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Verbal threat learning does
not spare loved ones

Cristina Morato?, Pedro Guerra'*! & Florian Bublatzky?™

Significant others provide individuals with a sense of safety and security. However, the mechanisms
that underlie attachment-induced safety are hardly understood. Recent research has shown beneficial
effects when viewing pictures of the romantic partner, leading to reduced pain experience and
defensive responding. Building upon this, we examined the inhibitory capacity of loved face pictures
on fear learning in an instructed threat paradigm. Pictures of loved familiar or unknown individuals
served as signals for either threat of electric shocks or safety, while a broad set of psychophysiological
measures was recorded. We assumed that a long-term learning history of beneficial relations
interferes with social threat learning. Nevertheless, results yielded a typical pattern of physiological
defense activation towards threat cues, regardless of whether threat was signaled by an unknown or
aloved face. These findings call into question the notion that pictures of loved individuals are shielded
against becoming threat cues, with implications for attachment and trauma research.

Seeing your loved ones has particular benefits to human well-being and health. Going beyond the advantage of
having a supportive social network, the presence of attachment figures has been shown to enhance life expectancy,
physical health, and psychological resilience. In addition, the mere vicarious presence of loved ones (e.g., by
looking at pictures) is related to reduced pain and defensive behaviors®>. However, attachment figures may also
become a source of grief and misery, and recent translational research started examining the involved severe
neurobiological and psychosocial deficits in humans and animals®'°.

As a highly social species, humans’ survival depends on the quality of their social network, and attachment
figures provide a sense of safety and security. Looking at pictures of beloved faces evokes a variety of (emotional)
memories and draws attention to certain situations that are difficult to ignore. On the psychophysiological level,
a pattern of changes occurs that is distinctive of a positive emotional state>!12. This is shown, for instance, by
a biphasic modulation of the heart rate (deceleration-acceleration), inhibition of defensive reflexes (e.g. startle
reflex) and the corrugator muscle (frowning), and increases of zygomaticus muscle activity (smiling). In addi-
tion, activating a mental representation of attachment figures and supportive others has been shown to reduce
pain experience®'>!*. For instance, the physical presence of the partner reduced pain, even without a need for
interaction®. Similarly, Master et al.’* found that viewing a partner photograph and holding the partner’s hand
while receiving thermal stimulations reduce pain perception more than holding an object or the hand of an
unknown individual. Thus, viewing attachment figures or even their photograph is beneficial for coping with
pain and stress, but little is known about social modulators of aversive learning.

As an experimental model to investigate affective learning, much research used experiential learning para-
digms such as Pavlovian conditioning. In this procedure, a previously neutral stimulus (conditioned stimulus,
CS) acquires an affective value by being paired with an appetitive or aversive event (e.g., electric shock serving
as unconditioned stimulus, UCS). Importantly, this association leads to conditioned responses to the CS when it
is presented alone, as reflected by enhanced autonomic arousal, primed defensive reflexive motor responses, and
activation of a neural fear network (e.g., amygdala, anterior cingulate cortex)'. Some stimuli, which evolution-
ary threatened survival (e.g., snakes), have been proposed to be more readily conditioned as aversive, and such
prepared fear associations are harder to extinguish!”!8. Recent studies suggested a parallel notion of prepared
safety stimuli, which evolutionary benefited survival and thus be more readily learned as safety cue inhibiting
fear responses'®->!. However, humans do not only learn by means of first-hand experiences but through obser-
vation and verbal instructions*?*. Despite their broad relevance for educational and clinical phenomena, for
example, affective and expectancy learning, racial discrimination or phobias?*?, such social learning processes
are still hardly understood.

In the present research, we examined the impact of verbal threat/safety learning while viewing loved and
unknown faces serving as instructed cues for shock threat or safety. Moreover, instructional learning was used to
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reverse previously acquired threat and safety associations?”?, and to clarify whether these processes depend on

stimulus relevance®. Previous studies have revealed that verbal threat instructions change psychophysiological
responses to visual stimuli, even without having experienced the anticipated aversive events, leading to increased
skin conductance, heightened corrugator electromyography activity, cardiac deceleration, and potentiated startle
reflex?”3*3!, The present study examined the capability of significant others in becoming threat or safety cues.
Previous research showed that specific stimulus categories are more readily associated with aversive events, and
more resistant to subsequent extinction learning (e.g., pictures of spiders or out-group members)*’. An opposite
pattern should be observed for stimuli that inherently signal safety—such as pictures of loved familiar people.
Accordingly, inhibited fear acquisition and rapid extinction learning is expected for face pictures of loved relative
to unknown people serving as instructed threat cues. This is assumed to result in less pronounced (or even non-
significant) fear learning when loved faces cue threat (i.e., threat-potentiated startle response, enhanced SCR,
initial HR-deceleration, and threat ratings). In contrast, pictures of unknown faces should more readily acquire
aversive qualities when instructed as threat-cue in the second half of the experiment?®.

Methods
Participants. Forty-five students (36 female, mean age=20.04 years, SD=1.93) were recruited from the
University of Granada (Spain). Sample size was chosen similar to previous research using facial expressions and
instructed threat manipulations'>'*?%*>3 and is in line with estimations based on G*power™. Statistical estima-
tions indicate that N =46 is required to detect instruction by face category interaction effects at a medium effect
size (f=0.20, power =0.90, a error =0.05, and assumed correlation of repeated measures =0.5). Participants were
in general good health with normal or corrected-to-normal vision. For some variables, data were lost because
of recording errors with single sensors. However, no participant was completely excluded. For startle reflex and
skin conductance, data from one participant were excluded in each case (final Ns=44). As regards heart rate, two
participants were removed from analyses (N =43).

All participants were informed about the general experimental procedure and provided written informed
consent prior to their participation. The ethics committee of the University of Granada (Spain) approved the
experimental protocol, which complies with the APA ethical standards and the Declaration of Helsinki.

Materials, design, and experimental presentation. Face photographs of four loved familiar (roman-
tic partner, father, mother, best friend) and four unknown people (another participant’s loved ones) were used.
The selection of four loved identities was chosen based on previous research showing pronounced patterns of
both central and peripheral responses (i.e., increased heart rate, zygomaticus muscle activity, SCRs, and P3/
LPP components), that is distinctive of positive emotions and not attributable to familiarity or undifferentiated
emotional arousal alone>!'"!#34% Moreover, with four identities per category, we were able to achieve a sufficient
number of trials for our psychophysiological measurements (e.g., startle EMG) without excessive repetition of
single face identities causing habituation effects. Finally, the used partial reversal design in the second experi-
mental block requires at least four stimuli (i.e. maintain threat cue, maintain safety cue, reversed threat-to-safe
cue, and reversed safe-to-threat cue; e.g.”’). All face pictures were Caucasian, originated from Spain, and were
matched for gender and age. For instance, if the participants own romantic partner was male, the corresponding
picture of a friend had to be a female face (and vice versa). In addition, participants were asked to provide recent
pictures of their mother and father. Picture materials were then matched for size (886 x 886 pixels), color (black
and white), and background (light-colored).

In a first block, half of the pictures of each face category were instructed as signals for either threat of electric
shocks (e.g., mothers and romantic partners) or safety (e.g. fathers and best friends). In a second block, instructed
threat and safety associations were partially reversed, in that two faces of each category maintained their original
meaning (e.g. loved/unknown mother signaling threat, and loved/unknown best friends signaling safety), and
two other faces were reversed (e.g. now fathers cue threat-of-shock and romantic partners signal safety). The
assignment of face identities to threat and safety condition was counterbalanced across participants. However,
to reduce the impact of within-category variability on threat/safety learning (e.g., due to familiarity or age)°,
we applied the restriction of having each one high- and one less-familiar person as threat/safety cue in each
experimental block (see “Supplementary materials S17).

Thus, the core experimental design (2 x 2 x 2) depicted Face Category (loved ones vs. unknown people), Cue
(threat vs. safety) as repeated measures factors in the instantiation block, and in addition Contingency (main-
tained vs. reversed threat/safety) for the reversal block. In both blocks, threat and safety contingencies were
verbally instructed and counterbalanced across participants. The sequence of stimulus presentation was pseudo-
random with the restrictions that the same identity could not appear in more than two consecutive trials, and
only three consecutive picture-startle or no-startle trials were presented in a row. Importantly, to focus on the
impact of aversive anticipations (rather than experiences) no shocks were administered during the experiment.
However, to enhance credibility of threat-of-shock instructions, a brief shock work-up procedure was carried
out before the experiment started.

The experiment began with a 2 min baseline period, followed by two blocks of 64 picture trials each, with
every picture being presented 16 times throughout the experiment. Individual trials consisted of 4 s baseline
period, 6 s picture presentation, a 4 s post-picture period and a varying inter-trial interval from 2 to 4 s (see
Fig. 1). Pictures were presented at approximately 60 cm in front of the participants on a 19" flat screen monitor.
Auditory startle probes were delivered at either 4, 4.5, 5 or 5.5 s after picture onset in half of the picture trials
(i.e. 32 probes per block) and were equally distributed across picture categories; four startle probes were also
presented during the inter-trial intervals. Startle probes (105 dB, 50 ms) were produced by Coulbourn S81-02
noise generator, gated by a Coulbourn S82-24 audio-mixer amplifier (Coulbourn Instruments, Whitehall, PA)
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Figure 1. Schematic illustration of the experimental procedure. (a) An initial shock work-up procedure was
carried out to ensure credibility of the threat-of-shock instructions. The first experimental block started with
verbal instructions regarding which face identity (ID) is cueing threat or safety (instantiation). To this end,

two loved and two unknown face identities were pointed out as cues for aversive shocks (e.g. both loved and
unknown fathers and best friends), whereas the other four identities served as instructed safety cues (e.g.
mothers and partners). In the partial reversal block, threat and safety associations were partially changed.

Each one loved and unknown identity maintained cueing threat and safety, the associations of the other two
identities were reversed. Note, the instructed contingencies between face identity and threat or safety were
counterbalanced across participants. (b) For each block, all face identities were presented eight times (64 trials)
and auditory startle probes were presented in half of the picture trials, four additional probes were presented
during ITL. In order to focus on the impact of aversive anticipation (but not experience), no shocks were applied
throughout the experiment.

and presented through Telephonics TDH-49P earphones. Presentation software (Neurobehavioral Systems, Inc.,
Albany, CA) served to control stimulus presentation and VPM software® to collect physiological measures. The
electrical pulses were administered during the shock work-up procedure to the left forearm and generated by a
Letica-shock-module LI 2700 (Letica, Barcelona, Spain).

Procedure. An initial telephone interview served to clarify inclusion criteria: (1) having a highly positive
relationship with their parents, romantic partner and best friend, (2) having a romantic relationship for at least
6 months up to 6 years (but not living together), and (3) having lived together with their parents at least until
the age of 18 years. These latter criteria served to control for the duration of familiarity with regard to instructed
threat/safety cues (i.e., parents are more familiar relative to romantic partner and best friend; for a discussion
see’. Subsequently, instructions for preparation of picture materials were provided: frontal view of the face with
a neutral expression, light-coloured background without objects behind, and the picture being taken by some-
one else other than the participant, to avoid background knowledge about the situational context of the picture.

Upon arrival in the laboratory, participants completed a picture familiarity rating to ensure that control pic-
tures were unknown (if not, a different set of control faces was used), and scored relationship quality to their loved
ones on a five-point Likert scale “How would you currently define your relationship with your father/mother/
partner/friend on a scale ranging from 1 (very unsatisfactory) to 5 (very satisfactory)?” with 3 as a cut-off. Given
the pre-selection and inclusion criteria, relationship quality with the romantic partner (M =4.5, SD=0.56), best
friend (M=4.24, SD=0.54), mother (M=4.42, SD=0.64), and father (M =4.39, SD =0.64) was rated as very good.
In addition, questionnaires on positive/negative affectivity (PANAS*; asking how much participants currently
feel e.g., active, distressed) and general social support (MOS*; asking for e.g. the “availability of someone to help
if confined to bed”) were completed. However, these questionnaire measures were not specifically related to the
relationship with their loved ones and assessed for exploratory reasons only.

Subsequently, participants were seated in a sound-attenuated room, sensors were attached, and a shock
work-up was carried out*. To this end, electrical stimulation was increased in steps of 0.1 mA until participants
perceived stimuli (M =0.28 mA, SD=0.16) and reported shocks as “maximally unpleasant but not painful”
(M=1.34 mA, SD=0.78). On average, 10.55 stimulations (SD = 6.55) were needed from the perceptual to the
unpleasantness threshold. Key instructions were then given verbally about which face identities served as threat
and safety cues (i.e. threat/safety contingencies) and the corresponding faces were shown on the instruction
sheet. “If you see one of these four pictures, there is always a possibility of receiving an electric shock as long as
the picture is present” (i.e. threat cues), while on the contrary “if you see any of these other four pictures, you
will not receive any electric shock” (i.e. safety cues). In addition, the participants had the task of looking at all
the pictures during the entire time they were on the screen. Following the first block, participants rated all faces
regarding perceived threat.
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Before the second block, threat and safety associations were partially reversed. Instructions were the same
as for the initial instantiation of threat/safety contingencies but with the changed threat/safety pictures. By the
end of the experiment, participants completed the Self-Assessment Manikin (SAM*) to rate all photographs
as well as threat and safety conditions in terms of perceived valence, arousal, and dominance. After completing
additional questionnaires on empathy and attachment style (Interpersonal Reactivity Index, IRI**; Experience
of Close Relationship, ECR*®), participants were debriefed and received course credits for participation.

Datarecording and reduction.  To get a comprehensive picture of somatic and autonomic nervous system
activation, we assessed a broad set of psychophysiological measures, which had been shown to be sensitive to
threat instructions and pictorial stimuli (e.g.*"). Skin conductance responses were recorded using Ag/AgCl elec-
trodes with isotonic gel (Biopac Systems) placed on the hypothenar eminence of the left hand and was recorded
using a Coulbourn V71-23 coupler module with a sampling rate of 50 Hz. The electrocardiogram was measured
atlead IT using two standard Ag/AgCl electrodes filled with hyper-conductive gel (Parker Laboratories, Inc, New
Jersey, U.S.A.). A Coulbourn V75-04 bio-amplifier, connected to a V75-48 high performance band-pass filter,
was used for signal conditioning. Frequencies below 1.5 and above 20 Hz were cancelled out and the electrocar-
diogram was acquired at 1000 Hz.

All EMG activity was recorded by means of miniature In Vivo Metrics electrodes filled with gel and separate
Coulbourn V75-04 bioamplifiers. The raw signals were band-pass filtered (28-500 Hz) and subsequently rectified
and integrated using a Coulbourn V75-24 integrator. Time constants and sampling rates were 500 ms and 20 ms
for the zygomaticus and corrugator, as well as 100 and 1000 Hz for orbicularis muscles activity.

Startle responses were scored with an automated detection algorithm*, verified by visual inspection. The
startle amplitude was defined as the difference between the peak and the onset of the response, in a time window
between 20 and 120 ms after stimulus onset. To control for between-subject variability, startle amplitudes for
each participant were transformed to T-scores.

Skin conductance responses, heart rate, zygomaticus, and corrugator activity were calculated by averaging
across each half-second for the duration of the picture display and by subtracting the activity within 1 s prior
to the picture onset.

Data analysis. Data and syntax can be retrieved here: https://osf.io/fy2n7/?view_only=3c2abe24c3eed1f
a84f613fecf1a70c0.

Self-report data.  As a manipulation check, perceived threat was examined with a repeated measure ANOVA
depicting the factors Cue (threat vs. safety), Face Category (loved vs. unknown), and Block (instantiation vs.
reversal). Moreover, valence, arousal, and dominance ratings of the face pictures were analyzed by means of
repeated measures ANOVAs including the within factors Cue (threat vs. safety) and Face Category (loved vs.
unknown). Because these ratings were obtained only once at the end of the experiment, the factor Cue (threat vs.
safety) could be tested only for those face pictures that maintained cueing threat or safety throughout the experi-
ment. Finally, the credibility of threat/safety instructions during the instantiation and reversal block (asked dur-
ing debriefing) was tested with a paired sample T-test.

Peripheral measures. For all peripheral measures, repeated-measures ANOVAs were calculated separately for
each experimental block (instantiation and reversal) including the factors Faces Category (loved vs. unknown),
Cue (threat vs. safety), and additionally Contingency (maintained vs. reversed) for the reversal block. The fac-
tor Time (12 half-seconds) was included to examine the temporal development of skin conductance, heart rate,
zygomaticus, and corrugator EMG responses.

A significance level of p=0.05 was used, partial eta square (,?) was used as measure of effect size, and 95%
confidence intervals are reported. Greenhouse—Geisser corrections were applied when necessary, and Bonferroni
corrections were applied for post-hoc analyses.

Results

Self-report data. The perceived threat was rated after both instantiation and reversal block (see Figs. 2A
and 3A). As predicted, instructed threat cues were more threatening than safety cues in the instantiation block,
Cue F(1,35)=23.22, p<0.001, np2: 0.40, and unknown faces more threatening than loved faces, Face Category
F(1,35)=34.01, p<0.001, n,>=0.49. No interaction emerged for the instantiation block, Cue x Face Category
F(1,35)=0.0, p=1.0,,2=0.0.

Similarly, for the reversal block, threat cues and unknown faces were perceived as more threatening rela-
tive to safety cues and loved faces, Cue F(1,35)=29.42, p<0.001, npz =0.46, and Face Category F(1,35)=33.71,
P<0.001,1,>=0.49. Interestingly, however, threat ratings revealed a significant interaction Cue x Face Category,
F(1,35)=4.75, p<0.05, qu =0.12. After reversal learning, all threat cues were perceived as more threatening than
safety cues regardless of face category, all ps<0.001, but this threat effect was more pronounced for unknown
compared to loved people.

At the end of the experiment, the pictures were rated once in terms of valence, arousal and dominance
(see Table 1). For valence ratings, loved faces were more pleasant relative to unknown faces, Face Category
F(1,41) =136.65, p <0.001, n,”=0.77, but neither the main effect Cue, F(1,41) = 1.65, p=0.21, n,>=0.039, nor the
interaction Cue x Face Category was significant, F(1,41) =0.06, p =0.82, n,> < 0.01. Self-reported arousal did not
differ between loved and unknown faces, Face Category F(1,41)=0.45, p=0.51, npz =0.01, but was more pro-
nounced for threat relative to safety cues, Cue F(1,41) =4.50, p=0.04,1,>=0.10. No interaction Cue x Face Cat-
egory was observed, F(1,41)=0.16, p=0.69, 1,7 < 0.01. Dominance ratings showed neither main nor interaction
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Figure 2. Instantiation of threat and safety contingencies (instantiation block). (A) Threat ratings, (B) eye-blink
startle reflex, (C) skin conductance responses, (D) heart rate changes, and (E) zygomaticus activity as a function
of Cue (threat, safety) and Face Category (loved, unknown).

effects, Cue F(1,41)=1.01, p=0.32, npz =0.02, Face Category F(1,41)=1.97, p=0.17, r]pz =0.05, and Cue x Face
Category F(1,41)=0.10, p=0.76,1,><0.01.

Finally, in the debriefing interview, participants rated the threat instruction in the first block as more credible
than in the second block, t=9.13, p<0.001 (instantiation block: M =9.12, SD=1.25; reversal block: M =5.59,
SD=2.43).

Startle reflex. For the instantiation block, the startle reflex was potentiated when viewing instructed threat
relative to safety cues, Cue F(1,43) =39.05, p <0.001, n,>=0.48 (see Fig. 2B and Table 2). Interestingly, no differ-
ence was observed between loved and unknown faces, Face Category F(1,43)=0.16, p=0.69, qp2< 0.01, and no
interaction emerged for Cue x Face Category F(1,43)=0.52, p=0.48, npzz 0.01, thus, indicating threat-potenti-
ated startle reflex regardless of whether loved or unknown faces cued threat.

After reversal instructions, startle reflex was potentiated for threat compared to safety cues, Cue
F(1,43)=13.69, p<0.001, r]pz =0.24. No differences were observed between cues that maintained or reversed
their meaning, Contingency F(1,43)=2.61, p=0.11, r]P2 =0.06, or between loved and unknown faces, Face Cat-
egory F(1,43)=0.99, p=0.326, 1),>=0.02. Although not significant, the only evidence of a modulating influence
of face category emerged for the interaction Face Category x Contingency, F(1,43) =3.54, p=0.067, n,>=0.076,
which showed a more pronounced startle reflex for reversed compared to maintained unknown faces, p=0.02,
but not for loved faces, p=0.95. Neither Cue x Face Category nor Cue x Contingency x Face Category reached
significance, Fs(1,43) =0.12 and 1.51, ps=0.74 and 0.23, r]pz <0.01 and =0.03.

Skin conductance responses. Skin conductance responses evolved over Time, F(11,473)=21.22,
P<0.001, n,?=0.33, during the instantiation block. No differences were observed between loved and unknown
faces, Face Category F(1,43)=0.62, p=0.44, r]pz =0.01, but SCRs were enhanced for threat relative to safety cues,
Cue F(1,43)=7.81, p=0.008, npz =0.15, and this effect varied across time, Cue x Time F(11,473) =8.96, p=0.003,
1,°=0.17 (see Figs. 2C and 3B, Table 2). Planned comparisons revealed these threat effects significant between
time points 3.5-6 s after picture onset (all ps<0.026). Moreover, the non-significant interaction Cue x Face Cat-
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Figure 3. Partial reversal of instructed threat and safety contingencies (reversal block). (A) Threat ratings,
and (B) skin conductance responses as a function of Instruction (threat, safety) and Face Category (loved,
unknown). Separate graphs show ratings and SCR for loved faces (middle column) and unknown faces (right
side) to illustrate the interaction with Contingency (maintained, reversed).

Valence Arousal Dominance Threat
Category Cue M SD 95% CI M SD 95% CI M SD 95% CI M SD 95% CI
Loved Safety |7.93 |021 |[7.50,836] |4.43 |039 |([3.64,521] |538 |025 |[4.87,5.89] |136 |0.32 |[0.71,2.01]
Threat |7.69 |0.23 | [7.23,8.16] |4.98 |0.34 |[4.30,5.66] |5.12 |0.20 |[4.72,5.52] |3.22 |0.46 | [2.28,4.16]
Unknown Safety |4.83 |0.19 | [4.45,5.22] |4.12 |025 |[3.62,4.62] |5.14 [0.25 |[4.65,564] |2.40 |041 | [1.56,3.23]
Threat |4.52 |023 | [4.06,4.99] |4.86 |0.32 |[4.21,550] |4.76 |026 |[4.24,528] |4.54 |0.45 | [3.62,5.45]

Table 1. Ratings of picture valence, arousal, dominance, and perceived threat as a function of Face Category
(loved vs. unknown) and Cue (threat vs. safety). Note, threat ratings are merged across blocks.

egory, F(1,43)=0.29, p=0.60, r]pz =0.01, indicates that loved and unknown faces served equally well as threat and
safety cues during the instantiation block.

In the reversal block, SCRs did not vary over Time, F(11,473)=1.32, p=0.27, 1,>=0.03, Cue F(1,43) =2.66,
p=0.11, npz =0.06, Contingency F(1,43)=0.49, p=0.49, npz =0.01, or for Face Category F(1,43)=0.27, p=0.61,
n,>=0.01. Importantly, however, a significant interaction Cue x Contingency emerged, F(1,43) =4.57, p=0.038,
sz =0.096. Planned comparisons confirmed that reversed threat cues (previously safe) resulted in increased SCRs
compared to the reversed safety condition (previously threatening), p=0.02, and reversed elicited lower responses
compared to maintained safety cues, p=0.015. Moreover, the instructed threat effects tended to vary across time,
Cue x Time F(11,473)=2.85, p<0.079, n,”>=0.06 (Fig. 2), and a marginal interaction Face Category x Cue x Con-
tingency was observed, Fs(1,43) =3.99, p=0.052, n,>=0.09. Follow-up analyses indicate that SCRs were more
pronounced to unknown faces that were newly learned as cues for threat relative to safety, p=0.004. This was
not observed for unknown faces which maintained cueing threat/safety, p=0.213, and no differences emerged
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Startle SCR HR Zygomaticus Corrugator
Block Category | Contingency M SO |95%ClI |M SD | 95%Cl | M SD | 95%Cl | M SD  |95%CI | M SD | 95% CI
Safety-Safety | 50.79 | 3.72 5[;41?53? ©loo1 | 005 ([)TO(;‘]OO’ —024 |214 ([):(?4%9]’ 187 |5.09 g%‘i’ —021 |057 [—70(.)61?)
" Threat-Threat | 53.61 | 635 [55515?3 0.06 |0.14 ([)(.)i(())ﬁ) ~091 |2.50 [:o%ii?’ 263|677 4[1(?&67(])’ ~0.10 |0.52 ([)_’0%]25’
. Safety-Threat | 5077 | 521 2‘5%169]’ 0 0.06 ([).’0%]0 Ll 043 |184 [:o%i%(])’ 182|429 goff] " | -024 |0.68 [7_0(.)6‘;‘]1’
" Threat-Safety |55  |5.07 Eg;i?’ 003|009 ([)(_’(')%(])’ ~132 |200 [_‘01591‘]*’ 155|341 g();’ﬁ ~0.10 |052 ([)"005']26’
* Safety-Safety | 5025 |4.80 é‘i87719] 0 0.07 ([)._0%]02’ ~049 | 182 ([).—016.]05 > 1005 | 103 ([;306']25’ 026 |038 ([)‘?517‘]*’
_— Threat-Threat | 548 | 6.12 g?é%‘}" 004|011 ([)%‘;‘])’ ~091 |222 [_’0263(]” —012 |123 ([)TZ(;‘]‘”‘ 044|057 ([)%21?
Safety-Threat | 50.98 |4.84 g‘fg’ 001 [0.05 ([)TO(;']OO’ ~033 |1.90 [:0(3961], ~026 |093 ([;0%]5 4022|033 ([)?5122]’
Threat-Safety  |5531 | 698 |13 413?’ 003 [0.09 ([)?6%(])’ ~135 |203 [:0293?’ 007|055 ([)(.)i%ﬁ) 0.035 | 045 ([)'3292]’
Safety-Safety  |462 | 3.36 4[14;5213? ~001 [0.08 ([)70%]03 *|-0a1 |20 E_o?éz? " lo76  [3.07 E_‘;;']l 6 |_0.04 |103 ([)_‘2‘;']3 >
" Threat-Threat |48.75 |4.65 2%7136? 0 0.05 ([)_‘0%]02’ ~076 |218 [_‘01')‘; " loso  |272 [1(_);;?’ 008|070 ([)'"3%]12’
Safety-Threat | 48.06 |4.57 z[ééfs? [-0.01 | 0.07 ([)._001']04’ ~024 |2.19 E‘&fﬁ’ 110|427 [2f3%']1 & loo1 |00 [072(;.]20,
. Threat-Safety | 4697 |3.58 L‘;%g’ [-0.01 | 0.10 ([).70%]04) ~043 |211 [_’0301?’ 143|488 gjg%]os, 010 |082 ([);%]14’
Safety-Safety 456 | 3.06 i‘é‘_‘;?’ [-0.00 | 0.05 ([)_’0%]02’ ~0.04 |2.14 ([)_’6%]7 % 1 005 |092 ([)fz(;']?’ > 1024 |05 g.)é}ﬁ’
- Threat-Threat |47.22 |3.98 ﬁi‘&%’ [-0.02 [0.08 ([;O%]O“’ -0.33 |2.17 [:02(33’ 0.01 1.10 ([;3(31']3 2 1034|040 ([)(.)4.1262]>
e Safety-Threat  [49.11 |5.06 [5?)7655? [-0.04 | 0.07 [:0(_)(')%6]’ -0.05 |[1.81 E_o(?é%l]’ -028 |[121 ([)_"0%]65 > 1033 ]0.50 ([)%;?’
Threat-Safety | 4658 |3.33 L‘fé%?’ 002 |0.10 ([)fo%]m’ ~028 |2.16 ([{3%]95’ ~0.16 |077 ([)._o(;'fg’ 032|037 ([&23%‘

Table 2. Defensive reactions as a function of Block (instantiation vs. reversal), Face Category (loved
vs. unknown) and Instruction (threat vs. safety) and Contingency (maintained vs. reversed). The actual
instruction (threat or safety) for each block is written bold.

for loved faces, all ps>0.663. While no further two- or three-way interaction approached significance, Fs <1.23,
p>0.30, n,2<0.03, however, the overall four-way interaction Cue x Contingency x Face Category x Time was
significant, F(11,473) =3.82, p<0.023, 1,>=0.08, indicating that instructed threat and reversal effects evolved
over time specifically for unknown face pictures (Fig. 3B).

Phasic heart rate changes. In the instantiation block, heart rate decreased over Time, F(11,462)=10.54,
P<0.001, n,>=0.20, and for threat compared to safety cues, Cue F(1,42)=10.03, p=0.003, n,>=0.19. No main
effects of Face Category or Contingency were observed, Cue F(1,42)=0.04 and 1.13, p=0.84 and 0.30, qu <0.01
and =0.03. Importantly, an interaction Cue x Time, F(11,462) =10.96, p <0.001, npz =0.21, indicates that viewing
safety cues provoked a biphasic pattern of heart rate changes (deceleration-acceleration, see Fig. 2D, Table 2).
In contrast, threat cues were associated with a sustained deceleration, starting at 2.5 s after picture onset, and
lasting for the entire presentation period, ps <0.009. Neither the interaction Cue x Face Category, F(1,42) =0.03,
p=0.86,1,><0.01, nor any other higher-order interaction approached significance, Fs<1.07, ps>0.31, 1, <0.03.

In the reversal block, phasic heart rate showed a decrease over Time, F(11,462)=6.12, p=0.002, r]pz =0.13, and
a marginal main effect Cue, F(1,42) =2.92, p=0.095, npz =0.07, which indicates more deceleration for threat com-
pared to safety cues. No significant differences were observed for Face Category and Contingency, Fs(1,42) =0.71
and 0.08, ps=0.404 and 0.78, n,*=0.01 and <0.01. The only significant interaction effect during the reversal
block emerged for Cue x Time, F(11,462) = 5.06, p=0.002, n,>=0.11, indicating that threat compared to safety
cues elicited a deceleration, irrespective of whether they were maintained or reversed, loved or unknown faces.
These threat effects started at 4 s after picture onset and were significant for the remaining presentation period
(all ps<0.047). No further main or interaction effect reached significance, Fs <2.92, p>0.10, 11,><0.07.

Zygomaticus EMG. Overall, the zygomaticus EMG activity increased over Time, F(11,484)=6.03, p=0.01,
n,>=0.12, and was significantly enhanced when loved faces were viewed compared to unknown faces during the
instantiation block, Face Category F(1,44) =8.90, p=0.005, r]p2 =0.17 (see Fig. 2E, Table 2). No main effects were
observed for Cue or Contingency, Fs(1,44) =0.74 and 1.34, ps=0.40 and 0.25, n,>=0.02 and 0.03. A significant
interaction Face Categoryx Time was found, F(11,484)=8.32, p=0.003, qPZ:O.16, indicating enhanced zygo-
maticus activity for loved compared to unknown faces starting from 1 s after picture onset to the end of pres-
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entation, all ps<0.01. Neither Cue x Time, F(11,484)=2.19, p=0.10, npz =0.05, Cue x Category, F(1,44)=0.78,
p=0.38, n,”=0.02, nor any other interaction reached significance during the instantiation block, Fs<2.28,
ps>0.14, 1,7 <0.05.

In the reversal block, participants tended to smile more when they saw a loved compared to an unknown faces,
Face Category F(1,44) =4.05, p=0.05, n,>=0.08. No other main effect reached significance, Time F(11,484) =3.06,
p=0.08, qu =0.07, Cue F(1,44)=1.80, p=0.19, npz =0.04, Contingency F(1,44)=0.41, p=0.53, r]pz =0.01. The
interaction Face Category x Time and Face Category x Contingency also failed to reach significance, Fs=3.33
and 3.63, ps=0.069 and 0.063, n,”=0.07 and 0.08. No other main or interaction effects were found, Fs<0.71,
ps>0.52,1,2<0.02.

Corrugator EMG. In the instantiation block, enhanced corrugator activity was observed for threat rela-
tive to safety cues, Cue F(1,44)=10.68, p=0.002, n,>=0.20, and unknown compared to loved faces, Face Cat-
egory F(1,44)=33.89, p<0.001, n,>=0.44 (see Table 2). Although the main effect Time missed significance,
F(11,484)=2.92, p=0.06, r]p2 =0.06, threat effects evolved over time, Cuex Time F(11,484)=6.26, p=0.003,
n,>=0.12, with threat enhanced activity after 1.5 s following picture onset, all ps<0.014. Moreover, the interac-
tion Face Category x Time was significant, F(11,484) =28.12, p <0.001, n,>=0.39, indicating enhanced activity
for unknown compared to loved faces after 1 s of picture presentation until 6 s, all ps<0.001. The interaction
Cue x Face Category x Time was not significant, F(11,484) =1.83, p=0.16, n,>=0.04.

Similarly, during the reversal block, more activity was found for threat relative to safety cues, F(1,44) =5.46,
p=0.024, r]P2 =0.11, and unknown faces compared to loved faces, Face Category F(1,44)=6.92, p=0.012,
n,>=0.14. Moreover, corrugator activity varied as a function of Time, F(11,484)=5.91, p=0.004, n,>=0.12, and
Face Category x Time, F(11,484) =8.37, p=0.003, ,>=0.16, showing enhanced activity toward unknown faces
starting from 1.5 to 6 s, all ps <0.039. Corrugator activity showed no more significant main or interaction effect,
Fs<0.85, ps>0.362, 1,7 <0.02.

Discussion

The present study examined whether pictures of significant others—the romantic partner, parents, or best
friends—are more resistant to becoming threat cues than pictures of unknown people?. We further predicted that
unknown faces would more readily acquire aversive qualities when threat-associations were reversed. A broad
set of psychophysiological measures showed pronounced defensive responding towards face identities, which
served as instructed threat relative to safety cues. This differential response pattern emerged for measures of the
somatic nervous system (threat-potentiated startle reflex and corrugator EMG), the autonomous nervous system
(enhanced SCRs and heart rate deceleration), as well as for self-report (threat and arousal ratings). Interestingly,
the zygomaticus muscle was the only measure insensitive to threat instructions. Participants smiled more when
viewing their loved ones, regardless of whether they cued threat or safety. Importantly, for the instantiation of
threat-associations, no interaction effects were observed between face category and threat/safety instructions for
none of the dependent variables. Thus, pictures of loved people became threat cues as easily as it was observed
for pictures of unknown people. Regarding reversal learning, however, some indications suggest that changing
safety to threat worked better with unknown faces. Taken together, no evidence was found that pictures of loved
familiar faces were resistant against becoming threat cues, but unknown faces may be more easily learned as
new threat cues.

Learning about potential threats by means of social communication is highly beneficial, because an individual
does not need to undergo aversive experiences him or herself?>*. This notion has received much support by
research showing that the mere verbal instruction about the occurrence of threats is sufficient to provoke a pro-
nounced psychophysiological pattern of defensive responding®**!¢. The present study replicates these findings
within the domain of face and person perception. When viewing face identities that were associated with shock
threat (relative to safety), participants were more aroused (enhanced SCRs and arousal rating), oriented towards
the threat cue (heart rate deceleration), and defensive reflex activity was potentiated (startle reflex). Moreover,
participants tended to frown more towards threat relative to safe identities (enhanced activity of the corrugator
muscle). Thus, the mere verbal statement that a person might be dangerous primed defensive psychophysiological
responding when viewing these individuals.

Knowledge about other people, however, is malleable and can be flexibly updated based on new information.
Verbal instructions are particularly effective in changing affective associations*’~*. For instance, Costa et al.”’
showed that neutral stimuli associated with threat-of-shock or safety can be reversed from cueing threat to safety
and vice versa. Similarly, verbal threat instantiation and reversal instructions can readily override the implicit
affective meaning of emotional facial expressions (e.g. a smile may also signal threat?®**). Importantly, however,
reversal learning implicates the workings of (at least) two concurrent processes: the inhibition of previously
learned threat-associations, while a new threat-association is established®. As indicated by self-reported threat
(and, on an exploratory basis, for startle reflex and SCR%), the present data provide some indication for the
notion that new threat-associations are more readily acquired when threat is linked to unknown people, while
concurrently loved people become new safety cues.

While encounters with the ‘unknown’ may be more likely to involve a risk of danger, on the contrary, social
relationships with romantic partners and good friends are important health factors>'>*2. Here, recent condi-
tioning research suggested significant others as prepared safety cues'*?!. For instance, using a fear conditioning
procedure with pictures of supportive others, unknown people, and neutral objects as conditioned stimuli (100%
reinforcement schedule), the authors reported no differential fear conditioning, as measured by skin conductance
responses, towards social-support figures serving as CS+ compared to CS—%. The present data do not support
this notion. During instantiation, we did not find differential threat/safety learning towards pictures of loved
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compared to unknown face pictures, for none of the psychophysiological response measures (ratings, startle
EMG, SCR, heart rate, and facial EMG). Moreover, for reversal learning, threat rating and SCR data point to the
notion that unknown people may act as prepared fear stimuli relative to loved ones. While several methodological
differences may explain the divergent findings (e.g., dependent variables, number of trials, selection of stimuli***),
several theoretical aspects are of particular interest to further our understanding of the social factors involved
in associative threat and safety learning.

First, we employed instructional learning, which establishes an association between a particular face identity
and UCS by means of verbal instructions but not own experiences. Thus, threat learning occurs with a 0% rein-
forcement rate and, accordingly, the absence of shocks during the experiment does not necessarily lead to quick
extinction learning, as it usually occurs in classical conditioning designs (depending on reinforcement schedule).
Such instructed threat associations have been shown to persist within and even across repeated test days without
experiencing the aversive events®"*, reflecting the workings of worries and apprehensions in anticipatory anxiety.
On the other side, instructions can critically shape the impact of previous learning history of allegedly threaten-
ing or safe persons®. For instance, instructed information has been shown to change feedback-driven aversive
learning and still little is known about the combined effects of different learning pathways and prior knowledge
(e.g.**>). Focusing on the neurobiological mechanisms involved in the social acquisition, maintenance and
extinction of rather cognitive aspects of fear and anxiety may be particular informative.

Second, the use of pictures displaying loved people may interfere less with threat learning compared to
pictures of supportive-others. In the present study, we selected participants solely based on their reported high
relationship quality but not on perceived social support. Thus, even attachment figures with whom perceived
relationship quality is very high, do not necessarily imply helpful support in a threatening situation. Here, the
physical presence or absence as well as the type of prosocial or helping behavior might be a more relevant fac-
tor than the person offering support!>!>*5. For instance, holding hands with a loved one reduces reported
unpleasantness during the anticipation of shocks relative to no hand holding (in happily married women¢) or
holding hands with a stranger®®. Moreover, this social regulatory process was associated with inhibition of a
threat-related neural network (involving lateral prefrontal, cingulate, as well as posterior parietal cortices), which
has been associated with salience detection, vigilance, and emotion regulation (e.g.*®*). Following on from this,
the direct comparison of more or less familiar or supportive individuals (e.g., romantic partners, parents, siblings,
friends, or fugitive acquaintances) may also be of interest for examining different attachment types (e.g., stable
vs. unstable relationships; filial vs. romantic love®) and their relevance as social buffers in the face of immediate
and/or prolonged periods of threat and stress (e.g.,**¢").

Another noteworthy aspect regards the lack of predicted main effects of face category on defensive respond-
ing. In a previous study, we observed that viewing loved faces inhibited the defensive startle reflex®. However, this
was not replicated in the present study. Whereas divergent findings may relate to different tasks (passive viewing
vs. instructed threat) and/or reduced trial numbers, other alternative hypotheses are of interest. Specifically,
an over-generalization of threat might have occurred across face categories®, and/or overwritten the implicit
affective picture qualities through verbal instructions?®***. This also relates to clinical phenomena, which are
observable, for example, in the emergence and treatment of phobias, panic, or trauma-related disorders. While
the physical presence of loved ones may help patients to undergo exposure sessions, however, this accompanied
exposure could also reinforce fears ‘of not making it alone’ Thus, the present findings do not support the notion
that loved ones may act as implicit safety cues, nor evolutionary prepared safety signals.

In summary, this study shows that pictures of loved familiar people readily acquire threatening qualities. The
mere verbal instruction about shock threat was sufficient to provoke a pronounced pattern of defensive physi-
ological responding, even when loved ones served as instructed threat cues. Moreover, language information
was highly effective to reverse such threat/safety association. Thus, the present data do not support the notion
that loved people are per se safe or resistant to becoming threat cues. In contrast, as we know from the clinical
domain (e.g., familial abuse and neglect®), specifically loved ones can become a source of harm and grief. From a
developmental perspective, future research could focus on the accelerating and buffering aspects of interpersonal
relationships in modulating (mal-) adaptive social threat and safety learning to cope with adverse life events,
sensitive transition periods, and challenging environmental conditions (e.g.>%%).
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