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Abstract 
 
 Electromagnetic tracking systems prove to have great potential for serving as the 

tracking component of image guided surgery (IGS) systems. However, despite their 

major advantage over other trackers in that they do not require line-of-sight to the sensors, 

their use has been limited primarily due to their inherent measurement distortion problem. 

Presented here are methods of mapping the measurement field distortion and results 

describing the distortion present in various environments. Further, a framework for 

calibration and characterization of the tracking system’s systematic error is presented. 

The error maps are used to generate polynomial models of the distortion that can be used 

to dynamically compensate for measurement errors. The other core theme of this work is 

related to optimal design of electromagnetically tracked tools; presented here are 

mathematical tools for analytically predicting error propagation and optimally 

configuring sensors on a tool. A software simulator, using a model of the magnetic field 

distortion, is used to further design and test these tools in a simulation of actual 

measurement environments before ever even being built. These tools are used to design 

and test a set of electromagnetically tracked instruments, specifically for ENT surgical 

applications. 
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Chapter 1:  Overview 

Background on Image Guided Surgery 
 

Image guided surgery (IGS) is a field that has had significant growth in recent 
years and is becoming more and more widely accepted by medical professionals. IGS 
systems allow the surgeon to have more information available at the surgical site while 
performing a procedure. In general, these systems display 3D patient information and 
render the surgical instrument in this display with respect to the anatomy and a pre-
operative plan. The 3D patient information can be a preoperative scan such as CT or MRI 
that the patient is registered to during the procedure, or it can be a real-time imaging 
modality such as ultrasound or fluoroscopy. Such guidance assistance is particularly 
crucial for minimally invasive surgery (MIS) where the procedure is performed through 
small openings in the body. MIS techniques provide for reduced patient discomfort, 
healing time, risk of complications, and overall patient outcomes; however, the sensory 
information available to the surgeon is greatly limited as compared with the open 
approach. It is especially crucial to have tracked surgical instruments that are presented in 
the proper position and orientation in the anatomical image on the display for the surgeon. 
Procedures where such systems are particularly useful and their use has gained 
momentum are percutaneous therapy, neurosurgery, and Ear, Nose, Throat (ENT) surgery. 
 

The key to an image guided surgical system is knowing where the patient and the 
instrument are with respect to each other; this is where tracking systems come into play. 
Spatial tracking systems are the base technology upon which almost all IGS systems are 
based, with the exception of ones that track the tools and the patient directly with real-
time imaging. Since the effectiveness of an IGS system is directly related to how 
accurately it can show the target anatomy with respect to the surgical instrument, spatial 
accuracy of the tracking system is paramount. The work here describes how it is possible 
to model and account for tracking error to optimize tracking for a particular scenario. 
Figure 1-1 shows some examples of commercially available IGS systems.  
 

BrainLab Kolibri 

 
brainlab.com 

Medtronic StealthStation 

 
stealthstation.com 

GE InstaTrak 

 
gehealthcare.com 

Examples of commercial Image Guided Surgery (IGS) systems 
Figure 1-1 
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Background on Tracking Systems 

Tracker Types 
 
 This section details a multitude of available tracking modalities. Obviously this is 
list is not exhaustive, but it gives an overview of many popular types of systems used for 
medical applications. The first two types mentioned, optical tracking systems (OTS) and 
electromagnetic tracking systems (EMTS), are the most common for IGS applications. 
 
 
Optical Tracking Systems 
 

Optical tracking systems are the most prevalent tracking systems used today for 
image-guided surgery; some example optical tracking solutions are shown in Figure 1-2. 
In general, these systems provide for a simple tracking solution that has high accuracy, 
fast sample rate, and relatively constant and isotropic measurement error. These trackers 
fall into two primary classes: active and passive. An active system works by flashing a set 
of markers, usually infrared LEDs (IREDs), and either by the pattern or firing sequence 
the markers are identified and tracked (e.g. NDI Optotrak). Passive systems themselves 
fall into two categories: 1) ones that use retro-reflective markers that show up clearly as 
balls in the cameras when infrared (IR) light from an external source is flashed onto them 
(e.g. NDI Polaris), and 2) ones with a stereo camera pair that picks up a pattern and can 
track it in space without the assistance of IR markers (e.g. Claron MicronTracker). 
Custom optical tracking solutions using stereo camera pairs are also potentially useful 
tools for instrument tracking and guidance. 

  
Northern Digital Optotrak 3020 

 

ndigital.com 

Claron 
MicronTracker 

 
clarontech.com 

Generic Stereo 
Vision 

 

Examples of optical tracking systems (OTS) 
Figure 1-2 
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Electromagnetic Tracking Systems 
 

Electromagnetic tracking systems (EMTS) are a completely different tracking 
modality than OTS systems. They have a field generator (FG) producing one or more 
distinct magnetic fields, and a receiver with one or more sensor coils that picks up the 
signals. They can determine the position and orientation of the tool with respect to the FG 
based on the sensor coil’s electrical measurements and a physical model of the magnetic 
field. The obvious advantage of these systems over OTS is the lack of a line-of-sight 
constraint between the FG and the sensor; this allows tracking of an object inside of the 
body directly at the distal end, as opposed to tracking markers at a distant handle as is 
typical when using optical systems. Unfortunately, EMTS have a downside; since the 
measurement is determined from a physical model of the magnetic field, anything that 
distorts the generated field (such as metal in an OR) will cause a decrease in accuracy.  

 
Examples of commercially available stand-alone EMTS are: NDI Aurora, 

Ascension miniBIRD, and Polhemus Fastrak. Some integrated ETMS solutions offered 
are: GE InstaTrak (and ENT specific ENTrak) systems, Medtronic AxiEM add-on to the 
StealthStation, and Johnson and Johnson Biosense-Webster CARTO XP for catheter 
tracking for cardiology applications. Figure 1-3 displays examples from each of two 
categories of EM trackers: stand-alone systems and integrated electromagnetically 
tracked IGS systems. 
  
 

Stand-alone EM Tracking Devices 
Northern Digital Aurora 

 
ndigital.com 

Ascension MiniBird 

 
ascension-tech.com 

Polhemus Fastrak 

polhemus.com 
 

Integrated EM IGS Systems 
Biosense (J&J) CARTO XP

 
biosensewebster.com 

Medtronic Treon 

 
stealthstation.com 

GE ENTrak 

 
gehealthcare.com 

Examples of electromagnetic tracking systems (EMTS) 
Figure 1-3 
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Encoded Mechanical Digitizers 
 

A predecessor to external tracking systems is the mechanical digitizer. Such a 
device generally consists of a passive arm with encoded joints; using the forward 
kinematics of the device, it is possible to accurately determine the tip location with 
respect to a known base frame. The image to the left in Figure 1-4 is of the Radionics 
Operating Arm System (OAS), and is shown with its IGS software interface in the 
background. The left-center image shows a modern “portable CMM” manufactured by 
Faro. This digitizer has extremely high accuracy, quoted at 0.0005”. The image below in 
the right-center of Figure 1-4 is of a newer style digitizer (Philips / Immersion 
MicroScribe) that is not passive; the joints are motorized such that it can provide force 
feedback to the interventionalist. At this point, however, it blurs the line between tracker 
and robot. Measurand has presented a new digitizer type, whose pose is determined via 
monitoring optical fibers inside. This ShapeTape is shown on the right.  

 
Radionics 

 OAS 

 
radionics.com 

Faro 
FaroArm 

 
faro.com 

Immersion 
MicroScribe 

immersion.com 

Measurand 
ShapeTape 

 
measurand.com 

Examples of mechanical digitizer units 
Figure 1-4 
 
 
Stereotactic Frames 
 

Using a stereotactic frame to help guide an intervention, a surgeon can avoid the 
use of electronics altogether for tracking in the OR. Such a frame is rigidly mounted to 
the patient or the OR table and can be aligned such that the guide will direct the tool 
directly to the target. These devices were precursors to electronic trackers, but can still 
prove useful for applications not requiring continuous tracking. Examples of such frames 
are shown in Figure 1-5. Such systems are used primarily for neurosurgery applications. 

 
Anatomics Biomodel 

 
anatomics.com 

Sandstrom Stereoguide 

 
sandstrom.on.ca 

Radionics CRW 

 
radionics.com 

Examples of stereotactic frames for cranial and neuro surgery 
Figure 1-5 
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Laser Rangers and Digitizers 
 

Another method of registration and tracking is accomplished through the use of 
laser range finders. Not so prevalent in medical applications, the devices emit laser light 
that is reflected back to the device. Based on time-of-flight information, the shape, 
position, and velocity of a target or surface can be obtained. Such a device is less useful 
for tracking tools, but can prove to be very useful for tracking and mapping a surface. In 
Figure 1-6 are examples of laser rangers. The left photograph displays the 3D Digital 
system being used for cortical shift tracking at Vanderbilt University [Sinha, 2003]. The 
right image shows a popular laser ranging system (LRS) for mobile robotics applications. 
In addition to lasers, ultrasonic and other sources can similarly be used for range finding 
and tracking. 

 
3D Digital Optix  SICK LMS 200 

  
[Sinha, 2003] 3ddigital.com sick.de 

Examples of laser rangers and 3D digitizers 
Figure 1-6 
 
 
Robotics 
 

A robot can also prove to be great tool for localization of a tool. Although not a 
passive tracking system, an accurately calibrated robot allows the user to very accurately 
place the end effector of the robot in a precise location within the calibrated workspace. 
Therefore, if the robot is being used to perform/assist with a procedure, then a byproduct 
of its use is that the tool pose can be relayed to a graphics workstation to render the IGS 
scene without any additional tracking. Shown on the left in Figure 1-7 is an image of the 
Integrated Surgical Systems (ISS) Neuromate robot with corresponding IGS software. 
This system allows for precise manipulation of neurosurgery instruments and replaces the 
need for any stereotactic frames to be affixed to the patient’s skull. A more modern 
robotic surgery system, Intuitive Surgical’s da Vinci robot, is shown on the right; it is 
more general purpose and is generally used for abdominal and thoracic procedures. 
 
 

 5



ISS Neuromate 

 
robodoc.com 

Intuitive Surgical da Vinci 

 
intuitivesurgical.com 

Examples of robotic surgery systems 
Figure 1-7 

 
Real-time Imaging 
 

Although not acting as a stand-alone tracking system, a further method of tracking 
is the use of medical imaging directly. A good example would be the use of fluoroscopy 
or ultrasound, where a fiducial pattern can be located in the image, and based on that 
information a registration can be made between the tool and the anatomy. Other 
modalities that lend themselves to real-time tracking are CT fluoroscopy and MRI. 
Sometimes, the use of real-time imaging is combined with a stand-alone tracking system. 
In Figure 1-8 to the left is a combination CT fluoroscopy suite, in the center is an 
optically tracked fluoroscope head, and to the right is a calibrated, electromagnetically 
tracked ultrasound probe used for 3D ultrasound imaging and robotic needle guidance 
from a previous work by Emad Boctor and myself [Boctor, 2004]. 

 
CT Fluoroscopy 

 
medical.siemens.com 

Tracked Fluoroscope 

 
traxtal.com 

EM Tracked Ultrasound 

 
[Boctor, 2004] 

Examples of tracking via real-time imaging 
Figure 1-8 
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Northern Digital Tracking Systems 
 

Northern Digital Inc. (Waterloo, Canada) is one of the largest providers of 
tracking systems for IGS applications. Many commercial systems use these products as 
their tracking component. In particular, the Polaris has proved to be almost ubiquitous 
when searching for an IGS solution. The Optotrak provides for significantly higher 
accuracy and proves to often serve as a “gold standard” for verification of a procedure 
and for research use. However, in order for it to be more practical in an OR setting, an 
Optotrak would most likely have to be installed in an OR due to the size and weight 
constraints. The Aurora is NDI’s contribution to the EM tracking field. Being an EM 
system, however, it is subject to the electromagnetic field distortion problem mentioned 
previously. Therefore, the primary focus of this work is to optimize the Aurora tracking 
system by: modeling the field distortion, compensating for the related tracking error, and 
‘optimally’ designing tracked tools for a given environment. 

 
Table 1-1 shows three systems that NDI produces along with their respective 

relevant system properties for comparison. This is a very good representative group of 
tracking systems on the market today. The Aurora system is an electromagnetic tracker; 
these trackers are generally the most convenient to use of the group due to their 
portability and lack of line-of-site requirements. However, they are unfortunately very 
prone to measurement errors due to EM interference and magnetic field distortion. Also, 
the Aurora system has a rather limited range and its accuracy, even in undisturbed 
environments, is not as high as its optical counterparts. If there were an equivalent of the 
Aurora in the optical tracking spectrum, it would be the Polaris. This is a very compact, 
easy to use optical tracking system; it allows for the use of both active markers on the 
tool that flash IR light themselves, or retro-reflective markers that reflect IR light emitted 
from the camera unit. IR sensitive cameras receive the light and triangulate the position 
of the markers, and in turn the associated rigid bodies. This is the most common tracking 
system today for IGS applications due primarily to its compactness and convenience. The 
Optotrak system is the “gold standard” of optical tracking; this system far surpasses the 
other two in terms of accuracy. It has been widely used for research applications, both on 
phantoms and clinically; however, the lower cost and much smaller bulk of the Polaris 
have resulted in the latter being adopted by many commercial IGS systems. 
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 Aurora 
Electromagnetic 

 

Optotrak Certus 
Active Optical 

 

Polaris 
Passive/Active Optical 

 

 
6 DoF 

Accuracy 
0.9mm RMS 

0.8o RMS 
0.1-0.15mm RMS 

(Ori. depends on baseline) 
0.35mm RMS 

(Ori. depends on baseline) 
Max. 

Range 
0.5M 6M(far) / 3M (near) 2.4 M 

Refresh 
Rate 

45Hz (1-5 sensors) 
22Hz (6-8 sensors) 

4.6 KHz (markers) 
1.5 KHz Max. (frames) 

60 Hz Max. 

# Tools 8 (5Dof ) 
4 (6DoF) 

512 Markers (3DoF) 
170 RB (6DoF) 

3+ Active 
9 Passive 

Weight 2.2Kg (FG) 18 Kg (Camera) 2Kg (Camera) 

Northern Digital tracking systems with comparative specifications 1

Table 1-1 
 

                                                 
1 All specifications are from the “Technical Specification” data sheets provided by the manufacturer. They 
are available at http://www.ndigital.com 
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Electromagnetic Tracking Systems 
 

Electromagnetic tracking systems have been available for quite a long time (10+ 
years). Early on, the focus for such systems was primarily virtual reality and motion 
capture for the computer graphics community. The recent surge in interest in image 
guided surgery applications has spawned a renewed interest in these tracking systems. 
There are several relatively new EMTS on the market today: NDI Aurora, Polhemus 
Liberty, Ascension microBIRD, GE ENTrak, J&J Biosense-Webster CARTO XP, and 
Medtronic AxiEM.  
 

Below is a representative set of several popular EM trackers on the market today 
listed with their respective specifications for comparison. This is by no means an 
exhaustive list: both Polhemus and Ascension have other EMTS models, and there are 
also other systems out there such as those from J&J, GE, and Medtronic that are 
integrated directly in IGS systems.  
 
 Northern Digital  

Aurora 1
Polhemus  
Fastrak 2

Ascension  
MiniBIRD 3

Field Type AC Field AC Field Pulsed DC Field 
DoF 5DoF / 6DoF 6DoF 6DoF 
Accuracy 
(5DoF) 

Pos: 0.7mm RMS 
Ori: 0.3o RMS 

N/A N/A 

Accuracy 
(6DoF) 

Pos: 0.9mm RMS 
Ori: 0.8o RMS 

Pos: 0.76mm RMS 
Ori: 0.15o RMS 

Pos: 1.8mm RMS 
Ori: 0.5o RMS 

# Sensors 8 (5DoF) 
4 (6DoF) 

4 per unit 
(can daisy chain) 

2 per unit 
(can daisy chain) 

Sample 
Rate 

45 Hz (1-5 sensors) 
22 Hz (6-8 sensors) 

120
# sensors

 Hz 120 Hz 

Range 500mm 1520mm +/- 760mm 
Sensor Size 0.8∅ x 10mm (5DoF) 23 x 28 x 15mm 10 x 5 x 5mm 

Examples of EM trackers with comparative specifications 
Table 1-2 
                                                 
1 Specifications from Northern Digital datasheet available at http://www.ndigital.com/aurora.php 
2 Specifications from Polhemus datasheet available at http://www.polhemus.com/fastrak.htm 
3 Specifications from Ascension datasheet available at http://www.ascension-
tech.com/products/microbird.php 
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EM trackers, for the most part, all have the same basic components. Figure 1-9 
shows the components of an Aurora system from Northern Digital (NDI). The key 
components of an EMTS are: 1) the field generator (FG) that contains coils of wire in a 
specified configuration to generate the magnetic fields, 2) the sensor that contains one or 
more coils of wire that produce electrical signals in the presence of the induced magnetic 
fields, and 3) the system control unit (SCU) that takes care of controlling the FG, 
receiving the sensor data and synchronizing it with the FG output, performing 
calculations, and communicating with the host PC. Some units, such as the Aurora, have 
a sensor interface unit (SIU) that takes some load off of the SCU and performs 
amplification and/or digitization of the incoming signal before reaching the main system 
control unit.  

 
Components of the Aurora EM tracking system 

(Image courtesy of Northern Digital Inc.) 
Figure 1-9 

 
The key to EM tracker functionality is the way in which it generates a set of 

magnetic fields from a set of coils in the FG, who’s relative poses are known from 
manufacturing. By generating these fields along different directions, and by 
synchronizing the output with the received sensor coil electrical response, it is possible to 
find the relative position and orientation (pose) of the sensor with respect to the FG using 
the electrical measurements and a physical model. The methods that these fields are 
generated generally fall into one of two categories: pulsed direct current (DC) fields and 
alternating current (AC) fields. A pulsed DC field generator creates sets of quasi-static 
magnetic fields in a given sequence. The sensor picks up responses from each distinct 
fields, after waiting for any transients to die out, and the magnitudes of the responses are 
used to calculate the position and orientation of the sensor. An AC FG, on the other hand, 
outputs a signal pattern on a high frequency carrier wave, and this pattern is repeated for 
each sample interval; amplitudes of the received signals are used to determine the pose. 

 
Each method (AC vs. DC) has its own benefits and drawbacks; the most 

significant of which are the way that their signals are affected by magnetic field distortion. 
A pulsed DC tracking system can be very susceptible to ferrous materials in the field and 
any external magnetic presence, including that of the Earth’s field, if it is not subtracted 
off. An AC system is not affected by external static (DC) magnetic fields; however, 
because of the AC nature of the signal, eddy currents are generated in nearby conductive 
materials. These eddy currents then generate their own magnetic fields that distort the 
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measurement field. There is debate as to which system is better, and it really comes down 
to testing them out in a given application to determine which is the right one for the job. 

 
One possible configuration of EM trackers uses three orthogonal field generating 

coils, and another three orthogonal receiver coils in the sensor. This arrangement allows 
for 6 DoF measurement, but also rather large sensors in general since three coils must be 
in the sensor. For clarification, in this 3x3 configuration, that means a total of nine 
distinct measurements are taken and used for calculation each sample period. This 
corresponds to all pairs of readings between each sensor coil and each FG coil. An 
example of this arrangement is the J&J Biosense-Webster tracked catheter, which is 
illustrated in Figure 1-10. As described in [Ben-Haim, 2004], three orthogonal field 
generating coils produce AC EM fields at three distinct frequencies. These signals are 
received by each of three orthogonal sensor coils, amplified, and sent to DSP unit. In the 
DSP unit, the signal intensities from each FG coil for each sensor coil is obtained. A 
possible method to do this would be filtering out the desired frequency and determining 
magnitude; another option would be to perform an FFT and see the magnitude of the 
signal at the 3 peaks. For the actual system, the signals are separated through cross 
correlation between the emitter and receiver signals in order to increase update rate.  

 
The images in Figure 1-11 are representative of the internal coil configuration of 

an EMTS field generator. These particular images are of the Northern Digital Aurora 
system; the left shows an illustration from an NDI patent [Kirsch, 2003a] describing the 
system, and the right shows the internal structure of the corresponding physical device. 
For this system, there are nine generating coils arranged in a tetrahedral configuration; 
sensors lie along each edge of the tetrahedron and on three of the four faces. With this 
configuration, it is possible to have only a single sensor coil and still resolve the pose in 5 
DoF, thereby making it possible to have very small sensors. There are a total of nine 
measurements between the FG coils and the sensor coil that are used to determine the 5 
DoF measurements (the lost DoF corresponds to rotation about the axis of the sensor coil 
which can not be resolved).  Measurements in 6 DoF can be achieved by combining two 
or more 5 DoF sensor measurements from sensors that are rigidly coupled to one another. 
 

 
Diagram of sensor coil configuration inside of a Biosense Catheter (left) 

and a flow chart showing the signal flow (right) [Ben-Haim, 2004] 
Figure 1-10 
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Diagram of FG coil configuration of NDI 
Aurora from [Kirsch, 2003a] 

Photograph of the corresponding coils in 
the Aurora field generator 

Figure 1-11 
 
 
 It is clear that there are quite a few possible combinations of ways that that EM 
tracking systems can be constructed. Primarily, the main choices are: the number of 
emitter coils, the number of receiver coils, the arrangement of both sets of coils, and the 
field type (AC or DC). The ‘ideal’ choice is really dependent of the tracking scenario; in 
general, DC fields are better for dealing with conductive, but non-magnetic materials near 
the working field, and AC fields are better for working in areas where there is a static EM 
field. As for coil configuration, in general placing three coils on the tool and three in the 
FG will give better accuracy and measurements can be resolved in 6 DoF, but the trade-
off is sensor size and/or complexity.  
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Literature Review 

Overview 
 
 The work discussed in this document is rather broad reaching, and its extent spans 
several fields of study including tracker error characterization, tracker calibration, tool 
design, registration, and error propagation. There has been much research presented in 
the literature in each of these fields that relates in one way or another to what is being 
presented here. This section details much of the related work and explains the 
relationship to the problem at hand.  
 

EMTS Tracker Calibration 
 
 There are several groups that have addressed the need for characterization and 
compensation of the measurement distortion of EMTS systems. Much of the early work 
is heavily weighted towards the computer graphics community, in particular for virtual 
reality (VR) and augmented reality (AR) applications where it is necessary to track head 
mounted displays (HMDs), motion of a body, or motion of a camera. There are two 
classes of papers in this field: 1) those that quantify the error of EMTS systems, and 2) 
those that propose some sort of error compensation technique. 
 

Early work studying the accuracy of EM tracking related to medical devices 
explores the accuracy of tracking ultrasound (US) probes for 3D US applications using 
the Ascension Flock of Birds (FOB) system [Leotta, 1995]. The work quantifies and 
compares the measurement uncertainty for configurations of one and two 6 DoF sensors. 
A study by [Birckfellner, 1998b] details the effects on EM tracking accuracy of materials 
and equipment commonly found in OR environment. They study the effects on both the 
AC field Polhemus system and the pulsed DC field FOB, and do so by measuring 
distortions in position and orientation of the sensors as disturbances are placed in the field 
and moved with respect to the sensors. Another similar study describes errors in an OR 
environment using an Ascension MotionStar system [Poulin, 2002]. Further studies of 
tracking system accuracy in the OR were performed by [Wagner, 2002]; this paper gives 
a relatively detailed statistical analysis of several trackers exposed to several OR-related 
factors while focusing primarily on cranial surgery. Another similar study uses the NDI 
Aurora system and is presented in [Hummel, 2002]. This paper also focuses on the 
distortion effects of medical equipment such as US scan heads and fluoroscopes.  

 
Recent work by Traxtal, a manufacturer of tracked instruments, and 

Georgetown’s ISIS Center also uses the NDI Aurora system to study the accuracy of EM 
tracked needles [Glossop, 2002]. In these trials, the NDI Polaris was used as a reference 
for determining measurement error, with the primary application being spinal nerve block 
needle placement. A clinical trial of several tracking systems (included one EM system, 
the GE InstaTrak) is described in [Cartellier, 2001]. This paper is unique because it deals 
directly with the scenario related to IGS; they determine the tracking error between the 
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tool and registered CT images based on patient anatomy. In particular, they study 
accuracy for ENT applications, which is the target application for my work. 
 

Related to the idea of studying the accuracy and mapping errors of tracking 
systems, the paper by Frantz, et. al. discusses more specific ways of quantifying error in a 
tracking system [Frantz, 2004]. Further work by the same group [Frantz, 2003] details 
several methods for quantifying the accuracy of EMTS in particular. They also include 
some error field characterization for the NDI Aurora system.  
 
 In addition to quantifying error, there are several papers that discuss methods of 
compensating for magnetic field distortion. Many techniques are proposed for such 
compensation, and also many different levels of depth with which compensation is 
addressed. Several simpler methods assume that error is only a function of the position of 
the sensor in the field; even further, some only deal with compensating for the 
translational component of the error. It is known that, at least for the EMTS systems with 
which we are working (NDI Aurora), that there is in fact a very strong relationship 
between the orientation of the sensor and its error. In fact, this error can be even more 
pronounced than that related to the sensor’s position in the field as will be seen later.  
 

The earliest work studying methods for calibrating EM trackers appears to be 
[Bryson, 1992]. After performing error analysis, this paper details how to calibrate the 
system with two methods: 1) by modeling error with a least squares polynomial fit, and 2) 
by using a weighted look-up table (LUT). The error analysis and compensation is only 
concerned with 3 DoF position error as a function of 3 DoF sensor position only. As 
mentioned earlier, much of the earlier work with EMTS calibration is concerned with VR 
and AR applications. [Livingston, 1997] discusses global polynomial fits vs. local LUT 
methods, but unfortunately there is little detail about the methods used. One variation in 
this technique is the use of a Faro digitizing arm (as shown earlier in the Encoded 
Mechanical Digitizers summary) as opposed to an OTS as the measurement reference. 
[Zachmann, 1997] uses Hardy’s Multi-Quadratic method (HMQ) for an interpolation 
technique optimized for scattered data. A hybrid calibration using the Ascension FOB 
EMTS and the Flashpoint OTS, based on LUT algorithms is described by [Birkfellner, 
1998a]. In all three of the previous works, the method is not concerned with orientation 
dependence on the error.  

 
[Kindratenko, 2000b] provides for a very thorough survey of EMTS calibration 

techniques including tri-linear interpolation, shape functions, polynomial fits, and HMQ. 
The same author also details a framework for tracker calibration, in particular for rotation 
error correction, for VR applications [Kindratenko, 2000a].  
 

The first paper to discuss EM tracker calibration for medical applications appears 
to be [Tian, 2000]. This paper also appears to be one of the first to take the orientation of 
the sensor into account when predicting the 6 DoF error. The authors use quaternion 
representations to parameterize the orientation in the polynomial fit, and they predict 
errors in the form of Euler angles. Methods for LUT interpolation are also discussed. 
Another paper attempting to present a calibration framework is [Ikits, 2001]. The authors 

 14



do a good job of quantifying error and presenting a polynomial fit, but again the 
orientation of the tool is not taken into account when predicting error. Depending on the 
tracker used, this may or may not be a valid assumption. 

 
From our group, [Wu, 2003b] discusses a complete framework for calibration of 

an EMTS using polynomial interpolation of 6 DoF errors in a 6 DoF measurement space. 
[Wu, 2003a] goes further to discusses novel ways of dealing with estimating the error as 
a function of orientation by subdividing the orientation space and using spherical 
interpolation between a set of basis orientations, thus simplifying the dimensionality and 
size of the problem considerably. [Nakada, 2003] is another work describing calibration 
though the use of a hybrid EMTS-OTS tracking system. Although the compensation 
algorithms used are rather simple, the salient feature of this paper is the incorporation of a 
temporal calibration component for dealing with time skew between measurements of the 
two systems. This is a critical component for dynamic/continuous data collection. Recent 
work in [Chung, 2004] does take into account 6 DoF error as a function of both sensor 
position and sensor orientation. They do so through the use of radial basis splines that are 
parameterized by the orientation quaternion and the 3D sensor position. 
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Tracker Tool Design 
 

Thus far, there appear to be no papers that directly discuss optimal tool design for 
electromagnetic tracking systems. However, there is similar work performed relating to 
optimal design of optically tracked tools. In fact, these are the works we hope to 
complement with the addition of mathematical tools for dealing with modeling EMTS 
tool tracking errors. There are two key fundamental differences between design of optical 
and EM tracked tools: 1) the error distribution is generally close to being isotropic for 
optically tracked sensors, and is generally far from it for EM tracked tools, and 2) OTS 
provide only the 3 DoF position of each sensor, while EM tools can provide those plus 
rotational information (an additional 2 DoF in the case of the NDI Aurora). 

 
The related work is presented primarily in a series of papers by Fitzpatrick, West, 

and Maurer. In general, they provide for ways to predict the accuracy of a tool tip for a 
given tool design in a given isotropic error field. Target registration error (TRE) is the 
name given to the error at the tip of a tracked tool; translational and rotational TRE is 
given as a function of the tool configuration and the fiducial localization error (FLE), 
which is representative to the tracking error of a point by the OTS. Therefore, this TRE is 
exactly what must be calculated for the EMTS case. Unfortunately, this is a much more 
complicated problem, primarily due to the lack of a nicely distributed, isotropic error 
assumption. Because of this, it is not possible to return a straightforward closed form 
solution for TRE as in the previous work.  
 

The first work in this series, [Fitzpatrick, 1998], provides for a good mathematical 
introduction to the point-based registration problem, and derives solutions for the 
registration error. It discusses TRE error for a tool alone, but then extends the work to 
determine the relative TRE when a coordinate reference frame (CRF) is introduced.  This 
is the key step because for any IGS scenario because the patient will be attached to a CRF, 
and it is critical to locate the tool with respect to this CRF. In [Batchelor, 2000], the 
authors study the anisotropically Weighted Orthogonal Procrustes Problem (WOPP), 
which is the mathematical term for a point cloud to point cloud registration. [Fitzpatrick, 
2001] is a detailed paper that describes the mathematics behind the registration problem 
and error analysis of this problem with applications towards tool tracking. It concludes 
with a nice, closed-form solution of TRE as a function of marker distribution and the FLE. 
Unfortunately, however, it assumes an isotropic error field; this may be a pretty good 
approximation for OTS, but does not hold so well for EMTS. The most recent paper, 
[West, 2004], provides for a very good overview of the useful information in the previous 
papers and specifically describes a design methodology for designing optically tracked 
tools. It also provides simulations and verification with experimental data collected using 
the NDI Polaris and the NDI Optotrak OTS. The next section gives an overview of papers 
that present the mathematics behind the above analysis, including statistics of the 
registration problem and error propagation techniques. 
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Related Analysis Work 
  

Determining the optimal rigid body motion to align two sets of points has been 
intensely studied by many groups, many for the purpose of image registration; this type 
of fitting is generally known as the Orthogonal Procrustes Problem. Very early work 
dealing with this problem was part of the PhD thesis of Peter Schonemann. His paper 
[Schonemann, 1966] discusses how to obtain a solution in the least squares sense to the 
orthogonal Procrustes problem. He describes the problem as minimizing the sum of 
squares error in the equation: B AT E= + , where E is the residual error from 
transforming point set A into point set B with the transformation T. In his later paper 
[Schonemann, 1970], he generalizes the problem to include scaling such that now the 
goal is to minimize the sum of squares error in the equation: B cAT J Eγ= + +  through 
the choice of a transformation T, contraction factor c, and a vector γ  to account for the 
central dilation. With a method of aligning to sets of points, the next step was to 
determine how accurate of a fit is being made. Therefore, in Sibson’s paper [Sibson, 
1978], the “Procrustes Statistics” reviews the methods of the procrustes problem and 
details the development of the objective function that is to be minimized. His following 
paper [Sibson, 1979] includes perturbation analysis into the solution and details how the 
effects of error in one configuration will affect the least squares solution of the optimal 
rigid body motion. He introduces the fact that if the introduced error εΖ in the alignment 
of point sets X and Y as in this equation: Y X Zε= +  are zero mean, normally distributed 
random variables, then the residual errors fall into a χ2 distribution. This is important for 
the later works that use this to determine the fiducial registration error (FRE) and target 
registration error (TRE) of a tracked instrument. This work was taken even further by 
Langron and Collins [Langron, 1985], who perform Analysis of Variance (ANOVA) on 
the procrustes statistics. Further work on Procrustes statistics in dealing with the 
registration of shapes was presented in [Goodall, 1991].  

 
A popular method for performing point cloud to point cloud registration is 

detailed in [Arun, 1987]. This paper gives a step-by-step algorithm for finding the 
optimal rigid body motion (translation and rotation) to align two point sets in the least 
squares sense using singular value decomposition (SVD). An issue with this method is 
the degenerate case where the determinant of the rotation is –1, this is the case of a 
reflection. Therefore, Umeyama details a related method that accounts for and corrects 
this problem [Umeyama, 1991]. 
 
 In addition to studying the errors induces in a point cloud to point cloud 
registration, the propagation of error though serial connections of frame transformations 
is also critical for determining tool tracking error. Therefore, there are several papers in 
this field that are very applicable to my work here. An early paper studying the 
propagation of covariances through frame transformations with applications to mobile 
robotics is presented in [Smith, 1987]. This is a classic paper that discusses how to find 
the approximate transformation (AT) of one coordinate frame relative to another and the 
covariance matrix associated with that transformation. Generation of this covariance 
calculation comes from two methods: Compounding two series transformations, and 
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Merging two parallel transformations. Further detail by Smith and Cheeseman is in 
[Smith, 1990].  
 

Xavier Pennec from INRIA has done much work in determining covariance 
propagation through frame transformations and also in 3D registration; the work is 
presented in [Pennec, 1995]. This document details two critical components of 
covariance propagation, including determining the covariance of a point cloud to point 
cloud registration, and further how this covariance propagates through frame 
transformations. It provides great mathematical detail with very good clarity for how to 
perform such calculations. Complementing this work and the earlier analysis work is a 
very recent paper by Leo Dorst. In [Dorst, 2005], the author details explicitly how to get 
the covariance of a best fit rigid body transformation aligning two 3D point clouds. This 
work is extremely useful and is directly applicable to my research. By combining the 
work of Dorst and Pennec, it is clear how we can determine the uncertainty of the tool 
frames and then determine how this is propagated through frame transformations. This 
allows us to determine how accurately we can track a surgical instrument with respect to 
a patient-fixed reference frame, which is exactly the key to the tool tracking scenario. 
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 Project Overview 
 
 It is clear that there is much work that can be done to optimize the use of electro-
magnetic tracking systems. The goal of this project is to: 1) address the issues of 
magnetic field distortion that affects the measurement accuracy of EM tracking systems 
and study its effects, 2) investigate methods of compensating for the measurement 
distortion, and 3) use this information in optimizing the design of EM tracked tools for 
particular scenarios. The overriding goal is to produce a method for optimal design of 
surgical tools and reference frames for ENT surgery. 
 
 My main contributions start off with characterizing the field distortion; this is 
done by gathering large quantities of measurements in the measurement volume and 
comparing them to reference measurements, which can be used to generate error maps. 
These maps are generated for many different environments, including the operating room. 
Data collection is performed using several different data collection techniques including 
optically tracked robotic collection and collection with a digitized stand-alone calibration 
fixture.  
 

Having the map of translation and rotation errors as a function of sensor position 
and orientation, this information is used to characterize the distortion field with 
polynomial models. I have done much work in the optimization of these polynomial fits 
in terms of computation speed, accuracy, and practicality. When making these models, 
there are many factors that affect the results; these include the number of data points 
collected, the spatial and orientation distribution of the data points, the order of the 
polynomial fit, and the number of base orientations that the orientation space is 
subdivided into. The goal is to determine the best solution to allow for practical 
compensation in an OR setting. This work is based off of the preliminary work by 
Xiaohui Wu [Wu, 2003c]. 

 
Using these distortion models, the core of my work involves design of tools for 

use with EM trackers. This includes analysis of error propagation through the tool 
registration frames, as well as determining the optimal sensor configuration that 
minimizes tool uncertainty. In addition to analytic work, I am presenting a tool simulator 
that uses this distortion model; this allows for an arbitrary tool and reference frame to be 
‘built’ and tested empirically in a virtual environment before ever even building the 
actual tools. All of this information is to be used to generate tool configurations that 
provide optimal tracking accuracy. 

 
The final aspect is to use the tool design and simulation framework to develop 

instrumentation for ENT applications. The idea is to generate a patient-fixed reference 
frame and several tools, including tissue shavers, pointer, and endoscopes that can be 
used as accurately as possible for image guided sinus surgery. 
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Chapter 2:  Measurement Error Analysis 

Overview 
 
 It is very important to be able to map the errors in the distorted measurement field 
of an electromagnetic tracker. Such a mapping is essential for understanding how error is 
affected by the environment, and is also critical for any further error analysis. As 
described in the Literature Review section of Chapter 1, the idea of mapping the 
distortion field has been studied fairly extensively by several groups. What we have done 
here is to further study the distortion fields for the Aurora EM tracker in a variety of 
environments using several different data collection techniques. This data is extensively 
analyzed to determine trends and relationships in the underlying error fields. 
 

This section first details how to accurately determine a map of the error field for 
an EM tracking system. The key to this procedure is registering the EMTS sensors to a 
ground truth that can be used for determining the reference position and orientation of the 
EM sensors. In our trials, the NDI Optotrak OTS is used as a reference for the NDI 
Aurora EMTS. This is a legitimate choice because the Optotrak has a specified accuracy 
that is about one order of magnitude better than that of the Aurora; also, it is effectively 
immune to field distortion. Therefore, the EMTS sensors are moved throughout the 
working volume of the Aurora, while being attached to an OTS rigid body (RB). By 
registering the EM sensors to this OTS RB, and registering the Aurora, which is also 
tracked by the Optotrak, it is possible to know the ‘ideal’ position and orientation of each 
sensor. These ‘ideal’ reference measurements are then compared to the sensor 
measurements obtained from the EMTS for the same time interval. This section details 
the registration procedure, methods of data collection, methods for determining the error 
map, visualization of the error field, and statistical analysis of the error. 
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Techniques for Mapping Error Field 
 
In order to generate a mapping of the error field of a tracking device, a data 

collection protocol must be chosen. There are many ways in which data can be collected, 
and in the first part of this section some of these techniques are discussed. As would be 
expected, the ‘optimal’ data collection technique is not necessarily universal; it will 
depend very much on the particular application. 

 

Dynamic vs. Static Data Acquisition 
 

Dynamic data collection refers to gathering data points as a hybrid, combined 
OTS-EMTS rigid body is moved though the measurement volume without stopping to 
collect the measurements from the two systems. This sounds ideal because it allows for 
an enormous amount of data to be collected in a very short time period. However, there 
are several problems that arise: 1) inherent decreased tracking accuracy for moving 
targets, 2) latency between the readings and the actual measurements, 3) temporal 
calibration between the two tracking systems becomes necessary, and 4) uneven 
distribution of data (if collected manually). It is possible to compensate for the problems 
two and three by performing a temporal calibration that measures the skew between the 
times that a measurement is available in each system. Prior work by Xiaohui Wu [Wu, 
2003c] discusses potential methods for performing such a temporal calibration to solve 
for the time skew. However, it was deemed that such a data collection was not ideal and 
instead a quasi-static approach is used. Here, the tool is placed in a given position, a 
reading is taken from both systems, and then it is moved to the next location. This is a 
particularly ideal scenario for robotic data collection. 
 

Robotic vs. Manual Data Collection 
 

Data can be collected using automatic means or completely manually. Manual 
data collection falls in two categories: 1) freehand where a calibration wand is waved in 
the field, and 2) guided data acquisition by a calibration fixture. The first method is fast 
and collects a lot of data, but it is prone to lower accuracy due to its dynamic collection 
nature and will result in an uneven distribution of data. The second method, which is 
described in more detail next, does provide for well-distributed data that can be collected 
in a quasi-static method; however, it is extremely tedious. Robotic data collection, on the 
other hand, is ideal for collecting a large number of data points with a predetermined data 
distribution using a quasi-static collection mode, while requiring minimal user interaction. 
Examples of two methods of robotic data collection used in our lab are shown in Figure 
2-1. The disadvantage of robotic collection is that it requires an entourage of equipment 
including the robot, PC, controller, and usually the Optotrak; therefore it is probably not 
practical for data collection in an OR setting, at least not with current configuration. 
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Plastic Lego Robot Data Collection 

  
[Wu, 2003c] 

LARS Robot Data Collection 

 

Examples of tracked robotic data collection techniques 
Figure 2-1 
 

Tracked (Hybrid) vs. Digitized (Stand-alone fixture) Registration 
 

Obviously, in order to get a mapping of systematic error, we need a ground truth. 
In general, the Optotrak OTS proves to be a great resource due its high accuracy that is 
about one order of magnitude better than that of the Aurora EMTS. When using the 
Optotrak for data collection, registration is performed as mentioned previously in the 
registration section. However, due to its lack of portability, the Optotrak is not ideal for 
bringing into an OR setting for digitizing the field. And a robot tracked by the Optotrak is 
especially prohibitive. Therefore, the Stand-alone (SA) calibration fixture was 
constructed to allow for portability. The system is digitized with the Optotrak, and due to 
its repeatability that is on the order of the Optotrak measurements, no external tracking is 
necessary during data collection to serve as a reference. Images of the tracked, robotic 
data collection equipment are shown on the left in Figure 2-2; on the right is the Stand-
alone fixture while being calibrated / digitized with the Optotrak. 
 

Tracked Optotrak Collection 
(with LARS robot) 

  

Digitized Stand-alone Collection 
 

 
Real-time tracked data collection vs. pre-digitized data collection 

Figure 2-2 
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Tracker Registration  

Overview 
 

The key to accurate error measurements is having an accurate reference 
measurement to pair with each sensor measurement. For this, the Northern Digital 
Optotrak 3020 is used as a ground truth reference for the actual measurement. However, 
it is clear that it is impossible for the Optotrak OTS to directly track the same sensor as 
the Aurora EMTS, so the two systems must co-registered together to form what is often 
termed a hybrid system. There are two methods of forming such a system that are 
described here: the first details the standard method of registering the Aurora system to 
the Optotrak so that we can get real-time reference measurements, and the second is to 
digitize a Stand-alone fixture with the OTS such that it can later be used without an 
external tracker to provide the reference. 
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Registration of Aurora to Optotrak 
 

The goal of registration is to determine the position and orientation of the EMTS 
sensors as measured by both the Aurora and the Optotrak such that they are in a common 
coordinate system. Figure 2-3 shows the frame transformations involved in determining 
the corresponding EMTS measurements and the OTS references.  

 

 
Hybrid OTS-EMTS tracking system frame transformations 

Figure 2-3 
 

The relationships that relate the position and orientation as reported from the two 
measurement systems is as follows: 

 
For Position:    For Orientation: 

 A i OTF a F b=
KK
i     A i OT iR m R n=K K  

 
Where: [ ,  Measured sensor position and orientation with respect to the  ]i ia mK K

 EMTS base frame (FG frame) 

[ , ]i ib n
K K  Sensor position and orientation with respect to the OTS tool RB  

 (known tool configuration)  

0 1
A A

A

R p
F

⎡ ⎤
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⎣ ⎦

K
⎥  EMTS base frame represented in OTS coordinates 

Note: This is really a composite frame as described later containing 
the measurement of the OTS RB on the Aurora FG unit and the 
transformation from that RB to the origin of the Aurora FG base. 
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 OTS tool RB frame as measured by the OTS 
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Registration of Aurora Sensors to Hybrid Rigid Body 
 

The above description jumps right in and makes the assumption that the position 
and orientation of the Aurora sensors with respect to the Optotrak rigid body (RB), 

, are known. These values can be calculated, but they cannot be measured or 
known directly without some computation as will be described below. 
[ , ]i ib n
K K

 
The combined RB used here was designed using CAD software and precisely 

manufactured in-house using our lab’s CNC machining capabilities with an angular 
accuracy of 0.05o and translational accuracy of 0.01mm. This is about one order of 
magnitude better than the OTS and about two orders of magnitude better than the EMTS, 
so the accuracy is sufficient for these trials. Therefore, sensor locations and orientations 
are assumed to be known accurately with respect to a fiducial pattern that was machined 
on the surface of the rigid body using the same process. After affixing an Optotrak RB to 
the calibration device, the Aurora sensor coils can be registered to the Optotrak rigid 
body (RB) by touching the known ‘divots’ on the device with a pre-calibrated Optotrak 
pointer. A diagram of the hybrid optical and EM tool is displayed in Figure 2-4. This 
particular configuration is used for digitizing the Stand-alone fixture. Figure 2-5 shows 
the same tool in the configuration used for hybrid tracked data collection. 
 

 
Aurora ‘pinwheel’ tool with six precisely placed 5 DoF  

sensors and attached to an Optotrak rigid body 
Figure 2-4 
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The pattern of sensors with respect to the device’s frame is described as follows: 
 

For Position:    For Orientation: 
i Bb F c=
K K

i i    i Bn R l=
KK  

 
Where:   

[ , ]i ic l
KK  Sensor position and orientation with respect to the frame of the physical  

tool (precisely known from design and manufacturing specifications) 
 
 [ ],B BF R p= K

B Transformation to the physical tool’s frame from that of the 
OTS RB (determined by digitizing known points tool with an OTS pointer) 

   
Plugging these transformations into the equations from before: 
 

For Position:    For Orientation: 
 A i OT B iF a F F c=K K

   A i OT BR m R R l= i

KK  
 
 

 

 
 

Hybrid OTS / EMTS calibration wand 
(Sensor configuration labeled on left) 

Figure 2-5 
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The hybrid electromagnetic-optical rigid body used for tracked data collection 
applications is shown in Figure 2-5. This comprises of six separate 5 DoF Aurora sensors 
placed in known locations and orientation in the ‘pinwheel’ tool. The sensors labeled 1a, 
1b, 3a, 3b, 4a, and 4b are used. The custom Optotrak RB containing six IREDs on two 
sides of a Delrin block is affixed to the Aurora tool and the EM sensors are registered to 
the OTS RB as just mentioned previously. The whole combined RB, known as the 
calibration wand, is mounted on a 1” square box fiberglass arm with nylon hardware, that 
is in turn held by the robot at a distance of at least 1 meter away. Figure 2-6 shows the 
LARS robot holding the calibration wand in front of the Optotrak. 

 
 
 

 
 

Combined 
OTS & EMTS 

Rigid Body 

Optotrak 
(OTS) 

Aurora 
(EMTS) 

 

 

 

 
LARS 
Robot  

 

 

 
Configuration for tracked robotic data collection 

Figure 2-6 

 27



Registration of Stand-Alone Fixture 
 

As mentioned earlier, the alternative to real-time external tracking is to digitize a 
calibration fixture that can place sensors in a set of known, repeatable poses that were 
previously digitized. Figure 2-7 shows the Stand-alone (SA) calibration fixture. It is 
constructed of laser cut 12mm thick acrylic plate mounted on a 1” square box fiberglass 
frame to enhance the rigidity; all mounting hardware is made of nylon. The Aurora unit is 
very repeatably mounted on a Delrin base. To the left is the configuration used for 
calibrating/digitizing the fixture. To the right is the fixture being used in the OR. 

 

Stand-alone fixture calibration Stand-alone fixture in an operating room 

y x 

Figure 2-7 
 

The following plots in Figure 2-8 show the placement repeatability of the surface 
(12mm thick acrylic plate with the gray LEGO sheet affixed) on the left, and the 
placement repeatability of the tool on the surface (12mm thick, ∅70mm polycarbonate 
cylinder with Optotrak RB affixed) on the right. The surface was placed five times at 
each of the six heights and the results show the standard deviation for each translational 
direction. The tool placement results, on the right, show the standard deviation of the 
positions for 25 trials at each of five random poses out of the 72 possible poses on the 
surface. This includes uncertainty in OTS measurements and LEGO block placement. 

 

Repeatability of tool placement using the Stand-alone fixture 
Figure 2-8 
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 Calibration of the SA system is different than that of the standard optical-EM 
hybrid tracker system. The registration of the sensors in the RB is performed as before to 
locate the Aurora sensors with respect to the Optotrak RB. However, to determine where 
these sensors are supposed to be at each possible configuration in the fixtures, as series of 
frame transformations must be determined. Figure 2-9 shows the setup with the frame 
transformations overlaid, where Red transformations are measured by the Optotrak and 
used for digitizing fixture, and Blue transformations are calculated, logged, and used for 
later data collection. Since the system has various discrete configurations, some of the 
frame transformations are a function of the current fixture configuration (i.e. the 
transformation from the base to the moving surface and the transformation from that 
surface to the tool). 
 

 
Frame transformations of the digitized Stand-alone calibration fixture 

Figure 2-9 
 
Where: 

{ }1 6i = …   Surface heights 

{ }1 72j = …   Tool poses 

{ }1 6k = …  Sensors in tool 
 
Fi is used to denote frames measured by the Optotrak 
Ti is used to denote calculated relative frame transformations 
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Note that FA is actually a composite transformation: 
AurRB FGOrigin

A OT AurRBF F F=  
 

Where: FGOrigin
AurRBF  is a known, constant transformation between the Optotrak RB  

frame on the Aurora FG and the Aurora FG’s base measurement frame 
 

AurRB
OTF  is the measurement for the frame of the Optotrak RB on the 

Aurora FG with respect to the Optotrak 
 
 
 

Writing out equalities that are equivalent to those in the earlier registration section 
for the calibration wand in the hybrid system, we get the following equations. These 
equations represent the ideal sensor positions and orientations for a given configuration 
of the SA fixture. 
 

For Position:     
 , , ( ) ( ) ( )base surf tool sens

i j k aur base surf toolb T T i T j p=
K

kK  
 
 
For Orientation: 

, , ( ) ( ) ( )base surf tool sens
i j k aur base surf tooln R R i R j Rz= k

KK  
 
Where: 

   ( )sens
tool B k Bp k R c p= +K K K  is the sensor position in the Optotrak RB’s frame.   

 
( )sens

tool B kRz k R l=
KK

 is the third column of a rotation matrix representing the 
orientation of the sensor in the Optotrak RB’s frame. 

 
 As before: 

[ , ]i ic l
KK  Sensor position and orientation with respect to the EM tool’s frame  

(known accurately from design and manufacturing specifications) 
 

( ,B B BF R p= K )  is the transformation from to the EM tool’s frame from that  
of the attached Optotrak RB. 
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A close-up photo of the hybrid rigid body and a schematic of its configuration is 
shown in Figure 2-10. This combined rigid body is based upon the same ‘pinwheel’ EM 
tool that was used in the previous section. To the left are design specifications for the tool, 
definitions of frames for the tool and Optotrak RB, and sensor numbering. To the right is 
a photograph of the actual device being used to digitize the SA fixture. All of the optical 
markers are unnecessary after the fixture has been digitized; the rigid body shown in the 
figure is removed for actual data collection for field characterization. If it were not 
removed, we have noticed that the optical markers can cause distortion and errors in the 
EM measurements. When not actively strobing/flashing the IREDs on the RB, the effect 
is present but limited; when the IREDs are flashing the error is more dramatic. 
 

 

  
Combined optical/EM rigid body for digitizing the stand-alone calibration fixture 

(Optotrak RB is removed after digitizing is complete) 
Figure 2-10 
 

 31



The sensor orientations that are attainable by using the ‘pinwheel’ tool in the 
Stand-alone fixture are shown in Figure 2-11. The fixture is arranged such that 
measurements of the 6 sensors on the tool can be taken at two separate tool orientations at 
each point in the grid. Therefore, a total of 12 orientations are achievable. These 
orientations, with respect to the FG, are consistent though the mapping of the volume. 
Since all 12 orientations are present for each of the 216 locations, we get a very even 
distribution of data. 
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Sensor orientations obtained using the Stand-alone fixture 

Figure 2-11 

 32



Field Distortion Mapping Results 
 

Mapping the measurement error present in the working volume of the tracker is 
key to understanding the effects of field distortion on measurement accuracy. This 
section displays results that include error fields and error analysis for various 
environments that were characterized using the previously mentioned techniques. These 
results show the systematic error as obtained through accuracy measurements; this is 
before any compensation is applied. 

 

 
1. NDI Collection Fixture 

 
2. Robot Data Collection 3. Stand-alone Fixture 

Data collection methods used for error field characterization 
Figure 2-12 

 
Data sets used here come from three separate sources: 1) measurements provided 

by Stefan Kirsch and Christian Schilling from NDI Europe, 2) measurements collected by 
the LARS robot in the lab and monitored by an NDI Optotrak as a reference, and 3) 
measurement collected using the digitized Stand-alone fixture. Figure 2-12 shows 
representative images of the three collection methods used. The common feature, 
regardless of the collection technique, is that at the end we have two sets of 
measurements for each point: a reference data set and a measurement data set. The 
coordinate system of the Aurora for all of the data sets is shown in Figure 2-13. 
 

 
Aurora coordinate system and working volume 

(Image capture from NDI ToolViewer software) 
Figure 2-13 
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Ideal Environment 
 

As a baseline for accuracy of the Aurora system, the data set provided by 
Northern Digital Europe (NDI Data Set #1) is used. This set, which includes EMTS 
measurements and calibrated OTS reference measurements for two separate sensors, was 
collected in as distortion-free an environment as possible and demonstrates the close to 
the ideal operation of the Aurora system. Therefore, the results that follow represent the 
systematic error of the tracker itself. 

 
 

Error Distribution 
 

Looking at the entire data set, the position and orientation errors for each of the 
11,704 measurements were calculated. The box plots in Figure 2-14 represent this error. 
On the left of each plot is the distribution of the magnitude of the error; the three columns 
on the right of each plot represent the distribution of the error along each component. For 
position, this representation is straightforward with the error being split into the X,Y,Z 
components. For orientation, this represents the angle corresponding to the X,Y,Z 
components of the Rodriguez vector representing the orientation. Note that the 
components are signed errors, and that the total error is an unsigned magnitude. For more 
detail on this representation, see the Definition of Error section in the beginning of 
Chapter 3. 
 
 

Measurement error in the ‘ideal’ environment separated into components 
(Red line at median, box extents at 1st & 3rd quartiles, whiskers extend to 1.5*IQR) 

Figure 2-14 
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Error as a function of distance from Field Generator 
 

By plotting the measurement error as a function of Euclidean distance from FG 
(Figure 2-15), it is noted that there is not a significant positive relationship for this data 
set. This result is counterintuitive and deviates from the results described by several 
earlier studies with EM tracking systems. There is quite a bit of literature describing error 
being proportional to the distance of the sensor from the FG, including [Birkfellner, 
1998], [Livingston, 1997], and [Leotta, 1995]. This discrepancy is most likely due to the 
fact that this is a relatively undisturbed environment and therefore the magnetic fields are 
actually very close to that of the physical model upon which the system was calibrated. 
Thus, the remaining error is mostly uncalibrated noise. The following plots and data 
analysis are based on all 5531 data points from one physical sensor, Sensor 0, used for 
the data collection. The other sensor produces similar results, but does have a slightly 
larger positive slope for the position error relationship. 
 

   
Measurement error plotted vs. distance from field generator in ‘ideal’ environment 

Figure 2-15 
 
 

For the above plots, the equations representing the displayed linear regression are: 
FG0.6094+4.473e-005*dpose =  

FG0.2662-2.966e-004*dorie =  
 
The p-values representing the relationships are: 

0.4213

0.0001
pos

ori

p value

p value

− =

− <
 

 
Therefore, for the experiments in an undisturbed, ‘ideal’ environment, we can say 

that distance of the sensor from the FG does not have a significant effect on the position 
error. We also see that distance from the FG does in fact affect the orientation error, but 
error and distance have a negative correlation. 
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Error Field 
 

The plots in Figure 2-16 are representative of slices though the vector field 
generated by plotting the 3D position and 3D orientation errors of 1000 random points 
from this data set in the appropriate locations, normalized into a 10x10x10 grid; all 
orientations are included. The results show that in the undisturbed environment, the 
systematic error, although small, has very high field curvature and large relative 
spatial variation. It is clear that the plots do not show a smooth pattern like that of the 
results obtained distorted environments. There is also very little consistency to the 
systematic distortion as is later verified when polynomials are fit to the distortion data 
and are unsuccessfully applied to an independent set of data points. Therefore, we are just 
about at the theoretical limit of the accuracy of the system and most of the remaining 
error is due to noise. However, it should be noted that this plot includes all orientations. 
When the measurements are grouped into similar orientations, the results do have 
somewhat more of a distinct pattern as can be seen later in Figure 2-21 and Figure 2-22. 
 

  
Vector flow fields representing the curvature of the error fields in three planes for 
data collected in an undisturbed environment (normalized into a 10x10x10 grid) 

Figure 2-16 
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Separating Undisturbed Set by Orientation  
 

In order to further investigate the error distribution, the sensor readings are 
subdivided by their corresponding orientations. Measurements are split such that they are 
grouped by measurements that fall within 20o (i.e. a 40o cone) of each base orientation; 
the definition of base orientations is given later when discussing error compensation, but 
for now they can be assumed to a set of 14 evenly distributed orientations.  The plot in 
Figure 2-17 shows the distribution of data points for Sensor 0; Sensor 1 has a similar 
distribution. Figure 2-18 shows the distribution of the base orientations used. 
 

 
Measurements from undisturbed data (NDI set #1) separated by orientation 

(grouped measurements within 20o of base orientations) 
Figure 2-17 

 
Base orientations: 
  X Y Z  
1:  1 0 0 
2:  0 1 0 
3:  0 0 1 
4:  0.57735 0.57735 0.57735 
5:  -0.57735 0.57735 0.57735 
6:  0.57735 -0.57735 0.57735 
7:  -0.57735 -0.57735 0.57735 
8:  -1 0 0 
9:  0 -1 0 
10:  0 0 -1 
11:  -0.57735 -0.57735 -0.57735 
12:  0.57735 -0.57735 -0.57735 
13:  -0.57735 0.57735 -0.57735 
14:  0.57735 0.57735 -0.57735  

Base orientation vectors used to divide the orientation space of the measurements 
Figure 2-18 
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Error Analysis by Orientation 
 
 The following plots represent the distribution of error as a function of orientation. 
Again, they are separated into groups of measurements that fall within 20o of each of 14 
base vectors. The mean errors are given by the height of the lower, blue bars. The upper, 
red bar spans one standard deviation past the mean error. The results are displayed for 
both of the two sensors used during this trial; Figure 2-19 shows the results for Sensor 0, 
and Figure 2-20 shows the results for Sensor 1. 
 
 

 
Error magnitude for Sensor 0 in ‘ideal’ environment separated by orientation 

Sensor: 0

Figure 2-19 
 
 

 
Error magnitude for Sensor 1 in ‘ideal’ environment separated by orientation 

Sensor: 1

Figure 2-20 
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The following figures show results similar to those of Figure 2-16 from above, but 
here the measurements were grouped by orientation. These results show three 
representative orientations and show the curvature of the error map for both position 
(Figure 2-21) and orientation (Figure 2-22). These plots show more of a pattern than in 
the previous plots where all orientations were grouped together, further showing that the 
orientation of the sensors plays an important part in predicting the error. However, these 
distortions are still much less smooth than those that will be shown later for the disturbed 
environment. 
 
 

 
Position error field curvature in ‘ideal’ environment for three orientations (2,11,12) 

Figure 2-21 
 
 

 
Orientation error field curvature in ‘ideal’ environment for three orientations (2,11,12)

Figure 2-22 
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Disturbed Environment 
 

To contrast the previous ‘ideal’ measurements, the same measurement fixture was 
used to collect a data set in the same 
environment, but the measurement field was 
artificially distorted with a 50 cm2 sheet of 
steel at the base of the working volume (See 
Figure 2-23). This data set is again provided 
by Northern Digital Europe (NDI Data Set 
#3). As before, included are EMTS 
measurements and calibrated OTS reference 
measurements for two separate sensors. The 
results here represent a highly distorted 
environment, and are pretty close to the 
worst-case results for the system. 

   Figure 2-23 
Distorted data collection configuration

 
Error Distribution 
 

Looking at the entire data set, the position and orientation errors for each of the 
22,529 measurements are calculated. The box plots in Figure 2-24 represent this error. As 
before, on the left of each plot is the distribution of the magnitude of the error; the three 
columns on the right represent the distribution of the signed error along each component. 
Notice that the errors are significantly higher for this data set. The RMS magnitude of the 
position error is 10.450 mm, and the RMS magnitude of the orientation error is 2.465 
degrees (0.0430 radians). 
 

  
Measurement error in the artificially disturbed environment separated into components 

(Red line at median, box extents at 1st & 3rd quartiles, whiskers extend to 1.5*IQR) 
Figure 2-24 
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Error as a function of distance from Field Generator 
 

The trends in Figure 2-25 are much closer to what would be the predicted result 
than those in Figure 2-15. Here, the error is in fact proportional to the Euclidean distance 
of the sensor from the FG. This correlates well with other group’s findings. The 
following plots and data analysis are based on all 11,295 data points from one physical 
sensor, Sensor 1, used in the data collection. 
 
 

  
Measurement error vs. distance from FG in artificially disturbed environment 

Figure 2-25 
 
For the above plots, the equations representing the linear regression shown are: 

FG-14.4363+0.0577*dpose =  

FG-2.1030+0.0098*dorie =  
 
The p-values representing the relationships are: 

0.0001

0.0001
pos

ori

p value

p value

− <

− <
 

 
 
Error Analysis by Orientation 
 
 The following plots represent the distribution of error as a function of orientation. 
Again, they are separated into groups of measurements that fall within 20o of each of 14 
base vectors. The mean errors are given by the height of the lower, blue bar and the upper 
red bar spans one standard deviation past the mean error. The results are displayed in 
Figure 2-26, and show the results for Sensor 1, the results for Sensor 0 are very similar.
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Error magnitude for Sensor 1 in disturbed environment separated by orientation 

Figure 2-26 
 
 The following figures (Figure 2-27 and Figure 2-28) show the curvature of the 
error field for this artificially distorted data set for position and orientation respectively. 
Although the magnitudes of error are much higher than those of the undisturbed set, 
notice that the field curvature is smoother and seems to be much easier to model. 
 

 
Position error field in disturbed environment for three orientations (2,11,12) 

Figure 2-27 
 

 
Orientation error field in disturbed environment for three orientations (2,11,12) 

Figure 2-28 
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Robotic Mapping (Lab) 
 

The following results represent those obtained though quasi-static data collection 
using an optically tracked calibration wand attached to the LARS robotic manipulator. 
Data is collected using a calibration wand that contains 4 sensors on it; the wand is 
attached in three configurations and the data is merged to form a data set with 12 distinct, 
consistent orientations. Since this is really a combination of three data sets, the 
measurement volumes do not completely overlap. 2000 points (12 orientations each) are 
selected at random for analysis from the total of 4037 collected measurements. Figure 
2-29 presents the magnitude of the measurements error as a function of distance from the 
FG. The regression equations representing trends in the data are overlaid on the plot. This 
is a rather undisturbed environment and the results show errors that are higher, but with 
similar trends to the ‘ideal,’ undisturbed environment from before. 

 

  
Measurement error plotted vs. distance from field generator  
for data collected with robot in the lab (2000 random points) 

Figure 2-29 
 
 As before, we plot in Figure 2-30 the error as a function of orientation. In this 
case, each orientation represents one of four sensors from one of three orientations. 

 
Error magnitude all orientations measured with hybrid robotic system in the Lab 

Figure 2-30 
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 In Figure 2-31 we show the trends in error when the magnitude is plotted against 
each of the three Cartesian components (X,Y,Z) of the sensor position in FG coordinates. 
The trends are clearer later when we present the data for the Stand-alone fixture because 
there we have a more even distribution of points in a larger working volume. However, 
the trends here seem to match those shown later fairly well. If comparing trends, note that 
the measurement volume (and x-axis scale) are not the same as later with the SA fixture. 
 

Position Error Distribution 

Orientation Error Distribution 

Distribution of error magnitude by X,Y,Z component of the sensor position 
(As measured in the Lab with minimal distortion using the hybrid tracked robotic system) 

Figure 2-31 
 

The following figures (Figure 2-32 and Figure 2-33) show the curvature of the 
error field for this natural environment in the lab as measured by the hybrid OTS-EMTS 
tracked system. This is the relatively undisturbed environment obtained in the lab when 
there is as little distortion as possible. These are three representative orientations out of 
the total of 12 measured. 
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Position error field in undisturbed environment for three orientations (2,11,12) 

Figure 2-32 
 

Orientation error field in undisturbed environment for three orientations (2,11,12) 
Figure 2-33 
 
 Figure 2-34 shows a representative plot of the position errors for a given 
orientation. This plot shows 216 points from the full set. The cones directions represent 
the direction of the error; their lengths represent the relative magnitudes. 
 

 
Representative plot of position error distortion map for a given sensor (Orientation 9) 

Figure 2-34 
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Stand-alone Fixture Mapping (Lab) 
 

The Stand-alone (SA) fixture allows for consistent collection of data sets just 
about anywhere. Each data set contains measurements of exactly (within the repeatability 
of the unit) the same set of sensor positions and orientations. The device collects 216 
evenly spaced measurements in a 32x32x20cm grid for each of 12 constant orientations; 
this is a total of 2592 data points collected per trial. 

 
The first set of results presented is representative data set from one of three trials 

in nearly identical configurations in our lab (NEB B26) with Aurora FG 100cm above the 
floor. These measurements are not intentionally distorted, however due to the 
environment around the Aurora the magnetic field still must endure some error-causing 
distortion. This is not an undisturbed ideal environment, but probably represents a 
reasonably realistic data collection scenario. 
 
 
Error as a function of distance from FG 
 

These following results are from one representative set of data collected with the 
SA fixture in the lab. They come from Lab Set #3, and this correlates very well with the 
other two data sets, Lab Set #1 and Lab Set #2, which were collected 5 months earlier. 
For this data set, 10 of the 2592 total data points were removed as spurious outliers, the 
remaining 2582 data points remain. 

 
Below in Figure 2-35 is a plot showing the error as a function of distance of the 

sensor from the FG again. Comparing this to the earlier two data sets for ‘ideal’ and 
‘disturbed’ environments, it appears that the slope of the regression lines fall in the 
middle of the two extremes as would be expected. Their respective equations are overlaid 
on the plots. 

 

 
Measurement error plotted vs. distance from field generator in SA fixture in the lab 

Figure 2-35 
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Error as a function of sensor orientation 
 
 As before, it is important to break the accuracy down by similar orientations. 
However, the method for grouping the orientations has changed; it is now much more 
straightforward. There are total of twelve orientations collected, and these orientations 
remain static throughout the experiment and among all of the experiments; these 
orientations come from six physical sensors that appear in two orientations each. They 
are numbered such that Orientation 1&2 are from Sensor 1, Orientation 3&4 are from 
Sensor 2, and so on. The average error magnitudes for each orientation and their standard 
deviations are presented in the bar graphs in Figure 2-36 for both position and orientation 
error. 
 
 

Error magnitude all orientations measured in SA fixture in the Lab 
Figure 2-36 
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3D Visual Representation of Errors (Lab Environment) 
 

Figure 2-37 displays the distributions of the position and orientation error in the 
measurement volume. The directions the components of the error; the magnitudes are 
normalized for each orientation to show the relative error distribution. 

 
Position Error Distribution 

  
Orientation Error Distribution 

 
Distribution and direction of measurement error separated by orientation 

Figure 2-37 
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Measurement Consistency 
 

These plots represent the results of three trials with the Stand-alone fixture in 
nearly identical configurations in the lab. The first figure, Figure 2-38, shows the overall 
errors for the trials, the vertical lines divide the data between each of the twelve separate 
orientations. The next figure, Figure 2-39, is a zoomed in version where only a single 
orientation with 216 data points is presented; here the vertical lines divide the 
measurement by their respective levels on the calibration fixture. The final figure in this 
series, Figure 2-40, is zoomed in even further and shows a single level’s 36 
measurements from a single sensor; here the vertical lines divide the data by theirs rows 
on the platform of the fixture. Points further to the right of the plot are getting further 
from the field generator; points close to the vertical lines are closer to the horizontal edge 
of the measurement volume. The purpose of these plots is to compare the consistency of 
the measurement between separate measurement trials of the field. It seems that the 
measurement are quite repeatable with the exception of a few very large outliers; if a set 
of measurements do not have three ‘+’ signs in one vertical line, the reported 
measurement exceeded the maximum value of the y-axis. Measurements that lie exactly 
on the abscissa (y=0) represent null / invalid readings for that particular point. Note that 
these collections were taken at different times, in slightly different environments, so the 
results should not be expected to be identical. 
 

 

  Ori. 1  Ori. 2  Ori. 3  Ori. 4  Ori. 5  Ori. 6  Ori. 7  Ori. 8  Ori. 9  Ori.10 Ori.11  Ori.12 

Data collection from three trials using SA fixture in Lab 
(Separated by sensor orientation) 

Figure 2-38 
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Level 4Level 2Level 1 Level 5 Level 3 Level 6 

Figure 2-39 
 

 

Row 1 Row 6 Row 5 Row 4Row 2 Row 3

Figure 2-40 
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Analysis of Error Distribution 
 

Here we study the distribution of error along each of the X,Y,Z components. The 
following scatter plots in Figure 2-41 show how the position and orientation error vary as 
a function of each of the components of the sensor position for the Stand-alone fixture in 
the Lab. This is important for determining the optimal portion of the Aurora’s working 
volume for doing measurements. 
 
 By examining the trends, the error seems to increase as the magnitude of Z 
increases (away from FG), and the error also seems to get worse as X (the height) 
increases. More interestingly, the error in Y (horizontal component) seems to be at a 
maximum in the center of the volume. These trends can be compared to those obtained 
when collecting data in the OR as shown in Figure 2-48. It is clear that the trends are 
similar, but less pronounced in X&Y, and much more pronounced in Z. 
 

Position Error Distribution 

 
Orientation Error Distribution 

 
Distribution of error magnitude by X,Y,Z component of the sensor position 

(As measured in the Lab with no additional distortion using the Stand-alone fixture) 
Figure 2-41 
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Stand-alone Fixture Mapping (Disturbed Environment) 
 

Here we show results obtained using the Stand-alone fixture in an artificially 
disturbed environment. Distorting the field with instruments is tricky to do realistically 
because the tool must remain still while the SA fixture is moved into all of its 
configurations. For the first results, shown in Figure 2-42, a stainless steel hip implant 
was placed between the Aurora FG unit and the measurement volume. Comparing these 
results to those of the undisturbed lab environment, there is very little difference. If the 
tool were in the middle of the field, the distortion would probably be much more dramatic. 
For the second set of results, a 2mm thick, 450x450mm Aluminum sheet was placed 
horizontally under the data collection region in the SA fixture at a height of 200mm 
below the Aurora unit. Notice that these results, shown in Figure 2-43, appear to correlate 
quite well with the highly disturbed NDI Set #3 shown in Figure 2-26 (Note that the 
orientations do not directly correspond between the two sets). 
 

Hip Implant Distortion 

 
Error magnitude for all orientations measured using SA fixture with distortion 

Figure 2-42 
 

Metal Plate Distortion 

 
Error magnitude for all orientations measured using SA fixture with severe distortion 

Figure 2-43 
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Stand-alone Fixture Mapping (Operating Room) 
 

This data represents the results from data collection in the operating room using 
the calibrated Stand-alone fixture. This 
is the same OR used for many ENT 
procedures at Bayview Medical Center 
by Dr. Masaru Ishii. The room 
configuration is similar that of a surgical 
procedure, except for the lack of 
instruments, patient, and endoscope 
controller. This experiment was set up 
as shown in Figure 2-44. The following 
results, as expected, show significantly 
higher errors than those from similar 
data collections in the lab. 
 

 Figure 2-44 
 
 

Stand-alone fixture in operating room

Error as a function of distance from FG 
 

Below in Figure 2-45 is a plot showing the error as a function of distance of the 
sensor from the FG. The slopes are clearly positive and larger than of the undisturbed 
data set taken in the Lab. Comparing this to the earlier two data sets for ‘ideal’ and 
‘disturbed’ environments, it appears that the slope of the regression lines are about half of 
that of the ‘worst-case’ disturbed data set. This data set contains the standard 2592 points 
for the SA fixture less nine points where the Aurora returned null readings. 

 

 
Measurement error plotted vs. distance from field generator in SA fixture in the OR 

Figure 2-45 
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Error as a function of sensor orientation 
 

Again, the accuracy is broken down by orientation by the 12 orientations used in 
the data collection. They are numbered as before for data collection in the undisturbed lab 
environment. The average errors for each orientation and their standard deviations are 
presented in the bar graphs in Figure 2-46. Notice how the errors as well as their standard 
deviations are significantly higher than those taken in the lab. However, they are still 
somewhat smaller than the errors present in the artificially disturbed ‘worst-case’ data set 
when compared to Figure 2-25 and Figure 2-26. 
 

Error magnitudes of all orientations measured with SA fixture in Operating Room 
Figure 2-46 

 54



 
3D Visual Representation of Errors (OR Environment) 
 

Figure 2-47 displays the distributions of the position and orientation error in the 
measurement volume. The directions the components of the error; the magnitudes are 
normalized for each orientation to show the relative error distribution. 

 
Position Error Distribution 

  
Orientation Error Distribution 

 
Distribution and direction of measurement error separated by orientation 

Figure 2-47 
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Analysis of Error Distribution 
 

Shown in Figure 2-48 are the errors measured in the operating room as a function 
of distance along each of the three principal axes of the measurement system. In this 
distorted environment, the trends in X (height) and Y (horizontal) seem less pronounced 
than in the undisturbed Lab results shown in Figure 2-41. However, the increase in error 
as a function of distance along Z (distance away from the FG) is even more pronounced. 
 

Position Error Distribution 

 

Orientation Error Distribution 

 
Distribution of error magnitude by X,Y,Z component of the sensor position 

(As measured in the OR with significant field distortion using the Stand-alone fixture) 
Figure 2-48 
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Stand-alone Fixture Mapping (Simulated OR) 
 

In order to quantify the effects of certain elements in an OR during a typical ENT 
IGS application, we decided to perform a 
distortion mapping with an endoscope cart in 
the appropriate location but no other 
intentional distortion present. From the sinus 
surgery that I observed, the configuration 
with the cart beside the patient’s head and 
nearby the Aurora unit as shown in Figure 
6-2 seems appropriate. The components of 
the cart are all active (CRT, Camera, Light 
source) and the experimental setup is as 
shown in Figure 2-49. This experiment gives 
a good idea of the field distortion 
characteristic of such a cart in the OR, 
without the other effects of the OR present.  

 
 

Figure 2-49 

 
Stand-alone fixture in lab 
with active endoscope cart 

Error as a function of distance from FG 
 

Below in Figure 2-50 is a plot showing the error as a function of distance of the 
sensor from the FG. The slopes are clearly positive and larger than of the undisturbed 
data set taken in the Lab. Comparing this to the earlier two data sets for ‘ideal’ and 
‘disturbed’ environments, it appears that the slope of the regression lines are about half of 
that of the ‘worst-case’ disturbed data set. 

 

 
Measurement error plotted vs. distance from field generator in SA fixture  

in simulated OR scenario with endoscope cart nearby and active 
Figure 2-50 
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Error as a function of sensor orientation 
 

Tracking accuracy is broken down by orientation into the twelve orientations used 
in the data collection. They are numbered as before for the data collection in the 
undisturbed lab environment. The average errors for each orientation and their standard 
deviations are presented in the bar graphs in Figure 2-51. As would be expected, note that 
the error here is higher than that of the measurements in the lab with no additional 
disturbances, but is still not as large as that of the actual OR; this is because in that 
environment, the OR table dominates the distortion. 
 
 

Error magnitude for all orientations measured using SA fixture in 
Simulated OR environment with endoscope equipment 

Figure 2-51 
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Analysis of Distortion 

Comparisons of Environments 
 

This section compares the distortions measured with the Aurora system in various 
environments so that we can get a feel for what kind of errors can be reasonably expected 
to be present in a given environment. The environments compared here are listed in Table 
2-1. The first three data sets were provided by NDI Europe; they represent ‘ideal’ 
undisturbed, reasonably distorted, and ‘worst-case’ extremely distorted environments 
respectively. The ‘ideal’ and ‘worst-case’ are the same as presented earlier in this chapter. 
Next is the results obtained using the hybrid EMTS-OTS tracked robotic calibration with 
no intentional field distortions present in the lab. The last three data sets were collected 
with the Stand-alone fixture. The first two were gathered in the lab; one being an 
environment free of intentional disturbances, and the other having a stainless steel hip 
implant placed near the measurement volume. The third SA data set was collected in the 
ENT operating room. For all of the data sets here, 1000 random points from each set were 
used. See Table 2-1 for a detailed look at the statistics for each of these environments. 

 
 

Mean Std. Dev. RMS Mean Std. Dev. RMS
NDI1 (Ideal) 0.684 0.563 0.886 0.182 0.246 0.036
NDI4 (Moderate) 2.285 2.154 3.139 0.461 0.389 0.603
NDI3 (Severe) 8.090 6.350 10.282 1.649 1.597 2.295
Robot (Undist) 2.013 0.958 2.229 1.611 0.765 1.783
SA (Undist) 3.452 2.868 4.487 1.522 1.296 1.999
SA (Implant) 3.748 3.118 4.875 1.512 1.372 2.041
SA (OR) 8.792 10.149 13.424 2.386 3.531 4.260

Position Error (mm) Orientation Error (deg.)

 

 
Comparison of error statistics for measurements from various environments 

Table 2-1 
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The following figure provides a graphical interpretation of the data in Table 2-1 
by using box plots to represent the distribution of the magnitudes of the errors. The top 
portion of Figure 2-52 gives us information about position error distribution. Similarly, 
the bottom gives information about the orientation error distribution. These results seem 
to follow the trends that we would expect, with the median and variance of error 
increasing with the NDI data sets and for the Stand-alone sets as the additional intentional 
distortion is increased. 

 
Position Error Comparison 

Orientation Error Comparison 

Comparison of error distribution for various environments and collection techniques 
(Red line at median, box extents at 1st & 3rd quartiles, whiskers extend to 1.5*IQR) 

Figure 2-52 
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Curvature of Field Distortion 
 
 Magnitude of error is not the only important issue to be concerned with; the rate 
of change of error in orientation and position space is also crucial. This is because the 
registration accuracy of a tool frame being fit to a set of sensors is dependent upon the 
relative position and orientations of those sensors. A way to more realistically predict the 
relative errors between two sensors may be to base it on the error field curvature, not just 
the global error bounds. In addition, the transformation between a tool and a patient-fixed 
reference frame may be a function of field curvature.  
 

The following plots represent slices through the vector field representing the 
position and orientation error as a function of position in the field. Three distinct sensors 
(i.e. distinct orientations) are presented for each set. The error is shown for comparison 
between the curvature of the field in a relatively undisturbed scenario in the lab, a 
disturbed scenario in the lab, and a disturbed scenario in an operating room on top of the 
OR table. Position is normalized into a 6x6x6 grid to represent the 216 evenly spaced 
data points collected for each orientation using the stand-alone fixture. 

 
From looking at the figures, it is clear that there is in fact a clear change in the 

curvature of the distortion field as the disturbance to the field is increased. What you 
should see in these plots is how the flow fields become more and more warped as moving 
from Figure 2-53 to Figure 2-54 to Figure 2-55 for position error. Similarly, see how the 
same happens for orientation error as going from Figure 2-56 to Figure 2-57 to Figure 
2-58. However, not that the fields appear much smoother for orientation error, this is 
because the orientation error does not vary as fast with respect to sensor position as 
position error does. 
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Position Error (Lab with minimal distortion): 

 
 Figure 2-53 
 
 
Position Error (Lab with Endoscope Cart): 

 
Figure 2-54 

 
 
Position Error (Operating Room): 

 
Figure 2-55 
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Orientation Error (Lab w/ minimal distortion): 

 
Figure 2-56 

 
 
Orientation Error (Lab with Endoscope Cart): 

 
Figure 2-57 

 
 
Orientation Error (Operating Room): 

 
Figure 2-58 
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Contributions 
 

This chapter discussed the methods for, and results of data collection for 
analyzing the field distortion of an EM tracker. The calibration procedure was based upon 
that of [Wu, 2003c], but was significantly adapted to allow for data collection using the 
robot and the Stand-alone fixture. The further contributions were construction of a new 
calibration wand for robotics data collection, and even more importantly, a digitized 
Stand-alone calibration fixture that allows data collection in any environment without the 
need for robotics of external tracking. Using these data collection techniques and 
hardware, results indicating the levels and shapes of the distortion of various 
environments were reported. The primary goal of this section was to set up the next 
chapter where we discuss using this data to generate models of the field distortion. 
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Chapter 3:  Error Characterization and Compensation 

Overview 
 
With a detailed map of the error in the working volume of a tracker, the logical 

next step is to see how this information can be used to improve measurement accuracy. 
This section describes the methods for compensating for systematic distortion of the 
tracking unit’s measurements. The calibration framework involves several steps: 1) 
collecting representative data for the field, 2) determining the error for each of these 
points, and 3) fitting a polynomial model to this error mapping. In order to do this, a clear 
definition of the error measure is necessary; the first part describes the error measure.  

 
Following error definition is a description of Bernstein polynomials; this is the 

polynomial basis used for modeling the field distortion error. This description is extended 
step-by-step to formulate the polynomial model we will use for this application. Finally, 
the polynomial model is applied to data and the results are presented. This data is used to 
determine the optimal parameters to use for the model, which take into account the 
tradeoff between practicality and complexity.  
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Methods for Characterizing Measurement Error 

Definition of Error 
 
 It is important to have a useful and consistent representation of the sensor error in 
order to do any analysis. In this first section, the definition of sensor measurement error is 
defined. The senor coordinate system is shown here in Figure 3-1. 
 

 
Sensor measurement configuration  

(Image courtesy of [Wu, 2003a]) 

x   y

 z

Figure 3-1 
 
Where: 
 

pK  represents the position of the sensor’s origin in the Aurora base frame 
 

nK   represents the unit vector along the axis of the sensor. This is the zR
K

vector (z axis)  
 of the sensor orientation in the Aurora base frame 
 
 

Position Error 
 
Position error is rather straightforward; the only issue is to maintain the sign convention, 
i.e. error is additive to the ideal measurement.  
 
Position error is defined as follow: 
 
  pos measured ideale p p= −K K K

 

measured reference

pos measured reference

measured reference

x x
e y y

z z

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

K  
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Orientation Error 
 
Orientation error could take on many different meanings. We decided to use the 
Rodriguez vector to parameterize rotation errors. 
 
Orientation Error is defined as: 

180
orie ωθ

π
=K K  

Where:  is the unit vector pointing along the required axis of rotation to 3ω ∈K \
align the reference and measured vectors nK  

θ  is the angle of rotation about ωK  between the reference and measured  
vectors nK  measured in radians 

 
This is derived from: 
 

180arcsin *ideal measured
ori ideal measured

ideal measured

n ne n n
n n π

×
= ×

×

K KK K K
K K  

 

180arcsin *

ideal measured

ori ideal measured

ideal measured

Rz Rz

e Rz

Rz Rz

Rz
π

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟×⎜ ⎟ ⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠= ×⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟×⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

K K

K KK

K K
 

 

180
ideal measured

ori

ideal measured

Rz Rz

e

Rz Rz

θ
π

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟×⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠= ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠
⎜ ⎟ ⎜ ⎟×⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

K K

K

K K
 

 
180

orie ωθ
π

=K K  

 
The zR

K
vector is used to define the sensor orientation because this defines the 

vector aligned with the axis of rotation of the sensor coils. Since these are 5 DoF sensors, 
this is enough information to quantify the two rotational DoF. Other parameterizations of 
the rotation could be used (i.e. Euler angles and quaternions), but for the case of 2 DoF 
rotational motion, this proves to be a very effective method. 
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Bernstein Polynomials 
 

Bernstein polynomials are the basis used in this work for modeling the distortion 
field. They allow for a global representation of the error, and as with any polynomial, by 
modifying the order the sensitivity to variation can be adapted. These polynomials have 
many nice features that make them ideal for this type of application. Two particularly 
useful ones are 1) by construction the coefficients correspond to the error at the 
respective control points on the grid, and 2) the derivatives are represented by another 
Bernstein polynomial that is generated from the differences in adjacent coefficients. 
 
Bernstein polynomials are defined in general by: 

( ) (1 )n i
i

n n iB x x x
i

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

 
Where the binomial coefficient is: 

!
0

!( )!
0

n
n if

i n i
i e

⎧ ⎫i n
lse
≤ ≤⎛ ⎞ ⎪ ⎪−= ⎨ ⎬⎜ ⎟

⎝ ⎠ ⎪ ⎪⎩ ⎭

 

 
Figure 3-2 shows the basis functions of Bernstein polynomials for up to 5th order. 
 

 
Bernstein polynomial basis functions 

(Image courtesy of [Weisstein, 2005]) 
Figure 3-2 

 
To model error with a Bernstein polynomial in a simple 1D case: 

0
( ) ( )

n
n

i i
i

e x c B x
=

= ∑  

Where: 
e(x) is the error at a position x, where x is normalized between 0 and 1 
ci is the ith coefficient of the polynomial 

( )n
iB x is the ith basis term of an nth order polynomial 
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For the case of a 2nd order polynomial (n=2), the error is modeled as follows: 
2 2

0 1( ) (1 ) 2 (1 )e x c x c x x c x= − + − + 2  
 

Notice that there is always going to be one more control point/coefficient and 
basis function than the order of the polynomial. Therefore, we need at least n+1 data 
points to be able to solve for the coefficients. 
 

Evaluating at the endpoints, two of the three coefficients can be calculated 
directly if the values are known there: 

0

2

(0)
(1)

e c
e c

=
=

 

 
Extending the problem to a 2D space, but still interpolating for a scalar error value: 

,
0 0

( , ) ( ) ( )
n n

n n
i j i j

i j
e x y c B x B y

= =

= ∑∑  

 
For a simple 1st order example: 

( , )e x y   
1 1

1 1
,

0 0
( ) ( )i j i j

i j
c B x B y

= =

= ∑∑
  0,0 0,1 1,0 1,1(1 )(1 ) (1 ) (1 )c x y c x y c y x c= − − + − + − + xy
 

Solving at the corners of the unit cube, assuming the values are known, there is 
sufficient information to solve for all of the coefficients in this case: 

0,0

1,0

(0,0)
(1,0)

e c
e c

=

=
  0,1

1,1

(0,1)
(1,1)

e c
e c

=

=
 

 
 

Notice that (n+1)d data points are sufficient to solve the problem, where d is the 
dimensionality of the space being interpolated in (i.e. x,y : d=2). This will always be the 
minimum number of points necessary to solve for the coefficients for each.  
 
For an arbitrary point: 

( , ) (0,0)(1 )(1 ) (0,1)(1 ) (1,0)(1 ) (1,1)e x y e x y e x y e y x e xy= − − + − + − +  
 
Which can be solved for using the four known coefficients, ,( , ) i je i j c= .  
 
 
For a point directly in the middle, the form is as follows: 

( ) ( )
0,0 0,1 1,0 1,1

(0,0) (0,1) (1,0) (1,1)1 1 1,
2 2 4 4

e e e e
e c c c c

+ + +⎛ ⎞ = + + + =⎜ ⎟
⎝ ⎠

 

 
The result, as expected, is the average of the errors at the corners 
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For convenience, it is useful to write the equations in matrix form: 

,
0 0

( , ) ( ) ( )
n n

n n
i j i j

i j
e x y c B x B y

= =

= ∑∑  

 
For the corner points, the matrix equation looks like this: 

(0,0)
(0,1)
(1,0)
(1,1)

e
e
e
e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

1 1 1 1 1 1 1 1
0 0 0 1 1 0 1 1
1 1 1 1 1 1 1 1
0 0 0 1 1 0 1 1
1 1 1 1 1 1 1 1
0 0 0 1 1 0 1 1
1 1 1 1 1 1 1 1
0 0 0 1 1 0 1 1

(0) (0) (0) (0) (0) (0) (0) (0)
(0) (1) (0) (1) (0) (1) (0) (1)
(1) (0) (1) (0) (1) (0) (1) (0)
(1) (1) (1) (1) (1) (1) (1) (1)

B B B B B B B B
B B B B B B B B
B B B B B B B B
B B B B B B B B

⎡
⎢
⎢=
⎢
⎢
⎢⎣

0,0

0,1

1,0

1,1

c
c
c
c

⎤ ⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎣ ⎦⎦

 

  

0,0

0,1

1,0

1,1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

c
c
c
c

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥=
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
 
 
In more general terms for an nth order polynomial in a 2D space: 

2

2

0,0
0 0

,1 ,( 1)
, ( 1) ,1

( , ) ( ) ( ) ( ) ( )n n n n
n n

i i n
n n n

c
e x y B x B y B x B y

c+
+

⎡ ⎤
⎡ ⎤⎡ ⎤ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

" #
# # #

 

 
(Matrix dimensions are listed at the bottom right of a matrix for clarity) 

 
 
Extending from  to l dimensional space, : 2\ l\

0, ,0
1 0 1 0 1

,1 ,( 1)
, , ( 1) ,1

( , , ) ( ) ( ) ( ) ( )
l

l

n n n n
l l n n l

i i n
n n n

c
e x x B x B x B x B x

c+
+

⎡ ⎤
⎡ ⎤⎡ ⎤ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

…

…

… … " … #
# # #
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The previous equation represents a polynomial of degree n in a space of l 

dimensions. However, there is still only a scalar value being interpolated at any point. 
Below, this is extended to the case where the measure being interpolated has m 
dimensions: 
 

1 1 1

,

1 1
0, ,0 0, ,0

0 1 0 1

1 1,( 1)
, , , , ( 1) ,

( , , ) ( , , )

( ) ( ) ( ) ( )
          

l

l

l m l

i m

n n n n
l n n l

i n
n n n n n m

e x x e x x

c c
B x B x B x B x

c c+
+

⎡ ⎤
=⎢ ⎥

⎣ ⎦

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

… …

… …

… " …
# #

… " …
# " #

# #

 

 
 

This framework allows for an n degree polynomial to be used to interpolate m 
measures inside of an l dimensional space that is normalized such that 0  1ix≤ ≤

[ ]0i l∀ ∈ … . 
 

Note that it is not necessary for l, the dimensionality of the space, and m, the 
dimension of the measure being interpolated, to be equal. For example, 3 DoF position 
error (l=3) could be estimated based on a 6 DoF space including position and orientation 
(m=6). Or, as is demonstrated in the following section, 6 DoF measurement error (l=6) is 
estimated in a 3 DoF space including only position (m=3). Sensor orientation is 
accounted for by other means, as will be shown later. 
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Position Related Error 
 

Below is the representation used to interpolate six parameters in a 3D space 3∈\ . 
This is what is used to determine the three translational and three rotational errors of a 
sensor for a given 3D location (x,y,z). 
 

3

0,0,0 0,

1 1 1 1 1 1

,6

0 1 0 1 0 1 1 1 1

0 0 0 ,( 1)

( ) ( ) ( ) ( ) ( ) ( )
          *

( ) ( ) ( ) ( ) ( ) ( )

          

x y z Rx Ry Rz

i i i i i i
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⎡ ⎤
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⎢ ⎥⎣ ⎦
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z Rx Ry Rz

x y z Rx Ry Rz n

c c c c

c c c c c c
+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

# # # # # #

 

 
To solve for the 6*(n+1)3 coefficients, a minimum of (n+1)3 data points are 

required since each data point has an element that contributes to each of the six 
polynomial elements. 
 

For clarity and simplification of solving, the problem can be separated into 
separate equations for each of the dimensions being interpolated, giving six separate 
problems. 

0,0,0
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i
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ce

e c
β
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Where: 

3

0 1 0 1 0 1 1 1 1

0 0 0 ,( 1)

( ) ( ) ( ) ( ) ( ) ( )
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⎡ ⎤
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⎢ ⎥⎣ ⎦

"
# #
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(This is constant for each of the 6 problems, so it need not be recalculated) 
 

These sets of equations are of the form ‘Ax=b’, with x being the coefficients c, A 
being the Bernstein polynomial basis terms n

iB , and b being the measured error ei of the 
ith data point. The coefficients can easily be solved for in six separate least squares 
problems as long as . 3( 1)i n≥ +
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Solution to Least Squares Problem 
 
It is desired to find the values for the coefficients, c, in this problem: 

0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

3 , , , , , , , , , , ,
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Writing out for one dimension being interpolated along in a 3D space: 
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Where:    
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This equation is in the traditional form of Ax b≅
KK . The least squares (LS) solution 

to this problem for the unknown coefficients, c, can be solved using singular value 
decomposition (SVD). 
 
The SVD of A β�  is: 

3 3

3 3

3 3 3

( 1) ,( 1)
,,( 1) ( 1) ,( 1)

( 1) ,( 1) ,( 1)
0

n n T
i ii n n n
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S
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+ +
− + + +
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(The matrix dimensions are added for clarity) 

 
 
The problem can be re-written as: Ax b≅

KK

0
S

p g
⎡ ⎤

≅⎢ ⎥
⎣ ⎦

  Where:   Tg U b=

 
The solution for c  is: x�
x Vp=  
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Sensitivity Analysis 
 

It is important to know how changes in the values of the collected data affect the 
resulting polynomial coefficients. This will aid in choosing the proper number and 
distribution of data points, as well as the optimal order of the polynomial. A similar 
analysis can be found in [Deif, 1986]. 
 
Rewriting the  problem with perturbations included: Ax b=

KK

( )( ) ( )A A x x b b+ ∆ + ∆ = + ∆
K KK K  

 
Multiplying out the LHS: 
Ax Ax A x A x b b+ ∆ + ∆ + ∆ ∆ = + ∆

K KK K K K  
 
Canceling out the  terms: Ax b=

KK

Ax A x A x b∆ + ∆ + ∆ ∆ = ∆
KK K K  

 
Assuming that : 0A x∆ ∆ ≈K

Ax A x b∆ + ∆ ≈ ∆
KK K  

 
Solving for the error in the coefficients: 

( )1x A Ax−∆ ≈ −∆ + ∆
KK K b  

 
Taking the norm of both sides: 

( )1x A Ax b−∆ ≈ −∆ + ∆
KK K  

 
For any consistent matrix and vector norms, we get the following bound: 

1x A Ax−∆ ≤ −∆ + ∆
KK Ki b  

The actual definition of the norms used here are described below. 
 
Using the Triangle Inequality: 

( )1x A Ax b−∆ ≤ ∆ + ∆
KK K  

 
Again using the property of consistent norms: 

( )1x A A x b−∆ ≤ ∆ + ∆
KK Ki  

 
Getting the ratio of the error in the coefficients relative to the magnitude: 

1
bx

A A
x x

−
⎛ ⎞∆∆
⎜ ⎟≤ ∆ +
⎜ ⎟
⎝ ⎠

KK
K K  
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Now we want to get rid of the xK  on the RHS using the norm of the original Ax b=
KK : 

             
b

Ax b A x b x
A

= ⇒ ≥ ⇒ ≥

K
K KK Ki K  

 
Plugging this into the previous equation: 

1
bx

A A
x b

A

−

⎛ ⎞
⎜ ⎟

∆∆ ⎜ ⎟
≤ ∆ +⎜ ⎟

⎜ ⎟
⎜ ⎟
⎝ ⎠

KK
KK  

 
Pulling out A  we can get a more useful expression: 

1
bx A

A A
x A b

−
⎛ ⎞∆∆ ∆
⎜ ⎟≤ +
⎜ ⎟
⎝ ⎠

KK
i KK  

 
We can now make the substitution for the condition number of the matrix A: 

( )
bx A

A
x A b

κ
⎛ ⎞∆∆ ∆
⎜ ⎟≤ +
⎜ ⎟
⎝ ⎠

KK
KK  

 
 Where: ( )1 ( )A A Aκ− =i  is the condition number of the A matrix 
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For this problem, A represents the Bernstein basis values, β . There is no 
perturbation present in this matrix. So,  A and ∆A are as follows: 

 

3

0 1 0 1 0 1 1 1 1

0 0 0 ,( 1)

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

n n n n n n
n n n

n n n n n n
i i i n i n i n i i n

B x B y B z B x B y B z
A

B x B y B z B x B y B z
β

+

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

"
# #

"
 

 
0A∆ =  

 
In terms of our problem at hand, the equations simplify to: 
 

( )
bx

x b
κ β

⎛ ⎞∆∆
⎜ ⎟≤
⎜ ⎟
⎝ ⎠

KK
KK  

 
For the case of a unique solution, when 3( 1)i n= + : 

1( )A A Aκ −=  
 
For the case of an over constrained solution that is solved using LS SVD: 

( )A A Aκ +=  
 

Where:  is the Moore-Penrose matrix pseudo inverse A+

 
Using the SVD of A, this matrix is described by: 

   
1

*0
0 0

D
A V U

−
+ ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 
When solving this equation, the norms of the x and b vectors, and their associated 

errors, is straightforward; this can be the standard Euclidean norm (L2 -norm). In order 
for the above relationships to hold, then the matrix norm used must be consistent with the 
vector norm. Therefore, the matrix norm described is the p-norm where p=2; this is also 
known as the spectral norm. The spectral norm is defined as follow. 
 
The matrix norm is described by: 

( )*
2

A Aρ= A  

 
 Where: A* is the Hermitian of the matrix A (conjugate transpose) 
  Since A=β is real, then A*=AT

   
   denotes the magnitude of largest eigenvalue of the matrix A ( )Aρ
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To help test the sensitivity of the coefficients to changes in the errors, we can 
generate a synthetic matrix of the following form. This matrix is dependent on the points 
and the polynomial order, but not on the error distribution. 
 

3

0 1 0 1 0 1 1 1 1

0 0 0 ,( 1)

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

n n n n n n
n n n

n n n n n n
i i i n i n i n i i n

B x B y B z B x B y B z
A

B x B y B z B x B y B z
β

+

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

"
# #

"

 

 
Since we must choose positions corresponding to each row, we can choose the 

control points. Therefore, we will get a square matrix with evenly distributed data points, 
e.g. for a 3rd order polynomial, we will need the corresponding 4x4x4 grid of points from 
a unit cube. Figure 3-3 shows the relationship between the matrix’s condition number, 

1( )κ β β β −= , and the order of the polynomial. In the following plot, the largest 
singular value of A is used as the matrix norm. The results are plotted for several 
numbers of evenly dispersed data points, with ( )31n + representing a uniquely determined 
system where β is square. 

 
For the overdetermined system when there are more data points than necessary 

(greater than  points), the pseudo-inverse, β ( 31n + ) +, is used to calculate the condition 
number instead of β −1. As would be expected, as the order gets higher, the model 
becomes more and more sensitive to noise in the error measurements. Up to a 3rd order 
model, the condition number stays in a good range (~100); after that it gets rather large 
very fast. This trend is the same regardless of the number of data points used. 

 
 

Condition Number of β 

 
Condition number of β as a function of polynomial order plotted  

on a semi-log axis (left), and close up (right) 
Figure 3-3 
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Orientation Related Error 
 

Next is the issue of how the sensor orientation plays a role in measurement 
distortion. It is clear that a sensor’s measurement error is not only a function of its 
position, but also a function of its orientation. Unfortunately, this adds significant 
complexity to the problem and increases the required number of data points in order to 
get an adequate mapping of the field. Figure 3-4 shows the relative errors produced by 
the Aurora system when the field is subjected to a disturbance (NDI Set #3). The data 
separated into 14 sets such that each includes the data points whose orientations fall 
within 20o of their respective base vectors. Blue lines represent minimal error and red 
lines represent the maximum error. It is clear that the error is in fact orientation 
dependent and that there is not even a direct correlation between opposing orientations. 
 

  
Base vector distribution with corresponding relative errors (Max = Red, Min = Blue) 

Figure 3-4 
 

One method of incorporating orientation-induced errors would be to add three 
more coefficients to the β matrix from above to get a matrix of the following form: 

 
0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1

0 0 0 0 0 0 ,(

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

n n n n n n n n n n n n
n n n n n n

n n n n n n n n n n n n
i i i i i i n i n i n i n i n i n i i n

B x B y B z B Rx B Ry B Rz B x B y B z B Rx B Ry B Rz

B x B y B z B Rx B Ry B Rz B x B y B z B Rx B Ry B Rz
β

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

"
# #

" 61)+

 

 
However, this is a six dimensional problem which is rather unpractical because 

we must now solve for (n+1)6 coefficients. For a 3rd order polynomial, that translates to 
an increase from 64 to 4096 data points required at a minimum.  
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A more practical method, based upon the work presented in [Wu, 2003a], is 
interpolating the sensor’s orientation between a set of base orientations and generating a 
3D polynomial for each of these. So, if there are b distinct base orientations, then the 
number of coefficients for each interpolated dimension, and therefore the minimum 
number of data points required, is b*(n+1)3. Therefore, rather than an O(n3) increase, we 
have an O(n) increase in calculations. For the previous 3rd order polynomial example, this 
would mean 896 data points if there are 14 base orientations. For 5th order, the difference 
is even more dramatic between the two methods, 46656 vs. 3024 coefficients. 
 
Algorithm 
 

• Choose the set of base orientations / basis vectors for which polynomials are 
generated. They should be evenly distributed as shown in Figure 3-5, but the 
actual number depends on the particular field. For much of this work, the vectors 
described in Table 3-1 appear to work quite well. 
 
For 14 base orientations, we have: 
Base vectors: 14 
1 0 0 
0 1 0 
0 0 1 
0.57735 0.57735 0.57735 
-0.57735 0.57735 0.57735 
0.57735 -0.57735 0.57735 
-0.57735 -0.57735 0.57735 
-1 0 0 
0 -1 0 
0 0 -1 
-0.57735 -0.57735 -0.57735 
0.57735 -0.57735 -0.57735 
-0.57735 0.57735 -0.57735 
0.57735 0.57735 -0.57735 
 
Table 3-1 

 
Figure 3-5 

 
• For each data point, determine the closest three base orientation vectors that 

enclose the z-axis of the measured sensor reading, nK , inside of a spherical triangle 
created by the tips of the unit vectors as shown in Figure 3-6. 

 
• Determine the corresponding area of each of the three spherical triangles 

generated when subdividing the surface using Barycentric coordinates. The 
weighting of a particular base vector’s contribution to the error is directly 
proportional to the area of the corresponding, opposing spherical triangle. 
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nK  Measured orientation 

(z axis of sensor) 
 

1 2 3, ,b b b
K K K

 Enclosing three base 
orientation vectors 
 

1 2 3, ,t t t  Areas of corresponding 
spherical triangles 

 
  

Definition of the spherical triangles used for spherical interpolation 
Figure 3-6 

 
• Normalize the areas (t1,t2,t3) of each of the three spherical triangles such that they 

sum to one; these numbers are the three non-zero entries of the weighting 
coefficient matrix to be used when generating the polynomial for each of the 
orientations. If an orientation lies directly on a base vector, then it’s weight is set 
to one, and all others are set to zero. This can be useful for data that is collected in 
a consistent set of orientations. 

 
• The results are put into a matrix describing the orientation weights corresponding 

to each data point. Table 3-2 contains a printout of the first 25 data points of this 
matrix for an example data set of 14 base orientation vectors. 

 

 
Example data from orientation weighting matrix for 14 base vectors 

Table 3-2 
 

• Determine the extents of the sensor positions in the data set to use as bounds. 
These bounds are used such that all of the measured locations can be scaled into a 
unit cube for use with Bernstein polynomial approximation. The reason for 
scaling the data is to improve the numerical stability of the Bernstein 
approximation. 
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• Calculate the Bernstein coefficients. For each base orientation, there are six sets 
of coefficients to solve for: X, Y, Z, Rx, Ry, Rz. 

 
o Normalize the data point locations within the bounds 
 
o Build the set of equations to be used for SVD Least Squares for each basis 

vector and each dimension to be interpolated: 
0,0,0

, ,

1
1,1,

, , n n n

b xb x

i
i b x i b x

w cw e

w e w c
β

⎡ ⎤⎡ ⎤
⎢⎢ ⎥ = ⎢⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

# #
⎥
⎥  , … ,  

0,0,0

, ,

1
1,1,

, , n n n

b Rzb Rz

i
i b Rz i b Rz

w cw e

w e w c
β

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

# #  

 
Where: 

wi,b is the weight of the ith data point for the bth basis vector 
 

3

0 1 0 1 0 1 1 1 1

0 0 0 ,( 1)

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

n n n n n n
n n n

n n n n n n
i i i n i n i n i i n

B x B y B z B x B y B z

B x B y B z B x B y B z
β

+

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

"
# #

"

 

( β is constant for each of the 6b least squares problems) 
 

o Solve for the 6b*(n+1)3 coefficients in the Least Squares sense using 
Singular Value Decomposition 
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Measurement Compensation 
 
The following equation allows for compensation along each dimension being interpolated 
(X, Y, Z, Rx, Ry, Rz) in a space 3∈\ : 
 

3

, ,
1 0 0 0

( , , ) ( ) ( ) ( )
n n n

b n n n
b i j k i j k

b i j k
e x y z w c B x B y B z

= = = =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑∑∑  

 
Where:  

b  is the index of each of the three surrounding base orientations 
 

, ,
b
i j kc  is the corresponding set of Bernstein coefficients for each of  

the base orientations used 
 
x,y,z  are the normalized positions in the unit cube as determined 

by the bounds of the data used to generate the polynomial. 
 
 
In vector form, the equation looks like this: 
 

, ,

, ,

3
, ,

1 0 0 0 , ,

, ,

, ,

( ) ( ) ( )

x

y

z

Rx

Ry

Rz

b
i j k

x
b
i j kypos
bn n n
i j kz n n n

b i j kb
b i j kRx i j k

b
Ryori i j k

bRz
i j k

ce
cee
ce

w B x B y B z
e c
ee c
e c

= = = =

⎛ ⎞⎡ ⎤
⎡ ⎤⎡ ⎤ ⎜ ⎟⎢ ⎥
⎢ ⎥⎢ ⎥ ⎜ ⎟⎢ ⎥
⎢ ⎥⎢ ⎥ ⎜ ⎟⎢ ⎥
⎢ ⎥⎢ ⎥ ⎜ ⎟⎢ ⎥= =⎢ ⎥⎢ ⎥ ⎜ ⎟⎢ ⎥
⎢ ⎥⎢ ⎥ ⎜ ⎟⎢ ⎥
⎢ ⎥⎢ ⎥ ⎜ ⎟⎢ ⎥
⎢ ⎥⎢ ⎥ ⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑ ∑∑∑

K

K  
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Optimization of Characterization Parameters 

Optimizing the Polynomial Approximation 
 

Using Bernstein polynomials as described above to model the measurement 
distortion leaves several parameters that must be chosen wisely. Ideally, we would be 
able to collect an enormous amount of data and fit a high order polynomial model with a 
large number of base orientations. However, there is a tradeoff between a practical data 
collection for a given application and its accuracy. Therefore, we are trying to find the 
optimal solution for the following parameters for a given scenario: 

 
1. Order of the polynomial 

2. Number and Distribution of Base Orientations 

3. Distribution of collected data points (positions & orientation) 
 

The optimal parameters are not fixed; they depend on the purpose and the 
conditions that the system will be operating in. For instance, to compensate for 
systematic distortion of the Aurora unit itself, which is the dominating factor in a low 
distortion area, it is necessary to use a high order polynomial and a large number of base 
orientations; therefore, the data collection must be very dense. If we are trying to 
compensate for errors in a distorted environment, we can generally get away with a lower 
order polynomial and fewer base orientations since the induced field distortion is the 
dominating factor and is generally relatively smooth. This allows for fewer data points to 
generate the polynomial; thus making it much more practical for use in an OR setting. 
The following will discuss how the optimal parameters are chosen. 
 

The optimal order and number of base vectors can be determined analytically and 
experimentally. By looking at the curvature of the field (as appears in a high order model), 
we can determine what lower order polynomial will retain as much accuracy as possible.  
  

To verify the solution, first a high order polynomial with a large number of base 
vectors is generated from a dense data set (in both position and orientation space). Then 
the order is decimated and the numbers of base orientations are dropped sequentially. By 
comparing the results and the trends generated, it is possible to see where the optimal 
order and number of base vectors is for a given environment. With this information, it is 
possible to determine the number and distribution of data points necessary to generate 
such a polynomial. The combinations that are tested are: 

 
Number of Base Orientation Vectors   :    {6,14,26} 
 
Polynomial Model Order     :    {1,2,3,4,5,6,7} 
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Choosing the Appropriate Parameters 
 

Knowing the effects of adding basis vectors and increasing the order on the 
results is essential to make a practical choice for these parameters. It is necessary to make 
a choice that allows for a practically sized data set, especially if the particular application 
is intra-operative compensation of measurements. 

 
Assuming a perfectly distributed data set, the plot in Figure 3-7 shows the 

absolute minimum number of data points that would be necessary to generate 
polynomials of a given order and number of base vectors. By ‘perfectly distributed’, each 
sensor orientation would have to fall evenly between three base vectors, and each base 
vector receives three sensors that contribute to it at each of the grid points of a 

 grid, where n is the order of the polynomial.  ( 1) ( 1) ( 1n n n+ × + × + )
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Representation of the minimum required number of measurements necessary as a 

function of polynomial order for several base orientation sets 
Figure 3-7 
 
 
The minimum number of data points is defined by: 
 

3

min
( 1) *

3
n bN +

=   

 
 Where:  

n is the polynomial order 
 

b is the number of base orientations  
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Curvature of the Distortion Field 
 

The goal here is to gain some insight into how the error field changes with respect 
to sensor position and orientation. Since this is very difficult to do with the actual 
measurement data, I will assume that a 6th order Bernstein polynomial provides an 
accurate interpretation of the error field. The following plots in Figure 3-8 show the 
relative magnitudes of the coefficients for this polynomial. Since we have six sets of 
coefficients (three for position error and three for orientation error), there are six columns 
in the plots. The rows represent the data associated with each of three distinct base 
orientation vectors; the three orthogonal vectors the x, y, and z axes. The values are 
normalized into a 7x7x7 grid. 
 
 The two separate plots represent an ‘ideal,’ undisturbed data set (NDI Set #1) and 
a moderately disturbed data set (NDI Set #4). When comparing the distortion maps, the 
key item to notice is where there is a large spatial gradient of the field. This can be found 
by looking where the color of the map changes from red at one extreme to blue at the 
other extreme in a very short interval. Notice that this is not terribly common in the 
undisturbed case, but in the disturbed case the curvature has a tendency to be high at 
quite a few places. 
 
 The other key concept that can be deduced from these plots is the variation in the 
error map with respect to the sensor orientation. Recall from the previous chapter that the 
errors are very different for dissimilar orientations. By examining the following plots for 
three different base orientations (x, y, and z axes are shown), we see again that the error is 
very orientation dependent. Notice that the patterns of the coefficients of the distortion 
map are drastically different for the three different base orientation vectors. This further 
enforces this concept and shows why we must be careful to subdivide the orientation 
space appropriately. 
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Visual Representation of Coefficients for Undisturbed Data Set 

 
Visual Representation of Coefficients for Disturbed Data Set 

 
Bernstein coefficients for 6th order model of NDI Set #1 & #4 

(Normalized in 7x7x7 grid, for three orthogonal base orientations) 
Figure 3-8 
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Error Analysis of Bernstein Approximation 
 

This section details a method for determining the accuracy of a polynomial for 
representing an error field. It is assumed that a high order can be used to represent the 
actual error field, and a low order polynomial represents the best-fit approximation of the 
field. The difference between these polynomials gives valuable insight into the accuracy 
of our representation of error with a polynomial. 
 
Determining error from polynomial estimation 
 
Assume the true error represented by high order polynomial (n order): 

,
0 0

( , ) ( ) ( ) ( , )
n n

n n n
i j i j

i j
e x y e B x B y C x y e

= =

= =∑∑ Ki  

Where:  is the actual error at the control points of the high order polynomial 
2( 1)ne +∈K \

 
A low order polynomial (l order) is fit to the data: 

,
0 0

( , ) ( ) ( ) ( , )
n n

l l l
i j i j

i j
f x y f B x B y D x y f

= =

= =∑∑
K
i  

Where:  is the actual error at the control points of 
2( 1)lf +∈

K
\ eK , the high order polynomial 

 
If the low order polynomial model is first order (l=1): 
Solving for four sample points: 

1
1 1

1
2 2

1
3 3

1
4 4

D
D

f
D
D

ε
ε
ε
ε

⎡ ⎤⎡ ⎤
⎡ ⎤⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥⎣ ⎦ ⎣ ⎦

" "
K" "

" "
" "

  Dfε =
KK
�

 

 
To solve for the coefficients, f, of the low order approximation: 

( 1)f D ε−=
K K

�
 (May be pseudo inverse, actually solve as ‘Ax=b’ problem) 

 
Therefore: 

1 1 1 1 1 1 1 1
1 1 11,1 1,2 1,3 1,4 1,1 1,2 1,3 1,4

1 1 1 1 1 1 1 1
2 2 22,1 2,2 2,3 2,4 2,1 2,2 2,3 2,4

1 1 1 1 1
3 3 33,1 3,2 3,3 3,4 3

1 1 1 1
4 4 44,1 4,2 4,3 4,4

f fD D D D D D D D
f fD D D D D D D D
f fD D D D D
f fD D D D

ε
ε
ε
ε

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⇒ =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

1

1

2
1 1 1

3,1 3,2 3,3 3,4
1 1 1 1

44,1 4,2 4,3 4,4

D D D
D D D D

ε
ε
ε
ε

−
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

  

 
Where: ( , )i ie x yiε =  from high order (accurate) polynomial  
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The error between high order (accurate) and low order (approximate) solution for 
an arbitrary point (x,y) is: 

 
( , ) ( , ) ( , )g x y e x y f x y= −  

 
 
Plugging in the above equations: 

( , ) ( , ) ( , )n lg x y C x y e D x y f= −
KKi i  

Where: f
K

 is a function of  e(x,y)  and 
( 1)

( , )lD x y
−

⎡ ⎤⎣ ⎦ . 
 
 
Plugging into the error equation:  

( )( 1)( , ) ( , ) ( , )n lg x y C x y e D x y D ε−= − KKi i
�

 

 Where:  corresponds to the Bernstein basis of order l for the 
2( 1)l lD +∈\

   current position 
  corresponds to the Bernstein basis of order l for the 

2( 1) x( 1)l lD + +∈\
2

�  (l+1)2 control points of the lower degree polynomial 
 
 
 
Therefore, given the coefficients eK  of a high order polynomial, we can determine the 
error in the low order approximation at a given point (x,y). 
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For an example, we can work out the 1D problem. Higher dimensional problems 
follow similarly, but are very difficult to interpret due to their complexity. 
 

In 1D, we have the following equation for the error between the high order and 
the low order polynomial: 

( ) ( ) ( )g x e x f x= −  
 
For a  2nd order e(x): 

2 2
0 1( ) (1 ) 2 (1 )e x e x e x x e x= − + − + 2  

 
For a 1st order f(x): 

0 1( ) (1 )f x f x f= − + x  
 
Since the control points of  f(x) are a subset of those of e(x): 

0 0

1 2

f e
f e

=
=

 

 
Solving for the error, g(x): 

[ ]2 2
0 1 2 0( ) (1 ) 2 (1 ) (1 )g x e x e x x e x e x e x⎡ ⎤= − + − + − − +⎣ ⎦ 1  

[ ] [ ]0 1( ) (1 ) (1 ) 1 2 (1 ) 1g x e x x e x x e x x= − − − + − + −2  

0 1 2( ) (1 ) 2 (1 ) (1 )g x e x x e x x e x x= − − + − − −  

( )1 0 2( ) (1 ) 2g x x x e e e⎡ ⎤= − − +⎣ ⎦  
 

Since (1 )x x−  was able to be pulled out, we can put a bound on it to help simplify 
the problem. See Figure 3-9 for a plot of this function. 

 
Figure 3-9 

 
We can see that the following bound holds for 0 1x≤ ≤ : 

(1 ) 0.25x x− ≤   
 
Putting a bound on the error, g(x), we get the following: 

( )1 0 2
1( ) 2
4

g x e e e⎡ ⎤≤ − +⎣ ⎦  
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Simplifying the bound, we end up with this inequality describing the error 
between a 2nd order Bernstein polynomial and a 1st order Bernstein polynomial. 

 ( )0 2
1

1( )
2 2

e e
g x e

+
≤ −  

 
Therefore, for this case we can show that the maximum error between the two 

polynomials is the difference between the error in the middle of the field and the average 
of the errors at the edges. 
 

We can assume the worst case scenario is where there is no distortion at the edges 
and maximal distortion at the midpoint, and therefore the low order model has no effect. 
In this case, . 0 0ne e= =
 
Therefore, we can get the following simplified bound: 

1
1( )
2

g x e≤  

 
For higher order polynomials, we can extend this to get the following bound: 

1

1( )
4 1

n

i
i

e
ng x

n

−

=≤
−

∑
 

Where, the term in the absolute values indicates the average error at the control points of 
the high order polynomial excluding the edges. 
 

This can be extended analytically to high order polynomials working in a six 
dimensional space (such as in the case we are concerned with). However, it is more 
practical in such a case to determine the error empirically since the equations will get 
prohibitively complex to be useful. 
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Experimental Verification 
 
 In order to verify this experimentally, we take a high order polynomial (6th order), 
and assume this is the ground truth for the error. Then 1000 random measurements 
(position and orientation) within the bounds of that polynomial are generated. We use the 
polynomial model to determine the baseline for the error, e(x,y,z,Rx,Ry,Rz). We then take 
the same data set and plug it into lower order polynomials generated form the same 
environment. This gives us the lower order model’s prediction of the error, 
f(x,y,z,Rx,Ry,Rz). We then use the following to determine the deviation between the two. 
 
Deviation between high and low order error approximation: 

( ), , , , , ( , , , , , ) ( , , , , , ) ( , , , , , )x y z Rx Ry Rz g x y z Rx Ry Rz e x y z Rx Ry Rz f x y z Rx Ry Rzγ = = −  
 

The value for γ  is determined for each of the 1000 points for each polynomial 
order with respect to the 6th order model. The following plots show these results for two 
separate environments. The first, shown in Figure 3-10, represents an experiment where 
data was collected in a highly distorted environment (large magnitude of errors), but the 
distortion pattern is very smooth (low curvature). This is why there seems to be no 
distinct trend in the residual error since a lower order polynomial (2nd or 3rd order) 
represents this data just as well as a higher order one does. The later results, shown in 
Figure 3-11, represent an almost ideal data set with low distortion (very small error 
magnitudes). However, the distortion that does exist has very high curvature (i.e. changes 
very rapidly, almost randomly) and requires a high order polynomial to represent it. 
Therefore, there is an upward trend in both the mean and the variance values for the 
deviation from the ideal model to the lower order models as model order is decreased. 
Both of the experiments use polynomials generated for 14 base orientations.
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High Distortion Magnitude, Low Curvature Model 

Deviation in modeled error between low order models and high order ‘true’ model 
(Red line at median, box extents at 1st & 3rd quartiles, whiskers extend to 1.5*IQR) 

Figure 3-10 
 
 

Low Distortion Magnitude, High Curvature Model 

Deviation in modeled error between low order models and high order ‘true’ model 
(Red line at median, box extents at 1st & 3rd quartiles, whiskers extend to 1.5*IQR) 

Figure 3-11 
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Characterization Results 
 

Polynomial models are created and verified using the collected datasets. From 
these models, plots like those following in this section are generated. By finding the 
minimums in terms of position and angular error, the best model parameters can be 
determined. However, minimal error is not the only concern; the number of data points 
collected must be kept small such that performing such compensation still remains 
practical. So, to determine the optimal configuration, we look for where there are steep 
changes in the accuracy of the polynomial and choose parameters accordingly. It is 
important to note that the error measure is not only that of the original data set used to 
generate the model because that will be biased; for all data sets, an independent set of 
points from the same collection is compensated with the model, and it’s residual errors 
are used to gage the adequacy of the model. Without doing this, it is clear that the model 
residual error will always get lower with higher order polynomial fits of the original set, 
but this is due to over-fitting of the data. An independent set allows us to see if the model 
is truly representative in of the general case. 
 

The following are results obtained by performing characterizations of the 
measurement field distortion for various environments. For all of these sets, data was 
collected and analyzed to generate a best-fit set of Bernstein polynomials to model the 
error. For these datasets, there are two key items are plotted: the residual error of the 
original data set after fitting a polynomial, and the error remaining after applying the 
polynomial to compensate readings for an independent data set. This independent set, in 
the some cases, is separated into two entities: one for an independent set of the same 
sensor, and one for a different sensor in the same field. For each of these, there are plots 
representing the data in two ways, either as a function of Polynomial Order for various 
Base Vectors, or vice versa. They are both useful for determining the optimal. In each 
plot, both the position and orientation error are displayed. 
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Ideal Undisturbed Set 
(NDI Set #1) 
 

The following plots show the results obtained from a distortion model generated 
from a random set of 2750 data points from a single sensor in the ‘ideal,’ undisturbed 
environment (NDI Set #1). The errors shown are the average magnitudes of the residual 
errors when the model is applied to an independent set of 2750 different random 
measurements of the same sensor in the same environment. These results represent the 
effects of compensation on the systematic distortion of the Aurora system itself in an 
undisturbed environment. There are plots that show the residual error after compensation 
as a function of both the polynomial order (Figure 3-12) and the number of base 
orientation vectors used (Figure 3-13).  

 
Mean Error After Compensation (Same Data Set) 
 

Compensation of Undisturbed Data 

Residual error of modeling undisturbed data set as a function of polynomial order 
Figure 3-12 
  
 

Residual error of modeling undisturbed data set as a function of base orientations 
Figure 3-13 
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Mean Error After Compensation (Independent Data Set, Same sensor) 
 
 The above results show that we can in fact model sensor measurements accurately, 
but what is much more important is to be able to accurately represent the distortion map 
of the measurement system. Therefore, here we take the model obtained before and apply 
it to a completely independent set of data collected at the same time in the same 
environment. Figure 3-14 shows the shape of that we would expect; the error improves as 
the model is applied and as the order increases, the error decreases. As the order or the 
polynomial gets too high, it starts to become very specific to the original data set and 
becomes less general; therefore, the error begins to increase. The parameters used to 
generate the polynomial that correspond to the minima of the plots are optimal for this 
configuration. Figure 3-15 shows the same results, but is presented another way which 
makes it very clear which order polynomial we should pick; in this case it looks like a 2nd 
order polynomial with 14 base orientations would work best. 
 

Compensation of Independent Measurements 

Residual error of modeling undisturbed data set as a function of polynomial order 
Figure 3-14 
  
 

Residual error of modeling undisturbed data set as a function of base orientations 
Figure 3-15 
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 Mean Error After Compensation (Independent Data Set, Different sensor) 
 
 These results present what happens when we apply our model to a different sensor. 
Unfortunately, these results in Figure 3-16 are not what we would hope to see because the 
error no better than the original (Polynomial Order = 0) in any case. This can most likely 
be attributed to one of two issues: 1) the sensor measurements were not distributed in 
similar orientations to the other sensor (which would not be a problem if the original data 
set was distributed evenly, which it unfortunately was not), or 2) the sensor coils 
themselves are inconsistent (this effect would most likely cancel out if a large number of 
different sensors were used in the original data collection to generate the model). 
 

Compensation of Alternate Sensor 

Residual error of modeling undisturbed data set as a function of polynomial order 
Figure 3-16 
  
 

Residual error of modeling undisturbed data set as a function of base orientations 
Figure 3-17 
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Moderately Disturbed Set 
(NDI Set #4) 
 

These results represent the effects of measurement compensation on the distortion 
of the Aurora system in a reasonably disturbed environment; the data is from (NDI Set 
#4). The plots show the effects on the mean error as a function of polynomial order 
(Figure 3-18) and the number of base orientations used (Figure 3-19). Here, the results 
are obtained from a distortion model generated from a random set of 1025 data points 
from a single sensor. The errors shown are the average magnitude of the residual errors 
when the model is applied to an independent set of 1025 different random points for the 
same sensor in the same environment. 
 
Mean Error After Compensation (Same Data Set) 
 

Compensation of Disturbed Data 

Residual error of modeling disturbed data set as a function of polynomial order 
Figure 3-18 
  
 

Residual error of modeling disturbed data set as a function of base orientations 
Figure 3-19 
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Statistical Analysis of Mean Error After Compensation 
 

To further understand the effects of the model parameters on the residual error we 
can model this residual error as a function of the factors Order and NumBase. The 
following statistical analysis can be used to help determine the contribution of the 
number of base orientation vectors and the order of the polynomial model. The first 
model is presented in Table 3-3, and represents the position error. The second model is 
shown in Table 3-4, and is for orientation error. These models were arrived at using 
backward stepwise elimination regression. Using this technique, it was determined that 
the second and higher order terms for NumBase, the third order and higher terms Order, 
and the interaction terms are insignificant for α=0.05. 

 
 
 

Position Error Model 
*** Linear Model *** 
 
Call: lm(formula = PosErr ~ Order + NumBase + Order^2, data = 
NDI4OrigSet, na.action 
  = na.exclude) 
Residuals: 
       Min         1Q      Median         3Q       Max  
 -0.303804 -0.1042885 -0.01927109 0.06238903 0.4607773 
 
Coefficients: 
                  Value  Std. Error     t value    Pr(>|t|)  
(Intercept)   2.5416030   0.1181005  21.5206846   0.0000000 
    Order  -0.4421744   0.0620358  -7.1277319   0.0000007   
 NumBase  -0.0280454   0.0047510  -5.9030727   0.0000090    
 I(Order^2)   0.0228109   0.0085213   2.6769382   0.0144902 
 
Residual standard error: 0.191302 on 20 degrees of freedom 
Multiple R-Squared: 0.9406137  
F-statistic: 105.5926 on 3 and 20 degrees of freedom, the p-value is 
1.96354e-012  
 
 
Analysis of Variance Table 
 
Response: PosErr 
 
Terms added sequentially (first to last) 
           Df   Sum of Sq     Mean Sq     F Value         Pr(F)  
     Order  1 10.05544625 10.05544625 274.7654937 0.00000000000 
   NumBase  1  1.27525027  1.27525027  34.8462676 0.00000896594 
I(Order^2)  1  0.26225022  0.26225022   7.1659983 0.01449021059 
 Residuals 20  0.73192933  0.03659647 

 
 

S-plus analysis of model for residual position error 
Table 3-3 
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Orientation Error Model 
*** Linear Model *** 
 
Call: lm(formula = OriErr ~ Order + NumBase + Order^2, data = 
NDI4OrigSet, na.action 
  = na.exclude) 
Residuals: 
         Min          1Q       Median         3Q       Max  
 -0.06611168 -0.02113476 -0.002801003 0.01413854 0.1020159 
 
Coefficients: 
                  Value  Std. Error     t value    Pr(>|t|)  
(Intercept)   0.5191741   0.0253748  20.4602553   0.0000000 
      Order  -0.0853538   0.0133288  -6.4036873   0.0000030 
    NumBase  -0.0061881   0.0010208  -6.0620826   0.0000063 
 I(Order^2)   0.0042244   0.0018309   2.3073361   0.0318590 
 
Residual standard error: 0.04110266 on 20 degrees of freedom 
Multiple R-Squared: 0.9320076  
F-statistic: 91.38345 on 3 and 20 degrees of freedom, the p-value is 
7.567724e-012  
 
 
Analysis of Variance Table 
 
Response: OriErr 
 
Terms added sequentially (first to last) 
           Df    Sum of Sq      Mean Sq     F Value         Pr(F)  
     Order  1 0.3920787367 0.3920787367 232.0777182 0.00000000000 
   NumBase  1 0.0620845505 0.0620845505  36.7488453 0.00000632246 
I(Order^2)  1 0.0089941802 0.0089941802   5.3238001 0.03185900435 
 Residuals 20 0.0337885722 0.0016894286    

 
 

S-plus analysis of model for residual orientation error 
Table 3-4 
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Mean Error After Compensation (Independent Data Set, Same sensor) 
 
 As before, we again apply this model to a completely independent set of data 
collected at the same time in the same environment. Figure 3-20 shows the shape of the 
same trend as in Figure 3-14; the error improves as the model is applied and as the order 
increases, the error decreases. As the order or the polynomial gets too high, it starts to 
become very specific to the original data set, and is less general and therefore the error 
begins to increase. Figure 3-21 shows the same results, but is presented another way 
which makes it very clear which order polynomial we should pick.  
 

In this case it looks like a 1st order polynomial with 26 base orientations would 
work best. This is an interesting result because it indicates that the order of the 
polynomial with respect to position in the field only needs to be 1st order, but that we 
need to have a very fine subdivision of the orientation space to accurately represent the 
error in the distorted case. 
 

Compensation of Independent Measurements 

Residual error of modeling disturbed data set as a function of polynomial order 
Figure 3-20 
  

Residual error of modeling disturbed data set as a function of base orientations 
Figure 3-21 
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 Mean Error After Compensation (Independent Data Set, Different sensor) 
 

Again, these results represent what happens when we apply our model to a 
different sensor that the one used to generate the model. In the case where there is 
significant field distortion, we do in fact do see an improvement in the error of a separate 
sensor as shown in Figure 3-22. Although the increase in accuracy after applying the 
model is not as drastic as for the same sensor, and it falls off rapidly at higher orders, 
there is a definite increase in accuracy for the model we decided to use (1st order with 26 
base vectors). This is despite the same issues as before, and would most likely be better if 
the original sensor distribution were more even in the orientation space and if multiple 
sensors were used in the collection. By looking at these results, we may wish to refine our 
choice of parameters to a 1st order model with 14 base orientations vectors as opposed to 
26 base vectors. 
 

Compensation of an Alternate Sensor 

Residual error of modeling disturbed data set as a function of polynomial order 
Figure 3-22 
  

Residual error of modeling disturbed data set as a function of base orientations 
Figure 3-23 
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 Robotic Data Collection in Lab 
 
The following results represent the modeling accuracy of the polynomial for a 

dense data set collected in the lab with no additional disturbance added. This data set 
includes 2000 measurements from each of 12 distinct orientations. Figure 3-24 shows the 
accuracy of the polynomial model when being fit to this dense data set. The errors shown 
represent the mean magnitude of the residual errors after applying the polynomial to all 
of the data points in the set. These results are promising in that it appears the accuracy 
can be improved by increasing the polynomial order; however, after a second or third 
order model, the improvement is very small. Therefore, we can probably get away with a 
2nd or 3rd order model to accurately represent this environment. 

 
Compensation of Robot Lab Data 

 

Accuracy of modeling measurement distortion field for robotically collected data in lab
Figure 3-24 
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 Stand-alone Fixture in Lab 
 

Here, we investigate modeling the distortion field from the data collected with the 
Stand-alone fixture. Higher order models are meaningless in this case because of the 
limited number of data points available. Assuming all measurements are valid, a single 
collection with this fixture would have the bare minimum number of measurements to fit 
a 5th order polynomial. As can be seen in Figure 3-25, we can in reality reliably fit up to a 
4th order polynomial, with 3rd order polynomials appearing to be the most practical. 
Compare these results to those of the disturbed OR environment in Figure 3-28; the 
trends seem similar, but the errors are much lower. However, an important feature to 
notice is how the change in residual error starts to level out more after 2nd order in the 
disturbed environment; this is expected because we have already seen that a distorted 
environment can usually be modeled with a lower order polynomial than that of an 
undisturbed one. 
 
 

Compensation of SA Lab Data 
 

Residual error magnitude of modeling disturbed data set as a  
function of Polynomial Order for each of 12 orientations 

Figure 3-25 
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Compensation Results 
 
 In order to verify that the compensation is in fact helping, I performed an 
experiment that will help verify this. In this experiment, the plastic tool shown in Figure 
3-26 was accurately machined such that we know the relative position and orientation of 
four sensors on it. By picking a pair of sensors on this tool, we know that the relative 
translation between the two sensors is precisely 30mm ± 0.005mm and the relative 
orientation is 0o.  
 

 
Test tool used for validation experiments CAD model of test tool design 

Pair 1 

Pair 2 

Figure 3-26 
 

Four trials were performed using this tool, and in each trial the measurements 
were compensated in real-time using the Aurora Tools software I have written that is 
discussed later. Measurements were compensated using the previously mentioned 3rd 
order polynomial model for the lab environment that was generated using the SA fixture. 
Of the four trials, two were collected statically with 100 measurements for each sensor in 
each of ten tool poses. The other two were collected dynamically by slowly moving the 
tool through the working volume of the Aurora and collecting 1000 measurements of 
each sensor in the tool. By examining the results in Figure 3-27, the compensation does 
have a quite drastic improvement on tracking results in all but one case; this is especially 
true for data collected quasi-statically since this was the data collection method used for 
generation of the polynomial model. For these results, Pair #1 from the right of Figure 
3-26 was used; results are similar for the other pairs. 
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Relative Position Error 

 

Relative Orientation Error 

 

Relative position and orientation error between two sensors 
(Compensation using 3rd order polynomial model of lab environment) 

Figure 3-27 
 
 These results in Figure 3-27 show that there is in fact significant potential for real-
time compensation of sensor measurements using a field characterization. The distortion 
model used here was generated from a rather sparse set of data collected using the Stand-
alone fixture; the results would undoubtedly be even better is a more dense data 
collection were performed. In this experiment, only one trial seems to have spurious 
results; this is the orientation error of Trial B. It appears that the orientation error got 
worse even though the position error got better. This can most likely be attributed to one 
of two actors: 1) the orientation error was already the lowest of the group, or 2) the 
orientations collected were not similar to those used to generate the model. Either way, in 
a more dense data collection this would probably not be a problem. 
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Stand-alone Fixture in Operating Room  
 

The results presented here are based upon a data set collected in the operating 
room (OR) using the digitized Stand-alone fixture. This data set contains 204 evenly 
dispersed measurements for each of 12 orientations; ideally there would be 216 
measurements, but invalid readings were discarded along with their counterparts of the 
other orientations. Figure 3-28, displays the average magnitudes of the residual errors for 
each of the 12 orientations after compensation; they are plotted as a function of the 
polynomial order. Notice that even though the sensors behave differently and have 
varying initial errors (shown as Order=0), they all converge to a consistent minimum 
when modeled with a 4th order polynomial. This suggest that we can reliably fit up to 4th 
order models to data sets collected in this configuration. Further, notice that the relative 
change in residual error after 2nd order levels out even more than for the previous set as 
we would expect because we are in an even more distorted environment.  

 
Compensation of OR Data 

 

Residual error magnitude of modeling disturbed data set as a  
function of Polynomial Order for each of 12 orientations 

Figure 3-28 
 

Although we can reliably fit 4th order models to the data, in reality a lower order 
model may be more useful. This is because we are not trying to get a perfect model for 
these measurements, we want a model that is representative of the distortion field and can 
be applied to real-time measurement compensation in the OR. Therefore, probably a 2nd 
or 3rd order model would be used since it is more general, and still retains a low residual 
error with the original data set. 
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Compensating for a Tool in the OR 
 

Here we try out the compensation methods on a tissue shaver bit in the operating 
room using the tool shown in Figure 3-29. The following results are obtained by 
determining the errors in the relative position of two sensors on the tool. The analysis is 
performed for the original measurements and again after performing measurement 
compensation on the sensor readings using several different polynomial models as shown 
in Figure 3-30.   

 
Tracked tissue shaver tool 

Figure 3-29 
 
Unfortunately, this result is not what we would hope to see. Applying the 

distortion compensation to this tool in fact made the uncertainty in the relative position 
between the two sensors even greater. This is most likely due to additional distortion 
caused by the metal tool and accuracy loss due to dynamic data collection. Unfortunately, 
we did not have a plastic tool to include in this trial at the time of the OR experiments. 
One thing to note is that the variance of the trials is very similar for 1st, 2nd, and 3rd order 
models, and the 2nd order model seems best. These results seem reasonable when 
referring back to Figure 3-28. 
 

 
Relative position error between two sensors on tissue shaver in the OR 

with comparison between effects of compensation model order 
(Red line at median, box extents at 1st & 3rd quartiles, whiskers extend to 1.5*IQR) 

Figure 3-30 
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Contributions 
 

This chapter took the data collection techniques from Chapter 2 and exploited the 
results for generation of polynomial models that describe the distortion. The basis of the 
modeling technique is again from [Wu, 2003c]. However, much time and effort was put 
into optimization of this software in terms of its robustness, speed, and reliability. With 
the distortion modeling software functional, the error mappings from Chapter 1 were 
transformed into distortion models. These models were analyzed to determine the extent 
of the distortion, the shape of the distortion, and the consistency. Verification of these 
models was performed by applying them to independent data sets and charting tracking 
accuracy improvements. The key results of the section are twofold: 1) generation of 
models describing several measurement environments, and 2) optimization of the model 
in terms of polynomial order, orientation resolution (number of basis orientations), and 
number of data points required. In Chapter 5 we use these models to generate a simulator 
of the distortion field that allows for tool design without physically building the tools. 
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Chapter 4:   Optimal Tool Design 

Overview 
 

Design of an ‘optimal’ tool means designing a tracked tool and reference frame 
such that they function with the best possible accuracy for a given scenario while still 
maintaining practicality/feasibility of construction. Designing tools with the best possible 
accuracy falls into two possible categories: 1) analysis of error bounds and uncertainty 
based on the tool configuration, and 2) simulation of the tool design either in a virtual 
simulator, as described later, or by building the tools. However, just because a tool is 
‘optimal’ in the sense of accuracy, it may not be practical; therefore this is an important 
factor in the design. For example, a tool with the best possible accuracy would have a 
very large number of sensors distributed evenly over a relatively large volume, with the 
target directly in the center; obviously there is a practical limit on number of sensors that 
can be used, tool size, and location of the tool tip. 
 
 This section details possible steps for design of a tool. Some of the steps are 
applicable to all tracked tools including OTS, while others are very specific to EMTS 
applications, and some even more specialized to the Aurora’s 5 DoF sensors. First, 
bounds are placed on both position and orientation error of the tool–reference registration. 
Following the placement of bounds is an uncertainty analysis that gives a more 
reasonable approximation of the distribution of errors. This section is rather generic to 
just about any IGS application. 
 
 Following the generic tracking scenario is a detailed description of the methods 
for fitting tool frames to the sensor measurements. The idea of fitting a rigid body frame 
to individual sensor measurements in rather generic, but the methods here are extended 
from the 3 DoF points obtained from an OTS to the 5 DoF measurements obtained from 
the Aurora EMTS. Following is an analysis of the error bounds and the error uncertainty 
of these fits. These values are then plugged into the previous section to determine the 
overall tool registration error. 
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Tool Tracking Overview 
 
 Here, we investigate error propagation in the tool tracking scenario. For this 
situation, independent of the tracker type, there is generally a coordinate reference frame 
(CRF) that is used to track the target, i.e. the patient anatomy, with respect to a base 
frame (the tracking unit). Then, there is the tool that is also tracked with respect to this 
same base frame. The goal is to determine the relative transformation (position and 
orientation) of the tool with respect to the CRF. The general tracking scenario is shown in 
Figure 4-1. 

 

 
Frame transformations in the standard tool tracking scenario 

Figure 4-1 
 

In this case, the transformation representing the tool in the reference frame is: 

( ) 1Tool CRF Tool
CRF Base BaseF F F

−
=  

 Where:  
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Tool

Tool Base

F F

F F
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These frames, Fi, are homogeneous transformations represented as follows: 
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ip ∈K \ is the translation element 
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Tool Tracking Error Bounds 
 
  The measured transformation just mentioned is the one we must use for 
performing calculations, but for a real tracking system it is not as simple as it appears due 
to inaccuracy of measurements. It must be assumed that the frames representing the CRF 
and the tool in the base frame are only approximations of the true frame, and errors in 
these approximations can be bounded based on knowledge of the tracking system’s 
accuracy. Figure 4-2 displays this problem, where the dashed lines represent bounds that 
the error stays within. 

 
Measured frame transformations with error bounds 

Figure 4-2 
 

Here,  and  represent the measurements of the CRF and tool frames 
respectively with respect to the base frame. 

ĈRFF T̂oolF

 
Each of these measured frames has an error associated with it. Using the right 

error representation, the measurement is as follows: 
ˆ

ˆ
CRF CRF CRF

Tool Tool Tool

F F F

F F F

= ∆

= ∆
 

 Where:  and  represent the nominal/true transformations CRFF ToolF
   and  represent the additive measurement error transformation CRFF∆ ToolF∆
 

The error could also be represented as a left error, where the error acts in the base 
frame and the actual transformation is applied to it.  
This is a less common representation:  

î iF F= ∆ iF  
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  For this work, the right error representation is used. The error is represented as a 
homogeneous transformation that applies a rotation and translation after the nominal 
measurement. This error transformation is defined as follows: 

(3)0 1
i i

i

R p
F S

δ∆⎡ ⎤
∆ = ∈⎢ ⎥

⎣ ⎦

K
E

SO

  

 
 Where:  is the translation element of the error 3

ipδ ∈K \
  ˆexp( ) (3)i iR α∆ = ∈  is the rotation element of the error 
 
  Where: ( ) ( )ˆ (3)i i i iskew skew soα α δθ ω= = ∈K K  

    is the unit vector along the axis of rotation 3
iω ∈K \

   [ ]0, 2iδθ ∈ π  is the non-negative angle about iωK  (radians) 
 
The estimated transformation from the CRF to the Tool in this notation is: 

1ˆ Tool CRF CRF Tool Tool
CRF Base Base Base BaseF F F F F

−
⎡ ⎤ ⎡= ∆ ∆⎣ ⎦ ⎣ ⎤⎦

⎤⎦

⎤⎦

 
1Tool Tool CRF CRF Tool Tool

CRF CRF Base Base Base BaseF F F F F F
−

⎡ ⎤ ⎡∆ = ∆ ∆⎣ ⎦ ⎣  

 Where:  is the nominal / actual frame Tool
CRFF

  is the error in the estimated / calculated frame Tool
CRFF∆

 
To determine the error in the relative transformation , we isolate the associated error: ˆ Tool

CRFF

( ) 1 1Tool Tool CRF CRF Tool Tool
CRF CRF Base Base Base BaseF F F F F F

− −
⎡ ⎤ ⎡∆ = ∆ ∆⎣ ⎦ ⎣  

( ) ( ) ( )1 1 1Tool Tool CRF CRF Tool Tool
CRF CRF Base Base Base BaseF F F F F F

− − −
∆ = ∆ ∆  

( ) ( )1 1Tool Tool CRF Tool Tool
CRF CRF Base CRF BaseF F F F F

− −
∆ = ∆ ∆  
 
Putting into homogeneous representation: 

1 1

0 1 0 1 0 1 0 1 0 1

Tool Tool CRF Tool Tool
CRF CRF Base CRF Base

Tool Tool CRF Tool Tool
CRF CRF Base CRF BaseR p R p R p R p R pδ δ

− −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡∆ ∆
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

K K K K δ ⎤∆
⎥
⎥⎦

K
 

 
Passing the inverses through into the frames we get an expression for the error in the 
estimated frame: 

( ) ( )

( ) ( )

1 1

1 1

*
0 1 0 1

          
0 1 0 10 1

Tool ToolCRF CRF

Tool ToolCRF CRF BaseBase

Tool Tool Tool
CRF CRF CRF

Tool ToolCRF CRF
CRF BaseBase Base

R p R R p

R p R pR R p

δ

δδ

− −

− −

⎡ ⎤⎡ ⎤∆ −⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤∆∆ − ∆⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

K K

K KK
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In order to analyze the error, the next step is to break the error apart into rotational 
and translational components. 
 
Position Error: 

( ) ( ) ( ) ( ) ( )1 1 1 1
Tool Tool Tool CRF Tool
CRF Base CRF Base CRF

Tool CRF Tool CRF Tool
CRF Base CRF Base CRFp R R R p p R p R pδ δ δ

− − − −⎡ ⎤= ∆ + − ∆ −⎢ ⎥⎣ ⎦
K K K K K  

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1
Tool Tool Tool CRF Tool
CRF Base CRF Base CRF

Tool CRF Tool Tool CRF Tool
CRF Base CRF CRF Base CRFp R R R p p R R p R pδ δ δ

− − − − −
= ∆ + − ∆ −K K K K K  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1
Tool Tool Tool CRF Tool
CRF Base CRF Base CRF

Tool CRF Tool Tool CRF Tool CRF Tool
CRF Base CRF CRF Base CRF Base CRFp R R R p R R p R R p R pδ δ δ

− − − − − − −
= ∆ + ∆ − ∆ −K K K K K

 
( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1

3Tool Tool CRF Tool
CRF Base Base CRF

Tool CRF Tool Tool CRF Tool CRF
CRF Base CRF CRF Base CRF Basep R R R p R R p R R I pδ δ δ

− − − − − −
= ∆ − ∆ + ∆ −K K K K  

 
 
Rotation Error: 
 

( ) ( )1 1Tool Tool CRF Tool Tool
CRF CRF Base CRF BaseR R R R R

− −
∆ = ∆ ∆  
 
 

For further analysis, we must define the representation of rotation errors and look 
for ways to simplify them. This is the same as the representation shown earlier, but now it 
is expand and linearized. 
 
Representation of Rotations: 

( ) ( )ˆexp (3)R R SOα α∆ = ∆ = ∈K  

 Where: 3α ∈K \ is a vector pointing along the axis of rotation 
αK  is the angle of rotation (radians) 
ˆ ( ) (3)skew soα α= ∈K  

Normally rotations are represented as: ( )ˆexpR ωθ= , where ωK  is the unit vector 
representing the axis of the rotation and θ  is the magnitude of rotation. However, since 
α ωθ=K K  is the Rodriguez vector, only α̂  is necessary in the expansion. 
 
Using the infinite series expansion of a matrix exponential to expand the rotation: 

( ) 2 3
3

0

1 1 1ˆ ˆ ˆ ˆ ˆexp
! 2! 3!

j

j
R I

j
α α α α α

∞

=

∆ = = = + + + +∑ "  

 
Since the magnitude of the rotation error is small, second order and higher terms 

will be negligible, and can be neglected. The result is the following linearization: 
 

( )
3 2

3 3

2 1

1 0 0 0 α α

1 0 1 0 0
0 0 1 0

ˆ ˆexpR I α α α
α α

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 α∆ = ≈ +
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Now that the rotation error is approximated linearly, the next step is to plug this 
into the equations for position error and orientation error that were presented above. After 
plugging in and expanding the equations out, we get the following equations that are 
linear in terms of the error. 
 
Linearizing the Position Error: 

( ) ( ) ( ) ( ) ( ) ( )1 11 1 1

3 3 3ˆ ˆ ˆTool CRF Tool CRF CRF CRF Tool
CRF Base Base Base Base Base CRF

Tool Tool Tool Tool
CRF CRF CRF CRFp R I R p R I p R I I pδ α δ α δ α

− −− − − ⎛ ⎞≈ + − + + + −⎜ ⎟
⎝ ⎠

K K K 1

3

− K  

( ) ( ) ( ) ( ) ( ) ( )1 1

3 3ˆ ˆTool CRF Tool CRF CRF CRF Tool
CRF Base Base Base Base Base CRF

Tool Tool Tool Tool
CRF CRF CRF CRFp R I R p R I p R pδ α δ α δ

− −
≈ − − − + −K K K 1

α̂
− K  

( ) ( ) ( ) ( ) ( )1 1 1 1
ˆ ˆTool Tool CRF Tool CRF CRF CRF CRF Tool

CRF Base Base Base Base Base Base Base CRF

Tool Tool Tool Tool Tool Tool Tool
CRF CRF CRF CRF CRF CRF CRFp R R p R R p R p R p R pδ δ α δ δ α δ

− − − − −
≈ − − + −K K K K K 1

α̂ K

 
( ) ( ) ( )ˆ ˆTool Tool CRF Tool CRF CRF CRF CRF Tool

CRF Base Base Base Base Base Base Base CRF

TTool Tool
CRF CRFp p skew R p R p p pδ δ α δ δ α δ α≈ + + − + −K K K K K K K  

 
 
 
Linearizing the Orientation Error: 

( ) ( ) ( )11

3 3ˆ ˆCRF Tool
Base Base

Tool Tool Tool
CRF CRF CRFR R I R Iα α

−−
∆ ≈ + +  

( ) ( ) ( )1

3 3ˆ ˆCRF Tool
Base Base

Tool Tool Tool
CRF CRF CRFR R I R Iα α

−
∆ ≈ − +  

( ) ( )( )( )1 1
ˆ ˆCRF Tool

Base Base

Tool Tool Tool Tool Tool
CRF CRF CRF CRF CRFR R R R Rα α

− −
∆ ≈ − +  

( ) ( ) ( ) ( )1 1 1 1
ˆ ˆ ˆTool CRF CRF Toolˆ

Base Base Base Base

Tool Tool Tool Tool Tool Tool Tool Tool Tool
CRF CRF CRF CRF CRF CRF CRF CRF CRFR R R R R R R R Rα α α

− − − −
∆ ≈ + − − α  

 
Using the identity: ˆ ( )TR R skew Rα α= K  

( ) ( )3 ˆ ˆTool CRF CRF Tool
Base Base Base Base

Tool Tool Tool
CRF CRF CRFR I skew R skew Rα α α∆ ≈ + + +K K α  

( ) ( )( )3 3ˆ ˆTool CRF Tool
Base Base Base

Tool Tool
CRF CRFR I skew R Iα α∆ ≈ + + +αK  

 

( )( )( )3 3 ˆCRF Tool
Base Base

Tool Tool
CRF CRFR I skew R Iα α∆ ≈ + +K  

 
Where both factors are linearized approximations of rotation matrices of the form:  

( )3R I skew α∆ ≈ + K  
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 Now that we have equations for the error tool registration error that are linear in 
terms of the individual frame errors, the logical next step is to place bounds on the 
magnitudes of the position and orientation registration error. 
 
Bounds on Position Error: Tool

CRF
pδ K  

 
Taking the norm of both sides of the equation: 

( ) ( ) ( )ˆ ˆTool Tool CRF Tool CRF CRF CRF CRF Tool
CRF Base Base Base Base Base Base Base CRF

TTool Tool
CRF CRFp p skew R p R p p pδ δ α δ δ α δ α= + + − + −K K K K K K K  

 
Using the triangle inequality to put a bound on the error magnitude: 

( ) ( ) ( )ˆ ˆTool Tool CRF Tool CRF CRF CRF CRF Tool
CRF Base Base Base Base Base Base Base CRF

TTool Tool
CRF CRFp p skew R p R p p pδ δ α δ δ α δ α≤ + + − + −K K K K K K K  

 
Since length is preserved in rigid body rotation, the rotation can be removed: 

( ) ( )ˆ ˆTool Tool CRF Tool CRF CRF CRF CRF Tool
CRF Base Base Base Base Base Base Base CRF

Tool
CRFp p skew R p p p pδ δ α δ δ α δ α≤ + + − + −K K K K K K K  

 
Since multiplying a small displacement by a skew matrix generated from the 

approximation of a small rotation produces almost negligible values, these components 
can be removed as well: 
 

Tool Tool CRF
CRF Base Base

p p pδ δ δ≤ +K K K  

 
 

Therefore, we end up with this bound on the translational error of the 
transformation between the CRF and tool frames. Notice that the bound is a function only 
of the errors of the measured frames themselves. This is a worst-case scenario, and it may 
result in a severe overestimation of the error. 
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Bounds on Orientation Error: Tool Tool
CRF CRF

δθ α= K  

 
From before we have: 

( )( )( )3 3 ˆCRF Tool
Base Base

Tool Tool
CRF CRFR I skew R Iα α∆ ≈ + +K  

 
Isolating the error term: 

( ) ( )3 3ˆ ˆTool CRF Tool CRF Tool
CRF Base Base Base Base

Tool Tool
CRF CRFI I skew R skew R ˆα α α α α+ ≈ + + +K K  

( ) ( )ˆ ˆTool CRF Tool CRF Tool
CRF Base Base Base Base

Tool Tool
CRF CRFskew R skew R ˆα α α α α≈ + +K K  

 
Removing higher order error terms as before: 

( )ˆ ˆTool CRF Tool
CRF Base Base

Tool
CRFskew Rα α α≈ +K  

 
Converting the skew symmetric matrices into the associated Rodriguez vectors: 

( )ˆ ˆTool CRF Tool
CRF Base Base

Tool
CRFskew Rα α

∨∨ ⎡ ⎤⎡ ⎤ ≈ +⎢ ⎥⎣ ⎦ ⎣ ⎦
K α  

Tool CRF Tool
CRF Base Base

Tool
CRFRα α α≈ +K K K  

 
Note: the ‘ ’ operator turns a skew-symmetric matrix∨ (3)so∈  into its corresponding 
vector∈ . This is the same as the vec( ) operator in other notation. 3\
 
Taking the norm of both sides: 

Tool CRF Tool
CRF Base Base

Tool
CRFRα α≈ +K K αK  

 
Using the triangle inequality to get a bound on the error: 

Tool CRF Tool
CRF Base Base

Tool
CRFRα α≤ +K K αK  

 
Since rigid body rotations preserve length, the rotation matrix can be removed without 
affecting the magnitude: 

Tool CRF Tool
CRF Base Base

α α α≤ +K K K  

 
Plugging in the rotation angles associated with the Rodriguez vectors, we get a bound on 
the angular error: 
 

Tool CRF Tool
CRF Base Base

δθ δθ δθ≤ +   

 
 

Therefore, for a given magnitude of angular error for the tool and CRF frames, we 
can calculate bounds on the relative transformation’s rotational error. As before, this is a 
worst-case scenario may result in a severe overestimation of the error. 
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Tool Tracking Uncertainty 

Covariance Propagation Overview 
 

The previous analysis puts bounds of the errors, but says nothing about the 
statistical distribution of error. The following analysis details how error covariance 
propagates through the frame transformations. Another nice reference for error 
propagation through frame transformations by another member of our lab is [Boztec, 
2005]. First we define the notation to be used and the available operations. Then this will 
be applied to the specific problem. 
 
Representation of Frames: 
 

(ˆ ,i iF F W= )i  is the ith rigid body frame with associated covariance 

Where: (6(3) ,
0 1

ii i
i i

i

rR p
F SE f p

⎡ ⎤⎡ ⎤
= ∈ = ∈ =⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
)i ir p

K
K K6 \K  is the nominal frame 

 Where: 3
i i i iR r nθ= ∈K K6 \  is the appropriate Rodriguez vector 

 3
in ∈K \  is the unit vector along the axis of rotation of iR  

iθ is the angle of rotation about that axis (radians) 
   is the covariance matrix representing the uncertainty of the frame iW

  
 

Covariance of a Frame: 
 

The covariance is split into two independent components, one for position and 
one for orientation. Therefore, it is represented as a block diagonal combination of two 
separate sub-matrices. 

6x6
0

0
i

i

r
i

p

W
W

W
⎡ ⎤

= ∈⎢ ⎥
⎢ ⎥⎣ ⎦

\  

Where: ( )( )( ) 3x3ˆ ˆ
i

T
r i i i iW E r r r r= − − ∈\  is the covariance of the orientation 

 ( )( )( 3x3ˆ ˆ
i

T
p i i i iW E p p p p= − − ∈\)  is the covariance of the position 

  
The standard deviations for each component of a frame are plugged into the 

covariance equation. The vector of standard deviations is as follows: 

 6
x y z x y z

T

r r r p p pσ σ σ σ σ σ σ⎡ ⎤= ∈⎣ ⎦
K \  

 
This results in a matrix with the appropriate variances along the diagonal of Wi : 

( )i itr W iσ σ= •K K  
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Note that the standard deviations of the elements of pK  are straightforward, but 

that the standard deviations of the elements of rK are a little more difficult to interpret. 
They represent the uncertainty in the Rodriguez vector, which is related to the uncertainty 
in angle as follows: 

( )sinr θ θ θ∆ = ∆ ≈ ∆θ  
 

Therefore, the standard deviation of the rotation error is similarly related. Both the 
Rodriguez vector and the angular uncertainty can be broken into components to solve for 
σK . If the error is isotropic, then all of the components for each of the position error and 
orientation error will be the same. 

 
 

Definition of Operations: 
 

The operator ‘ ’ combines two frames of given uncertainties. The two nominal 
frames are combined through normal matrix multiplication of two matrices 

. This operation also includes to combinations of two covariance 
matrices , they are combined using Jacobian methods introduced 
later. 

⊕

4 4
1 2, xF F ∈\

6 6
1 2, xW W ∈\

 
The operator ‘ ’ combines two Rodriguez vectors, D 1 and r 2r

K K , by converting them 
into rotation matrices , performing matrix multiplication, and 
converting the product back into a Rodriguez vector 

3 3
1 2, xR R ∈\

3r ∈K \ . 
 
The operator ‘ ’ multiplies a position vector, • pK , by the rotation matrix 
corresponding to the given Rodriquez vector, rK . The resultant is a position vector 

. 3p ∈K \
 
 
Compounding Frames: 

3 2 1 3 2
ˆ ˆ ˆF F F f f f= ⊕ = ⊕6 1   

 
Nominal Frame: 

 ( )2 1 2 1 2
3 2 1 3 2 1 2 1 2,

0 1
R R R p p

F F F f r r r p p
+⎡ ⎤

= = = • +⎢ ⎥
⎣ ⎦

K K
K K K K K6 D  
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Compounding of Covariances: 
 

As is presented in [Pennec, 1995], covariances are propagated through frame 
transformations though the use of Jacobian matrices as follows: 

3 1 1 1 2 2 2
T TW J W J J W J= +  

 
 Where: is the covariance matrix for the i 6x6

iW ∈\ th transformation 
 
In general, Jacobians are defined as follows: 

1 1

1
x

1

( ) m
n m

n n

m

h h
x x

h xJ
x

h h
x x

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥∂

= = ∈⎢ ⎥
∂ ⎢ ⎥∂ ∂⎢ ⎥

⎢ ⎥∂ ∂⎣ ⎦

"

# #

"

\  

 
Working out the Jacobians for this particular case: 

( )
( )

( )2 1
2 1 2 1 2 6x63

1 1
1 1 1

2

0,
,

0

r r
r r r t tfJ r

f r t
R

⎡ ⎤∂
∂ • +∂ ⎢ ⎥= = = ∈∂⎢ ⎥∂ ∂ ⎢ ⎥⎣ ⎦

K KDK KK K KD K \KK  

 

( )
( )

( )

( )

2 1

22 1 2 1 2 6x63
2

2 2 2 2 1
3

2

0
,

,

r r
rr r r t tfJ

f r t r t
I

r

⎡ ⎤∂
⎢ ⎥∂∂ • +∂ ⎢ ⎥= = = ∈⎢ ⎥∂ ∂ ∂ •
⎢ ⎥

∂⎢ ⎥⎣ ⎦

K KD
K K KK K KD

\K KK K
K

 

 
Frame Inversion: 
 

Inverting a frame transformation using this notation requires not only inverting 
the nominal frame, but also the corresponding covariance matrix as follows. 

( ) ( ) ( )1 1 1ˆ , , T
I IF F W F J WJ

− − −= =  

 
The nominal frame inversions is rather straightforward: 

( ) ( )( ) ( ) ( ) ( )( ) ( )11 1 11 , , ,F f r p r r p r r−− − −− = = • − = − − •K K K K K K K K6 p−  

 
As with frame transformations, we use Jacobians to invert the covariance matrix. 

As presented in [Pennec, 1995], the Jacobian to perform this operation is as follows: 

( ) ( )( )
( )

( )
3 3

6x61

1
1

0 0

I T

I I
J r p r p

RR rr

−

−
−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =∂ • − −∂ •⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∂⎣ ⎦∂⎣ ⎦

K K K K \
KK

∈   
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Tool Tracking Covariance Propagation 
 
  The previous description shows in general how uncertainty propagates through 
frame transformations. We will now apply this to our particular case of tracking a tool 
with respect to a reference frame where each rigid body has its own covariance matrix, 
Wi, representing its measurement uncertainty. Figure 4-3 shows the frames involved, 
where the dashed lines represent uncertainty in the measurements of  and , 
which are the 6 DoF measurements of the CRF and tool frames respectively with respect 
to the base frame. 

ĈRFF T̂oolF

 

 
Measured frame transformations with given uncertainties 

Figure 4-3 
 

Due to the uncertainty in measurements, each transformation has a nominal frame 
(the actual position and orientation), and an associated covariance that represents its 
uncertainty.  
 
The following are the frames using the covariance representation:  

( )
( )

ˆ ,
ˆ ,
CRF CRF CRF

Tool Tool Tool

F F W

F F W

=

=
 

 
 Where:  and  represent the nominal/true transformations as before CRFF ToolF
   and  represent associated covariance matrices (uncertainties) CRFW ToolW
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The representation of the tool with respect to the reference is as follows: 

( ) 1ˆ ˆ ˆTool CRF Tool
CRF Base BaseF F F

−
=  

( ) ( ) (1, , ,Tool Tool
CRF CRF

CRF CRF Tool ToolF W F W F W−= )

,

 

( ) ( )( )1, ,Tool Tool
CRF CRF

T
CRF I CRF I Tool ToolF W F J W J F W−=  

 
 Where:  

( )
3

6 6

0
x

I CRF CRF T
CRF

CRF

I
J r p

R
r

⎡ ⎤
⎢ ⎥= ∈−∂ •⎢ ⎥
⎢ ⎥∂⎣ ⎦

K K \
K

 

 
Nominal Frame: 

( ) ( )1

1
Tool
CRF

Tool CRF Tool
CRF Base Base ToolCRF

F F F f f f−

−
= =6  

Tool
CRF

f       ( ),Tool Tool
CRF CRF

r p= K K ( ) ( ) ( )( )( )1 1, ,CRF CRF CRF Tool Toolr r p r p− −= • −K K K K K

   ( ) ( ) ( ) ( )( )1 1 1,CRF Tool CRF Tool CRF CRFr r r p r p− − −= • + •K K K K K KD −

T

 
 
Uncertainty Calculation: 

( ) ( ) ( )1 1Tool
CRF

T T
I CRF I Tool Tool ToolCRF CRF

W J J W J J J W J− −= +  

 
Where: 

 
( ) ( ) ( ) ( )( )

( )

1 1 1,

,
Tool
CRF

CRF Tool CRF Tool CRF CRF
Tool

Tool Tool Tool

r r r p r pf
J

f r t

− − −∂ • + •∂
= =

∂ ∂

−K K K K K KD
 

 

( )
( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )1

1

1 1 1

1 1

,

,

Tool
CRF

CRF Tool CRF Tool CRF CRF

CRF
CRF CRF CRFCRF

r r r p r pf
J

f r r p
−

−

− − −

− −

∂ • + •∂
= =

∂ ∂ • −

−K K K K K KD
K K K  

 

( )
3 0

I CRF CRF T
CRF

CRF

I
J r p

R
r

⎡ ⎤
⎢ ⎥= −∂ •⎢ ⎥
⎢ ⎥∂⎣ ⎦

K K
K

 (as before) 

 
 
 

 121



Frame Fitting 
 

The analysis above describes how error propagates through frame transformations 
and predicts tool registration error with respect to a reference. However, this result is a 
function of the error introduced in fitting those frames to the measurements. Therefore, in 
order to determine the tool registration error, we must investigate the uncertainty in 
fitting 6 DoF frames to measurement data. This fitting is some type of optimal fit of the 
rigid body frame to the individual sensors. Often this is performed internally inside of the 
tracker’s system control unit (SCU); other times it is done by custom user software from 
individual sensor measurements. 
 

In what is referred to as the Procrustes problem, the goal is to align a cloud of 
points  to a second cloud of points though a rigid transformation . In the 
ideal case, this rigid transformation will align the two sets such that each point is 
coincident with its corresponding point in the other set. However, both sets of points may 
be susceptible to errors that can bias the best-fit frame from the nominal frame.  

3∈\ (3)SE∈

 
In the general tracking scenario, there is a tool configuration that describes the 

location of points on the tool with respect to its origin, and this configuration is often 
known accurately. Measurements of the points / sensors on the tool are taken, and the 
best rigid transformation that aligns the corresponding points in the tool configuration to 
the measurements is used to describe the tool frame; this is the registration step. However, 
due to inaccuracies in the measurement device that results in errors of locating the points 
on the tool, this alignment will not be perfect; therefore, a best estimate of the 
transformation must determined. A common method is to find the rigid transformation 
that aligns the corresponding points with the minimal error in the least squares sense is 
presented in [Arun, 1987]. 
 

In the case of the Aurora system, the problem is somewhat different. This is 
because we are receiving 5 DoF information from each sensor, not just 3 DoF position 
data from markers as detected by an OTS. Instead of only having point correspondences, 
we also have an equal number of orientation vectors to align. This extra information has 
no effect on the alignment of the centroids of the two data sets; where it comes into play 
is in determining the optimal rigid rotation. This rigid rotation is about the centroid/center 
of gravity (C.G.) of the sensor positions that best aligns the measurements. Here, we treat 
the orientation vectors as if they were points along the line created by placing the 
orientation vectors at the C.G. and projecting out a given distance along that line. This 
distance is the relative weighting factor of the orientation data to the position data; its 
value is determined based upon the system accuracy as described later in the Error 
Weight Calculation section. In addition, individual weighting factors could be used on 
each point if it is known that some measurements can be trusted more than others. 
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The alignment scenario is demonstrated in Figure 4-4. The original frame is 
shown in blue; its sensors are perturbed in both position and orientation, shown in red. 
This perturbation represents measurement error of the sensor and is often termed the 
fiducial localization error (FLE); however, note that it is not only a translation error in 
this case. 

 
Representation of measurements error 

(Blue represents actual sensor configuration, Red represents perturbed measurements) 
Figure 4-4 

 
The rigid body with its known configuration is then transformed with the best-fit 

frame that aligns its sensors to the measurements. From Figure 4-5, shown in green, it is 
first aligned to the centroid of the perturbed points, and then rotated such that is has a fit 
that is optimal in some sense.  
 

 
Representation of best fit frame (green) to perturbed measurements (red)

(Original frame is shown in blue, RBF∆ is the induced alignment error) 
Figure 4-5 
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Notation: 
 

The frame of a rigid body (RB) is calculated based on the least squares best fit of 
the position and orientation of an a-priori known configuration to the measured sensors. 
Figure 4-6 shows the typical configuration of sensors in an RB’s frame. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Arrangement of sensor positions and orientations in the RB 

1nK
2nK

nnK
2p p−K

np p−K

1p p−K

nF

2F

1F p

RB Frame 

Figure 4-6 
 

The frames { }1 2, , , nF F F"  represent the known position and orientation of n 
sensors with respect to the given rigid body frame of reference (i.e. a frame centered at a 
tool tip and aligned with a pointer shaft). 
 
Since the sensor frames are only specified in 5 DoF, they can be represented as: 

( ),i i iF n p= K K  

 Where: is the position of the sensor wrt the RB frame 3
ip ∈K \

3
i zn r= ∈K K \  of (3)i x y zR r r r SO⎡ ⎤= ∈⎣ ⎦

K K K  is the orientation of the sensor 
with respect to the RB frame 

 
The de-meaned values of the sensor locations are necessary in order to compute 

the optimal rotational alignment of a rigid body to its measurements. These values are the 
original values of the senor positions wrt the RB frame with the location of the centroid 
(C.G.) in the RB frame subtracted off. Therefore, first the C.G. of the points with respect 
to the RB frame is computed as follows. 

 
Center of gravity (C.G.) of the sensor positions wrt RB frame:  

3

1

1 n

i
i

p p
n =

= ∈∑ K \  
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Least Squares Solution 
 

Following are details of the method used for solving for the best rigid point cloud 
to point cloud rotation problem in the LS sense. The weighted orientations are treated the 
same way as the demeaned points; the weighting factor, w, keeps the position and 
orientation contributions balanced. Methods for solving problems of this type are detailed 
in great depth in several papers as described in the Literature Review section of Chapter 1. 
The method used here is a modified version of that presented in [Arun, 1987], with the 
modification being the addition of orientations as mentioned above. 
 
From before: 

( )

( )

1

n

1

n

RB RB

RB RB

RB

RB

p -p

p -p

n

n

T

T

T

T

X

w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

K

#
K

K

#
K

  

( )

( )

1

n

1

n

Meas Meas

Meas Meas

Meas

Meas

p -p

p -p

n

n

T

T

T

T

Y

w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

K

#
K

K

#
K

  

 
Where: p  represents the mean position of the given measurement set 
 

   represents the unit vector pointing along the z-axis of the given sensor nK

 
 w represents the weighting of the orientation measurements with respect to the 

position measurements. The value for this is determined as shown in the Error 
Weight Calculation section of Chapter 5. 

 
The subscripts RB and Meas represent the sensors in the known rigid body 
configuration and the actual sensor measurements respectively. 

 
Using the notation in [Arun, 1987]: 
 

( ,1: 3)

( ,1: 3)

T
i

T
i

q X i

q Y i

=

′ =
  { }1, ,i n= …  

 

  
1

n
T

i i
i

H q q
=

′= ∑
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Take the Singular Value Decomposition (SVD) of H: 
  TH U V= Λ
 
Calculate the optimal rotation, R, in the Least Squares (LS) sense as follows:  

 
?

TR R VU= =�  
 
Verify the solution: 

  
1 Set:  

det( )
1 Algorithm fails

R R
R

⎧ ⎫+ =
= ⎨ ⎬

−⎩ ⎭

��

A method for dealing with failure of the algorithm is proposed in [Umeyama, 1991]. 
 
 
  Using the LS SVD solution for the optimal rotation, R, the optimal translation 
vector, v , is calculated by rotating the vector to the C.G. of the RB points, K

RBp , by the 
rotation, R, and subtracting that from the C.G. of the sensor measurements. Note that the 
centroid is only dependent on the position information of the sensor measurements, the 
weighted orientations are not included. 
 
The optimal translation that aligns the RB with the measurements is given by: 

*Meas RBv p R p= −K  
 
 

Combining the two components, the 6 DoF frame representing the location of the 
rigid body in base coordinates is: 
 

 (3)

0 1

RB Meas

R v
F S→

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

K
E  

  
 
 Where: R is the best rigid rotation (from above ) 

vK is the translation that aligns the centroids 
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Validation of 5D to 6D Conversion 
  

Since the accuracy of the frame-fitting conversion is absolutely mission-critical, it 
is important to verify my algorithm. If we take the Aurora system itself with its internal 
firmware calculations as the baseline measure, we can compare how well our algorithm 
performs the 5D to 6D conversion. For this trial I used a plastic test tool with two pairs of 
sensors in accurately known locations and orientation. The tool was moved to 20 poses 
where 10 static measurements were made of all four sensors at each pose. The data was 
collected in the raw format and allowed post processing by both my algorithm and the 
NDI algorithm that is used in the system firmware. The error is judged as the relative 
difference in position and orientation of the 6 DoF frame generated from each pair of two 
5 DoF sensors. In total, we have a total of 200 frames for each of two 6 DoF tools. 
Frames were fit using an orientation vs. position weight of w=100. The results are 
presented in Figure 4-7. For the distribution of error magnitude, see Figure 4-8. 

 

 
Error between my frame calculation NDI firmware calculation 

(using default orientation weighting, for two sensors) 
Figure 4-7 
 

 
Distribution of difference my frame fitting algorithm and NDI frame fitting algorithm 

Figure 4-8 
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In order to see what the effect of the weighting factor between the orientation and 
position contributions has, I did a trial where the weight was varied. In this trial the 
weight of orientation contribution with respect to position in the 5D to 6D conversion 
was adjusted from 100 to 500. From looking at Figure 4-9, it is clear that the NDI frame 
fitting algorithm puts a very high weight on the contribution of sensor orientations to the 
best-fit frame as compared with sensor positions. 

  

 
Difference in fitted frames (Mine & NDI) vs. the orientation contribution weight 

Figure 4-9 
 
The key result in this section is shown in Figure 4-10. Here, I repeat the earlier 

trial, but with an orientation weighting factor of w=500. Notice that the axes are different 
than before in Figure 4-7; the deviation between the frames fit using the two algorithms is 
now one order of magnitude smaller. Be aware that these results do not indicate which 
algorithm performs a ‘better’ fit; they represent how close the fitted 6 DoF frames from 
two 5 DoF frames are for my algorithm and the one running in the NDI Aurora firmware. 

 
5D ⇒ 6D Transformation Validation Results 

 
Difference between my fitted frames and the NDI fitted frames 

with optimized position vs. orientation weighting 
Figure 4-10 
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Bounds on Frame Fitting 
 

We now have bounds on the registration error of the tool with respect to the 
coordinate reference frame and a method for fitting a tool frame to the sensor 
measurements; the next step is determining what the measurement error of these frames 
is. First, we investigate the bounds on translation error, and then we investigate the 
bounds on rotation error. 

Translation Error 
 

The translational error of the rigid body frame comes from two components: 1) 
one associated with the alignment of the centroid of the group of sensors, and 2) one 
associated with the rotation-induced error. If we make the assumption that that the tool 
configuration is known precisely, then the error in locating the centroid is only associated 
with the measurements of the sensors associated with the RB.  

 
The translational measurement error for each sensor, i, is as follows: 
ˆ

i i ip p pδ= +K K K  
 
 Where: p̂K  is the disturbed measurement with respect to the RB frame 

  pK    is the nominal/actual position 
  pδ K   is the translational measurement error 

 
Returning to the definition of p , now we must determine the value of pδ  

( )
1

1ˆ
n

i i
i

p p p p p
n

δ δ
=

= + = +∑ K K  

 
 Where: p̂  is the location of the centroid (C.G) of the measured sensor positions 
  p  is the nominal/actual location of the tool’s C.G. in its own frame 
  pδ  is the error in the position of the centroid of the sensors 
 
With some manipulation, we can get the following equations: 

1 1

1 n n

i i
i i

p p p
n

δ δ
= =

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
∑ ∑K Kp  

1

1 n

i
i

p p p p
n

δ δ
=

⎛ ⎞
+ = + ⎜ ⎟

⎝ ⎠
∑ K  
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Solving for the error in centroid location, we notice that is only a function of the 
translational measurement distortion terms: 

1

1 n

i
i

p p
n

δ δ
=

= ∑ K  

 
Taking the magnitude of the error: 

1

1 n

i
i

p p
n

δ δ
=

= ∑ K  

 
 
The bounds on this components f the position error in locating the rigid body can be 
found by applying the triangle inequality: 
 

  
1

1 n

Trans i
i

p p p
n

δ δ δ
=

≤ ∑K K�  

 
Thus, the error is bounded by the average magnitude of the sensor position errors. 
 
 

The following result is a very large, but easily calculated upper bound on this 
error. This also applies to the worst case scenario, where there is a systematic translation 
of all of the points. 

 
maxTrans i ip p pδ δ δ= ≤K K  
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  The second component of the position error in locating the RB frame comes from 
the rotation error. If the RB frame’s origin lies at the C.G., then this component is 
negligible. Otherwise the rotation error causes a translational error of the tool’s frame. 
Figure 4-11 shows how the rotation error causes a shift in tool frame position in addition 
to a rotation. 
 

 

Rotation-induced position error of RB frame 

R∆

Rotpδ K

p

Figure 4-11 
 
 
Representation of Rotations: 
 

The rotation error is expanded as before, but instead of being linearized, the 
infinite series is replaced with a closed from solution. Also, the axis and angle of the 
rotation error are no longer combined into a single term for reasons that will be clear later. 

 
( ) ( )ˆexp (3)R R SOωδθ ωδθ∆ = ∆ = ∈K  

 Where: 3ω ∈K \ is the unit vector along the axis of rotation 
δθ  is the angle of rotation in radians  
ˆ ( ) (3)skew soω ω= ∈K ,  ˆ 1ω =  

 
Using the infinite series expansion of a matrix exponential to expand the rotation: 

( ) 2 3
3

0

1 1 1ˆ ˆ ˆ ˆ ˆexp
! 2! 3!

j

j
R I

j
α α α α α

∞

=

∆ = = = + + + +∑ "  

 
It can be shown that this infinite series can be rewritten using Rodrigues’ formula: 

( ) ( ) ( )( )2
3ˆ ˆ ˆexp sin 1 cosR Iωδθ ω δθ ω δθ∆ = = + + −  
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From the vectors shown in Figure 4-11 we can get the following: 

Rotp p Rpδ− + = −∆K  
 
Rearranging the equation to isolate the error term: 

Rotp Rp pδ = −∆ +K  

( )3Rotp R I pδ = −∆ +K  
 
Plugging in the expansion of rotations from above: 

( ) ( )( )( )2
3 3ˆ ˆsin 1 cosRotp I Iδ ω δθ ω δθ⎡ ⎤= − + + − +⎣ ⎦

K p  

( ) ( )( )2ˆ ˆsin 1 cosRotp pδ ω δθ ω δθ⎡ ⎤= − + −⎣ ⎦
K  

( ) ( )2 2ˆ ˆ ˆsin cosRotp p p pδ δθ ω ω δθ ω⎡ ⎤= − + −⎣ ⎦
K  

 
Placing bounds of the error 

( ) ( )2 2ˆ ˆ ˆsin cosRotp p pδ δθ ω ω δθ ω= + −K p  
 
For small magnitudes of rotation error, δθ , the following linearization can be made: 

sin( )δθ δθ≈  
cos( ) 1δθ ≈  

 
Plugging in the linearization and canceling like terms: 

2ˆ ˆRotp p pδ δθω ω≈ +K 2ˆ pω−  

ˆRotp pδ δθω≈K  
 
For consistent norms, we can split up the RHS and form an upper bound on the error: 

ˆRotp pδ δθ ω≤K  
 
Since ˆ 1ω = , it can be removed to form a bound on the rotation-induced position error. 
This result is just what we would have expected using the previous linearization. 
 

Rotp pδ δθ≤K    
 

Where: δθ  is the magnitude of the rotation error introduced from fitting the 
frame with the best rigid rotation. Calculation of this bound is detailed in  
the following section. 
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Combining the two components, the total position error of the frame is as follows: 

RB Trans Rotp p pδ δ δ≤ +K K K  

Where: maxTrans i ip pδ δ≤ K  

  Rotp pδ δθ≤K  
 
Plugging in the individual components, we get a bound on the position error for the RB 
frame: 

maxRB i i RBp p pδ δ δθ≤ +K K  
 
Going back to the previous definition of the first component of translation error to get a 
more realistic bound on the position error: 
 

  
1

1 n

RB i RB
i

p p p
n

δ δ δθ
=

≤ +∑K K
 

 
 

Using this equation, we can investigate how to minimize the tracking error of a 
rigid body’s frame. To minimize the first term, we want to minimize the average 
localization error (FLE). If this is a random variable, then by increasing the number of 
sensors, n, the registration error will be decreased. To minimize the second term, the key 
is to keep the origin of the rigid body as close to the C.G as possible. In terms of a tool, 
this means keeping the sensors close to the tip; in terms of a reference frame, the sensor 
should be evenly distributed around the area of interest. The angular element of the frame 
fitting error is investigated next. 
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Rotation Error 
 

This section details the calculation of bounds on the rotation error of the frame 
fitting procedure. This is a more complex problem than that of position error because it 
relies on analysis of the least squares problem of determining the optimal rigid rotation to 
align the sensor configuration to the measurement set. 
 
Using the same definition as earlier for the X and Y matrices that represent the data sets to 
be aligned (including both position and orientation information): 
 3 2x nX ∈\  Rigid Body configuration  
  Associated measurement set 3 2x nY ∈\
 
And, subsets of these matrices are defined as: 
  is the i 3

ix ∈K \ th column of X 
  is the i 3

iy ∈
G \ th column of Y 

 
The associated perturbations are: 
  3

i i idx x x= − ∈K K K� \
3

i i idy y y= − ∈K K K� \  
 
Where: ixK�  and  are the nominal values iyK�

 
We define the following matrix to be used for this analysis: 

2
3 3

1

n
T T

i i
i

A YX y x
=

= ∈∑ K K� \ x  

 
Performing the polar decomposition on A: 
A RS=  

 Where: ( )
1

* 2R A A=    Orthogonal rotation matrix 

  ( )
1

* 2S A A A
−

=   Symmetric matrix 
 
 
From [Dosrt, 2005], the Rodriguez vector denoting the induced: 

( )( ) ( ) ( )1 T
i i i

i
da R tr S I S R Rx dy Rdx y

− ⎛ ⎞
= − × +⎜ ⎟

⎝ ⎠
∑K K K

i×K K  

 Where: daK  is the magnitude of rotation in radians about the axis da  K
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To clean up the equations, the following definition is used: 
( )( ) 1

H tr S I S
−

−�  
 
Substituting into previous equation: 

( ) ( )T
i i i i

i
da RHR Rx dy Rdx y⎛ ⎞

= × +⎜ ⎟
⎝ ⎠
∑K K K K × K  

 
If we assume that the RB configuration is known accurately: 

[ ]0,0,0 T
idx i= ∀K  

 
Therefore, the error equation simplifies to: 

( )T
i i

i
da RHR Rx dy⎛ ⎞

= ×⎜ ⎟
⎝ ⎠
∑K K K

)

 

 
If we perturb the measurements of a tool that was already aligned using the best 

rigid alignment, then there is zero nominal rotation. We will assume the nominal rotation 
is the identity matrix, ( 3R I= , to simplify the analysis. 
 
Therefore, the simplified equation for orientation error boils down to: 

i i
i

da H x dy⎛ ⎞
= ×⎜ ⎟

⎝ ⎠
∑K K K  

 
To determine the magnitude of rotation error we take the magnitude of : daK

RB i i
i

da H x dyδθ ⎛ ⎞
= ×⎜ ⎟

⎝ ⎠
∑K K� K  

 
For consistent norms, we get the following bound: 

RB i i
i

H x dyδθ ⎛ ⎞
≤ ×⎜ ⎟

⎝ ⎠
∑ K K  

 
Using triangle inequality, the norm can be brought inside the sum: 

RB i i
i

H x dyδθ ≤ ×∑ K K  

 
Using the definition of the cross product: 

( )sinRB i i
i

H x dyδθ φ≤ ∑ K K  

Where:φ  is the angle between the vector from the origin to the point, ixK , and the  
vector representing the measurement distortion, idyK . 

 

 135



Setting 2φ π= ±  represents error normal to ixK , which is the worst-case scenario. 
On the contrary, if the error were along this vector for a particular measurement, then 
there would be no induced rotation error.  
 
For the worst case, . This leaves the following equation: ( )sin 1φ =

RB i i
i

H x dyδθ ≤ ∑ K K  

 
Plugging in the system accuracy for the distortion term and putting in consistent notation:  
 

RB RB i i
i

H p pδθ δ≤ ∑ K K  OR 1 2 1 2, , , ,
T

RB RB n nH p p p pδθ δ δ⎡ ⎤ ⎡ ⎤≤ ⎣ ⎦ ⎣ ⎦
K K K K… …  

 
Where: i ip x=K K  

 i ip dyδ =K K  
Note that for i 1 n= …  this represents position error, and for  1 2i n n= + …
this represents orientation error from the definition of X and Y. 

 
This is saying that:  

1. We want to minimize the product of i ip pδK K   

Since we have no control over ipδ K , we could minimize this product by 
minimizing the distance from the origin of sensors prone to higher errors. 
 

2. We want to minimize H  

Where: ( )( ) 1
H tr S I S

−
= −  

 
This boils down to:  

( ) ( )( ) ( )( )
( )

maximize
minimize maximize

minimize

tr S
H tr S I S

S
→ − →  

 
If we assume that S is diagonal and we are using the Frobenius norm: 

( ) 1 2tr S s s s= + + 3   2 2
1 2 3S s s s= + + 2  

 
Therefore, we want large terms for s1, s2, s3 to maximize tr(S), but evenly spread 
to minimize S . Ideally, s s1 2 3s K= = = , where K is large. 
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Comparison to Physical Inertia Tensor: 
 
 In order to get a physical understanding for what is going on, we look a little 
closer at the equations derived above. By looking at the previous equations, it should be 
clear that what we are really trying to do to minimize tracking error of a rigid body is 
analogous to trying to increase the body’s inertia. This is saying that the sensors positions 
and orientations act on the alignment of the RB at a given distance away from the 
centroid with a given mass. 
 
The definition of a physical inertia tensor is: 

( )3
1

n
T

i i i i i
i

I m y y I y y
=

= • −∑ K K K K�  

 
From above analysis: 

( )( ) 1
3H tr S I S

−
= −  

 
Making the following definition: 

( )1
3H H tr S I S− = −� �  

Where:  TA YX RS= =
 
To determine system inertia, assume no distortion or systematic rotation. This is 

valid because inertia magnitude is invariant of rotation and the change due to distortion is 
negligible. 
 
Therefore, we set: 

Y X=   
3R I=  

 
Solving for S: 

2

1

n
T T

i i
i

S YY y y
=

= = ∑ K K  

 
And the trace of S: 

( )
2 2

2

1 1

n n
T

i i i
i i

tr S y y y
= =

= =∑ ∑K K K  

 137



Plugging S and tr(S) into : H�

( )
2 2 2

3 3
1 1 1

n n n
T T T

i i i i i i i i
i i i

H y y I y y y y I y y
= = =

= − = −∑ ∑ ∑K K K K K K K K� T  

 
Therefore,  is in the form of a physical Inertia Tensor, less the mass term 

(i.e. unit mass is assumed for all points).  
1H H −=�

 
Further,  observes the definition of a 2H� nd order tensor in that it can be 

transformed as follows: 
TH RHR′ =� �   and    3 3, xH H ′∈� � \

  
Where:  (3)R SO∈

 
 

This representation for  is the equivalent of representing the inertia in the base 
frame as opposed to the body-fixed frame. Since for the perturbation analysis, 

H�

3R I= , 
choosing the appropriate frame to represent the inertia tensor in will not be an issue. Also, 

, is invariant to rotation.  ( )tr S
 
Compare  to an inertia tensor below: H�

 

( 3
1

n
T T

i i i i i
i

)I m y y I y y
=

= −∑ K K K K�   Inertia Tensor 

 

(
2

3
1

n
T

i i i i
i

H y y I y y
=

= −∑ K K K K� )T   Calculated Term 

 
(Note that they are identical except for the mass term) 

 
This comparison allows us to make a physical analogy that may help in design of 

a tool. Essentially, the best tool design is equivalent to maximizing the inertia about all of 
the principal axes if the sensors and their orientations are assumed to be masses at a given 
distance and location from the centroid. Note that this is not the same as just increasing 
the magnitude of the inertia, as this will create a tool that is stable about one axis, but not 
the others. The key is to spread the inertia evenly among the principal axes. 
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Uncertainty of Frame Fitting 
 

Now that we have bounds on the frame fitting error, it is useful to determine the 
distribution of this error. Here, we determine what the covariance of the best-fit frame is 
for each RB. Again, this can be split into two components: position and orientation. 

Position Error Covariance of a Rigid Body Fit 
 

The uncertainty in the translational component of the distortion is only dependent 
on the positional accuracy of the sensors. This measurement error is denoted: 

3T

x y zyδ σ σ σ⎡ ⎤= ∈⎣ ⎦ \  
 
 
If the RB origin is at the CG [Dosrt, 2005]: 

( ) 3x31
Pos y xW W W

n
= + ∈\  

 
Since the sensor configuration is known accurately:  

3x30xW =  
 
Therefore: 

1
Pos yW W

n
=  

 
Where:  

2

2

2

x x x
T

y y x y z x y y

z x z y

W y y
y x z

y z

z z

σ σ σ σ σ σ
δ δ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⎡ ⎤= = = ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
If isotropic error is assumed, then this matrix becomes: 

2
3x31y PosW σ=  

  Where:  3x31 (ones� 3,3)
 
 

This is valid for the covariance of the frame whose origin is coincident with the 
C.G. of the measured points (i.e. 0p = ). If this is not the case, the rotational uncertainty 
will also play a role in the uncertainty of the fitted frame position. For simplicity, the 
frames can be calculated as if they are aligned with principal axes; the uncertainty at any 
other arbitrary frame can be calculated the same way that target registration error (TRE) 
is calculated. 
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Rotation Error Covariance of a Rigid Body Fit 
 

Here the covariance associated with the best rigid rotation is calculated. This 
section assumes the same notation as the previous section on fitting bounds on this 
transformation. 
 
From [Dorst, 2005], the covariance of this error is: 

( )n ( )n ( )ˆ ˆT T
da i Y i i X ii

i i
W RHR Rx W Rx y RW R y RHR⎛ ⎞

= − +⎜ ⎟
⎝ ⎠
∑ ∑K

K K K K T  

 
Since the set of points in the rigid body configuration, X, is known accurately, it 

can be assumed that the covariance of these points is negligible (i.e. Wx=zeros(3,3)). This 
should be a good assumption because the machining accuracy is about two orders of 
magnitude better than the measurement accuracy. Therefore, we have: 

( )n ( )nT T
da i Y i

i
W RHR Rx W Rx RHR⎛ ⎞

= − ⎜ ⎟
⎝ ⎠
∑K

K K  

 
If we are trying to determine the error induced by perturbing points, but not 

causing a nominal rotation we set R to the identity: 
3R I=  

 
Therefore, the covariance matrix simplifies to: 

ˆ ˆ
da i Y i

i
W H xW x⎛

= − ⎜
⎝ ⎠
∑K
K K H⎞

⎟

n

   

 
Note that for , W1i = … y represents uncertainty in the measurement’s position error, and 
for , W1 2i n n= + … y represents uncertainty in measurement’s orientation error. 
 
This is saying that:  

1. We want to minimize the product of ˆ ˆ
i Y ixW xK K   

Since we have no control over Wy, we can minimize the product by minimizing 
the distance from the origin of more uncertain sensors. 

 
2. We want to minimize H  

Where: ( )( ) 1
H tr S I S

−
= −  

 
As before, this boils down to: 

( ) ( )( ) ( )( )
( )

maximize
minimize maximize

minimize

tr S
H tr S I S

S
→ − →  

 Again, we want a large inertia, but evenly spread among the principal axes. 
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Total Covariance for a rigid body fit 
 

Combining the covariances determined above, we get the following complete 
covariance of a rigid body fit for both position and orientation. 
 
 

6x60
0
ori

RB
pos

W
W

W
⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦

\   

 
 Where: 

 ( ) 3x3ˆ ˆT
ori i i

i
W H x y y x Hδ δ

⎡ ⎤
⎢ ⎥

⎛ ⎞⎢ ⎥= − ∈⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥
⎣ ⎦

∑ K K \  

3x31 T
posW y y

n
δ δ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎣ ⎦

\  

 
Therefore, we end up with the following RB covariance matrix: 
 

( ) 3x3

6x6

3x3

ˆ ˆ 0

10

T
i i

i

RB

T

H x y y x H

W

y y
n

δ δ

δ δ

⎡ ⎤
⎢ ⎥

⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ K K

\  

 
 

This is the covariance matrix presented earlier that is to be propagated through 
frame transformations using Jacobians in order to determine tool tip registration error. It 
will have to be calculated for both the reference frame and the tool rigid bodies. 
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Experimental Validation 
 
From before, the general equation for the rigid body covariance is: 
 

( ) 3x3

6x6

3x3

ˆ ˆ 0

10

T
i i

i

RB

T

H x y y x H

W

y y
n

δ δ

δ δ

⎡ ⎤
⎢ ⎥

⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ K K

\  

 

Where: 
T

x y zyδ σ σ σ⎡= ⎣ ⎤⎦   is the standard deviation of the position error 

 ( )
12

3
1

n
T T

i i i i
i

H y y I y y
−

=

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ K K K K  

 ( )ˆ
i ix skew x=K K  is the ith sensor position with respect to the frame C.G.

   is the iiyK th measured position with respect to the measurement C.G., 
 and is assumed to be the same as ixK for these calculations 

 n is the number of sensors in the tool (each sensor has two contributions)  
 

We now calculate the theoretical values of the covariance matrix for an actual tool 
rigid body and compare them to simulated results. The tool used for this experiment is 
composed of two orthogonal sensors and is configured as shown in Table 4-1. This is the 
configuration for the plastic Test Tool shown earlier in Figure 3-26. 

 
 Position Orientation

Sensor 1 1

9.65
0.15
0

x
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

K  3

1
0
0

x
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

K  

Sensor 2 2

9.65
0.15

0
x

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

K  4

0
1
0

x
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

K  

 
Tool Configuration for Test Tool 

Table 4-1 
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Uncertainty is represented in the following form: 

σ =K  
x y z x y z

T

r r r p p pσ σ σ σ σ σ⎡ ⎤
⎣ ⎦  

 
x y z

T

x y zw w wθ θ θσ σ σ σ σ σ⎡ ⎤
⎣ ⎦  

 
We choose the following to represent the uncertainty for the experiment: 

1.3 1.3 1.3 2.5 2.5 2.5
180 180 180

T

w w wπ π πσ ⎡ ⎤= ⎢ ⎥⎣ ⎦
K  

 
Setting the relative orientation weight, w=100, we get: 
 [ ]2.27 2.27 2.27 2.5 2.5 2.5 Tσ =K  
  

To simulate this scenario, we take the tool and arbitrarily choose a position and 
orientation. With the tool in that pose, we can back out where the corresponding sensors 
are based on the tool configuration; these are the ixK  values. We then distort the sensors 
measurements according to a given error distribution; this gives us the ‘measured’ sensor 
readings, . Using the same function as described earlier for aligning frames, we find 
the transformation that aligns the set of 

iyK

ixK  to the measurements iyK . We then calculate the 
associated covariance of this after 10,000 simulated trials. 
 

The results of this experiment are follows. Note the close agreement between the 
a priori calculated covariance and that of the simulation results. 

 
W_calc = 
    3.1250    3.1250    3.1250         0         0         0 
    3.1250    3.1250    3.1250         0         0         0 
    3.1250    3.1250    3.1250         0         0         0 
         0         0         0    0.0005   -0.0000   -0.0003 
         0         0         0   -0.0000    0.0005   -0.0003 
         0         0         0   -0.0003   -0.0003    0.0003 
 
W_sim = 
    3.1906    3.1698    3.1459         0         0         0 
    3.1698    3.1491    3.1254         0         0         0 
    3.1459    3.1254    3.1019         0         0         0 
         0         0         0    0.0005    0.0005    0.0003 
         0         0         0    0.0005    0.0005    0.0003 
         0         0         0    0.0003    0.0003    0.0002 

 
 These preliminary results show very good agreement between the experimental 
values and the predicted values for the covariance matrix. Clearly more analysis and 
verification are in order before this should be used as a predictor of tool accuracy, but this 
is a promising start. Unfortunately, in a real environment the error is not normally 
distributed. So, these design tools are better suited for determining how to minimize the 
covariance, rather than explicitly trying to calculate it. 
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Overall Error Bounds from Localization Error 
 
 The key result of all this analysis is the determination of the accuracy of the tool 
tip with respect to the target in the frame of a CRF. Therefore, this section brings together 
the previous results.  
 
Orientation Error: 

Tool CRF Tool
CRF Base Base

δθ δθ δθ≤ +  

 Where: , ,Tool
Base

Tool Tool i Tool i
i

H p pδθ δ≤ ∑ K K  

  , ,CRF
Base

CRF CRF i CRF i
i

H p pδθ δ≤ ∑ K K  

 
Plugging in the above terms: 

, , ,Tool
CRF

Tool Tool i Tool i CRF CRF i CRF i
i i

H p p H p pδθ δ δ≤ +∑ ∑K K K K
,  

 
As before, note that for 1i n= … ipK,  represents the sensor position in a RB with 

respect to its C.G. and ipδ K  represents the translation error of this point. For , 1 2i n n= + …

ipK  represents the weighted orientation vectors aligned with the ith sensor z-axis, iwnK  , and 

ipδ K represents the error at the tip of these vectors induced by rotation error. 
 
Splitting up the position and orientation terms: 

, , , ,
1 1

2 2

, , ,
1 1

          

Tool
CRF

n n

Tool Tool i Tool i CRF CRF i CRF i
i i

n n

Tool Tool i Tool i CRF CRF i CRF i
i n i n

H p p H p p

H p p H p p

δθ δ δ

δ δ

= =

= + = +

≤ +

+ +

∑ ∑

∑ ∑

K K K K

K K K K
,

 

 
Putting into a more standard notation in terms of FLE components: 

, ,
1 1

2 2

1 1
          

Tool
CRF

n n

Tool Tool i EMTS CRF CRF i EMTS
i i

n n

Tool EMTS CRF EMTS
i i

H p p H p p

H w H w

δθ δ δ

δθ δθ

= =

= =

≤ +

+ +

∑ ∑

∑ ∑

K K K K

 

Where: [ ], ,1 2RB i RB ip i n n wn w∀ ∈ + = =K K…   

[ ], ,1 2RB i EMTS RB i EMTSp i n n wn wδ δθ∀ ∈ + ≈ =K K… δθ  

EMTSδθ  is the angular accuracy of the system (radians) 

EMTSpδ K  is the position accuracy of the system (mm) 
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Making some simplifications, we end up with the bound on the orientation error: 
 

( )
( )2           

Tool
CRF

EMTS Tool Tool CRF CRF

EMTS Tool CRF

n p H p H p

w n H H

δθ δ

δθ

≤ +

+ +

K � �
 

 
Where: RBp� is the average distance of the sensors in a RB from the C.G. 
 for each rigid body (Tool and CRF) 

 
This results looks counterintuitive at first because it seems as though there should 

be fewer sensors and they should be closer together to increase the accuracy. This is not 
true, as will be shown in the next step. 
  
Plugging the following into H: 

( )( ) 1
3H tr S I S

−
= −   

Where: 
1

n
T T

i i
i

S YY y y
=

= = ∑ K K  

  ( ) 2

1 1

n n

i i i
i i

tr S y y y
= =

= • =∑ ∑K K K  

 
We want to minimize H , and in order to do that: 

( ) ( )( )
( )

maximize
minimize

minimize

tr S
H

S
→  

  
Therefore, in order to minimize H, we want to maximize tr(S) while minimizing 

the magnitude of S. Since the terms here are squared, they override the effects of the 
linear relationship shown above. Therefore, in fact we want to have a tool that has many 
sensors, and those sensors are placed such that they maximize the effective inertia about 
their C.G. This is the same problem as we have seen twice before above. 
 
 

 145



Position Error: 

Tool Tool CRF
CRF Base Base

p p pδ δ δ≤ +K K K  

 Where: ,
maxTool Tool Tool Tool

Base Base Base Base
i i

p p pδθ≤ +K Kδ δ  

     

  ,
maxCRF CRF CRF CRF

Base Base Base Base
i i

p pδ δ δθ≤ +K K p  

   
 
Plugging in for the position error terms: 

( ) ( ), ,
max maxTool Tool Tool Tool CRF CRF CRF

CRF Base Base Base Base Base Base
i ii i

p p p pδ δ δθ δ δθ≤ + + +K K K p  

 
Using the triangle inequality again to separate the components: 

, ,
max maxTool Tool CRF Tool Tool CRF CRF

CRF Base Base Base Base Base Base
i ii i

p p p pδ δ δ δθ δθ≤ + + +K K K p  

 
Plugging in the orientation error terms from the earlier calculations: 

( ) ( )
, ,

, , , ,

max max

          

Tool Tool CRF
CRF Base Base

Tool Tool Tool Tool CRF CRF CRF CRF
Base Base Base Base Base Base Base Base

i ii i

i i i i
i i

p p p

H p p p H p p p

δ δ δ

δ δ

≤ +

+ +∑ ∑

K K K

K K K K  

 
As before, note that for , 1i n= … ipK  and ipδ K  represent the positions and the position 
errors, and for i n , these represent the orientations and the orientation errors. 1 2n= + …
 
 The above equation gives bounds on the tracking accuracy of a tool with respect 
to a reference rigid body (CRF). This bound is a relatively liberal bound on the error that 
shows the worst-case position error. By plugging in the alternate definition for the 
position error we get the following equation, which is more representative of the position 
error bounds, but is still a high upper limit. 
 

( ) ( )
, ,

1 1

, , , ,

1 1

          

Tool Tool CRF
CRF Base Base

Tool Tool Tool Tool CRF CRF CRF CRF
Base Base Base Base Base Base Base Base

n n

i i
i i

i i i i
i i

p p p
n n

H p p p H p p p

δ δ δ

δ δ

= =

≤ +

+ +

∑ ∑

∑ ∑

K K K

K K K K  
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Thin-Plate Spline Measurement Compensation 

Local Distortion Modeling  
 

Ideally, one would have a characterized environment when performing a 
procedure where it is necessary to track a tool with respect to a reference frame. 
Unfortunately, this is often not a practical solution. So, in order to at least offer some 
improvement over naive frame transformation between the reference and the tool I 
propose a method, which takes into account a local distortion model. This model is 
represented using Thin-Plate Spline (TPS) interpolation techniques, which are used to 
interpolate a particular sensor’s measurement error based upon the residual error of the 
sensors used to align the reference frame. Figure 4-12 shows a block diagram that 
represents the data flow in such an algorithm. 

 

 
Thin-Plate Spline interpolation to improve tool tracking wrt. a reference 

Figure 4-12 
 
Algorithm 
 

1. Read sensor measurements corresponding to reference rigid body, 
. ( ) 6,i i iq a m= ∈K K K \

 
2. Find the best rigid transformation ( , ) (3)R p SE∈K  that aligns  to the rigid body 

configuration, . 
iqK

( ) 6,i i ir b n= ∈
KK K \

 
3. Transform the sensor measurements into the reference RB’s frame: 

3

3

i i

i i

a Ra p

m Rm

′ = + ∈

′ = ∈

K K K \
K K \

 

 These measurements will now be in the same frame as the RB’s configuration. 
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4. Calculate the residual error between ( ),i i iq a m′ ′ ′=K K K  and  ( ),i ir b n=
K

i
K K . 

3

3

Position Error:       

Orientation Error:  ( , )
i i

i i

b a

Rod m n

ε

δ

′= − ∈

′= ∈

KK K \
G K K \

 

 
Where: Rod(a,b) is the Rodriguez vector corresponding to the rotation that 

aligns the vectors a to the vector b. 
 
5. Calculate the TPS coefficients that take sensor measurements in the reference RB 

frame, , as the input and outputs the associated errors, ( ),i i iq a m′ ′=K K K ′ ( , )ε δ
KK . 

 
6. Compensate for the other sensor measurements using the TPS coefficients. 
 

a. Transform the sensor measurements into the reference RB’s frame: 
( , )

6
R p

i is s ′⇒ ∈K K \   
b. Calculate the associated errors using TPS 
c. Use interpolated errors to compensate measurements appropriately.  
 

7. Find the best rigid transformation ( , ) (3)t tR p SE∈K  that aligns  to the rigid body 
configuration, . 

is′K

it
K

 
This is the relative frame of the tool with respect to the reference, which is exactly 
what we need for the tool tracking scenario. 
 
Following is a detailed look at TPS interpolation techniques and how it applies to 
this problem. 
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Thin-Plate Spline Interpolation 
 

A detailed method for applying thin-plate spline interpolation is presented in 
[Bookstein, 1991]. Here, the primary goal is interpolation of a warping of an image 2∈\ . 
We will follow this up with a proposed extension into 6 DoF interpolation. 
 
The thin plate spline interpolation technique used looks like this: 

( )1
1

( , ) ( , )
K

x y i i
i

f x y a a x a y wU Z x y
=

= + + + −∑  

Where: f  is the measure being interpolated 
 x and y are the measurement coordinates 
 ai represent the Affine coefficients 
 wi represent the TPS coefficients 
 U(d) represents a bending energy function associated with the TPS 
   2 2( ) logU d d d=
 di is the distance of the measurement from the ith node/knot point, Zi

( , )i id Z x y= −  
 
The proposed framework for solving this problem takes the following form. 
 

1,2 1,

2,1 x

1,

,1 , 1

0 ( ) ( )
( ) 0

0 ( )
( ) ( ) 0

K

K K

K K

K K K

U d U d
U d

P
U d

U d U d
−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
#

\
#

"

 

 
1 1

2 2 x3

1
1

1

K

K K

x z
x z

Q

x z

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

\
# # " #

"

 

 

( 3)x( 3)

0
K K

T

P Q
L Q

+ +⎡ ⎤
= ∈⎢ ⎥

⎣ ⎦
\  

 
Where: K is the number of input locations 
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We want to solve the following equation in the least-squares sense: 
LX Y≈  

Where: 3K
w

X a
+⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦

K
\K   represents the coefficients 

 3

0
K

v
Y +⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦

K
K \  represents the values being interpolated 

 
Solving for the coefficients, we get: 

1
1 1, , , ,k x yL Y w w a a a Y− ⎡ ⎤≈ ⎣ ⎦…  

 
 These values can then be plugged directly into the interpolation function f(x,y). If 
interpolating values in higher dimensions, there would effectively be a separate spline for 
each dimension (e.g. f(x,y), g(x,y), etc.). 

 
In order for this technique to be useful for our purposes, we must modify it such 

that we can interpolate 6 DoF errors from a 6 DoF measurement. The first step is to 
decide what the reference frame will be for the measurements, because it must obviously 
be the same for the initial measurements and the later ones being interpolated. It was 
decided that the best solution to this is to bas all measurement off of the frame of the 
reference body. This way, when done with the calculation, we have the measurement of 
the tool’s sensors directly in the frame we want already. 

 
The next critical step is to determine what will be interpolated. One option would 

be to have the TPS directly predict the desired pose from the original measurement, but 
this proved difficult when dealing with the orientation. The decision was to model the 
error using the TPS; for position this is simply the Euclidean distance, for orientation this 
is the Rodriguez vector of the rotation that corrects the measurements. Therefore, we 
have six inputs (position and axis of sensor) and six outputs (position error and rotation 
error) to the TPS compensation. 

 
Probably the most important step in determining the best way to extend the 

algorithm from 2D into 6D is to decide on what to do about the distance function. For 2D, 
or even 3D, points, this is clearly just the Euclidean distance between the sensor origins. 
However, the Euclidean norm of a vector on  that contains both position and 
orientation information has no real physical meaning. A possible solution appears to be a 
weighted combination of the position error, as a Euclidean distance, and the magnitude of 
the rotation error. The key to making this algorithm work is determining the appropriate 
weight of the translational distance and the orientation ‘distance.’ This weight is related 
to how much we feel that the error is contributed to by a change in orientation relative to 
a change in position of the sensor. Since from experience, the error seems to be very 
orientation dependent, it would be expected that this weight should be quite high.  

6\
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Since we already have a best rigid alignment of the points, we decided to drop the 
Affine term from the earlier equation, and are only determining the thin-plate term. 
 
For 4 sensors being used to generate the TPS: 
 

1,2 1,3 1,4

2,1 2,3 2,4 4x4

3,1 3,2 3,4

4,1 4,2 4,3

0 ( ) ( ) ( )
( ) 0 ( ) ( )
( ) ( ) 0 ( )
( ) ( ) ( ) 0

U d U d U d
U d U d U d

L P
U d U d U d
U d U d U d

⎡ ⎤
⎢ ⎥
⎢ ⎥= = ∈
⎢ ⎥
⎢ ⎥
⎣ ⎦

\  

 
 
Where:  

 ( )1
, cosi j i j i jd a a w m m−′ ′ ′ ′= − + •   is the proposed distance function 

  is the i( ),i i iq a m′ ′=K K K ′ th sensor measurement in the reference RB’s frame 

 
  2( ) logU d d d=
 
 
Again, we want to solve: 
LX=Y 
 

Where: 

1 2 3 4

1 2 3 4

1 2 3 4 4x6

1 2 3 4

1 2 3 4

1 2 3 4

x x x x

y y y y

z z z z

Rx Rx Rx Rx

Ry Ry Ry Ry

Rz Rz Rz Rz

Tw w w w

w w w w

w w w w
X

w w w w

w w w w

w w w w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢= ⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

\⎥ ∈⎥  are the measurements at the nodes 

  
 

 

1 2 3 4

1 2 3 4

1 2 3 4 4x7

1 2 3 4

1 2 3 4

1 2 3 4

x x x x

y y y y

z z z z

Rx Rx Rx Rx

Ry Ry Ry Ry

Rz Rz Rz Rz

Tv v v v

v v v v

v v v v
Y

v v v v

v v v v

v v v v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢= ⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

\⎥ ∈⎥  are the associated errors at the nodes 
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Solving for the coefficients in X, we can then generate the TPS interpolation 
equation for a tool sensor measurement in the reference RB frame, s, as follows: 
 

( ) ( )( )
1

,

x

y

z

Rx

Ry

Rz

i
x

i
y

K iz
i

iRx i

Ry i

Rz
i

w

w

w
s U d Z

w

w

w

ε
ε
ε
δ
δ
δ

=

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

∑ s  

 
Then, the errors can be applied to the measurement, such that s can be 

compensated based on the local distortion field prior to fitting a tool RB frame to the 
measurements. 
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TPS Compensation Results 
 

The first step to make the TPS algorithm useful is to determine the appropriate 
weighting of the translation and the orientation ‘distances.’ For this experiment, a 
reference rigid body was generated with four sensors in a realistic configuration for a 
cranial reference. Then, 1000 random sensor measurements were made around the 
reference. The measurements were made in a realistic pattern for ENT procedures and 
were distorted in the simulator using several 3rd order polynomial models of the field 
distortion. The magnitude of the tracking error after applying TPS compensation was 
calculated for each sensor measurement based on the known original measurement that 
was input into the simulator; this was compared to the error with no compensation.  

 
The plot on the top of Figure 4-13 shows the RMS error values, and the bottom 

shows the difference between compensated and uncompensated errors as a function of the 
position vs. orientation weighting factor used in the distance function. The weighting 
factor was incremented from zero to 500 in increments of ten. As was expected, the 
greater the weight, the lower the error in general; this indicates a high dependence of both 
position and orientation error on the orientation of the sensor.  

 
Absolute Error after applying TPS 

 
Relative Error after applying TPS wrt Original 

 
Sensor tracking error using TPS compensation for three environments 

Figure 4-13 
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To get a better appreciation for the affects, we look in more detail and the results 
from applying this technique in the simulate operating room since this is the target 
environment. In Figure 4-13 we show the tracking error of a single sensor measurement 
from a collection of 1000 simulated measurement in the same experiment as above. 
However, here the results shown the absolute tracking error so that it is clearer what the 
magnitude of the improvement is with respect to the baseline accuracy. 
 
 

Absolute sensor tracking error using TPS compensation in simulated OR environment 
Figure 4-14 
 
 

From these plot in Figure 4-14, it is clear that there is an optimal weighting factor 
that we can use. It appears that an orientation weight of w=250 falls in the minimum of 
the position error and is close to where the orientation error approaches an asymptote. 
Now, applying thin-plate spline interpolation to the random sensor measurements in the 
simulated OR using this weight, we get the following results in Figure 4-15. These results 
show the distribution of tracking error of the sensors both before and after applying TPS 
interpolation to measurements distorted suing the same 3rd order Bernstein polynomial 
model of the OR data set as before. Tracking error was determined by comparing the 
measurements to the original sensor pose that was input to the simulator.  
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Tracking error distribution for simulated 5 DoF measurements in the OR 

with and without the assistance TPS interpolation 
(Red line at median, box extents at 1st & 3rd quartiles, whiskers extend to 1.5*IQR) 

Figure 4-15 
 
 

It is clear that there is in fact an improvement in both the mean error and also the 
variance within the measurements. Although this is a relatively small improvement, it 
serves as proof that this technique does have some validity. This is just a representative 
result, but the results are very similar with other distortion models and for other 
distributions of points. Clearly, the effectiveness of this technique depends on the number, 
configuration, and alignment of the sensors in the reference frame, and also the nominal 
poses of the sensors in the tool with respect to the reference frame. 
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Contributions 
 

This chapter discussed the analytical design of tracked tools for image guided 
surgery, and in particular electromagnetically tracked tools. This work was originally 
intended to following the footsteps of optically tracked tool design papers such as [West, 
2004] and [Fitzpatrick, 2001]. However, the goal was to extend these techniques to be 
more adequate for the EM tracking scenario. This involved inclusion of techniques for 
accounting for tool orientation and incorporation of field distortion information. Further, 
this chapter detailed covariance propagation and estimation techniques for tracked tools. 
This work is primarily focused on the extension and adaptation of the uncertainty 
propagation work presented in [Dorst, 2005], [Pennec,1995], and [Smith, 1990]. The end 
result was a detailed analysis of the bounds and covariance of frame fitting and 
propagation through frame transformations to allow for prediction of bounds on the error 
and uncertainty of a tracked EM tool. An important note is that the primary goal was not 
so much for actual calculation of these uncertainties, but as a method for determining 
how to minimize these bounds and uncertainties. The design tools presented can be used 
alone, or more practically they can be used to help design an initial set of tools to be 
tested in the simulator as described in Chapters 5 and 6. 
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Chapter 5:  Measurement and Simulation Software 

 

Overview 
 
 Developing an EM tracked tool can be a very time consuming process. In order to 
optimize the tool it would most likely take quite a few design iterations. Traditionally for 
each of these iterations it would be necessary to build the tool, collect sample data, and 
perform and error analysis. Therefore, a simulator that would allow the user to virtually 
design and test a tool would be an invaluable asset, and that is exactly what is introduced 
in the next section. In the system, the user is able to generate an arbitrary Tool RB 
configuration and arbitrary Reference RB configuration of any number of sensors. The 
reference frame is fixed in an arbitrary, user specified pose in space, and the tool is 
virtually moved around the reference in a given pattern, while the sensor measurements 
of both are artificially distorted according to a particular error field mapping. By doing 
this, it is possible to predict the tool tip registration error for a particular tool in a 
particular scenario before ever even building the tool. This section details the 
functionality and use of the simulator program and details the methodology behind the 
software.  
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Aurora Tools Software 

Summary 
 
 The Aurora Tools software is a compilation of many features that are useful for 
designing and analyzing EM tracked tools. It allows for data collection, frame fitting, 
logging, distortion compensation, and sensor/tool simulation. This section details the 
functionality of the software, followed by a detailed look at the methods behind that 
functionality. A screen shot of the software in action while performing data collection 
and real-time measurement and tool frame compensation is displayed in Figure 5-1. 
 

Aurora Tools software during data collection 
Figure 5-1 

 

User Guide 
 

The user guide gives an overview of the main functionality of the software. It 
shows a very straightforward, step-by-step approach to the use of the program’s main 
features. Note that there is further functionality available by directly customizing the 
underlying code, but the main useful features are all accessible through the GUI. 
Following is a much more detailed description of what is included in the software, and 
how these elements work and interact. 
 
USER GUIDE IS INCLUDED IN APPENDIX A 
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 Function Descriptions 
 
int CAurora_ToolsDlg::ConfigureDistCorrection() 

Choose .tre file that contains the description of the distortion model, including the 
polynomial coefficients representing a distortion mapping for a given 
environment. 

 
void CAurora_ToolsDlg::OnCollectData() 

Opens the data files specified for logging and sets the flag (CollectData) for 
enabling data logging. 

 
void CAurora_ToolsDlg::OnButtonSensorData() 

Opens the window to display the sensor positions and orientation in real time for 
the user. 

 
void CAurora_ToolsDlg::OnButtonToolData() 

Opens the window to display the tool positions, orientations, and 5d-6D fitting 
error in real time for the user. 

 
void CAurora_ToolsDlg::OnButtonStartTracking() 

Enables the Aurora to start tracking and sets a flag (Aur_tracking). The first time 
this is clicked the Aurora is initialized. After that, the unit only needs to be given 
a command to start measuring if it is stopped. 

 
void CAurora_ToolsDlg::OnConfigOutput() 

Opens the window for configuring data collection parameters and also for 
specifying what data should be logged to file and the file names to use for each. 

 
void CAurora_ToolsDlg::OnBUTTONSimulator()  
 Opens the Simulator window. 
 
void CAurora_ToolsDlg::OnBUTTONPivotCal() 
 Opens window for performing a pivot calibration. 
 
void CAurora_ToolsDlg::OnButtonConfigureTool() 
 Use to configure which tool frames are to be calculated, displayed, and logged. 
 
void CAurora_ToolsDlg::OnCONFIGDistCorrection() 

Opens window for specifying which polynomial file and configuration to use for 
the distortion mapping. 
 

int CAurora_ToolsDlg::ConfigureDistCorrection() 
Loads and initializes the polynomial for distortion compensation. A default 
polynomial is loaded if the user does not input a new one. This is automatically 
run if the input filename is changed by the user. 
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int CAurora_ToolsDlg::AuroraConfig() 
 Initializes and configures the Aurora and begins tracking. 
 
void CAurora_ToolsDlg::OnTimer(UINT nIDEvent) 

Where the real-time tracking, compensation, tool frame fitting, display, and 
logging is called on at a specified timer interval. 

 
void CAurora_ToolsDlg::UpdateDisplay() 

Updates the windows showing the sensor measurements and the tool 
measurements. 

 
void CAurora_ToolsDlg::ReadAurRomCfg(char* save_filename) 

Reads in the tool configuration from file, this is used for tool frame fitting of real-
time data as well as for the simulator. 

OR 
void CAurora_ToolsDlg::SetAurRom() 

Uses the hard-coded tool configuration, this is used for tool frame fitting of real-
time data as well as for the simulator. 

 
cisTrackerTool* 
CAurora_ToolsDlg::findframe( CArray<cisTrackerTool*, 
cisTrackerTool*> &Meas_Sens, CArray<cisTrackerTool*, 
cisTrackerTool*> &RB_Sens, CArray<int,int> &RB_Index, 
cisDouble *frame_qual) 

Determines the best fit frame that transforms the sensor configuration (RB_Sens) 
to the measured sensors (Meas_Sens). The input data is two arrays of Tracker 
Tools with an index that determines which sensors in the configuration are used. 
The output is a single Tracker Tool representing the best fit transformation and a 
number representing how good of a fit was produced (frame_qual). 

 
cisVec3 CAurora_ToolsDlg::Pivot( 
CArray<cisFrame, cisFrame> &F_tool, cisDouble *RMS_Error) 

Performs pivot calibration: determines tip location of a tool with respect to that 
tools frame from a set of frames representing that tool (F_tool). Also returns the 
quality of the fit (RMS_Error). 

 
void CAurora_ToolsDlg::FindToolError( 
cisVec3 toolPos, cisUnitQuat toolOri, 
cisVec3 *CorrectedToolPostion, 
cisUnitQuat *CorrectedToolOrientation) 

Corrects the position and orientation of a sensor using the specified polynomial fit. 
toolPos and toolOri are the original Position and Orientation respectively. The 
outputs are CorrectedToolPostion and CorrectedToolOrientation. 
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void Simulator::OnRunSimulator() 
Runs the simulator for a single trial of the tool and reference frames as input into 
the GUI. 

 
void Simulator::OnSimulateRangeOfMotion() 

Runs the simulator for a tool moved throughout the given range of motion about 
the user inputted tool frame with respect to fixed reference frame as input by the 
user through GUI. 

 
void Simulator::OnSimulateInputData() 

Runs the simulator for the tool and reference frame pairs that are listed in the 
given text file. 

 
void Simulator::RunSimulation(bool write_data) 

The actual simulation where a tool frame and reference frame are distorted and 
measured with respect to eachother. The variable write_data indicates whether or 
not to output the results to the given text file. 
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5D to 6D Frame Generation 
Algorithm 
 
cisTrackerTool* CAurora_ToolsDlg::findframe( CArray<cisTrackerTool*, 
cisTrackerTool*> &Meas_Sens, CArray<cisTrackerTool*, cisTrackerTool*> 
&RB_Sens, CArray<int,int> &RB_Index, cisDouble *frame_qual) 
 
RB_Sens is an array of type cisTrackerTool with a length corresponding to the number of 
sensors in that tool. This data type contains 6 DOF position and orientation information 
plus other data such as the time stamp and frame number. This variable contains the ideal 
frame of each sensor in the tool with respect to the tool’s frame. 
 
Meas_Sens is an array of type cisTrackerTool with a length corresponding to the number 
of sensors being measured. This variable contains the frame of each measured sensor 
with respect to the Aurora Field Generator frame. 
 
RB_Index is an array of integers with the same length as Meas_Sens. This variable 
contains the indices of the frames in Meas_Sens that correspond to the entires in RB_Sens. 
 
F_Sens and F_Meas are of type cisFrame and both have a length of the number of 
sensors in the tool. They contain the frames pulled out of the corresponding entries of 
RB_Sens and Meas_Sens respectively. 
 
tool_marker and tool_marker_meas are the positions pulled out of the frames F_Sens and 
F_Meas. The means of these positions (Amean & Bmean) are calculated for each and 
subtracted out. 
 
The matricies Adiff and Bdiff are generated using the demeaned positions and the z 
vectors of the rotations in F_Sens and F_Meas. The orientations are weighted using a 
weight w to equate the magnitudes to that of the demeaned positions.  
 
The contents of these variables look something like this: 
 

Sens mean

Sens mean

Sens

Sens

F [0].P-A

F [num_sens-1].P-A
F [0].Rz

F [num_sens-1].Rz

diffA

w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=

⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

#

#

 

Meas mean

Meas mean

Meas

Meas

F [0].P-A

F [num_sens-1].P-A
F [0].Rz

F [num_sens-1].Rz

diffB

w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=

⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

#

#

 

 
The CIS function cisComputeBestRigidRotation(Adiff,Bdiff,R)is 

run on these variables to generate the appropriate rotation to align the frame of the 
specified tool to that of the measured sensors. This is equivalent to a point cloud to point 
cloud registration.  
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Least Squares Solution 
 

The method used here is a modified version of the Arun method [Arun, 1987] for 
solving for the best rigid point cloud to point cloud rotation problem in the LS sense as 
discussed earlier in the Frame Fitting section of Chapter 4. The weighted orientations are 
treated the same way as the demeaned points; weights keep the position and orientation 
contributions balanced. 
 
From before, write with more standard notation: 

( )

( )

1

n

1

n

sens sens

sens sens

sens
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p -p

p -p

n

n

T
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T
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w
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⎢ ⎥
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1

n
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n
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n

n

T
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T

T

B

w

⎡ ⎤
⎢ ⎥
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K
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Where: p  represents the mean position of the given measurement set 
   represents the unit vector pointing along the z axis of the given sensor nK

 
Define: 

( ,1: 3)

( ,1: 3)

T
i

T
i

q A i

q B i

=

′ =
  { }1, ,i n= …  

 

  
1

n
T

i i
i

H q q
=

′= ∑
 
Take the Singular Value Decomposition (SVD) of H: 
  TH U V= Λ
 
Calculate the optimal rotation in the Least Squares (LS) sense:  

 
?

TR X VU= =  
 
Verify the solution: 

   
1 Set:  

det( )
1 Algorithm fails

R X
X

+ =⎧ ⎫
= ⎨ ⎬−⎩ ⎭

 
 

Using the LS SVD solution for the optimal rotation R, the position vector vK  is 
calculated by rotating the mean position of the RB points with the given rotation R and 
subtracting that from the mean position of the sensor measurements. 
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The frame representing the location of the tool in Aurora coordinates is given by: 
 
F = cisFrame(R, Bmean - R * Amean); 

 

 (3)

0 1

sens meas

R v
F S→

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

K
E    

 
Where: *meas sensv p  R p= −K

 
The variable frame_qual is a quality measure of the fit performed as above. It can 

be calculated in one of two ways: either based solely on position, or also including 
orientation. By basing it only on position, this variable contains the RMS residual error 
between the measured points and those in the fit tool frame; this is often termed the 
fiducial registration error (FRE). To include orientation, a point can be placed along the 
z-axis of each sensor at a given distance, and these points can be compared to ones placed 
similarly on the ideal sensor location in the frame. By adjusting the distance, the 
weighting between position and orientation in the quality measure can be adjusted. 

 
Figure 5-2 is a visual representation of three 5 DoF sensors in known positions 

and orientations with respect to the rigid body frame. This diagram is very similar for the 
three 5 DoF sensor measurements in the Aurora frame of reference. 

 
 

Sensor positions and orientations in a rigid body frame, 
and their location with respect to the C.G. of the positions 

RB Frame 

1nK
2nK

3nK
2p p−K

3p p−K

1p p−K

3F

2F

1F p

ip p−K  = de-meaned 
vectors from C.G. to 
sensor frame wrt the RB 
frame 
 

inK  = vectors pointing 
along z-axis of the 
respective sensor frame 
(Fi.Rz) wrt the RB frame 

Figure 5-2 
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Error Weight Calculation 
 

In order to have the ‘optimal’ solution for the previously mention problem, it is 
necessary to determine the appropriate weighting factor for the angular component vs. the 
translational component of the registration least squares problem. First the magnitudes of 
the vectors for the two components are made to have the same magnitude by scaling the 
orientation vectors by the magnitude of the average distance of the sensors from the 
centroid of the rigid body. Then, these values are scaled by the relative radii of their 
respective “error ball,” representing a sphere in which we can assume the readings will 
actually fall in. This is based upon the accuracy of the system and the distribution of the 
sensors. After working though the problem, it is determined that the scaling by the 
average distance of the sensors from the mean cancels out with the mean distance in the 
error calculation due to orientation. Therefore, the final estimate of the weight contains 
only the system’s positional accuracy and the orientation accuracy.  

 
 
 
 
 
 
 
 
 
 
 
 

posr

w

w orir

θ∆

p�

 Figure 5-3 
 

Notation:  
1

1 n

i
i

p p p
n =

= −∑ K�  is the average distance of the sensors from their C.G. 

  and  are the radii of their respective error spheres (mm) posr orir
 w is the orientation weight we are trying to determine 
 
The radius of the sphere enclosing the rotation-induced error is described as follows: 
1 sin
2 2orir w θ∆⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

 Where: oriθ δ∆ =  is the angular accuracy of the system 
 
Due to small values for θ∆ , we can make the following simplifying assumption: 

orir w θ≈ ∆  
Note that rori is a function of w 
 
The radius of the sphere enclosing the position-induced error is very straightforward: 

pos posr δ=  
 Where: posδ  is the positional accuracy of the system 
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In order to determine the appropriate weighting factor, we want to set up the 
problem such that the relative contributions of the error to the inputs of the least squares 
problem are equal. The least squares problem aligns the clouds of points such that it 
minimizes the FRE; in this case, this cloud if points includes the actual sensor locations 
with respect to their C.G and the points lying at the tip of the scaled orientation vectors. 
Therefore, the weighting factor should be such that it equates the radii of the error 
spheres including the position error and the tip of the perturbed scaled orientation vectors.  
 
Setting up the following equality allows us to solve for the weighting factor: 

( )pos orir r w�  
 
Plugging in the above results for the radii of the error spheres: 

pos oriwδ δ=  
 
Solving for the error weight, w: 
 

pos

ori

w
δ
δ

=  

 
Where: posδ  is the positional accuracy of the system  

oriδ  is the rotational accuracy of the system 
 
Verification of Analysis: 
 

Here we try to confirm the above analytical solution. First the theoretical weights 
are determined. Then, a pivot calibration where the tool frames are fit to the sensor data is 
performed for various weighting factors. The residual tip errors are plotted and used as a 
gauge of the quality of the frame’s fit. For this data, the sensors are centered on a 50mm 
diameter circle, so mm. 25p =�
 
Using the Aurora’s stated accuracy:  
 Position  0.7 mm RMS 
 Orientation 0.3o RMS 

0.7 134
0.3

180

oriw π= =  

 
Using the accuracy determined in the experimental environment (Using Robot 
Calibration Results): 
 Position  2.23 mm RMS  
 Orientation 1.78o RMS 

1.2 72
0.6

180

oriw π= =  
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The algorithm for frame fitting is tested by incrementing the error weight from 0 
to 300 by increments of 10 and fitting the measured sensors to a known (from 
manufacturing) frame. A pivot calibration was performed for each set of sensors, and the 
plot below shows the residual error at the tip after the pivot calibration was performed 
and the transformation applied to each measured tool frame. This experiment was 
repeated for several sets of sensors, which are labeled on the diagram. It is clear from 
Figure 5-4 that there is a distinct increase in accuracy (drop in RMS error) as the 
orientation weight is applied, a weight of zero corresponds to a point-to-point calibration 
only, with no influence of the sensor orientations. There is a consistent minimum in the 
trials between 50 and 125; the empirical results correlate well with the analytical results. 
Typically, when running the 5D to 6D algorithm, a weight of 100 is used; this seems to 
work well universally. 
 

 
Accuracy as a function of orientation weighting Tool used for pivot data collection 

Figure 5-4 
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Real-time Measurement Compensation 
 
void CAurora_ToolsDlg::FindToolError(cisVec3 toolPos, 
cisUnitQuat toolOri, cisVec3 *CorrectedToolPostion, 
cisUnitQuat *CorrectedToolOrientation) 
 

This function is used to determine the estimate of the actual position and 
orientation of a sensor for a given position and orientation measurement. It is based upon 
the polynomial approximation of the field distortion. The key to this function is the 
GetError()  function which is part of the AuroraCalibration Software, which was is 
accessible as a library: 
 
PolyTree->GetError(toolPos, toolOri.Rotation().Rz, PosErr, 
OriErr); 
 

This function is used to determine the estimate of the position and orientation 
error that the polynomial approximation predicts for a given position and orientation 
measurement. It does so by using the pre-calculated polynomial coefficients that are 
stored in the specified .tre file. There is a set of coefficients for each dimension being 
interpolated along (X, Y, Z, Rx, Ry, Rz). Inside each of those is a separate set of 
coefficient corresponding to each of the base orientation vectors. 

, ,
b
i j kc

 
To determine the estimate of position and orientation error, the space is divided 

into base orientations / basis vectors. For each base orientation, a polynomial is generated 
that describes the error as a function of (x,y,z) position only. To solve for an arbitrary 
orientation, the three closest surrounding basis vectors are found as shown in Figure 5-5, 
and the relative contribution of each is calculated based on the size of the corresponding 
spherical triangle. 
 

  
nK  Measured orientation 

(z axis of sensor) 
 

1 2 3, ,b b b
K K K

 Enclosing three base 
orientation vectors 
 

1 2 3, ,t t t  Areas of corresponding 
spherical triangles 

 
  

Definition of the spherical triangles used for spherical interpolation 
Figure 5-5 
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The area of a spherical triangle is defined in Figure 5-6 as: 

( )2 ( )R A B C π∆ = + + −  
 
For this case: 

( )bt A B C π= + + −  
 

      Figure 5-6 
 Where: A,B,C  are the interior angles of the opposing spherical triangle 
 
The error weights wb, for each of the three closest basis vectors ( 1 2 3, ,b b b

K K K
) are calculated 

as follows:  

1 2 3

b
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t t t

=
+ +

 Such that: 1b
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w =∑  

 
These weights are plugged into the following equation: 
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This equation calculates the predicted error at the specified (x,y,z) location for 

each of the three base vectors specified. Then these values are multiplied by the 
corresponding weights to interpolate what the error would be for the orientation of the 
sensor. Now that the errors are known, they are applied to the initial sensor measurement 
in order to compensate for them. 
 
Position error compensation is simple since the error measurement corresponds directly 
to the (x,y,z) offset in millimeters. 

measured reference

pos measured reference

measured reference

x x
e y y

z z

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

K  

 
To compensate for position error: 

EF.P = toolPos - PosErr;  
 

Therefore, to generate the compensated position: 
corrected measured posp p e= −K K K  
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The orientation error is specified by a Rodriguez vector representing the axis of 
rotation between the ideal and measured readings and the magnitude of the angle of 
rotation such that: 

180
orie ωθ

π
=K K  

Where: ωK  is the unit vector pointing along the axis of rotation 

θ  is the angle of rotation between the reference and measured 
vectors nK  measured in radians 

When written out with the information available, we have: 

180arcsin *
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This is accomplished with the following software commands: 
(Fmeas.R*Fref.R.Inverse()).ExtractAngleAndAxis(tAngle,tAxis); 
OriErr =(tAxis*tAngle*(180.0/PI_C)); 
 
To compensate for orientation error: 
cisVec3 de = OriErr*PI_C/180.0; 

arcsin

ideal measured

ideal measured
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EF.R=cisRotation(de.Length(), 
de/de.Length()).Inverse()*toolOri.Rotation(); 
 
Therefore, to generate the compensated rotation: 
  

1
corrected error measuredR R R−=  

 
Where:  

errorR  = cisRotation(θ ,ωK ) =  ˆ (3)e SOωθ ∈
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Measurement Distortion Simulation 
 
void CAurora_ToolsDlg::DistortTool(cisVec3 toolPos, 
cisUnitQuat toolOri, cisVec3 *CorrectedToolPostion, 
cisUnitQuat *CorrectedToolOrientation) 
 
 

This function is very similar in functionality to FindToolError(). However, 
it is used to add the error on to an undisturbed reading, as opposed to correcting a 
distorted reading. 
 
To distort the position: 

EF.P = toolPos + PosErr;  
 

distorted actual posp p e= +K K K  
 
To distort the orientation: 
cisVec3 de = -OriErr*PI_C/180.0; 

arcsin

ideal measured

ideal measured

ideal measured

Rz Rz

de Rz Rz

Rz Rz

ωθ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− ×⎜ ⎟ ⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠= ×⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟×⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

K K

K K K

K K
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EF.R=cisRotation(de.Length(), 
de/de.Length()).Inverse()*toolOri.Rotation(); 
 
 
Therefore, to generate the compensated rotation: 
  

1
distorted distortion actualR R R−=  

 
Where:  =  cisRotation(distortionR θ ,-ωK ) =  ˆe ωθ−  

  =  cisRotation(1
distortionR − θ ,ωK ) =  = ˆ (3)e SOωθ ∈ errorR   

(from previous section) 
 
Equating this result to the equation for distortion compensation: 

1
distorted error actual actual error measuredR R R R R R−= ⇔ =  
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Simulation 

Simulation Algorithm 
 

The simulation predicts error in the same way that compensation is usually 
performed. However, instead of subtracting off the error as before, it is added on to the 
measurements to artificially distort them in such a way that the measurements should be 
very similar to those that would actually be collected for such a scenario.  Below is the 
mathematics behind how the simulator works for simulating the distorted position and 
orientation of a given sensor location. 
 
Position Error 

distorted actual posp p e= +K K K  
 
Orientation Error 

1
distorted distortion actualR R R−=  
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Simulation Results 
 

Here some representative results from running the simulator are presented. Figure 
5-7 shows a screen capture of the graphical user interface front end for the simulator 
software. The software allows for 3 modes of operation: simulating a single measurement, 
simulating a range of motion about a reference frame, and simulating data input from a 
file (either collected real data or synthetic data from Matlab, etc.). The simulation can be 
run using any pre-calculated polynomial file as selected in another menu. 

 

 
Screen capture of the Simulator’s GUI 

Figure 5-7 
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Figure 5-8 shows representative results of the simulator where the relative errors 
are displayed between a tool and a fixed coordinate reference frame (CRF). In this case, 
Traxtal 6-DoF dynamic reference bodies are used as both the CRF and the tool being 
tracked. One reference is fixed in the center, and the other is moved with respect to it; 
these results are for a constant orientation. 

 
Simulated Relative Position Error Between Dynamic References 

 
11x11x11 grid of simulated measurement errors of a 6-DoF tool with  

respect to a 6-DoF CRF for a single orientation 
Figure 5-8 
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Tool Design Using Simulator 
 
 The simulator proves to be an excellent tool for design of electromagnetically 
tracked instruments. Since we can try out a tool and see how it performs without ever 
even building it, it is possible to experiment with a large number of designs. In general, 
the procedure for tool design is as follows: 
 

1. Generate a CRF design (skip this step if one is already available) 
 
2. Simulate the CRF design in the appropriate environment with respect to 

the EMTS base. Many different environments can be used for the 
experiments. 

 
3. Analyze the results and decide if design satisfies requirements. If Yes, 

continue; if No, return to step 1. 
 

4. Generate a Tool design 
 

5. Simulate the CRF design in the appropriate environment with respect to 
the EMTS base. Again, many different environments can be used for the 
experiments. 

 
6. Analyze the results and decide if design satisfies requirements. If Yes, 

continue; if No, return to step 4. 
 

7. Simulate the tracking error of the tool with respect to the reference frame 
in a characterization of the target environment. 

 
8. Analyze the results and decide if the designs satisfy the design 

requirements. If Yes, then the design is complete. If No, redesign the tool 
and/or the reference. 

 
9. Build the reference and tool and compare the results. 

 
 
This design procedure is followed later for design of ENT specific tools. See the 

ENT Specific Tool and Reference Design section for a detailed look at the process. 
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Contributions 
 

This chapter presented what appears to be an entirely novel approach to the 
design of electromagnetically tracked tools. The method uses the distortion model from 
Chapter 3 in such a way that tools can be virtually tracked and measurements can be 
distorted as they would be in the actual environment. A software package was developed 
that allows for many features that are useful to the Aurora system. The software allows 
for data collection, tool frame fitting of any number of sensors, real-time measurement 
compensation, and simulation. The primary contribution was a system for tracker tool 
simulation that allows for rapid prototyping of tools without ever having to construct a 
tool or perform tedious, time-consuming data collection tasks until verification of a final 
design. In Chapter 6 we use this tool to aid in the design of a suite of electromagnetically 
tracked ENT instruments. 
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Chapter 6:   ENT-Specific Tool Design 

Overview 
 
 Ear, Nose, and Throat (ENT) surgery seems to be an ideal application for image 
guided surgery (IGS) procedures to take hold. This is due to the fact that almost all of 
these surgeries involve precise procedures in small spaces, though small openings, and 
with limited visibility. Also, due to the proximity to vital structures, such procedures can 
sometimes be rather risky. By tracking surgical instruments and providing visualization 
of their locations with respect to target anatomy, it may be possible to increase the safety, 
accuracy, and end-result quality.  Figure 6-1 contains photographs that portray the typical 
configuration of an operating room (OR) for a sinus procedure.  
 

 
Typical OR configuration for ENT surgery 

(From sinus surgery with Dr. Ishii at Bayview Medical Center) 
Figure 6-1 
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A realistic scenario for an ENT IGS surgery using an Aurora EMTS system is 
shown in Figure 6-2. The Aurora would most likely be placed up near the head as shown. 
Clearly, there is much to worry about as far as metals and other distortion causing 
elements as has been discussed in detail earlier. Therefore, careful consideration must be 
made in the placement of the Aurora FG and the design of the tools. The following image, 
Figure 6-3, shows the frame transformations required for tracking a tool with respect to 
the patient-fixed coordinate reference frame (CRF).  

 

 
Synthetic image showing the NDI Aurora in a realistic 

tracking scenario in the surgical field 
Figure 6-2 

 

 
Important frame transformations for tool tracking with 

respect to a patient-fixed reference 

Patient

Aurora 
Surgical 
Instrument 

Figure 6-3 
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Literature and Product Review 
 

In the introduction there was an overview of IGS systems and tracking devices 
that could be used for them. The focus here is to explore the commercially available IGS 
systems that specialize in cranial and ENT surgery, in particular the ones based on 
electromagnetic tracking technology. All images are directly from manufacturer web sites. 

 
Starting off with the NDI Aurora, although custom IGS solutions exist, the only 

commercial system involving this technology to date is produced by Brainlab 
(Heimstetten, Germany). This system was implemented as the EM version of their 
Kolibri system, shown in Figure 6-4. Some of the salient features of the Brainlab systems 
are the ease of portability (in particular the Kolibri), and a unique method of headset-free 
registration involving the z-touch laser scanner. 

 
Brainlab IGS Systems1

   
Aurora EM Kolibri Optical Kolibri ENT Optical Vectorvision2

Figure 6-4 
 

One of the leaders in the field of image-guided surgery is Medtronic. Their key 
contribution to the field is the StealthStation. The system is primarily an optical system 
like the Brainlab systems, but they have a much wider array of track instruments; it even 
includes mounts for the ENT drill that was used for our experiments. Their contribution 
to the EM tracking field is their own EMTS, the AXIEM, shown in Figure 6-5. This 
interfaces directly with the StealthStation TREON to allow for EM tracking with the 
same familiar user interface.  

 
Medtronic IGS Systems2

  
 

StealthStation AXIEM StealthStation TREON Xomed Tissue Shaver 
Figure 6-5 

                                                 
1 Information about Brainlab IGS systems is available at http://www.brainlab.com 
2 Information about Medtronic SNT IGS systems is available at http://www.stealthstation.com 
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 General Electric (GE) has a dedicated electromagnetic system for ENT surgery 
called the ENTrak, shown in Figure 6-6. In addition, they have a more general purpose, 
but similar, device called the Instatrak. Although there is sparse detail, GE claims to have 
a proprietary algorithm where he system automatically detects and compensates for metal 
in the field called MagneticIntelligence. Unfortunately, the specifics of the algorithm are 
not publicly available. One key feature of the GE system is the use of special headsets 
that allows for automatic registration of the patient. This registration is accomplished 
with EM-tracked headsets that can be repeatably replaced on the patient, and therefore 
can be attached for preoperative imaging, and again during the procedure.  
 

GE IGS Systems1

   
EM ENTrak Plus Instatrak ENT Automatic Headset 

Registration 
Figure 6-6 
 
 
 Clearly, this is not an exhaustive list. As mentioned in the introduction, there are 
several companies that produce stand-alone EM tracking units, and it is possible to use 
these systems for custom IGS solution. Further, there are other surgical navigation 
systems such as the J&J Biosense Webster CARTO XP that use the technology, but not 
for ENT applications. Also, there are other ENT IGS systems that do not offer EM 
versions. Two examples of these are the Radionics Omnisight system with the SinuSight 
ENT module and the Stryker ENT navigation module. 
 
 

                                                 
1 Information about General Electric(GE) IGS systems is available at http://www.gehealthcare.com 
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ENT Specific Tool and Reference Design 

Overview  
 

In this section, the tools presented above are used to develop a set of instruments 
for use in ENT surgery. These instruments are designed and simulated using the 
analytical expressions and the simulation software. The tools are then fabricated and 
tested experimentally. The results of the actual experiments and a comparison with the 
predicted results are presented.  
 
The primary tools being designed are: 

• Coordinate reference frames(CRF) 

• Tracked tissue shaver/debrider/drill 

• Tracked 5 DoF tools and pointers 

• Tracked endoscope 

 
These tool designs are being restricted to having two sensors per tool such that the 

Aurora system can handle them directly without custom user software for frame fitting. 
Clearly, having more sensors would improve tracking accuracy and there will be some 
experiments with such designs. Further, the basic designs assume we are tracking a tool 
with respect to a reference, but not as a specific pair. Although probably not practically 
feasible in a surgical setting, better tracking results can be obtained if the reference RB is 
optimized for a particular tool RB where the sensors have similar orientations. This is 
especially true if a technique such as Thin-Plate Spline Measurement Compensation is 
used to improve tracking accuracy. 
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Cranial Reference Body 
 
The key to accurate registration and tracking is a well-designed coordinate 

reference frame (CRF). This frame is rigidly affixed to the patient and serves as a way of 
tracking the tools with respect to the patient anatomy. For ENT applications, this CRF is 
affixed directly to the patient’s skull; this can be either by a semi-permanent fixation with 
screws or by some method of repeatable replacement of the device. This work details the 
accuracy associated with tracking a tool with respect to the CRF only. An additional 
critical source of error that must be considered, not in the scope of this work, is 
registration of the patient’s pre-operative images to this frame. There has been much 
research in this field. One particularly applicable example is [Knott, 2004], which deals 
with the problem of headset-based registration for sinus surgery. 

 
As mentioned before, design is restricted to two sensors per rigid body because 

the current commercial Aurora system will only fit a tool to sensors on a single tool port, 
which can manage only two sensors. Larger numbers of sensors have a dramatic increase 
in accuracy, and they can be used with my software; however, tools with more than two 
sensors will not work for general Aurora applications.  

 
With only two sensors in a tool, the configuration parameters that can be adjusted 

are as follows: 
 

• The baseline between the sensors 
• The offset of the C.G. of the sensors from the tool’s frame 
• The relative orientations of the sensors 

 
  Simulations were performed with eight different, practical tool configurations that 
can be used to test each combination of the above-mentioned parameters independently. 
Table 6-1 lists the tool configurations that were tested in this experiment. Results 
showing the trends resulting from simulations are shown in Table 6-2. 
 
 

Configuration 
Number 

Sensor 1 
Direction

Sensor 2 
Direction 

Baseline 
(X Direction) 

C.G. Offset 
(Y Direction) 

1 Y axis Z axis (1) 150 mm (0) None (0) 
2 Y axis X axis (0) 150 mm (0) None (0) 
3 Y axis Z axis (1) 200 mm (1) None (0) 
4 Y axis X axis (0) 200 mm (1) None (0) 
5 Y axis Z axis (1) 150 mm (0) 75 mm (1) 
6 Y axis X axis (0) 150 mm (0) 75 mm (1) 
7 Y axis Z axis (1) 200 mm (1) 75 mm (1) 
8 Y axis X axis (0) 200 mm (1) 75 mm (1) 

 
Tool configurations simulated for CRF design 

Table 6-1 
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Investigation of the effects of several variables on the position and orientation error in 

tracking a rigid body, conditioned on the magnitude of the field distortion 
Table 6-2 
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 The results shown in Table 6-2 represent the output from the simulator for each 
tool design listed. Three plots are shown for each position and orientation error pair; each 
plot investigates the effect of one parameter on the respective error. Each parameter is 
encoded as either a zero or a one as shown in Table 6-1. The simulation was performed 
for each tool design in each of three characterized environments; ‘ideal’ NDI Set #1 (0), 
disturbed NDI Set #4 (1), and very disturbed OR data set (2). The results in the table 
show trends in errors associated with each of the three parameters conditioned on the 
level of distortion.  
 

Fortunately, it appears that the behavior of position and orientation errors is 
similar with respect to these parameters. This allows us to determine the optimal 
configuration without having to deal with a trade-off between position and orientation 
accuracy. It is clear that:  

• A wider baseline in a distorted environment is problematic. 
This is in opposition to intuition and the earlier analysis, but is due to the 
curvature of the distortion field. The original predictions hold in the ‘ideal’ 
environment in that a wider baseline is better due to the more isotropic 
nature of the error. 

• The sensors should be orthogonal not only to the selves but also to the 
offset between them. 

• The centroid of the sensors should ideally lie on RB frame’s origin. 
If this is not possible, the RB frame and area of interest should be as close 
as possible to the C.G. of the sensors. 

 
By following these basic guidelines, we come up with a sensor configuration like 

that shown in Figure 6-7. Here, the sensors are aligned with the y-axis and the z-axis, 
while the offset between them is aligned with the x-axis. Further, the RB’s frame is right 
at the C.G. of the sensors. The baseline is determined more by practicality than 
optimizing the tracking error. This is to be designed as a cranial reference, and therefore 
the two sensors should be spaced such that they are about the width of a skull apart 
(approximately 150mm).  
 

 
Optimal sensor configuration for 2-sensor CRF 

(Configuration #1 from Table 6-1) 
Figure 6-7 
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Tissue Shaver 
 
 The tissue shaver is a critical instrument for performing ENT procedures. It 
allows for access and tissue removal in very hard to reach places that conventional 
instruments would have a very tough time being manipulated in. In particular for throat 
and sinus surgery, shavers such as these are used extensively; Figure 6-8 shows three 
types of shaver bits used for sinus surgery; longer but otherwise similar versions are used 
for throat surgery. However, since these tools do allow tissue removal in hard to reach 
and hard to visualize spaces, they are ideal candidates for tracking and use with IGS 
systems. 
 
 

 
ENT tissue shavers and drills 

(Medtronic / Xomed) 
Prototype tracked tissue shaver with 

two attached 5 DoF sensors 
Figure 6-8 
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 Unlike the CRF, which we were able to design from scratch, sensor placement for 
this tool is subject to constraints due to the shape of the tool. As we have learned, we 
want to keep the centroid of the sensors as close as possible to the point of interest on the 
tool, in this case the tip. Therefore, we know that we must keep one sensor right near the 
tip of the tool. Since we cannot increase the width of the tool by any appreciable amount, 
the first sensor must lie right on the surface of the tool as close to the tip as possible. The 
second sensor is where we have some more freedom. Since we know that we want the 
sensors to be as close to orthogonal to each other as possible, the other sensor must lie on 
the shaft past the bend (or on an offshoot which could make the two sensors orthogonal, 
but could make the tool too awkward to use). So, the one parameter to tune is the spacing 
of the second sensor along the shaft. 
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Investigation of the effects of sensor displacement along shaft on the position and 

orientation error in tool tracking, conditioned on the magnitude of the field distortion 
Table 6-3 
 

Table 6-3 presents the results from a simulation experiment with the tissue shaver. 
The simulation was performed for each tool design in each of three characterized 
environments; ‘ideal’ NDI Set #1 (0), disturbed NDI Set #4 (1), and very disturbed OR 
data set (2). As with the CRF design, the tool was virtually moved in a 200mm cube 
centered about the center of the characterized volumes by increments of 25mm. At each 
location, the orientation was simulated at ± 90o about each axis by increments of 45o. By 
examining the results, it appears that the overall trend is to decrease the baseline to 
improve the tracking accuracy; this is especially true for the orientation error of the tool. 
Therefore, the optimal design would have the two sensors situated such that one is as 
close to the distal tip of the tool as possible, and the other as close a possible on the 
opposite side of the bend. 
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Unfortunately, the relative locations and orientations of the sensors on the tool are 
not the only factor affecting the tracking accuracy. By doing some experiments in the OR 
with the instrumented tissue shaver bit and the actual drill handle, it became evident that 
there was significant additional distortion present. In Figure 6-9, on the right, is the tool 
in use in an actual sinus procedure. On the left is an experiment where the goal was to 
determine how accurately the shaver can be tracked in a realistic scenario.  
 

  
Shaver accuracy experiments Shaver in use in OR 

Figure 6-9 
 

The results from the experiment shown above are presented in Figure 6-10. Here, 
the histograms represent the distribution of error in the relative position and orientation of 
the two sensors on the tool from the mean. The trial is based on 1000 measurements 
collected as the tool was moved in a realistic pattern in the working volume of the Aurora. 
The trial was repeated in four scenarios: 1) the shaver bit alone, 2) the shaver bit attached 
to the drill but not turned on, 3) the shaver attached to the drill with the drill running but 
the bit not spinning, and 4) the bit attached and engaged to operating drill. As can be seen, 
there is not a terrible change in error as the bit is coupled with the drill handle, but the 
error quickly becomes much worse as the drill is turned on. The obvious way to perform 
tracking that is somewhat immune to these problems is to make sure that the tool is 
aligned before running the drill. For confirmation, the drill must be turned off. Since the 
drill is operated with a foot pedal and is normally paused to check the progress, this is not 
a significant impedance to the standard workflow. 

  
Relative error between two sensors on tissue shaver under various conditions in OR 

Figure 6-10 
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Suction Devices and 5 DoF Pointers 
 
 Suction devices, as shown in Figure 6-11, are very often used in ENT surgery. 
Not only are they used to clean up the surgical site, but often these devices end up being 
used as pointers to help the surgeon navigate in the sinus cavity. These devices would be 
especially useful if they were tracked such that they could be used in IGS applications. 

 

 
Common suction instruments 

A 

B 

Figure 6-11 
 
 The two devices shown in Figure 6-11 require different designs. Tool ‘A’ can be 
tracked similarly to the tissue shaver bit as mentioned before, so it will not be discussed 
here. The interesting tool here is Tool ‘B.’ The reason it is of interest is because it really 
only needs to be tracked with 5 DoF and is not only representative of suction devices, but 
also pointers, needles, catheters, and other 5 DoF tools. 
 
 The following sketch in Figure 6-12 represents possible tracking solutions for a 5 
DoF tool. The configurations are: A) a single sensor at a given displacement along its 
axis from the tip, B) two aligned sensors that are a given distance from the tip with a 
given spacing, and C) a less practical solution with two aligned sensors spaced evenly 
about the target in the center.  
 

The goal is to determine: 

• The advantage of having two aligned sensors vs. a single sensor 

• The effect of distance of sensors from target / tool tip 

• The effect of sensor baseline length (sensor spacing) 
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The details of the configurations used in the trial are presented in Table 6-4. Each 
configuration was simulated in two environments: OR and moderately disturbed NDI Set 
#4. In the simulation, the tool was moved in a 200mm cube centered about the center of 
the characterized volume by increments of 25mm. At each location, the orientation was 
simulated at ± 90o about each axis by increments of 45o. Accompanying the configuration 
are representative results taken from simulations with the moderately disturbed data set. 

 

 
Potential designs for 5 DoF pointer 

A BB C 

Figure 6-12 
 
 
 

Configuration # of 
Sensors d(d1) / d2

RMS Pos. 
Error (mm) 

RMS Ori. 
Error (deg.) 

A-1 1 0 / NA 2.342 0.471 
A-2 1 10 / NA 2.392 0.480 
A-3 1 25 / NA 2.537 0.519 
A-4 1 50 / NA 3.093 0.692 
B-1 2 10 / 10 2.428 0.488 
B-2 2 10 / 20 2.474 0.499 
B-3 2 10 / 40 2.609 0.541 
B-4 2 10 / 80 2.632 0.585 
C-1 2 10 / NA 2.340 0.470 
C-2 2 20 / NA 2.336 0.467 
C-3 2 40 / NA 2.326 0.459 
C-4 2 80 / NA 2.333 0.479 

 
Tool configurations simulated for 5 DoF pointer design 

Results from simulation in disturbed environment (NDI Set #4) 
Table 6-4 
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The following plots help us to investigate how changing the above parameters 
affects the tracking error. Each plot shows the respective error plotted against the 
parameter of interest. The plots are conditioned on the distortion level of the environment, 
where Env=2 denotes the highly disturbed OR and Env=1 denotes the moderately 
disturbed NDI Set #4. The first results, shown in Table 6-5, show how tracking error is 
dependent on the number of sensors on the tool. There is a clear improvement in the 
tracking accuracy in both the tip position and the tool axis for two coaxial sensors over a 
single coil. This is an expected result; clearly more sensors should improve the accuracy. 
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Effect of number of sensors on position and orientation error of 5 DoF tool 
Table 6-5 
 
 The next trial studies the effect of distance of the sensors from the tracked tip of a 
tool on the tip tracking error. The measure here is the distance of the centroid (C.G.) of 
the sensors from the tip of the tool that is being tracked. If there is a single sensor, then 
the C.G. is the origin of that sensor. Again, as can be seen in Table 6-6, we get an 
expected result in that the error in both position and orientation (orientation especially) is 
positively correlated to the distance of the sensors’ centroid from the tip. 
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Effect of centroid (C.G) distance from tip on error of 5 DoF tool 
Table 6-6 
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 The final key result is to study the effect of a wider sensor baseline on the 
tracking accuracy of a 5 DoF tool. Table 6-7 shows the effect of the increasing the 
distance between the sensors on the error for configuration ‘B’ only. As with all of the 
other plots, this is conditioned on distortion environment. This is the first result in this 
experiment that appears to have a strong interaction between the levels of measurement 
distortion and the error pattern. For most of the data, there appears to be an increase in 
error as the baseline is increased. This is in general counterintuitive for trackers, but 
correlates well with earlier studies. This is attributable to the fact that if the curvature of 
the error field is high, then the increase in accuracy by widening the baseline is countered 
by the larger differences in distortion between the two sensors. This is the case only for 
distortion fields with high curvature; as I discussed earlier, the greater the distortion 
magnitude, the smoother the field is in general. This could explain why the translational 
accuracy actually gets better in the higher distortion field as the baseline is increased.  
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Effect of distance between sensors on the tip tracking accuracy of 5 DoF tool 
Table 6-7 
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Endoscope 
 
 Due to the small spaces and depths at which it is necessary to work, visualization 
without assistance is almost impossible for many ENT procedures. Therefore, the 
endoscope is the key to allowing the surgeon to see what is going on at the surgical site. 
However, manipulating an endoscope still requires significant caution and intimate 
knowledge of the anatomy. By tracking the endoscope with respect to the anatomy, the 
surgeon can know exactly where the tip of endoscope is and exactly where it is looking. 
In addition, with a tracked endoscope it is possible to perform camera calibration and 
reconstruct the internal surfaces; this information can be used for registration and other 
navigation-related purposes. Images of the actual device and a possible prototype tracked 
model are shown in Figure 6-13. This prototype shows a design using custom coils that 
would be the optimal design with regards with respect to ergonomics, but the large 
distance of the proximal sensor to the tip may cause poor tracking results. 
 

  
Standard 45o ENT endoscope CAD model of a tracked endoscope 

using custom coil designs 
Figure 6-13 
 
 At first glance the endoscope looks like it would be an easy tool for design of a 
tracked prototype. It looks this way because there are very few possible combinations of 
sensor poses on the tool that can be obtained. However, this is misleading because the 
obvious sensor locations (one at the tip and one on the light input shaft) produce a very 
poor tool design. By placing the sensors here, the tool has a very high aspect ratio. By 
this I mean that the ‘inertia’ of the sensors is high about two axes, but very low about the 
axis of the tool. This means that we would have very poor rotational accuracy about this 
axis; this would be an enormous problem because it would mean that the endoscope is 
not looking where we think it is. If we were using the endoscope to perform vision-based 
registration, then our registration error would be very high. 
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Optimal design of the tool means that we want to 1) keep the centroid of the 
sensors as close to the tip as possible, and 2) we want to keep the ‘inertia’ of the sensors 
high along all of the principal axes. The ‘optimal’ design would have the first sensor 
parallel to the shaft at the distal end, and the second sensor a short ways up and 
orthogonal to the shaft. If the endoscope is not going to be inserted far into a cavity, then 
we can get away with having an arm jut out of it. However, this may not be feasible for a 
general-use surgical tool and we will have to stick with putting the second sensor further 
up. 

 
CAD model of sensor configuration for tracked endoscope 

Sensor 1

Sensor 2 
d

Figure 6-14 
 
 Figure 6-14 shows the ‘optimal’ sensor design for the endoscope. This design is 
optimal in that it allows for accurate tracking while maximizing the ‘inertia’ in a compact 
space. Similarly to the tissue shaver, better results would be achieve if Sensor 2 from the 
figure is shifted closer to the distal tip and Sensor 1. However, d  must be kept large 
enough such that the second sensor will not interfere with the surgery. In order to 
decrease the obtrusiveness, a smooth sleeve with the sensors molded inside could be 
slipped over the tip of the tool. This would allow for minimal increase in width at the tip 
(~1mm) and a wider home for the second sensor further up the shaft. See Figure 6-15 for 
a possible solution for this design, which could be a sterile, tracked disposable sleeve for 
endoscopes and other tools. 
 

 
Potential solution for enclosing two 5 DoF sensors in a sleeve 

Figure 6-15 
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Verification of Tool Design 
 

To validate the previous tool design techniques, an experiment was performed to 
investigate the tracking accuracy of a tool with respect to the designed CRF. For 
comparison, the designed CRF was matched up against the standard NDI/Traxtal 6D 
MagTrax Dynamic Reference Body (6D DRB). In this experiment, the simulator was 
used to gauge the accuracy of tracking a tool with respect to the reference body. This 
scenario was simulated using the above designed CRF (Design #1 with a baseline 
between the sensors of 150mm) and the 6D DRB placed at a distance of 75mm from the 
reference frame origin. This way, all sensors in both designs are placed along a 75mm 
radius circle surrounding the operating area. The two configurations are shown in the 
CAD models in Figure 6-16. 

 
 

Reference Frame Configurations Compared 
 

  
Two 5 DoF sensors in custom CRF 

(Design #1 from Table 6-1) 
Single 6D DRB Reference on CRF 
(Traxtal MagTrax Dynamic Reference)1

Sensor 2 6D RBSensor 1 

Figure 6-16 

                                                 
1 Information about the Traxtal MagTrax Dynamic Reference Body is available at http://www.traxtal.com 
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The following protocol was used for both reference frames. In order to make a 
fair comparison, both were used to track another NDI/Traxtal MagTrax 6D DRB as the 
Tool. Error was gauged by the difference in relative position and orientation between the 
Tool and the Reference as measured and as input into the simulator. The reference RB 
was aligned in 5000 random poses within a 100mm cube surrounding the center of the 
Aurora’s working volume. Then, the tool was placed in a random, but known, poses with 
respect to the reference frame. To judge how well the references work for different sensor 
distributions, the sensor measurements were generated four times with different bounds 
on their positions with respect to the reference frame’s origin each time. The results are 
shown in Figure 6-17. They seem quite positive in that the frame designed using the help 
of the simulator outperforms the off-the-shelf 6D RB in all cases. These simulations were 
performed using the 3rd order model of the reasonably disturbed data set (NDI Set #4). 
Similar results are obtained for other environments. 

 
Comparison of Designed CRF to NDI/Traxtal 6D Reference 

 

 
Error in relative transformation between Reference and Tool frames 

vs. bound on spread of Tool distances with respect to Reference 
Figure 6-17 
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 As stated at the beginning of this section, the tools designed were restricted to two 
sensors because this is the maximum that is natively allowed by the Aurora system. 
However, my algorithms presented here do not restrict the number of sensors. So, this 
experiment studies how the accuracy is affected by adding sensors to the reference frame. 
 
 The experimental protocol is the same as for the previous trial except that this trial 
is simulated in the reasonably disturbed NDI Set #4 environment. A set of 5000 random 
poses within a 100mm cube surrounding the center of the Aurora’s working volume was 
assigned to the CRF being tested. Then, the tool (Traxtal Magtrax DRB) was placed in 
random, but known, poses with respect to the reference frame. The CRFs tested here have 
{2,3,4,5,6} sensors. They are all aligned with principal axes and placed along a 150mm 
diameter sphere surrounding the CRF origin. The first configuration is identical to the 
one above (CRF Design #1). Further configurations add sensors to this base. Clearly, 
more sensors have a rather dramatic positive effect on the tracking accuracy. In particular, 
the four sensor reference looks like a good tradeoff between RB complexity and accuracy. 
 

Tool Tracking Error vs. Number of Sensors in CRF 
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Error in relative transformation between Reference and Tool frames 

vs. number of sensors in the Reference RB 
Figure 6-18 
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Contributions 
 

This chapter used just about everything that had been discussed previously to aid 
in the design of a set of real instruments and reference bodies for electromagnetically 
tracked, image guided surgery applications. These tool’s basic designs were constructed 
based upon intuition gained through experience and the analytical tool design section of 
Chapter 4. Then these designs were varied along several parameters and the optimal 
design was determined based on simulation in several environments that were mapped 
using the techniques of Chapters 2 and 3. As a final verification, a standard tool was 
tracked with respect to both the designed reference and an off-the-shelf reverence body. 
The errors consistently appeared to be smaller when tracking a tool with respect to the 
custom-designed reference frame.  
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Chapter 7:   Conclusions 
 

Contributions 
 
This document has covered many aspects of the field of image guided surgery 

(IGS), and in particular the use of electromagnetic (EM) trackers in IGS applications. The 
document first gives an overview of the potential tracking solutions and then focuses on 
the EM tracking scenario. The goal was to optimize the use of EM trackers such that they 
can function with improved tracking accuracy. 

 
The first key result was characterization of the measurement errors induced by 

magnetic field distortion for the Aurora system. Our approach was based on that of Wu et 
al. [Wu, 2003c].  The main extensions have been significant improvements in the 
robustness and efficiency of the implementation and extensive experimentation, together 
with new designs for fixtures and calibration phantoms.  Chapter 2 discussed how to 
calibrate a hybrid or digitized data collection system, and then how to use this system to 
gather synchronized sensor measurements and reference measurement. Using these, the 
field distortion was determined. Distortion was investigated for many environments to 
give a useful comparison of the field distortion of the Aurora system in these conditions. 
The work here can be generalized to other EM trackers, and in fact just about any type of 
tracking system. 

 
The second key result was modeling the distortion field and use of the models for 

real-time compensation of errors to improve tracking accuracy.  Again, the basic 
approach was that of [Wu, 2003c].  Extensions again were primarily directed toward 
robustness, efficiency, and experimentation. Chapter 3 detailed methods for modeling the 
measurement error with Bernstein polynomial models. The main contribution was to 
determine how to find the optimal parameters to use for the data collection and model 
generation such that a high quality model can be created with a practical data collection. 
These parameters are based on the environment and the accuracy requirements. 

 
Our final key result was development of analytical and empirical design of tools 

using EM tracking devices.  Prior analytical approaches (e.g., [West, 2004] and 
[Fitzpatrick, 2001]) for designing tracked tools generally ignore the field distortions and 
pose dependencies found with EM tracking devices.  Further, these approaches are based 
on 3 DoF sensors, while the Aurora sensors have 5 DoF. In Chapter 4 we detailed the 
generation of analytical bounds on the errors and determined the propagation of 
measurement uncertainty through frame transformations. Using this information, we 
determined how to maximize the tracking accuracy of a tool with respect to a reference 
frame as is necessary for IGS applications. For empirical tool design a simulator was 
created as described in Chapter 5. This simulator allows the user to place arbitrarily 
designed virtual EM tools and references in a model of any characterized environment 
and simulate the tracking accuracy of the combination. This is useful because it allows 
testing of many tools deigns rapidly since the physical tool need not be tested or moved 
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around an actual measurement field. Actual tools, specifically for ENT IGS applications, 
were presented in Chapter 6. 

 
Overall, we have covered just about all of the key areas of tool design and error 

analysis for electromagnetic tracking applications, and in particular for image guided 
surgery applications. We hope this reference proves useful to those in the field as an aid 
for system characterization and tool design. 
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Future Development 
 
This research has an incredible breadth and can in no way be exhausted in a single 

work. There is much work that can be done to both further my initial work here, and to 
progress into new topics. The following represent some of the areas that I feel would be 
the next crucial projects to tackle. 

 

Interactive OR Field Characterization 
 
It would be ideal if the working volume of the EMTS could be characterized just 

prior to an operation when all of the equipment is in place just as it would be for the 
procedure. In order to realistically be able to compensate for the field distortion in an 
operating room, however, it is essential to have a rapid method of data collection. The 
current methods of calibration are either very time consuming or require impractical 
amounts of additional equipment. One possible solution would be a specialized data 
acquisition collection device such as a small plastic robot. Another would be to build a 
fixture that allowed for a large amount of data to be collected simultaneously and only 
needed minimal user interaction and time. These solutions will be investigated in the 
future. 

 

Updated Field Distortion Model 
 
The current methods for modeling the magnetic field distortion are based on a 

Bernstein polynomial basis. This type of model produces a very good global 
representation of the error. However, an adaptive field distortion map that subdivides the 
space to allow for local distortion models of higher order than the global model may be 
superior for error fields with high curvature. Using B-splines and other techniques will be 
explored. Further, I believe that the local distortion model provided though the use of 
Thin Plate Splines may be a very useful tool for improving tracking accuracy without the 
need for a full field characterization. This should be investigated much closer to 
determine if it can in fact be of assistance. 
 

Further Tool Design 
 
Obviously, the last section of this document only detailed the development of a 

small subset of instruments for use in ENT surgery. Other surgical tools are prime targets 
for EM tracked IGS applications, and hopefully this work will be of great assistance in 
their development. In addition, ENT is clearly not the only client for EM tracked 
instruments; other application such as neurosurgery, arthroscopy, reconstructive surgery, 
percutaneous therapy, and joint replacement are prime candidates. In order to get optimal 
accuracy, in addition to the tools, a CRF should be designed specifically for each 
application site. 
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Image Guided Surgery Software 
 

Although we present detailed methods and results of distortion mapping and error 
compensation, such methods will not be practical for use in a clinical setting unless they 
are well-integrated into and IGS software suite. Therefore, tracking, data collection, field 
characterization, measurement compensation, frame fitting, tool design, visualization, 
and registration software must all be combined into a fully integrated software solution 
for IGS. 
 

Robot Interaction 
 
 The next generation of surgical equipment will undoubtedly involve robotics in 
some form or another. Shown in Figure 7-1, two systems in development at the CISST 
ERC for ENT surgery are: 1) the Steady Hand Robot (SHR) for cooperative control of a 
tissue shaver for sinus surgery applications, and 2) the Snake Robot for performing 
intricate procedures down in the depths of the throat. Both of these applications will 
require knowledge of where exactly the tools are with respect to the patient, and the use 
of EM tracking technology may be the key. In addition to tracking robot-assisted surgery, 
another hurdle to address is how to dynamically compensate for field distortion of a 
moving metallic device in the working volume of the EMTS. In particular, if the robot is 
tracked, it is important to determine if the distortion that is caused by it can be modeled 
as a function of the joint configuration and dynamically compensated for. 
 

 
Steady Hand Robot for 

safer sinus surgery 
Snake Robot prototype for dexterous  

throat surgery (Nabil Simaan) 
Figure 7-1 
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Aurora Tools Software – User Guide 
 
This program provides utilities for use with the Northern Digital Aurora Electromagnetic 
Tracking System (EMTS). 
 
It allows for: 

• Viewing sensor and tool readings 
• Fitting arbitrary tools comprising of 1-8 sensors to the measurements 
• Logging of sensor and tool readings 
• Compensation of the sensors, and tools, using a polynomial representing 

the field distortion of the environment 
• Simulation of the distortion effects on an arbitrary tool in a virtual 

environment specified. 
 

Initialization 
 
Start the program either from the executable (Aurora_Tools.exe) or by opening the Visual 
Studio 6.0 Workspace (Aurora_Tools) and executing the software through the menu or 
with Ctrl-F5. 

 
The initial screen looks like this: 
 

 
Note: Read the following manual and prepare the configuration files before running the 
software. 
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Real Time Tracking 
 
For Real-time tracking of tools, Click the Start Tracking button. This initializes the 
enable and starts tracking the sensors.  
NOTE: Initialization of the Aurora uses the cisTrackerAurora functions. There may be a 
delay before initialization is complete. The PC will beep when the Aurora is ready. 
 
To disable tracking, click Stop Tracking. To resume click Start Tracking again. There 
will be no significant delay, the Aurora is NOT reinitialized. 
 
 
Viewing Sensor Measurements 
 
To view the sensor readings in real-time, click the View Sensor Data button. All valid 
sensors will show up with the readings from the Aurora, if a tool is not attached, or if it 
does not produce a valid reading, zero will be displayed. To hold the readings constant in 
this display, click the Freeze Readings button; this will not stop tracking or interrupt data 
logging. 
 
This screen will look like this: 
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Viewing Tool Measurements 
 
To view the tool readings in real-time, click the View Tool Data button. All active tools 
will show up. If a tool is not selected, or if it does not produce a valid reading, zero will 
be displayed. To hold the readings constant in this display, click the Freeze Readings 
button; this will not stop tracking or interrupt data logging. 
 
The screen will look like this: 
 

 
 
 
Note: Be sure the tools to be viewed are enabled. They will all be enabled by default. 
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Configuring Tools 
 
To configure the tools, you must set up a configuration file for each tool. If two tools 
have identical configurations, the same one may be used twice. 
 
An example of a tool file for a Traxtal 6 DoF Dynamic Reference is shown below: 

 
 

 
The file format is as follows: 
 
Line 1: The number of sensors used. 
Line 2+: The sensor configurations with respect to that tool’s frame (described below). 
 
For Lines 2+: 
 

Column 1: The sensor number, the numbers do not need to be consecutive or on the 
same tool port. The figure below shows the sensor ordering.  

 NOTE: The numbering in the file starts at 0, not 1 
 
Column 2-4: The position of the sensor (x,y,z) wrt the tool frame (measured in mm). 
 
Column 5-7: The orientation of the sensor with respect to the tool frame, represented as 

a unit quaternion (q0,qx,qy,qz). 
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Generating the Tool Configuration 
 
If the tool configuration is known precisely, either through manufacturing specifications 
of because it is a virtual tool, the data can be directly input into the tool configuration file. 
 
For existing tools, it is possible to generate the sensor positions and orientations by 
opening the supplied binary .rom file (from NDI, Traxtal, etc.) using the NDI 6D 
Architect Aurora software. From here, you will get a view like the one below where the 
Translation and Rotation can be copied into the tool configuration file as shown. 
 

 
 
 
For manual design of tool configurations (either actual or virtual), it may also be useful to 
use the 6D Architect software. In this case, the tool can be designed as one normally 
would be, and the Translation and Rotation information copied out when complete. 
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Combining the Tool Configurations 
 
Once all of the .rom files are complete, compile a list of them in ToolConfig.txt as shown 
here. Be sure to include the path, the tool configuration files are in the /tools subdirectory. 
 

 
 

The file format is as follows: 
 

Line 1: The number of tools. 
Line 2+: The filename corresponding to the respective tool. Up to four tools are currently 

supported due to Aurora’s limit of 8 sensor measurements.  
 
NOTE: It is possible to use the same sensor in multiple tools. This can be useful for the 
simulator when trying to optimize the number and relative position of sensors in a RB. 
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Enabling Tools 
 
When running the software, the user must select which tools are to be tracked, and logged 
if data logging is active. By default, all four tools are tracked. 
 
Select which tools are active by clicking on the Configure Tools button. This will bring 
up a window like this: 
 

 
 
Use the checkboxes to select which tools are active. 
 
Note: Future revisions will allow for modifying the tool configuration inside of the 
software using the Configure Tool buttons, but they are currently inactive. 
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Data Logging 
 
To enable data logging, click the Collect Data button. Be sure to set the configuration 
manually if the default settings shown below are not appropriate. 
 
Data logging is configured by clicking on Configure Output File. This will bring up a 
window that looks like this: 

 
The key parameters are: 
 Sample Rate which specifies how fast the Aurora Readings are taken. 

Groups of Samples which specifies how many sets of data are to be collected.  
A window will pop up between sets and will begin collection of that set 
when the OK button is clicked. 

 Samples per Group which specifies the number of measurements used per group.  
  If only one group is used, this is the total number of points to collect. 
 
Next, choose with the check boxes which of the three data types to log. The types are: 
 Raw Sensor Readings which is the actual sensor measurements 

Corrected Sensor Measurements which is the sensor measurements after being 
compensated using the polynomial 

 Tool Frame Readings which is the position and orientation of the tool frames 
that were fit to the data. If compensation is enabled, these will be the 
compensated tool readings, otherwise they will be based on the raw sensor 
measurements. 

 
If desired, change the filenames and/or directories where the data is stored. 
 
NOTE: Sample Rate affects the rate at which Aurora readings are polled. This parameter 
affects the readings even if data logging is not active. 
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Compensation of Measurements 
 
The software has the capability of compensating for magnetic field distortions by using 
polynomial models to interpolate what the position and orientation error will be at a given 
sensor position and orientation. The compensation is based on a polynomial generated 
from data collected in the environment that the system is working in. This can be either a 
compensation for magnetic field distortion due to the environment, or a characterization 
of the systematic distortion of a particular Aurora unit. 
 
To configure the distortion Correction, click on the Configure Correction button on the 
main window as shown on the left. This will bring up the following window on the right.  
 

 

  
 
There are two parameters that must be set:  
 
The first is the Configuration File. This file is primarily used in generation of the 
polynomial, the important line that should be set is the one labeled Poly Order=3. 
Change the number three to the order corresponding to the polynomial being used. 
Note: this file is in the /config subdirectory. 
 
The second is the Error Tree File. This points to the file that contains all of the 
information about the specific polynomial to use. 
Note: this file is in the /polynomials subdirectory. 
 
Both parameters have default values set, but they should be changed to match the 
appropriate environment. 
 
NOTE: This not only affects the real-time compensation, but also the Simulator. 
 
Enabling Compensation 
 
To enable compensation, select the radio button for Enable Compensation as shown in 
the figure above to the left. To disable compensation, click on Disable Compensation. 
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Simulator 
 
The simulator is used to simulate the distortion of an arbitrary tool configuration and an 
arbitrary reference configuration as the tool is moved though the distortion field.  
 
Access the simulator by clicking on Simulator on the main window. This will bring up 
the following window: 

 
 
Directions for use in Single Point mode: 
 

1. Set the Reference Frame 
a. Choose which tool number represents the reference 

Use 0 for Tool # if measurement are to be made with respect to the 
Aurora Field Generator’s frame of reference 

b. Choose a position and orientation in the field for the reference 
2. Set the Tool Frame 

a. Choose which tool number represents the tool 
b. Choose a position and orientation for the tool, this is with respect to the 

reference frame. 
3. Click Simulate Single Point 
4. Results in “real time”  

a. The position and orientation of the tool wrt the reference after distortion 
will be shown in the box labeled Simulated Tool Frame wrt Reference 

b. The error in relative position and orientation will be shown in the box 
labeled Error 
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Directions for use in Range of Motion mode: 
 

1. Set the Reference Frame 
a. Choose which tool number represents the reference 

Use 0 for Tool # if measurement are to be made with respect to the 
Aurora Field Generator’s frame of reference 

b. Choose a position and orientation in the field for the reference 
2. Set the Range of Motion 

a. Choose the extents of the motion of the tool wrt the reference 
Position measurements are in mm, Orientation measurements are 
in degrees 

b. Choose the spacing of the samples between the extents 
Be aware of the cubic relationship of each spacing, too many 
readings may cause the simulation to take excessively long 

3. Configure data logging 
a. Choose a filename, may keep the default if desired 
b. Click the checkbox to enable logging 

4. Click Simulate Range of Motion 
5. Results in “real time” (optional, not recommended) 

a. Choose Visualize Individual Data Points to show each readings as it is 
calculated, this will significantly slow down the simulation. 

b. The position and orientation of the tool wrt the reference after distortion 
will be shown in the box labeled Simulated Tool Frame wrt Reference 

c. The error in position and orientation is shown in the box labeled Error 
6. Results 

a. Simple statistics representing the results of the simulation are shown in the 
box Range of Motion Results. 

b. The full data set of the relative positional and angular error introduced for 
each position and orientation of the tool with respect to the reference is 
stored in the data file (if that option was selected). 

 
 
NOTE: To simulate the distortion of a single sensor, make a simple tool file (.rom) with 
just one sensor and set it such that the position is zero and the orientation is identity. 
 
It should look like this to simulate a single sensor in the field: 
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Directions for use in File Input Data mode: 
 

1. Generate the Input Data File 
The file format is as follows: 

  Line 1: The number of measurement pairs to simulate. 
  Line 2+: The reference and tool frames (described below). 
 

 Column 1: The number of the sensor pair (only for reference) 
 Column 2-4: The position of the frame (x,y,z) in mm. 

Column 5-7: The orientation of the sensor as a unit quaternion 
(q0,qx,qy,qz). 

 
Inputs are grouped into two lines. The first line represents the frame of the 
reference in the base frame. The second line represents the tool frame with 
respect to the reference. The following figure shows a sample file. 

 
 
2. Set the Reference & Tool Configurations 

a. Choose which tool number represents the reference 
Use 0 for Tool # if measurement are to be made with respect to the 
Aurora Field Generator’s frame of reference, still must have 
“dummy lines” in input data file for reference locations 

b. Choose which tool number represents the tool 
3. Set the Input Filename 

a. Input the name of the data file containing the reference and tool frames 
The tool frame is treated as the frame relative to the reference.  
It is not an absolute reference 

4. Click Simulate Input Data 
5. Results in “real time” (optional, not recommended) 

a. Choose Visualize Individual Data Points to show each readings as it is 
calculated, this will slow down the simulation significantly. 

b. The position and orientation of the tool wrt the reference after distortion 
will be shown in the box labeled Simulated Tool Frame wrt Reference 

c. The error in position and orientation is shown in the box labeled Error 
7. Results 

a. Simple statistics representing the results of the simulation are shown in the 
box Range of Motion Results. 

b. The full data set of the relative positional and angular error introduced for 
each position and orientation of the tool with respect to the reference is 
stored in the data file (if that option was selected). 
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