this suggests that entanglement is the
only truly fundamental measure of nonclassicality. However this does not mean that
nonclassical correlations beyond entanglement are not a useful concept. Practically, we
are usually dealing with mixed states, in which case nonclassical correlations, for example
quantum discord, capture more of the quantum nature of the state. It is likely that a more
complete understanding of nonclassical correlation measures, such as quantum discord, will
lead to a greater ability to use quantum states in a dissipative environment to their full
potential. Therefore it is important to continue studying these correlations to understand
how they could be useful.

Similarly, although many quantum protocols rely on two-mode entanglement, multi-
mode entanglement is an interesting area of research. As was seen in Chapter 4, states
that locally appear classical or separable, can have their quantum or entangled nature re-
vealed by considering additional states to which they are correlated. This demonstrates the
importance of multimode correlations and multimode entanglement. In quantum experi-
ments involving systems of many particles, entanglement can become distributed between
many of the subsystems. Understanding how best to use these global correlations is an
important area of study. In addition, whenever a quantum state is in an open quantum
system, correlations between the state and the environment are established. Being able
to exert some control over these correlations could lead to some exciting techniques in
quantum information experiments.

6.1.4 Discord in quantum key distribution

Quantum key distribution relies on the distribution of nonorthogonal states to ensure that
a forger cannot perfectly learn the secret key. Therefore discord between Alice and Bob
is clearly necessary in a QKD protocol. This has been further developed by Pirandola et
al. [169], who showed that the shared discord provides an upper bound for the secret key
rate, following the equation

(6.9)

where K<) is the secret key rate using forward (reverse) reconciliation. It would be
interesting to investigate how tight this bound is, by calculating the discord present in
QKD protocols where the secret key rate is known. This would determine how much
increasing the discord shared between Alice and Bob improves the secret key rate, or
whether it is necessary to consider other properties of the state when deciding how to
optimise the rate.
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6.2 Summary

This thesis involves two main topics of research. Chapters 3 and 4 focus on studying the
behaviour of quantum correlations in continuous variable mixed states. In Chapter 5, 1
develop a quantum digital signature protocol that is implemented using coherent states
and homodyne measurement.

In Chapter 3, I study the phenomenon of Gaussian discord increase under local loss.
I look at the different properties that affect the degree of the increase, and focus on
describing the increase in terms of non-orthogonality of states. I then show how considering
the flow of correlations between the state and the environment can give more insight about
discord increase. Finally, I show that discord increase under local loss also occurs for a
discrete mixture of coherent states. This makes it easier to see how the non-orthogonality
of the two states affects the discord increase, identifying it as the dominant factor.

In Chapter 4, I present two schemes that exhibits entanglement creation by mixing
classical modes on a beamsplitter. The entanglement created is multimode entanglement
between three modes. The correlations that the classical modes initially share with another
mode allow the entanglement to be created by restoring the nonclassicality that had been
destroyed by noise. This emphasises the importance of global correlations, and shows that
to determine whether a state is nonclassical, one must consider all the states with which
it shares correlations. Fully understanding the properties of this multimode entanglement
could enhance our ability to utilise quantum states that exist in open quantum systems.

In Chapter 5, I introduce the field of quantum digital signatures and describe work car-
ried out on this topic to this point. I propose a protocol that uses homodyne measurement
to distribute the quantum signature. Unlike previous measurement schemes, this can be
thought of as an ambiguous measurement, since there are necessarily errors caused by the
measurement technique. Despite the increased error rate, I showed that this measurement
scheme outperforms previous results, largely because the measurement always produces
results. When experimental imperfections are taken into account, the advantage of this
method is further amplified. This work provides an interesting route for future work on
quantum digital signatures.
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