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Abstract 

The rampant success of quantum theory is the result of applications of the 'new' quantum 
mechanics of Schr5dinger and Heisenberg (1926-7), the Feynman—Schwinger—Tomonaga Quantum 
Electrodynamics (1946-51), the electro-weak theory of Salaam, Weinberg, and Glashow (1967-9), 
and Quantum Chromodynamics (1973—); in fact, this success of `the' quantum theory has depended 
on a continuous stream of brilliant and quite disparate mathematical formulations. In this carefully 
concealed ferment there lie plenty of unresolved difficulties, simply because in churning out fabulously 
accurate calculational tools there has been no sensible explanation of all that is going on. It is even 
argued that such an understanding is nothing to do with physics. A long-standing and famous 
illustration of this is the paradoxical thought-experiment of Einstein, Pod.olsky and Rosen (1935). 

Fundamental to all quantum theories, and also their paradoxes, is the location of sub-microsco-
pic objects; or, rather, that the specification of such a location is fraught with mathematical in-
consistency. This project encompasses a detailed, critical survey of the tangled history of Position 
within quantum theories. The first step is to show that, contrary to appearances, canonical quantum 
mechanics has only a vague notion of locality. After analysing a number of previous attempts at a 
`relativistic quantum mechanics', two lines of thought are considered in detail. The first is the work 
of Wan and students, which is shown to be no real improvement on the usual `nonrelativistic' theory. 
The second is based on an idea of Dirac's — using backwards—in—time light-cones as the hyersurface 
in space-time. There remain considerable difficulties in the way of producing a consistent scheme 
Isere. 

To keep things nicely stirred up, the author then proposes his own approach — an adaptation 
of Feynman's QED propagators. 

This new approach is distinguished from Feynman's since the propagator or Green's function 
is not obtained by Feynman's rule. The type of equation solved is also different: instead of an 
initial-value problem, a solution that obeys a time—symmetric causality criterion is found for an 
inhomogeneous partial differential equation with homogeneous boundary conditions. 

To snake the consideration of locality more precise, some results of Fourier transform theory are 
presented in a form that is directly applicable. 

Somewhat away form the main thrust of the thesis, there is also an attempt to explain the 
manner in which quantum effects disappear as the number of particles increases in such things as 
experimental realisations of the EPR. and de Broglie thought experiments. 
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Chapter 1 

Position, Locality, and thereabouts 

.0 what a tangled web we weave, 
When first we practise to deceive!' 

7.‘412.rmioni by Sir Walter Scott. 
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§1 An Introduction 

Making no attempt to be exhaustively precise, Physics may be said to be the study of the 
natural, inanimate phenomena of fairly simple systems. Generally, these systems are not directly 
accessible by reason of their distance or size. Physical theory is the result of this study, and encap• 
sulates the best contemporary understanding that has been gained. To be credible, a theory must 
be at least as precise as the current experimental results, and preferably offer complete precision, so 
that tests of the theory may be unambiguous. 

One aspect of this, so fundamental and natural as to be ahnost unnoticed, is the requirement 
that, for there to be any phenomenon, it must have somewhere and somewhen to happen. It is 
necessary to convey a sense of the quantitative arrangement of fields, particles and what-have-you 
that are distinguished by their separation in space-time. This might be called the concept of Position. 
Because position enters most theories at an early stage it has not been often contemplated. Indeed, 
it is hard to imagine how so basic a concept could be analysed. A simple rule will usually suffice7 
everything is or happens somewhere in space-time. 

To my knowledge, all physical theories comfortably accommodate the concept of position. 
Where trouble does arise is in a modest development on the postulate that phenomena happen 
somewhere. Lacking the ingenuity, not to say the budget, to use the whole universe as a tool of 
scientific enquiry, it is the usual practice for phenomena to be confined within rather more modest, 
that is finite, bounds of space and time. The prosaic term for this is the experimental apparatus. In 
the normal course of an experiment, steps are taken to eliminate any effect that may be the result 
of conditions outwith the apparatus. It is only by this means that a scientific investigation makes 
sense. 

A physical theory that successfully mirrors this spatio•temporal limitation is going to be said 
here to exhibit locality. Not all physical theories are this successful: the quantum mechanics of 
Schrfidinger and Heisenberg, (among others) is a notorious example of such a failure; it is also on 
this point that all attempts to formulate a 'relativistic quantum mechanics' come crashing down. 
This difficulty was clearly enunciated as long ago as 1935, when Albert Einstein, Boris Podelsky and 
Nathan Rosen insisted that a quantum-mechanical measurement should not affect anything that 
was space-like separated from the detector.ill A variety of terms have been borrowed, invented or 
re-used to describe this facet of what I shall call the problem of locality; none are what might be 
called satisfactory. It will be useful to clear up some of this semantic muddle in preparation for later 
chapters. 

To say, as some do, there is an 'instantaneous spreading of the wave packet' makes as much 
sense as nanny discussions of the 'collapse of the wave packet'. That is, not very much. The use of 
'instantaneous' suggests its author has not encountered the relativity of simultaneity: those who are 
better informed are commonly at a loss as to how the measurement postulate of quantum mechanics 
can he justified for its apparent rubbishing of this relativity. 

The collapse of wave-functions as a result of a 'measurement' is uncontroversial if the theory is 
interpreted entirely in terms of ensembles of 'possible states': the 'collapse' or 'reduction' is then, 
merely, the selection of a more restricted sub-ensemble. If one hankers for a theory more closely 
associated with an individual particle there seems no option but to somehow dispense with this 
discontinuous and non-covariant 'evolution'. A quantum theory exhibiting locality is likely to help 
here. 

Calling some evolution 'causal' or 'arousal' is hardly snore apposite. The suggestion made by this 
is that a particle is, or is not, causing itself. The etymology of this use of `causal' is from Einstein's 
Special Principle of Relativity, whereby the envelope of points that may be causally influenced by 
some event is the light-cone with apex at that event. The deployment of 'acausal' as some sort of 
negative is contradictory, since the upshot of an 'acausal' propagation is the very possibility of a 
causal link. 

There is a similar perversity in the description of phenomena as 'local' or 'non.locar. In no 
case is it impossible for the events to be linked by a field, which therefore transfers the influence 
purely by local action. The distinction that is intended to be made is between the different rates of 
transfer — specifically, between those occurring at less than, or in excess of, the speed of light. An. 
action—at—a—distance theory, in which the rate of transfer is infinite, could only be called non-local 
if there is nothing that could be interposed between cause and effect that will be itself affected or 
will affect this action. 

Instead of 'instantaneous' or 'acausal spreading', it would be better to say that there is a 
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Chapter 1 : An Introduction 

superluminal propagation of the appropriate sort. Not quite as snappy, it is ;;rue, but then the 
intention is to convey a meaning. A typical statement in the approved manner is 	the support 
of the wave-function expands at a superluminal rate, contrary to Einst:irt's Sp:-1a1 Principle of 
Relativity. This will be exact if the Special Principle is taken to be the assumption of light speed 
as the limit on all forms of propagation. 

If a word is needed to carry the negative overtone intended by 'acausal' and the like, then a 
good choice is anachoristic. This is the spatial counterpart to 'anachronistic', meaning the presence 
of something in the wrong place*. Such terminology must be only temporary, however, for if the 
universe works in such a way as to manifest phenomena by way of superluminal causes then there 
is nothing to be in the wrong,. 

It is interesting that in all the hullabaloo about the experimental tests of Bell's theorem that the 
results are portrayed as being decisive between 'Quantum i'vfechanics' and 'Special Relativity'. So 
far as I know, only Karl Popper has remarked that this is more properly a contest between Einstein's 
Special Principle and Lore_ttz's aether interpretation of mechanics. This does still ignore the fact 
that the quantum predictions arise from a theory invariant with respect to the Galilei group, since 
there is no satisfactory quantum mechanics invariant under the Poincare group (the inhomogeneous 
Lorentz group). It is even curious that no detectable candidates have been offer:1 for the means by 
which the two arms of the experiment are superluminally connected - the ability h pass unimpeded 
through metal, concrete and, perhaps, lab technicians may make detection a formidable task. It is 
in this context that some authors have legitimately used the term 'non-local': though to do so is to 
propose only a retrograde step for physical theory, for the rejection of local action is the rejection 
of an idea of huge explanatory power. 

Since I shall be making numerous references to quantum theories with either of the standard 
symmetry groups, it is convenient to snake a further point about nomenclature here. The terms 
`nonrelativistic' and 'relativistic' are almost universally accepted qualifiers - used to indicate the 
symmetry group of a theory. This usage arose, as I understand it, less through deliberation than his-
torical proximity: 'relativistic' came to mean 'invariant under the Poincare" group' simply because the 
principle of Relativity {in physics) and interest in the Poincare group* came to prominence together. 
It then became common to describe the older theories as not 'relativistic', whence `nonrelativistic'. 
Jean-Marc Levy-Leblond has pointed out that there is nothing unrelativistic about nonrelativistic 
theories,I211 31 and that Galilei had even produced a form of relativity principle in connection with 
what are now known as Galilean transformations or boosts. To avoid repeating the use of these 
unfortunate epithets, I have adopted a reasonable compromise between clarity and brevity: theories 
invariant with respect to the Galilei group will be called Galilei-invariant or Galilei-relativistic; 
whereas, if the synunetry group is the Poincare group then the theory will be described as Poincare-
invariant or PoincarC-relativistic. In a similar way, if a theory is in accordance with Einstein's 
Special Principle of Relativity, this will be treated as synonymous with Poincare-relativistic. 

If the foregoing sets out the general problem to be tackled, and cuts a little way through the 
fog of jargon; it remains only to outline the path this Thesis will take. 

Chapter 2 : the canonical theory of quantum mechanics (which is Galilei-invariant, of course) is 
shown to have a well-defined concept of position but only the loosest grasp on locality. 

Chapter 3 : the multiple-particle extension of CaMei-invariant quantum mechanics is analysed to 
see if the use of beams of massive particles in any way influences the standard examples of 
anachoristic behaviour, viz. de Broglie's paradox and the Einstein-Podolsky-Rosen thought-
e xp e rime lit. 

Chapter : surveys the attempts that have been made to produce a Poincare-relativistic quantum 
mechanics. This catalogue of honorable failure is nevertheless a guide to the sort of theory that 
may work. 

Chapter 5 : using the complexification of Fourier transform theory, some analyticity conditions are 
re-derived that make it considerably easier to eliminate theories that lack locality. 

Chapter 6 : the recent work of Wan and students on a localised quantum mechanics is explored. 

I" I am indebted to Jonathan Cole for the re-discovery of this, sadly overlooked, word. 
t Incidentally, the Poincare group is only a particular instance of the class of groups studied by 

Henri Poincare. 
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Chapter 7 : the recent revival by Derrick of an idea by Dirac for a Poincare-invariant quantum 
theory based on backwards-in-time light-cones is thoroughly re-worked and analysed. 

Chapter 8 : chastened by the findings of the pre.ious chapters, a new formalism is proposed that is 
a development of Feynman's version of Quantum Electro-dynamics. 

§2 Bibliography 

(References are preceded with the page number on which they first appear.) 

2: [1] A. Einstein, B. Podolsky, N. Rosen, Can a quantum-mechanical description of reality he 
considered complete? Phys. Rev. 47 (1935) 777-780. 
3: [2] J.-M. Livy-Leblond. The pedadgogical rile and epistemological significance of group theory 
in quantum mechanics, Riv. Nuovo Cimento d (1974) 99-143. 
3: [3] .1.-M. Levy-Leblond, Gallic; Group and Galilean Invariance, pp 221-299 of Group Theory 
and its applications, vol. 2, edited by Ernest M. Loebl, Academic Press 1971. 
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Chapter 2 

Galilei—Invariant Quantum Mechanics and Locality 

An Incompatibility Explored 

`They sought it with thimbles, they sought it with care; 
They pursued it with forks and hope; 

They threatened its life with a railway-share; 
They charmed it with smiles and soap.' 

The r..'?•ithag of The Sziark (an agony, in eight fits) (1876) by Lewis Carroll. 



In this chapter I shall be concerned with the extent to which the evolution of states, obeying 
the free Sclwiidinger equation, can be said to be spatially located. 

The Canonical Formalism 

The 'new' quantum mechanics, due mainly to SchrOdinger and Heisenberg, is readily presented 
as a series of axioms. This has the advantage of establishing the exact theory with which this Thesis 
will presently take issue. The axioms here are not von Neumann's elegant and rigorous set, but have 
been chosen for the explicit manner in which the theory can be presented, and then analysed — there 
is no essential abandonment of rigour. 

Axiom States 
The complete specification of the instantaneous state of a single-particle, quantum, system is a 

wave-function, h , which is an element of the Hilbert space, L2  (lr, d'a,) 

Axiom Observables 

Physical quantities attributable to a quantum system are represented by some of the self•adjoint 
operators defined on a dense subset of the space of states. 

The expectation value of an observable, A , for a state, ,is defined to be 

(A) = (11Aiq5) 	. 	 (1.1) 

The spectral theorem for self.sdjoint operators on a:Hilbert space associates a projection—valued 
measure, E(A;•) , with each observable ( A , here). The last formula can thus be written 

(A) = 	(661(01E (A; 014) 

whence a probability distribution, p , can be deduced for each observable acting on each state: 

	

p(a) = 	ak3) 

A consequence of the first two axioms is, therefore: 

Corollary Max Born's axiom 
The probability density function, representing the likelihood of the presence of the particle in 

space, is 	= (cfl2 ' 
Axiom Symme try-  group: Galilei 

The generators of the symmetry group for the system are the observables for position.A (boosts); 
momentum, 15 (translations); angular momentum, f, (rotations). The group action is obtained, by 
way of Stone's theorem, !'rom the unitary operators 

CT (a, = exp 

for the continuous parameter a , and generator fi . The following definitions are applied (giving 
what is called the coordinate representation): 

	

(-Ad) 	= xo(m) 
15/5= -ihT t.7 	, 

. 

It is the almost universal practice to omit this last postulate, or to subsume it in the axiom on 
observables. The definition of the position observable is implied by Born's axiom, but the remainder 
are generally just a derivation from the symmetry group of the Schrodinger actuation. In omitting 
a symmetry axiom a shorter, and perhaps more elegant, list may be obtained; but, in doing so, an 
important physical aspect of the theory is obscured. Indeed, in the realm where this theory has its 
greatest success — the modelling of atoms — the principal interest is symmetry. 



Chapter 2 : The' Canonical Formalism 

Axiom Time Evolution 

An observable, H , called the Hamiltonian by analogy with classical mechanics, acts as the 
generator of evolution in time. The group of time evolutions, U(t) , is ob*-ar-d from Stone's 
theorem, as was the case for the symmetry group. 

On the domain of H , by virtue of the group it generates, SchrCdinger's equation is recovered: 

inL =114 , at 

and, by the usual manipulation, a continuity equation can then be deduced, which, for this restricted 
class of states, is one way to express the conservation of probability: 

io 
at +v • = o . 

From Born's postulate and the simple definition of the position observable, the concept of 
position is so firmly grounded in the standard quantum mechanics that any flaw in the theory must, 
surely, be caused by other features? Yet despite this uncomplicated appearance of position, this is 
a theory in which locality can only be extracted by severe constraints. To wit: any state can be 
confined to a finite spatial volume for a single instant by a 'measurement' of position that ensures 
the quantum system lies within that volume (thus eliminating from the ensemble any outcome to 
the contrary). To accomplish such confinement requires: 

Axiom reduction of wave-packets 

If a preparatory measurement is performed on a state, q1 , to ensure that the value of some 
physical quantity, A , lies in an interval [a, , then the instantaneous state after the measurement 
is 

E(A; ta, 1)1)k 

E(A; [a, Id),b 

- where E(A; [a, bn,k is a projector derived from the spectral function of A . 

As will be proved in Chapter 5, for a free particle such a spatial confinement lasts no more 
than the instant of the 'measurement'. The support of wave-functions in the canonical theory is 
unbounded: it is non-zero almost everywhere and ahnost everywhen. 

There is one result that allows an approximate form of localisation to exist for an extended 
period of time. It turns out that any freely evolving state with a finite momentum spectrum will 
eventually lie in a velocity cone defined using the bounds of this momentum spectrum. In mathe-
matics. the 'Asymptotic Localisation Theorem' says:Ill 

him IIE (ir [Pit m D2t I rn]) U(t)011 = 11E (1;[P1,P21) ¢ II  

Therefore, if E (t); [p i , 	,k = , there is a time, r , for any given c > 0 , such that for all future 
times 

IIE (x; [1:4 time p2  tim]) (t) 011 ?_ 1-E. 

There is. thus, a form of locality retrieved in the asymptotic limit; or an approximate version 
to whatever tolerance beyond the time 	. On reflection, the less than satisfactory state of 
affairs is, perhaps. to be expected of a theory based on the Gahilei group, where there is no limit 
to the speed with which influences may propagate. Only infinite time lapses, leading to infinite 
separations, will produce the complete disconnection of systems in a Galilei-invariant theory. Indeed, 
the configuration space inner-product means there is no difficulty in finding an 'observable' that 
correlates states that are located only a finite distance apart. 
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Chapter 2 : The Configuration Space 8 5  and Locality 

§2 The Configuration Space SI and Locality 

SI is the topological space sometimes calkd the 1-sphere — a closed, one-dimensional space 
defined by a single parameter, its length, denoted by P here. This space is particularly suitable for 
modelling several important systems, e.g., simple closed universes and 2-arm interferometers, Just as 
ill or gia stands in place of an idealised, open, flat universe; so using S1  avoids having to specifically 
model the means through which particles are reflected around apparatus, and by which path lengths 
are sometimes controlled. Of course, using Si there is nothing to stop the particle from going round 
many times, as there is in practice, between its initial and measured states. The quantum theory of 
measurement is not seen here at its best: the exclusive consideration of measurements at particular 
instants of time is hardly a good way of modelling experiments where the position of the detector is 
the fixed coordinate. Since I am concerned with emulating the approximate localisations that have 
been found on B — whereby, for example, the two components of a de Broglie—type state become 
distinct — the problem of lapping will not feature here. 

An arbitrary state on ,51  has a Fourier series representation: 

CO 

ne2ritlx/e 

CO 

where 
j. 	C.12 

	

Ck = 7 f 	0(y) dy 

-5/2 

By Bessel's inequality, (VN,114 ) 

Ott 

P11 2  E 
there are 11,1 .= Mie,1 and N = N(c,t) such that 

e2ri na, 	< (2.4) 

  

Since the Fourier series is also a decomposition of the state in terms of the cigen-vectors of 
momentum on S1  : 	

iksle 	27tkti,  e2triks/C 

the truncation of the Fourier series is identical to the confinement of the momentum spectrum to 
a finite interval. Therefore, if complete accuracy is sacriqced, any wave-function can be roughly 
reconstructed with a momentum range [27rNhilt,27rAlhl to within a tolerance of e (to coin a 
Phrase). Denote this approximation by 

C 
n=N 

The class of states of interest here are those with a support considerably smaller than t —or, 
snore precisely, the approximations, dN , to these states. A state, dy1  , will be used as the initial 
state of the system. 

Allowing for the evolution of the state in time gives the snore general expression: 

[
2'Tinx 	iht ( 2  

2n. 1. 

Substituting for en  using equation 2, 

1 jr el2 	2.7rin (a; — y) 
= 1 7 	exp 	 

tr„._cc, 

    

iht 
2m 

27in:\ 2  - I I rj)(//1 	. • •  (2.5) 



Chapter 2 : The Configuration Space SI and Locality 

An attempt will now be made to recast for Sr  the derivation of the Asymptotic Localisation 
Theorem, as given in the book by Werner Amrein, Josef Jauch and Kalyan Sirha u l 

The space Sr  can be regarded as merely a segment of V if periodic bourid...T conditions are 
imposed on a suitable interval. This allows the following estimate to be made:A 
(3c>0)(3e:Vt>e) 

11(e-"Hmh-u(0)00 < 
	

(2.6) 

for all cb G L2  (n) , uniformly for t in finite intervals of . MO is the Hamiltonian on S1  embedded 
in 82 as the interval [—t/2,t/2( . 

While there is no doubt that both equations 4 and 6 can be simultaneously satisfied, there 
seems no systematic means of producing a /S1,1 such that 

110 — §6,111.„ <e 	 (2.7) 
and (Vt. e [0,/"] )( Ae 	t') 

11(citH`" -u(0) 0111.,<i 
	

(2.8) 

— since to find a 	consistent with equation 7 depends on the value oft ; yet to satisfy equation 8, 
gimN  must be known in order to set t . I will, nevertheless, assume that this juggling act can always 
he successfully concluded. So the time evolution on SI can be approximated by that on 	with 
fixed accuracy for the period t E [0,0 —if the range of momentum, as defined on Sr, and I are 
taken to be large enough. 

The momentum spectrum of cblff is finite on 	; however, it is infinite with respect to 83 . 
To see this, take the Fourier transform to produce the momentum representation of the state, with 
respect to 	, at t, = 0 : 

rfp = 	1 	e—iP'r/ 	() dx 	 (2.9) 

p 
2  n  :th r'

cn  
 f 

exP27rn 
 h) 	dx  —N  —t/2 	

( 

 

en 
2t1,  sin((2s-nh — Pt)/2h,) 

YT-rti, n= 	2A-rth — pt 

This is an analytic function — a natural consequence of the finite support of 0-7/,,'# in 42' — as will 
be discussed further in Chapter 5. Therefore, the momentum spectrum (with respect to V ) is not 
finite. Of course, as I — co , the momentum representation with respect to 51  (equation 2) becomes 
progressively more like the momentum representation with respect to V (equation 9). 

By Proposition 3.17 in the book by Amrein. Jauch and 
G L2 (SR) )( ec > 0 )( 	) such that (Vt > t' ) 

	

II (U (t) - c(t))0'W11 < 
	

(2.10) 

where 0(1) is the unitary operator defined by 

(C(t)Cbiff)()  = 	exP  ("22;*) (7) 

Whence, given the conditions on equation 8, (VI e. re] ) 

11(e"`" -00)0w11 - 1(.̀"1("'h -00) 0w +(u(0 - 0(f)) q51ffIl 
< — . 
— 2 

(2.11) 
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Chapter 2 : The Configuration Space S1  and Locality 

Now, if A is a measurable subset of [-q2,//2] - whence also of S1  , by association - then 

fA  1(e-itil("cblin(z)12  dx - LI(C(t)S6M(2)12  (id 

=111-qx;A)e-all(e)/5 41112 	IIE(x;A)C(t)91112  I 

= 	(°; 	 + 110(.; a(t) 411) 

me-fur (e)/h owl! — iiE(w,A)aNg1111 
	

(2.12) 

Since 	

118-"ff")" 411 ---- 1  = 114111 = 110(t),A111 
and since IIE(x;A)II 
	

1 , the triangle inequality implies that the right-hand side of equation 1° is 
less than 	

2 11(e-'tHM/h  - 0(t)) 0141 <E . 

If A = 1-14,.),21 , then the foregoing becomes a relation between momentum and coordinate 
supports because 

IA  I (004)(X)12  dx 	("--Y-) ?1' 
I 	t  

changing the variable by p = ynxit , 
Pa 

= 115(14 dp r 
Pi 

(where pi  = snAiit ). The degree of spatial localisation is therefore, eventually, related to the 
momentum spectrum of the state. 

The Asymptotic Localisation result can, therefore, be said to be repeated on S1  to the extent 
that the momentum spectra of a state with respect to 51  and all are the same. Essentially, the 
snore Si looks like Ri  (i.e., as I 	co ), the more localisation can be said to occur. In one sense, 
this is a rather obvious, indeed, inevitable result. The significance lies in the apparent impossibility 
of improving on the original Asymptotic Localisation Theorem. For it is only as I — no that the 
support of .0 contracts down to a finite interval - the infinity being necessary in this case because 0 
is analytic and non-zero for all finite values of I . 

§3 Computing The Degree Of Localisation 

A more specific method of investigating localisation within Si is simply to calculate the proba-
bility that the particle lies in the velocity cone appearing in the Asymptotic Localisation Theorem. 
This is made vastly easier by having S1  as the configuration space, since a computer can crunch 
through the summation required far better than the integrals necessary for the theory on l the 
computation can be carried quite far analytically as well. Denoting the velocity cone by the intervals, 
for variable t , [as  t, ve t] ; the probability on this cone, at any instant, is then written: 

"t  
(41x!,,,5, 5,11 k)) = 	1012  dx . tv   

Now 0 has a decomposition in terms of a Fourier series: 

1+1: 2:Tina) 
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Chapter 2 : Computing The Degree Of Localisation 

at t = 0 , where 
27rjh 

1/1 = 	, 
me 

27r(j le)h,  
v2= 

Me 
So that, for arbitrary t , 

~(x)(x) — J 
27inz 	iht (27rn)2) E an exp 	exp (-27; 

a.j 

Thus 

f v2t j+k j+ n n 	p 	(n n) _its (_212 (n,2 _70)) 
= 	EEe. 	2irix 

ut 	 2m 

The integral can be performed in two parts: one in which n' n and a second f. u- the remainder of 
the double sum. For the first part the dependence on x disappears. Thence 

	

j 	(v 2 — vi)t 
1..1' + 01Xlv,t,,,,t110) -E 

+k j+k 4, 1 	aa, 	ith (2.7 .\ 2 (na n2)) {exp (2si (nr — 7 ) :11 "t 
+ ---: exp 2x2 	n, 	1 —nn 	( 2m, \. .e „I t. 	 k. 	.g nj n• =1 	 1 -I ..=.1.t 

a, on 

27r k,ht j+k = me, E 1.4+ 
n= j 
j+k j+k a, a , 	r 	/ \ 2 1 

+ iTi E E .:1". exP --'2t.4 W (-'2 -Th2)) 
n=1 '''=1 

2 

(

it (27i- .1, 2 in/ n) (2. + k)) _ exp (lig (21 , , ,   
x [exp ( 

	

	 m 7. (a 
—n),)] 

 \, f i ‘ 

Let s = 27klitim& . 

	

=e 	lan12+ 

j+k itk 	[ 1 	 ni n . 
	

 exp (27g —rt (n, 	2 + + k)) 
n=i n'=.1 

nr#n 

27is
nt exp ((ni\. 
	2 	

j))1 

Since the state is normalised, 
j+k 

1'1.12 =1 	, 
n,=n=j 

Now 
t(.02 — VI) 

8— 	 e[0,11 , 

which is acceptable as a probability. 

For the remaining double summation, if the terms are grouped into pairs invariant under the 
interchange of a with n', and the { a,, } are taken to be real numbers, the contribution to the 
expectation sum is: 
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j+k 1 	 2irs 	ni -1- n E E a'an` [sin ( 17(n 	 + k)) — n. — n =i n=11,1-I 

sin (2i8-(n 	ni  2 	i)) 

(since sin A— sin B = 2 ens  A t5  B  sin  A-2-s ) 

, j+k j+k v—s. 	a,-,a„, 
nr —'n 

cos (-s:8  (nt  — n) 	n  + 2k )) sin (i!2  (nt  — n)-k ) 

Thence, introducing the short-hand notation (s) for (01xf ,.,,, ,,„i hiS) then 

j+k j+k 
(s) = 8  + 	 a'a"'  COS 	 — n 10) sin (78 (n1  — n)) • 

n=1V+1 

As s 	1 (i.e., t(v2  — vi) 	) the sine factor in each of the 'cross' ( a' # n ) terms tends, 
eventually, to zero. 

The dependence on t has been reduced to a subsidiary ride: as f is taken to be larger, so more 
terms will be needed in the summation to achieve the same level of approximation, i.e., range of 
momentum. 

§§3.1 An Example Calculation 

The simplest possible example of the sort of initial state alluded to in §2 is the characteristic 
function on some portion, [—at!, 	, of Si  : 

1 an  = _ f 	(,)e--2turfsie do  
C S I 

no = 

aC 
—1   [ sin(2nga) cc„ = 	 = 

irnvrTrx tv/2a 

eS(tr.) = §7 -h 
2 cos(2n:rx/t) sin(27tga) 

v:•  
iTe r=e1 	znv  

This is illustrated in the next three figures for a = 0.005 and various values of N . 

whence 

So 
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040 terms of : 	(,) = llr(iz[vit,v2t]) x1-0.0050,0.001 ell 

an  = 0 except: a10 =all = a12  = a18  = 1/2 
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- Cs> 

320 terms of : 	(a) = iiE 	[v I t, vat]] X,0.005r,0.0050 
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§4 De Broglie's Paradox 

This paradox is easily stated in words but lacks any obvious rendition a formal, quantum—
mechanical statement. Roughly speaking, the problem involves a quantum particle placed in a box, 
which is then divided into two, still sealed, half-boxes. Reason dictates that there is some chance 
of the particle being in either half, regardless of how far apart they may subsequently be moved. 
However, on opening one half-box there is a 'collapse of the wave-function' as it becomes certain 
in which half the particle is. The paradoxical nature of this collapse would not arise for a classical 
object, where the probability expresses mere likelihood; but for a quantum object the wave-function 
bears a much closer relation to the nature of the object, implying, perhaps, that a proportion of the 
particle has instantly evaporated from the empty half-box only to appear in the occupied one.181 

A straightforward transfer of de Broglie's description into the mathematics of quantum me-
chanics might be as follows. Take a state, ¢ E L2  %a, c]) , defined on a box, B . The insertion of 
the divider implies the projection of (A onto the two half-boxes, BI  = [a, b] , B2 = (b, e] : 

= E (x; [a, 13]) + E(x; [b, c]) 	. 

However, since the two half-boxes represent the same sort of entirely isolated environment as the 
original box, the process of dividing that box involves more than just the use of the spectral projectors 
of position. The state of the particle in the two half-boxes must consist of two parts, 

¢L= 	and 	,fiR = PRO' 

where Pr, : L2  ([a, c[) —+ L2  ([a, ID]) such that 

PL(fi = 	ta,131 

and, similarly, with PR projecting onto L2  ([b, c[) . 
OL and ,1,1; lie in different Hilbert spaces, so the state of the particle is now a mixture. But a 

mixture of states is the same as a classical 'mixture': the particle can now be said to be in either B1  
or B2 . The collapse of the wave-function is, in this case, not at all mysterious; for the same reason 
that the use of a classical object (for example, a pea) in the same situation can only be definitely 
located in B, or B2 by opening one of these half-boxes. 

The straightforward consideration of de Broglie's 'paradox' is, therefore, only paradoxical if it is 
asserted that the state measures the actual presence of the particle. Since there is no inconsistency 
in interpreting quantum mechanical mixtures in the same manner as classical 'mixtures' (a set 
of mutually exclusive events, each with a probability), then it is reasonable to use a less strict 
interpretation of quantum mechanical states. 

A less exact rendition of the situation proposed by de Broglie avoids splitting the state into 
a mixture by the use of an instantaneous and discontinuous processtfi To do this, the boxes are 
discarded: leaving a particle in the configuration space V(B5) . 

To simulate the initial confinement in a single box, the particle can be given an initial state, s/.,  , 
with compact support, i.e., supp Vi(x, 0) = [a, c] . Since 7//(x, 0) is bounded spatially, its momentum 
spectrum is the restriction of an analytic function (this is a topic covered more thoroughly in Chap-
ter 5, below). In other words, the momentum spectrum of is the whole of gia , with the possible 
exception of a set of measure zero. Such a state does not evolve in any way that might simulate the 
splitting of the original box in half. If is only approximately confined to [a, c] , i.e., 

IlE(A; [a, c])*II ?- 1  

but has B3  as its spatial support; then it is possible for the momentum spectrum to consist of two 
bounded but disjoint intervals. Thus 

= 	+ 74" 

where 
E(15;[Pi,P2[)01  

E(15;433;1341)0" = 0" 

and where the components of pa  — Pa , Pa — pa  , pa — pa  are all positive definite. 
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The Asymptotic Localisation Theorem can now be applied to deduce that, beyond some time, 
r, the two components of the superposition will be approximately confined within well-separated 
intervals: 

II E(kI fpithrt,P2t/141)u(t).0111 >1 

IlE(ItII133t/mtPatimilU(t)tfill 	1 —e . 

The process of dividing the original box and separating the two half-boxes may now be assumed 
to occur over the period 0 < t < r 

It might be not unreasonable to suppose that an observation on a state should not be greatly 
influenced by the small 'tails' cutwith the region of approximate confinement. The observables 
allowed by this supposition are called local observables (this will be dealt with in more detail in 
Chapter 6). If this is the only set of observables then, not only arc 	and .0" orthogonal, but for 
any local observable, A , measuring some aspect of tkr will give 

(on kw) < E  

and 

I (Or  Ilikb") I < 

(which I shall call the overlap between 01  and tb", with respect to A) and vice versa. 
With respect to the class of local observables, it therefore follows, the two states, t/./ and 011, 

belong to nearly disjoint sub-spaces, i.e., they form an approximate mixture for times later than r. 
De Broglie's paradox has been formally presented, and is now resolved by the argument used in the 
`straightforward approach', above. The Problem of Locality has also been illustrated. 

§5 A Starting Point 

For both S' and 831  it is crucial that localisation may occur, rather than that states may be, in 
any substantial way, localised. The locality of states is only absolute in the limit of infinite times. 
The fact that the Asymptotic Localisation Theorem has to use the strong, rather than the uniform, 
topology on the Hilbert space means that there will be states that take longer than any given time 
to localise within the velocity cone to the stated tolerance. This contrasts sharply with the fact 
that, experimentally, there is no great difficulty in confining quantum systems in finite volumes for 
long periods of time. 

It is, I think, undeniable that experiments and phenomena on the sub-microscopic scale are 
more localised than the SchrOdinger—Heisenberg quantum mechanics implies. it is not acceptable 
to assert, in what amounts to an ad hoc alteration of the canonical theory, that 'infinity means 
macroscopic': that only infinite distances and times take one out of the quantum realm and into the 
domain of classical physics, where we poor limited creatures can distinguish any details. However, 
if there were some way to distinguish states that localise to a velocity cone at different rates — 
classification theorem specifying a range of closed sub-spaces, for example — then it /night be possible 
to find a physical justification for excluding those states that locales more slowly. In my limited 
experience, this mathematical result does not exist; the problem of trying to justify approximately 
confined states does not, therefore, arise. It appears that the concept of locality does not fit into 
the canonical quantum mechanics. 

The problem of locality has a further implication that will be pursued in subsequent chanters. In 
classical point mechanics, the momentum of a particle and its mass determine exactly the trajectory 
of that particle. In quantum mechanics, only when Asymptotic Localisation begins to set in does 
the space-time evolution of a state begin to respect the momentum spectrum of the particle. For 
finite passages of time, it follows, the momentum spectrum is only rather loosely connected to the 
dynamics of the particle. Indeed, it would appear to be inappropriate to say the particle was moving 
in any direction at all until there is some form of approximate localisation to its state. This is not to 
suggest, necessarily, that the momentum of a quantum particle is not tied strongly to the dynamical 
behaviour of that particle; but the canonical theory does not show this well. 

To me, the obvious direction to investigate is a quantum theory founded on the Poincare group. 
In the limitation of propagation to below the speed of light. which is associated with this group, 

--2.12— 



Chapter 2 : A Starting Point 

lies the best hope for any vestige of locality to be discovered. Too late, I learn that such naive, 
apparently sensible, thoughts tend to get their thinkers metaphorically chained to eagle-infested 
rocks. 

§6 Bibliography 

(References are preceded with the page number on which they first appear.) 

3: [1] 	Derivations of the Asymptotic Localisation Theorem: 

J. D. Dollard, Scattering Into Cones, Comm. Math. Phys. 12 (1969) 193-203. 
W. 0. Amrein, J. M. Jauch, K. B. Sinha, Scattering Theory in Quantum Mechanics, W. A. Ben-

jamin 1977, pp 120-125. 

M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. II, Fo..rier Analysis, Self-
Adjointness, Academic Press 1975; Theorem IX.31. 

R. S. Strichartz, Asymptotic Behaviour of Waves, J. Pune. Anal. 40 (1981) 341-357. 
V. Enss, Asymptotic observables on scattering states, Comm. Math. Phys. 89 (1983) 245-268. 

4: [2] 0. Bratteli, D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, I, 
Springer-Verlag 1979; Example 3.1.29, p 187. 
11: [3] L. de Broglie, L'inteipritation de la mdcanique ondulatoire, J. de Phys. et Radium 20 (1959) 
963-979. See the appendix to this chapter for a translation of §2. 
11: [4] K. K. Wan, R. G. D. McLean, An algebraic approach to quantum mechanics and the EPR 
paradox, Phys. Lett. 102a (1984) 163-166. 

Appendix: L. de Broglie, L'interpretation de la m&.anique ondulatoire, 
Le Journal de Physique et le Radium 20 (1959) 963-979. 

Translated by Gavin Park 

The Resolution of Difficulties in the Contemporary Interpretation of Wave Mechanics 

The strongest objections raised against the contemporary interpretation of quantum mechanics 
are concerned with the non-localisation of the particle in this interpretation. It states, effectively, 
that if our knowledge of a particle is represented by the wave packet, , the particle is present at 
all points of this wave packet with probability 1012  . This presence could be qualified by 'potential', 
and only at the moment when the particle is determined to be at a point in the wave packet by 
observation does this potentiality become concrete, philosophically speaking. Such a view runs 
into difficulties that were forcefully indicated by Messrs Einstein and SchrOdinger. I have recently 
reworked my analysis of this kind of difficulty in a book about von Neumann's theory of measure. 

These objections may be presented in many different ways. I shall restrict myself to the devel-
opment of one - a little sketchy - but whirls shows the nature of the paradoxes that arise. Consider 
a particle shut in a box, B , which has impenetrable sides. Its wave packet, sk , is spread throughout 
the box, so the particle is 'potentially' anywhere in the box with a local probability k/d2  . Suppose 
that by some process, e.g., sliding a divider across the box, it is divided into two isolated parts, BI  , 
B2  , and then the two boxes, B1  and B2  , are taken to far-distant locations - Paris and Tokyo. The 
particle is still potentially present in the whole of B1  and B2  , and the wave-function, yl  , comprises 
both 	, localised in box B1  , and '02 , localised in B2  . 	is therefore of the form 

= c101 c202 

where e l  and c2  are constants, generally complex, such that les r IC2 1 2  = 1 . 
The laws of probability in wave mechanics say that if an experiment were performed in Paris on 

box .Li that would determine the existence of the particle in the box, the probability of the result 
being positive is 1c1 1 2  and being negative is 1c2 1 2  . According to the usual interpretation, this has the 
following meaning :- the particle, `potentially' present in the whole of the box before the localisation 
experiment, will suddenly be localised in box B 1  , if the result is positive, and in box B2  , if the result 
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is negative. I do not find such a point of view feasible. The following is the only explanation that 
seems reasonable to me: the particle was, before the localisation experiment, in one of the two boxes, 
but we do not know which, and the probabilities propounded by the usual view of wave mechanics 
expresses this ignorance; if we determine that it is in Bt  this is because it was already there, and if 
we could not find it then it was in B2 . Thus everything is clear because we have returned to the 
classical interpretation of probability the intervention of which results from our ignorance. But as 
soon as you accept this point of view, it appears that the description of the particle by the wave 
function, 7/, , although leading to a perfectly exact representation of probabilities, does not give a 
complete description of the physical reality, since the particle must have a localisation before the 
experimental determination and the wave, q  , is silent about this. 

The example developed is a little sketchy, but many more of them may be found: the same 
problems are always found in different guises. Nothing is gained by using von Neumann's formalism 
of statistical matrices, this formalism adds nothing to the principles of the probabilistic interpretation 
of wave mechanics, and if it is applied to the above example, it is clear that the problem is inherent: 
I have considered the von Neumann theory elsewhere and shown that it falls into paradoxes related 
to non-localisation, just like the primitive formalism. As for quantum field theory, this contains more 
than the primitive formalism of wave mechanics since it can represent the constant interaction of 
charged particles with an electromagnetic field as well as the creation and annihilation of particles; it 
cannot alleviate the difficulties in question: in the foregoing example, the intervention of phenomena 
which may be represented by quantum field theory does not explain how an experiment in Paris 
results in the localisation of a particle , either in Paris or in Tokyo, which was previously not localised 
in either place. 

The fact that everything in the physical world is localised at each instant in time in the specified 
frame of reference is fundamental to our experience: the introduction of the concepts of the theory 
of Relativity and Einsteinian space-time does not change this conclusion. Abandoning localisation 
does not allow any imaginable picture of the physical world, and that is a consequence which is so 
grave that there is cause to try everything to avoid it. 

Besides, there are other difficulties in the current interpretation of wave mechanics; notably 
concerning the characteristic nature of the wave packet, silt , as it is usually considered. It is effectively 
impossible to consider this wave packet, q/s , as having the concrete nature of physical reality which 
is attributed to vibrations in classical physics. The possibility of normalising the wave packet, sk , by 
arbitrarily choosing its amplitude, the need to change this wave when new data of the state of the 
particle are obtained, lead naturally to the use of a simple representation of probability lacking an 
objective character. But this totally subjective view of the wave packet, .1/') , involves huge problems: 
these are interference, which dictates the possible position of the particle, and it is rather difficult 
when, on reflection, for example, on the phenomenon of electron diffraction, not to accept that the 
wave propagating through space has a physical reality. Furthermore, the quantised states of atomic 
systems, to which the characteristic of physical reality must be attributed, are determined by the 
fact that the associated waves are standing waves with frequencies determined, as for standing waves 
in classical mechanics, by a calculation of actual values. All this does not suggest that waves, ,p , are 
a purely subjective representation of probabilities: there must be something objective. We should 
be wary of being too insistent on this point in a treatise on quantum mechanics or wave mechanics; 
authors seem to swing endlessly between the idea that the wave packet, 1/) , is a simple representation 
of probability, and the idea that it has a physical reality. As a teacher of wave mechanics for more 
than thirty years, I know that even I have constantly performed this kind of swing. 

I leave insisted on the difficulties presented by the non-localisation of the particle and the 
subjective character of the wave packet, e/ , in the contemporary interpretation, but thus far I have 
not spoken about the indeterminism introduced at the same time through quantum physics, which 
is introduced almost by necessity since asserting determinism is to establish a chain of relations in 
the form of space and time in such a way that abandoning localisation leads to the abandonment 
of determinism. But the objections. following Einstein and Schriidinger, that I now see in the 
purely probabilistic account of wave mechanics are snore like non-localisation than the absence of 
determinism: localised particles can be imagined which exhibit quits indeterminate motion, and the 
problems indicated above in the example of the boxes, Br  and B2 would disappear. However, 
establishing determinism, or causality (the two terms are quite difficult to differentiate), is true 
to the traditional path of scientific thought. The Double Solution Theory, which I will discuss 
below, re-establishes determinism at the same time as localisation; hut it must, as we shall see, 
also introduce an element of uncertainty which could be connected to a hidden determinism. But 
beyond all philosophical discussion of determinism or causality, the essential point for me is still the 
re-establislunent of localisation and objectivity. 
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Chapter 3 

Chronological Disordering 

an outline 

`A freckled and frivolous cake there was 
That sailed on a pointless sea, 
Or any higulnious lake there was 
In a manner emphatic and free. 
How jointlessly, and how jointlessly 
The frivolous cake sailed by 
On the waves of the ocean that pointlessly 
Threw fish at the lilac sky.' 

The Frivolous Cake by Mervyn Peake. 
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§1 Introduction 

The Einstein-Podolsky.Rosen and de Broglie thought experiments involve only two and one 
particles, respectively. If, in an experimental realisation of either of these thought experiments, only 
a single particle, or pair of particles, is used then there is a direct correspondence between theory and 
results. On the other hand, it is not uncommon for such experiments to involve beams of particles. 
To reconcile such experiments and the usual theory it is necessary to assume that the experimental 
results are not influenced by the several sets of states present. Whether this independent-particle 
hypothesis is justified is a matter for each experimenter to determine: if a configuration can be 
found so that the particle beams can be treated as a series of independent experiments then there 
is no problem; in the absence of such a configuration a more sophisticated theory is required. As 
yet there are no very substantive results for massive particles involved in EPR- or de Broglie-type 
experiments, but, in anticipation of such work, a sketch of this 'more sophisticated' theory will be 
given. 

To represent a beam of N particles, each particle is assumed to be in the same state except for 
a time translation: if the superscript denotes the order in which the particles enter the experiment 
and the subscript denotes the number of particles represented by the state, then 

) 	 (x,t) 

(x,t 

where U(r) is the unitary (free) time evolution that takes a state at time f. to one at time t r 
In order to employ arguments based on asymptotic localisation, it is further assumed that the 
momentum spectrum of the states is bounded: 

(0 	• 	 .(0 
= EU3;[pi,P2D9i 	(Yi E { 	 (1.2) 

All the beams discussed in this chapter will conform to these conditions, or simple variations of 
them. 

The notion of Ghronofogicai Disordering can then be stated as follows: 
If at some time, t o  , the particles in the beam arc 'well-separated' then as the states 
of the particles undergo asymptotic localisation this separation will be eroded. 
Account will then have to be taken of the indistinguishability of the particles. 
Therefore, the simple, independent•particle hypothesis, with its 1—particle expec- 
tation values computed from 1—partide states. is no longer applicable. 

Very roughly, chronological disordering is the effect on expectation calculations arising from the 

	

fact that the order of emission of a beam may not be the order in 	its constituent particles are 
later detected. 

If chronological disordering has an adverse effect on a single beam. its Oect on two beams. 
where the particles are correlated in pairs between the beams, is liable to be as drastic. 

§2 N—Particle Beams : 1l-1 article Obse.rvables 

States 

To represent the quantum theoretic state of a beam of N particles (whether distinguishable 
or not) one takes the N llilbert spares of single particle state., :31.1  , and forms the tensor product 
space. also a Hilbert space: 

;IN = )41 ® ill 0... NI 	terms!. 

Now, an arbitrary state in lfar may not he `factorizable. i.e., it may not be of the form 
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but may be a linear combination of such factorized states. This is immediately the case if some or 
all of the particles are indistinguishable; if some or all obey fermi or bose statistics. For convenience, 
the 1—particle states in each component term of an N—particle state will be numbered from left to 
right as the '1' to 'PT 1h factors'. 

The 1—particle factors in any term of an N—particle state represent states for each particle which 
can co-exist. Thus, for example, the sum of the 1—particle spin expectation vain ss in the z-direction 
add up to an allowed value for the experiment modelled. So when the terms o an N—particle state 
are written down they already reflect the various multi-particle conservation laws and constraints 
on the system based on 1—particle observables. 

The construction of an N—particle state to model a specific system is something that has not 
really been systematically expounded. The space of all states is prescribed above; and there are 
rules about symmetrising or anti-symmetrising with respect to coordinate interchanges. Beyond 
these two, certainly potent, rules, writing clown the state of a system is largely a matter of guess-
work. This has already been illustrated in Chapter 2, where turning de Broglie's verbal paradox 
into a formal statement proved only partially successful. 

Observables 

In a similar fashion to the construction of N—particle states, there are N 	cle observables: 

AN = ®Ai 0 0 AIN)  

though if some of the { AV)  } are identity operators such an observable is concerned with fewer than 
N of the particles. Call any A N  with Mfactors that are not It  an `M—particle observable' (on an N—
particle system). Again, AN is not necessarily factorizable — it may consist of a linear combination 
of factorizable observables —, and will be symmetrized with respect to the indistinguishable particles 
of the system — though never anti-symmetrized, which would turn bosons into fermions and vice 
vcr ea. 

There is thus a prescription for writing down a general observable on an N—particle system given 
N 1—particle observables. But is this definition complete or sufficient? The constituent 1—particle 
observables may be fine, as such, but whether the composite of these is valid, i.e., self-acijoint, for 
an N—particle system is a non-trivial question. 

As an example on which to fix, take a 2—particle state, Ts = 	0 Ifil + 01 ®e1 , and the 
2—particle observable Ag = p 0 : 

2 IA 2 	= 	10 I ) (01 1,1.10 1.) + 	IP 101) (6.1kKi) + 011.1.5101)(01.1klei) 

+ (lkt 0100 (6 Ph) 

Thus, if an 1\l—particle observable is made un from valid (i.e., self- adjoint) 1—particle ohserva-bles, 
then there seems no reason to doubt that the composite observable is well-defined. That this does 
not necessarily give an exhaustive characterisation of N—particle observables — at least there is no 
proof that it does is not going to be pursued further here. All N—particle observables examined 
in the sequel are constructed of self-adioint 1—particle operators. 

,;3 A Formulation o! Chronological Disordering 

In the remars that follow a single beam of N particles will be discussed: c//i, 	 . 

All that. is necessary to obtain the corresponding formulation for two beams is a set of single- 
particle states, 	, AN)  , ticlt obey the same constraints but for a momentum spectrum 

rather than [P1,92.] • 
The beam //PI is constructed of N 1—particle states that obey (for sonic r = 7" 	C2) ), 

following the argument of Chapter 2, ?if: 

N'in II 	 (3.1) 
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of Chronological Disordering 

(3.2) 

}) 	; 	 (3.3) 

(3.4) 

> 1 - e2 	, 	 (3.5) 

In order to, at least initially, satisfy an independent-particle hypothesis, an additional constraint 
is imposed on r (possibly making it larger): 

A ll [PIT pall 	0, 
= 

in In 

Denote by A' the complement of 
A Uir 11?27

m
1 
im 

in the configuration space. Whence, at t = r , when 0111 takes its initial value and cij is r seconds 
evolved from its initial value, 

1(on'tol = 	E (1'.;A u 	u 
P; A}I+ 

(41E 	[ 21-1,1-1))1 + 1(4E (lAi) 4)1 m m 
<E2 + E1 + 51r2 • 

(By equations 4, 5, the Cauchy-Schwartz, and triangle inequalities.) 
And take 

E =E1TC2 +C1C2 • 

The independent-particle hypothesis is thus true at the e-level (to a tolerance of e) for this 
2-particle beam at time r ; it is interesting to note the effort needed to satisfy this hypothesis 
even approximately. To extend the (initial) validity of the hypothesis to an N-particle beam, it 
is necessary that the approximate localisations of the N - I particles, which have developed from 
their common 'initial value', be disjoint; by taking p2 > pi > 0 the condition on A (equation 6) 
will automatically apply to all N L approximate localisation of the particles. 	 I) . To 
obtain an approximate separation, the boundaries of the respective approximate localisation must 
be well-ordered: 

(3.6) 

T 2b,r 2 (PI -1)pir 	-1)7.2r 
(3.7) 

   

Fortunately, this follows immediately if only the penultimate inequality is true: 

IN -:~ipr2 r(N - Op] t 

Or - 
)2 <1y- 

since. if ttE 1,...,N - 
1 N 

11 
> - 

N - 2 

Note that this condition fai!s in the limit 	— to), as any independent-particle hypothesis probably 
ought. 

The constraint on the momentum spectrum of the dl') can be summarised as 

0 < 	< P2 < 	1) ) 	 (3.0) 

-3.1- 
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To show the effect of the passage of time on this approximate separation, time will be measured as 
a multiple, Er , of r , and the set of boundaries being compared will be extended t" include the Nth 

((N)): 

trpi 	: +1)rpi < (t +1)7132 : 	: + — 1)rpi  < (t +N —1)7133 • 

Nov:, just as pa  can be bracketed by pi  and a multiple of pi  , so there is a positive integer, sr  , 
such that 

./V11) P2 <PI<
( 

 N-1+81)132 	
(3.10) 

since pi  < pa and 
N  — 2 + s 

lirn  	— 1 
N — 1 + 8 

Further, there is a positive integer, 32  , such that 

(N — + 32)Th. <32P2 • 

The times si r and s2 r correspond to the beginning of chronological disorderir,;; the approximate 
supports of the leading two particle states, 4,c.  and Oc'.  , overlapping significantly) and the onset of 
complete chronological disordering (the approximate supports of the 'first' — 	— and 'last' — AN)  
— states now overlap). In fact, this is only a very rough guide to these events, since the process of 
asymptotic localisation gathers progressively more of the wave-function within the velocity cone: to 
maintain the same tolerance on the degree of localisation a smaller velocity cone must be taken —
see the next figure. 

particle 

-c 

Succumbing to chronological disordering is not only hard to avoid — it is the natural condition 
of N—particle systems —. but. is trivially easy; for while the component states of the beam are roughly 
orthonormal: 

1,••-,N)) 	
(liv) 	< 

there are always o5servables that give a considerable overlap, i.e., where 

(41
j)

IA110V)) 

is sizable. To model a chronologically disordered system it is only necessary to take a set of oh-
servables having an 'equal' effect on all elements of the beam. For a single beam this is merely the 
standard (global) set of observables. For two beams there ought to be two sets of observables: one 
set acting on each beam and with negligible effect on the other. (The processes of chronological dis-
ordering and asymptotic localisation will not bring together beams tending to propagate in entirely 
opposite directions.) 
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1 

It is possible to obtain observables that act on only one beam, say the { 4)  } . Taking any 
smooth function, f , such that 

f (x) =
JO 
 iiff >1 ;0 

This can be used in the definition of the localising isometry, L1  , discussed below (Chapter 6). The 
whole problem is then subjected to this isometry — the beam { 4) } and its observables {AN } 
—largely without changing anything; though no guarantee can be offered that this transformation is 
free from difficulties. However, it does indicate that there is a formal way of excluding one beam 
from the demesne of obsermbles intended to act solely on another beam, and with small effect on 
expectation values of observations on the latter beam. 

g§3.1 Expectation values 

In expanding the expectation value for the 1—particle observable. AN , there is no need to retain 
the symmetrisation because the factor of 1/N exactly cancels the appearance of N identical sums 
(one for A, in each factor nosition). The beam is represented by the N—parties state 

	

= [, 	 wry)] 

—where E[—[  denotes the taking of an appropriately symmetrised sum. The expectation value for 
AN = Al 11 	on the N—partiele state, kli N  , is then (by on applicatisn of combinatorial 
analysis) 

(41N IAN 14'N) = 

( 
1 	N 	 N 1-1 

= 71'  TDC4(1i) 01141) (N  — 1)!  ± 2 ?-("7._, /.7,(c6ii) iAllatil)(eli3 I'Aii)))IN —1)(N — 9.)!+ 
i.-..t 	 ;.1i-,1 

+ terms of higher order in c) 

= I—   (7  (OP lAli6ii)) ± 2-1():: ,\4_7('91‘ ) IAllehi(',3iii iliii) ))+ 

, 	 ,v (-1 

N : 4  

+ terms of higher order is c) 

The (N — 1)! and (N —2)! are the number of permutations of the remaining N —1 and N —2 factors, 
respectively. The N — 1 in the second sum is because the factor (0V)14)) may turn up in that 
many factor positions. 

In this expression, chronological disordering terms comprehensively dominate the expectation 
value: the only term not (hie to this disordering is (0',1.-11 k) . though in a sinele•bearri system the 
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remainder of the first summation will have no adverse effect if the observable, 21  , is a constant of 
the motion for 1-particle states. 

Where there are two beams, and a 2-particle observable (AN ®E„), al: 	chronological 
disordering terms are relevant; for, in addition to the independent-pairs-of-particles terms - 

- there are also contributions - 

- that represent disorderea measurements. 
Thus, the fact that an experiment employs a beam of the kind devised means that it cannot 

be conducted over an arbitrarily large distance-scale using an independent-pare'cle hypothesis if it 
has been shown to work at a shorter one. The two critical times found in this section, being related 
to the velocity spectrum, also determine critical distances at which chronological disordering sets in 
and, later, becomes complete (though 'spatial disordering' might now be an apt description). 

§4 The de Broglie Paradox 

The nearest that a Galilei-relativistic theory can get to a satisfactory formulation of this thought 
experiment is by way of the single-particle states suggested in Chapter 2, §4: 

ul 	
, 

= 	+ Xi) • v2 

The expectation of a 1-particle observable, A2  = (A1 0 	fl 0 Al) 
be (discounting terms with factors (flx) = U ) 

(,Y2IA2 1'1'2) = 
s (2 (q1;1110?) 2(41A1 	lAi let) + 2(Xi iAl 1Xi)+ 

	

{4  (XinAi 	+ `I(Xi lAi )+ 

± (2(611144 ) ((l)i 1'4) +(xiVii)) + 2(q511'1A1 VI) 	+ (Xi IXD)+ 

	

) 	+ (XCIXV)) + 2 (X7lAi VI) Pi 1611) + (Xi 1X7)))}) 

Allowing A l  to act principally on the beam OP } , leaves the radically simplified expression: 

	

('T/21A2P2) = (2MIAI 	+*/112,11;14) ± 	NO? 	I,A) ((et 14) + (Xi IXii)))) 

If A I  represents a constant of the motion, it is clear that chronological disordering presents a very 
small contribution to this expectation sum-- the last term is of between first and second order in r . 
The contribution from the half-beam not being measured - the { yr - is also very small. 

In the case of an N-particle beam, the various terms can be summarised by considering one of 
each distinct form. This is done below. In considering the details of the expectation sum the only 
effect that symmetrisation has is to ensure that all possible combinations of 1-particle states appear 
on either side of the 1-particle inner-products, both with Ai  and with Ii . Thus, once a certain 
term has been singled out it will occur with the same frequency as any other term. It is only by 

(4.1) 

on a 2-particle state will 

-.',.7- 
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introducing some sort of classification of the terms that it is possible to say that some effect, such as 
chronological disordering, has or does not have an appreciable impact on an observation of a beam. 

There are two parts to the classification used below: first, by specifying only those factors in a 
term that are not (4)  kir) or  (x1') Ixr) there are a number of ways of obtaining the form cited: 
for each i that is not fixed there is the choice of Or or xr , i.e., 

(4)  10(11) ) 	or 	(Xii)  !Ai)) 

giving 2N — '" occurrences for a term in which m 1—particle states are fixed (the 'Occurs' column 
entry). 

The second part of the classification scheme consists of counting the number of ways that the 
superscripts can be combined for each form of term, so that (95i IA1 IA) is considered to be of the 
same 'form' as (45)  IA1145)) ; since the 'form' here is (Or lAdcbr), and i E {1, ... , N} (this would 
give an entry of N in the 'No. of Form' column). There is no extra mental effort required to deal 
with the fact that inner-products use states in sets of two, since if the left-hand one is fixed then for 
a given form of term the right-hand one is dictated by that form. 

Here there are eighteen forms listed (grouped together as six 'types') — this is obviously not 
exhaustive, but represents the contributions roughly of order 1, c and E 2  , beyond whirls I assume it 
is unnecessary to probe. 

The normalisation constant for the sum is (2NN!)' , which is almost exactly cancelled by the 
product of ccurs' x 'No. of Form'x the number of permutations of the 1—particle expectations not 
involving AlA , i.e., (N — 1)1 . The difference is independent of N and is a power of 2, depending 
only on the Occurs' column. 

The simplest terms are of type a: these are the 1—particle expectations that arise in the single-
particle theory. For smallish N these terms dominate the expectation sum. The second order 
corrections (i.e., those of order, at least, e2 ) are not going to be considered important but are merely 
written down. 

Terms of type b are the principal contribution of chronological disordering (if Al  is not a 
conserved quantity there is already a large contribution from all the terms of type a and k 	1 ). 
This part of the expectation sum is 

(N 1-1 	1V-2( 

± 	EE(C6(11. ) 1 A1P7)) ((OVVIi) ) + (X141 "))) 2 	-1\f  — 1)!  2N.N! 

To estimate when this might become significant, the most favourable and simple assumptions 
will be made: 

(ori4i) ) = (x(I" ixij) ) = 
(Or 	= 	(6i`) 	(vi*a) 

— the second assumption requires, as a minimum, that the 41')  } share a single approximate support, 
as outlined in the previous sections. 

The contribution of type—f; terms then simplifies to 

1 
±C X N — 1) x 2€ x 47s,r  

so that this type of term may become relevant if 

(N — lic 
r-:-; 1. 	. 

2 

So that, even if E is very small, it is possible to find beams of such a size that the disordering is 
appreciable. There is also a crucial dependence on the observable: in the extreme case of Al  a 11  
these terms are of second order in e . 

The last three types 
Al

f term make no contribution in the usual configuration space (323) — 
after all, the observable, 1  , was chosen specifically not to apply to the x-beam. If, however, the 
configuration space is taken to be 5' (the surface of the n-sphere), which is one way to model 
such devices as interferometers, then the two beams can separate and subsequently reconverge. The 

i=1 j=1 
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(The use of ± indicates where symrnetrising for bosons and fermions gives differing results. The 
indicies i, j, and k are all different.) 

Form Occurs No. of Form Type 
(96.(100,14r) 

±(4(,k)1Aii4(,k))(4r14ii))(1010,i)) 

±(4ioki14ik)K((4r14"))(xii'lxii))) 

I (Ai')  IA1 	(XV)  I 	(ii)) (X PIA°  

thR ((Oik)  IA11011) ) (oPlor)) 

±K((cbik)oiloin)(xv)ixv))) 

`Re•interferencei 

2N-1 

2N-3 

2N-2 

2N-3  

2N —2 

2N-2 

N 

N(N -1)(N - -) 

N (N - 1)(N - 2) 

N(N- 1)(N - 2) 

N(N- 1) 

N (N - 1) 

a 

a 

a 

a 

2R((41k) IA IIXik) )) 

±(01k)  I A1I xi
k} ) 

(Or 141) )(95(1i)190 

±l((41' IA 	ik)) (Ai)  1011j) ) 	kV))) 

1(011')  1A1Ixr))(xr lxV))(xPIA')) 

±2az((4PlA11xV) )(4V)10i1) )) 

±21?((411) 1AllxV))(xV)1A1) )) 

(xi°  IA, 	) 

±(xik)  IA1 Ixr)(4010,m)(0v)Ion 

+1((xrIAilx(,k)){0,010v))(xv)Ix(i0)) 

±(xr)IAIIxiki)(xPlxV))(xPlxV)) 

+((xi'')1AilxV) )(4V) PP)) 

+R(Nr1-411xV))(x1i)IxV))) 

2N-1  

2N-3  

2N-2  

2N-3 

2N  —1  

2IV  

2N-1  

2N-3  

2N-2  

2N-3  

2N-2 

2N-2 

N (N - 1)(N - 

N (N - 1)(N - 2) 

N (N - 1)(N - 2) 

iV (N - 1) 

N (N 	1) 

N 

N(N -1)(N - 2) 

N (N - 1)(N - 2) 

N (N - 1)(N - 2) 

N(N — 1) 

A r(N— 1) 

c 

c 

c 

a 

e 

e 

interference patterns obtained are of some contemporary interest in, for example, neutron beam 
studies. This interference is supposed to arise from the overlap term, (4iiAl lx;. ) Clearly, if Al  is 
not a conserved quantity the other terms of type c (i.e., for h # 1 ) will modify this. In the case of an 
interferometer, A l  = E(d; Am) , and the fringes for one particle at any instant are unlikely to match 
up with those of any other particle in the beam, which will tend to smooth out the maxima and 
minima, and so blur the pattern of fringes. There is no danger of Al  approaching 71  here, because 
interference patterns are captured on photographic plates (or something equivalent to this), which 
cover one fewer dimension than the space in which the states have their support: for 5'3  , the plate 
is two-dimensional; on Si , the interference 'pattern' is the value of an observable on a single point. 

Again, if 
Ne 1 

there are all the terms of type d and I to take into account. 
No attempt has been made here to consider the case of an N-particle beam in which there are 

initially large overlaps between the 1-particle states - this would be the result of taking a a 1 . 

-3.3- 
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Likewise, no consideration has been given to the possible disturbance of the beam — some• 
thing that is more likely the further the beam travels — indeed, in the case of the S8  configuration 
spa'-e, e.g., an interferometer, there is obviously a disturbance that has been assumed to be exactly 
symmetric between the two half.beams. 

§5 Bohm's revision of the Einstein—Rosen—Podolsky paradox 

For some time now it has seemed incredible to me that Bohm and Aharonov's revision of 
the Einstein—Rosen—Podolsky (BERP) paradoxill could present a devastating contradiction between 
quantum mechanics and Einstein's postulate of special relativity. The paradox is purported to arise 
from an action-at-a.distance that connects two space-like separated measurements. The peculiarity 
is that Bohm's theory at no point contains any reference to space or time. It is explained that 
some pair of particles separates in two different directions and is later measured, but nowhere in the 
formulation of the model is this statement incorporated: the state vector is taken as 

2 = 	a 0 /9— $ 012) 

where a represents spin.up and /3 spin-down in the z-direction. 
Bohm's mathematics must therefore be regarded as only a loose guide to the experimental 

realisations of his explanation. In fact, Bohm's model applies without modification to the case of 
two spin-correlated particles travelling together in such a way that they cannot be distinguished; a 
rather uncontroversial situation in which to find correlations. 

A somewhat more specific formulation of the paradox is, therefore, most in order. Framing a 
CraMei-relativistic theory has precisely the same pitfalls as covered above for the de Broglie paradox; 
and the same compromise with accuracy is necessary to get around these difficulties. That aside, 
there is no reason to expect any radical revision of I3olun's result. 

To formulate the de Broglie paradox two sets of single-particle states were mixed to form the 
beam, here four sets will be required (using the conditions of §3): 

State 
	

Momentum 	 z spin 

 

,P21 
spin-up 

spin- down 

X: 
) 

—,P11 
spin•down 

The state vector for a pair of particles in the singlet state is then 

= 2-(01 xi 	@e, =Lk, 0 - 	oill -  

(+ 	bosons; — = fermions). A 2-particle observable is required: 

A2 	(AI on' 	® Ai) . 

As before, Au  and Bi  will be taken to act only on the approximately localised particles moving 
in one direction: Al  acting on 01 and )131 , B1  acting on N- 1  and el  The expectation value is then, 
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in full, 

(92IA21,P2) = ((011A1 Ic6i) (xi 	+ (thiA1111,1)(60116) + (xiiiiiix,) 1 '4;291101) 

+ (eliAt lei) NI Ifii 	+ 231(-011Adoi) (xi 	IA, le, 	lc) 
oi 	Ix') (ei 	100 	16) (6 1-61101) — (xi 	s11,;i 

(011Ailx1)(xilij1101))) 

Taking into account the null spaces of the observables: 

(4121,1212) = 714 	 In) —2RMIAiloi)(x1113116)) + (011A116)(61-611e0) 

The right-hand side of this is half what it should be, for if A2 is taken to be the product of 
identity operators for the two beam 'directions': 

A2 = E(i; [0, co]) E(13; [—co,  o[) 

the result is 1/2 not 1. This factor of 1/2 is a consequence of taking W2 to have a fully symmetrised 
form, whereas the class of observables distinguishes between two disjoint sub-spaces of states. Since 
they are distinguishable, there is no need to symmetrise states with momentum spectra of opposing 
signs. The appropriate state to use is, therefore, 

4112 = -(Os x —1V1 ®El) 

If A, and E, are now taken to be measurements of spin, 6.1  and .a2  , and if the states are 
re-written in terms of their spin-dependence in the conventional manner: 

('p21;121'1'z) = z ((alai  la) (g la2  I/9) — 2R((alai  119) Pla9  la)) + (alai lfl) (a 16'2  la)) 

whirls is exactly Bohm's result. This is given its snore familiar form by writing 

= 6-, cos ej 	sin O f  , 

and, since 

(ala 	= 1 
	

(ald,lce) = 0 

1/3) = 0 
	

Max Ig) = 1  

= —1 
	

-=" 

it follows that 	

(ala11.,)(f31P1g) = cos 01 (— cos 02 ) 

(ala2  la) Via l  Ifl) = cos 02  (— cos Os) 

(ala i  I/9) (#1a2  la) = sin 01  sin 02 

so 

(4'21A21g-'2) = — 	cos 02  cos Os  -f 2 sin 01  sin 02) 

= — cos(01  — 02) • 

Consider, now, two pairs of particles 

4,4 = E[(qvi x'i - 	ei) N,'L ® xi; — 

where E[—j means the appropriately symmetrised and normalized sum. In fact, only states going 
in the same direction need be symmetrised. By the same argument used in the last section, the 
observable need not be synunetrised when computing an expectation value because this only produces 
a number of identical expressions divided by that number. Assuming that the first and third factors 

—3.11— 
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represent one direction, and the second and fourth factors represent the opposite direction of motion, 
the 2-particle observable used is 

A4 =A, oFi. of, of, . 

Ignoring terms involving powers of c above one, the expectation sum is 

{11'41)1414'4) = 

	

((el 1;11 14) [2(Xi. Ihl 14) + (40114) + 	Int IM 2R((xrilfillXi'.)(XfilXi))1 

KAI 	[2(X71131IXD +(x;lfil IX1) 	ith 	2R((xii' 	izi)(xiiix7))] + 

N't IA' 	[2(e4 	+ wt.& len + 	gmei ifii lc) (ciem] + 

(41A1I4) 12(enat lc) + te, Ifii 	+ 	nmenfli )(e 	+ 
— 4a2 ((cq lAilOii)(X71-61 IC) ± (ei 	lei) (xi In' le)) 

+ more terms of order c , or worse.) 

The result is half of Bohm's, though a condition has to be added that E be small for this to be 
SO. 

The table of terms for a pair of N—particle beams is not dissimilar to the de Broglie case: the 
extra terms arising because where before there was a 1—particle state there are now two to take into 
account. 

Form 
	

Occurs No. of Form 	Type 

(c4i) Ifii Y ) 	IxP) 

,bC" Al ii40 )(A-1) 	V)) 

(101;1114))(elbile1) ) 
±(ch(') IA.10MR ((x.th 	V))(x (,1)  

±N,riAiiolio)g? ((xV) ifilixik) )(xrlxV))) 

±(e)frii icbMgz ((eV) 

±ocio 	ix(iI)) ((,f0 IAl 10;"))(0V)14))) 

( v(/) 	1k) xlsik)16V1 )) 

±(x 1) 	IxP)R ((o1") IA, 1.01k))(o1k)lolri))) 

(01'1  [o (e)01 

(011)  IA1 [01'1 )(x) lni lxV) ) 
{,b(i) 	le) (ell) 1n1 !ell) ) 

±t,k1" IA] 101' ) )3((e1') 	ieV)) (e)i eV))) 

±(411)1A1 iolt.))R ((eP 	eik)) (Cr) Idi))) 

((xPlfillx(ik))(xr) IxV) )) 

2N-1 N 	 a 

2N-2  N(N — 1) 

2N-2 N(N — 

2N-3  N(N — 1) 

— 1)(N — 2) d 

2N— s  N(N — 1)(N — 2) 

N(N — 1) 

N(N — 1)(N — 2) 

N(N— 1)(N — 2) 

'1' 

N(N —1)  

N(IV — 

N(N— 1) 

N(N — 1)(N — 2) 

N(N — 1)(N — 2) 

2 

3 

2N-,  

2N-2  

2N-2  

2 
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leP)R ((of') 	kW') (oV) io(l) )) 

±(d" ibi ie))* ((olm IA' Folk)) (Ak'iolj))) 

±(4 )1,61 	((elAil4k)) (i6(k) P(' ) )) 

-2R(or iiithbV ))(xr Alen) 

T282 (OPIA11011) ) (A11 	(el-i)  le( )̀)) 

T231((0(') IA' io(') )(xV) In' ie(i))(x('l ix('))) 

T21z ((xr ini le') o(l)  IA' 101")) (o('1  PP)) 
T231 ((XP 	id1) )(0(') 	ioli'mb(l)141))) 

The normalisation factor for the expectation sum is 

1 	1 

2N-2 N(N - 

21'1-3 	N(N - 1)(N -2) d 

2N-3  N(N - 1)(N - 2) 

2N -1  N 

2N-2 N(N -1) 

2N-2 NW -1) 

2N-2  N(N -1) 

2N-2  N(N - 1) 

(N!) 2  (15)2N 

- the product of symrnetrising the state and the 1/V2-  each singlet-state introduces. 
The multiplicity that each form contributes to the expectation is calculated by 

`Occurs' x 'No. of Form' x ((N - 1)!)9  

- the ((N -1)02  comes from the permutation of factors of the form (17177) . 
In the BERP case, if I make the simplistic assumption that the beams are separated but 

otherwise the spatial distribution can be ignored, the prospects for chronological disordering making 
a substantial impact are diminished by large-scale cancellations. Term type b cancels term type b'; 
likewise for d and d'. There is, therefore, no mixing of pairs if c is small. 

The remainder of the table can be written out again in the notation of the BERP observables: 

Form 	 Multiplicity 	 Type 

- COS 01 COS 02 	 2N -IN ((N - 1)1) 2  

	

(cos 01  cos 02 )E 	2 x 2N-2N(N - 1) ((N - 1)!) 2  

	

- cos 0 1. cos 2 	 2'y  N ((N - 0)2 	a' 

	

(cos 01  cos Mc 	2 x 2N-2 /V(N - 1) ((N - 1)0 2 	c' 

- 2 sin Bi  sin 02 	 2N-IN ((N - 1)1) 2  

	

(2 sin GI  sin 02 )c 	1 x 2N-2N(N - 1) ((N - 1)1) 2  

Bohm's correlation function now only turns up if E is ignorable. The first two terms in an 
expansion in powers of c are: 

1 : 	 - cos(ei - 02)2 x 
2N -1  x N  x ((N - 1)!)2= COS(01

.  - 02) 7/1\-  
2N  x (N!)2 	

7 
 

x 2N  x N(IV - 1) x ((N - 1)1) 2  E: 
	

(2 sin O i  sin 02  + cos 01  cos 02) 	
2N x  (N!) 2  

(2 sin O i  sin 02  + cost, cos us)
2(N  N 1)E - 

The E2  contribution will result from terms similar to a and e, but with two fewer factors of 
unity. 

-3.13- 
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Accepting the pretty drastic simplifications employed, the conclusion here is that the correla-
tion decays with 1/N , until it reaches about ccos(01. — 02) , where the decrease levels out. Rather 
perversely, it is the chronological disordering terms that avert the complete disappearance of corre-
lations, albeit at a very low level. It seems unlikely that any more realistic calculation will increase 
the correlation. 

What all this means is the quantum mechanical correlations that form part of the statement of 
Bell's theorem are not always of the form deduced by Bohm. In the case of a beam of sufficiently 
many particles that are chronologically disordered, Bell's equation 22 becomesl2 l 

4(E + 8) 	
VI  • 6.— g 	 1 . 

So that the lower bound on c + 6 is about 	It would be an exaggeration to say this resolved 
the paradox; after all, 741 experiment can always be adjusted to use beams of fewer particles. If 
this shows anything it is that a quantum mechanical effect disappears under certain circumstance-
- more particles, or longer beam pipes. 

§6 Conclusion 

After a certain amount of work to accommodate the limitations of a Galilei-relativistic approach, 
a multi-particle theory for various free evolutions has been produced. In this context there is a real 
phenomenon that has been given the name chronological disordering. 

The first criterion for chronological disordering to be significant arises from the assumption that, 
initially, the particles in a beam are clearly distinguishable. The Asymptotic Localisation Theorem 
leads to the existence of a time (or distance) beyond which this independent-particle hypothesis is 
no longer tenable. 

A second criterion is based on the degree to which the different states are orthogonal. For a 
particular beam this near-orthogonality is overcome by taking a sufficient number of particles in 
each beam — after the first criterion has been met. 

In the case of the de Broglie paradox, this would seem to lead to a blurring of interference 
fringes when, for example, a beam of neutrons is split round the arms of an interferometer. So, if a 
clear pattern is obtained with an interferometer that has path lengths of the order of metres, there is 
every reason to think that this will not be the case if the path lengths are of the order of kilometres. 

In the case of Bohm's revision of the Einstein—Rosen—Podolsky paradox, the correlation function 
is a multiple of the single-particle case. The 2—particle observable clearly registers some effect 
when the independent—particle hypothesis fails: the correlation diminishes at a rate proportional to 
the number of pairs in the chronologically disordered system, i.e., the number of indistinguishable 
particles in either beam that are iun the vicinity of each spin detector. 

The results presented here are rather less than precise: it is not at all clear when chronological 
disordering — if such a miscellany of different terms in expectation sums can be usefully collected 
under any single heading — sets in, and to what extent. There is precious little but guess-work in 
the selection of states, locafisations, observables and c . It is far from clear that a small change in 
any one of these guesses will not produce a large change in the expectation value. The contrast with 
the precision of atomic and molecular modelling could not be sharper. 

The conclusions reached here are (I would say, 'of necessity') vague, if suggestive. General 
discussions always face this pitfall; and a specific example is the best cure. If this were felt to be 
worthwhile, the next step in pursuit of this topic would be to represent some actual experiment in the 
manner presented here. One of the principal objections to this whole approach is the reliance upon 
the Galilei symmetry group: if spatial separations between beams are to be meaningfully modelled, 
it might be more natural to use a Poincare-relativistic formulation. 

—3.14-- 
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Chapter 4 

A Survey of Position and Poincare-Invariance in 
Quantum Mechanics 

a perfidious history 

`We are the music makers, 
We are the dreamers of dreams, 

Wandering by lonely sea-breakers, 
And sitting-  by desolate streams; 

World-losers and world-forsakers. 
On whom the pale moon gleams: 

We are the movers and shakers 
Of the world for ever, it seems.' 

Arthur William Edgar O'Shaughnessy, Ode: We are the music makers. 

—4.1— 



§1 Prelude 

Before introducing my survey it is essential to point out that this will be, by no means, a 
complete review. To my knowledge only Andres Kdlnay has attempted that Sisyphean 
Rather than try to up-date Kainay's feat of superhuman distillation and eccentric English, I have 
adopted a far more selective strategy. After all, as Kalnay ironically remarked, 'Much work [has 
been] done on position and velocity in relativistic quantum mechanics: see Refs. [1-87]2 The field 
has continued to flourish since then; or is it just in more desperate need of weeding? 

Since the purpose of this survey was to find a viable beginning for a more credible theory, I have 
ruthlessly ignored a host of authors; those lucky enough to have found a place here are certainly 
not accorded the respect and consideration they deserve. The ideas analysed may not be classed 
as adequate but their careful development has been an indispensible milieu for my own, rather 
presumptuous, notions. 

An outline of the survey will occupy the remainder of this section. 

Until a satisfactory solution to the problem of locality attains general acceptance, the centre of 
the debate will continue to be the 1949 paper by 'T. D. Newton and Eugene Wigner. For despite 
self-confessed failure, this remains the best argued conception. Arthur Wightman has even gone so 
far as to renounce Newton and Wigner's admission of error.i21 

To put the issues into context, I have chosen to place the beginning of my history a little earlier 
than 1949; for in 1935 Maurice Pryce was if not the first then certainly one of the earlier authors to 
ponder the definition of a 'position observable' — his paper immediately follows one in which Born 
and Infeld had introduced en 'energy centre'. By 1948 Pryce was attempting a comprehensive listing 
of all possibilities. Several of Pryce's conclusions are also found in the work of Anastasios Papapetrou 
and Christian 1\4011er. The earliest work, of Erwin Schridinger (Berl. Ber. (1930) 418: (1931) 53), 
I have eschewed on linguistic grounds. These early ruminations arc based upon the constructs of 
the mechanics of continuous media: centres of mass, inertia and gravity being obtained from the 
appropriate density field. There is thus an attempt to repeat the Newtonian centres through which 
forces can be said to act in a context where such centres, and the rigid bodies they presuppose. are 
not valid. 

By contrast, Newton and Wigner treated the problem as an application of 'axiomatics': formu-
lating a set of symmetry requirements on a space of states that produced a unique operator for ea.ch 
value of spin. Asim Barut and S. Malin analysed this approach, only to conclude that it did not 
satisfy all reasonable symmetry criteria (i.e., Lorentz invariance( —just as Newton and Wigner had 
tersely admitted. This was followed by Gordon Fleming's ploy to circumvent the lark of invariance 
by making explicit in his formulation the constant-time hyperplane on which measurements are to 
be based. This does not succeed b:'cause the implied assumption is either that there is a preferred 
frame of reference or that each frame of reference has its own set of observahles. which cannot 
thereafter be related to observables in any other frame. 

Several authors have tried using a 'proper time' as the evolution parameter Collins.1 	Panchi, 
Cook, Horwitz, Piron, Reuse. Vigicr et at.. Nambu, and Pock), often by Ihe. production of a 
Schr8ding,er—type wave equation of first order in the 'proper time' coordinate. such &forts are 
confounded by difficulties over normalisation, the definition of obseryables. anti the meaning of this 
'proper time'. Often the 'proper time' is more of a -super time (as Olivier Costa de Reauregard has 
put iti81) which produces a different wave function over space-time for each separate 'super time' 
instant. 

During the 1900's, Joachim Petzold, Bernd Gerlach and Dieter Chromes attacked from anothea 
direction. They tried to devise a .t—vector probability current with satisfactory symmetry and 
'causality' (development in space-time) properties, having first shown that the .commonly-quoted 
4--currents were not satisfactory. In Appendix B of this Thesis i have obtained a translation o: one 
of their key papers. The most direct criticism of this work is that, instead of f4.nding a 4—current. 
Petzold, Gerlach and Gnomes have found a countable infinity of candidates. in the absence of any 
compelling, additional criteria, this result can only be regarded with suspicion. 

The whole range of physics journals is littered with the hopeful beginnings of different Poincare—
invariant quantum theories. Theorists in search of concrete results have long-since moved on to field 
theories, where the issue of Position either does not appear or may be ignored. Given the fifty-some 
years that the problem has festered, who can blame them? 
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§2 Early Fumblings: 1935-49 

M. H. L. Pryce, Commuting Co-ordinates in the New Field Theory, Proc. _Roy. Soc. 150A 
(1935) 166-172. 
M. H. L. Pryce, The mass-centre in the restricted theory of relativity an.; its connexion 
with the quantum theory of elementary particles, Proc. Roy. Soc. 195A (1948) 62-81. 
A. Papapetrou, The concepts of angular momentum and the centre of gravity in relativity 
mechanics, Praktika Akad. Athenon 14 (1939) 540-547. (See Appendix A for a translation 
of this paper.) 
Chr. Moller, On the definition of the centre of gravity of an arbitrary closed system in the 
theory of relativity, Comm. Dublin Inst. Adv. Stud. ser. A no. 5 (1949). 
Chr. Moller, The Theory of Relativity, 0. U. P. 1972; pp 132-133, and pp 144-187. 

The position observaule in a Galilei—invariant quantum theory is a simple, straightforward 
quantity that has never been questioned. It must have come as something of a shock to the theorists 
who tried to progress onto a Poincare—invariant theory that this elementary coo cept could not be 
formulated. The authors listed above attacked the problem from the mechanics of continuous media: 
the 'position' is an a average over the matter distribution that gives some 'centre' ot this distribution 
— a centre of 'gravity', 'mass', or 'inertia'. The distribution of the system under study is given by 
the (symmetric) stress-energy tensor. V' . 

The total momentum of the system is defined to be 

= TP" d3x . 

The total angular momentum is defined to be (the spatial part of) 

Avi" f 	— x'T°P d3 x . 	 (2.2) 

The laws of conservation of energy, momentum, and angular momentum are ensured by the condition 

DTP' =0 , 
	 (2.3) 

and the requirement that Ti"' is a regular function of finite spatial support. 
The momentum- energy conservation law is deduced by setting fc in equation 3 and integrating 

over a constant-time hyperolane: the space terms (rr = 1,2,3 ) vanish because 	is bounded, 
leaving 

a r 5-7  TP x = 

,O  pi' 
= . 

It follows from collation 3 and the symmetry of 	that 

(9 	(x1̀ 7.To" — ./f7v") = 0  
a a- 

applying the g amc argument as just, above then gives 

a NIP 
° 
	=0 

o show that :hese conserved quantities represent physical attributes of the total system. it is 
necessary to show that P is a 4—vector and AI is a second-rank tensor. The method is essentially 
the same in both cases. so  only the proof for P will be given. 

"Cake an arbitrary but constant 4—rector, a : form a 4—vector by the equation 

b' = 



a 

o 

const. 	
5' 

o 
o 

0 
' T... — 0 
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This allows equation 3 to be re-written as 

ae 
Integrating this over a hyper-volume, V , of space-time gives 

f . 
Ox' 

Now Gauss' theorem can be extended to apply here: if E is the surface of the volume V then 

I b' 	= 0 . 	 (2.4) 

dE„ is the surface element 'normal' to the x"—axis; using the anti-symmetric permutation tensor 
this can be formulated as 

dE, = 	(ix" cia5  .) 
The contravariance of P is now a matter of choosing an appropriate volume as V . The surface E is 
taken in three pieces: E1  and --'32  are parts of hyperplanes of constant x° and x'° , respectively; .E3  
is a surface enclosing the support of T but at no point on .5.3° is T non-zero. 	and E2  are chosen 
so that T' lies in the future of El within E3  . 

The volume of integration and its boundary-

This means that equation 4 becomes 

dE, — = 0 
J 17,2 

or, in terms of the two reference frames, 

	

[be  thrl  (12 drea  = 	dx'1  dx'13,1x13  

i.e., 	 jir  a,„T" ex = t alpr" en` 

i.e., 	 ak.P" = 

— an invariant formula, whence the contravariance of P . These covariant quantities are the basis of 
early attempts to define a classical centre of a distributed system. 

In 1948 Maurice Pryce attempted an encyclopaedic enumeration of the candidate centres of 
position. Of the six definitions produced, only three found even partial favour with Pryce: his 
definitions (c), (d), and (e). 



x3Pr +Mr° 
Pa 

pv 71/44,0 

P° 	
(2.6) 
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H2.1 Definition (c) 

`The co-ordinates of the mass centre in a particular frame of reference is &dried as 
the mean of the co-ordinates of the several particles weighted [by] their -!yrtamical 
masses (energies).' [p. 63] 

Or, using T and the previous definitions of the total momentum, P , and total angular momen- 
tum, 	: 

P° 	
f

eT°°  d3x 
us 

Eliminating T from this expression gives 

(2.5) 

A formula specific to a particular frame of reference — Pryce remarks that this frame-dependency or 
non-covariance does not endear the definition to him. To see this, consider equation 6 applied in a 
frame where the coordinates are denoted by barred quantities. Then a general 1—rentz transforma-
tion of the '1—vector' q  will give 

= A1; — A '1, q°Pv 
 

 + AIP°  q  

= 
	( 	P°  i  Ai; AgMfl' 

(But Ai)Ao = ao ) 

Writing q° as a function of a°, 

o 	q° P°  + Ag.14I°'  g  _  
AgP,  

_0 	A° Pa — Ag..114' 
q 	pe 

Whence, eliminating q° to give an expression entirely in terms of the unbarred quantities 

q  = P° 	 ) "1-  A° P° 
Pr ( 0  4110c' 	AgM" 

pr 0  A° (Mr° P° 	P') q, po 	
P°A,a,P' 
	 (2.7) 

— a formula that directly exhibits the non-covariance ei q . 

Definition hi) 

'Definition (c) is first applied in a 'frame in which the total momentum is zero 
(and hence the mass-centre is at rest), and the result is then [transformed] to the 
[desired frame] by a Lorentz transformation; [p. 63] 

Or, starting from equation 6, with = 0 , and Po = the (a frame such as this will exist for any 
'physical' system): 

P,, = 	Almc . 

in other words. all occurrences of A° in equation 7 can be replaced by P, 	: 

	

p v pr,u p0 	pp) 
= —Po X0 	  p0 ID,  pa 

	

pexe rt1:2 02. + _Alva p0 	NjOapvpi  
Xv  

	

	 (2.8) „OOP° 

— a formula that works for all inertial frames. Pryce notes of X that, 'in spite of its appearance, [it] 
is relativistically covariant.' [p. 65] 
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§§2.3 Definition (e) 

Pryce next assumes that the quantities M and P form a Lie algebra in which the Lie products 
are 	the canonical form for the Poincare group: 

[P,,,P,,1- 

iPa,MP.I = 	- Pogo°. 

[Mvo ,M791= Moigon + Ma n gal -Mvsgs-r Msigvs 
Initially, the Lie product is called a Poisson bracket, though it is significant that no definition 

is hazarded for such a bracket. On the basis of formulae 7 and 8 and this Lie algebra, Pryce deduces 
the Lie product of q and X with the canonical generators: 

	

EqP  ' 	(17(

1  
7fe."'Sr  

(S=M-qA1') 

IXP.X1 = 
97L2  Ea vr Sr 	 (2.9) 

- neither of which is the Lie product of the components of a position vector. It is a simple consequence 
of the last two equations that the four quantities 

P°  

	

q 	 (2.10) po 

do have this property of a position vector: 

tr.rt =0 . 
The four quantities, 1? , form Pryce's definition (e) of the 'centre of mass'. These four 

quantities do not, it is admitted, form a 4-vector. 
On the basis of equations 7. S. and 10. Pryce found the following realisations of his position 

operators in terms of Dirac's theory of the electron: 

Ct..= x+—(p c +intea) 
2P0 2  
h 	(a • p)p 

X = + 
2m 	Pot  

	

(Oa 	In A a 	T. 	(ot • P)P  x+ it 	
(2.11) 

	

PO 	'PO TO M 	p„2  (Po rn) 

rnanires a definition of M ± p 1),-ing gi•: enl which is accomplished by the formulae 

:11" = 7  Po + xi) 

M remains an anti-symmetric tensor by taking Mk° , "%Pa :Nisi . and Mla positive and the rest 
negative.) 

No attempt is made to further legitimise aay of the 'observables' produced: there is no refer-
ence to any self•adjoint property, for example. ?ryce concludes that the job of defining a position 
observables is futile, because 

`except for particles of spin 0, it does not seem to be possible to find a definition 
which is relativisrically covariant X is: q is not) and at the same !line yields 
commuting co-croinates 71 does not: ;it does]: 'In. 09] 

Pryce favoured the use of X over 4' for its covariance: and he further claims that for spin-0 
the components of X commute, though this is doubly dubious ;or: Newton and Wig,ner's operators 
do not behave this way, 	secondly, in equation 9 the commutator of two components of X is P. 
component of the internal angular momentum, S -an entirely classical quantity - not spin. 

-4.0- 
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13 The Newton—Wigner Position Operator Re-derived 

T. D. Newton, E. P. Wigner, Localized states for elementary systems Re-s. Mod. Phys. 21 
(1949) 400-406. 

In 1949 Newton and Wigner derived the position operators that now be their names. Any 
assessment of this work must, of course, take account of the considerable developments made in the 
intervening years. Indeed, it is arguable — an argument that I shall accept here — that the approach 
was not as rigorous as it could have been even in 1949. Von Neumann's Mathematical Foundations 
of Quantum Mechanics had been published in 1932, in which the unphysical `eigen-functions' for 
observables with continuous spectra were effectively excised. Yet here, some 17 years later, Newton 
and Wigner casually discuss (my emphasis), 'the state (or states) ... for which the three space 
coordinates are zero at t = 0.' This reaches its most sublimely ludicrous statement in the authors' 
equation 7: 

7P 2  = (27r) —a po 

where the factor of (270 -3  can have no conceivable significance since '(a)s was amicipated, (0,0) is 
infinite'. Such quibbles aside, the merit of the approach was to show explicitly that the symmetries 
demanded were present. The major failing is that the number of symmetries required (isotropy and 
homogeneity of space) is less than the number of interest (Lorentz boosts, homogeneity of time). 
The formulation that appears here is less defective in discussing states and observables, but is no 
less so in dealing with symmetries. 

Following Wigner's 1939 pap er,[41 initially the whole theory is cast in the spectral representation 
space of the 4—momentum, (pt,) , on which an irreducible unitary representation of the orthochronous 
Poincare group is defined: 

da p 

	

= 3f (0,m) = L2  (9?3 , 	
2V1p12  m,2c2   

for spin-0 particles of rest-mass m . Analogous considerations apply for non-zero spin, so for ease 
of presentation only the spin-0 theory will be dealt with in the remainder of this section. 

The crux of the problem might be said to be the fact that Position is not one of the generators of 
the Poincare group. The next step is, therefore, to find a suitable candidate for the rile of Position 
Observable. There are a variety of ways of going about this. 

In 1949 Newton and Wigner, effectively, sought the projector—valued spectral function for posi-
tion, E(Sc; a) . To do this, they deduced the `eigen-function' of position corresponding to a particle 
at the origin of coordinates (giving them E(5t; 0) ) which can thence be used to define the rest of 
the spectral function by translations: 

E(c; a) = exp 	• a) /1.(1Z; 0) exp 	• a) 	 (3.1) 

By contrast, Schweberl31[61, found a much shorter derivation by considering the operator which 
is the 3—momentum representation of position in the Calilei-invariant theory: 

tiK1 , 

and thence finding the correction term to make it symmetric in 37. 
Whilst both methods give the same momentum space representation for b , they are not, in my 

opinion, as convincing as they could be. A snore careful line of thought might he to consider at least 
some of the transformation properties of the putative observable, to . Take the translations of h : 

exp (-0 • a) exp (--05 • a) = rrc ± a , 

or, equivalently, 

	

= 	. 

It is known that, for ji a multiplication operator, the most general solution is 

= 	- api 

(3.2) 

(3.3) 

(3.4) 
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A considerable constraint upon the functions { } the requirement that i be a symmetric operator 

in 31 . Thus it is demanded that 

= 	 (3.5) 

1 	
p a 

inapt+ 	(P)) 

d3 p 
=-- 

(AI+ ,p) 

[(di 	(p)) 3]5  

+ (.! i(P))*) 

((NO 	f d3P fi(p)9 

zt, 2—p0+ 	'171) 

integrating by parts 

2po+  
a' 

d3p = 

J 2po+ 
as 

= 	d3p 9 

Dt3 

zh,-,7i 	22-2-07 	22707  

Now 

So, 

d pi \,2po _F 	.1 (lpi2  + m2,2 )3/2  
2pj . 	 (3.0) 

	

P 	t, a 

	

-a-73/ 4" MP)) '4 = 	
h  p_31. 	a; 

	

2p0+ 	 J 2P0+ 	api 012

h 
 + m2,2) + 

a' a. 

I cop  fr. 

I.

,p,  

j 21)0+ 	) 

= f din m 
2p0+  

xa 

	

Clearly, if a,' is symmetric for all states 4' and 	, then, except on a set of measure zero, 

il)pj 

= f?  1P2 m2c2 

f 	= Ne(f 7) — 	+hP  e2 • 

Thus, it has been shown that, if 12 : 	, 

(P) 	h(13) 	2 OPP rn2c2) 

There will be additional constraints, i.e., restrictions on h , e.g., if it is required that a: be self-adjoint. 
One obvious candidate is obtained by putting 

h=0 . 	 (3.10) 

This gives the Newton-Wigner operator for zero spin: 

t = ittV,„ 	2 (1p12 m20) 	 (3.11) 

In fact, regardless of the form of h , the `eigen-vectors' of the position operator found here are the 
functions 

=IT0T- exP 
	

(3.12) 

a 	 ihpj 	„h- 

op' -I-' 	012  + m2,2 ) 

(3.7) 

( 3 .8 ) 

(3.9) 

-4.8- 
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which have 'eigen-values' given by the equation 

i*= — Ss,  • 
Vo l  

(3.13) 

The second term in the eigen-value arises from the evolution of position in tim. 
The transformation to configuration space, that is to the spectral representar;on space of is , is 

then accomplished, in the usual way, by the formula: 

= MO) 

1 

N r Pap  
da„ , 

= — 	kr) )730+,P) 
p . 

 

1 f  dap 
=-- 	2vit5T.  exp (h xPpi,) (p0+,p) 

oia 

It is clear from the dependence on x in this formula that all configuration space wave-functions 
defined in this way will be solutions of the Klein-Gordon equation, in at least the weak sense. 

To make this coordinate representation, or 'configuration space', into a Hilbert space, 31 , this 
transformation is used to define the inner-product of configuration space wave-functions, by way of 
their momentum space counter-parts. Thus 

(0(r), 0(5)))=(i(P),  .4))11 

PP),;(P)))—=f dap
'-P* (Pc-i-,P):kPo-HP) zpo+  

—
2f 

 (13

/I
p
7  I 20/0 

cp.n, 

+
8(1) 13141* (Po+,13')(Po+113) 

2 vrc  

S(P — p') = (2x.h)3  f ex exp (172 74 • (p — p')) 	 (3.14) 

3t a 

So 

(1;;r (13) , ;;(17)4 = 

=2 
j 
f  "{IP 	f 	d3PI 	1 	ex exP (---n x • (P — P')) i;* (/0-1-,P14"(Pe-HP) 2\ipTis 04 . J 2. +  (20-h) 3  f 

R 

2 	 d3p; 

(2 h)3  J 
f 
 (.1 2-04+ exP  (Tz x  • 131) (P4'P')) x  

f (Op 
exp 	—

tt
X • p) (po  + p) (13  „ 

k,„ 2057- 

2N2  f 
'1)  ( 2,103 	* (x-Wx) d3x = 	(x), 0(x)))1 • 

The transformation to configuration space can now be `normalized' by setting 

N2  (2s-tie 
— 2 

Now 

But 

(3.15) 

(3.16) 

(3.171 

-4.9- 
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to give 

(27h)3  f 20/daP
+  
	"P(Ti°1‘Pi) 4j(Poi-,P) 

	
(3.18) 

and so configuration space states lie in the Hilbert space 

= L2  (a23 , d3x)  

The discrepancy between equations 15 and 18 is overcome by invoking the temporal homogeneity 
of space-time, and therefore the possibility of always taking w° = 0 by shifting the origin of time. 
This can be made clearer by re-writing equation 15 as: 

l
e 

(0(x),  OW)/f - 	f (.1  d3P1 	 ') 41(    exP 	P p 	Po+,13 
	X 

(27rhr 	2v/p4 	h 
Rs 

pp) ,P(p0+, 	d3x f 	3P 	 exp d 	 (' 2 \poi- 	h 

in which, when the S-function in p - p' is integrated out, the exponentials involving x° cancel. 
It is then only a brief step to conclude that the configuration space (i.e., spatial) probability 

density is 

PM = 10 (x)I 2  

da p  f  d3 p1 (3.19) 
-7- exP 	-Pie )) ' ''(P'04-,I31) (PO4-, P) 20307 2-  P°+ 	h 

Barut and Malin, however, claim that p is not the zero or time-like component of a 4-vector;171 this 
claim is easily proved. Consider the Poincare transformation (without time reflection): 

= 2\-';125,• 	• 	 (3.20) 

The invariant volume element is 
dap d8 p 
— = — 
P0-1- 	Po+ 

SO 

da p = -VP0+  (11  ep 

05O+ 	P0-1- 

A result that is not particularly surprising. 
As Newton and Wigner indicated, the problem is with Lorentz boosts, and would seem to form 

a conclusive case against the operator they deduced. It is hard to see where any enthusiasm could be 
found for the Newton-Wigner operators, though there is certainly nothing better on offer. Indeed, 
Wigner has even questioned to what extent 'position' can occur in a Poincar6-invariant theory at 

As a footnote on the paper by Newton and Wigner, I can find no reasonable basis for the 
repeated contention that the operators derived are the same as Pryce's case (e) (formulae 2.10 and 
2.3): 

.. the position operators to which our postulates lead necessarily commute with 
each other so that only Pryce's case (e) can be used for comparison. In fact, our qk, 

is identical with his 4k 	[p. 403] 

Since the Newton-Wigner operators correspond to multiplication by a in the coordinate rep-
resentation generated by those operators, I see no way of reconciling the two formulae. There is a 
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considerable gulf between Pryce's classically motivated and Newton & Wigner's group theoretically 
motivated strategies. 

§4 The Klein-Gordon Current 

The Newton-Wigner operator produces a coordinate representation and probability density 
that is at variance with the entities that usually bear those titles in discussion of the Klein-Gordon 
equation. By the same method as for the Schriidinger equation, the Klein-Gordon probability 
4-current (so•called) is 

any —  
which satisfies a continuity equation: 

Crj, 0 . 

This can also be obtained from the momentum representation assumed by Newton and Wigner; 
though now the transformation formula between the representations is the invariant 

„ 
O(x) 	

pa+ 
= 	exp r-p p ) d (po+,p) 

and the momentum representation of the position operator that goes with this is 

h(p) 

which is not a symmetric operator. This failing is compounded by the fact that, even limited to 
positive-energy states alone, jo  is not a positive-definite quantity (for a more detailed account, see §6 
below). Indeed, because the wave-functions in the coordinate representation of the Newton-Wigner 
operator satisfy the Klein-Gordon equation, the 'current' j can be obtained in direct competition 
with the Newton-Wigner 'probability density', p (equation 3.19). The contest is, by no means, 
one-sided, with neither candidate possessing all reasonable properties. 

§5 Gordon Fleming's Redemption of the Newton-Wigner Operators 

0. N. Fleming. Covariant position operators, spin, and locality, Phys. Rev. 137B (1965) 
185-197. 

In 1965 Gordon Fleming took on the challenge of showing that Newton and Wigner were wrong 
about their own operators; he set about showing that, contrary to the best opinions, Newton and 
Wigner had produced fully covariant operators. It is my firm belief that this claim is not tenable 
without a dilution of the idea of Relativity to the stage when it is indistinguishable from Lorentz's 
:tether interpretation. To explore Fleming's thesis and my counter-claim, a representative selection 
of quotations will be analysed. 

Before beginning, it is just necessary to note a somewhat unusual short-hand that Fleming 
introduces: if the components of some candidate position operator commute, Fleming calls this 
operator local. To draw attention to this, rather obfuscatory, new meaning, the word 'local' will be 
emphasized (as local, locality, &c.). 

Fleming begins by casting doubts: 
'If the correspondence principle is emphasized and used to derive the transforma-
tion properties which position operators must have then it seems impossible to 
construct a lo cal operator with those transformation properties. If, on the other 
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hand, locality is demanded at the outset, the resulting unique operator seems to 
obey bizarre transformation properties under [Lorentz boosts].' [p. 188] 

Previous authors, such as Newton and Wigner, did not mince around with `bizarre'; the trans- 
formations were not those of covariant quantities. It is worth noting that the uniqueness of the 
Newton—aligner operators relies on a 'regularity assumption', amongst the other, more straightfor- 
ward, axioms. 

'It will furthermore be shown that the differences which exist between the various 
operators are due to their describing the position of a particular space-time point, 
defined in an invariant manner, in some instances; and describing the location of 
a dynamical property, which property depends for its location in space-time on 
the frame from which it is observed, in other instances.' [p. 188] 

The wording of the second type of 'position' sounds not at all sensible. Firstly, 'the location 
of a dynamical property' must be presumed to mean that some weighted average of coordinates is 
being taken — the weighting being determined by the 'dynamical property'. Further, the last phrase 
describing this second type, expressing the dependence on a preferred coordinate frame, smacks of an 
imrelativistic quantity. It is worth mentioning that any quantity (with 1, 4, 16, or 	'components') 
can masquerade as a tensor by the ad hoc assertion of the right transformation law. Having found 
this second sort of 'position' to be dodgy, I can now allow Fleming to continue: 

`The Newton—Wigner operator is [of] the second kind and the frame dependence of 
the point thereby localised is frequently said to indicate the noncovariance of the 
operator. Such terminology is unfortunate, however, since no legitimate covari-
ance requirement has been violated.... What is demanded by such terminology is 
that the point localised by the operator be invariant and there is no a priori reason 
[to expect] a dynamical property to have an invariant location.' [p. 188-189] 

— which all hinges on the precise nature of the 'dynamical property'. It is Fleming's contention 
that all these 'dynamical properties' are the result of integrals over constant-time hyperplanes — a 
hypothesis that immediately raises the problem of the distinct manner in which space and time are 
treated in Galilei—invariant quantum theories, and which Fleming is determined to perpetuate in a 
Poincare—invariant theory: 

`The fact that the time variable is a e-number throughout quantum theory snakes 
a relativistic treatment of position measurements awkward. The source of the 
c-number character of the time coordinate in relativistic quantum theory is the 
preoccupation with instantaneous ( t = const. ) hyperplanes in the discussion of 
position measurements.' [p. 189] 

The 'preoccupation' is entirely borrowed from the Schridinger—Heisenberg theory, and not at 
all a necessary feature for a Poincar&-invariant theory. 

Just as a number of other authors have, Fleming chose a new invariant for his evolution pa. 
rameter, r . To denote the hyperplane on which measurements are to be conducted, a 4—vector, e; 
orthogonal to this hyperplane is found: 

5"??,, = 1 	• 
	 (5.1) 

A 4—vector position observable, 	is then obliged to satisfy the constraint 

Xr,e = T 
	

(r.2) 

and the transformation law 

(0'%,(71',1-')A — 	(01.K',47i,i11) +,,, 

a;',11„ , 	7)11,  ap  

[this equation] relates position coordinates on the same hyperplane as seen 

	

in different frames 	This last point raises the question of how the manifestly 
covariant operators [sic] depend on the parameters and r [p. 190] 

This certainly needs scrutinising when Pryce, whom Fleming cites and whose notation Fleming 
is using, was quite clear that a dependence on p was the sign of faulty symmetry properties. 

- 	If any value is completely tied to a single, specific, constant-time hyperplane, it is reasonable to 
describe this as frame dependent even if it is expressed in terms of an arbitrary coordinate system. 
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Indeed, the use of quantities dependent on a single coordinate frame is an unhappy mix of the 
notation of Relativity and the philosophy of a preferred frame of reference. Flere'..g tries to escape 
from having to justify preferring one specific frame by allowing sets of quz.n.titi.ts be defined in all 
inertial frames; quantities unrelated by any transformation law. The idea of an invariant formulation 
of the laws of physics is supplanted by the notion that because a set of definitions can be implemented 
in any frame then that will somehow be adequate. 

Consider now the presentation of equation 2 by Fleming. He describes r as n invariant in the 
text but admits in a footnote that this is not so. Starting from the supposition that x is a position 
4-vector and n a difference of such vectors, it is readily apparent that xor is not an invariant. 
Under a general Poincare transformation, {A, a} , this means 

Xv = 	+,„ 
= A.vip 

xor = (gyp +z5) (gr) 

This means that, starting from equation 2 as the constraint defining a set of constant-time 
hyperplanes, an equivalent description of the same hyperplane, now in terms of the barred coordinate 
system, is the equation 

T = 707 TL,,gTe 

Or 

= 

- the right-hand side of which is a constant that changes as one hyperplane is supplanted by the 
next, as r is varied, at the same rate in all frames. The quantity r remains the time-like coordinate 
in the frame of definition - the frame in which 77 = (1,0) . 

Parenthetically, it should be noticed that Fleming's 'Fig. 1' and 'Fig. 2' are incorrect in their 
portrayal of 7/' , which is orthogonal to its hyperplane with respect to the Makowski metric, and 
so, in the coordinate system illustrated, will not be perpendicular to its hyperplane. 

Having established the true nature of r , the next quotation becomes easier to grasp. 
'In the conventional formalism one demands 

d 010)10 — mpipobk)e 
lE 

where P„ is the total four-momentum vector. The manifestly covariant generali-
sation [sic] of this result is 

(5.3) 
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a 	OlYp(ii, 1110) = (0  liadvvia,  
T (5.4) 

' [p. 190] 

There is no clue as to which 'conventional formalism' is being employed: there is no widely 
agreed Poincare—invariant quantum mechanics to be conventional; the usual quantum mechanics of 
Schriidinger and Heisenberg would not have the factor of c and Pe would be the mass, en . This leaves 
the conventional, classical mechanics of point particles from which, by analogy (the 'correspondence 
principle'), one might demand equation 3. 

The 'covariant generalization' now being invoked is neither covariant, nor are covariant formulae 
in any typical need of generalization. On the left-hand side it is obviously permissible to find the 
derivative with respect to a certain time coordinate regardless of the coordinate system in use, so 
there is no change here. On the right-hand side the transformation equation 

has been utilised; since 

(g) = (1,0) 

so, it can be deduced, 

and so 

Pe = s10 P = Pe  

whence 
P,— 	'transforms to' 
Po 	 13" 

This is exactly as Pryce proceeded in his case (c). Equation 4 is, therefore, the expression of 
equation 3 in some other inertial frame, as opposed to the version of equation 3 for this particular 
frame.. 

The best statement of what Fleming believes to be going on is the introduction to his third 
section: 

'Consider a position four—vector x5  (g , r) in the classical limit [or, even, classically]. 
For a fixed value of Is and variable r this four—vector traces out a world-line in 
space-time. In general, changing g will alter the world-line, i.e., the location of the 
world-line will depend on the orientation of the space-like hyperplane on which 
the points of the world-line are observed. Of course, one would never expect such 
behaviour of a four—vector describing the position of a "point" particle. but it is 
quite reasonable and, in fact, the case that extended systems possess iocalisable 
dynamical properties which depend, for their location, on the orientation of the 
hyperplanes on whirls they are observed. Nevertheless ... those four—vectors 
which describe the motion of points in the system which have been defined in an 
invariant manner [are] of interest.... [Such a four—vector will] be called a "point." 
four—vector.' [p. 191] 

I feel the generous admission that invariant quantities are 'nevertheless of interest' will come 
as a great relief to serious students of relativity. The remainder of the paragraph, however, springs 
from a blind acceptance of the sweeping assumption, stated twice. that physical quantities are mea-
sured on constant-time hyperplanes. This is not an uncommon assumption, arising as it does from 
the familiar and well-established Gaillei—invariant physics. The crucial difference is that constant-
time hyperplanes are not invariant under Poincare transformations. Consequently, a constant-time 
hyperplane is not a set of points with any particular significance; it is merely a set with a simple 
defining property, in its frame of definition. 

The claim that anything is determined by a measurement on a constant-time surface is patently 
ridiculous. Now, it is true that the total 4—momentum and total angular momentum tensor of a 
classical field are computed by integration over a constant-time hyperplane (as shown in i2, above); 
but these quantities do not depend on this surface: the same tensors may be obtained from any 
constant-time surface in any inertial frame, if not from snore general hypersurfaces. It should also be 
noted that a computation from a model in no way implies any 'observation' or measurement'. The 
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aspect of the geometry and physics being exploited is that a constant-time hyp_rplane consists of a 
complete set of entirely independent events. Completeness here means that it is aeeusned the physical 
system is determined by the values of the various fields on this set of events. Q-ch completeness 
cannot always be assumed. 

To conclude, Fleming has tried to distinguish between 'point' operators and operators giving 
the location of some 'dynamical property' without having to call either non•inv-ziant. His argument 
is ;rot credible. By his own admission the Newton-Wigner operators are not '”oint' operators. I 
conclude that this means they are not invariant, just as Newton and Wigner had said. 

§6 The 4-Currents of Gromes, Gerlach & Petzold 

B. Gerlach, D. Gromes, J. Petzold, The construction of definite expressioh.; for the parti-
cle density of the Klein-Gordon field, Z. Phys. 204 (1967) 1-11. (For a translation, see 
Appendix B.) 

There are several ways in which the notion of locality can he said to enter the Galilei-invariant 
quantum theory. One of these is by the probability current, j , and probability density, p , which 
obey a conservation equation: 

8p 
-- 	= 0 

at 
In considering a Poincare-invariant quantum mechanics, one obvious analogy to exploit is this 
equation. It requires but a small effort to realise that the spatial symmetry of the Galilean j can 
lead to an object that conforms to the whole Poincare group if the four-component object: 

= (cp,j) 
	

(6.2) 

is a contravariant tensor of the first rank. Indeed, one might feel compelled to this conclusion by 
the fact that the continuity equation can be written, with this assumption about 3.1' , as 

xl‘ = 
0 	 (6.3) 

To produce the quantum mechanical version of this, one again proceeds by analogy: this time 
following the method that gives the quantum probability current and density in the Schrb'clinger-
Born theory. Starting from the Klein-Gordon equation: 

h2 8(0 ) 32°2  h2 V2:/: m2c20 = 0 	 (0.4) 

then 

0 =,/,* x (eq. 1) - x (eq. 1)* 
820 	02  V 

= h2  (7,9*  a (x0)2 	a (z
?
0),) 	to (qev2,1, - 0,7 20.) 

I a 	Olb 	\ 
= h2 	 Tx-0 - 7. (1P•7fi - IGVIV)) • 

Thus, writing 
, . 	, DO* 

axo 	0,0 
j 	-(1,b*Vt5 - ,fiV/r) , 

one gets equations 1 and 3. 
In fact, any constant multiple of (cp,j) can be taken to be the 4-current. Conventionally, the 

Klein-Gordon current is 
alb 

s-  = TtcP,J) • 	 (6.7) 

(6.1) 

(6.5) 

(6.6) 
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One drawback of sP is that 0 -which one might hope to be a probability density - is not 
positive-definite. The justification for taking equation 7 is that one can also write the 4-current as 

sP 	 , 

where 

01= ,, 	J‘ '1313(13/..,Ps'P' (P)C'h'± (Pi) exP ("PP 
 P' )x° 

) (PP 
+p") 

 

k-7 	R'5  Pot Pu± 	 h 	 2 

and where 

7,0± = N/1131 2  +MY • 	 (6.10) 

Whilst it might be thought that the presence of po_ is the cause of the negative values of s°  , 
BlokhintsevI91 and Gerlach, Gromes & Petzold have shown that. in fact, 0, is not positive-definitedl°1  
This is at odds with the positive expression Schweber obtained for 01  :[°) 

so = ms_ (0.11) 

though to get this it must be assumed that 0 is a mono-energetic state, so avoiding the use of 
the energy operator, E . In general, s°  is a Lebesgue-Stieltjes integral over the energy spectrum. 
Considering the next most simple case, let 0 be a 'state' involving only two energies: 

	

= 01 + 02 	
(0.12) 

= 

Then 

	

0*E95 =+ 94) (ei 	e2 (2) 
= c.,010-1°  + 6202(4 + 010114 +029524 

Now if 
4.1=a+ dl  
02 	c + id 

then 

= 	(a2  b2) e2  (02  + (12) + 01 (50-1-. bd i(bc - da)) + e2 (ac 	- d(bc - da)) 

	

= a2 01  at-(el  +52) + c2 02 +b2 01 	+ e2) -1-d2e2 d(bc - da) (ei - 52) 

The difference between etle0 and 4.80*  is that the Last term appears negated. Thus 

5°  IX 
	

+ ae(ei + 52) + C 2Cri + 	+ &gel + es) +d2e2 • 
	 (6.13) 

So, if 02  > 	, i.e., E2 = (1+ k)ei where k > 0 . 

5°  a ei (a 	ei (b d)2 	el k(ac 	bd+ c2 	d2) . 	 (0.11) 

There is no reason that ae + Id cannot be negative, nor, therefore, that 0 may not be negative 
locallyt. 

Now it would obviously be much easier if there was a positive-definite probability density. 
Indeed, if there is some 1--current, 	, such that s is positive•definite in every coordinate frame, 
then Gerlach, Gromes 	Petzold have shown that it satisfies a causality condition:[111  

	

f "  (°°.x.) (13  z 	
(x° 	 (6.16) 

V 	 V+7- 

1' +I =15,1  (aYj' E1') 	 r} 
V - r = 	G V (V y" E av) 	T1 • 

t Try el = 10-6, c = d = 0.1, 1 = 1 and a = =-10. 
t Alternatively, 0 can be positive-definite in some frame with s time like. 

(6.0 

(6.9) 
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In search of such a 4—current, Gerlach, Gromes & Petzold introduced a function, F (pP , VP) —
called a 'form factor' —, into equation 9: 

— 	1 	f dap dap' (p) :b- (pc) exp  (i(P 	(PP 	P iP) 
 1' 

 , 
(73°  ) • 	(6.16) (27-h)a 	Po 	 h 	I 	2 

By considering the various constraints on F imposed by the positivity of if° , c variance and 
normalization, they arrived at 

2m2c2  
F(pt`,PiP)  — (1,  E {1, 	. 	(6.17) pp 	+ m2,2 

I wish to make four points about this work: 
First, it is not clear whether any further constraints could give a unique form factor, rather than 

the above, which is more accurately written with the functional dependence F (pP , p10  , v) . It is to be 
expected of a formulation of the probability 4—current of a particle that it give a single expression. 
After all, it would he unusual for a particle to have two probability densities at a point, let alone a 
countable infinity of them. This is something Gerlach, Gromes & Petzold have not resolved. 

The second problem is: the 4—currents, , have all the right properties to be ideal for the job 
of describing the distribution and evolution of particle probability densities, except: the form factor 
has no acceptable physical interpretation, it is a mathematical artifice. 

The third point against this development is, in my opinion, crucial. It is that the probability 4—
current is not as fundamental a physical concept as the probability amplitude. There is no indication 
that any form of probability amplitude can be derived here. Without a probability amplitude over 
space-time (or something entirely equivalent to one) there is no basis for a quantum theory. 

Finally, invariant probabilities are calculated from any 4—current by evaluating 

pr(H) = f dcr, 	 (6.18) 
II 

in which do" = (dx 1  dx 2  dxa  , dx°  dx 2  dx3  , dx° dxi  dx 3  , dx° dx1  clx 2 ) , and H is a space-like hypersurface 
— usually a constant-time hyperplane with respect to some coordinate system. The flaw in this is 
the dependence on the hypersurface, which makes the probability coordinate—dependent. Formula 
18 may be the same in any inertial frame but H is not. The probabilities are not acceptable on 
symmetry grounds, therefore, not because they are non-invariant but because for any fixed event, 
(x) , there is no unique choice of surface, H , passing through (x) from which to calculate expectation 
values. 

§7 Position as a 4—vector of Operators 

C. DewcIney, P. R. Holland, A. Kyprianidis, J. P. Vigier, Relativistic Wigner Function As 
The Expectation Value Of The PT Operator, Phys. Lett. 114A (1980) 440-444. 
J. R. Fanelli, W. J. Wilson, Relativistic Many-Body Systems: Evolution Parameter For-
malism. Found. Phys. 13 (1983) 571-005. 
L. P. Horwilz, F. Rohrlich, Constraint Relativistic Quantum Dynamics, Phys. Rev. 240 
(1981) 1528-1512. 
L. P. Horwitz, C. Piron, Relativistic Dynamics, Flelv. Phys. Acta 46 (1973) 310-320. 
A. A. Broyles, Space-Time Position Operators, Phys. Rev. 10 (1970) 979-988. 
J. II. Cooke, A Proper Time Formulation Of Quantum Mechanics, Phys. Rev. 166 (1908) 
1293-1298. 
R. P. Feynman, An Operator Calculus Having Applications In Quantum Electrodynamics, 
Phys. Rev. 84 (1951) 108-128; notably Appendix D. 
Y. Nambu, The Use of the Proper Time in Quantum Electrodynamics (part Prog. Theor. 
Phys. 5 (1950) 82-94. 
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§§7.1 Schr5dinger wave mechanics with a Poincare—Invariant Evolution Parameter 

The papers and authors listed above (excepting Broyles) are only a sampling of the efforts 
expended to produce a Poincare—invariant analogue of Schriidinger's equation. By 'analogue' is 
meant a linear partial differential equation which is of first order in a single evolution parameter: 

iii— =FIB  a, 
On offer are, in the spin-0 case:- 

a,th 	h2 
--EP 0 a 	2 

(Dewdney et al., Cooke, Fock (according to Feynman), r is conjugate to m2 e2 /2  ; 

(90 	2  _ 0  
a, 2mc

02 
 

(Horwitz, Piron, Fork (according to Nambu), Fanchi, Wilson), r is conjugate to me/2 ; 

itza0 = W A" m2,2),0 

3 

(Horwitz, Rolirlich), r is conjugate to 0 ; 

JA L= (th-8-- 
Or 	at 

(Nambu), r is conjugate to 0 . 
The last equation needs no further notice here as r is not an invariant but is time-like. 
Between the first and second equations there is only a multiplicative constant on the right. 

That said, the first is to be preferred and the second scorned: in both cases the rest mass heroines a 
quantum number, with r as conjugate variable; if m is no longer fixed it is not consistent to introduce 
a single rest mass as a multiplicative factor. Nevertheless, the dimensions of r is not compatible 
with the interpretation of it as a `proper time'. If r were a proper time then it should have the 
dimensions of time, or perhaps length: as a variable conjugate to m2 c2 /2  , r will be measured in 
units of kg-1s ; as the conjugate of me/2 , the units are in— ' . This defect could be fixed if a new 
fundamental constant were used instead of h on the left-hand side of the dynamical equations. 

The variability of the rest mass is itself a cause for concern. Two methods are employed to deal 
with this. The simplest ploy is to project onto a subspace of states with a single, definite value for 
the rest mass — this eliminates r and recovers a more conventional wave equation: for spin-0, the 
Klein—Cordon equation. The second method, almost indistinguishable from no method at all, is to 
assume that the expectation value of the rest mass operator is the observed rest mass and that the 
distribution of values is so narrow that it is mmoticable. 

Of course, where the variable r remains a substantive part of the formalism, the resultant 
wave-function, rG = 0(r, 	, will, generally, vary with 	r ; i.e., 

x) O(rz“r) 

— a feature bestowing on such theories the bizarre character of a variable history. Only James Cooke 
has an anywhere near believable explanation for such a corruption of fact. Cooke suggests that 
the wave-function describes an observation — extended over a region of space-time — and that the 
evolving wave-function then represents later observations. Provided such observations are bounded 
and strictly separated there would seem to be no problem. However, the evolution of the wave-
function is continuous; so these `observations', whether potential or actual, merge smoothly together. 
There is, further, no reason to suppose the wave-function to have bounded support on space-time for 
all `times of observation', r . For, finite support implies, via the Paley—Wiener theorem of Chapter 5. 
that the support in terms of the 4—momentum is analytic: not a condition particularly compatible 
with having very nearly an exact rest mass, nor with any assumptions such as Cooke snakes: 

Ps > 0 

pen,  > 

So either the interpretation of the theory in terms of observations is sensible, or the interpre-
tation of the rest mass spectrum in the theory is straightforward. This suggests a new form of 
complemcntarity, or that the theory is untenable. 
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§§7.2 The Space-Time Representation: Hilbert Space and Normalisation 

Most of the authors listed at the head of this section are troubled by their invariant evolution 
parameters, particularly the way such parameters do not deserve to be cape;: 'fuoper times' (see 
also the discussion of this in the work of Fleming (§6) and Derrick (Chapter 7)). The Hilbert space 
for the space•time representation provides another puzzle: 

(R4, ex) 

If 	E 11 vanishes as xv 	no (for any t.) then, surely, this means that the particle fades in and 
then out of existence? Admittedly this is over an infinite time-span, but it suggests strongly that 
the amount of particle is not a constant. Or, if it is required that the probability measure at any 
instant give unit probability then no physical state has a finite norm. Christopher Dewdney et al. 
adopted an idea by Olivier Costa de Beauregard by which normalisation is done only between two 
constant-time hyperplanes — allowing both 

Iclx°  I 1012  d3x 
t, 

and 

d3x 

to be finite. The advantage of this frame-dependent and cumbersome limiting hypothesis seems to 
me to be slight, at best. 

The sole redeeming aspect of Il is that the operators for position and momentum are simple, 
covariant 4—vectors of observables. The position observable is merely multiplication by x . 4—
momentum generates translations in 1—position, whence 

[e,25„1= 
	

(7.1) 

Of course, this means that position and rest mass are incompatible: if 

m = p 

then, it follows, 
[I? , in] = 	p  . 

The Newton—Wigner operator does not suffer this 'defect', as a single rest mass is one assump-
tion in its derivation; but then the components, insufficient in number as they are, can not be 
supplemented to satisfy equation 1. Equation 1 is, however, just the sort of condition a position 
observable might reasonably be expected to obey. 

i8 A Simple Conclusion 

It is hardly surprising that theoretical interest has long since moved on, in the main, to quantum 
field theories and theories that avoid coordinate representations. A tenable, Poincare—invariant 
quantum mechanics incorporating a credible rendition of locality has not been found in the sixty-
two years since Schrodinger's first paper. It is just as well that gullible research students occur so 
frequently that such futile topics can be regularly shuffled about. The height of my ambition is to 
be counted among that happily frustrated throng. 

I [,b12 
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Chapter 5 

The Anachoristic Theorem of Gerhard C. Hegerfeldt 

'V should have more faith', he said; 'I ought to know by this time that when a fact 
appears opposed to a long train of deduction it invariably proves to be capable of bearing 
some other interpretation.' 

A Study In Scarlet by Sir Arthur Conan Doyle. 
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§1 Introduction 

In 1974, Gerhard Hegerfeldt published a No Go theorem for what he termed a 'relativistic 
quantum theory', which I would dub a Poincare—invariant quantum mechanics. With the aid of one 
of the many theorems on Fourier transforms elucidated by Raymond Paley and Norbert Wiener, 
Hegerfeldt produced a contradiction between an initially confined wave function and the Special 
Principle of Relativity. The impact of this is lessened when it is recalled that Poincare—relativistic 
quantum mechanics already has a considerable number of fatal disfigurements: zitterbewegung, 
Klein's paradox, indefinite probability densities, too many position observables (or none at all),.., .111 
Another way of expressing Hegerfeldt's result is that limiting the theory to the positive—rest mass 
branch of the hyperboloid 	

po2:, = 	 (1.1) 

destroys the hyperbolicity of the corresponding wave equation. 
1976 found Bo—Sture Skagerstam attempting to prove Hegerfeldt's theorem using the Edge—

of—the—wedge Theorem. Later, in 1977, Perez and Wilde published an article that utilised exactly 
the same line of reasoning. In fact, Skagerstam's result adds another facet to the picture begun 
with llegerfeldt's theorem. It is shown that the class of wave functions chosen are non-zero almost 
everywhere in space-time. 

By 1980 Hegerfeldt and Simon Ruijsenaars were trying (with, I suspect, little success) to improve 
on the generality of the first No Co theorem. More recently (1985) Hegerfeldt seems to have 
succeeded in relaxing the notion of localisation, though the linearity of the problem suggests that 
this was accomplished with more effort that was necessary. I will not discuss this last work here, as 
the previous results are quite enough to persuade me of the need for a more thorough analysis of 
Hegerfeldt's axioms. For there is nothing very new, original or controversial about these assumptions, 
yet they have quite unacceptable entailments. 

The purpose of this chapter is to provide a straightforward review of this body of work. The 
complex analysis will be useful in the succeeding chapters, and indeed, it has already been alluded to 
in Chapter 3. A brief overview will be made of the theoretical problem revealed by this mathematics. 
The substantive pursuit of those possibilities that seem most promising will occupy the remainder 
of this work. 

§2 Some Complex Analysis 

§§2.1 The Paley—VViener 'Theorem 

An entire analytic function, f (p) , is called an exponential entire function if, for some A > 0 , 

(p) = 0 (cA lP1 ) 

i.e., 3k > 0 	 < ke 41P1  

Now if f (p) G L2  (R) as a function of a real argument, then 
f (p) is an exponential entire function if an only if the Fourier transform j(x) , of 
f vanishes almost everywhere for Icel > A . 

Fortunately, it is only the sufficiency condition that will be used. The necessary condition turns 
out to be the difficult bit to show. 

Theorem (Paley and Wiener, 1934121) 
If ,a(x.) n L2  (8k) vanishes almost everywhere for 'xi > A then 

CO 

= 7-/-12-7 	e`"Mx)dx 	 (2.1) 

is an exponential entire function. 
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Proof 
Taking into account the support of 0 , equation 1 is equivalent to 

A 

1'(p) = 2a f eIP'C6(z)dz  

ecI(P)i = Lf 
ciP'gx) dx 

Ts A  

A 

2x- 
(z)I dx 

y 

Since { exp (ipA) I < exp (0. (p) I) < exp(Alpl) 

< .IAA 116 (#(1° eAIP I 
r 

Noting that 0(p) is entire completes the proof. 

It should be remarked that the definition of exponential entire could be made more stringent by 
changing exp(Alpl) to exp(IA*)1) . The difference between these will not concern me except in 
showing that the canonical Schriidinger wave mechanics suffers 'instantaneous spreading' — a result 
of no shock value, and entirely compatible with invariance under the Galilei group. 

This is not the most useful form of this mathematics. A more applicable form is obtained by 
taking what is called the contrapositive of the theorem. This is a matter of the symbolic logic of 
implications. Given the proposition 

If p then q . 
then the truth of this means that the proposition 

If q is not the case then p is not the case. 
is also true. The second sentence is the contrapositive of the first. A variety of proofs can be offered 
in the several forms of symbolic logic, of which perhaps the easiest is in terms of a boolean truth 
table: 

p q p q 	not-q not-p not.p not-q 
0 	0 1 1 1 1 
0 	1 1 1 1 0 
1 	0 0 0 0 1 
1 	1 1 1 0 0 

The Paley—Wiener theorem above has the form of an implication (If ... then ...) whence the 
next theorem has also been proved. 

Theorem (Contrapositive of the Paley—Wiener theorem) 
If 0(p) E L2  (al) is not an exponential entire function then its Fourier transform, 0(z) , has 

support with non-zero measure over an unbounded sub-set of al . 

§g2.2 The Edge—of—the—wedge theorem 

The result used by Skagerstam and Perez 46 Wilde is called the Edge—of—the—wedge Theorem 
since, on the basis of a known function of a real variable, a function over complex values is deduced, 
e.g., for al(z1 ) > 0 and a4z2 ) > 0 —the real axis looks rather like the tip of a wedge in, in this 
instance, C2 . The particular version of this theorem to be utilised is also known as the Schwartz 
Reflection Principle 13I 

Let U be a domain in C that is symmetric about the real axis, so that for any z E U , then 
E U as well. Define three sub-sets: 

U+ 	{z E U : (z) > 0) 

U-  = {z E U :(z) < 0) 

U°  = {z E U : (Z) = 0} 

whcizze 

-A 
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Take a function, f : U+ U U° 	C , to be continuous, analytic on U+, and real-valued for 
E U°; then there is an analytic function F :U 	C that is an extension of f to U. 

F is defined as 
F(2.)  = 	(2)  

tf (z) ,forzEU° UU+ . 

Now for any simple closed contour 7 in U 

J F dz =E jr.  f (z) dz El f (2) clz 
j "11 	 k 

where the contours {7, } all lie entirely in U°  U U+, and the contours ^/k } are all within U. 
Changing the variable in the second sum of integrals to w = 5 means that all the integrals are 
evaluated in U°  U U+. Since f is analytic in U+, and continuous on 	U U+, Cauchy's theorem 
implies that all the integrals are zero. Thus 

4Fdz=0 

This is true for any 7 in U , and since F is also continuous throughout U , Morera's theoremI41 is 
applicable, viz. F is analytic in U . 

Actually, it turns out that the Identity Theorem is also required for the conclusions drawn.i6I 

Theorem (Identity) 
If jr and g are analytic in a domain D and f  (z) = g(z) for all :ES CD where S has a limit 

point in D (a simple case being that S is a line segment in D ), then f = g throughout D . 

This will be used with f as the unknown function, S some line or area of the complex plane 
and g the zero function 

g : 	. 

53 The No Go Theorems 

H3.1 ITegerfeldt's 1974 theorem 

G. C. Hegerfeldt, Remark on Causality and Particle Localisation, Phys. Rev. D 10 (1974) 3320-
3321. 

One of the most unpleasant things to find in an academic publication is the word `obviously', 
simply because when an author feels it necessary to say that something is so transparent then there 
are going to be people to whom it is not. A more cunning ploy is to use a form of words which still 
means 'obviously' but without saying so. I mention this because, in his two•page article, Gerhard 
Hegerfeldt does just this, twice. The distressing aspect of the 'obviously' tactic is that it is very 
much more difficult to investigate when, as in this case, there is a crucial statement being proved. 
Given some background reading of Eugene Wigner's classic 1939 paperg and the additional clues 
provided in Skagerstam's proof, a respectable account of what is now called liegerfeldt's Theorem 
might run as follows. 

If ¢ is the state of a particle that definitely lies in some bounded spatial region, if U(a) is the 
group of spatial translations, and if U(t) is the group of time translations, then, in accordance with 
the Special Principle of Relativity, for any t there ought to be an r > 0 such that 

(Va : 	> r) 
	

(1-1(a)¢lu(t)0 = 0  • 

Another way of putting this is: if a particle is once localised then it should remain confined within 
the light-cones having apices in that locality. 

If it is now assumed that the particle is elementary and has an exact, positive rest-mass, then 
this equation can be re-written in terms of an irreducible unitary representation of the orthochronous 
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Poincari group (pace Wigner). The limitation to the orthochronous sub-group is the implementation 
of the assumption that only positive 'relativistic energies' are admitted. 

(Va:lal>r(t)) 

j
r 	dap  

. p 	m2c2 E a kr(p)12  exP (ictVP • P +m2c2  ia • p) = 	(3.1) 

The left-hand side is also the Fourier transform from p-space to a-space of 

E, )o6 (p) 13  exp (icti/p • p ma c2) 
f (P, t) — 	

vii) • P Ma  Cs  

Equation 1 is therefore the mathematical statement that the Fourier transform, I (a,t) , of 
f (p,t) has its support entirely within the ball centred at a = 0 with radius r(t) . The second point 
to be noted is that, if f (p,t) is analytic for some particular value of t -e.g., zero, to simplify matters 
-, then the presence of the square root in the exponential means that this is not the case for all other 
values of t . Or, rather, f (p, t) is analytic for more than a single value of t only if it is identically 
zero. 

This implies that f 	t) can only be an exponential entire function (of p) for one value oft (zero) 
if it is non-trivial. For every other t , by the contrapositive of the Paley-Wiener theorem, f (a,t) 
does not have a bounded support. Equation 1 can, therefore, only be true for one, infinitesimal, 
instant. Alternatively, if an initial wave function of compact spatial support is assumed, then it 
will have propagated to an infinite support in the first instant of its evolution, i.e., moving at far in 
excess of the speed of light. 

H3.2 Example: Schr011inger Wave Mechanics 

The received wisdom about the SchrOdinger-Heisenberg quantum mechanics is that wave pack-
ets dissipate in time, spreading through space. The standard example is to calculate the evolution 
of a Gaussian. The contrapositive of the Paley-Wiener theorem now allows another simple demon-
stration of this aspect of the canonical quantum theory. 

The arbitrary solution to the free Schriidinger equation can be written as 

(x, 0 	I (la 	ip • pt 	ip • 
(2-,r h )3/2  j 	P exP 	2hm 	x) ?k(13) 

where IRO e L2  013, clap) . Now if 0 (x, 0) is a function of compact support it follows that /7b (p) is 
an exponential entire function. Therefore, consider 

f(p) = exp 	:zi)(p) 
2hm 

for p = r is E C3 . Now 

If (P) I  = lexP  (-1Tn 
(r2 

 — 
82 2ir • a)) 

= exp (t7t/„t r 2) HP) I 

But this is not an exponential entire function (using the more stringent version of the exponential 
bound): it is analytic but is not bounded by 

exp( 1-8-1;-4) 

To see this, r E Ka  so, for example, take r parallel to g and of modulus greater than Am/t . 
Thus for any time other than the initial instant, (x, t) covers an unbounded subset of space. 
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fii3.3 Skagerstam's Alternative Proof 

Bo-Sture K. Skagerstam, Some Remarks Concerning the Question of Localisation of Elementary 
Parades, hit. 3. Theor. Phys. 15 (1976) 213-230. 
J. F. Perez, I. F. Wilde, Localisation and causality in relativistic quantum mechanics, Phys. Rev. D 
16 (1977) 315-7. 
(This paper was submitted some months after the publication of Skagerstam's article.) 

Repeating the assumptions made by Hegerfeldt in 1974, at greater length, Skagerstam arrives 
at equation 1 (his equation 3.3). 

(3.1) : 	
V
,  d'13 	EPP. (p)12  exp (icta/p • p -1- 7n2 c2  - ia • p) = 0 
P • 13  + M2 C2  

Instead of examining the consequences of p being complex, Skagerstam chooses to consider the 
complexification of the 4-vector (z) = (et, a) . In fact, the left-hand side of equation 1 is weii-
defined on the wedge 

W ={z=x-Filt:y00 0, uP 	0} 

since the exponential becomes 

exp (ip,e) = exp (ip,,x' ) exp (-p 

and 

= 	VP • P ra' c2  Y • 13 

-Ya  14 • P -F ra2e2 	IYI 1131 

(IPI — VP • P ni2 c2 ) 5. 0 
	

(3.2) 

So the presence of y will only improve the convergence of the Fourier transform. Skagerstam's claim, 
however, is that 

1(z) = f 	d3P 	x'-‘ 	 • 
2_,10

a 
 (P)1

2 
 exP(,-."

o 
 VP • P in2 e2  - iz • P) 

sta VP • P m2 C2  

is not only properly defined on W but that it is analytic with respect to z off the real axis. Since 

.3/8/ 	f 	(Pp 	---, 
l
ay -  a. — J 7 Pla; 	p 	1 (P) 12 eXP  (7:2°  VP P + W 2 c9  iZ • P) 

if the integral on the right exists then / will be analytic; and shire, for ly1 > 0 , there is a ball, 
B(0,R) so that for every p ¢ B(O,R)  

00,10 (-pvy')I < 1  

it follows from the existence of the Fourier transform for y = 0 (by the comparison test) that all 
derivatives of I exist for y # 0 . The only reason that the Schwartz reflection principle cannot be 
applied is now that the real function I (z) is not known to be real-valued and continuous. This piece 
of the puzzle is provided by equation 1, at least for 1x1 .?•_ r . 

Applying the version of the Schwartz Reflexion Principle on C 4  171 to the left of equation 4 on 
the wedge 

= {z = z1-1-  iY Ixl 	(2), p°  > 0, 2eYv 	0} 
gives a function analytic on this wedge and its reflection, that is zero on the subset of FR1  lying in 
the closure of this domain. By the Identity Theorem, 1(z) = 0 on this domain. But I is analytic 
throughout WVIt4 , so a further application of the Identity Theorem means that I is zero on this 
subset of W . Because I is continuous on W , it follows that I(x) is zero for all 4-vectors x E 

This theorem provides essentially the same result as Hegerfeldt's 1974 theorem, but is not 
quite the same. Regerfeldt showed that there were no states satisfying his assumptions that were 
spatially confined for more than one instant. Skagerstam has shown that there can be no space-time 
volumes (open subsets of R4  ) on which, with the same assumptions, the wave function vanishes. 
Only Hegerfeldt's result implies superluminal propagation of the wave function; it is Skagerstam's 
result that the given assumptions mean that the wave function is non-zero almost everywhere in 
space-time. 
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§§3.4 Hegerfeldt and Ruijsenaars' 1980 'Generalisation' 

G. C. Hegerfeldt, S. N. M. Ruijsenaars, Remarks on Causality, Localisation an,: S' reading of Wave 
Packets, Phys. Rev. D 22 (1980) 377-384. 

The 1980 collaboration between Gerhard Hegerfeldt and Simon Ruijsenaars is presented as an 
extension of previous work using somewhat less restrictive assumptions to obtain a further contra-
diction with the Special Principle of Relativity. The basis for this increment in generality is that 
the time evolution is now assumed merely to be generated by an operator with a semi-bounded 
spectrum (that is, a positive operator). 

The first step is to prove a lemma, which is done using the Schwartz Reflexion Principle (cf. §2). 
Unlike the application of the edge-of-the-wedge theorem in the last sub-section, this result uses only 
a single complex variable. The conclusion is that if Uf generates time evolution and Uok lies in a 
closed sub-space fort E (a,b1 then (using the positivity of energy and the Reflection Principle) Uoi, 
lies in this subspace for all t E Jt . Of course, this does not exclude the trivial case in which the 
closed sub-space is the entire Hilbert space of states. 

Two theorems are then laid out with which I would like to take issue. The problem with both 
is the use of a decomposition of the energy spectrum. 

A state g, is assumed to be localised he some way. It is said to have an energy spectrum made 
up by the union of possibly an infinite number of finite, disjoint, 	intervals, 	. For each Ik it is 
postulated that there is an open set of 3-momentum values, 0 , which do not correspond to the 
energies in Ik • 

The localisation of ,/,/, is now expressed in the form familiar from the previous papers considered 
here: fort E [0,c] there is an r such that 

(U (a)11,1Ut O) = 0 	Va mal 	> r ) 	 (3.3) 

The authors' first theorem claims that qk = 0 . 
From the lemma, the range of times for which equation 3 is valid is actually [-co, on] . The 

authors then make use of their decomposition of the energy spectrum: 
`For any of the Ik , let ;v4 (p5 ) be 1 on Ik and zero outside. Then one also has 

(U(a)/Plxi,(H)0) = 0 	(Vadal>r)' 	 (3.4) 

This is apparently clarified by the footnote 
`Note that f (H) = f 1(0 exp(iHt) dt , where the Fourier transform f of f is a 
continuous function.' 

What this appears to mean is, as I see it, the following. Take a function f(h) E L2 (R) . The 
Fourier transform of this may be written 

7(t) = 	f e-ith f (h) dh 

1(h) = 	f eith (t) dt 

Now for any f , g E L2 (%) 

ft; = I . 5 
so that 

x (h) f (h) = 
1— 

f eith 	- SYR (8) ds dt 

What, Hegerfeldt and Ruijsenaars would like is for there to be some transform, T, so that 

X / (h) ((z) = f 27 (r4)(t) 	(h) dt 	 (3.5) 

to give the locality property they desire. The problem is to, in some way, relate the right-hand sides 
of these two formulae. In the energy representation used here 

UtO =eifh0(h) 
c-itb e-/fa 

—it 

with inverse 

X~a ,bi 	) 
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So I can re-write the Fourier transform equation as 

1 
x1(h) f(h) — 	fut

I 
0;1 	f 	f (hi) diil j,i (s)ds dt 

This does not re-arrange into the form of equation 5. 
I confess to being mystified by Hegerfeldt and Ruijsenaars' statement. As a first step the 

recondite definition of xi.(H) can be recast in terms of spectral projectors (in the usual notation): 

xi.(H) = E(H;/) 

Next, the assumption of a 'closed subspace' cannot be left as it is. This subspace must arise 
in some way; specifically, in some physically relevant way. Since ik is supposedly localised within a 
spatial volume, V , for the time interval [0, , the closed subspace must, therefore, have to do with 
this locality: where else does the orthogonality of U(a)ti derive? But if Ili lies in a closed subspace 
that represents states localised on some particular volume, V , of space, then there is a projector 
onto this subspace. I will denote this projector, for obvious reasons, by E(c; V) . There is no great 
difficulty in positing a complete set of projectors of this form- if not quite a resolution of the identity 
-, one for each volume, since I am not assuming that these operators are distinct or non-trivial, Now 
I can write the authors' assumption in the familiar form: 

=EP; V)V.,  

The closed subspace is therefore the subspace 

M= .0(v) = E(s:;v)L2  (TP) . 

The first conclusion drawn by Hegerfeldt and Ruijsenaars in the course of proving their theorem, by 
applying their first Lemma, can now be given the explicit, and potentially alarming- form: 

If a state is confined to a volume V for more than a single instant (or, 'a set of 
times of non-zero measure') then it will always be confined in that volume. 

Thus I can already write 
(:in V ), LTd = 0 

since the original assumption of a localisation in time has been conflated into an eternal localisation, 
so Ut L2  (V) c L2 (17) ; and since, for any Q E L°  (V) , I can write 

= (ILIA 

where I know that 1.11.4  y5 E r2  (V) , so L 2  (V) C lit  .L2  (V) . 
It follows that 'strict localisation' in. the form used here - the same form it takes in von Neu-

mann's 1932 formulation of the SchrOdinger-Heisenberg theory[s] - will only give a tenable theory 
if E(g(;V) = l , that is, L2  (V) = 	(It') ; or if EP; 	= 0 . 

The gist of equation 4 is that if f (H)ik has the same localisation as 9,f) , 

= E(fin (E(II;1)0 

It is now possible to obtain this conclusion by cribbing a little from a theorem in Reed and Simon's 
textbook (M. Reed, B. Simon, Methods al:Modern Mathematical Physics, A. P. 1912; p133, p272): 

Let j E S (B) ; then, by Fnbini's theorem. for any ¢ and zl e L' (R5 ) , 

(s)(e-'di E(,i';V)0,0) ds = dA(E(Ii; A)E01;116,0 

= IfiTr 	,f(A)clx(F(ll; A)E(iti;i4 ), 1.1)) 

= 
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But, using the commutator established previously and then the same argument again, 

	

30 	 03 

f (0(e-4°11  E(i;V)(13,0) ds = J f (8)(e— f8-  1),E(th;V).V.),.ts 

= 127r(0, ,I(ii)E(th;V)1,b) 

	

= 	(E(l;V), 

	

In other 'words', 	
[E('; V), NO) = 0 	 (3.6) 

But the characteristic function, y1(s) , can be expressed as the pointwise limit of a sequence, { f. } , 

	

of uniformly bounded functions in S(el) . Thus f5 	E(fi;1) , and equation 6 holds throughout. 
Whence 

IE(th; ), Etii; 41] = 0 	 (3.7) 

as required. 
The remainder of the proof proceeds much as in Hegerfeldt's 1974 theorem, with the application 

of the contrapositive of the Paley—Wiener theorem. There is, to my mind, no very significant 
increment in the generality of this result over previous efforts. Only one spectral proj ector is assumed 
for position, but this was the case before. The use of a Hamiltonian with a semi-bound spectrum 
is the one novel feature, though what is gained it is hard to say — if there is no free-particle theory 
it seems improbable that there should be any other sort using the same assumptions. Skagerstam's 
proof can, in fact, be re-written in terms of a fairly general Hamiltonian: specifically, any function 
H(P) > IPI • 

§4 The Paradox Considered 

This is the paradox: by taking a small number of reasonable assumptions, a non-controversial 
consequence of Einstein's Special Principle is seen to be violated. 

The assumptions made can be summarised as: 
(i) that there is a class of states representing systems that are definitely confined to a bounded 

spatial volume; 
(ii) that such states are orthogonal if they are space•like separated; 
(iii) that space-like separations may be obtained by spatial translations (generated by the 3—

momentum); 
(iv) that these are states of positive energy from a unitary irreducible representation of the 

Poincare group. 

Abandoning or altering any one of the above brings with it problems that may be no smaller 
than the paradox to be averted. Tossing out axiom (i) is, I would hazard, the easiest; even though 
the formulation of a consistent theory is far from certain and there is always going to be the nagging 
worry of what all the absurdly small probabilities mean for systems that are as well confined as 
may he. There is also no guarantee that any alternative criterion, such as that devised by Gromes, 
Gerlach and Petzold (cf. the discussion of the work of these authors in chapter 4), will not be 
violated. 

Discarding axiom (ii) would seem to be immediately daft. For non-orthogonality surely implies, 
as a transition amplitude, that the particle confined definitely in one volume might actually turn up 
in quite another. Further, drastic changes will be needed to make any sense of this choice. 

To dispense with either assumption (iii) or (iv) is tantamount to renouncing the Special Principle 
— the equivalence of different reference frames —, a consequence hardly worth struggling towards. 
It may be possible to generate translations by some other means, though where this leaves the 3—
momentum is uncertain. There is even the bizarre option that in translating a wave function the 
result may be a state that is no longer confined spatially, by means of a tortuous relation between 
the value of the wave function at each event and the probability of the presence of the particle. It 
may even be that some group other than the orthochronous Poincare group is more condign. 
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This is not a complete list, nor even a particularly well-balanced account, but it does suggest 
the scale of the problem. More detailed debate is postponed to the remaining chapters. 
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Chapter 6 

Localised Quantum Mechanics 

an exposition 

`That's one small step for a man, 
But a giant leap for a cripple.' 

The Singing Detective by Dennis Potter. 
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§1 A Motivation 

The ideas to be analysed here might be said to stem from the opening sentences of Rudolf Haag and 
Daniel Kastler's 1964 paper (An Algebraic Approach 71, Quantum Field Theory, J. Math. Phys. 3 848-61.) 

The essential feature which distinguishes quantum field theory within the frame of gen- 
eral quantum physics is the principle of locality. This principle states that it is meaningful 
to talk of observables which can be measured in a specific space-time region and that 
observables in causally disjoint regions are always compatible.' 

One of the primary preoccupations of Wan and students (McKenna, McLean, Jackson, Timson)[1]  has 
been to remove this unique attribute of quantum field theory by formulating a quantum mechanics that adheres 
to an identical Principle of Locality. 

Of course, a new principle or axiom cannot merely be grafted onto quantum mechanics. For, not only t; 
it possible that the new axiom may be contradictory, but it is also necessary to justify the addition — to offer a 
motivation for it. Should there be no good reason for an axiom then, by Occam's Razor, there is every reason 
to discard it. The advantage of a good motivation is, simply, that it builds an understanding of the physics 
into the mathematics at a fundamental level. 

The motivation for the Principle of Locality is that quantum mechanics does not need to take the entire 
span of the universe into account every time an observation is made. There are certainly cosmologists and 
acolytes of 'wholism' who would not agree with this concept. However, since their theories — at least on 
this point — are of a metaphysical nature, rather than scientific, there is no onus to argue in favour of locality 
against such people. 

Thus the extreme consequence of Schrbdinger's wave mechanics that attracts almost all popular attention 
— that wave-functions are non-zero almost everywhere in the universe — is to be regarded as an 'edge effect' 
of the theory: at those places where the probability measure of a wave-function falls sufficiently close to zero 
it is not just unlikely that the particle will be found there but it will be taken to be impossible. 

A more specific version of the Principle of Locality is: 
(i) that all experimental determinations utilise apparatus of finite size, and so any representation of a 

measurement should employ a spatially confined object; 
(ii) it is simply nonsensical for the particles involved in an experiment to be anywhere other than within 

the laboratory. 
As an exegesis this is fine, but it is not sufficiently precise to use as a foundation for a formal treatment. 

The Principle of Locality enters the mathematical formalism in the definite form: 

Axiom (Principle of Locality) 
All observables and states representing real systems must have finite spatial support. 

Any quantum theory based on this axiom will be called a Localised Quantum Theory. 
There is an immediate consequence of this new premise, as Haag and Kastler pointed out, that seems 

fatal: the total energy, total charge, momentum, parity, and a number of other eminently physical quantities, 
cease to be observables. If the purpose of Wan et al. has been to introduce a principle of locality, the majority 
of their work has been to rescue and preserve the observable status of these quantities. 

What follows (especially the next two sections) is a review of Dan Timson's attempt to produce a localised 
quantum mechanics which is invariant under the Galilei group.(11  

§2 Quantum Mechanics Localised 

The means by which a localised quantum mechanics is produced are the mappings called localising 
isometrics and denoted Le . Each localising isometry provides a mapping of the 'global' states and observables 
of the canonical theory onto the localised states and observables which inform the localised theory. To proceed, 
the simplification of a single spatial dimension will be used. 

A localising isometry is a mapping, Le : L2  (R) --+ L2( 	, on the Hilbert space L2  (1R) , defined by 

(VO E L2 (R)) 	 Lech = 	(01A.) 
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where supp e = A , A 	; and 0 Ia. is the zero function on the set of points in A - . 
Also 

..1/200 —4 L2(A) 

is given by 

where 

(La) 	- 0(0(s) )  
'.J (x) 

if x E A 	 (2.1) 

a(x) = —41  +xo , xo G AO , 
01) 

and e is assumed to be a post' le, infinitely differentiable function (with, as mentioned before, support on A ) 
that, for a closed sub-interval, Ao C A , is equal to one, which is the maximum value of e . e is called the 
localising function. Ao is referred to as the centre of localisation. 

a is a monotonic increasing function with range DI for the domain A . 
It follows from the foregoing that Lt  is a unitary and is an isometric transformxtizn. The adjoint and 

inverse of fle is 

(1:ttb) ( x) = (cr-1( x)) lie (a-1( x)) . 	 (2.3) 

This mathematics is now put to work in the first two axioms of the Timson-Wan theory: 

Axiom (States) 
At any instant of time the state of a quantum mechanical system will be an element, It , 
of a member, SA , of the family of augmented Hilbert spaces 

sA = { : = 	, ) 	IPA E 71(A), A CR} 	 (2.4) 

where each 	is a localising function such that the (Born) probability measure on the 
boundary of localisation is less than or equal to the significance level, e 

11E(1;Ao)IPA > 1 -e . 

Given a state, and the localising isometry this implies, the next step is to produce an algebra of localised 
observables: 

Axiom (Observables) 
The localised observable, AA , corresponding to a canonical observable, ;1 , is defined by 
the formula 

AA  = LfALi . 	 (2.5) 

AA is a valid observable - it is self-adjoint - since A is a valid observable and f..5  is a unitary mapping. 
AA  also has the same spectrum as A , with the addition of zero if that value was not already in the spectrum 
of A . Since (Ile V)) ( Ao ) = ,l(Ao) , it follows that the localised observables are identical to the canonical, or 
`global', observables on the, so-called, centre of localisation. The effect of this is that localised observables 
differ from their `global' counterparts only in the part of the localisation that is not the centre of localisation 
( A \ Ao ); this region is called the boundary of localisation. It is the purpose of the axiom defining states to 
make this simple, local indistinguishability into a physically relevant property of the localised theory. 

The complexity of these postulates arises from the more sophisticated connexion between a configuration 
space state, (IPA , en) , and the corresponding localised momentum space state - not to mention all the other 
observables. The exact formulation is intended to ensure that where the 'global' observable and its localised 
counterpart differ there is not enough difference to worry about. 

An example is the spectral projector for a general observable, A . If 

E(A; a)1/7 = 1G 

then 
LtE(A; n)LA0P = L1 l' 

that  isE21 

E(A.A ; a) 	= 

(2.2) 
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so that 

INA I E(A; a) I WA) — 	I E(AA a) I 	= I (1,b.A I MA; a) — E( AA ; a) I 	) I 
(Applying the Cauchy—Schwartz inequality) 

IIE(A; a) — E(AA; a)  II I 'E(a; DVAo ) 	II 
< 2 E 

Taking E to be sufficiently small means that, in this form, the 'global' and 'localised' versions of A are 
indistinguishable. 

The easiest example for this localisation procedure is the standard example of an observable that does 
not commute with the position observable, viz. momentum. 

Not all localised momentum ranges are necessarily compatible with every spatial localisation, given the 
form of the new axiom on states. It is at this point that Heisenberg's 'Uncertainty Principle' enters the theory. 
Or so it may seem.E33  

Them are two formulations of this principle, which might be called 'uncertainty relations': 

AxAP > 6/2 	 (2.6) 

and 

f)] = 21J 	 (2.7) 

Of these, the first is the more commonly quoted, because it appears to have a straightforward meaning. 
That this is not so when one actually has a mathematical formalism to contend with must make this inequality 
a prime candidate for the title 'most popularly misunderstood formula in physics' [4l  Apart from anything else, 
this is an inequality of variances, which are statistical measures of only limited physical import, if any at all. 
If any characteristic volume can usefully be assigned to a wave packet it would be most reasonable to use the 
support of the function; though, of course, in Schrodinger's wave mechanics only one of 1,1)(x) and IX p) will 
have a finite support, if either has. 

Since equation 6 is a consequence of equation 7, the latter might well be called the more fundamental 
version of Heisenberg's principle. The version to use with a localised evolution scheme may therefore be 
taken to be 

[ 	I
= 

AO 	AO 
or 

PA] = Chei- 	 (2.8) 

This is clearly a spatially dependent commutator in the boundary of localisation. The axiom defining states 
is sufficient to prevent any violation of equation 6. There is no conflict between this 'Uncertainty Principle' 
and a localised quantum mechanics. 

§3 Time Evolution Localised 

2  H = 

2m 
Naturally, this can be localised as a quantum mechanical observable by the procedure given in the last section. 

2  HA= WIL 
= 2 me 

12—L t 

= —LefiL tL t 
2 m 	e 	e 
1 

=(i)A)2  2 m 
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— so the localisation pa cPcq is consistent in this respect. There is, however, a definite proulem with the time 
evolution operator, U( . The formula 

tin 	= LEtr(t)1.4 

simply will not do: the support of a freely evolving state is not, generally, static. This mad Timson and Wan, 
in a attack of neologism, to devise what they called a comoving evolution* — by which is meant that the 
localisation, A (and, hence, the function EA ), as well as the wave-function, IPA , evolves in time. This is 
formalised next. 

Axiom (Time Evolution) 
The time evolution of a state, (IPA 'CA) is generated by the Hamiltonian FI = 252 /2m 
according to the prescription 

s2 	t 

	

IPA co ( t) = Le(e) exp 	t;;n31) 	L (  OA ( 3) 

where there is a bounded interval, II (the momentum spectrum of the state), such that, 

IPA(0)( = E (fin(o)(0); n) IPAcco(o) 

Also, 

	

= inf { n } 
	

1-7 = sup{ II } 

	

= inf { A (t) 
	

/T(t) = sup{A(t) 

and 

A(t) = (5) + 	— s) 

A(t) = A (s) + =(t — s) ; 
ra 

and, repeating this prescription for the centre of localisation, 

Tom .T.(3) ilmo(t—s) 

Low 	A_0(8)  + 
/710

(t _ 	. 

§§3.1 Superposition of Slates 

So far I have re-written (in, I hope, a clear fashion) an account of the localised evolution of states of a 
fairly monolithic form: the support of the state in both configuration space and momentum space consists of a 
single, simply connected compact subset. Naturally, where a quantum theory has such 'monolithic states' one 
must also consider superpositions of such states. This goes beyond what Timson and Wan have developed. 

If a monolithic state is produced by the successful passage of a particle through some preparing apparatus 
to its output, a superposition of such states arises from an apparatus with more than one distinct thoroughfare. 
One will then have an 'initial' (i.e., prepared) state, .711 , given by some prescription such as 

(I)  = cv4); + f3c152 	 (3.1) 

( 10(12  + 012  = 1  46;11 = 1 ) where there are two phase space localisation ((At , no and (A2 , H2) ) such 
that 

E('1; AO =Or ( = 1, 2) 	 (3.2) 
E(1?-7; 	= 

The two pairs of intervals need bear no especial relation with each other. For the 1—dimensional config-
uration space there are some thirty-six distinct cases — ignoring the values of the boundaries to the intervals 
but considering only the relative ordering of boundaries. It would be tedious to take each case in turn, so, for 
illustrative purposes, a suitably nasty example will be analysed in detail — see figure 1. 

* Any student of English who, by whatever freakish chance, caught a glimpse of this term may be forgiven 
for feeling a bit faint. The absence of even a hyphen — to give 'co-moving' — is somewhat alarming. 

—6.5— 



Chapter 6 : Time Evolution Localised 

Figure 1: an unpleasant evolution. 

§§3.2 The Options 

The obvious candidates for the superposed time evolution are: 
CO 0: and 02 evolve by the localised evolutions they would each have if considered alone — adopting 

a fairly transparent notation for the modified time evolution operators, which are now functions of 
various localities, A and 11 : 

1) (t) = aci(t,A1 ,n1)01 + fitT(t,A2,n2)952. ; 

cb evolves according to a law derived from the union of the two sets of ranges: 

= u(t,A1  Li Az ,111 nz)cp (0) ; 

(see figure 2) 
(iii) the composite evolution is based not on the unions of sets but on convex hulls, viz. 

A = ConvexHull ( , A2 ) 

II = ConvexHull ( III  ,112) 

So that 
(DM = u(t,A,11)(1)(0) 	 (3.6) 

(see figure 3). 

By adding flesh to the rather skimpy options listed above, it will emerge that there is one that is naturally 
to be preferred. 

Option (i) is already quite well defined, but there is a problem: for times between ti and t4 the localised 
evolutions have over-lapping localisations. This puts paid to the unitary nature of the evolution since 

110(0112  = M21101112  + W12 11952112  + 281(cii3*(C./(t, 	, n2)02 I Ci(t,A1,111)951)) 
	

(3.7) 

= 1 + a non-zero term 	 (3.8) 

Them is every reason to expect the cross-term to be significant. 

(3.3) 

(3.4) 

(3.5) 
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Figure 2: option (ii). 
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Figure 3: option 

Option (ii): this is really just the natural result of noticing the flaws of the first guess. Here the evolution 
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would look, albeit at length, like the following. 

0 <x°  <t1 ti : .:13( 	= at:J.( x°  , 	111)01 + fiC/(x°, A2,112)452 

t1 <x°  < t2 : c13(2) = tT (x°  — th.A4(2) UA2(2), [rai,m])43(to 
tz < 	<i30(2)  = (x°  —ty,Ai(x°) U 	 fri(t2) 

is < x°  <t4  : cb(x°) = tr (x°  — t3,1ti(x° ) U A2(x°) ,ULI Tit]) (1)(t3) 
t4  < x°  : cb (2) = (U(x°  — t4,Ai(2),no U(.0 -4,A2(x°),11z))43(t4) 

This does not completely specify the evolution because the localising isometry is not determined in the 
region A1( x°) A10 (x°) A2  (x°  ) \ A20(x°) —the intersection of the two boundaries of localisation. There 
is no unique way of clearing up this lack of determinism, though there are plenty of rules that will work, for 
example 

e(x) = maxtei(x),2(x)} 
or 

e(x) = ciei (x) + 136( x) - 

It is not difficult to see that this is unitary, and, in fact, respects very accurately the evolution of the 
component states. The major stumbling block for this option is that there is no obvious generalisation to two 
or more spatial dimensions. A less formal objection is that there is no particular reason why the region labelled 
G should be left entirely untouched by the passage of the particle — it is the geometric shadow of Al  and A2  , 
but the particle has wave-like properties which do not necessarily exclude any such shadow. 

Whilst the localised evolution can be said to hasten the process of asymptotic localisation (cf. Chapter 2), 
its main purpose is to provide a scheme in which position and momentum can be simultaneously confined for 
all times (finite as well as infinite). Thus, while the superposition consists of two states that are asymptotically 
separable, there is no reason to believe them separable much before to • 

This argument against option (ii) is further bolstered by the following observation on the extent of Al  
and Ay : the limits of these localisations are established by much the same process in which statisticians 
set significance levels: a figure (75%, 90% , 95%, ...) is chosen as the bound on the accuracy of the model 
and/or experiment, and a centre of localisation (Aio or A2°) is found which contains this proportion of the 
wave-function (using the Born measure). In this respect the boundary of at least the centre of localisation is 
somewhat arbitrary. Further, consider the theorem at the heart of asymptotic localisation: 

`If Eat; [II ,111)(1? = (13 then Um E (i;[1:44, 11-1) ti(t)(13 =U(t)ah 
t-.00 	 'M m 

The space-time cone into which the particle finally falls has its vertex at the origin of coordinates, and this is 
regardless of how far any initial centre of localisation may be from the origin. It is true that the theorem can be 
readily adapted to a space-time cone with a vertex at any pre-arranged spot a simple phase shift exp( if) • ci) 
gives 

t- 40 	m 
E (k; 	+ at, -t + a

J 
) 	(11 = U(t)(13 4  

and, indeed, convergence may be far more rapid for some values of a than for others (since the evolution is 
a unitary automorphism, all the approximately localised states are already present in the Hilbert space, and 
there is no reason that an approximately localised state cannot remain so within some cone). What is clear is 
that the general statements of asymptotic localisation have little bearing on what occurs at small or just finite 
times. 

§§3.3 Option 	Superposition formulated 

Having, with somewhat greater reluctance, disposed of option (ii), I am left with option 	Here a 
consistently unified support has been found. There remains the problem of the local momentum operators. 
Now, for the separated component states there are localising isometrics, call these L1  and L2 , such that 

EC13Ai; 	= LiE(P; 	= 4); 	(i = 1, 2) . 	 (3.11) 

What is needed is a suitable isometry, L , so that 

L E(P; II)Lt 0 = (13 . 	 (3.12) 

(3.9) 

(3.10) 
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Now A is just another, quite unremarkable locality; so one can easily come up with a lorstiising isometry for 
it, call this L , for reasons that will become apparent One might guess at L having the f.,:rrt 

L=1.4  -1-L2 . 	 (3.13) 

However, between x° = 11  and x°  = ti there is, again, the problem of unitarity. In fact the spatial overlap 
rules out using 4)1  and 02 even as the initial components of rI3 . his here that the flexibility of the localisation 
Al  and A2  becomes actively beneficial; the { } can be re-localised onto A with only a slight change of form: 

= 	 ( i 1, 2) . 	 (3.14) 

This actually only alters the distribution of that part of the wave-function lying in the boundary of local-
isation, which was set up in the first place to be a less than significant fraction of the component state. This 
exercise also re-establishes the hegemony of the SchrOdinger equation in the region G . Thus the superposition 
may be freely taken to be 

43' = ci9511 +.844 	 (3.15) 

which satisfies 
LE(ft;II)Lfda' = (13' 

L E(P;  lli)L144 = IV; 	(i= 1,2) 

Establishing the support of the wave-function is one thing; producing a unique localising isometry is 
quite another. It is clear that a single localising isometry is required to supplant the isometrics that apply only 
to one component, for it is only by having a single isometry that there is a set of observables, and thence an 
evolution of the system. Indeed, the principle requirement is to preserve, as much as possible, the confinement 
of the state to spatial and momentum volumes. By changing the estimate of the initial state using formula 
14, the momentum spectrum of each component is retained exactly. To be more specific about the localising 
isometry, the only definite and obvious limitation is to take 

Ao = ConvexHull (Aio , A20) • 

The choice of the remaining parts of the function e is entirely open. 

§13.4 Observables and the physical equivalence of states 

The discussion of re-localised states in the last section relies upon an assumption that will now be anal-
ysed. Obviously there is a difference between the state and its re-localisation, the question is not whether the 
two versions are mathematically indistinguishable, but whether they are physically so. The textbook definition 
of physical equivalence that might be thought applicable here is as follows:t51  

'Let /it  and R2 be two representations of the algebra A in the Hilbert spaces 7.11 and 7i2 . These 
representations are called physically equivalent if for any choice of the positive integer 71 and ob- 
servables A1, 	, 	E A > any positive trace-class operator Bi in 711 , and any arbitrarily small 
(fixed) c > 0 , there exists a positive, trace-class operator B2 in 712. such that 

Tr(f3i RI( Ak)) — Tr (132 R2 (A k)) I < c 	k = 1, , n 	 (3.17) 

This is not, in fact, a very 'physical' definition at all. The following, slight, adaptation is in accordance 
with the concept of dimensional analysis in physics, i.e., it accounts for the fact that (01210) is an expectation 
value of an observable, such as momentum, whereas the error level, e , will be dimensionless. So, instead of 
equation 17, I propose to use 

I Tr Pi (Ak)) — Tr(i32R2( A k)) I  <e 
1Tr(fil/71(,40)) I 

k = 1, ... ,n . 	 (3.17') 

Clearly systems equivalent according to equation 17 are equivalent according to equation 17' , however 
the reverse is not true. The importance of the change is in the application of the revised definition in the 
present case. Consider the innocuous-seeming observable 

= "rE( Sr, Ad 	 (3.18) 

(3.16) 
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where Ag C G , and III E gt . The problem is that 

A¢i=o  

Acbli  

so that, using equation 17, and if Iyl is great enough, one could easily get 

—11,444111 > E 

for any E . This problem does not arise for equation 17' , where the left-hand side is divided by a factor 
proportional to 	. Since it is precisely in the region G that differences are manifest, using equation 17' 
ensures that these differences between Oi  and cl are of the same order as 

11E01  ; 	 (3.21) 

which is, by assumption, a very small quantity. 

§4 Symmetry: 'Global' v. 'Local' 

In performing experiments at different times and places, experimenters have always assumed that the 
natural laws being studied do not change despite the differing circumstances. From such humble beginnings, 
the concept of symmetry has become central within all physical theories. The feature of the realisation of 
the symmetry group in the canonical quantum mechanics that is not in keeping with a localised theory is the 
global action of the group representation. A localised notion of symmetry would seem to be in order. 

Localised or not, the representation of symmetry M a quantum theory is still a matter of satisfying the 
criterion eloquently enunciated by Wigner in 1939. If U is a symmetry operator then all probabilities are 
preserved: 	

(v0,0 e 7-t) 	1(0 10)1= #10 I t).0)i 
	

(4.1) 

This implies that (1' is either a unitary or an anti-unitary transformation. If b" is to be an element of a simple 
continuous group it follows that it is unitary; a state of affairs that will be assumed to apply in the sequel. 

It is not unusual to suggest that this is the fundamental symmetry requirement but that further demands 
may be made of a theory under the heading of 'manifest invariance' (I do not claim to have found the original or 
best expositions of this notion, but the two papers by Foldy, on the one hand, and Currie, Jordan and Sudarshan, 
on the other, are as good as I have seen on this point.E6371) The operator equivalent of the (Poincare) covariant 
transformation of coordinates falls in this second category, and not least because of the difficulty authors have 
had in devising a credible position observable. 

That the concept of `manifest invariance' is a fudge is a conclusion I find reasonable on the following 
grounds: if there is a position observable, "± , then equation I may be re-written, with/, E 7) (i) and 0 = iii , 
as 	

= W./0 I 0.10)1 

= 1((i0 I (eiltit) (TO I 

in other words, given the 'fundamental' requirement of symmetry, I deduce that the operator transformation 
law for position (and, by extension, any observable) is 

= tr±tIt 	 ( 4 .2) 

with a corresponding transformation of expectation values. Now if r./ represents some straightforward sym-
metry — translation, rotation, Galilean boost, Lorentz boost — then it is no more than sensible to insist that the 
operator transformation law be a transcription of the classical covariance statement. 

On the contrary, if there were, for whatever reason, no position observable actually worthy of the name 
then one way of avoiding the painful admission that the whole edifice is junk is to invent the spurious distinc-
tion that 'manifest invariance' is optional. After all, a theory that is 'not manifestly covariant' sounds much 
more promising than a theory that incorporates no sensible notion of space. 

( 3.19) 

(3.20) 
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Chapter 6 : Symmetry: 'Global' v. 'rural' 

§§4.1 ruralised Symmetry, marque 1 

If the canonical generator of a canonical, 'global', symmetry is the observableg then the obvious local- 
isation of symmetry is to use 	

DA = LOLI 	 (4.3) 

to generate, by way of the localised version of Stone's theorem, the group of operators 

an (3) = LE exP (ph) LI 
	

(4.4) 

There are two reasons why this naive formula is untenable: (i) in general, the axiom defining states is violated; 
and (ii) if the untransformed state lies in some representation then the transformed state does not. An example 
will illustrate the problem here, for there is only one, at base. 

Take a state, 1/, , 'walked  to the interval [ a, , with centre of localisation ( ao , be) . Consider 10 trans-
lated by 

s -bo - ao, lobo - ao) 

	

bo -  ao 	bo - ao 	bo - ao 
1000 	100 ' 	10 ' 

Tracing the action of the operations in formula 4 in order, first of all a state in L2  (St) is produced (identical 
to tp on (as , bo) ). The conventional translation then shunts this curve along the spatial axis, so the values 
on ( ao,bo) are now taken on (ao + s, bo + s) . Finally, the localising isometry Le brings the state back to its 
original support. Taking the list of shifts in order, the result of equation 4 can be assessed. For the first and 
second values of s there is probably no difficulty; there may even be no cause for concern over the third value. 
The later values in the list will, it can not be doubted, be highly disruptive. For s = b0  - 00 the centre of 
localisation is pushed entirely into a boundary region, with the immediate consequence that the Born measure 
in this boundary is now quite close to unity, in direct conflict with the axiom defining states. 

Another, perhaps more alarming, way of putting this is to consider the expectation value of position. 

Before: 	 (a) = (0 I .±A I 	= (14011 I 1-1t0 

After: 	 (x') = (NO I 'in I C/A ib) 
= (Lbk I 1 - 8 114 0) 
= (2) — s . 

So, if (x) = ao + cr( bo - no) then (a') = no + a(60 - 00 ) + s , and hence, fors > bo - ao , 	will be 
outwith the localisation! It was for this sort of situation that the axiom defining states takes the form it does. 

§ §4.2 Localised Symmetry, marque 2 

A workable scheme can be had for only a modest revision of formula 4. Instead of merely transforming 
L lib the function e is also transformed, giving C  , say, in the final localising isometry. Whence tin (en , 

(VA ,6‘) 	(1b1A,, (m) by 	

( ,$)=LSexPI g1)Lt 
	

(4.5) 

More precisely, if there is a representation of the continuous group that acts on the points of space by 

= G(s)x 

then 	

PA (en , 3)1bn ) (x) = L (f( G-1( s)x)) exp (Ph  L t (e( x))1/.,A  (x) 	 (4.6) 

There is a group property if c'(2) e(G-i (ow) (i.e., e' is the transform of e) in the process 

	

of successive transformations: 	trA,(evit)tia (en , a) 

i.e., 

(1)n,(eA, , On (en , a) On (x)) (a) = L (e(G-1(t)G-1( s)x)) exp (#) L t (e(G-1(s)x)) 

L 

	

	G-1( x)) exp 2)  L t ((x)),/,A  ( s) 	(4.7) 
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In point of fact, fin (G , 8) is indistinguishable from t7( s) = exp (as/ili) . After all, 

exp 	L (e( x)).4,,,,( 	i(e( G—i( x)  )0A 
 (G

1(3)x) 

(tiA(cA , 3)0A) (a) = 	(G-1(3)X) 

= (exp (g) 0A) (x) . 

The transformation of e also means that the symmetry group acts in the same way as time 
evolution: changing the whole state, (OnleA), and not just the wave-function, OA • 

§5 An analysis of concepts 

§§5.1 Observables and Symmetries 

A reasonable facsimile of the usual quantum mechanics has been sketched in the preceding sections, but 
with the added bonus that there is no need to look beyond a finite spatial volume, The task of implementing the 
Principle of Locality might well seem near achievement. On the other hand, the final result of the last section 
was that the localisation region, A , was not the largest volume necessary for a quantum mechanics localised 
to that localisation region. If the generator of a symmetry is a localised observable, it must be concluded that 
its `centre of localisation' contains A (which might still be called the localisation of the particle, I suppose) 
as a proper subset. 

Timson and Wan have argued that all observables on a localised quantum mechanics should have A 
as their support.E21  Their reasoning was that for a smaller support the observable would not be `effective' —
would not be certain to measure the particle — whereas having a larger support would be indistinguishable 
from having A for a support. This simple-minded explanation is, if not wrong then, surely, it is dubious. The 
explanation is necessitated by the fact that this is a theory in which only one locality can be used at a time: the 
localisation of the state and the support of the localised observables is always identical — localised observables 
not defined with respect to the localising isometry of the state simply mean nothing. 

There is no fault in supposing that a measuring device can have a smaller support than the wave-function 
of the object it measures. There has been no bound put on the size of A , on the one hand, and on the other, 
the miniaturisation of detectors is quite advanced by now. 

To argue that the smaller detectors may miss the object is to forget that even devices very much larger 
than any sensible particle support have efficiencies of rather less than one — in the terminology of Clauser et 
a/.181  A good example is the gigantic size of neutrino detectors. 

It is as untenable to hold that localised observables have a support no larger than A. Again, 
neutrino detectors and cloud chambers do not work on this principle: the design of detectors has 
never been a matter of matching exactly the supposed support of a wave-function. The fact that 
the support of an observable that 'generates' a symmetry is always larger than A is quite telling, if 
there is still good reason to localise it. To obtain a localised 'generator' it is necessary to have as its 
centre of localisation, at the minimum, the localities A and the transformation of A (G(s)A in the 
symbols of the last section). Thence it is only possible to localise a 'generator' for a bounded range 
of the transformations it is to generate. 

If the symmetry group is intended to exhibit the degree to which the physics is 'coordinate free' (for the 
idealised space-time adopted) then there is no reason to limit the range of transformations; so the 'global' 
symmetry group is the right one after all. 

It seems that the support of the localised observables and the spatial extent of the measuring devices that 
these are supposed to represent are unconnected. 

50.2 The nature of e 

So what, I am lead to inquire, is the nature of the function e ? What does it represent? If it does not 
represent the `footprint' of measuring devices, then it must only be associated with the quantum object. If 

whence 
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the support and 'centre' of e give the loailisation of a particle and the localisation of the 'bulk' of a particle, 
respectively, what then of the infinite variability of e ? Given a A and a Ao c A , there is no 'natural' or 
`obvious' candidate function, e . Admittedly, the various allowable functions only differ on the 'boundary of 
localisation', A \ Ao , where such differences are claimed to have no noticeable effect. 

To make this quite clear, take a wave-function of compact support, A . Where is the centre of localisation 
of this wave-function? As was mentioned in connection with the superposition of states (§§3.2), having set 
the significance level there is no natural, that is, unique, boundary within A to exclude only the 'insignificant' 
part of the state. 

Given a set of bounded observables, { 	, where 

	

b = nip{ 	} 

then by setting the significance level, e , in the axiom on states to be 5/2 b , where 3 is the largest measur-
able difference (the accuracy of the detectors), it follows from the result of §2 that there will be no way of 
distinguishing between the competing forms off . 

If rJit  = LE, IP and 	= 	, wherein the supports and centres of et and e2 are identical, then 

1(+14 1 E 1 01) —  (Os I fj I 02)1 

= 	I E(1; A \ A0)13 E (i; A \ Ao) I u") —(+L2 I ECth; A \ Mb Ea; A \AO 102)I 

(11E(±; A Ao) 	+ HMI; A Ao) 0211) 

This is, to my mind, not the right way around. To produce a testable theory it is not necessary to take into 
account the fallibility and finite engineering of any experimental use of the theory. The fact that experiments 
are always subject to error is a matter for the experimenter and philosophers, not theorists. The approach 
reviewed here, like Eduard Prugovedki's 'Stochastic Quantum Mechanics' (D. Reidel, 1985), uses as one of 
its premises the accuracy of detecting equipment. The theory therefore adapts itself to differing experiments; 
so much so I begin to doubt that it is refutable. It is not a question of which e forms part of an objective, 
physical, description — and so which e's do not — but of finding a e to fit the facts. 

§§5.3 Initial Conditions : Initial States 

To specify a problem in the localised quantum theory discussed here requires the same thing as in the 
standard Galilei—invariant theory: the initial state must be found. The difference is that in the localised theory 
the states — initial or otherwise — consist of a wave-function and a localising function: ( GA 60 . Further, 
the localising function, through the definition of a local momentum operator, is also crucial in determining 
the time evolution. Therefore the specification of a particular evolution in the localised quantum theory poses 
greater demands. 

Consider, as a rough but workable guide, the process by which an initial state might be established in 
each theory. It may be supposed the quantum system enters the experiment through a beam-pipe. Now if the 
initial state is to allow the subsequent behaviour of the system to be accurately predicted, it would be prudent 
to measure as precisely as possible the state of the systems emerging from this pipe. The unobservability of 
the wave-function is a burden shared by both localised and canonical quantum mechanics; necessitating an 
indirect form of deduction. 

A simple measurement that gets quite close to the wave-function is to place a photographic plate on the 
end of the beam-pipe — giving the probability density, 10( x)12  . This is liable to be close enough for a good 
estimate of the initial state in the canonical theory. The position measurement, despite the compatibility of 
the empirical error and theoretical approximation, is not sufficient for the localised theory. By the use of a 
uniform magnetic field (for charged particles, at least) and anotherphotographic plate, the probability density, 
Itib (P)12 , can also be measured. With this second piece of information it may now be possible to estimate 
an initial state for the localised theory. The support of e and the centre of localisation will presumably be 
found by measurement of the end of the pipe; the actual form of tp and will be found by reconciling the 
observed momentum spectrum and 10( x) 12  —though now the edges of this distribution will be treated as less 
than trustworthy. 

For the canonical theory, of course, the measurement of these two probability densities represents a test 
of the theory — if not necessarily an exacting one. For the localised theory, there is no guarantee that the 
attempted reconciliation of the measurements — despite the infinite variability of e —will give an initial state; 
and so, to this extent, the theory is also tested. 

Removing these measuring devices, the quantum system, as it now enters the experimental region pope., 
can be said to be `prepared' with the distributions of dynamical variables that have been found. At this initial 
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Estimating the localising function, f . 

instant the localisation of particle and observables can be convincingly said to coincide. For subsequent times 
the momentum observable must be f2A  , though the support of the observable and the active part of a mo-
mentum measuring device will be unrelated. What is true of momentum will also be true of other measurable 
quantities. 

Finally, if there is more than one beam-pipe feeding into the experiment then the superposed state must 
be formed by the method described in §3, above. This adaptation of the estimate of the initial state will not 
be noticed among the other approximations in use. 

§§5.4 Time Evolution 

If the localisation of states and observables is ad hoc, then the, so-called, comoving time evolution goes 
further. In redefining the evolution in time a stronger than usual interpretation is laid on the momentum 
spectrum, viz. that this allows a spray of particle trajectories to be plotted. There is, however, a problem in 
showing the consistency of the axioms defining states and time evolutions. 

Given E 7-1(A) , with local momentum operator fiA  , such that 

IIEUth; AD 011 < 

then 

VE > s')( ]ti , t2 ) such that ( Vt E 0 , 111 U (t2  00) ) 

II PA (t)(1) — t/(t))0 < E . 

The time 11  exists from the definition of the localised evolution: 

an (0 (t) = Lem O.( t)14(ce 

and the strong continuity of U(t) ( Lrn) is assumed to be strongly continuous in t ). t2  exists by the theorem 
on asymptotic localisation. 

Setting aside the sizable task of finding these times, they can be assumed to be ordered ti < 12  . Between 
these instants there is no mathematical reason (that I know) which guarantees the evolved state satisfies the 
axiom defining states: 

Hal; Ao(M&A(0(t)011 =? 

— the Paley—Wiener theorem is again relevant. 
It would seem that even in abandoning complete precision it is not possible to adopt the intuitively 

appealing localised time evolution axiom without losing what accuracy there might remain. Short of finding 
a way to make t1 > 12  (some limitation on the class of localised states, or on e ), the only way to retain locality 
is to modify the time evolution of the localising function to explicitly guarantee that states evolve into states. 
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§§5.5 In Conclusion 

The dogma behind the 'boundary of localisation' is that this is a place when; the wave-function is in-
significant. The localising isometry is employed to tidy this insignificant part into a finite volume that is as 
small as desired. Yet if this is truly an insignificant part of the state, why does it matter where it is? There is 
clearly no reason why the boundary of localisation cannot be as large as one cares to imagine, even extending 
to spatial infinity. Of course, this would require the abandonment of the present Principle of Locality, but, 
given the nature of this boundary, at an unmeasurable level. 

Is the form adopted here of the Principle of J  reality  the right one? Should it be exact or only approx-
imate? In the context of a Galilei-invariant theory there are none of the phenomena that make local theo-
ries so attractive; there is no speed of light limit. Indeed, the form of Hamiltonian mechanics from which 
Scluodinger's wave mechanics is derived is explicitly non-local. It is a trifle inconsistent to insist on a lo-
calised quantum theory that is constructed from an action-at-a-distance classical theory. 

The most obvious way around this is to move to a Poincar6-invariant theory. This may be an obvi-
ous move, but as I have indicated in Chapter 4, there does not appear to be a credible Poincar6-invariant 
theory that but lacks locality. Indeed, of the two invariant volume elements on space-time, one ( (do) = 
(dx1 dx2  dx 3  , dx°  dx2  dx3  , dx°  dxl  dx3  , dx°  dx1  dx2) ) produces invariant integrands of the form jv da„ , 
but, since these are integrated over a time-like hypersurface that transforms with changes of coordinates, the 
integrals are specific to a preferred hypersurface (i.e., coordinate system); and the other ( d1  x ) cannot sensi-
bly be normalised. It is therefore not going to be possible to localise Lorentz boosts along with the rest of the 
Poincarb group in the manner presented here, since there is no `global' unitary representation on space-time 
wave-functions. It is, of course, possible to use a hypersurface that is not invariant with respect to the entirety 
of the Poincar6 group; one such approach will be examined in the next chapter; others have already been 
scrutinised in Chapter 4. 

The localisation manufactured in this chapter is unsatisfactory for the loss of precision required, and then 
for the fact that this sacrifice is not enough to give a unique or appealing theory. 

It is pertinent to mention that them are interpretations of the experimental realisations of the Einstein-
Podolsky-Rosen thought-experiment that claim there is a non-local or action-at-a-distance effect.E93  To per-
sist in constructing theories that are local by assumption, even in a weakened sense, is not, therefore, the 
indisputable way forward. 
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Chapter 7 

The Light-cone Mechanics of G. IL Derrick 

a critical review 

A man should never be ashamed to own he has been in the wrong, which is saying, 
in other words, that he is wiser today than he was yesterday.' 

Jonathan Swift On Various Subjects. 
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§1 A Critique 

I am not going to attempt any precis of Graham Derrick's papersW for two reasons: I do 
not think any summary of mine could add anything to the published account, and the revision of 
Derrick's ideas that occurs below will recapitulate large portions of his work in only a mildly different 
form. This is not to say that I find Derrick's idea to be especially good. 

In 1949 Dirac proposed a number of Hamiltonian formulations for a Poincare—relativistic mech. 
anicsI21; each was based on a different constraint (hence the subject spawned by this paper is called 
Constraint Hamiltonian Dynamics) and thus on a different sub-group of the continuous Poincare 
transformations. One of these, apparently less explored than the others, was based on the light-
cone. Dirac argued that, since the light-cone is not invariant under 4—translations, just as Galilean 
space is not invariant under time translations, so there must be four Hamiltonians in this system 
of dynamics: the momentum 4—vector. This idea has considerable appeal; the alternative is, most 
commonly, to use constant-time hyperplanes, which are not invariant under Lorentz boosts and time 
translations — surely a less symmetrically balanced situation? 

Derrick takes on Dirac's idea of using a backwards—in—time light-cone but then makes two errors: 
an error of interpretation and an error of formulation. The theory that follows is by no means fatally 
affected by these errors, and only a modest re-writing is required to improve matters. 

The error of interpretation concerns the nature of initial-value problems, and how the process 
of their solution is to be viewed in the realms of physics. It is, naturally, unavoidable that the 
mathematical expression of a theory be linked to the physical reality it is to describe. However, 
not all of the mathematics and mathematical processes necessarily have a physical counterpart. 
It is especially important to note this when it appears that a simple, physical interpretation of a 
mathematical process for one theory does not have a correspondence in a second, albeit similar, 
theory. Thus in Galilei-relativistic mechanics, and certainly in SchrOdinger's wave mechanics, the 
process of solving the initial-value problem is called `the evolution of the system'; the initial value 
is the state of the system at some instant and the solution of the problem for subsequent instants 
is, likewise, called the instantaneous state of the system. 

Poincare—relativistic mechanics is obviously similar to Galilei—relativistic mechanics; it does not 
follow from this, however, that the Galilean interpretation of the initial-value problem is correct 
for a Poincarii—relativistic theory. It may be, but it is not obvious a priori. Derrick's discussion of 
observers, the quality of their information, and various hypersurfaces in space-time is, therefore, at 
least premature.. 

In my opinion, much of Derrick's interpretational preamble is debatable. Just as constant-time 
hyperplanes in Galilean theories provide that all influences (forces and the like) act instantaneously 
everywhere, and so propagate with infinite velocity; so. by taking backwards—in—time light-cones, 
Derrick now propounds a theory in which all influences surely propagate at the speed of light. This 
must limit the applicability of the theory of mechanics being developed. Also, it is all very well 
to say, vaguely, that the only things causally influencing the value on the light-cone are the events 
within it; it is a bit snore challenging to show that such causes occur within the bounds of the Special 
Principle of Relativity. 

By insisting on an observer-centred analysis, Derrick does not make the case for his theory any 
stronger. He suggests the introduction of a limiting hypothesis: nothing_' beyond some particular 
light-cone (the initial one. I suppose( is important. This, it is admitted, is not particularly useful 
nor comprehensive. The suggestion that there may be insufficient initial data to determine the 
motion of the system does not inspire confidence. These are not, in fact, real problems. In the first 
place, there are no surprises in mechanics; it is in this sense that mechanics is deterministic: given 
an initial value, the value of all fields throughout space-time, and the evolution that this implies 
(i.e., a complete specification of the problem), then there is a unique solution. This solution is the 
complete motion of the system through space-time, from the initial value to what might be termed 
'evolutionary infinity' — in Galilean theories this is temporal infinity. The solution of a problem 
in mechanics is primarily a description of the whole system, and only as such, as a view of all 
spare-time, and only as such as a 'prediction'. The idea that an observe• predicts the values on his 
backward light-cone as he evolves with it is no different than Laplace's demon in Galilean mechanics. 
and is just as unsupportablelal. 

The second error in Derrick's thesis is an error of formulation. In contrast to Dirac's musings, 
Derrick proposes only one Hamiltonian, though it is parameterised by the 4—velocity of the observer. 
and hence the proper time, I- , of the observer. At first blush there seems nothing very wrong with 
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this. Upon reflection, this is not the case because: 
(i) the frame of reference in which the mechanical problem is to be analyseA may be taken to 

be the rest frame of the observer - and, arguably, this must be en -; 
(ii) if r is the proper time of the observer then it is generally not tha proper time for the 

system being observed, the only interesting 4-velocity that arises from r is, therefore, the 
4-velocity of the observer. 

The difficulty here is that, unlike the universal time of Galilean mechanic, a proper time is 
neither unique nor very widely relevant: it is highly local in nature and inevitably tied to a specific 
world-line. Indeed, the introduction of 'the observer's 4-velocity' begs the question: in whose 
coordinates is the formalism written? 

(a) The observer's, whence the evolution is in terms of 5°  and the 4-velocity is, simply, (1,0), 
(b) The observed system, in which case it can only be point-like - to avoid the pitfalls cata-

logued in chapter 4, §2, and so give an unambiguous meaning to r - and will have a rather 
trivial world-line• the definition of the observer's 4-velocity is no longer correct; and the 
problem is now to determine the motion of the observer, a strange role reversal. 

(c) Some other observer's rest frame, in which case why not abandon the first observer in 
favour of this one? 

Once it is accepted that the frame of reference in which the problem is pore' is the rest frame 
of the observer there are two consequences. The effect of a Lorentz boost is to change not only the 
coordinate system, but also the observer. The second consequence arises from this: the parameter T 

is not an invariant but is always to be taken as the time coordinate of the current frame of reference. 
The use of the observer as an aid to interpreting this theory is now at an end: the one useful 
function that may be served by an observer is to be at rest with respect to a coordinate system, as 
is conventionally the case in classical mechanics. To persist in phrasing an interpretation in terms 
of observations is to insist on clumsy contrivances - such as having 'auxiliary observers' throughout 
space-time sending coded signals to the 'main observer' - that make the whole idea seem foolish. 

Having dispensed with the notion that a proper time can be used as the (single) evolution 
parameter, I am left with the time coordinate as such a parameter. Since the time coordinate is 
only one component of a 4-vector, to establish a Poincare-invariant theory it therefore follows that 
there are four Harniltonians at work - just as Dirac surmised. 

§2 A Revision 

Consider the whole approach afresh. Take a reference frame X with coordinates (a), and select 
an arbitrary event, that will be denoted by its coordinates in X, viz. (z). The backward light-cone 
at (r) can be parameterised by the spatial coordinates, (y), of the point on this hypersurface, the 
time (or time-like) coordinate, y0 , is then -1y1. 

The events of Minkowski space-time can now be expressed in terms of the usual coordinates of 
X, or by way of the 3-vector y and any one of the components of the 4-vector (z), which will be 
allowed to vary, or evolve parallel to the corresponding a:Y-axis. These two coordinate systems are 
related by the four equations 

a" = + 	 (2.1) 

or. 

= 

= y 

The, metric for the coordinate system (a) is the usual one: to obtain the metric for what will 
now he called the light-cone coordinate system, the equations 1 or 2 are regarded as a coordinate 
transformation. Denote the metric of (a) by 

= diag)+1, -1, -1, -1] , 

and the metric of the new coordinates by 	Clearly, there are four light-cone coordinate systems 
depending on which of the four components of (r) is chosen as the evolution parameter. There are, 

(2.2) 
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as might be expected, only two cases to consider: a time-like evolution parameter or a space-like one. 
To distinguish the coordinates of the apex of the light-cone from the light-cone coordinate system, 
dess'te the latter (the transformed coordinate system) by sets of four coordinates (Y) — note that 
is not a 4--vector, even if it is written in the form of one as a convenience. 

§§2.1 Case 0: "g°  = z° 

Equation 2 now reads 

z°=7°—ICI  

with inverse 

. ° =x°  + — z I 

The Jacobian of this transformation is 1. 
Now 
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This metric has a singularity at 77 ,------- 0 that will need. to be considered further. 
The action integral is taken to be 

I__ (IV die 1,(0) da° = —me 
 f 	cli° a' 

IRV lYlz 

(2.0) 

The conjugate momenta are then 

— 	 
aL(0

() 

 
7,1

a "i',-4) 

1712,32 	 :tik  de.  

L(0) 	 1,71 ((To 
(2.8) 
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The Hamiltonian is, by the usual Legendre transformation, 

3 Ica( 

Ho) = 	co  —L(0) 
1=1 

m2c3  (1 — EL, A-531-) 
—L(0) 

It is then a straightforward matter to show what is a special case in Derrick's analysis, though here 
it will be accorded greater merit: 

!kir • x tn2  ea  
H(0) 2 	 

H2.2 Case is 	= a' 

Take 'el = z l . Equation 2 now reads 

°° = 1.13 	NI 
=x+71  

= 

with inverse 

(j.  == 2,3) 

Fe = zi 
/(z°  — z°)2  — (as — a2)2 — (as _ a3)2 

yl = ±,/(z0 	zap (z2 z2)2 (x3 z3)2 

(5 = 2,3) 

The Jacobian of this transformation is 

which has a singularity at the origin and vanishes when El  = 0. 
The process of generating momenta and a Hamiltonian can then be carried out as normal, 

/ —1 	—1 	0 	0 

7172 	7172 
IT12 	1;1' 

( 7273, __ — 

0 
7172 

1342  

0-3 

- 
1T12 	G7C) 9  

Whence the Lag-rangian, L(,), may be obtained: 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

L(,)  = 	( ± 	) 2  — 72(1  )2  — ( d7  
(17°  / 	\claT° / 	d7(, )  / 

dR ) 2  

+
ICI 

c17° ) 
(2.13) 

The Hamiltonian is then 

(2.14) H(i) = L(1) 

ni2 c2 + 411  
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§3 A Generalisation 

The choice of light-cones as the hypersurfaces on which to base a new analysis is not, as the 
introductory critique mentions, uniquely obvious. Any hypersurface invariant under a (continuous) 
sub-group of the Poincare group would do about as well. The reasons Derrick gives for hie choice 
are not completely satisfactory. Very much the same level of satisfaction (and no singularities) is to 
be had by using backwards—in—time hyperboloids. If the coordinate transformation (equation 2.2) 
is written in the general form (z° being the evolution parameter again): 

= 

x=z+3f 
	 (3.1) 

where 
zo = = (x, b) 

then I can actually deal with any space-like hypersurface for most of the analysis of the classical 
problem. The additional parameter, b, is defined to be an invariant that in some way characterises the 
surface — clearly not something of the most general form, but for the light-cone and the hyperboloids 
it has an immediate role in that it allows all of them to be considered together: for these surfaces 

= 	+ b2 

and the limit b —s 0 recovers the light-cone. 
Now 

mm =.. i 	mm° thf , 
ayo. 	 --ay-F = ---7,9,. = '' 
82i

=o 	az! — Sr —--, 
1.4:7° 	

. 
0:173 	3 

This gives a well-behaved Jacobian 

1 ei es es 
0 1 0 0 
0 0 1 0 
0 0 0 1 

The metric tensor transforms to 

	

1 	el 	Es 	es 

	

Es 	(6)0 —1 	el e, 	flea  

	

Es 	ei6 	(6)' — 1 	es es 

	

\ 6 	66 	es es 	(ea)" — 1 

= =1 

5(0) 

(3.2) 

The Lagrangian is then (using the notation established above, together with .17' = 

dsP' ciT7' 
L(o) = —n" \/'9(o)N,, c7F; 

—mc + 2e, e27,-,i 	2e2e.-s-ovs 	2ci esTei,-73 -4- 5— ((e') — 1) (71' )2 

—mcV1 + 2e, • T.14- (e 	2 — II • 

--mcV'(1~-E•u)s -11.11  

The conjugate momenta and the Hamiltonian follow readily enough: 

n(o) 
sr = 

au / 
c2 

r 	(el (1 l e • u) — •Te') 

(3.4) 

(3.5) 
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and 

H(o) = X • —L(o) 

m2 c2  
=+ E • TO L(o)  

Quantities proportional to (m2c2 /L(0) )2  are 

H(o) 	: 	(1+ e • ff)2 

(1 + e 	— ri 

So 

e.e(i+e-V-2e•ro+e-u)+11-ii 

— Y'0(1+e•ri)2 +Eul  (1+ e • 171) 

_e.e(1+e•ri)2+e•11(1+e,q) 

ir • = —2e • s•H(0)  — E • eno  + o ) -m2c 2  

7f • 7 + 	= — e • 414)  — 2e • 7,1-/-(,)  

= (1  e • e) 	2(f17)  (1 	—e  e) 2  + (1 	e) 2) 

= (1— e • e)  (H(°) 	e) 2  ( 1  !.e'r . 

Whence, taking the positive square-root: 

11(o)  =  	7T -I- M 2  Co  " 	 
1  — 	•e 	i•—e•e 

For the hy p erb 	cone case 

vri• 

(3.6) 

(3.7) 

So that 

Of • 	b  2   \ 	 (X • a.)2 	VT( • 5E+ b2 
	x

_ 

H (0)  = 	
+ c2 	 

b2 	/2   

— the quantisation of this would require a satisfactory solution to the problem of quantising non-
commuting observables, which is not something I have seen yet. The strategy adopted by Derrick 
must correspond to the choice of one of the numerous quantisation rules; there is no indication that 
this is any better or worse than rival rules. 
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Chapter 7 : A Worked Example 

§4 A Worked Example 

There is one instance in which a quantisatiou process appears to exist. This is the case of 4 
light-cone in (1 + 1)—dimensions. Having said that, hardly any aspect of the resultant quantum 
theory is without problems. 

From equations 2.7 and 2.8 

me (li (1  — ird.*)  
— 

MC 7 

V 
— 213,rg, 

H  7r2  m2 c2  
(°) 	2 - r 

tT 

Consider now the two parts of the light-cone: 

And 

By a straightforward calculation (to be discussed in detail in §5 below), 

77763- 
E

(
1 

—c°' 

so that 11-1 E (0, oo). 
To quantise this there is no doubt whirls Hilbert space to choose: 

( E =L2  R--.---dir' ) 
0-771 

It now becomes clear why Derrick chose to introduce anti-particles at this stage: he wanted to 

'9 	
1 	 (4.1) 

7  A i 

as a momentum observable, but this has spectrum (--co, cc), whereas, if 7 > 0. it is apparent that 
the spectrum should be (0, co). Now, in a curious inversion of the situation Stiickelberg found 
himself in, Derrick postulates that when a particle has momentum, a, a corresponding anti-particle 
will have momentum, —Sr. This may be obtained by taking the negation of the Lagrangian and 
leads to the negation of the Hamiltonian, which is now always negative. This is by no means a 
straightforward application of what is commonly called the Fe,ynman—Stiickelberg interpretation, 
but is not outrageously different. A more rigorous application of Feynman and Stiickelberg's idea 
would involve the use of forwards—in—time light-cones (or hyperboloids) for anti-particles, since the 
basis for the interpretation is time symmetry. 

Actually, formula 1 will not do. If the right-hand side is the quantisation of anything then it 
must be 

—sr . 
H 

If this is not so then the momentum space representation will freely mix particle and anti-particle 
components: any i,:b(r), for positive 7, will contribute to the state of the particle if 7 > 0, and to 
that of the anti-particle for 7 < 0 I Time evolution cannot be formulated in such chaos. I run forced 

use 
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to conclude that Derrick has not thought through some of the statements he makes in his second 
paper (his 

Assume now that 

( 4 .2 ) 

This is quite similar to the quantity Derrick denotes by D in terms of which he iilvokes the Feynman—
Stfickelberg interpretation. Here, however, instead of using two copies of a momentum space, the 
spectrum of i  is split: p > 0 for particles, and p < 0 for anti-particles. Also 

(75)2 + m2,2 

223 

— a formula valid for parti-le and anti-particle alike. 
Having apparently managed to quantise one example, I can snatch defeat from the jaws of 

victory by making the two observations: 
(i) no state involving only a particle can be confined to a bounded subset of the light-cone; 

(ii) no state that is initially confined to a bounded subset of the light-coo. 'mill remain so for 
more than that instant (a single value of z°). 

Both of these statements are proven below using the Paley—Wiener theorem. 
Configuration space and momentum space are connected by a form of Fourier transform: 

00 

= 
	

I  	I d7 el  P701  ,fi (7, 	 (4.4) 

CO 

(7,1)= 
vIt2r1a J dpe

iP71hUt tkp) 
	

(4.5) 

(i) For a state that involves no anti-particle content, 

supp ;(p) c (0,co) 

But this cannot be the restriction (to a real argument) of an analytic function because of the 
identity theorem141, and so, by the contra-positive of the Paley—Wiener theorem, (7) cannot 
have compact support. 
If 6(7f, 0) is of compact support (as a function of Y.I) then ,-i, (p) will be an exponential entire 
function (Paley—Wiener theorem). However, time evolution is generated by 

(it p2  -Fni2 02 ) 
f eXP 

12, 	2p 	) 

and the exponent has a simple pole at p = 0, therefore 

(p) e xp 	
p2 +  m2 82  ) 

h 	2p 

is not analytic. Once again, the contra-positive of the Paley—Wiener theorem says that ('E, t) 
will not be of compact support if t 0. 
This whole exercise is probably best treated as an illustration of how easy it is to produce a 

mathematical formalism that is like a quantum theory while being nothing of the sort. This is not a 
conclusion I draw solely from the existence of a No Go theorem in the style of Hegerfeldt, unhelpful 
as this may be. The symmetry properties of equation 5 are, also, extremely dubious. Further, there 
is no mention of the Hamiltonian, H, , and the momentum variable by way of which it is defined. 

( 4 .3 ) 
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§5 A Consistency Check 

H5.1 Velocities, real and imagined 

It is tempting to call the three-component object 

u_ /d 
u= 

the velocity of the system under observation. There is a connection with this physical concept but 
it is by no means clear•cut. 

If a trajectory is chosen, 
x = x(e) 

= FE(x) + z 

R(x°  + Ix z1) + z 

Then, differentiating this formula, 

dx 	dx dx° x - z d(x z) 	dz 

da 	dFc°  da 	lx - zl 	da ,) + da 

Whence, selecting a = te5 , and noting that z is independent of :r0  - the observer is not moving, if 
you like: 

dx 	dx 	x - z dx 
tie 	(LT° 1+  Ix - zl cixo 

and therefore 
dx 
d7.) 	 (5.1) 

d:7° 	x 	dx 
-- dx° 

Now diclidxu is, for want of a better expression, the actual velocity of the system. As such it obeys 
the Special Principle: 

dx1  
dx° I < 

Therefore, if the system is headed towards the observer at something close to the speed of light, 
then daTi /d-2 	fob. A bizarre sort of velocity. 

Note that the contravariant vector for velocity, an object that must be at least closer to the 
physical reality modelled, is written 

   

dx° (5.2) 

    

So that 

 

I 
dx dx 
dx° dx° 

de (\ 	 -1 
_dx 	dx. 	x - z 
dx° 	dx() 	Ix - z I 

ul 

But (y) = -lx - z 1, x - z) , so 

your  

- nom, 

a formula with somewhat involved symmetry characteristics. 

-Ix 	zI
•u u  lx 	(x 	• " 

(5.3) 
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Chapter 7 : A Consistency Check 

The use of If does make the inclusion of an observer a necessity in interpreting the theory so 
formulated, though what 11 represents is a far from trivial question. From the n?' are of the light. 
cone coordinates, 11 may reasonably be called the velocity that the obserier (who was singled out 
from his equivalent brethren at the beginning of the formulation) 'sees' the system to have. u is 
more an apparent velocity than a real one. Now an 'apparent quantity' may make some sense if it is 
something directly observed in an experiment. As a trial requirement, it may be positeJ that either 
space-time is uniformly illuminated, or every particle is continually giving off lie t signals in order 
that any observer can make his observations. This will allow the determination of that component 
of if perpendicular to the light signals connecting particle and observer. There must also be some 
way for the last component to be found — for instance, if there is a way of determining how far away 
the particle is, i.e., how far along his line of sight the light signals have travelled. It is for this reason 
that Derrick devised his array of 'auxiliary observers' spread throughout space, which is as sensible 
an approach as any. 

This approach to mec:.anics clearly involves considerably more mental baggage to make any 
sense. What makes 11 an unphysical quantity is the absurdity that must be introduced into the 
interpretational scheme, and hence any experimental determination, to make it measurable. No. 
one would construct even a part of Derrick's set of auxiliary observers, especial!, when the actual 
velocity is easier to determine. A more direct problem is that this 'velocity' seem., to be only four 
components of a second order tensor. This is an almost inevitable consequence of taking the ratio 
of two infinitesimals from unrelated 4—vectors. Of course, the interpretational imbroglio is only 
exacerbated in the context of a quantum theory. 

§0.2 The Lagrangian for i = z° 

The previous analysis is, it is to be imagined, not very different from any other formulation of 
the classical problem: the answer obtained should be essentially the same. To see this, consider my 
simplification of Derrick's Lagrangian again: 

dTc(IR dR 
L(0)  = 	 Izl de 	— de • clY°  

using equation 1 

(5.4) 

(.5.5) 

This is a well-defined quantity that has a clear, if not particularly simple, relation to the usual 
Lagrangian. 

F335.3 Singularities and the Hamiltonian 

It was noted in passing that there was a singular point in the metric for the light-cone coordi-
nates. The formula for the Hamiltonian, equation 2.10 above, 

21. 	+1Th2C2  11(0) 2 	51• 7r 
also looks as though it may have such a problem. There are potentially three singularities that may 
render this expression meaningless: 
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= 0 

le I 

IT-46=o 

This can be sorted out by going back a step from equation 2.10 to equation 2.9 

m2,2 (1 	g.) 

Ho) = 	  
—L(o) 

On substituting using equations 2.4 and 1, 

Iycl 	
+ IXI 

dx 
dx° 

1 
= 'MC  

	

	 (5.5) 
dx dx 

V 1  - 	• dx° dx° 

In this form, it is quite clear that there are no difficult points at all. //(0) bears an uncanny 
resemblance to the reciprocal of the usual Lagrangian. In fact, rather unexcitingly, 

H(o) = eP°  = c730 	 (5.7) 

Po being the zero component of the canonical energy—momentum 4—vector. 

H5.4 The case 7eD  = al  

The formula for a trajectory is now 

X = X rt: 

O1 
a = Ti(70) 
	

(3. = 2,3) 
—17:4 (Y°) +7° 
	

(5.8) 

So 

dx1 	dx2  d (x l  TT V(x° 2°12  (3,2 22)2  — 	2312  
da 	 da 

/Lail =  dvl   dti° 	c/7°  
da  dxda da 

	

, dx2 	a 	3 
die3 

clai° 	 za ) 	(z2 7" -)  (77 	z   ("77 
dx° 	dx° 	\Axe _ ,o)2 _ (x2 _ ,2)2 _ (,3 _p  

, 	dx2 3  clx8  
da7° 	dx' 	-1771- dx°  - -1-dx° 
dx° 

— 
/ix° 	 .71  

dx' 
(17.1  

(171)  = dx' 	 , dx2 	3 dxa t\ 

CV ± I  + :TaTo 	Ta0) 

daT1 	1'71 + 72  5 + '7  5 ) /71  

di' 	 d:1;2 	dx 3 ) 
ox. + 	+ 	x T70  /2; 

5c" dx 

( 	

dx ) 1+ __ • — YE 	dx° 	 Ix! dx°  .----- tn2ca  1— 
dx dx 
dx° • dx° 

= 2,3) 

Now 

So that 
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This allows me to re-write the Lagrangian in terms of more familiar entities '+37 substituting the 
last equations into 2.13: 

2d 	 (d72)2 (dY3 \ 2 	) 2 (—L0)) 	(1+ 	— c—IF0 	 ‘,1x1 171C 

	

(
dZ2 	dZ 3 ) 2 

dZi 
+ 

1171 +72 — dx° +7 dx° 	
2 

r (1)  
dx° 	 F1 	me )  

dZ2 	dX3 	
2  

	

dx 	dx 	21 	rfcl 	+x dx o 	x dz2 x dx° 

	

dx° 	dx° ) 1511 dx 9 	dx° 

dx dx 

	

= 1 	dx° • dx° 

L(I) 
dZ i 	 dZ2 d 2 _ 
dx° (151+ ~ dx° ) /xl  

The Hamiltonian, Ho.) of equation 2.14, can therefore be re-written: 

-m c - • — 
dx° dx° 
dx dx 

dxl 
—771C — 

dx°  	 - cpi = ep 
I dx dx 

V dx° dx° 

(5.9) 

It should now he blindingly obvious that Dirac was literally correct in his verbal argument: the 
four Hamiltonians are the four components of the energy-momentum 4-vector. 

iG Quantum Mechanics on a Backwards-in-Time Light-cone 

Certain features are now clear of what must be involved in a quantum mechanics in terms of 
backward light-cones. 

(i) The infinitesimal volume element on the backwards-in-time light-cone is 

d° 

1'71 	n 

whence the Hilbert space of states will be L°(9 2 , d37C/I511); 
(ii) the four Hamiltonians that generate evolution from one backward light-cone to another are 

the four components of the momentum 4-vector, (p); 
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(iii) any 'configuration space' representation is liable to be based on a transformation from 
a unitary irreducible representation of the Poincare group, or at least the orthochronous 
subgroup. 

The most straightforward approach is to posit that configuration space wave functions are 
defined by 

1 	 dap 	 iza-Vp • p +7n2 e2 ix • p 
= (2703/2  f8z. 	. p 	exP 	

+ 

 h 	
(p) 

 

where, similarly to §2 above, 

s° = — IXI 
x = Z 

The `instantaneous' state of the system is defined by the function O(R) for a chosen value of the 
4—vector (z). To call this instantaneous is, it will be noticed, to considerably broaden the meaning  
of this word; it now must imply something like, `a hypersurface in space•time such that if a signal 
were launched or some action initiated at any point then this would be detectable at (z).' I suspect 
that the abuse of the word instantaneous is preferable to such phrases. 

There is quite a lot, here, of what is usually associated with quantum mechanics. There are 
also almost as many pitfalls as are commonly found in Poincare—invariant theories of this kind. 

To cope with the singularity in the measure on backward light-cones it is necessary to insist, 
that configuration space wave functions are of the type 

'0(2) = \/F-'40(w) 	 (6.3) 

where ch E L2  (R3, d2 R). This can be incorporated into equation 1 by the inclusion of an extra factor 
l on the right-hand side. Since, from equation 2, if (z) is a coordinate 4—vector it follows that 

(:Ti) = (--17-7),:,7) has the same transformation properties as a difference of coordinates, and so the 
factor VT3if = V-71:a is not Poincare—invariant. The solution is that equation 3 is a separate axiom 
if, in fact, this constraint is compatible with the Poincare invariance (up to a factor) of 

The inverse to formula 1 does not take place on any single backwards—in—time light-cone; it is 

exp (—ixa \Ai • p + ?it e2 	(P) 

1  Pirtt)3/2  Vp • p + e2  

(al°  fixed). 
Thus, not only does the configuration space representation look formally similar to the con-

ventional wave function on a constant—a°  hyperplane, the simplest method of producing a state 
starts from an initial value on a constant—xi)  hyperplane. In practical terms this means that the 
normalisation of states on backward light-cones is not necessarily a consequence of normalisation in 
the momentum representation. For, consider the equation: 

f
1.51 	I  

f daR 
—F 

f (P P f Op' 
! 	-=j 

	

v Pa 	v pto 	• 

There seems to be no way to formulate a conservation of probability law for this theory; or even a 
continuity equation. 

The four Hamiltonians can readily be written as differential operators on configuration space: 

= 
aa:v 

However, expressing these in terms of the light-cone coordinates is far from easy. This is a direct 
result of the non-equivalence of the configuration space and momentum space inner-products. 

— + 	= — 
 

a Ye 	1.-k-r,  
is a self-adjoint operator; it is not covariant however (cf. the Newton—Wigncr position operator 
reviewed in Chapter 4). 

(6.1) 

(6.2) 

(OA) 
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Computing from formula 1 

—ih
8
xk 

Ye 
= fic/ Ho 1 Hk 

Thus, while there is now a clearly defined position observable (multiplication by TO, there seems to 
be no momentum observable. 

A No Go theorem in the style of Hegerfeldt is the inevitable concomitant cf the use of the group 
representation that gives formula 1. In the presence of such a result there hardly seems much point 
in trying to hammer out the foregoing catalogue of defects. 

§7 Conclusion 

I have produced a revised version of Derrick's flight-cone mechanics' withou~ noticeably improv• 
ing on Derrick's wobbly interpretation. By dint of ignoring this and proceeding ill a manner more 
akin to Dirac's actual remarks, a credible version of classical mechanics has been produced. 

Attempting to understand the nature of the new dynamical variables, by expressing them in 
terms of the more usual quantities, is most revealing. Not only is there nothing very new in what 
is derived — the four Hamiltonians turn out to he the momentum 4—vector — but a variant on the 
standard quantisation procedure is applicable. The result of this, foreshadowed by the attempted 
quantisation of the light-cone variables in §4, is that all the problems inherent in the usual treatments 
of the Klein—Gordon equation remain unaltered (cf. the discussion in chapter 4, §3 and §4). 

There are, if anything, more problems with this version of quantum mechanics: there is no 
problem with the existence of the position observable but now the momentum observable is only 
partially defined; there is no law of conservation of probability. On reflection, I am left with a wistful 
affection for the simple, familiar, pitfalls of the conventional approach. 
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Chapter 8 

Feynman's Propagator Approach 

e critique and revision 

',So, naturalists observe, a flea 
i-lath smaller fleas that on him prey; 

And these have smaller fleas to bite 'em. 
And so proceed ad infinitum. 

Thus every poet, in his kind, 
Is bit by him that comes behind.' 

Jonathan Swift On Poetry. 
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§1 Introduction 

In considering the problem of localisation in quantum mechanics it is obviously necessary to 
review all the notable efforts made in the past. With the exception of Feynman's work, it is my her 
that the previous chapters do justice to this task. Feynman's quantum electrodynamics (QED)11 1 in 
far and away the most important of these 'notable efforts', despite the fact that this problem is never 
directly addressed. There are a couple of reasons for this omission: from the publication dates and 
peripheral recordsi9I it is apparent that Feynman's main QED papers (1948-51) largely predate 
the localisation problem - if this is set, pace historians, in 1949 with the paper by Newton and 
Wigner. Also, since his main objective was always to calculate experimentally verifiable numbers, it 
seems unlikely that this more metaphysical problem would have caught his eye. His is a theory that 
reaches well beyond the confines of the localisation problem - something rarely the case with the 
other authors reviewed. It is also a theory• with a tremendous body of experimental support behind 
it. 

Quantum electrodynamics must be radically simplified before such burning issues as `causality' 
and local:Ay can be examined, though this is accomplished with a single, additional constraint on the 
4-potential. This simplification discards (retrievably) virtually all the interesting and usefnl content 
of the theory. It does, however, remove the trig zy issue of renormalisation. 

In subsequent sections of this chapter the reduced form of QED, now a s`ngle•part.icle quart• 
turn mechanics, will be summarised, criticised and an improvement offered. The criticism stems 
from the mathematical observations of authors such as Lars Garding, 31 Daniel Zwanziger.i4I Lars 
HOrmander,i51, :Llerhard IY,egerfeltit.I'31 and others: there are difficulties inherent in formulating 
Poincare•invariant theories that are 'causal' (a,,  defined hi Chapter 5). The 7.instein-Poslolsky-
Rosen thought•experimett' and the Double SE* experiment are also .:scossed. es illustrations of the 
new theory and its interpretation. 

';ED theory is based on constructs railed .propagators' or •(, reen's fund hens'. The primary 
advantage of the propagator approach is that amplitudes are computed between pairs of soace• 
time events. By beginning with these more elementary connexions. tether than some hyperstirface. 
there is a chance that the objections of previses chapters may be esoiled. It is true that. in the 
usual elaboration of a theory based 0:1 propagsee,rs, constant-time nyperplanes are introduced as the 
location of initial values. 'rids is not. fortunately the only way of eolving a •::at-e equation, which 
can also be tackled as a boondary-value problem. 

The variation on Feynman's successful formalism offered is the analogue to a formuintion of the 
quantum mechanics of the photon. A number cr features recommend this free-electron propagator. 
not least its dose similarity to Feyntnan's. 



Chapter 8 : A Derivation And Review Of Feynrnan's Approach 

Zs 

a° =  eT 	coordinates (xT) 

=ct coordinates (at) 

x 

§2 A Derivation And Review Of Feynman's Approach 

To obtain a one-particle quantum mechanics from Feynman's multiple-particle QED requires 
only a condition on the 4-potential: 

= 0 	 (2.1) 

the reason for this is that, as Feynman put it, all the creation and annihilation of the multitude 
of particles occurs by scattering at the various points of the applied electro-magnetic field. Thus a 
universe containing a single electron and obeying the foregoing constraint will only ever contain that 
electron. What remains of QED is, therefore, the free evolution of a single electron. This evolution 
is realised through the good services of a propagator. 

Consider the region of space-time between two constant-time hyperplanes ( at < tr° < cT ). 
The kernel of an integral operator. denoted by if (z.y) , is called a propagator if, given that 

the amplitude of the particle is d(y) at the event. (y) , then this contributes 

K(x•Y)0(1J) 

to the amplitude of the particle at the space•time event. (a) . 
Feynman proposed that if the system has the electron state Oat ) (a positive energy spinor) on 

the 	= ct hyperplane. and the positron state d(zr) (a negative energy spinor) on the a° = cT 
hyperplane, then at any event, (a) , such that a°  E (ct.cr) , the system will have the amplitude 
d(w) given by 

= 	K(x.x t )Mx1 )d3.7., - r K •TT j -I1,0  xT ,-3 xT • 	 ( 2.2) 

Thus the amplitude at (a) is the difference between the compounded amplitude that there was an 
electron in state d(rt ) in the past and that there will be a positron in state 'gar) in the future. To 
accomplish this. conditions are placed on the propagator so that if (a) is an event in the future of (y) 
then Ti(x,y) will contribute an amplitude having only positive energy components, and (swapping 
a and y ) 	produces only negative energy components. 

To derive Cevainan's free-electron arcpagator, start franc equation 2 and sot c,(sT) = 

	

0(x°  - ef)' -'(z) = S Rix,x1 	 (2.3) 

The ifoaviside unit-step function, 0 is necessary because 6 represents an electron - to obtain d(a) 
for a° < at a new. prior, initial-value must be given. 

Now, if ti is the state of an electron it must satisfy Dirac's equation: 

(hi, 	mc) = Q . 	 (2.4) 
d X 
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Applying the differential operator above to both sides of equation 3 then gives 

0  ao(za  
q)(x)iky 	a&) 	— f(ii7'` 517;  — ms) K (z xt ) (x t ) ext  . (2.5) 

However, 8 is a generalised function,171 and, as such, is only properly defined as one half of an 
integrand. Given some suitable function, f , then 

too +ee  

	

0(x) f (x) dx = I f (x) dx = F(m) - F(0) 	 (2.0) 

may be said to be well-defined. Sufficient conditions for what follows are 

f f (y) dy = F (x) < 

and 
F E LI  (s) , 

Integrating the left-hand side of equation 6 by parts gives, since F(co) = 0, 

es 

—F(0) = /9(a.)F(,),)1 	— f 	
F(x) ,x=-x, 	I ax 	• dx 

F(0) = ji O.Z(x)dx 
- 

so that, as a generalised function. 

(2.7) 

Thus equation 5 may be written 

(h-" 	-me) K (x. )0(x.- ) c/3 	= ilk7J lx°  - 1.F, (a. I 

which can be written as an equation of integrals: 

.5 - xi) (au ) d3mt 

where Mx) =,)(?)61,c1 1(';(ce 2 )6(x3 ) . 
The conclusion that cm be drawn from fhb is, then, in terms o;'!.=,eneralised functions at least, 

—̀9 	- tnc)/ilx.xt ) = ty°  64  - 	. 
0.r/' 

( 2 .8 ) 

This equation, together with a boundary condition, determines the free-electron propagator. 
The boundary condition imposed by Feynmatt is that only positive energy components should prop. 
agate forwards in time: this has the immediate consequence that only negative energy components 
propagate backwards in time. To solve this emtation it is necessary to pass to the co-nil:gate. 1-
momentum space, where 

ih7° 	• 	/), 

(7°P 	 - 	 
(2a )2  

Multiplying through by 
me 

p, 	2  C7 
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gives, since the 70  anti•commute, 

k(p7 ,$ ) = 	MC al.°   
epv — m2c2  (2Z/02 e  

To perform the inverse Fourier transform, it is easiest to find first the inverse Lansfoon between Po 
x°: 

co 
.11-( p , zo •   xi ) 	e-'r•xo 	7ppa ± me 	wpo(c,i _o)/h  d 	ih.70 

- (p • p + tn2c2 ) 	 P°  (27/05/2  • (2.10) 

There are two simple poles in this integration— at po  = ±Vp • p -1-m2 c2  —and it is through 
the choice of the complex contour used to perform the integral that Feynman's boundary condition 
is met. Two contours are actually used, depending on the sign of ct — 0°. (For simplicity, let 
E = Vp • p + m2 c2  in what follows.) 

(2.9) 

c — 	> 0 

Re p0  

Rep, 

ct — z°  <0 

The semicircles around po = -±E are taken to be of arbitrarily small radius. r ; and once the 
residue theorem lias iieen applied the limit r — 0 can he assumed. 

-8.5- 
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Re-writing the integral as 

co 
1. 	

7"p" + 
	eq,o(Ct 	( 1 	 1 	

do  o , 

	

2E 	 Po - E Po- 
(2.11) 

it is then a simple matter to deduce, via Cauchy's residue theorem, that 

if et - .r°  > 0 the integral is 27i -E7°  - 
-2E P 

+ me 
 exp (-iE(et 

- s°) 

and 

(iE(et -x°)) 	
(2.12) 

if et - .r°  < 0 the integral is 27riE7°  -  7.P +me  exp 
2E 	 h 

These contour integrals give the required integral along the real axis by taking the limit R 	co , 
since the residue theorem gives the same result for all values of R but the integral around the 
semicircle of radius R gives an ever-decreasing contribution: 

Set po = Re' s  . and change the variable of integration on the semicircle too : 

dpo  = 	dO 

whence the integral around the semicircle becomes 

0, r 	(ct  
exp 	R ' 	 cos - sin 0)) 7°P e'e   	me  iRci  40 

(p • p+ 	e°  
8, 

This integrand behaves, in modulus. as 

cxli 
1 R(et  - z°)sinON 	

(2.13) 

Now, since R > 3 . this in:cgral will vanish in t'ie limit Z — x if 

-(et - 	̀, sin 0 <.) . 	 (2.14) 

Thus. if et - 	> 0 take 0 tF. [0.:t] if et - 	< 3 take U 	. 'S:atHerinT :he result in formula 
12 into equation 10. and taking the inverse Fourier transforms with respect to ts, gives 

(1"" me) 1---̀ " f 	  
•• 	11 

2,1p • p in 2e1  

[O(x°  - et) exp 	nt,e, (et - x0 )) 

0(et -,e)exp Q1 )] 
	

(2.15) 
4 

This generalised function behaves exactly as advertised. To progress further in specifying its action 
,votild now require the introduction of a speciiic example. The pre”ptation of Feynman's theory is. 
therefore, accomplished, for my purposes. 

-3.6- 
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§3 A Critique 

Quantum electrodynamics, despite its successes, has a number of probler...-... renormalisation 
and virtual particles, to name the obvious two. It is my contention that ever. 	I obviate these 
problems - by setting the 4-potential to zero - important difficulties remain in producing a workable 
quantum mechanics (a first quantized theory). 

'The simplest of these difficulties is the noninvariance of the propagator: tr'.e two events, (a) 
and (y) , that are space-like separated. If y° < a° then the electron amplitude, q , induced at (a) 
by the amplitude at (y) is 

K(x, Y)0(Y) 

But, because these events are space like separated, there is a Lorentz boost to a new frame of 
reference that reverses their time order - so that :7° > "a-°. In this coordinate frame 

	

K 	(V) 

can only relate the positron amplitude at (V) to the positron amplitude at (3) by the formulation 
outlined in the last section there is no connection of electron amplitudes. This ,q entirely the fault 
of the functions 0(x° - ct) and 0(ct - x°) in the formula 2.15 that was found for t,  (x,xt ) . This, in 
turn, is the consequence of the contours chosen by Feynman - the `Feynman rules'. 

A second difficulty arises from the application of the Paley-Wiener theorem (cf. Chapter 5). 
Simply put, an electron (or positron) state that is initially localised - has a compact spatial support 
- will at no future (respectively, past) time have a finite support. This obviously implies that the 
amplitude spreads in a manner heedless of the speed of light, which might be thought inconsiderate, 
but there you are. 

The application of the Paley-Wiener theorem runs as follows: take four functions, Of E L2 (B3) 
such that 

(Vi)(3r :0 < r < 03) 	 supp7Pi C B (0;r) 

(compact snppor!I. Form these into a Dirac spinor. 	. A Fourier transform, 74  is defined on this 
spinor in the obvious manner: as a component-by-component transform 

74 	

( 

= 1411  = 10: 
7. 0 

0  0 0 0 ) 

u 0 7. 0 ! 

	

0  0 	0 7 ) 	

.7.  
(2710 3/2  f,,, d

°  y a- i  P ' 3' i ll  x 

If AI,  is taken to be the initial state of an electron then its evolution to ail future times may be written 
as 

r (if —x°)  
= 	-Hitc)(-7°)7-1 	  e XP 	 VA' 	+ M2 e2) 	(Y°  

2v2 • p m2  c2 	\ 	n 

Now this is a romdstent equation, so that setting a2  = y2  recovers the initial condition on the left-
hand side. What his means is, re-arranging this formulation of the propagator, and applying the 
Paley-Wiener the,,rem. that 

	

1,1'p -I- 	( -e21  
(P) 	," 	 ' 	1- '7' (if°, Y )1 

21/P 
 . PL ni2C2 

is an cm:one:Air:I ontire function. However, because of the square root, the function 

	

exp 	. 	' 	p ±n7 2c2 ) f (p) 
s 	Ft 

is not analytic. ond therefore not exponential entire. By the contra-positive of the Paley-Wiener 
theorem, it follows that, for a° 	, 

-1{exp (411° 'cc')  /P •TJ ± m.202) .1 (Ai 

-8.7- 
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is not a function of compact spatial support. The locality problem is thereby manifest for Feynman's 
theory of the electron. 

Now it is possible to introduce a positron •tate in such a way that the resulting amplitude 
is of compact spatial support between the two initial values. This does, however, seem to be a 
precariously contrived way to rescue locality; indeed, somehow, the positron must escape detection 
every time. 

Of course, there is no reason to think that my judgement of these difficulties is final and fataL 
It could be argued, just as many of the authors reviewed in Chapter 4 have argued, that these are 
excusable faults. That the first difficulty is an artefact of the production of a probability density 
that is the 0--component of a probability 4-current. The second difficulty can be called into question 
by the observation that Feynman's theory is in such excellent agreement with experiment. It is my 
purpose to thoroughly de-bunk such disingenious cavils in the remainder of this chapter. 

§4 The Quantum Mechanics Of 'The Photon' 

There are two reasons for examining at this point what might be called the quantum mechanics 
of the photon. first: the mathematics is simpler and readily solved: and second: there is no dispute 
about the way photons move - at all times at the universal constant speed of light. In the main, this 
analysis marks a useful step in the reformulation of Feynman's theory. To begin with the equivalent 
of the development of §2 will be performed, but a crucial change will be made on the basis of 
arguments analogous to those of the previous section. 

The wave equation for a mass-less scalar particle is the three-dimensional Wave Equation: 

zf 
(0.0)2 
	72) (2) = 0 

As before. the propagator is sought, which. in this case. satisfies 

h2 	•-• _7 2  _ 
(dr° )2 v; C"fr 	= •j4(X -r) • 

The four-dimensional Fourier transform of this. with respect to x . therefore he solution of 

-- iPvP1C;(P.?1) = 	' 1' • 	 (4.3) 

Thus 

	

G(x.y)- 	
• 1912  - Pn 

Changing to spherical polar coordines: 

where (p') are the Cartesian coordin.ttes of p in which 	is parallel to . Thence. 

P 	cos° 	(e = lei) 

and 
co 	co 	 271. 

e--((gccoe-Poelit 
G(z,y) - (23.104 	dps 1(012 	sing fit) I di e 	z 

- P;1) 6 	0 

(4.11 

(4.2) 

1.8- 
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The 0- and ¢,-integrals are readily computed: 

ige sin 0 _ co. am 

	

80 	h 

whence 

27t 
0.9 	03 	;poem  

2 	 G(x, - (27rh) 
I 

dpo f 	up (75p 	ige/h 
0 

so 	co 
f dpo ile.i7eit, sin (13I 

G(x' 	
) . 	 (4A) 

	

(2:T04  j 	j 	(02 

As in (i.2, the po-integral can only be evaluated as a complex contour integral, the choice of contour 
being tiie tricky bit. Of the four possibilities available for each sign of e° only tw.. really merit closer 
scnitiny - the four options can be most easily described in terms of the poles iLr':,:decl (they occur 
at p°  =. ±-F ); in full, the set is 

f, none, -Fif, 	both 1 

- taking 	< 0 , these are illustrated next. 

Re po  

The sensible eiternatiyes are: +77 only--Feynman's rule—or both 	and -1i—conventionally 
termed the retarded -olution. Obviously the use of neither pole is uninteresting, and it seems as 
ridiculous to inciude only the -2/7 pole when e° < 0 ( (a) in the future of (y) ). 

:\ow 
,ipoe/ft(e;Pue 	„iPoe VP+ 

(a)' 	= 	+ 	po -TY j 

whence the residues at the poles are 

= ri" giving - 	 
6-ii3e/h 

pa  = 	giving 

- 



G(x, y) = 
clio' sin (p3e/h) sin (WA) (retarded/advanced solution) 1 

	oo 
(2,7 ''''''' 	 f dfleile fil sin (go.  h) 	(Feynman's rule) 10 4 f 0  
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Sticking with e < 0 , this gives 

Using e±i9  = cos 0 E isin 8 , this may be written as 

	

(2;,;;., f  7 41 sin (fie  In) (sin (i3e/h) 	(p"l °A)) (Feynman's rule eo < 0 ) 

G(x, y) = (7.-÷-4T f dg sin (17e/h) (sin (fie/h) -1- i cos (WM)) (Feynman's rule eo > 0 ) 

	 7.'  dr, sin (ge/h)sin (RD A) 	 (retarded/advanced solution) 

There are, consequently, two integrals of interest 

J dr3.  sin (1329 sin (171-1) and icig sin (-33-
) 	h 

cos (1-7-C-.° ) ) 
0 	 9 

This can be simplified using the trigonometric identities 

sin (L) sin ( ° 77e 	_ — 	cos 	o — - — cos -ft. (e° e)) 

• /3' 

	

sin (Lt,  cos (--l'e) :2-1 (sin 	eo)  +. (e + eu)) . 

Substituting it= 	. and writing for eu {: or e,0 	, the integrals of interest become 

f cos ky dh and h f sin ky dh . 

By all conventional wisdom these integrals do not exist. Once more. generalised functions gallop to 
the rescue. The generalised function. it , is usually represented by the equation 

	

x) = 	dap 

But this is an integral over an even interval, so only the even part cc; the integrand contributes: 

(s )   cos In rip 

ro 

51.0= — cospxdp 

This clears up one half of the problem. The sine integral is a little more trick:: the one clear-cnt 
property of tin integral is that for = it it vanishes. Now 

	

sin itx = cos (ky 	— cos (Icx 

So, just to be symmetric, try the trigonometric identity 

sin 	(cos (Icy — 	— Coo (icy - 

-8.10— 
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41'2  [1  (7Thge°  — — /16 (e. + 0) — 	+ 

(Feynman s rule e° < 0 ) 

2-h 1 4 4' '172 	 [ 1  (7h5(e° 	'Th,5 (e e)) 	4-k (c +1,0 + c  leo)] 
(Feynman's rule e° > 0 ) 

(retarded/advanced solution) 

O(x. y) — 

472 (2 	(As (e0 — — T note.) + 0) ,h) e 
Since, if 6 las simple roots {ai} , 
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Thus 00 

I sin kx =1 I cos (Itx — 	—cos (kx 	dh 

Making use of the substitutions K = /: —/c/(2X) and K = k 7/(2X) 
eo 

f sin kxdk = —1  (.1.c° 	cosKxdK — f 	cos Kx dlf) 
2  —,r/f 2x) 	 r/(2x) 

.1(2x) 
i.e., 	 = 	f cos Kx dK 

r /(9x) 

which is defined unless x 0 , but the value of the integral at this point is alrei.dy known, so all 
that is needed is to evaluate this simple, definite integral: 

co 
h 	sin kx dk — h l

•  sin K 	(9')  
2 L 	— / (2x) 

= 72, 	(-1))  = Tc • 

Recalling that 

±h f cos kx = ±2rh8(x) 

I can now gather the results I have amassed to write 

6  Mx)) = 	< 5 (x ad 

then O(x.y) can be written more succinctly as 

F 7 s( 

	

(e0)2 	(21 	 .7" 	2  

' rh17  " 2 	 I 	 e ( e
°)° 

G( x, y ) = 	 :17. ,70,5(
(
e0 )2  

: 1,27h) 	 (2.71i) d 42  — (0 2  
2 

(2';hr (5( (e°  )2 —•) 

(Feynman's rule e° < 0 ) 

(Feynman's rule e° > 0 ) 

(retarded/advanced solution) 

It is clear that Feynman's rule does not give 'causal' propagators — the second term is non-
zero everywhere except on the light-cone. It is entirely understandable that the advanced/retarded 
solution for G(x,y) is the one used in practice, well, at least outside QED. Clearly, the use of 
negative frequencies for the forwards—in—time part of the propagator must be explained, after all it 
is by excluding this that Feynman's rule comes about. 

The next section will take up these points for massive particles. 
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§5 A Variation On Propagators 

H45.1 ...the story so far 

In the foregoing sections several important conclusions have been drawn: 
(i) Feynman's rule produces a non-invariant formalism: 

(i.i) there is also a violation of the Special Principle of Relativity (`causality'); 
(iii) similar problems occur if Feynman's rule is applied to the photon, but this is not the only 

possible 'rule', and a more credible one has been found; 
(iv) satisfaction of the Special Principle of Relativity hinges on the use of negative frequencies 

in the forwards-in--time part of the propagator (and the use of positive frequencies in the 
backwards-in-time part). 

The first thing to do is to adopt an invariant formalism. Since the space-time subsets that a. 
Poincari-invariant are 

(a) the entirety of space-time, 5124  ; 
(b) individual events, (x) 

it is reasonable. therefore, that constant-time hyperplanes should play little or no part in the theory. 
This may seem a bit drastic; after all, where is the initial state to be? What of conservation of 
probability? How are measurements to be represented now? I bdieve that I have satisfactory 
answers to these questions in what follows. 

§§5.2 A new free-electron propagator 

In place of an initial state, for the usual initial-value problem, a source function is employed as 
the inhomogeneous part of an inhomogeneous boundary-value problem with homogeneous boundary 
conditions (i.e.. zero). For the electron this is written 

(ih-r° -07  - me) tb(x) = S+  (z) 	 (5.1) 

suppS+  = B 	( 8 some subset of space-time) 

Boundary condition: alb „ 
•L'(xt,x) =0 	--- (zt .x) =0 

so 

The constant-time hyperplane, 	= 	is tal•len to be in the past of B --this is only necessary for 
the solution to be unique and to be the result of a particle 'created' entirely in B . 

The Green's function for this problem is given by a remarkably similar equation to Feynman's 
(equation 2.3) 

	

(ihee 	-me) K(x,•re)= 64(x - •rt)I4 • OxP 

'though now toe amplitude is given by 

2...(z) =
J 
 K(x,y)S.,(y)d4 y 

- an entirely invariant formula. 
Contours analogous to those leading to the advanced/retarded solution for the photon are 

employed, that is, including both poles within the contour for each sign of s° - 	Then changing 
to spherical polar coordinates, again as in the last section, gives instead of equation 15 of 1.12, 

.1a• 

	

= (7'1'13" +me)  (2x/t):le 	v/b512 + ;n2  c2 sincliT7e ) sin ( -1.79  'AP-1 2 -1-  

The limit m 0 recovers the case of zero rest mass (the spin-half version of the photon). 
Since this is the kernel of the inhomogeneous boundary-value problem the result conforms to 

:,he Special Principle - it is 'causal' - as the characteristic surface of the Dirac equation is the 
light-cone.t71 
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xo 

H 

 

	 x 

i§5.3 A justification of 'negative energies' 

A highly desirable result has been obtained — call it 'causality', 'locality', or what-you-will —
but was the price too high? The 'negative frequency' fundamental solutions 

u.(p) cm (14(p x+ x°Vp • p +m2e2)) 

are also called the negative energy solutions, and for this reason are usually thought to be unphysical, 
there being no sensible instance in which a negative energy has been detected. Needless to say, I 
have an answer to this. 

The justification is that there is no reason to suppose that a negative frequency wave has 
negative energy. The direct connection relies upon the use of an energy operator ('observable') 
which has negative eigen-values for these negative frequency solutions. As I will presently argue. 
the basis for associating an operator with an 'observable', and thence a physical quantity, is not 
necessarily complete. and, in w view, is to be rejected in the case of negative energies (this depends 
on a model of experimental measurements to be outlined below). 

A second re:son for insisting on negative frequencies is to make the theory more time-symmetric: 
just as the state in the past determines that of the future, the reverse must also be the case. This 
is often grandiloquently labelled 'prediction' and `cetrodiction', terms I will avoid as they imply far 
more than is sensibly the case.is! Feyntnan and Stiickelberg used negative frequencies as the means 
by which positrons determine the state of their mior selves.:11 As an interpretational device this is 
reasonable: all I ,•ant to do is combine it with the positive frequency interpretation into a single 
expression rather than insist that. somehow. the propagator has an arrow built-in which is compared 
to the difference o: the rime-iike coortiMates ithe non-invariant 0-functions). 

S§5.4 .4 source for the goose is a sink to the gander 

In pursuit of complete time-symmetry, it is obviously necessary to oppose a sink function. 	. 
to the source function. 	. Just as the support of the amplitude spreads through the forward 
light-cone of the -Ippon of 	. so too the amplitude must converge within the backward light-cone 
of S_. . Since S_ -ray be arbitrarily chosen. an nigoritim applicable to any S_ must be found for 
the calculation or amplitudes. Take two events: 

x— ) Esupp S~  

(r—) E supp S_ 

then some amplitude will be deployed between this pair. To investigate this it will be assumed 
first that these are the only elements of their respective supports — as though the 'creation' and 
'annihilation' of the particle occur in such small regions that they can be treated as geometric 
points. 

-6.13— 
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On the hyperplane, H , the amplitude, 0(x/r) , will be 

	

K(arr,x_)S-(x-)= 0(2H)=K(zThz+),9+(z+) - 
	 (5.3) 

So that, setting consideration of normalisation on one side, it might be tempting to write 

S_ (x_) = K-t  (sit  ,x_)K 
or, even, 

	

S_,.(x+ ) = K-1  (xn ,x+)10x 9,x 	_) 

It is not really surprising that this does not work: simply because an amplitude can be the 
result of a range of source or sink values. The inverse notation will only mean anything within an 
integral over all the space-time values of xi/ . This, and the form of the 'inverse', are prefigured in 
the equation (2.8) of motion of K(x, y) . Sadly, the integral that can be taken is over the hyperol4at 
H - one dimension short of a full measure. 

Expanding both sides of equation 3 gives 

f d4 	1.'11" +  me 	"t-  -)/ S_) — (14  p 	tn  e-) P('17-'"A  SA.(24.) . (5.4) 

	

pi 	— tn2r2 	 p,„ 	n,2 c2 

Assuming, for the moment, that the hyperplane H is a constant-time surface. and integrating over 
the resulting 3-space, gives three a-functions on each side - leaving p' = 0 and p = 0 ; a natural 
consequence of the fact that 	= x_ has been implicitly assumed. Thus equation 4 now reads 

	

dp'0  	 dp  ,°° +""  (I/0)2 — m2,2 	 po 	ra 1,2 

This brings me bark to the subject of contour integrals, as seems inevitable with propagators, 
though not to quite the horrors of my first formula for El.r.y) . Concentrating on the integral: 

( f  
f 	:,112 	 211,1_—M  	.11) 

The residues are: 
AfeiMi 

2,11 	 2..11 

Using a contour that inclutles both poles, as ar'rued in the previous section. the integral is 

iNft 	—iAft 
r2 	dz = 	(L--.)  

cos Mt . 

Likewise. 
sin Alt 

— 
2  — 1112  

	

This means. since x,y  = 	+x9,)/2 , 

[i-fa cos  (mcxcl  2—h x1) sin  (me xl 	xl  )1 S- 	= 

VI°  cos (711C 4  	) sin (mc .71 	)] 

i.e., multiplying through by —i , 

	

0 	o 

	

Et°  cos (tnex 	2hz+ 	'gin  (me:Ip+--1 -14)] S- (x-) = 

—  
[1°  cos ( 	2hMerl  — 7

0 

 + i sin (me x 
 2h

x°   
)1 
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Taking 7° to have its usual representation, 

+1 0 0 0 
= 0 +1 0 0 _to 	0  

0 -1 0 
0 0 0 -1 

then the trigonometric factors give exponential factors that are reciprocal. That is 

/2  exp (ime72÷4) 	02  
S_ (x-) = 	

02 	/2  exp 	
S+ (x+) 	 (5.7) 

- an expression of almost frightening simplicity, palliated by the severity of the assumption made 
about the hyperplane, H . 

	

If H is now allowed to be any space-like hyperplane, so that 	x- , there is a Lorentz boost 
that makes it a constant-time hyperplane. Writing this Lorentz transformation 

= cy(x - az() ) 
x*°  = a(w°  - 

(5.8) 

where a = (1 - 13 • )3) -112  . Then, if it is required that x*+  = 	(which is equivalent to H being a 
surface of constant x" ), this may be written as 

cv(x+ - Ps°,) = cr(x_ 

therefore, 

— 	a.0 
— X- 

(5.9) 

If the operator U(Q) denotes this boost, the expansion of equation 4 can be integrated over the 
surface of constant re", i.e., H , as follows. 

f d4  0-1  (al[f ex*, c-IP"jf it(P) 	/A 	+ mc c_ - - 1] = 

( 2n-hr fdpo U-1(5.) 	 + e 	f
—
, 

- 	c2'`1'
a23 	 J 

The integral over p' (likewise the one over p' ) impliments a constraint: 

= a1 P+.137,0) 

so that 

P = 

and, ,ince 
e-Pe 	,r 4,0 

rt.!  

 

2 

then 

.443  = aPo + P • P)a (4 2 	 P 	2 -) 

= (1-  ' fir (Po -a.apo)(°° 2 	 2 "— 	+x+) 

(0- -Fx9., 	X_ -Px+ 
= 2 	 2 
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Therefore 

f exp[- 
( 4 +  + X° 	X- + X+ 1 exp[iP'0:°- -iPiefl • x-  x 

2 	2 	) J 
a 

7°14 +1 • (-fip'0)  me s  ix_  

(POP - • ft(P10) 2  - 	,n2 c 2  

I dP exPrP°  (4 	x°- 	x+ 	)1  (1° — I .  MPO +  
h 	2 	2 	J 	- 	p)( 220 )2 in2,2 S+ (sF

a 
 (5.10) 

	

The poles are now at p0  = ±exmc , but otherwise these integrals are calculated exactly as in 
the previous, special case. Thus, applying equations 5 and 6 gives 

{
i7°  - 1.  g  cos ( 	me  	r°-  -  4  — '5  • (x-  — x-,  )  

1 - le • ft 	•Vi. - fil • g 	2h, 

	

inc 	'1i — 13 • 	g sin ( 	me 	4 —4— P • (x_  -x1 ) i s_ (x  1=  
1- 13 • 13 	me 	07_ d . fl 	211, i 

°I.  .7  - 7 • fi 	( 	mc 	x°, - :r°_ - pl • (lc+  -  x_)  ) 

	

. 	cos 
1

x 
 1-R•0 	il - - ft • ,0 	2ii 

1 	( 
	

me 	4 - •.-r°_ - 13 • (x, -  x_)  )] 
2h 

Taking the 'yv matrices to have their usual Torm: 

r2 	02 ) 

02 	712 ) 

= °2  -a•if 

where the a are the Pauli spin marrires. 
Denoting the arguments of the trigonometric functions by 

	

Mc 
	 — 	— 1.? • (x_._ — x_ 

V1 - r3•?  

the matrix equation becomes 

I? •(.'sin 0)/2 	-e • 19 cos 6  ) 5 	) = 
• r, cos A 	f- co•,.• A - 	- 	g 	r2  

(cos 	i 	- 	fl sin o1/2 	-a • cos o 
a • ,Gcos 6 	(- cos 4i ii/1 - 3 • 19 sin d)12  

Now multiply through by 

( (cos d, 	- fl • ( sin ei)/2 	-v•ficos.i 
4•7 - i;• cos o 	(-- cos o 7.07-17•7? sin eq,72  J 

On the left-hand side, the off-diagonal terms vanish, and because the Pauli spin matrices anti-
commute the result is 

cos''d 
 sin2  fl 	 le - 	• /3 	 = • • • 

(cos-02  	6  + 5111:2 

cr 
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(x-)=S 
	((cos +170 - • sin Oh 	-es • 13 cos # 	 (x+) 

a • 13 cos # 	(- cos .0 i 07-771sin 	- 13 • 13 

I ((cos' - sin2  0) (1 — # • + 2::07-77'cos sin 0)./2  

—(2W1 — 0 • ft cos ¢ sin Oct • ft 

— fi • I? cos Osin 0)o• • /1 

((1- - /11) cos - iir.-778 sin 2019  

( (cos + isil
72 
	_ 

1— 	
• 

a - 
 3) Cr f'  1-\/.797761 	 —1- 	S+ 

iSiT1.245    ) - f; 	(cos 2e5 	)1 
• fl • IV 2  

•me(s9,. - x°) 	(4_ - 	)2  - Ix+  -  x__ 12  
\./(4 _ )2 _ I x+  _ x_12 	(4 - x°)h 

me 	  / 
T 

Thus 

i.e., 

S_ 	i sin 24, 
	(70 

— • 7) + cos 20) 
— 	 

S+ (z,.) 
• 0 

Note that, using equation 9, 

me 	- w°_ - /3 • (x_,_ - x_) 
245 = 

- O•fl 	 rt 

s+(x+)  
1 — fl • 

(5.11) 

( i sin (7-e 04 - 	- lx÷  - x_ 12) (7°(x+- x.°_) - 7. (x+  - x_ )) 
S_ fa+) - 	  

ix°+ - ) 2 	- x-12  

	

cos (-Ftc 
 (x?,. - a;°_r - Ix+  - x_r2)) S+ (.+) 	(5.12) 

rn  

- an expression of sterling invariance. 

4iq5.5 Space•like separated sources and sinks 

Things are 	somewhat awry if (r + ) and 	) are space-like separated: there is no solution 
for 	if .r°_ 	. lad otherwise Ipi >1. 

Now. so far tile only guarantee that this formalism conforms to the Special Principle of Relativity 
is a vague reference to the theory of characteristics. Well, rather than slog through the heavy-duty 
functional analysis involved in this, fascinating as that would be, a direct proof will be presented. 
Specifically, I will show that a source and a sink cannot be linked by way of an event, (au ) , that is 
space•like with respect. to one or both. 

`Alt!' no ins, of generality, I shall take re.° =.r4_ The The eight-hand side of equation 4 now reads 

P .11)/n  i'PP 	.9+(x-"1 P"Pv - aa2 c 2  

J
1f
fd2pe't"(Y+-=='t)it 	Po  dpo+ 

Poe 	p 	 c2) 

P + me) jf Po — (13 • 1P + rn2c2) ) S+ (ce-4-) 
dpo  
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The two integrals of interest in this show a near-diabolical familiarity; allowing them to be quickly 
dispatched: 

,2 	:m2 dz  
-co 

- an odd integral over an even interval, and so zero; 

03 
dz 	1 [ 1 	1 
- 	2111 J z-M 

CO 
1 

x 2:ri x - 	0 

It is therefo-e clear that S+  (x+) can influence nothing via events that are space-like separated. 
from (z+) . This does not mean that S+  (xi.) and S_ (x-) are unconnected - even if (x._) and (.a...) 
are space-like separated - it is just that the linking event, (zirr) , must lie either in their common 
past. or their common future: any two light-cones will eventually intersect. 

Note that, as expected, Feynman's rule does not give this result - there is no cancellation in 
the second integral. 

!ie Probability, Eneru, and all that 

H6.1 Probabilities: where they come from 

For a single point source leading to a single point sink, a simple consequence of equation 5.12 
is that 

S_ 	(x_) = S+(x-)S+(x+) 	 (5.1) 

where the adjoint spinor. 73' , is given by 

- S* is the transpose of the complex conjugate c: S . The presence of 7° means that this is an equa-
tion of quantities that are not positive-definite. I would like to ascrlin a probability interpretation 
to this equation nonetheless. The interpretation is this: 

= Prc pr_ 	 pr,, pr, > 0) 

pr, is the, so far unnormalised, probability (density) that there is an clectron at (x) pr, is the wame 
thing for a positron. This suggests that the spinor S call he decomposed into two parts: 

;0.2) 

S, a two component spinor representing the electron, and S„ the rorresnomliilg represe=,tative et' 
the positron. 

The formula S(x)S(x) = S 	S (x) is an invariant. whence the two pro':abitity densities are 
also invariants. To see this, start from equation 5,1 again: 

' ;117r 	- :no) 	S(x) 

The Principle of Relativity demands that this formula be form-invariant, so that in another coordi-
nate frame (denoted by primed quantities), 

.31 

(0..1) 
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where z" 	xP +ae . A lengthy but elementary proof, given with some clarity by R. H. Good,1101 
shows that the -/-matrices are unique up to a unitary transformation; so notl._. - is lost by using 
the unprimed set throughout. Also 

a _ 	a 	A, a 

ax0 	axP ax's  

Further to the Principle of Relativity, there must be a transformation, Uh4,a) , that maps 10 
onto 	: 

IV (xi) = U (A, a)tit(x) 	 (6.6) 

(z) =. U-1  Is:1,001(e) . 	 ( 1.7) 

Using the substitutions of equations 5 and 7 in formula 3; and multiplying on the left by U(A, a) , 
gives 

	

(AU (A, a)71' U-1  (A, OA; az'' — mc) (xi) = U(A, a)S (a; 	 (6.8) 

The standard proof of the covariance of the Dirac equation (see, for example, Bjorken and 
Drell's book. 111  pp 18-25) next proceeds to find the representation of the Poincare group so that 
the left-hand sides of equations 8 and 4 are identical, i.e., such that 

= U(A. a)-e U- I  (A, a)A; 
Of. 

= 	(A, a)^(U (A, a) . 

The representation is a faithful one of the Lorentz group, so that the translation group forms the 
kernel of the representation. 

Finally, in order to complete this application of the Principle of Relativity, it is only necessary 
to equate the right-hand sides of formulae 8 and 4: 

Si(21) = t1(1i,a)S(z) 	 (6.9) 

- an equation identical in form to the transformation formula 6, as might have been expected. 
One more result will be needed from Bjorken and Drell's bookiill (p 23, equation 2.23): 

tr-. (A, al = 	((A, a)).  -f° 	 (8.10) 

The invariance of .77S can now be demonstrated: 

75'S =5"(x)rf°5(t) 

= (L)-1  (A, a)..5" (xi) r 	I  (A, a).51(2') 

= (S'(x')).  (u-. (A. a) )* 	(A. a)SV) 
= (51x!  ',i' -14) 17(A.,i)U-  t,A, 	(xi) 

= (51:-M*  1"S' = 

This is all very straightforward, but what if there are two events at which the source function 
is non-zero. or mere? Wrilinss out equation '.12 for two source events contributing to a single sink 
event: 

sin 61  
_ ( x 	( 	 hia 1/1  • -4) cos el 	(x ) 

.4t 

S2-  (X-  ) 	
( 	/ Sin 	0 

P2 

ti2 • 02 	
2 • 7/ + cos 02) S+ (22) 

then the amplitude at the sink is (employing the usual superposition of amplitudes) 

-=.91-(.r-)+S2-(x-) • 

-8.19- 
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Whence, from the foregoing, the measure of probability is 

   

          

(x 
_)S— (X—) = 	(X—)Si— (X—)+52_(X—)S2_(x_) + 	(X—)S2— (x_) + S2_ (x—)Si_(X_) 

i.e., 

= lt9c(x1)12  +1S€(x2)I2 	(ISrr(x1)12  +14(x2)12)± 
(1  - 	• 02) sin ¢t  sin 452 	 + . [  sin 	4.1 cos  62 	sin 152 cos tbi  

$ 

	

— kta • 112V1  — 	16.1 	V1— ft,. ai 	 - 
[ ( cos 951 cos q52 +  

(4(x,)s,(zi)-4(.2)s„(.0)1+ 

[(shl\yil c"i3C612.°,;ifil 	c":21.69.2132  (S: (x2 )S,, (x ) - 	(x 2)S, (2 ))1j  

[ 	sin 561 sin (ks  
	(0 	192 - 	1) (Sc (X2) Sm (X1) 	(X2) S (Z1))1 

1 	192 • 192V1 	1 le 1 

This is always a real number, however it is not very well bounded. 
Even if I set Sr, (xi) = 0 = S,. (x2) , the remainder of this expression is of indefinite sign and 

potentially quite large (in modulus): 

is,(xi)12 +1,.Mx2)12+ 

n't [(cos b t  cos 02  -F  (1  - Pt • /92) sin di  sin 	I  sin  Oi  cos 512 	sin 6.2  cos 'IS /   ]) 

x  

	

"11  - g2 ,8211 	fitt 	L11  - )3, • 131 	— 132 • 132  

S'Y (x2)S,(x1)1  

This not necessarily positi -e because, as Ifik l — 1 , 

	

sin bk 	me , 

N/1  - 	• I)  k 	lb 

Pk  sin 6k 	me t  
1,Xk. —=t—)

\/1  — 	• /91: 	n 

For an electron, m = 9.11 x 10-81kg, and c = 3 x 108 ms-1. ft = 1.03 x 10-84kg-lm-2 s-1. 
so  mcitt = 2.0 x 1012 . This is quite a few electrons, or, perhaps, quite a few positrons. If this is 
to mean anything it must be that pnrticle-anti-particle pairs are being crened as a result of the 
interference from these two sources. This seems reasonable to me since there is a direct relation 
between the 'classical kinetic energy' ( cc m,c2 /./1.- fik  • ,13!, ) and the increase in particle numbers. 
Notice that this creation process is necessitated by the initial assumption about where and when 
the electrons might begin - the sources - and Ihe event at which de ection occurs - the sink. This 
assumption. for Ad 	,.. means that the eivc,ron, or part-electron. at .`.:L(..0..; travels as a speed 
quite close to that of light in order to he detected. The 'speed' just mentioned is arrived at by the 
eminently empirical formula 3.0. art: hears a suitably 10ose canner. on to CI? Propagation of the 
electron amplitude. 

	

Conversely, if there is very little separation between (t: )) and l.x2 ) , •0 hat 	and (.12  are 
virtually parallel, then 

62 

	

1—ii1•,92P-• 	•PL 1.--192.132 • 
and the probability sum reduces to 

r-49,([2 4 + 1.(342)12 	2F1(57(slis)S.,(ri)) cos(6t - 62) 

- 	(4'012  + iS,:fx'?)12 	 cos(61 - "2)) 
which will happily represent the free evolution of an electron or (and!) a positron in the low energy 
regime. 

The encouraging thing about the foregoing is that there are no infinities as long as all events 
are within some bounded volume of space-time. This may frustrate those theorists who like to use 
the word 'asymptotic', but seems otherwise a beneficial development. 
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sin (1.001/1 —x2 ) 

T. --I-0 

0.3 

6 

rnci tz is taken here to be 100 to illustrate the limit of near-light speeds. 

gi6.2 Normalisation 

The expression, SS , is best interpreted as a probability rather than as a probability den-
sity. Therefore, separate normalisations must be applied to the source and sink. Thus, the source 
normalisation is obtained from the constraint 

S.i.S+ 	= 1 	 (6.11) 

Having fixed the source, matters are more problematical for the detector, for which the obvious 
choice is to divide by the space-time volume occupied by the sink ( supp S_ ). The complications 
arise from the energy—momentum distribution and the creation and annihilation of particles. The 
motivation for this 'obvious choice' is straightforward. even if far from comprehensive: take a single 
point source at (J_) . then 

ti 4 x_ =(x+) d4x— = Isupp S_ I . 
..suppS_ 

If the source :low occupies a block of space•time with dimensions greater than lilyttc , and taking 
.9„ = 0 and t he 	energy regime (i.e.. put the sink within a low-velocity cone of the source), then 
the probability integral for a single point sink is 

= 	.5÷ (r.t )8_,(4)ri'lz+  (14x14. 

Approximating 	double integral by a double summation gives an expanded version of the formula 
in H6.1 

E is,(.+)F + E 2R{,57  kos, (.0) cosok  — 
kth, 

Since the double summation is over a range of angles in excess of the wave length of the cosines, 
these terms can ':e counted on to cancel. mostly. ."he remaining 'diagonal sum' is the approximation 
of 

f 	 1 . 

Therefore, the weight of the source on each point of the sink is around unity, whence to normalise 
the sink the need to divide by its space-time volume. This normalisation process is meant to indicate 
that there was definitely a particle at the source•and, subsequently, to give the probability that the 
particle was found at each given sink. It is, of course, possible that the same source function might 
produce non-zero amplitudes for sink functions elsewhere in space-time, but that, as the cliche goes, 
is another story. 

-531— 
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§§6.3 Probabilities and Detectors 

The next point is going to make my remarks about constant-time hyperplanes appear faintly 
hypocritical, though I must claim that the order in  which I have laid out this formalism means that 
I can now deduce a use for these surfaces rather than, as I have criticised, merely assuming their 
importance ab initio. 

The thing is that detectors are spacial objects that function over periods of time. Thus, if the 
space-time support of a detector — during its active phase — is D then the spatial probability density 
it detects will be 

— 	(x) 17, 1.1  fr,  S— (x _ )S_ (x_) dx°_ 	 (8.12) 

A simple example is a photographic plate, which gathers on its emulsion an exposure dependent 
on time and intensity — not amplitude. Now in a boosted frame of reference the constant-time 
hyperplanes arc different, and so too are such things as photographs. There is thus a place ir,  
invariant theory for the coordinate—specific detectors generally in use. 

In the high energy regime the large fluctuations in particle and anti-particle number appears 
to require a modification of this, perhaps taking into account the sensitivity of the detector, i.e., 
dividing D into intervals DI , D2 	. and using 

f(x)= (6.13) 

— since a photographic emulsion requires a certain exposure before it reacts, and such an exposure 
will register positrons and electrons in the same form. 

A not dissimilar granularity must also be applied to the distribution f (x) since each particle 
in the photographic emulsion (or charge-coupled device, or whatever) registers the presence of a 
particle or particles, or their absence, for a volume of space. Further, the detector will only have a 
certain sensitivity, below which no distinction is made between a low probability and none at all. 
This is obviously not completely satisfactory. It is also not a subject to be pursued much further in 
what is intended to be a highly general and theoretical exposition. From the point of view of theory, 
the snore relevant effect to analyse arises from the use of sources covering volumes of space. 

A detector may, therefore, be effectively modelled as a sub-set of a constant-time hyperplane. 
The theoretical idealisation being made is that the intensities that the detector is adding up while 
it is active are roughly the same as those at a single instant. This will approximately he the case 
for low energy studies and highly sensitive detectors (e.g.. fast shutter speeds). 

As is fairly clear from the above, sources and sinks are primarily the means by which the 
preparation and detection of particles is transacted. In the next section intermediate sink—sources 
will be introduced, to represent what Feynman described as the scattering of the partich..(s) by an 
external electromagnetic field. The creation and annihilation of particles is treated as a consequence 
of this formalism, rather than a foundation for it. 

I am now in a position to elaborate on the provocative statements made all the way back at the 
beginning of §5 (A justification of 'negative energies'). For while some of the self- adjoint operators 
used in quantum theories serve as generators for various symmetries, to call them 'observables' 
and to claim that they all have a rigid connection with actual measurements is open to question. 
The positivist philosophy that inspired this convention is by now well criticised, if not completely 
discredited. The notion that only those numbers or marks appearing on measuring apparati have 
any reality (instrumentalism) is only of use to a philosopher: it was never a fruitful approach for 
physics. The encapsulation of the measurement process in a black box labelled 'momentum', or 
whatever, and then its representation by an operator is little short of a travesty of the delicate 
engineering required in experimental determinations. To imagine that theory need go no further 
than an operator is to ignore most of the physics of the quantum world — this has always been 
recognised in remarks about measurements disturbing the observed system. 

The value of operators as generators of symmetries must not be underrated. but physical theory 
must look elsewhere, I maintain, for a model of measurements. The place to look, unsurprisingly, is 
inside the 'black box' measuring apparatus: if momentum is found by imposing a uniform magnetic 
field on some spatial volume then it is clear that any consistent quantum theory must do the same; a 
measurement of spin employs some form of Stern—Gerlach device — another imposition of an electro-
magnetic field; most measurements, in fact, seem to be about the spatial distribution arising from an 
arrangement of slits, electromagnetic fields, collimators and shutters: exactly the sorts of things that 
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it is hopeless to try to incorporate into Schriidinger's wave mechanics. If these simple components 
of reality can be adequately modelled there is a real chance that new insights r: .y be gained into 
the microcosm. 

It is my hope that the formalism outlined here will allow such real processes to be manageably 
modelled. 

Energy, momentum, and spin 

Up to this point only the initial and final space-time distributions of a particle have been mod-
elled. Now it is usual that the energy-momentum spectrum is also known. There must, therefore, 
be some way of expressing the notion that, though a high energy electron could get from (x+) to 
(x_) , this energy lies outside the spectrum of the actual electrons used. 

If I abbreviate equation 5.12 to 

S_(x...)=P(m,z_,x+ )4(x.f.) 	 (6.14) 

this is rather easily accomplished by using 

S- 	,P) = P (m, ,z+)(E(24S+ (z+)) 	 (6.15) 

instead. E is a probability amplitude function, E : az4 	, reflecting the energy-momentum 
spectrum of the experimental particles, and it may even be taken to depend on (x+) if this is useful 
(two beams entering an experiment with differing spectra, for example). 

The 4-vector (p) is the empirical 4-momentum: 

mete_ - 
13' - 

0 ( (131 /00) 00 

0 o0) l0J 1 

is (respectively) 

    

 

p° ;- 
me 

7/1 C 

0 

(P) = 	 7, 

 

0 

mc  
2mc 

'act (P) = 	- ipY 
727ne(p° + tnc) 

 

V2niclp° me) 

• p' 	ill',  
‘,..12mcip° nz7 

 

n-  -----.) fin'  - 
Ontc)p° nte) V2mc(p° -Fmc) 

) 	ing  

_, ;p) = 	12 C P°  Inc) ?f, i (p) = 	V2177,C(73°  ÷ me) 

0 111,0,  me  

111, 	11°92)n.c c  0 

Such that, for any p , 

1(4P)up(P)= Oapwo 

	

{+1 	, 	if = e , 	or c 	; w, = 

	

-1 	if o- = 7 I , or -j 

1/(,0 - ,902 _ Ix  _ 3,1_12 

Now in §3.1 of Bjorken and Drell's book[111 they show that a boost of the spinors 
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Significantly, this decomposition of a spinor is conserved by the modified propagator that I have 
proposed, viz. 

where, almost as before, 

0 = 1-7N(4 — 4)2  — Ix_ — x+  12  

and 
x_ — x+ 

P = — 	0 PO I X — 2+  

so that (x+) and (x_) are events linked by a world-line that, for a particle of rest mass, as, represents 
the classical trajectory with the 4—momentum, (p) . 

The difference between a classical trajectory and the set of events that a spinor of definite 
4—momentum being propagated through a sequence of events, is the factor of modulus one. In the 
limit of infinitesimal separation between the source and sink this difference between quantum and 
classical theories disappears. 

An invariant decomposition of a source function in terms of spin. 4—position and 4—momentum 
is, therefore, 

S+ (x ,  P) = 3,t (x, P) 	(P) 	5,1 (x: Out' (P) 	8:rt (,P) urn' (P) 	8,r1 	P) urri (P) 	(6.16) 
The four amplitude functions, s p  , are derived by 

S P( X, P) =  (UP(P)1S+ (WIT') 	 (6.17) 

where (up  I is the projector onto the spinors spanned by tt,, (i.e., taking all four up  (p) as a basis). 
It is now apparent that the source and sink functions are actually defined on phase space. This 

will not affect the previous discussions of normalisation if the momentum is integrated out — as has 
so far been implicitly assumed. This integral must take the measure 

d3p 

•VP • P in2e2  
to be invariant. 

17 Applications and Illustrations 

To wield a colourful metaphor at myself: it can be said that the rot sets in here. This part of 
the formalism is, really, a hopeful guess: the present section has some of the qualities of moonshine. 
The basis for checking the consistency and usefulness of this formalism will be presented. but no 
attempt will be made to pursue the issue further. 
§i7.1 Some Exemplary Calculations 

The simplicity of formula 5.12 presents an immediate challenge: to calculate, even if rather 
roughly, some actual propagations. Following a variation on the usual quantum mechanical proce-
dure (cf. the computation of the sink amplitude at a point arising from the source amplitudes at 
two source points on pp 19-20, above): a source function is defined on a number of points, then 
for any given point in the sink (i.e., choosing a x_), formula 5.12gives the contribution to the sink 
amplitude from each source point. These contributions are added in exactly the same manner as 
the canonical superposition principle to give S_ (x_) 

s__(,)=EP(7n,x,_,xj)S+(z i)  

— where the source function is non-zero at the points 	Thence the probability of a particle 
appearing at x— is S_ (x_)S_ (x_). 

This is illustrated in the next series of figures. The comparison between the first four shows 
that, at least in this case, only the centres of the sources need be modelled. For ease of computation 
I have taken me/h = 100 , and x° — 	. 

P( 4,0— ,°+)11, 	= igf (P)efc6  

P(trito—,z+)ur (P) = 	(P)e—'55  
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S_ (x )S (x_) 

4.4 

6S 
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x_ 

S_ (x _)5_ (s_) 

CA 	64 	64 	61.1. 
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S(-0.2) = 0.5 S(0.2) = 0.5 

-Using this considerable simplification the next four figures show the effect of varying the source 
separation. These computations only employ a single spatial axis, and for this reason rather over-
simplify what might otherwise be a model of two-slit interference (of beams with unbounded mo-
mentum spectra). 

       

       

       

       

    

S_ 	(21—) 

 

  

0.5 

    

       

     

111 

 

  

S(0.0) = 0.5 5,_'(0.0001) = 0.5 

 

8(0.0) = 0.5 8(0.01) = 0.5 
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The remaining three figures are the result of introducing a fixed distance in a second spatial 
direction between sources and sinks, together with an approximation of continuous output from the 
sources — by extending the source in time. 

In these last examples I have set mc/h = 500 ; there are only two spatial positions for the 
sources ( (xi ,y) and (x5 , y) ), but for each source-position is active for a range of times ( 6ti ). The 
difference in y—values is fixed at f ; the amplitude at al the source points is taken as 0.127. 

S_ (x._)S_(x_) 

1 

S_(x—)S_ (x_) 

•Tr---0•05, 	zr,=0.05; 
SEC-(2.400,...,2.455) 	• 

a' 2,0.1; 
6tE(2.400,...,2.455) ' 

= 	zr,---0.1; 
RG{2.000,...,2.055) 
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It should be noted that, by dint of prescribing only the sources and sinks a considerable measure 
of control can be exercised over the momentum spectrum of the model. 

f; 7.2 Electronic snap-shots; complementarity abandoned 

The two simplest devices to be modelled, and it is a curious fact that the model is the same, 
are the photographic plate and the end of a beam pipe. The difference between these is that one is 
a 'sink' and the other is a 'source' of particles. 

In both cases there is a shutter. This may be taken to be a pair of moving blinds, as commonly 
found in SLR cameras. The edge of each blind is assumed to move at a constant velocity, leaving a 
slot, through which particles can pass. For the photographic plate the shutter is additionally assumed 
to move immediately in front of the emulsion (a focal plane shutter); for the beam pipe the shutter 
is merely mounted on the end. 

If the shutter lies in the s-s—plane, and the slot moves along the s—axis, then the following 
`aerial view' fulfils the role of an adequate model; 

zo 

Armed with this representation, it is possible to tackle Bohr's thesis of Complementarity as it is 
manifested by the so-called `wave—particle duality'. By adopting the heretical notion that a physical 
theory is only a constrained description — a theory up to the degree of constraint imposed on the 
system — then the need for the dialectical nonsense of complementarity is avoided. 

The free evolution of a system is described in a manner somewhat akin to that of a wave; any 
particle-like behaviour arises now from a high degree of spatial confinement. Thus, if the probability 
amplitude is calculated for an entire photographic plate the result is an interference pattern. If only 
a small area of the same plate is considered (i.e., forms the support of the sink) then the amplitude 
obtained represents the formation of a small blob at that specific point on the plate. There is no 
logical or physical incompatibility at work here — just as might have been suspected all along. 

There remains the notion of complementary measurements, that is, pairs of measurements 
which, in the usual parlance, do not commute. If the actual processes of measurement are now to 
be modelled this becomes a trivial consequence of the facts of those processes: the spin cannot be 
measured in two different directions because this poses contradictory requirements on the electro-
magnetic field of the Stern—Gerlach device. Bell's theorem therefore involves expectation values of 
a set of quite distinct experiments — the paradox is resolved by avoiding comparisons that make no 
sense, not by abandoning locality. In the present context, the original paradox of Einstein, Podolsky 
and Rosen admits of a completely 'deterministic' solution. Though the theory proposed here is not 
necessarily complete, in the sense of Einstein et al.,; but, as the work of Karl Popper and Kurt Giidel 
suggests, completeness is a chimera. 
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The space-time layout of the EPR experiment 

§§7.3 Bohm's revision of the Einstein -Podolsky Rosen thought experiment 

One major omission from the present theory is any mention of Pauli's Exclusion Principle. 
Whether the source normalisation can merely be changed, or whether some form of direct product 
of single particle representations must be devised, is an entirely open question. A simple example 
in which to explore this issue is the Einstein-Podolsky-Rosen thought experiment. The interaction 
of an incident beam with two Stern-Gerlach apparati and two cameras is just a specific application 
of the ideas of the previous sub-sections. 

The simplest representation of the experiment uses point•like sources and sinks, and assumes 
the behaviour of the Stern-Gerlach apparati, SG; , (much as has usually been the case when an 
expectation value, (a) , was supposed to represent a measurement) - the issue of the exact functioning 
of the device that distinguishes spin orientations is, of course, merely postponed. 

Source function: (fully symmetrised) 

S+(zo,x0) = (uct (Pt) uct(P2) - uc j (Pr) 0 ue I (P2) 

--u‘1(p2 ) no (Pi) -I- ur1(P2) 	tic' (Pt)) 

Sink function: 

, 

S- 	I 72 = Oct (Pt) 0 ti,opa) - 	(m) :2) uct (p9))e14'.ei0* 

S_ (22, 	= (-141(P3) Otto (pi) + ucT (p2) thi (74)),i05 1 a1. #1 

Strictly, the next step is to propagate S_ 	x2) and S_ (x2  , xi ) onto the events corresponding 
to the detection of the differing spin orientations being measured ( xi / , xt l , x2/ , x21 , say). 
Bohm's correlation function can be found without recourse to this by decomposing the intermediate 
sink-sources in terms of the spins being measured: 

uct = arruit 	= altun a21ls21 

ucj = biT ur / 	=b2ru2/ italual • 

Using just 

s_(x1,72)= —(uo(n) 0 uel(p2) -141(1,00 uo (P2)) 
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since the fully synurietrised treatment produces two copies of all terms and then divides by a half; 
and the WO's add nothing: 

, 	1 f , 
S+(xi,x2)= 

	

	-1- al1Ui1) (b211421.  b21U21) 
N.5 

® (c121u21 + a21u21)) 

Then 
f 

15- 	 X2if 	— kalittit b21u21 — 043 j aatuai) -- 

S- (ri x21.  ) = —taituzi - ultazirult ufn 

1 
S-(xu 	

V2
r
a,xsij = 	ijozr -blia21)/41104tzt 

= —,(aubs.; bilazt)uu 0u24 
v2 

The correlation function is now found by weighting the probabilities at the four detecting events 
by the product of the spin 'eigen-values': 

(1 x 1)S_(xi 1 ,x21)S_(zit ,x21)+ (1 x -1).S_(xii,x21)SAx11,x21) 

+ (-1 x1)S-.(xu,x21),9-(xifo zzi)-l- (-1 x -1).S_(xt1,x21)S- (zii, x24) 

Which can he written in an altogether more conventional form as 

S- (xi,  Xi) d S_ (xi ,x2) = —COS(01 — B2) • 

This is perhaps not the briefest summary of a well-known result. I hope, in presenting it 
thus, to have illustrated the revised quantum mechanics I have developed, as well as the way that 
'observables', where these are truly observable, are only a superficial mechanism to avoid more 
complete physical analysis. 

Note that there is no need to invoke 'retrocausation' or any such causal influence that travels, 
first, backwards in time from a measurement with a definite outcome, and then forwards in time to 
dictate the outcome of a second measurement. Nor is there any 'collapse of the wave packet'. It is 
possible to produce two classes of model, however: 

(1) The source at (x0 ) is deduced on the grounds of symmetry and conservation laws (e.g., the 
singlet or triplet state). 

(ii) The source at (x0 ) is chosen so that the result of one measurement is for one orientation 
to have probability 1. 

i and ii may be related, or even deduced from each other. 

iji7.4 Quantum Electrodynamics, well, maybe 

Leaving the comparatively safe pastures of quantum mechanics, I can now try setting the electro-
magnetic 4-potential to some non-zero value. Because the wave equation is now inhomogeneous, 
Feynman's perturbation expansion can no longer be deduced. The formulae governing the scattering 
of the probability amplitude may be guessed to be the same as Feynman's, since the justification in 
terms of scattering at the field points carries over - the field point at which scattering occurs, (xs) , 
becomes a sink, S_ (xs) , and then a source, St  (xs) . The scattering process is incisively expressed: 

S_F (xs)=---
ch. 	

(x s)S _.(2 s) 
	

(7.1) 

The calculation of the amplitude at the detector (the final sink) is then the sum over the amplitudes 
contributed by all the sources: both the original source (zeroth order scattering) and all the sink-
sources at field points. There is, as in Feynman's formulation, the possibility of an infinite number 
of scatterings, depending on how many times an St  (xs) is used to contribute to the amplitude at 
any other field point, (x's ) say. 

However, this will not do. The dimensions of &A/c are those of momentum - whence the ap-
pearance of this in Dirac's equation - and therefore the dimensions of eAlch are those of (length)`'. 
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This was perfect for Feynman's treatment because his amplitudes gave rise to a purely spatial proba-
bility density, which means that the perturbation expansion produces amplitudes that are again the 
precursors of spatial probability densities. For example, Feynman's first-order scattering correction 
is 	

—if lc (2,3) 6ftt3) /(,,, (3, 1)0 d4x3  

(in roughly Feynman's notation). The dimensions of the integrand are 

ch 
	• • 	(length) -1  

	

K.(3,00 • • • 	(length)-5/2  

c/4a•3 	• - • 	(length)4  

so that, finally, K + (2,3) produces a spatial amplitude of dimensions, (length)-3/2  . 
If a scattering scheme similar to Feynman's is to work for the present investigation then the 

factor nmltiplying the intermediate sink amplitude must be a dimensionless invariant. One candidate 
is 	

e-rA,,(xs) 
met 

or, marginally different, 

(A,("s) A. ("+)) • 

Tempting as this might be, it can not be the whole story; since the propagation of amplitudes 
is constrained by the empirical energy-momentum spectrum, and scattering by an applied electro- 
magnetic field changes this spectrum. The usual way of converting a theory for free particles to one 
in an external electromagnetic field is the substitution 

e , 
P 	P — 

for an electron, and 
a 
c

A 

for a positron. This is because the momentum, (P) , conjugate to position in the Hamiltonian form 
of classical electrodynamics (of a particle with charge, q ) differs in this way from the kinematic or, 
as I have called it, the empirical momentum, (p) : 

p„ F -A,. 

Thus, when the canonical quantisation procedure is applied to the invariant equation 

= ra2  c2  
c 	c 

it is, in fact, the equation 
PP  P, = nt2 e9  

once again that is being 'quantised'. Since the approach I have adopted here uses only the empirical 
momentum, not the conjugate one, I can continue to use the same Dirac equation. It becomes 
necessary, however, to take into account the variation of the empirical momentum ( dp ) that each 
propagation ( x--, x-Fdx) entrains. 

The process of 'scattering by the field' is, therefore, reduced to the calculation of dp for each 
component of a spinor - since this must be how a Stern-Gerlach apparatus functions. To begin 
with, spin will not be modelled. The action integral for an electron in an external field isi121 

W = 	ntc\/dx” dx,„ 	•21„ cle J 	 (7.2) 

Taking a variation of this gives 

SW =J mu, (18 ± -A, (Me - 	 de 

	

c 	 c x1' 
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Since: c2  dr2  = dx" dx, , so 

2c dr Mr = 2 dx„ dbe 

6(c dr) = 8r dbx y  = doe ; 
a 

dA, 
6A, = ax# be . 

Integrating by parts, 

SW 	— f 	f 
c 	c Dx' 

If siv = 0 , and since bx" is arbitrary, 

d (p„ —A„) = 
e OA

P de 
c 	c axv 

or 
c 09A,  an,)  the  

(7.3) 
c 	ax" 	c9x,' ) 

I shall take dx" and dp,„ to be finite steps, so that the 'classical' results are recovered in the 
limit dx" 	0 of the 'quantum' theory. 

Writing 
e ( an an 

ax: 
one possible way of incorporating a dependence on spin into the expression for dp is to add a new 
term to the action integral: 

J 
	(cf)F,, dx" 

which relies on the existence of a 4—vector, (8) , dependent on spin: 

crEfet, el, 71, 7 . 

This modifies the expression for dp : 

dp„(a) = 	de + (a) ( 	a„, 	a„, ) 	. 	 (7.4) 

P.A7.5 The double slit experiment, 

This is an experiment involving, for my purposes, three parts: a source, an impenetrable plate 
bearing two slits, and a sink. The source may be taken to be the end of a beam pipe; the sink can 
be a simple camera. The new object is the slated plate. Now an intermediate sink function can be 
defined to cover the whole plate, thus allowing the incident particle amplitude to be gauged. But it 
is only at the two slits that any particles progress further. To implement this the sink at the plate 
is multiplied by a function, c(xp) , which represents the transmission cross-section at each xr . In 
its simplest form this is 

J 1 	, if xp lies in a slit; 

	

c(xp) 
	0 , otherwise. 

The intermediate sink then acts as a source according to 

SF(xp) c(xp)S_(xp) . 

Here, unlike in the previous sub-section, the original source does not contribute to the amplitude at 
the final sink (the camera). The final distribution is generated solely by the sources at the two slits. 
The sinks at the slits will act (i.e., have temporal extension) for exactly long enough for the camera 
to take its photograph. 

thus 

and 

(7.5) 

(7.8) 
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Another difference between this sub-section and its predecessor is in the way the empirical 
4-momentum is propagated. If amplitudes retained their 4-momentum when they pass through 
the slits then there would be no diffraction, 'and so, not much of an interference pattern. This 
is analogous to geometric optics. Obviously there must be some mechanism by which the various 
momenta are combined to produce some sort of diffraction. The simplest remedy would be to ignore 
the momentum probability distribution - by integrating it out. 

Alternatively, if there arc amplitudes 

Grp, 
	and 	(X p p2 ) 

then the diffraction could simply be the non-linear combination of these: 

	

S+  (xP)Pt +P2) = S-F (f p pi ) x 	(ft p ,p2) 	 (7.7) 

	

(xp,21,1 + P2) = S-1-(w p ' TO x 	p 	x S.F (xp ,p2) 	 (7.8) 

where the products on the right are obtained by some form of (invariant) component-by-component 
multiplication, e.g., 

	

8+(xp,N) x 8+ (ceP,132) = ect (z, Pt) scr (r,Ps)Ito (PI ± pa) + sci 	pi) so. (x, p2) uo (p, + P2)+ 

so,, T  (fe,p2) ',in 1-  (P1 + pa) + sn4 (x,P1) 	(x,P2) t/-...( (Pi + P2) 

Altering the source function like this is liable to change the normalisation, or, rather, require 
a modified normalisation procedure. Moreover, it appears that, having provided a general solution 
to Dirac's wave equation, it becomes necessary to contrive a new wave mechanism to deal with 
diffraction. 

H7.43 A last word 

The theory sketched here is qualitatively different from the usual approach to quantum theories: 
it is descriptive rather than predictive. Given the space-time arrangement of an experiment, the 
propagation of electrons and/or positrons is described. In only a limited sense is any progression 
of states evolved from an initial state. Abandoning evolution is necessitated by the imposition of 
Poincare-invariance; but this has the added advantage of removing the need for such convolutions as 
Wheeler's delayed-choice experiments, since the experiment performed and its result do not depend 
on whetc4 the choice is made -provided a choice is made. There is no elusive superluminal signalling 
to worry about. 

Bohm's revision of the Einstein-Podolsky-Rosen experiment ceases to be paradoxical because 
Bell's theorem is a comparison of the statistics of a number of different, though similar, experiments. 
The original EPR thought-experiment is not at all mysterious in the present context. 

The Problem of Locality ceases to be a problem the moment it is realised that operators may 
correspond to symmetries but they do not relate to real measurements. The absence of a position 
operator (or, which is the same thing, a multiplicity of such operators) is simply a consequence of the 
fact that no sub-group of the Poincare group is generated by position. This was always a somewhat 
odd little mystery, as somewhere near the beginning of each formulation a four-dimensional space is 
introduced that can only meaningfully be Minkowski space-time. So that, in producing conundrums 
about position and locality, these concepts have already been established fairly unambiguously. 

All told, I feel confident that this outline has more promise than previous assaults on the 
bastions of a 'relativistic quantum theory'. This is not least because there is a clear connection with 
that strange realm beyond theoretical ruminations where actual particles do their best to confound. 
There are, of course, many outstanding problems left to tackle. 
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Stopping Problem for Turing machines. The idea of predicting the activity or evolution of a quantum 
system step—by—step as it happens is nearly as absurd. There is no value to be found in retaining 
this relic of a discredited interpretation of problem solving in classical mechanics. On the other 
hand, just because a theory does not purport to predict a continuum of progress does not mean it 
lacks predictive power; it is just that the predictions come is the far more useful form of numbers 
that can be read olf a dial or photograph. 
13: [9] Feynman was not the first to propose that positive-energy states go forwards and negative-
energy states go backwards in time; he was largely pre-figured by Stfickelberg: 

E. C. G. St0ckelbcrg, La Mecaniqle do point materiel en thiorie de relatirik," et en thiorie des 
quanta, Helv. Phys. Acta 15 (1942) 23. 
18: [10] R. H. Good, Properties of the Dirac Matrices, Rev. Mod. Phys. i,7 (1955; 187-211. 
23: [ll] The standard repository of ail knowledge about propagators and 'relativistic' quantum 
mechanics is the first volume of 13jorken and Drell's similarly-named pair of textbooks. 

J. D. 13,jorkon, S. D. Drell, Relativistic Quantum Mechanics, McGraw—Hill 1964. 
30: [12] B. Podolsky, K. S. Kunz, lindamentals  of Electra dynamics,Marcel Dekker, 1909; pp 109-7. 

—8.33— 



Chapter 9 

A Conclusion 

and some doubts 

iE is imperative in science to doubt; it is absolutely necessary, for progress in 
science, to have uncertainty as a fundamental part of your nature. To make progress in 
understanding we must remain modest and allow that we do not know. Nothing is certain 
or proved beyond all doubt.' 

Richard Phillips Feynman. 
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The quantum mechanics of Schr3dinger, Heisenberg, et. al. is unsatisfactory for at least two 
reasons: it is a theory with the wrong invariance group; and the only way to discuss space-time de-
velopments is in terms of statistical measures of location, that is, by approximation. Von Neumann's 
rigorous mathematical formulation of quantum mechanics does not survive any attempt to rectify 
these faults. Thus, one way of viewing this thesis is as a progressively more radical movement away 
from von Neumann's axioms — only in chapter 2 are they used unmodified. 

As regards the pursuit of a theory with the 'right' symmetries and a clearer use of locality, 
chapter 3 is somewhat of an exception. For while the thought experiments of de Broglie and Einstein—
Podolsky—Rosen are discussed, the results apply, if anywhere, to the way 'quantum' systems become 
`classical' ones — the disappearance of interference fringes and distant correlations. The results are 
qualitative but do suggest the way in which this transformation may occur. 

In chapter 4 I have tried to cover the main lines of research into Poincare—relativistic quantum 
mechanics (with the exception of Q.E.D.), and hence locality. I have avoided field theories throughout 
for the unconvincing reason that I know too little about them — though what I have understood 
does not suggest that there is a solution of the problem of locality. 

A reasonable set of conclusions from my analysis of previous proposals is: 
1) There is no position observable. 
ii) The use of infinite hypersurfaces is more a mathematical artifice than a reflection of physical 

reality. 
iii) Despite the momentum representation Hilbert space found by Wigner, the consequence of 

the foregoing is that there will be no coordinate representation Hilbert space. 
Of course, even if these are reasonable there is no requirement to make them the foundation 

of a research programme — there are other theoretical requirements that can be altered or omitted. 
Indeed, this is what is done in the works analysed in chapters 6 and 7. In chapter 6 I have formally 
presented a quantum mechanics in which the notion of complete precision even in a single theoretical 
calculation is abandoned: that is, the theory does not produce unambiguous numbers. The result 
is almost certainly not a scientific theory as it cannot be tested — if it is not, in fact, just the usual 
quantum mechanics in disguise. 

In chapter 7 some recent work by Graham Derrick (based on an idea Dirac published in 1949) is 
considered. Here the hypersurface is a backward—in—time light-cone, so that evolution is generated 
by the momentum 4-vector. However, just as basing classical mechanics on light-cones, rather than 
constant-time hyperplanes, still gives the same outcome, there is no reason to suppose that using a 
different hypersurface in quantum mechanics will give a different theory. There remain a number of 
quite major difficulties in formulating quantum mechanics on backward light-cones; so I would not 
claim to have any really firm judgement to offer on this approach. My reason for not pursuing this 
proposal is, simply, that I could see no way of sensibly overcoming the numerous difficulties that 
beset it. 

By giving up the idea of a position observable, any positional relevance of quantum mechanics 
derives from the wave-function as a function of space and time. The mathematics presented in 
chapter 5 (an elementary proof is offered, which I developed because the 1974 paper by Gerhard 
Hegerfeldt is less than clear) strongly suggests that the symmetry group should not merely be 
the orthochronous Poincare group, but the full Poincare group — including time reflections. This 
implies using the, so-called, negative energy solutions of the wave equation; but then, these already 
have a legitimate place in the Feynnian—Stackelberg interpretation used in Q.E.D. The final piece 
of motivation for the development offered in chapter 8 is the desire to represent the process of a 
particle entering or leaving the experimental arena — something that occupies a volume of space and 
time, and so can not be represented as an initial-value problem. 

Finite space-time volumes are as convincingly covariant as any of the species of hypersurface, but 
have the advantage of finite size and a straightforward interpretation (as electron guns, photographic 
plates, etc.). The mathematics by which these come into use is not remarkably different from 
that used by Feynman in deriving Q.E.D.: the Green's function is found for the Dirac equation 
(for spin-half particles), but it is now used to solve the inhomogeneous problem. In deriving the 
Green's function a different rule is used to that developed by Feynman: now both positive and 
negative `energies' propagate forwards and backwards in time to accomplish the 'evolution' of both 
the electron and the positron. The solution is therefore determined both from the past to the 
future and vice versa. The amplitudes at the sources and sinks thereafter seem to have a reasonable 
interpretation. 

One consequence of this approach is that the momentum of a particle is once again an indepen-
dent quantity. Another is that a form of trajectory can be ascribed to quantum particles. 
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This is not a well•elab orate d theory; all I have managed is to stagger a few paces in the direction 
of a Poincare—relativistic quantum mechanics. There is, however, plenty of scope for the theory to 
be tested; especially by comparison with Q.E.D., with which there seems to be considerable conflict. 
If the exchange photon for electron-magnetic interaction is propagated by the advanced/retarded 
Green's function given in §4, it follows, seemingly, that no mass renormalisation is needed. 

My ignorance of Q.E.D. is such that there may be some simple fact that sinks the whole edifice 
that I have built. A ready illustration of my ignorance is revealed in the title of §4 — I am told 
there is no wave equation for the photon, yet the wave equation leads (with Feynman's rule) to 
the propagator for exchange photons, which, multiplied by l' A, , is also used in Q.E.D. formulae 
involving photon emission and absorption. 

The obvious next step is to venture a new version of Q.E.D. to see where it differs from the 
standard theory. 
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Appendix A 

The concepts of angular momentum and the centre 
of gravity in relativistic mechanics 

A. Papapetrou 
Praktika Akadeinias Athenon 14 (1939) 540-547 

The bra lay there, dead.' 

The Ganyinede Takeover by Philip K. Dick 

Translated by Helen Ferguson. 
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Note that all errors and infelicities in the following must remain the fault of 
the present author. 

1. For an isolated material system the Centre of Gravity Principle says that the centre of 
gravity of the system moves uniformly in a straight line; and the Angular Momentum Principle is 
that angular momentum remains constant in relation to any point. With the same formulation both 
principles remain applicable in relativistic mechanicsIll. 

In Newtonian mechanics the centre of gravity and its trajectory are absolutely definite, without 
any dependence on the coordinate system in which the movement of the material system is described. 
The question now arises as to whether this independence also exists in relativistic mechanics. The 
answer to this will occupy the major part of this work. 

First of all the centre of gravity and the angular momentum principles are summarized in a 
single conservation law. From this it is then deduced that, in general, the centre of gravity changes 
when the material system tinder observation has an internal angular momentum (that is, in relation 
to its centre of gravity); from this the behaviour of internal angular momentum under coordinate 
transformation can also be obtained. 

2. The proof works in a similar way to that of the energy—momentum conservation law; therefore 
we intend first of all to remind ourselves briefly of how this latter law is shown. Working from the 
equations which the material tensor, V, satisfies in special relativity, 

0T12 
0 

axI3  (1) 

these are integrated on a hyperplane 	= let = constant. If it is assumed that the material system 
has finite spatial size, the terms corresponding to the three spatial coordinates, a:0  (9 ,--. 1,2,3) 
disappear from (1), leaving finally: 

fri tIv=, (1 , 
8t 	 (2) 
dv = dz t  d a:2  dx,3  . 

The proof is completed using the equation, which can be proved by Gauss' Theorem, that the inte-
grals in (2) behave like the covariant components of a four-vector under coordinate transformations 

f dv = 	 (3) 

Here the first three components of C0  give the momentum, while the fourth gives the energy: 

(G1 , G2 , C5 ) = 
(3a) 

3. A third order tensor can now be introduced which satisfies equations of the form of (1). 
A constant reference point is chosen, let it be the point ($,,,), and each world-point, (a,,.), is then 
ordered by the vector: 

/cv = a 	ea • 

If the tensor 
= 1,r1 pr,f, 

is formed from In  and V, then (1) and (1) 

= 0 
8a:1 

(1) 

(5)  

(6)  

It follows from (6), exactly as in the energy—momentum theorem, that for t = constant. quantities 
derived by 

are independent of time: 

4,3= f ( 10n 	dv 

8Jna  
	 — 0 . 

at 

(7)  

(8)  
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Therefore, in a fixed coordinate system they are dependent only on the poirt of reference, (&,). 
Further, it can be proved in a similar fashion to the energy—momentum law that the quantities Jo 
behave like the components of a second order covariant tensor under coordinate transformations. 
This last characteristic has already been taken into account in (7) by the use of the usual tensor 
notation. The factor —i/c was introduced in (7) to facilate the results that follow. 

4. We pass on to the meaning of the tensor .4,13 . According to (7) it is derived from an 
antisymmetric tensor, with three purely spatial and three mixed (spatio-temporal) components. 
The mixed components, n, of the material tensor, which occur in the spatial components of (7), 
are related to the momentum density by: 

Ta = ieg, 	(a =1,2,3) . 

This implies in the case of J25, for example: 

= f (12gs — 1392) dv 	x 	dv . 

The three spatial components of .7,0  are thus identical with the components o: ihe usual 3—dimen-
sional angular momentum vector of the material system (for the chosen reference point Cn): 

(J2a,isi,./42)=17x gdv =7 	 (9) 

To interpret the mixed components, put 

e4= 	; 

also introduce the mass density, p, and the total mass, ps, of the system: 

P  = 	c2  
= f p dv  = 

T.:11  

E 
	

(1o) 

This implies that 

= iC[1.  pX, di) — 	— — r)Gn] . 	 (11) 

The integral in the bracket is related to the coordinates, en  of the centre of gravity, which is defined 
by 

J  px,, dv = salt' 	(8, = 50)) 

This gives, finally 
0,4 = 2C [(8,, — 	(t — r)G„1 	(ci = 1,2,3) , 

or, more symmetrically, 

44 = (en — ec,)(74 — (34 — e4)0a 
(G4  = icia and 54  = ict) . 

If it is assumed that t = r, it follows, for 

(

example from (11), that 

44 = 	P(X — C a ) dv = icMn  

The mixed components 4.4  are therefore, except for a factor of ic, identical with the static moments 
M, of the material system for the reference point (en) and the instant of time t = r. In accordance 
with the results i9) and (14), 1,„,4 will he described as the moment tensor of the material system. 

Firstly, if the conservation law (8) is applied to (9), it follows that the angular momentum of 
the material system remains constant: 

7= fIx -gclv= constant . 	 (15) 

(12)  

(13)  

(13a) 

(14)  
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It then follows from (13), as on the right-hand side only the quantity e, depends on t: 

do, 
=4.,„ dt (a=1,2,3) , (10) 

these relations then give the Centre of Gravity Principle. From the foregoing it has been shown that 
the Centre of Gravity Principle and the Angular Momentum Principle are simultaneously contained 
in the conservation law (8). 

5. Comparing (16) with 
ds4 
dt 	

• 
Fe 	= sep = 04  

shows that the centre of gravity moves on one of the straight lines parallel to the 4-vector G,, which 
can be described as the centre of gravity line of the material system. Let a point on the centre of 
gravity line be chosen as a reference point: 

SIX = 8; 

Then for t = t*: 
so  = 

consequently, according to (13a): 
= 0 	, 	 (17) 

which, because of (8), also applies for all t. Conversely, if the equations (17) are fulfilled for a 
reference point then this lies on the centre of gravity line. If t = r is taken then first of all this gives 

to = Set or 84  = e, , 

while, on the other hand, because (17) is assumed, then according to (13): 

	

scv  = e,„ 	(a = 1,2,3) ; 

thus („) is the position of the centre of gravity at a certain point in time t = z. This brings us to the 
statement of the principle: the centre of gravity line is the geometrical location of the world-point 
in relation to which the mixed components of the momentum tensor disappear. The conditions (17) 
are thus equivalent to the equations of the centre of gravity line. 

We will continue to consider how the components Jo  change with the reference point, (e„). 
Let (C„ k.„) be the new reference point. It follows immediately from (7) that 

-10(e+(5e) = 	(e) G,,56 — Gfi 5e,„ . 	 (18) 

It follows from this that the increment 640  disappears for a shift (:Se,) parallel to the vector (G„): 
on any straight line parallel to the vector (Ga ) the moment tensor remains unchanged. From the 
result just established, the characteristic of the centre of gravity line, previously found and expressed 
in (17), is supplemented in the following way: the angular momentum remains unchanged on the 
centre of gravity line. 

Let xo  be the coordinate system in which the momentum of the material system vanishesl: 

G01 = 002 = 003 = 0 
.E, 	. 

	

Go4 = 	= ZAC • 
f. 

I  The existence of xo  is equivalent to the demand for a time-like (G,,): 

2 	E2  
G,2,-1-G y d-C,

2 
 —7 <0 

and this is the condition for the energy in any coordinate system to remain constant. The opposite 
to (a) also appears consistent with (1), but probably has no physical meaning. 

(19) 

(a) 
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In xo  the material system is at rest as a whole and experiences only an internal motion. It follows 
immediately that in relation to this motion the angular momentum of the system is independent of 
the reference point: 

7(e 	6e) =7(e) = J, . 	 (20) 

This purely internal angular momentum is significant in the following observations. 
B. We come finally to an examination of the question of how the centre of gravity and the 

angular momentum behave under coordinate transformations. To do this, it is obviously sufficient 
to examine the transition from a system at rest, xo, to a system, x, in relation to which the rest 
frame, x,„ moves with relative velocity v = (v, 0, 0). For the sake of simplicity we will accept that 
the origin of coordinates in x„ coincides with the centre of gravity. Then the centre of gravity line in 
x„ is identical with the x‘,4—axis, so that for some point on this axis the moment tensor will, because 
of (17), take the form: 

J23  = Jos Jai = Joy Ji2  = Tc, r  otherwise .7,9  = 0 . 	 (21) 

We will calculate the moment tensor for the same reference point in coordinate system x. The 
transformation formula is: 

xei — 0504 xi — 
11.$2 

= Xo2 	53 = 508 
	

(22) 

54 — i8
'501 +x04  

From this it follows that the quantities (21) transform like the products of the appropriate coordi-
nates: 

J22 = Jox 

Joy
.181  

\ 	— g2  

J12 — 06,2  

J14 = 0 

J24 —  	
— /32  

J34 — 	
)92 

The components Jc,4  are now in general different from zero, thus the centre of gravity line in xo  is 
different from the centre of gravity line in x: there is no definite world line which could describe the 
motion of the centre of gravity. 

The centre of gravity line can easily be characterised for the coordinate system x. A displace-
ment, (6e0) such as in (18), which leads to the disappearance of .1,4  is all that is needed for this. If 
it is borne in mind that, according to (to) and (22), 

/2”v 

	

=  	
— /32  

G2  = Ga --- 0 

iicoc 

	

G4  	
— 

(24) 

(18) and (23) imply 

J14(b4)=-86G4+G1se4 

j'ej°'G 
,92  " 

J34(50 —+ Li 	6 G _ 132 	3 4  

Jo  

(23) 
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The conditions ,T,„4  = 0 can thus be fulfilled by the following displacement: 

v.T„, 
S6 = ey = po c 

6 e3 = = +v±-°1  
,u,c2  

Sei = de4 = 0 
The centre of gravity line in z goes through the point (25) and is parallel to the vector (G„). 
However, the displacement (25) is orthogonal to (G0), so that (25) produces directly the actual 

	

displacement of the centre of gravity line in the transition r, 	x. (25) can also be written as a 
vector: 

x 7,, 
Eo  

= 	 (25a) 

Next we will calculate the change in the angular momentum when the displacement (25) occurs. 
In other words, the internal angular momentum in coordinate system r. From (18) and (23) 

J23 (5e,) 	Je,a 
41 	j"    3201 = Joy"Vil 	 (26) 

J12(5 ) = J5z-V1  — 1192  

results. These formulae can be written more clearly if the internal angular momentum is decomposed 
into components orthogonal and parallel to a: 

j.11 

JJ_ = Je_t. 	ff2  

7. Formula (25a) shows that with a given u the largest displacement of the centre of gravity 
line corresponds to the case v 17a , where the following also applies: 

vJo  
= — 	:7;1Jo  . 

Poe" 
When it is taken into accounts  that v < c the following result may be deduced: all possible lines of 
the centre of gravity of a given material system form a cylinder whose axis is the centre of gravity 
line of the purely internal motion (that is the .r5—axis) while the bounding surface lies orthogonal 
to 70  in three-dimensional space, and has the following radius: 

r = — . 	 (27) 
Po 

If the material system has no internal angular momentum it follows from (27), or else directly from 
(25a), that its centre of gravity is independent of the coordinate system: its motion is described 
by a definite world-line. In any other case there is a range characterised by the size of (27) for the 
position of the centre of gravity. 

References with the page number on which they occur 
2: [1] Cf. M. von Laue The theory of relativity 1, §227, Vieweg, 1921. The Centre of Gravity 
Principle can be proved in a similar way. 

If the speeds within the system are of the order of a, and the linear dimensions of he system 
are of the order of A, the following applies: 

= 192R . 

If g ,..;‹ 1, the displacements of the centre of gravity tends, like t92 , to zero; and the same applies, 
from (26), to the change in internal angular momentum. This statement provides the connection 
with Newtonian mechanics, where the centre of gravity and the angular momentum are independent 
of the coordinate system. 

(25) 

(26a) 

Jo  

— 



Appendix B 

The construction of definite expressions for the par-
ticle density of the Klein—Gordon field 

Bernd Gerlach, Dieter Gromes, Joachim Petzold 
Zeitschrift fur Physik 204 (/961) /—// 

`In the midst of the word he was trying to say 
In the midst of his laughter and glee, 

He had softly and suddenly vanished away —
For the Snark was a Boojum, you see.' 

Translated by Helen Ferguson. 
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Note that all errors and infelicities in the following must remain the fault of 
the present author. 

§1 Introduction 

In a previous we'll') it was shown that the 4—vector assigned to the free Klein—Gordon field, 

'kW,*  

(z) = tie 	(x)i Is 	— (x)1l" (0)) 
	

(1.1) 

cannot be interpreted as an electric current density, as the 0—component of this vector itself is not 
positive-definite, even if for 0(x) only solutions of the Klein—Gordon equation for positive frequencies 
are admitted. This poses the problem of finding a more suitable definition of the current density. 
(Infinitely many) quantities, WI' (a), will be given which are: 

(1) are real, 
(2) transform like 4—vectors, 
(3) are expressed bilinearly through the Klein—Gordon field, 
(4) fulfil the continuity equation 

sro  (x) = o , 

(5) and, moreover, have a positive-definite 0—component if limited to positive frequency solu-
tions. 

Given these requirements, it can be seen that P' goes over to the current density of the Schriidinger 
equation in the limiting 'non-relativistic' case. The connection between current and field is now 
completely non-local. 

§2 The general form of the particle density 

The solutions, 0+ (a), of the free Klein—Gordon equation for positive frequencies can be generally 
written in the form 

r 
= (27)1 I a(k)e-` 	

with lo 	= a2  . 	 (2.1) 

The translations .11) (a) 	(x+ y) can then be generated through the transformation 

a(k) a(k)e+fk•••Y' . 	 (2.2) 

In the context of the solutions (2.1) the usual expression can be seen as a bilinear function of a(k): 

	

(x) )a (k) a (It' ) e+I(k‘•+4.)=` 	
k  2kI 	

. 
(27)3 	 2/zo  

If it is required that the total charge should be equal to the elementary charge, q„ 

f s°+(x)d%=, f 	• 

' We are using the metric goo  = 	= —g2o  = --goo  = 1. This further means that 

V) 
1a0 = 	k2 	IP axo = — • 

(2.3) 

me 
=  

h 
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Appendix B : The general form of the particle density 

	

the normalization condition 	

f la(k)12  kak  = 1 , 	 (2.4) 

follows for a(k). To establish first of all the form of current density, et., vil.ich we are concerned 
with, we will work from requirement 3 (§1), according to which it should be a bilinear function of 
the Klein-Gordon field (2.1). Considering the field as expressed by a(k), the r-ost general bilinear 
fmaialation is established by analogy to (2.3): 

eh' (x) = FP (k, x) a (k)a (W) 
2ka  214 

+i 

	

	
d3k dak' 

r  G°(k, le, x)a(k)a(le)gro 	 (2.5) 

HP (k,kr , x)a(k)a(141) d
3k d3k1  

73  
`Lk 214 

and an attempt is made to fulfil the other characteristics which are demanded of VI in §1, through 
a suitable choice of FN, Go, HN. The functions F, G, H should be continuous. For the purposes 
of discussion, a S-distribution can also be introduced into (2.5) in place of ape). Because of the 
transformation characteristic (2.2) of a(k), the dependence of F, 0, H on x can be written down 
straight-away: 

Fv (k, 	x) = Fu (k, k')ci("-1̀),•)'' 

GP (k, 	x) = 	(k,k1c-i(k.'+k'Oav  

flo (k, 	x) = .11° (k,  

The scalar quantity kph/0  and the two independent 4-vectors k" +k'/' and le - Po are formed from 
k and k' (the scalars kokp  = ic2  and PP hip  = s2  are independent of k and k'). Bearing in mind (2.5), 
only the part of 0 and H symmetric with respect to k and k' need be taken into account, we can 
write 

	

F" (k, 	= 	)Ft  (1z, 	+ (le - 	)F2  (le p  le) , 

	

(k, 	= 	PP )G9  (k, 	, 	 (2.6) 

	

(k, 	= (51̀  -Flo'llH2 (k p lf,P1) . 
If `81.:_(x) is split up by '81.1,(x) 	 -s(2) (x), where iil("0 (x) already satisfies the continuity 
equation g'('1))10  (x) = 0, given which the requirement that q2)  be divergence free imposes conditions 
on the functions F2 , 02 , H2. In particular the following must hold at the origin of coordinates: 

1 clak 
0 = 	= f (k - lo') 2F2 (k5kla(k)a(kl

2
-fro  

dale + 1.11)2  G2  (k,, ho')a(k)a(le) — —+ 	 (2.7) 
no  214 
	d35 d 3k' 

f 	k'12.112(k5lela(k)a(ki),- 
-7-2k0 2/4 

Where I,Ine convention qw e = (q)2  is used. (2.7) should be satisfied for all a(k), so that taking the 
special case: 

a(k)= A21408(k -k ),) ) +B2q2)5(k -k(2) ) 	 (2.8) 

(to be more precise, the 8-function should be replaced by a sequence of regular functions, f,,, with 
f,, — (5 converging in the distributional sense.). Then 

Aii) F2  (140)p  k5 ON) - 5(2))2  - 

	

A2 G2 (17,2 )-1n2  - B202 (1,72)4n2  - 2ABG2 	ip q20 (k(I) + 1'002+ 
	

(2.9) 

712H2  (1Z2  )1/Z2  - 
B2

H2  (1C2 )4s2  + 2ABH2  (k( op  kr,)) (ko +5(2))2  =0 

is obtained from (2.7). If the case B = 0 is considered, and A2  is chosen first to be real and then 
pure imaginary, 02  (,c2 ) = 0 = H2  (s2 ) is obtained. If the case A = B is considered, and A is first 
chosen to be real, then pure imaginary, and then such that A2  is pure imaginary, (2.9) gives: 

	

F2  (qt)1,1( 2)p )(li,(1)  - k(2) )2  = G2  (140  k(2)0)(k(i) 	k(2) )2 	
(2.10) 

= ib(qok/( 2)p)(k(i) + k(3))2  = o . 
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Appendix B : The general form of the particle density 

Now for k(j)  # 	(h(1) k(al)2 > 4a2  and (k(i) - h(a))2  < 0. Therefore from (2.10), F2 = G2 = 
H2  = 0 (for Fa (leg) this follows immediately fork t  k', however because F2  is continuous then it 
also follows for k = k', that is, for Fa (0)). 

If (2.5) is finally tackled again, writing the remaining term using (2.0) as Fo = (35 	P)F1, it 
can be seen that the function F1  must be real in order for Wi!, to be real. If now one writes 

F't = f 
(27)3  

the new expression for the current takes the form 

kr tr crk cE8W 

	

ii!E (x) = — j(kP 	(0k;)a(k)a(kle-1("- 	— 	(2.11) (2W 	 2ko 2k 

with a real f. Because kP hip  > n2 , the argument off always lies in the interval (tc2 ,00). The total 
charge becomes 

	

:41, (a) 	qj (0) f la (k)I2 
2 	

. 
k0  

If the normalization (2.4) is retained for a(k), the normalization rule f (0) = 1 follows for f . The 
total charge is independent of the function f! 

The limiting 'non-relativistic' case is characterized by a(k) only being appreciably different from 
0 for values of k with 1k! < a = roc/h. Fork and k' of this type, f (kr 	f (K) = 1. Thus 	(a), 
given by (2.11), becomes s'_:_(x), given by (2.3) (and this is recognizable as the relevant expression 
for the Schriidinger equation)'. 

§3 Explicit forms of definite particle densities 

Given the general structure of 1 (x), demonstrated in (2.5), and assuming the requirements 
1-4 to be fulfilled, the next task is to state a function f such that "e°,(x,) > 0 applies for all a(k) and 
any a". As 	(a) must be greater than or equal to zero for all a(k) which fulfil the normalization 
(2.4), this must also apply to the special case of a(k) = a(k)e-'7"x`' for fixed a": 

e° 	f ( k°  k'° )f (kP kpla(k)a(W) —
(131z eki 
2ko  2k10 

?_ 0 	 (3.1) 

If, conversely, (3.1) is correct for all 3(k), it also applies for the above special case, and thus it is 
always the case that feg°+ (x) > 0. 

So, if "i°4. is positive definite at a single world point then the same is true at all other points. 
It will now be shown that the inequality (3.1) is satisfied by the infinite set 

r 	+" 
= f ”(ie kp) = 

where v = 1,2, 3, ... can be usedt. 

Conversely, it follows from this that the 'relativistic' generalization is by no means unambiguous 
for 'non-relativistic' observables. 

t For functions of this kind one is lead to investigate the case of a single spatial dimension, where 
the simplifying transformation k =me sinhei can b e carried out. This then gives 

kayo -k1  r k11 =K 22  (2 COS112 a 	- 1) 
2 

k° 	
2 

W°  = 2fc cosh -  4.1  (COSILL cosh 2
u' 
2 	2 

+ sinh sinh 
2 ) 

and if coshu or sinhu is combined with the state function a, the sum of two integral operations is 
produced whose kernel still depends only on u - u', so that the Fourier transform approach can be 
used to solve it. 

(3.2) 
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Appendix B : Explicit forms of definite particle densities 

In (3.1) the functions a(k) = a(k, B,13) are decomposed using the (orthonormalized) spherical 
harmonics: 

Yr (61, — 
1

(1 — Hp (21 + 
(1+ imo14r  Pi  (cos u)e 

co +1 
(k) =E E ai,„(k)Ign (0,0) . 

i=o 

Substituting this into equation (3.1), the following is produced: 

E 	f(k. + ko)9,,,„„„,„(k, 	cti ,„,(k)ar, 	(41) 0  
2k5 

dk  ki
21
2 dk' 
4 

(3.3) 

in which 

g 	(k, 4') = f 1(0 41° — 4' cos i9)Yim (0, 01'1',"` (0', 	d(cos 0)4 d(,os 0') de 	(3.4) 

is introduced with cos f/ = cos!) cos 01  + sine sin 0' cos( — e). Similarly, f can be decomposed in 
terms of the spherical harmonic functions: 

co 
1(k°  ki°  — kk' cos [3) = E f (k, klYi°  (,8) , 

i=o 

which, by the Addition theorem for spherical harmonicsI21 produces 

,07711 (k,  le) 	(0, cb)yr 	 f(oe - 4! cos 10) =E E 
”r=—: 

If this expression is substituted into (3.4), the following is produced: 

‘1,-r.fr (k ,  kr )  s 

	

( 4, 4') = 	2- 	or 	
,, 	SIP 

+1  

/-4Trfi(k,  k'  
V21 + 1 ) 

ir Oln tn,  

+1 

	

= 	8„,,„,, f 	f (10 ki°  — le cos 13)131(cos /3) d(cos f9) 

Accordingly in (3.3) only orthogonal terms relating to 1 and m remain, and as the aim (k) can be 
chosen independently of each other, it follows as a necessary and sufficient condition that the kernels 

	

Ki(k, 4.1 ) = (4°  + k'°) f 	f(45  410  — 44,10 (t) dt for 1 = 0, 1, 2, ... 	(3.5) 

must be positive-definite. 
If for f we write f,, as introduced in (3.2), then first of all (3.5) gives 

	

(20)1+ 	+ 10 	
-F
110

(0 	
dt 

	

K1( 4 , k') — (0-F 1+,' 1u (kip+ (4 	) 

	

(,< 	t) 

Now in the case that z does not lie on the real axis between —1 and +1, which is so because 

a2 	ko 410 
= 	 

kk 	
> 1 , 

i 

the following formula applics131. 
1f + 1  Mt) dt 

Qi(g)= 72- 	z —t 

(3.6) 
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Appendix B : Explicit forms of definite particle densities 

Differentiating this v times we obtain the relation[41 

r+i 	dt 	2(-1)"  d" 	 2(-1)"  orzl  
.1 	(z - t)1+v - Q7 z) 	 (z2  - '2" 

producing the following representation for the kernel, K1: 

2(20)1+v (-1)v(k° k'°)  
(k, 1;') = 	 (.2 + kok.) 

	

{(,,Irk.  )2 	
Qr 	

"1 

It thus remains to investigate whether the inequality 

	ki° )Tz(r)ct(ki ) 	> 0 
r o o 	(k + v vo+v [(o+kr,k1- 	

kkr 
 1] 

is satisfied. Making the substitution 

1.= 
sink u 

lc°  = x coth 

this may be re-expressed as 

(-1)P  fj (sinheu 	Q`f (cosh(u +ul)b(u)b(iii ) du 	> 0 . 	(3.7) 
a o 

Where b(u) = ta-v a(k) cosh tc(sinhu)v-2 . The kernel henceforth depends only on the sum of the 
argument, so that the method of Laplace transforms, that is the expansion of exponential functions 
as series, suggests itself as the next step. 

In order to do this, consider the formula151 

Qr(ae + 	= (-1)-ei"/2 (Qr(x) — 1;-Pi(x)) 	< a < 1 . 

If trigonometric substitutions are made to give Pr  (cos 0) and gr (cos 0)161, then the following is 
produced: 

Q r (cos 0 + A)) 	\fir (_2y. eiv,  /2 (sin Or r(/ 	+1)  
r (t+a 	

c„e (3.8) 

with 
(1+0 „(1-+ 1 +11)„  

e a - 

valid for 0 < 8 < cc. 
In this context, define 

= 	P(cY)
n) 

- ct(ct +I)... (ci+ - 1) . 

Q'f (cos 0 4-i0) is single-valued and analytic in 0 as long as cos 0 lies in the upper half-plane, or 
on the real axis except where cos 0 = +1. The coefficients c„ behave for large like n2"-1. Thus 
the analytic continuation of (3.8) gives 

Qr  (cosh y + io)  = Qr (cosh y)  

cc co 
J f 	

( _,).(h. ,,,o)  

(1 +) 

r(i+u+i)  = 	(sinh y)” ene-(2"-i-1-1-"+1).Y for p > 0 . 
r(c+) 

(3.9) 



Appendix B : Explicit forms of definite particle densities 

(3.7) imposes the following condition on (3.9) 

(-1)' (sinh 	Qr(cosho = V7r2v (sinh 	r(i±v+  N-‘  ene-  (2.1  !+.+11, 

r(t-q) 

=+ ± x , 

	

r 	i) 	cn-1)c(2"+1'''Y ( ..i  = 0). 

(3.10) 

c,, c,„_1  < 0 for v = 0 , 	n = 1,2,... 

c,,_ 1  > 0 for v = 1,2,... 	, 	n = 1,2, .. . 

Thus for v =-• 0 the deity becomes indefinite. On the other hand, for v = 1, 2, ... the expression 
(3.7) with (3.10) (y = u 	is assumed) can be written 

00 

e —(2'+'+''' ) b(u) du 

0 

with 4'1  positive, from which the definiteness is clear. Since, for a function b(u) that is not equal 
to zero (basically, this means it does not disappear identically) not all integrals 

oo 

f
e—(2n+(+0b(u) du  

0 

can disappeart 71, and because all A0
">  aregreater than zero, 0+  is positive-definite for all world- 

points 	(x) > 0). 
From the f„ new functions that give more positive densities can be formed by the superposition 

using the formula 

(z) = 	(z) where cr„ > 0 
,=1 

In this way, functions of the form 

(k 	
cf,m2  )1+n 	

\s  (v — 1) (71 — 	fgkok/P) p kiP) — 	1,7
+ kph"' 	

(1+ C) 
\ji — n) 	21+' 

with —1 < C < 1 and n = 1, 2, .... 
In relation to a work by Pais and Uhlenbeckl5l, that has not yet been discussed, it is interesting 

to note that the function f (k,e) = exp(1— k k /n2) does not give a positive-definite density. This 
can be seen from the kernel formed from (3.5): 

/Co  (k, k!) 2(k°  +k'0 ) exp (1 
eel  2  sinh  

kk' 	n2  ) 

It is now easy to calculate: co  = 1 and 

E 

1-
\ 

If 

is taken, it follows that 

f Ks (3, a(k)a(3') dk dk' A3  + B2  k°  exp 
(1,0)2 ) / 2 

2 	7-72-  AB (a +P) exp (1 — L0 ) 

a(k) = —
A 

(5(k)d- —
2

5(k — 	, 
2 

This quadratic form can be negative for small h. 
The physical problems connected with the introduction of the suggested new current will be 

dealt with in a subsequent article. In particular it will be shown that the particle densities spread 
out causally. 
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Appendix B : Explicit forms of definite particle densities 

The appendix dealing with the 2—dimensional case has been omitted. 
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