
Bol. Soc. Paran. Mat. (3s.) v. ???? (??) : 1–15.
c©SPM –ISSN-2175-1188 on line ISSN-0037-8712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.51549
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abstract: We show that the integration by parts formula based on Malliavin-Skorohod calculus techniques
for additive processes helps us to compute quantities like E(LT h(LT )), or more generally E(H(LT )), for
different suitable functions h or H and different models for the cumulative loss process L. These quantities are
important in Insurance and Finance. For example they appear in computing expected shortfall risk measures
or prices of stop-loss contracts. The formulas given in the present paper generalize the formulas given in a
recent paper by Hillairet, Jiao and Réveillac (HJR). In the HJR paper, despite the use of advanced models,
including the Cox process, the treatment of the formulas is based only on Malliavin calculus techniques for
the standard Poisson process, a particular case of additive process. In the present paper, Malliavin calculus
techniques for additive processes are used, more general results are obtained and proofs appears to be shorter.
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Contents

1 Introduction 1

2 Models for the cumulative loss process 3

2.1 Pure jump additive processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Poisson integral processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Modeling the cumulative loss process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Integration by parts formula for pure jump additive processes 7

4 Main Results: pricing formulas for cumulative loss derivatives 9

4.1 Claim arrivals with deterministic intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Claim arrivals with random intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Conclusions 14

1. Introduction

The cumulative loss process is the main process in insurance modeling. It is described as a process
L := {Lt, t ≥ 0} such that L0 = 0 a.s. and

Lt :=

Nt
∑

i=1

Yi,

where N is a counting process that describes the arrival of claims and Yi, for i ≥ 1, are positive random
variables that describe the size or the amount of claims. So, cumulative loss processes are pure jump
processes, null at the origin, and with increasing trajectories. General references for the importance of
the cumulative loss process in Insurance are for example [13], [8], [12], [3] and [2].

The most simple case of cumulative loss process is the so-called Cramér-Lundberg model, where L

is assumed to be a time homogeneous Compound Poisson process that corresponds with the case where
N is a standard Poisson process with intensity λ > 0 and the random variables Yi are independent and
identically distributed with a certain probability law defined on (0, ∞) and independent of process N .

Of course, these hypotheses can be generalized. In the present paper we mainly consider two general-
izations. First of all, it is usual to assume N is a time inhomogeneous Poisson process with non constant
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intensity given by a positive function λ defined on [0, ∞). But more generally, we can assume N is a Cox
process, that corresponds with the assumption that the intensity is random and given by a stochastic
process with positive trajectories λ = {λs, s ≥ 0}. On other hand, the basic Cramér-Lundberg model
assumes that claim sizes are independent of the claim arrivals; here we will include possible dependencies
between the intensity process, the jump times and the jump sizes.

The different models of cumulative loss process considered in the present paper will be included in the
class of pure jump additive processes or in the class of conditionally pure jump additive processes. As we
will see, integration by parts formulas for these type of processes can be useful to compute expectations
related with the cumulative loss process under different frameworks.

Many contracts in insurance and reinsurance are written on the cumulative loss process. In general
their payoff can be described as H(LT ) where T denotes the maturity time of the contract and H is a
positive measurable function. So, the current price of the contract is given by e−rT

E(H(LT )) under a
certain probability measure and assuming a constant interest rate r ≥ 0.

Following [10], we describe some examples of payoffs of type H(LT ). The stop-loss contract, for
example, is an important tool in the risk management of an insurance company. It gives protection
against losses which are larger than a certain quantity thanks to a re-insurer that plays the role of
counterpart. For example, in a typical contract the re-insurer pays an amount of money if the loss
process exceeds a certain quantity K but with a maximum quantity M > K, that is,

H(LT ) = (LT − K)11(K,M ](LT ) + (M − K)11(M,∞)(LT ).

In this case, the computation of the expectation reduces to

E(H(LT )) = E[LT 11(K,M ](LT )] − KP(LT ∈ (K, M ]) + (M − K)P(LT > M).

Here, the main problem is to compute the term

E[LT 11(K,M ](LT )]

that is a particular case of E(LT h(LT )) for a certain positive function h.

Similar computations appear, for example, in the treatment of collateralized debt obligations (CDOs),
where tranches are defined with different Ki and Mi.

Another source of examples is risk measures. The most famous risk measure is Value at Risk Vα.
It is defined as the α-quantile of −LT for some prescribed level α ∈ (0, 1) with a change of sign. That
is, Vα(−LT ) := − inf{x : F (x) > α} where F is the cumulative probability function of −LT . Note that
being LT a positive quantity this implies that Vα(−LT ) is also a positive quantity.

A very useful risk measure in risk control is the so called expected shortfall. See for example [9]. It
is defined as

ESα(−LT ) := −E[−LT | −LT ≤ −Vα(−LT )].

Note that we can write

ESα(−LT ) =
E[LT 11{LT ≥β}]

P(LT ≥ β)
,

where β = Vα(−LT ). So, another time, the computation of a quantity like E[LT 11{LT ≥β}] becomes crucial.
In general we can say that the computation of a quantity as E(LT h(LT )) for a certain positive function

h is of crucial importance in managing risk in Finance and Insurance.
As it is explained in [10], in many cases, a more general situation is of interest. For example, we can

be interested in the problem to compute E(L̂T h(LT )), where L̂T :=
∑NT

i=1 Ŷi and the quantities Ŷi are
different from the quantities Yi. This is what happens when LT determines the activation of the contract
but the true claim is given by the quantities Ŷi. In the CDOs, for example, the recovery rate is not
necessary equal to the real loss. Frequently, Ŷi is a deterministic function of Yi, but not always. To cover
this type of problems in full generality we consider, in the present paper, pure jump additive processes
taking values in R

d, despite in the majority of applications, the case d = 1 will be enough.
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The purpose of this paper is to find integration by parts formulas, based on Malliavin-Skorohod
calculus techniques, that help us to compute quantities like E(H(LT )) for different suitable functions H

and different models for LT . This has been done in [10] for models with arrivals described by a Cox
process, using the Malliavin-Skorohod calculus framework for the standard Poisson process. In our paper
we use the Malliavin-Skorohod calculus framework for additive processes developed in [5] and we obtain
more general results with shorter proofs.

In Section 2 we describe a general additive model for the cumulative loss process L. Following [5], in
Section 3, we recall the Malliavin-Skorohod framework suitable for this type of processes. In Section 4 we
give formulas for computing E(LT h(LT )) or E(H(LT )) under different scenarios. Concretely, Theorem
4.7 in the present paper generalizes Theorem 3.6 in [10]. Finally Section 5 is devoted to conclusions.

2. Models for the cumulative loss process

2.1. Pure jump additive processes

In this subsection we recall the basic elements of the theory of additive processes taking values in
R

d. In the majority of possible applications d = 1 would be enough, but, as we have commented in the
Introduction, to treat some problems, we have to consider different jump amplitudes for any jump instant
to describe different amounts of money for the same claim. General results about additive processes can
be found, for example, in [4] and [15].

Let A := {At, t ≥ 0} be a stochastic process taking values in R
d and defined in a complete filtered

probability space (Ω,F,F,P). Recall that F := {Ft, t ≥ 0} is the completed natural filtration associated
to process A. Denote by E and V respectively, the expectation and the variance associated to P.

Set R
d
0 := R

d − {0}. Denote by || · || the Euclidean norm in R
d and by | · | the corresponding norm for

the case d = 1. For any ǫ > 0 define the sets Sǫ := {x ∈ R
d : ||x|| > ǫ}. Let us denote by B and B0 the

σ−algebras of Borel sets of Rd and R
d
0 respectively.

It is said that process A is an additive process if it satisfies the following conditions:

• It is null at the origin, that is, A0 = 0 a.s.

• It has independent increments, that is, for any n and any 0 ≤ t1 ≤ · · · ≤ tn, the random vectors
Ati

− Ati−1 are independent.

• It has right continuous trajectories with left limits, a.s.

• It is stochastically continuous, that is, for any c > 0 and t ≥ 0 fixed, and for δ ∈ R,

lim
δ→0

P(||At+δ − At|| > c) = 0.

It is well-known that any additive process can be characterized by the triplet (Γt, Σ2
t , νt) where

• Γ is a continuous function null at the origin taking valued in R
d.

• Σ2
t is a continuous function null at the origin taking values in the space of symmetric and non-

negative definite matrices of order d.

• {νt, t ≥ 0} is a set of Lévy measures on R
d such that for any set B ∈ B0 such that B ⊆ Sǫ for a

certain ǫ, ν ·(B) is a continuous and increasing function null at the origin. Recall that νt is a Lévy
measure if it is a positive measure null at the origin and

∫

Rd(1 ∧ ||x||2)νt(dx) < ∞.

If we assume, in addition, stationarity of the increments, A becomes a Lévy process, and the functions
of the triplet become linear, that is, we have the triplet (γLt, Σ2

Lt, νLt) for a certain triplet (γL, Σ2
L, νL)

that fully characterize process A. In this case, γL is a real vector, ΣL is a symmetric and non-negative
definite matrix and νL is a Lévy measure on R

d.
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Define Θ := [0, ∞) × R
d. Let us denote by θ = (s, x) the elements of Θ. For any T ≥ 0 and ǫ > 0

we introduce the sets ΘT,ǫ := [0, T ] × Sǫ with its corresponding Borel σ−algebras BT,ǫ. Note that
Θ∞,0 := [0, ∞)×R

d
0 and Θ = Θ∞,0 ∪([0, ∞)×{0}). When necessary, we identify [0, ∞) with [0, ∞)×{0}.

We introduce a measure ν on Θ∞,0 such that for any B ∈ B0 we define ν([0, t] × B) = νt(B). The
hypotheses on νt guarantee that ν is σ−finite and continuous, that is, ν({t} × B) = 0 for any t ≥ 0
and B ∈ B0. In particular, note that ν is diffuse on Θ∞,0 and a Radon measure, that is, it is finite on
compacts subsets of Θ∞,0. Moreover, the Lévy character of measures νt guarantee that for any δ > 0,
ν([0, t] × {||x|| > δ}) < ∞.

Given C ∈ B∞,0 we introduce the jump measure N associated to A defined as

N(C) := c{t : (t, At − At−) ∈ C}

where c denotes the cardinal.
It is well-known that N is a Poisson random measure on B∞,0 with

E(N(C)) = V(N(C)) = ν(C).

Moreover we define the compensated Poisson measure Ñ(dt, dx) := N(dt, dx) − ν(dt, dx).
The Lévy-Itô decomposition allows us to write

At = Γt + Gt + Jt

where Γ is a continuous function null at the origin and G and J are two independent additive processes
with triplets (0, Σ2

t , 0) and (0, 0, νt) respectively. That is, G is a centered Gaussian process with continuous
trajectories and covariance function Σ2

s∧t and J is a pure jump additive process that can be represented
as

Jt =

∫

Θt,0−Θt,1

xÑ (ds, dx) +

∫

Θt,1

xN(ds, dx),

where the first integral has to be understood as the almost surely limit

∫

Θt,0−Θt,1

xÑ (ds, dx) = lim
ǫ↓0

∫

Θt,ǫ−Θt,1

xÑ(ds, dx).

Recall that the limit is uniform with respect to t on every bounded interval.
In order to model cumulative loss processes we restrict our analysis to the family of additive processes

with piecewise constant trajectories. This is equivalent to assume that Σ ≡ 0,

∫

Θt,0−Θt,1

||x||ν(ds, dx) < ∞

and Γt =
∫

Θt,0−Θt,1
xν(ds, dx).

In this case,

Jt =

∫

Θt,0

xN(ds, dx)

is a pure jump additive process, with piecewise constant trajectories, defined on Θ∞,0 := [0, ∞) × R
d
0,

taking values in R
d and determined measure ν. This process J will be the main object of interest in the

rest of the paper. Note that it is a pure jump additive process with finite or infinite activity, but with
finite variation trajectories.

Recall also that

E(Jt) = E(

∫ t

0

∫

R
d
0

xN(ds, dx)) =

∫ t

0

∫

(0,∞)d

xν(ds, dx)

and
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V(Jt) = V(

∫ t

0

∫

R
d
0

xN(ds, dx)) =

∫ t

0

∫

(0,∞)d

x2ν(ds, dx),

provided the right hand side integrals are well defined.
These formulas describes clearly the role of measure ν.

A particular and very relevant case is the finite activity case, that is, when measures νt are finite for
every t. In this case, if we define Λt := ν([0, t] × (0,Rd

0), that is finite, we can write, for any B ∈ B0,

ν([0, t] × B) = ΛtQt(B)

with

Qt(B) :=
ν([0, t] × B)

ν([0, t] × (0,Rd
0)

.

Note that NΛt
(ω) := N([0, t] × R

d
0, ω) computes the number of jumps in [0, t] and it is a Poisson

process with cumulative intensity Λt. A more particular case is the case Qt = Q for any t ≥ 0. In this
case the process is a time-inhomogeneous compound Poisson process with cumulative intensity Λ and
jump sizes given by the law Q.

In Insurance, typically, losses are positive and the cumulative loss process L has increasing trajectories.
This can be described assuming ν is concentrated in [0, ∞)×(0, ∞)d. Therefore, J takes values in [0, ∞)d.

To restrict to this case we simply have to change R
d
0 by (0, ∞)d everywhere in the previous explanations.

Pure jump additive processes with finite variation increasing trajectories are also called subordinators in
the literature. In all the examples of the present paper we will assume J is a subordinator.

2.2. Poisson integral processes

In fact, pure jump additive processes J introduced above, can be put in a slightly more general
framework. I call them Poisson integral processes. See chapters 7 and 8 of [12] or Chapter 2 of [4] for
more information about this point of view.

Consider E a finite-dimensional euclidean space with the corresponding Borel σ−algebra B(E). Typ-
ically, in our case, E ⊆ R

k for a certain k ≥ 1. Consider a diffuse and Radon measure µ on E. Note
that the measure ν introduced in Subsection 2.1 is a diffuse and Radon measure on [0, ∞) × R

d
0. Given

a probability space (Ω,F,P) and a measure µ with the above conditions we can define a Poisson random
measure N on Ω × B(E) that is an integer-valued measure such that for any C ∈ B(E) with µ(C) < ∞,
N(C) is a Poisson random variable with mean µ(C) and for any C1, C2, . . . , Cm disjoint sets, the random
variables N(C1), . . . , N(Cm) are mutually independent.

Given a Poisson random measure N with mean measure µ and a measurable function g we can define
∫

E
gdN provided suitable integrability conditions. In the case E = [0, ∞) ×R

d
0 we can define the Poisson

integral process:

Jt(g) :=

∫ t

0

∫

R
d
0

g(s, x)N(ds, dx).

It is well-known that this integral is finite a.s. if and only if

∫ t

0

∫

R
d
0

(|g(s, x)| ∧ 1)µ(ds, dx) < ∞.

A particular important case is the case g ≡ 1. In this case the following generalization of the Poisson
process:

Nt = Jt(1) :=

∫ t

0

∫

R
d
0

N(ds, dx)

that is the number of jumps of any size in [0, t] that is well defined provided
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∫ t

0

∫

R
d
0

µ(ds, dx) = µ([0, t] × R
d
0) < ∞.

Note that if

∫ t

0

∫

R
d
0

|g(s, x)|µ(ds, dx) < ∞,

then,

E(Jt(g)) =

∫ t

0

∫

R
d
0

g(s, x)µ(ds, dx).

And if

∫ t

0

∫

R
d
0

max{|g(s, x)|2, |g(s, x)|}µ(ds, dx) < ∞,

then,

V(Jt(g)) =

∫ t

0

∫

R
d
0

g(s, x)2µ(ds, dx).

In particular, if µ(E) < ∞, we can write

J(g) :=

∫

E

g(s, x)N(ds, dx) =

M
∑

i=1

Zi

where M is a Poisson random variable with intensity µ(E) and Zi are independent and identically
distributed random variables with law

Q(Z ∈ B) =
µ{(s, x) : g(s, x) ∈ B}

µ(E)
, B ∈ B(R).

The case E = [0, T ] and µ = ℓ where ℓ is the Lebesgue measure, is the case of the standard Poisson
process. And the case E = [0, T ] × R0 with µ = ℓ × ρ where ρ is a finite measure on on R0 is the case of
an homogeneous compound Poisson process with intensity T ρ(R0) and jumps of law Q.

Note also that we can generalize the idea to the case µ([0, t] ×R
d
0) finite for any t ≥ 0. In this case M

and Q depend on t. M is a Poisson random process with intensity µ([0, t] × R
d
0) and

Qt(Z ∈ B) =
µ{(s, x) : s ≤ t, g(s, x) ∈ B}

µ([0, t] × Rd
0)

, B ∈ B(R).

The particular cases seen before correspond now with E = [0, ∞) and E = [0, ∞) × R0.

2.3. Modeling the cumulative loss process

In this subsection we show how pure jump additive process with finite variation increasing trajectories,
or more generally, Poisson integral processes

Jt(g) :=

∫ t

0

∫

(0,∞)d

g(s, x)N(ds, dx)

are a suitable framework for modeling a cumulative loss processes.
Recall that N is a Poisson random measure with mean measure given by a diffuse Radon measure ν.

Assume moreover that ν([0, t] × (δ, ∞)) < ∞ for any t ≥ 0, δ > 0 and g a non-negative function.
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Consider a time inhomogeneous cumulative loss processes whose claim arrivals follow an inhomoge-
neous Poisson process with deterministic cumulative intensity Λ and whose claim amounts are indepen-
dent and identically distributed random variables Xi with law Q. Recall that this is the basic model in
Insurance as presented for example in chapters 2 and 7 of [12]. Take d = 1 for simplicity. We can write

Lt =

NΛt
∑

i=1

Xi =

∫ t

0

∫ ∞

0

xN(ds, dx)

where in this case, ν(ds, dx) = dΛt × Q(dx).
A particular but quite general case is the case

Λt :=

∫ t

0

λ(s)ds

where the intensity process λ is assumed to be an a.e. strictly positive and locally integrable measurable
function defined on [0, ∞). If moreover Q has a density q we can write

ν(ds, dx) = λ(s)q(x)dsdx

on [0, ∞) × (0, ∞).
Concretely, the classical Cramér-Lundberg model corresponds with the case d = 1 and λ(s) = λ for a

constant λ > 0.

A more general and useful situation, also described in Chapter 1 of [12], is

Lt =

NΛt
∑

i=1

f(Ti, Xi) =

∫ t

0

∫

(0,∞)

f(s, x)N(ds, dx)

where f is a deterministic measurable function from (0, ∞)2 to [0, ∞). A typical and simple example where
claim amounts depend on jump times is the discounted cumulative loss process where f(Ti, Xi) = e−rTiXi.

Another typical case is shot noise, see also Chapter 1 of [12], where

St :=

Nt
∑

i=1

e−θ(t−Ti)Xi = e−θt

Nt
∑

i=1

eθTi Xi = e−θt

∫ t

0

∫ ∞

0

eθsxN(ds, dx)

where N is a standard Poisson process with intensity λ and ν(ds) = λdsQ(dx). Here f(Ti, Xi) = eθTi Xi.

So, in general, naturally, we will consider as a model of a cumulative loss process the integral

Lt =

∫ t

0

∫

(0,∞)d

f(s, x)N(ds, dx)

with N a Poisson random measure with mean measure ν under the established conditions previously.
Note that this model is very general and includes dependency between jumps times and jump sizes.

Of course, a more general situation, that will be considered later, is to describe the cumulative
intensity function Λ by a stochastic process. This is the case where N become a Cox process, also called
double stochastic Poisson process. In this case, it is possible to see the cumulative loss process L as
a conditional pure jump additive process or a conditional Poisson integral process, conditioned to the
cumulative intensity process.

3. Integration by parts formula for pure jump additive processes

Malliavin-Skorohod calculus for processes with jumps, concretely for Lévy processes, was introduced
for the first time in [11]. A good reference for Malliavin-Skorohod calculus for Lévy processes is [6].
The development of this theory for additive processes has been introduced in [18]. In this subsection we
follow closely the point of view established in [5].

Consider a pure jump additive process
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Jt =

∫ t

0

∫

R
d
0

xN(ds, dx)

with intensity ν as defined before. We can identify canonically the trajectories of J as elements ω of the
set ΩJ , introduced in [16], and defined as the set of finite or infinite sequences of pairs θi = (si, xi) ∈
(0, ∞)×R

d
0 such that for any m only a finite number of them belong to Θm := [0, m]×S 1

m
. This includes,

in particular, the no jump trajectory, that we denote by α. Recall that J is defined on its natural filtered
probability space (ΩJ ,FJ ,FJ ,PJ). A detailed construction can be found in [5]. Recall in particular that
the sets of FJ are the anti-images of the canonical projections on sets ΘT,ǫ of symmetric in time sets of
B(ΘT,ǫ).

We can define two families of transformations on ΩJ . They coincide with the transformations intro-
duced in [14]. A creation transformation

ς+
θ ω := ((s, x), (s1, x1, ), . . . , (sn, xn), . . . ),

that adds a jump θ = (s, x) to a trajectory ω and an annihilation transformation

ς−
θ ω := ((s1, x1), (ss, x2), . . . ) − {(s, x)}

that takes away a jump θ = (s, x) from a trajectory ω provided it is in the trajectory.
These two transformations are well defined. Note that ς+ is well defined except on the set {(θ, ω) :

θ ∈ ω} that has null ν ⊗ P measure. On this set we define ς+ω = ω. In the case of ς−, this operator is
the identity except on the same set {(θ, ω) : θ ∈ ω}.

Consider L0(ΩJ) the set of random variables on ΩJ and L0(Θ∞,0×ΩJ) the set of measurable processes
indexed by Θ∞,0. Following [5] we introduce the following operators T and S.

Definition 3.1. Given F ∈ L0(ΩJ ) we define

T : L0(ΩJ) −→ L0(Θ∞,0 × ΩJ)

such that

(TF )(θ, ω) := F (ς+
θ ω).

Operator T is a closed linear operator defined on the entire L0(ΩJ ). Note that F = 0 implies TF = 0.

Definition 3.2. Given a process u ∈ L0(Θ∞,0 × ΩJ) we define

S : DomS ⊆ L0(Θ∞,0 × ΩJ ) −→ L0(ΩJ)

such that

(Su)(ω) :=

∫

Θ∞,0

uθ(ς−
θ ω)N(dθ, ω) =

∑

i

uθi
(ςθi

ω)

and

(Su)(α) = 0.

The domain of the operator S, DomS, is the set of processes u ∈ L0(Θ∞,0 × ΩJ) such that
∑

i |uθi
(ςθi

ω)| < ∞.

Recall that L1(Θ∞,0), L1(ΩJ) and L1(Θ∞,0×ΩJ) denote respectively the spaces of integrable functions
with respect measures ν, P and ν × P.

It can be seen that L1(Θ∞,0 × ΩJ) ⊆ DomS. In fact, it is proved in [5] that S is a well defined closed
operator from L1(Θ∞,0 × ΩJ) to L1(ΩJ ). We also have, for u ∈ L1(Θ∞,0 × ΩJ ),

E(Su) = E

∫

Θ∞,0

uθ(ω)ν(dθ).
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Moreover, if u is a predictable process, we have

(Su)(ω) =

∫

Θ∞,0

uθ(ω)N(dθ, ω).

The main result in relation with operators T and S is the following duality relationship or integration
by parts formula.

Theorem 3.3. Assume F ∈ L0(ΩJ ) and u ∈ DomS. Then F · Su ∈ L1(ΩJ) if and only if TF · u ∈
L1(Θ∞,0 × ΩJ) and in this case

E[F · Su] = E

∫

Θ∞,0

TθF · uθ ν(dθ).

Proof. This Theorem is a straightforward extension, to the d−dimensional case, of Theorem 5.6 in [5].
But being a key result in this paper, for the sake of completeness, we repeat here the proof.

Let ΩJ
m be the set of sequences of pairs in Θm. Note that all these sequences are finite. Denote by

ω = (θ1, . . . , θn), any of them. Let θ ∈ Θm. Denote cm := e−ν(Θm). We have

E[F · Su · 11ΩJ
m

] =
∞

∑

n=1

cm

n!

∫

Θn
m

F (θ1, . . . , θn)(Su)(θ1, . . . , θn)ν(dθ1) · · · ν(dθn)

=

∞
∑

n=1

cm

n!

∫

Θn
m

F (θ1, . . . , θn)

n
∑

i=1

uθi
(ς−

θi
ω)ν(dθ1) · · · ν(dθn)

=

∞
∑

n=1

n
∑

i=1

cm

n!

∫

Θn
m

Tθi
F (θ1, . . . , θ̂i, . . . , θn)uθi

(ς−
θi

ω)ν(dθ1) · · · ν(dθn)

=

∞
∑

n=1

n
cm

n!

∫

Θn−1
m

∫

Θm

Tθn
F (θ1, . . . , θn−1)uθ(ς−

θn
ω)ν(dθ1) · · · ν(dθn)

= E(11ΩJ
m

∫

Θm

TθFuθν(dθ)).

Using dominated convergence we extend the result to ΩJ . �

Remark 3.4. Note that we have only assumed that measure ν is a diffuse and Radon measure on Θ∞,0

such that it is finite on any Θm for m ≥ 1. Therefore any Poisson integral process J with an intensity
satisfying these conditions satisfies the integration by parts formula proved above. Recall that to be a good
model for a cumulative loss process we have to assume moreover finite variation trajectories that means
that for a certain δ > 0,

∫ t

0

∫

||x||≤δ

||x||ν(ds, dx) < ∞, ∀t ≥ 0.

In the case d = 1, if we consider only positive losses the condition becomes

∫ t

0

∫ δ

0

xν(ds, dx) < ∞, ∀t ≥ 0.

4. Main Results: pricing formulas for cumulative loss derivatives

4.1. Claim arrivals with deterministic intensity

Consider a cumulative loss process {Lt, t ≥ 0} such that claims arrive independently with a cumulative
deterministic intensity Λt and positive claim sizes. This process can be seen as a particular case of a pure
jump additive process J as we have seen in Subsection 2.3.
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Fix T > 0. Let f ∈ L1(ΘT,0). As we have seen in Subsection 2.3, we can write

LT :=

NΛT
∑

i=1

f(si, xi) =

∫ T

0

∫

(0,∞)d

f(s, x)N(ds, dx).

The following theorem gives a formula to compute E[LT h(LT )] where h is a positive function such
that LT h(LT ) ∈ L1(ΩJ ). Of course this formula is valid for E[H(LT )] for any positive function H such

that E[H(LT )] < ∞, defining h(x) := H(x)
x

.

Theorem 4.1. Consider f ∈ L1(ΘT,0). We have

E[LT h(LT )] =

∫ T

0

∫

(0,∞)d

E[h(LT + f(s, x))]f(s, x)ν(ds, dx) (4.1)

Proof. Write LT = Sf . Note that being f a deterministic function, it is in particular, predictable.
Applying the duality formula in Theorem 3.3 and the definition of T in Definition 3.1 we have

E[LT h(LT )] = E

∫ T

0

∫

(0,∞)d

Ts,xh(LT )f(s, x)ν(ds, dx)

= E

∫ T

0

∫

(0,∞)d

h(Ts,xLT )f(s, x)ν(ds, dx)

= E

∫ T

0

∫

(0,∞)d

h(LT + f(s, x))f(s, x)ν(ds, dx)

=

∫ T

0

∫

(0,∞)d

E[h(LT + f(s, x))]f(s, x)ν(ds, dx).

�

Frequently, h is an indicator function of a set A ⊆ [0, ∞). In this case we have

E[h(LT + f(s, x))] = P(LT + f(s, x) ∈ A) = P(LT ∈ A − f(s, x))

that can be seen as a function of (s, x).

Consider now the more general case of different claim sizes, commented in the Introduction and in
[10]. We want to compute E[L̂T h(LT )], where

L̂T :=

NΛT
∑

i=1

g(si, xi) =

∫ T

0

∫

(0,∞)d

g(s, x)N(ds, dx)

with g ∈ L1(Θ∞,0) and assuming of course that L̂T h(LT ) ∈ L1(ΩJ). The following corollary it is
straightforward:

Corollary 4.2. We have,

E[L̂T h(LT )] =

∫ T

0

∫

(0,∞)d

E[h(LT + f(s, x))]g(s, x)ν(ds, dx). (4.2)

Let us see some concrete examples.
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Example 4.3. A first quite general example is the Cramér-Lundberg model with inhomogeneous intensity.
Consider d = 1 and ν(ds, dx) = λ(s)dsQ(dx) where λ is an a.e. strictly positive and locally integrable
function that models the intensity of the claim arrivals and Q is a probability law on (0, ∞) with finite
expectation, that describes the amount of claims that are assumed to be independent and identically
distributed. Take f(s, x) = x. So, we have

E[LT h(LT )] =

∫ T

0

∫ ∞

0

E[h(LT + x)]xQ(dx)λ(s)ds = ΛT

∫ ∞

0

E[h(LT + x)]xQ(dx)

where of course ΛT =
∫ T

0
λ(s)ds is the cumulative intensity.

If h is the indicator of an interval [K, M ] ⊆ [0, ∞) we have

E[LT h(LT )] = ΛT

∫ ∞

0

P(LT ∈ [K − x, M − x])xQ(dx). (4.3)

Example 4.4. Another example cited in the Introduction is the discounted cumulative loss process. In
this case f(s, x) = e−rsx. Consider the much more general case f(s, x) = a(s)b(x). In this case

E[LT h(LT )] =

∫ T

0

a(s)λ(s)(

∫ ∞

0

E[h(LT + a(s)b(x)]b(x)Q(dx))ds,

under the integrability condition

∫ T

0

∫ ∞

0

a(s)b(x)λ(s)dsQ(dx) = (

∫ T

0

a(s)λ(s)ds)(

∫ ∞

0

b(x)Q(dx)) < ∞.

This formula covers for example the case described in [10] where f(t, x) =
√

Λt

t
x.

Example 4.5. A more complicated example, also described in [10], is the following. Assume d = 2.

Assume we have two cumulative loss processes L and L̂ where the amounts of L are given by f(t, x, y)
and the amounts of L̂ are given by g(t, x, y), with (x, y) ∈ (0, ∞)2. Then,

E[L̂T h(LT )] =

∫ T

0

∫

(0,∞)2

E[h(LT + f(s, x, y))]g(s, x, y)ν(ds, dx, dy).

Many particular cases are covered for different choices of f , g and ν. For example the case treated in
[10] given by ν(ds, dx, dy) = Q(dx, dy)λ(s)ds.

Example 4.6. Not only cases on [0, ∞) × (0, ∞)d are covered by previous formulas. Also cases on
[0, ∞)k × (0, ∞)2 or R

k × R
d
0. For example the case every claim is marked by a vector (Ti, Di, Xi) where

D is the positive time between the event and its declaration or the event and its payment. Or in other
models, Ti is an arrival time and Di a service time. If T , D and X are independent and QD is the law
of D we have ν(ds, dr, dx) = QD(dr)Q(dx)λ(s)ds. In the general case, we can consider a general measure
ν. See [12], chapters 7 and 8, for concrete examples of these types.

4.2. Claim arrivals with random intensity

In Insurance, it is frequently interesting to assume random intensity in jump arrivals. So we need to
extend the previous formulas to conditionally additive processes. This is what we do in this section. We
follow some ideas of [17]. In relation with [10] we establish here a different probability space.

Let (Ω,F,F,P) be a complete filtered probability space that will be precised below. Assume we
have a family {ν(ω, ·, ·), ω ∈ Ω} of random diffuse Radon measures on Θ∞,0 under the conditions of
Remark 3.4. As we are modeling cumulative loss processes we consider here Θ∞,0 = [0, ∞) × (0, ∞)d.

For any B ∈ B∞,0, ν(·, B) is a random variable on (Ω,F,P). Of course we can consider Fν
∞, the complete

σ−algebra generated by these random variables, and F
ν the filtration defined by the σ−algebras Fν

t

generated for every t by the family {ν(·, B), B ∈ Bt,0}.
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Given ν(ω, ·, ·) we can construct a Poisson random measure N(ω, ·, ·) such that

Jt(ω) =

∫ t

0

∫

(0,∞)d

xN(ω, ds, dx)

is a pure jump conditional additive process with respect the σ−algebra Fν
∞.

Moreover, for any f ∈ L1(Ω × Θ∞,0,Fν
∞ ⊗ B∞,0, ν) we can consider the Fν

∞− measurable random
variable

∫ ∞

0

∫

(0,∞)d

f(ω, s, x)ν(ω, ds, dx)

and the Poisson integral process

Jt(f) =

∫ t

0

∫

(0,∞)d

f(ω, s, x)N(ω, ds, dx)

such that a.s.,

E[

∫ t

0

∫

(0,∞)d

f(ω, s, x)N(ω, ds, dx)|Fν
∞] =

∫ t

0

∫

(0,∞)d

f(ω, s, x)ν(ω, ds, dx).

Moreover, taking expectations another time,

E[

∫ t

0

∫

(0,∞)d

f(ω, s, x)N(ω, ds, dx)] = E[

∫ t

0

∫

(0,∞)d

f(ω, s, x)ν(ω, ds, dx)].

Denote by F
J the complete natural filtration generated by process J . And define F the filtration

generated by the σ−algebras Ft := FJ
t ∨Fν

∞. Of course J is adapted to the filtration F := {FJ
t ×Fν

∞, t ≥ 0}.

Assume moreover F := F∞.

All the previous statements are also true if we consider all previous objects defined on ΘT,0 and
measurable with respect to F

ν
T for a fixed T > 0.

For such a process J , if we assume ν(ω, ·, ·) are finite measures on any Θt,0, we can consider the
cumulative intensity process Λt = ν(ω, [0, t] × (0, ∞)d) and the associated Poisson process NΛt(ω)(ω) that
is a Cox process or a conditional inhomogeneous Poisson process.

So, we can extend naturally all the previous theory of pure jump additive processes to conditionally
pure jump additive processes, and all the previous integration by parts formulas, to formulas conditioned
to Fν

T for a fixed horizon T > 0. Concretely, the following theorem gives a conditional version of formula
(4.2). Formula (4.1) is a particular case.

Theorem 4.7. Given

LT (ω) :=

∫

ΘT,0

f(ω, s, x)N(ω, ds, dx) =

NΛT (ω)(ω)
∑

i=1

f(ω, si, xi)

and

L̂T (ω) :=

∫

ΘT,0

g(ω, s, x)N(ω, ds, dx) =

NΛT (ω)(ω)
∑

i=1

g(ω, si, xi)

with f, g and ν, Fν
T −measurable, the conditional version of formula (4.2) is given by

E[L̂T h(LT )|Fν
T ] =

∫

ΘT,0

E[h(LT (ω) + f(ω, s, x))|Fν
T ]g(ω, s, x)ν(ω, ds, dx)

Taking expectations another time, we have

E[L̂T h(LT )] = E[

∫

ΘT,0

h(LT (ω) + f(ω, s, x))g(ω, s, x)ν(ω, ds, dx)]. (4.4)
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Proof. Similarly as in the proof of Theorem 4.1, we write L̂T = Sg and we have

E[L̂T h(LT )|Fν
T ] = E[

∫

ΘT,0

Ts,xh(LT (ω))g(ω, s, x)ν(ω, ds, dx)|Fν
T ]

= E[

∫

ΘT,0

h(Ts,xLT (ω))g(ω, s, x)ν(ω, ds, dx)|Fν
T ]

= E[

∫

ΘT,0

h(LT (ω) + f(ω, s, x))g(ω, s, x)ν(ω, ds, dx)|Fν
T ]

=

∫

ΘT,0

E[h(LT (ω) + f(ω, s, x))|Fν
T ]g(ω, s, x)ν(ω, ds, dx).

�

The following example shows the interest of this Theorem in Insurance:

Example 4.8. Assume d = 2 and

ν(ω, ds, dx, dy) = λs(ω)Q(dx, dy)ds

where Q is concentrated in (0, ∞)2. Then, we have

E[L̂T h(LT )] =

∫ T

0

∫ ∞

0

∫ ∞

0

E[h(LT (ω) + f(ω, s, x, y))g(ω, s, x, y)λs(ω)]Q(dx, dy)ds

= E

∫ T

0

∫ ∞

0

∫ ∞

0

ϕh(ω, f(ω, s, x, y))g(ω, s, x, y)λs(ω)Q(dx, dy)ds

where

ϕh(ω, z) = E[h(LT (ω) + z)|Fν
T ],

for any z ∈ R. This coincides with Theorem 3.5 in [10].
Therefore,

E[L̂T h(LT )] = E

∫ T

0

∫ ∞

0

∫ ∞

0

E[(h(LT (ω) + f(ω, s, x, y)))|Fν
T ]g(ω, s, x, y)λs(ω)Q(dx, dy)ds.

If h is an indicator function of a set A, as in the case of a stop-loss contract (A = (K, M ] with
0 < K < M < ∞) we have

E[L̂T h(LT )] = E

∫ T

0

∫ ∞

0

∫ ∞

0

P[LT (ω) + f(ω, s, x, y) ∈ A|Fν
T ]g(ω, s, x, y)λs(ω)Q(dx, dy)ds.

In the computation of an expected shortfall (A = [0, β] with β > 0) and L̂T = LT and the formula
reduces to

E[LT 11A(LT )] = E

∫ T

0

∫ ∞

0

P[LT (ω) + f(ω, s, x) ∈ A|Fν
T ]f(ω, s, x)λs(ω)Q(dx)ds.

In the Cramér-Lundberg case, but now with random intensity, f(ω, s, x) = x and the formula becomes

E[LT 11A(LT )] = E

∫ T

0

∫ ∞

0

P[LT (ω) ∈ A − x|Fν
T ]xQ(dx)λs(ω)ds.
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Of course, all these formulas have practical applications when we assume concrete laws for the cumu-
lative intensity process, the time between jumps and the jump amplitudes.

Example 4.9. Moreover, note that we could consider objects like

Jt(ω) =

∫ t

0

∫

R
d
0

x11[0,τ(ω)](s)N(ω, ds, dx)

with τ a stopping time with respect the filtration F
ν . This would allow to model random expiry dates

determined by ν and so, to apply Theorem 4.7 to this situation.

Example 4.10. Note that in [10] a typical example of LT has jump sizes f(Λsi
, si, xi) where f is a

deterministic function and assuming independence between xi and Λsi
(Hypothesis 3.1). In the present

paper a typical jump size is f(ω, si, xi), that is, f(ω, si, xi) can depend on all the trajectory ω until T. A
possible applied example is the following. Given ν(ω, ·, ·) we can consider the process {ν(ω, [0, t] × B), t ≥
0} as the history of a client or group of clients related with certain aspects of interest given by B. Note
that if B = (0, ∞)d, {ν(ω, [0, t] × (0, ∞)d), t ≥ 0} is the process {Λt(ω), t ≥ 0}, that can represent the
whole history of a client or a group of clients. Therefore, we are allowing LT to depend on the relevant
history of the client or group of clients in a very general way, that is, random variables f(·, si, xi) are
simply Fν

T −measurables.

Example 4.11. Assume the measures {ν(ω, B), B ∈ Bt,0} are finite for any t ≥ 0. Define Λt(ω) =
ν(ω, [0, t] × (0, ∞)) and for any Borel set C of (0, ∞) define

Qt(C) =
ν(ω, [0, t] × C)

ν(ω, [0, t] × (0, ∞))
.

Therefore,

ν(ω, [0, t] × C) = Λt(ω)Qt(ω, C).

This means that in this model the jump arrivals are chosen by a Cox process of random intensity Λt

and the jump sizes xi are chosen according the law Qsi
for any i. This means the jump size depends on

time and on the random intensity process Λ. A model with jump sizes depending on time is considered
for example in [7].

Remark 4.12. Note that conditions on process Λ that determine the Cox process are very general. Any
process with increasing trajectories such that limt↑∞ Λt = ∞, a.s. is included. This includes the case Λ
is an additive subordinator as considered for example in [1].

5. Conclusions

In this paper we have proved that given a cumulative loss process L with random intensity and jump
sizes given by f , and a function h, we have the very general formula

E[LT h(LT )] = E[

∫ T

0

∫

R
d
0

h(LT (ω) + f(ω, s, x))f(ω, s, x)ν(ω, ds, dx)] (5.1)

that is a relevant quantity in Insurance and Finance. Here, claim amounts can depend on claim arrivals,
and both can be dependent on the random intensity process. The formula is a consequence of the
Malliavin-Skorohod duality formula given in Theorem 3.3, and it is a generalization of formulas in [10]
in the sense that Assumption 3.1 in [10] is unnecessary. The methodology applied in this paper shows
the mathematical power of Malliavin-Skorohod calculus for additive processes developed in [5] to obtain
results with interest in Finance and Insurance.
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