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Abstract
The genetic basis for the emergence of creativity in modern humans remains a mystery despite sequencing the genomes of
chimpanzees and Neanderthals, our closest hominid relatives. Data-driven methods allowed us to uncover networks of genes
distinguishing the three major systems of modern human personality and adaptability: emotional reactivity, self-control, and
self-awareness. Now we have identified which of these genes are present in chimpanzees and Neanderthals. We replicated
our findings in separate analyses of three high-coverage genomes of Neanderthals. We found that Neanderthals had nearly
the same genes for emotional reactivity as chimpanzees, and they were intermediate between modern humans and
chimpanzees in their numbers of genes for both self-control and self-awareness. 95% of the 267 genes we found only in
modern humans were not protein-coding, including many long-non-coding RNAs in the self-awareness network. These
genes may have arisen by positive selection for the characteristics of human well-being and behavioral modernity, including
creativity, prosocial behavior, and healthy longevity. The genes that cluster in association with those found only in modern
humans are over-expressed in brain regions involved in human self-awareness and creativity, including late-myelinating and
phylogenetically recent regions of neocortex for autobiographical memory in frontal, parietal, and temporal regions, as well
as related components of cortico-thalamo-ponto-cerebellar-cortical and cortico-striato-cortical loops. We conclude that
modern humans have more than 200 unique non-protein-coding genes regulating co-expression of many more protein-
coding genes in coordinated networks that underlie their capacities for self-awareness, creativity, prosocial behavior, and
healthy longevity, which are not found in chimpanzees or Neanderthals.

Introduction

One of the most fundamental questions about human nature
is what sparked the explosive emergence of creativity in
modern humans before their widespread dispersal from
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Africa and the subsequent extinction of Neanderthals [1–4].
Major controversies persist about the basis for human crea-
tivity in art and science, as well as about the differences in
cognition, language, and personality that distinguish modern
humans from extinct hominids [5–8]. These controversies
occur because the archeological and fossil records are
incomplete and subject to ambiguous interpretation [9, 10].

What distinguishes behaviorally modern
humans from other hominids?

Anthropologists distinguish behaviorally modern Homo
sapiens (Sapiens) from other hominids by virtue of Sapiens’
enhanced cognitive, social, and physical adaptability.
Behaviorally modern Sapiens demonstrate remarkable
creativity compared to other hominids: that is, they show
signs of innovation, flexibility, depth of planning, and
related cognitive abilities for symbolism and self-awareness
that enable spontaneous generation of narrative art and
language [2, 5, 11–13]. Early behaviorally modern Sapiens
were also more prosocial in their behaviors than archaic
hominids: they maintained larger social groups, established
reciprocal social networks for remote trade, and regularly
cooperated with one another in groups composed partially
or completely of non-kin, as well as providing altruistic
support and cooperation with non-kin who were raising
children or disabled [11, 14, 15]. Behaviorally modern
Sapiens are also distinguished by their healthy longevity, as
evidenced by their resilience to cold and other climatic
extremes [16], lower energy requirements and reduced
mortality from injury and disease [17–19], and a prolonged
post-reproductive lifespan that facilitates cooperative
breeding [11, 20, 21], which have all enhanced health and
viability in diverse, harsh, and unpredictable habitats
throughout the world.

The lineages of Sapiens and Homo neanderthalensis
(Neanderthals) are thought to have diverged from a com-
mon ancestor during the Middle Pleistocene before 500
thousand years ago (kya), at a time when the lineage of
Sapiens was isolated in Africa and that of Neanderthals was
confined to Europe and western Asia [22, 23]. Precursor
forms to Neanderthals are recognized at least by 430 kya in
Europe [24], but the behaviors and genomes of Nean-
derthals themselves are best known from artifacts and fos-
sils dating from 130 to 40 kya in Eurasia [Supplementary
Information]. In contrast, anatomically modern Sapiens
emerged in eastern Africa [22] by 200 to 160 kya [2, 25]
following a period from 320 to 200 kya marked by unpre-
dictable climactic fluctuations [15, 25, 26] that were
superimposed on a long-term pattern of progressive aridity
[27]. Under these challenging ecological conditions, pre-
cursors of behaviorally modern Sapiens began to maintain

larger social groups and reciprocal social alliances with
non-kin (e.g., remote trade networks), express themselves
symbolically (e.g., art, ornamentation), collect remote
resources (e.g., pigments, obsidian, and other special
stones) for later use, flexibly use expanded dietary options
(e.g., fishing and collecting shellfish) in times of unpre-
dictable resource availability, and began to accumulate
cultural knowledge and standardized technologies that
enhanced their adaptability and well-being [15, 25, 26, 28].
Recent findings, however, suggest that behaviorally modern
Sapiens, with a distinctively more imaginative and flexible
set of abilities that had not been observed in any hominids
there or elsewhere, emerged in Africa about 100 kya and
spread throughout the continent thereafter [29].

The ecological and economic pressure on the smaller
bands of mobile and muscular hunters in the lineage of the
Neanderthals in Europe were different from those on the
lineage of Sapiens in East Africa [30]. Neanderthals and their
European ancestors were less resilient to climatic extremes,
particularly cold, and their hunting of large land animals
demanded high daily energy expenditures [31]. Nevertheless,
Neanderthals were able to function successfully before they
had to compete with Sapiens. Neanderthals were able to
conserve their reliance on hunting large land animals by
moving out of inhospitable areas without the need to develop
greater social connectedness or more efficient and diverse
technologies and resources [17, 22, 28, 31].

The innovative practices of Sapiens are best documented
after 50 kya when they flourished to a stage in which the
creative imagination of fully modern humans was unmis-
takably displayed [2, 5, 32]. The flourishing of behavioral
modernity in the late Pleistocene is likely to have been
facilitated by incremental cultural and neurobiological pro-
cesses by which complex behaviors like narrative figural art
and language emerged by exaptation and behavioral
recruitment [2]. In any case, the basic features of behavioral
modernity must have been already present when Sapiens
spread out of Africa between 65 and 55 kya, while the
African climate became drier and colder [27, 33]. The
inventive, sociable, and resilient Sapiens were able to adapt
well to unpredictable and diverse conditions as they migrated
out of Africa and spread throughout the world, replacing all
other hominids by 40 kya and producing cultures that
flourished by continuing to expand in knowledge, art, sci-
ence, technology, and population density to the present day.

What is creativity? How is it measured?

The most distinctive and prominent feature of behavioral
modernity identified by paleoanthropologists and arche-
ologists is what psychologists have described as creativity,
particularly the achievements and personality traits of
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highly creative people. Creativity can be succinctly defined
as the use of imagination or original ideas to achieve valued
goals [34, 35], and is a multifaceted phenomenon that can
be assessed in terms of particular aspects of intelligence
and/or particular aspects of personality [36–38]. The psy-
chometric tests of the creative aspects of intelligence were
developed by Guilford and Torrance to measure aspects of
divergent thinking in verbal and pictorial tasks. Divergent
thinking is an innovative way of solving problems by
exploring many possible solutions, making spontaneous
intuitive connections among what are conventionally
regarded as disparate phenomena, while tolerating some
ambiguity [39]. Divergent thinking typically occurs in
states of restful and playful self-aware evaluation of inter-
nal thoughts and images, such as mind-wandering in the
default mode, flow, free association, day-dreaming, or
contemplation [37, 40–42], which depends on activation of
the medial prefrontal cortex for evaluation of internal sti-
muli as a core component of the self-awareness network
[43, 44]. In contrast, convergent thinking follows a logical
sequence of inferences to arrive at a single solution
with certainty; it depends on the lateral prefrontal and
parietal cortices, which are core components of the
executive self-control network that supports purposeful use
of symbols and intentional inhibition of externally trig-
gered impulses [19, 45, 46].

The features used to measure divergent thinking include
originality (inventive and imaginative thoughts), flexibility
(ability to move from one conceptual field to another),
fluency (free-flow of many relevant ideas and responses),
elaboration (many vivid, specific details), a high degree of
abstraction, and persistence despite uncertainty [39, 47, 48].
Divergent thinking tests developed by Guilford and Tor-
rance are the most widely used tests of creative intellectual
functioning because they are strongly predictive of creative
achievement and problem-solving ability in everyday life
[38, 47, 48].

How is creativity related to other aspects of
behavioral modernity?

In addition to its cognitive properties, divergent thinking
involves relaxed states of intuitive awareness that are also
characterized by physical spontaneity, cheerful affect,
playfulness, and sociability [40, 49, 50], which can be
quantified in terms of personality characteristics. Person-
ality refers to the way an individual learns to shape and
adapt to an ever-changing internal and external environ-
ment [51].

Like divergent thinking, creative personality features are
multi-faceted, including character traits (i.e., styles of rational
self-government, with executive functions of self-directedness,

legislative functions of cooperativeness, and judicial functions
of self-transcendence) and temperament traits (i.e., emotional
drives of curiosity about what is novel, willingness to take
risks, willingness to work for social recognition, and perse-
verance for the sake of achievement) [36, 52, 53]. The two
domains of temperament and character make it clear that a
person’s potential for creativity cannot develop without both
the wisdom to recognize what is valuable and the plasticity to
adapt accordingly. The most widely used psychometric test for
assessing both domains of the creative personality is the
Temperament and Character Inventory (TCI) [51, 52, 54].
Tests of creative divergent thinking in verbal and pictorial
tasks, creative personality traits as measured by the TCI, and
direct assessments of lifetime creative achievements, are each
highly reliable and validated by their strong correlations with
one another even when general intelligence and demographic
variables are controlled [47, 48]. Empirically, the TCI creative
personality profile also measures human health in general,
including physical, mental, and social well-being [19, 53, 55].
Put another way, the three domains of features of behavioral
modernity identified by anthropologists are in fact inter-
dependent aspects of modern human health and well-being.
As a result, the TCI provides valid quantitative phenotypic
measures with which to investigate the cognitive, emotional,
and social functions, brain connectivity, and genetics under-
lying creativity, prosociality, and other aspects of well-being
in modern humans in ways that are robustly replicable
[19, 56].

Cognitive scientists have proposed that the creative
ability of Sapiens to see the world and other people in new
ways depends on several interrelated brain processes of
learning and memory. Sapiens’ creativity is thought to
depend on human brain functions for prospective learning
(i.e., the encoding, storing, and retrieval of intended
actions), constructive learning (i.e., recollection of the past
and imagining the future), and the related capacities for
theory of mind (i.e., the ability to attribute mental states to
ourselves and others to facilitate empathic social interac-
tion), the default mode (i.e., awareness of internal milieu
without focus on external tasks), autobiographical memory
(i.e., vivid recollection of past experiences with contextual
awareness of when and where facts were learned), and
story-telling (i.e., meaningful composition of narrative fig-
ural art and language), which are all aspects of self-
awareness and share largely overlapping brain circuitry
[57–59]. In turn, these processes underlying divergent
thinking operate cooperatively with other processes under-
lying convergent thinking, which have complementary
functions for problem-solving in successful daily living
[39, 46]. Just as creative personality is multifaceted, its
related brain functions are also multifaceted aspects of
complex neurocognitive systems of adaptability that are
measured by the TCI [19].

Evolution of genetic networks for human creativity



How do complex adaptive abilities develop
and evolve?

Complex adaptive traits become organized by developmental
[60] and evolutionary [61–63] processes characterized by
multi-finality (i.e., the same antecedents can have different
outcomes, as in genotypic pleiotropy) and equi-finality
(i.e., different antecedents can have the same outcome, as in
heterogeneity from redundant genotypic paths), as we have
investigated in detail for the genotypic–phenotypic archi-
tecture of the TCI [19, 64, 65]. These properties of complex
systems are the basis for the important role of exaptation,
that is when already occurring characters are co-opted to
enable new adaptive functions [66]. Such plasticity permits
the creativity to make new things out of old parts, or, more
specifically, to produce complex adaptive phenotypes and
genotypes via nonlinear dynamical interactions among con-
stituent features to select for advantageous novel functions
[23]. The development of such complex adaptive functions
are likely to be positively selected in evolution when they are
beneficial for survival and reproduction, as has been sug-
gested for the evolution of creativity in Sapiens in response
to unpredictable climatic fluctuations and resource variability
that threatened survival [26], or when large and cooperative
social groups and trade networks began to benefit from
enhanced communication by language to facilitate commu-
nication [2, 7, 67].

As a result of the incompleteness of the archeological
record, there has been substantial controversy about whe-
ther the features of behavioral modernity emerged as a full
set all at once during the late Pleistocene [2, 5], or if some
features emerged individually and/or successively and then
became organized in progressive stages in Africa in
response to increased environmental pressure after the
common ancestor of Sapiens and Neanderthals had dis-
persed to Europe before 500 kya [15, 25, 68]. The most
recent information suggests the adoption of more complex
behaviors after 400 kya and the emergence of the most
distinctive features of behavioral modernity after 100 kya
[25, 26], which suggests the role of many genes in coor-
dinated networks, as expected for such complex adaptive
traits. The complex behaviors observed before and after
100 kya may be distinguished best by the difference
between convergent and divergent thinking because the best
documentation of the modern creative imagination is nar-
rative figural art [2, 5, 32], which requires both symbolism
and self-awareness. Evidence for such creative divergent
thinking first appears after 50 kya, and the creative
achievements of Sapiens continue to accumulate to this
day [11].

In any case, the characteristics of behavioral modernity
are certainly complex adaptive traits that cannot be under-
stood by focusing on one brain function or one gene at a

time. Unraveling the complexities of behavioral modernity
presents many daunting challenges.

Challenges of understanding the evolution
of human creativity

Comparisons of Sapiens to other living anthropoid pri-
mates provide circumstantial evidence that changes in
brain circuitry and related functions for symbolism and/or
self-awareness account for the creative characteristics that
distinguish behaviorally modern humans from other
hominids [12, 45, 57]. However, cranial fossils provide
only limited information about the brains of Neanderthals
and other extinct hominids [12, 45, 69–71]. Archeological
evidence indicates that Neanderthal cultures and technol-
ogies showed little of the spirit of innovation that animated
their counterparts among the Sapiens who replaced them in
Europe and western Asia beginning at some time over 40
thousand years ago [9]. Neanderthals had sophisticated
executive skills and did produce the occasional expression
that might be interpreted as symbolic, but all the artifacts
suggesting this is dated after 130 kya [17] and mostly
around 40 kya after Sapiens had begun to migrate out of
Africa [72–75]. It is clear that the creative use of symbols
by Neanderthals was not a routine part of their lives and
cultures, and that, although undoubtedly complex, the
relationship of the Neanderthals to the environment around
them—and presumably also to each other—was pro-
foundly different from the one that Sapiens exhibits
today [5, 6, 9].

On the other hand, the Neanderthals were very close
relatives of Sapiens, and undoubtedly shared some of their
behavioral, emotional, and cognitive functions [1–3, 12, 45].
As expressed informally by the paleogeneticist Svante
Pääbo, “I want to know what changed in fully modern
humans, compared with Neanderthals, that made a differ-
ence. What made it possible for us to build up these enor-
mous societies and spread around the globe, and develop the
technology that I think no one can doubt is unique to
humans? There has to be a genetic basis for that, and it is
hiding somewhere in these lists [of nucleotide base pairs of
human genomes] [76].”

Pääbo acknowledges that progress in answering this
question has been limited for two major reasons: first, a
large number of changes in the human genome after its
divergence from the common ancestor of humans and
chimpanzees 7–10 million years ago (mya), and second, the
lack of knowledge of the functional consequences of these
changes [1]. Progress has also been limited by a lack of
knowledge of the complex genotypic–phenotypic archi-
tecture of traits related to human creativity and behavioral
modernity: the genes that influence complex aspects of
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human personality, such as creativity, symbolism, prosoci-
ality, and language, are likely to involve many genes acting
in coordinated networks, rather than independently [77]. In
order to circumvent these problems, we began by char-
acterizing the complex genotypic–phenotypic relationships
that describe the architecture of modern human personality
using the TCI [19, 64, 65].

Genotypic–phenotypic relations underlying
behavioral modernity

We evaluated modern human personality using the TCI
because it provides highly reliable and empirically validated
measures of creativity and other aspects of behavioral
modernity that are heritable and neurobiologically groun-
ded, including physical, emotional, social, cognitive, and
spiritual aspects of well-being [19, 42, 47, 56, 78, 79] as
well as, or better than, other available tests [54]. The TCI
accounts for two domains of personality based on distinct
forms of learning and memory: temperament (i.e., the
unconscious component of personality—associatively con-
ditioned habits and emotional reactivity) and character (i.e.,
the self-regulatory components of personality—what people
make of themselves intentionally and/or creatively) [51]. It
was developed as a comprehensive measure of human
personality, and captures the characteristics of behavioral
modernity, including creativity and prosocial behavior, as
reviewed in the preceding section and elsewhere
[19, 42, 47, 48, 54, 56, 78, 79]. The TCI indices of crea-
tivity and well-being also predict subjective and objective
measures of physical health, including healthy longevity
[19, 55, 80].

We used data-driven methods to conduct genome-wide
association studies of the TCI in three different samples
with different environments and cultures (Finns, Germans,
and Koreans). In this way, we were able to deconstruct the
complex genotypic–phenotypic networks and environ-
mental interactions underlying modern human temperament
and character [64, 65]. These methods properly account for
the properties of complex adaptive systems, including
pleiotropy and genetic heterogeneity [81] (also see
“Methods”).

More specifically, we proceeded in steps to characterize
phenotypic-genotypic relationships at multiple levels of
organization. First, in an epidemiologically representative
sample of 2149 Finns, we identified sets of single-
nucleotide polymorphisms (SNPs) that naturally cluster
within particular individuals regardless of phenotype. Sec-
ond, we uncovered five clusters of people with distinct
configurations of the 13 facets of the self-regulatory domain
of human personality (i.e., the character dimensions of Self-
directedness, Cooperativeness, and Self-Transcendence)

regardless of genotype. Third, we found 42 SNP sets that
were significantly associated with the character profiles and
identified 727 gene loci. We replicated 95% of the 42 SNP
sets in a sample of 902 healthy Germans and a sample of
1092 Koreans, as well as their association with the character
clusters [64]. The character-associated genotypic sets were
found to modulate specific molecular processes in the brain
for intentional goal-setting, self-reflection, empathy, episo-
dic learning and memory, and healthy longevity.

Remarkably 68% of the 727 genes associated with char-
acter were unique to a single character profile [64]. As a
result, there were multiple groups of genes that led to each
individual character trait. For example, high self-directedness
occurred in different individuals by means of distinct mole-
cular processes of the genotypic networks that depended on
particular configurations of Self-directedness with other
aspects of character traits. That is, the genes for Self-
directedness were different in people with the creative
character profile (i.e., all 3 character dimensions are high so
valued goals are unselfish, prosocial, and altruistic), the
organized profile (Self-directedness and Cooperativeness are
high but Self-transcendence is low, allowing for both per-
sonally and socially responsive action for mutual benefit but
not sacrifice for others), or the resourceful profile (only Self-
directedness is high, leading to self-centered motives).

Next, we repeated this process with the 12 facets of
human emotional drives (i.e., the temperament dimensions
of Novelty Seeking, Harm Avoidance, Reward Depen-
dence, and Persistence) [65]. We uncovered three clusters of
people with distinct temperament profiles regardless of
genotype. One cluster was specified by low Novelty Seek-
ing, high Reward Dependence, and high Persistence, which
we designated as the reliable temperament set, as discussed
in detail elsewhere [56, 82]. The other temperament clusters
were the antisocial cluster and the emotionally hypersensi-
tive cluster. 51 SNP sets were significantly associated with
temperament clusters. The 736 genes that mapped to these
SNP sets were enriched in molecular pathways activated by
associative conditioning in animals, including the ERK,
PI3K, and PKC pathways that are crucial for the modulation
of synaptic plasticity and long-term learning involved in
associative conditioning of emotional reactivity, social
attachment, and persistence. We replicated 90% of the 51
SNP sets for temperament clusters in the healthy German
and Korean samples.

The genes we uncovered for temperament and character
overlapped partially, so we evaluated the organization of the
temperament and character clusters jointly. We uncovered
three phenotypic networks that accounted for the joint
relations of clusters of temperament traits with clusters of
character traits. We designated these joint temperament-
character clusters as the (i) emotional-unreliable network
(i.e., people who were highly emotionally reactive with little
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self-control or creativity), (ii) organized-reliable network
(i.e., people with strong self-control of emotional conflicts
and goals, but little creativity), and (iii) creative-reliable
network (i.e., people who were highly creative, prosocial,
and insightful in appraisal of values and theories) [19]. We
found that these phenotypic networks were nearly disjoint
(i.e., shared few subjects or phenotypic features) (see Sup-
plementary Fig. 1). Each of the three phenotypic networks
was strongly correlated with a different multi-locus geno-
typic network (see Supplementary Figs. S2 and S3).

The functions of the genes that mapped to the genotypic
networks were found to regulate distinct systems of learning
and memory underlying personality: (i) a multi-locus net-
work of 249 genes for regulation of emotional reactivity,
associative conditioning, and social attachments, which we
designated as the “emotional reactivity” network; (ii) a
multi-locus network of 438 genes for regulation of inten-
tional goal-seeking, such as purposeful acquisition of food,
manufacture of tools, cooperative team-work, logical ana-
lysis, and symbolization, which we designated as the “self-
control” network; and (iii) a genotypic network of 574
genes for episodic learning and autobiographic memory of a
person’s life as a narrative with past, present, and future
within which the person can explore alternative perspectives
with intuitive insight and creative imagination, which we
designated as the “self-awareness” network. It is remarkable
that 73% of the 972 genes in these three networks are
unique to a single network. It is rare to find such a strong
separation of clusters specified by such complex sets of
phenotypic and genotypic variables [19].

The genes we identified for temperament and character
accounted for nearly all the heritability of personality
expected from twin studies [64, 65]. The strong relations of
the three temperament-character phenotypic networks to
three major genotypic networks for human adaptability
provided us with valuable tools for evaluating the evolution
of human creativity and other aspects of behavioral mod-
ernity by comparing the genomes of chimpanzees (Pan
troglodytes) and Neanderthals to those of modern humans.

Hypotheses to be tested

We hypothesized that the three nearly disjoint genotypic
networks for human adaptability evolved in successive
steps during the evolution of modern human personality. To
test this hypothesis, we studied the 972 genes identified for
personality in Sapiens, many of which were also found in
the genomes of Neanderthals and chimpanzees. While only
distantly related, these are the two species closest to modern
humans that have well-characterized genomes comparable
to the high-coverage genomes of modern humans [1]. We
hypothesized that the three networks differ from each other

in Sapiens, Neanderthals, and chimpanzees. Specifically, we
hypothesized that (i) chimpanzees would have genes only in
the emotional reactivity network, (ii) both Neanderthals and
Sapiens would share many genes for intentional self-con-
trol, which was already evident in their common human
lineage, and (iii) genes found only in Sapiens would be
most frequent in the network for creative self-awareness, as
previously predicted on the basis of coincident changes in
brain and behavior during hominoid evolution [12, 45].
Once we identified the genes that were unique to modern
humans from these analyses, we evaluated what types of
genes distinguished the three networks. We also evaluated
alternative transmission patterns and environmental condi-
tions that may account for the sudden emergence of crea-
tivity in modern humans. Finally, we examined where the
genes for learning and personality that are unique to modern
humans are expressed in the brain.

Subjects and methods

Modern human subjects

Our sample of Sapiens was the Young Finns Study, an
epidemiological study of 2149 healthy Finnish subjects who
were assessed in 1997, 2001, 2007, and 2012 [83]. All
subjects had thorough standardized genotypic, environ-
mental, and phenotypic assessments, including administra-
tion of the TCI [64, 65].

Personality indicators of behavioral modernity,
creativity, and well-being

The Finnish subjects completed the TCI with 240 self-
reported items using a 5-point Likert scale [84]. The internal
consistency of scales and their re-test reliability were strong:
r > 0.8 for dimensions and >0.65 for individual subscales
between follow-ups, including the 15-year follow-up.
The averages of the scales and subscales scores across
the four assessment occasions were utilized to reduce
measurement error.

All subjects completed the TCI to assess four dimensions
of temperament (Harm Avoidance, Novelty Seeking,
Reward Dependence, and Persistence) and three dimensions
of Character (Self-directedness, Cooperativeness, and Self-
transcendence). Each of these dimensions has multiple
facets (subscales) measuring the expression of that dimen-
sion in different situations. Descriptions of high and low
scorers on each dimension and its subscales are presented in
Supplementary Table S1.

Our prior data-driven analyses of the genotypic–phenotypic
architecture of the TCI uncovered a naturally occurring hier-
archical structure that is important for understanding the
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complex relations of phenotypic indicators of genotypic pre-
dispositions to human behavioral modernity that can be derived
from the TCI, such as creativity, well-being, self-awareness,
and self-control, as we have described in detail elsewhere
[19, 82] and in Supplementary Information. Human personality
can be described at three levels of complexity from (1) indi-
vidual temperament and character dimensions, each composed
of the sum of their subscales, as shown in Supplementary
Table S1, (2) genetically independent multi-trait temperament
profiles or multi-trait character profiles [64, 65], and (3) joint
networks of temperament and character profiles that indicate
integration of multiple learning processes from each of the
three major systems of human learning and adaptability, as
described elsewhere [19] and briefly in the introduction.

We used two indices of health derived from the TCI, an
index of well-being and an index of resilience from ill-
being. We have confirmed the validity of the creative per-
sonality profile in which all three TCI character traits (i.e.,
Self-directedness, Cooperativeness, and Self-Transcen-
dence) are highly developed as an index of well-being in
multiple samples of modern humans in different cultures
[19, 52, 55, 80]. Likewise, ignoring Self-Transcendence, the
sum of Self-directedness and Cooperativeness is an indi-
cator of resilience from ill-being in many cultures
[19, 52, 55, 80]. In our sample of Finns we confirmed the
validity of these two indices with independent measures of
positive affective balance, perceived social support, physi-
cal behaviors (exercise, smoking, diet), and objective
laboratory findings for ideal health as recommended by the
American Heart Association, as described elsewhere [19]
and in Supplementary Table S2.

Gene annotation

The study has been carried out with 972 genes mapped to the
three phenotypic networks: Creative-Reliable, Organized-
Reliable, and Emotional-Unreliable (Supplementary Fig. S1)
[19]. We refer to the corresponding genotypic networks as the
Self-awareness, Self-control, and Emotional Reactivity net-
works, respectively (Supplementary Table S1, and Figs. S2,
S3). The annotations of individual genes were obtained using
the perl API of Ensembl [85] versions 87-92 (Supplementary
Table S3) and classified according to their biotype distin-
guishing between protein-coding genes, non-coding RNA
genes, and pseudogenes (Supplementary Table S4).

Comparative genomics

Chimpanzee orthologs for the 972 genes related to per-
sonality in modern Homo sapiens were obtained by acces-
sing the CHIMP2.1.4 database, which uses the Pan
troglodytes model (7/20/16) built from genome (v.2.1.4)
with gene model files (R.89) from Ensembl using the Perl

API [86]. The orthologous genes for other primates
(Bonobo, Chimpanzee, Gibbon, Gorilla, Human, Macaque,
Marmoset, and Orangutan,) were obtained using program-
matic access to resources in Ensembl [87].

Neanderthal orthologs of the 972 genes related to per-
sonality in Sapiens were identified in annotated data of the
Neanderthal Genome Project [88]. The replicability of these
findings was then evaluated in separate analyses of the high-
coverage genomes of the Altai Neanderthal [88], another
Neanderthal from the Vindija cave [89] (specimen 33.19,
http://cdna.eva.mpg.de/neandertal/Vindija), and a third from
the Chagyrskaya cave [90] (http://cdna.eva.mpg.de/neanderta
l/Chagyrskaya). These analyses enabled us to identify genes
that chimpanzees and/or Neanderthals shared with modern
humans from those that were only found in modern humans
(Supplementary Table S5) and then to compare their char-
acteristics (Supplementary Tables S6 and S7).

General statistical methods

We used the Analysis of Variance (ANOVA) to test the null
hypothesis that the three studied networks are similar in
terms of the genes that compose them within one species and
across species (Sapiens, Chimpanzee, and Neanderthal). To
do so, we utilized both the ANOVA for independent and
correlated samples, one per network (Self-awareness vs Self-
control vs Emotional Reactivity) in each of the species. Then
we applied post-ANOVA comparisons using Tukey’s range
Honestly Significant Differences (HSD) Test to evaluate the
specific differences between pairs of networks (e.g., Creative
vs Organized). We used the ANOVA test as implemented in
Concepts & Applications of Inferential Statistics, Richard
Lowry 1998–2021, http://vassarstats.net/anova1u.html, and
in the rstatix package in R.

For clarity in reporting results, p values reported in
ANOVA and Tukey’s HSD test descriptives were rounded
up to more conservative significance values 0.0001 and
0.01, respectively, which indeed tend to exceed the E-30
and E-10 values, respectively. The ANOVA effect size was
calculated as the f value defined by Cohen [91], where he
proposed the following interpretation of this value: f= 0.1
is a small effect, f= 0.25 is a medium effect, and f= 0.4 is a
large effect. All other parameters used in each measurement
of ANOVA were calculated as usual [91, 92], and full
summaries of all our ANOVAs are provided in Supple-
mentary Information and Supplementary Tables S8–S12.

Genotypic estimation of the behavioral modernity
of Neanderthals

The number of individual genes that Neanderthals shared
with modern humans may not be an adequate indicator of
their impact on creativity and other aspects of modern
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human functioning. We, therefore, evaluated the impact of
genes on the predisposition to modern human well-being as
an indicator of behavioral modernity by estimating their
relative roles in specific SNP sets to take into account the
interactions among coordinated sets of genes that impact well-
being.

In order to extract prototypical samples of humans with
distinctive Neanderthal-like features and distinctive
Sapiens-like features, we first identified the genes found
only in Sapiens and the genes Neanderthals shared with
Sapiens, excluding genes present in chimpanzees (Supple-
mentary Table S3). Then we cross-correlated these genes
with the original SNP sets in which they had been detected
in relation to character [64] and/or temperament [65]
(see Supplementary Information). We selected SNP sets
found in the genotypic networks for self-awareness, self-
control, and emotional reactivity, for which we already had
measured the associated levels of functioning in modern
humans, including two indices (well-being and resilience
from ill-being) [19]. From the measures of well-being that
we had for SNP sets that contained one or more of the genes
that Neanderthals shared with Sapiens, we then estimated
the mean well-being of Neanderthal-like humans by
weighting the well-being of people in those individual SNP
sets by the proportion of genes present in Neanderthals
compared to Sapiens in that SNP set for each of the net-
works. Likewise, we estimated the mean well-being of
prototypical Sapiens-like humans from the measures of
well-being in SNP sets that contained one or more of the
genes found only in modern humans. Finally, we compared
the levels of weighted well-being in SNP sets from the
Neanderthal-like humans to Sapiens-like human prototypes
using ANOVA statistics, including post-ANOVA compar-
isons and effect sizes. Finally, we estimated the relative
genotypic modernity of these prototypes for the two species
from the ratio of their mean levels of well-being.

Horizontal gene transfer (HGT)

In order to determine if genes mapped to the three pheno-
typic networks could have been horizontally acquired, we
calculated their overlap to the regions of HGT identified by
Huang et al. [88] in the human reference genome hg 19 [93].

Derived allele frequency (DAF)

We compared the DAF scores for long-intronic-non-coding
(linc) RNA genes (Supplementary Table S4) found in
Neanderthals with those found only in Sapiens to test for
differential selection (Supplementary Tables S6 and S7).
DAF scores [94] were calculated for lincRNA genes,
including their exons and promoters, using the AnnLoc tool
(http://annolnc.cbi.pku.edu.cn). DAF scores of 0.1 or less

are associated with reduced diversity indicative of purifying
selection (i.e., negative selection against deleterious alleles),
whereas DAF scores >0.1 indicate increased diversity, as
may occur with nonfunctional alleles, positive selection of
advantageous alleles, or addition of new advantageous
alleles in genes by HGT [95, 96].

Gene co-expression in brain

To evaluate the functions of the genes we found only in
Sapiens further, we used Process Genes List to analyze lists
of genes that mapped to particular SNP sets with at least one
gene found only in Sapiens [97]. This machine learning
method uses the Allen Brain Atlas to calculate a normalized
average mRNA expression level in each brain region for
lists of each gene set. Brain regions in which those genes
were significantly co-expressed were identified and dis-
played in brain images.

Further details about all our methods and statistical
analyses are available as Supplementary Information.

Results

Genotypic personality networks distinguish Sapiens
from other hominoids

We first tested which of the 972 genes associated with joint
temperament-character networks of Sapiens (Supplementary
Table S3) were also present in genomes of Neanderthals
and/or chimpanzees. We found 509 genes for modern
human personality in all three hominoids, 148 in Nean-
derthals but not in chimpanzees, 48 in chimpanzees and not
in Neanderthals, and 267 only in Sapiens (Table 1).

We hypothesized that the genes that mapped to the
genotypic networks for emotional reactivity, self-control,
and self-awareness would be differentially present in the
genomes of chimpanzees, Neanderthals, and Sapiens. To
test this, we performed ANOVA for the genes in the three
networks along with contrasts of the possible pairs of spe-
cies under assumptions of correlated samples (as occurs
with vertical inheritance from parent to offspring) or of
independent samples (as occurs with HGT from organisms
other than parents), as summarized in Table 2 and described
in Supplementary Table S8. We found that the three species
differ significantly from one another for each of the three
networks whether or not the samples are correlated (239 > F
(2[1664,2913]) > 16, p < 0.0001) (Table 2, Fig. 1, Supple-
mentary Table S8). The differences among the species were
large for genes related to self-awareness (Cohen’s effect
size f= 0.46), intermediate for self-control (f= 0.35), and
small for emotional reactivity (f= 0.21) (Supplementary
Table S8).
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In pair-wise comparisons, Sapiens differed significantly
from Neanderthals as well as from chimpanzees in the genes
found in each of the three networks, whether or not the
samples are correlated (Tukey’s HSD test, p < 0.01)
(Table 2, Supplementary Table S8). There was only a small
difference between Neanderthals and chimpanzees in the
genes they had in each of the three networks; the difference
was weakly significant for each of the networks if the
samples are considered correlated (Tukey’s HSD test,
p < 0.05) and insignificant for the emotional reactivity net-
work if the samples are independent (Table 2, Supple-
mentary Table S8). Later we examine the possible
occurrence of vertical and horizontal transfer in the evolu-
tion of human personality, but the differences observed here
in Table 2 were about the same whether or not the samples
are considered correlated; the one exception was that the
smallest difference (i.e., between Neanderthals and chim-
panzees in the genes regulating emotional reactivity) was
not significant if the samples are considered independent. In
sum, we found that the genes present in each of the three
genotypic networks differ among each pair of the three
hominoid species (Tukey’s HSD test, p < 0.01 to p < 0.05).

Next, we observed that the genes in the three networks
are represented in hominoid species as cumulative addi-
tions, consistent with the hypothesis that Neanderthals were
similar to chimpanzees in their genes for emotional reac-
tivity but were intermediate between chimpanzees and
Sapiens in the number of genes present in both the self-
control and self-awareness networks (Fig. 1). Of the 972
genes significantly associated with personality in Sapiens,

653 were present in Neanderthals and 557 in chimpanzees
(Table 1).

When compared to chimpanzees Neanderthals did not
differ in their proportions of genes for emotional reactivity
whether all genes related to personality in each species were
considered (Table 1, e.g., 71% of 653, 62% of 557), or the
total genes for human personality were accounted (18% vs
16% of 972, F (1, 1972)= 1.76, not significant) (Supple-
mentary Table S9). Putting aside the 54 genes found only in
modern humans, 72% of the 195 genes for emotional
reactivity were common to all three species.

However, when compared to chimpanzees Neanderthals
did have a greater proportion of the genes for self-control
(32% vs 25% of 972, F (1, 1942) = 6.86, p < 0.008) and for
self-awareness (38% vs 33% of 972, F (1, 1942) = 9.1, p <
0.0001) when all genes for human personality were con-
sidered (Supplementary Table S9).

Putting aside the genes for human personality present in
chimpanzees, we found Neanderthals had only 33% of the
genes in the self-awareness network of Sapiens (viz, 85 of
254 genes), 37% of the genes in self-control network (viz,
68 of 186), 41% of the genes in the emotional reactivity
network (viz, 38 of 92). In other words, excluding the genes
present in chimpanzees, 67% of genes for self-awareness,
63% of the genes for self-control, and 59% of the genes for
emotional reactivity were found only in Sapiens.

Nevertheless, we recognized that the number of genes
that Neanderthals shared with Sapiens might not be a direct
indicator of their impact on creativity and other aspects of
well-being because of the modular organization of genes in
complex systems. Specifically, we needed to evaluate the
impact of individual genes on well-being by estimating their
relative roles in specific SNP sets to take into account the
interactions among coordinated sets of genes that impact
well-being.

We, therefore, estimated the impact on well-being of the
genes shared by Neanderthals and Sapiens in comparison to
the impact on well-being of the genes found only in
Sapiens. In order to extract prototypical samples of humans
with distinctive Neanderthal-like features and distinctive
Sapiens-like features, we first identified the 267 genes found
only in Sapiens and the 148 genes Neanderthals shared with
Sapiens, excluding genes present in chimpanzees (Table 1,
Supplementary Table S3). We estimated the mean level of
well-being of Neanderthal-like humans from the well-being
of individuals in naturally occurring clusters of genes (i.e.,
SNP sets) that included one or more of the 148 distinctive
genes of Neanderthals. We estimated the mean level of
well-being of prototypical Sapiens-like humans from the
well-being of individuals in naturally occurring clusters of
genes (i.e., SNP sets) including one or more found only in
Sapiens.

Table 1 Statistical analysis of the 972 genes for modern human
personality by personality network and species: Neanderthals (N) and
chimpanzees (C)*.

# TotalGenes/
species

# Genes limited to species

N C C & N N, not C C, Not N Not
C Not N

Genes 653 557 509 148 48 267

Self-awareness 372 320 287 85 33 169

Self-control 303 251 236 68 16 118

Emotional
Reactivity

178 156 141 38 16 54

Genes/network

Self-awareness 0.65 0.56 0.50 0.15 0.06 0.29

Self-control 0.69 0.58 0.53 0.15 0.04 0.27

Emotional
Reactivity

0.71 0.63 0.55 0.15 0.06 0.22

*972 genes for personality and learning in modern humans included
574 in the self-awareness network, 438 in the self-control network, and
249 in the emotional reactivity network. Their distribution in
chimpanzees (C) and Neanderthals (N) were examined by species
overall and by network within species.
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Table 2 One-way analysis of
variance (ANOVA, p < 0.0001)
for the significance of the
differences in the number of the
972 genes associated with
personality in modern humans
among the three species
(ANOVA, p < 0.0001) with
contrasts of numbers of these
genes in pairs of the species
depending on whether the
samples are assumed to be
correlated or independent.
Significance of each comparison
corrected for number of tests is
shown. The species include
modern Homo sapiens
(“Sapiens”), Homo
neanderthalensis
(“Neanderthals”), and Pan
troglodytes (Chimpanzees).

Self-awareness Self-control Emotional reactivity

Correlated Samples

Sapiens vs Chimpanzee 0.01 0.01 0.01

Sapiens vs Neanderthal 0.01 0.01 0.01

Chimpanzee vs Neanderthal 0.01 0.01 0.05

Independent Samples

Sapiens vs Chimpanzee 0.01 0.01 0.01

Sapiens vs Neanderthal 0.01 0.01 0.01

Chimpanzee vs Neanderthal 0.05 0.05 Non-significant

Fig. 1 Comparison of types of genes in 3 hominoid species. Com-
parative analysis of the distinct types of genes (as defined in Supple-
mentary Table S4) belonging to the Emotional reactivity, Self-control,

and Self-awareness networks of genes present in (A) Chimpanzees
(Pan troglodytes) (B) Neanderthals (Homo neanderthalensis) and (C)
modern humans (Homo sapiens).
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We found that Neanderthal-like groups of genes
enhanced well-being more than expected from the number of
genes they shared with modern humans, but the mean levels
of well-being were still consistently lower for Neanderthal-
like humans than for Sapiens-like humans (Supplementary
Table S10). The differences between these prototypical
groups were similar in comparisons based on two indices of
healthy functioning (well-being and resilience from ill-
being) for each of the three genotypic networks, including
self-awareness and self-control (F (3,252) = 34, F (3,454) =
35, p < 0.0001) and emotional reactivity (F (3, 112) = 15.5,
p < 0.0005) (Supplementary Table S10). Specifically, the
impact of genes for self-awareness on the well-being of
Neanderthal-like humans was 70% of that in Sapiens, which
is a rather large difference (effect size f= 0.34). Likewise,
the combined impact of genes for self-control and self-
awareness on the well-being of Neanderthal-like humans
was 67% of that of Sapiens (effect size f= 0.28). The impact
of genes for emotional reactivity on the well-being of
Neanderthal-like humans was 61% of that of Sapiens (effect
size f= 0.20). Similar findings were obtained indicating less
resilience to ill-being in Neanderthal-like individuals also
(Supplementary Table S10).

Types of genes distinguish between personality
networks and hominoid species

We analyzed the types of genes for the modern human
temperament-character networks that are present in each
hominoid group, as shown in Fig. 1 (see Supplementary
Table S4 for type descriptions). Of the 557 genes present in
chimpanzees, 92% were protein-coding and none were
long-non-coding (lnc) RNAs or pseudogenes. Of the 653
genes present in Neanderthals, 81% were protein-coding
and the rest were lncRNAs (14%), pseudogenes (2%), and
non-coding (nc) RNAs (1%). Of the 972 genes associated
with personality in Sapiens, only 61% were protein-coding
and there were many lncRNAs (21%) and pseudogenes
(8%). These distributions varied little across the networks
within each hominoid group, as expected from our
hypothesis that there were successive incremental steps
between species to enhance regulation of the coordinated
expression of groups of genes within each species (Fig. 1).

The presence of lncRNAs and pseudogenes strongly
distinguished the types of genes found in the three per-
sonality networks of humans (Neanderthals and Sapiens)
from those found in chimpanzees (F (5,1926)= 91.1,
p < 0.0001, effect size f= 0.69, and Tukey’s HSD test,
p < 1E-23, Fig. 1 and Supplementary Table S11).
Chimpanzees had none of the lncRNAs associated with
modern human personality (Fig. 1). Sapiens had more
lncRNAs than Neanderthals (21–22% vs 14–15%, Tukey’s
HSD test, p < 1E-12) (Fig. 1). The differences in candidate

regulatory genes among the hominoid groups were con-
firmed with the genes present only in Sapiens (Fig. 2).

Distinct type of genome evolution and direction of
selection in Sapiens

We tested for the presence of ancestral genes involved in
human personality by searching for orthologs in 57 organ-
isms belonging to the following taxonomic groups: Pri-
mates, other Mammals, Marsupials, Monotremes, Avians,
Reptiles, Amphibians, Fish, Cyclostomes, Tunicates,
Insects, and Nematodes (Supplementary Table S1, Supple-
mentary Fig. S4A). We found that 557 of the 972 genes
related to personality have orthologs in these species, sug-
gesting inheritance through common ancestry. The
remaining 415 genes apparently without known orthologs
might have been acquired independently. Independent
transmission might have occurred, for example, as a result
of HGT, which is widely implicated in the human genome,
particularly in primates [88]. We found that 39 genes
associated with human personality were in previously
known HGT regions (Supplementary Table S3). Thus
personality-related genes are enriched in known HGT
regions (4.0% of 972) compared to overall rate in the
human genome (1.1%, 642 of 57,905) [88].

About 65% of the 415 genes without orthologs belong to
the self-awareness network, which is strongly associated
with the creative-reliable personality profile. In contrast, we
found that the personality-related genes located in HGT
regions were enriched in all three genotypic networks with
slightly higher rates for genes in the self-control network
(5.5%, 24 of 438 genes) and emotional reactivity network
(4.0%, 10 of 249) than in the self-awareness network (3.0%,
17 of 574). Only two of the genes in HGT regions were
found only in Sapiens, suggesting HGT had little role in the
emergence of behavioral modernity.

In contrast, our findings of lincRNAs provided evidence
supporting a major role in the emergence of behavioral
modernity. Among the 972 genes associated with person-
ality in Sapiens, we found that 127 were lincRNAs without
orthologs in 57 species (see Supplementary Information):
68 were present only in Sapiens, 59 in Neanderthals, and
none in chimpanzees (Supplementary Table S2). Informa-
tion about DAF scores was available for 60 lincRNAs
unique to Sapiens (Supplementary Table S6) and 53 that are
present in Neanderthals (Supplementary Table S7),
enabling us to compare them (Supplementary Table S12).
Among the lincRNAs unique to Sapiens (Supplementary
Fig. S4C), those with DAF > 0.1 are more frequent than
those with lower DAF for both their promoters (F (1,110)
= 30.23, p < 0.0001) and their exons (F (1,110) = 9.78,
p < 0.0022). Likewise, both promoters (F (1,92)= 45.35,
p < 0.0001) and exons (F (1,94) = 11.75, p < 0.0019) are
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primarily under positive selection in lincRNAs that are also
present in Neanderthals. However, lincRNA promoters in
Sapiens, but not in Neanderthals, have DAF > 0.1 slightly
more often than their exons (F (1,102) = 4.54, p < 0.03),
suggesting that positive selection is acting on regulatory
functions in Sapiens. Significantly, ~70% of the 49 lincR-
NAs unique to Sapiens and under positive selection
(DAF > 0.1) were in the self-awareness genotypic network.

Expression of gene sets unique to moderns in
specific brain regions

94% of the 267 genes unique to humans were non-protein-
coding genes, and 64% were associated with the self-
awareness genotypic network (Supplementary Table S5).
Their specific functions are largely uncertain except that in
general they are suggested to coordinate complex processes
of adaptation, plasticity, and health by regulating the co-
expression of groups of other genes. Therefore, we eval-
uated the co-expression in different brain regions of the sets

of genes that mapped to the same personality-related SNP
set that contained at least one gene found only in Sapiens
(Supplementary methods and Table S13). We calculated the
average mRNA expression level in specific brain regions of
multi-genic clusters related to character or temperament.

The brain regions in which the identified multi-genic
clusters unique to Sapiens were significantly over-expressed
are displayed in Fig. 3. We confirmed the hypothesis that the
genes related to the character of Sapiens were over-expressed
in brain regions that have been involved in human self-
awareness and autobiographical memory in prior functional
brain imaging studies. Specifically, they were significantly
over-expressed in late-myelinating regions of neocortex in
frontal, temporal, and parietal regions (Fig. 3A), as well as in
the associated areas of the thalamus, basal ganglia, cere-
bellum, and brainstem involved in cerebellar-thalamo-cor-
tical, cortico-ponto-cerebellar, and cortico-striato-cortical
loops important for intuitive insight and evaluation, which is
automatic without deliberate analysis [88] (Fig. 3B, Supple-
mentary Table S14). The pontine nuclei, the main source of

Fig. 2 Types of genes found only in modern humans. Comparative
analysis of the distinct types of genes (as defined in Supplementary
Table S4) found exclusively in modern Homo sapiens: A Broad gene
categories, B Fine-grained gene categories, and C Analysis of the

genes from A in the genotypic networks associated with the Emo-
tional-unreliable, Organized-reliable, and Creative-reliable phenotypic
networks of modern humans.
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Fig. 3 Brain regions in which genes found only in modern humans
are overexpressed. Normalized average gene expression in Allen
Human Brain Atlas in particular regions of the human brain in which
there is significant co-expression of the constituent genes of SNP sets
in which there is at least one gene found only modern humans. The
highlighted regions are called regions of interest (ROIs) because they
are the regions in which a given list of genes are significantly co-

expressed when compared to the rest of the Allen Human Brain Atlas.
The color code indicates the importance of the region, with red as
maximum. A and B depict ROIs in which constituent genes of the
Character SNP sets of the self-awareness network are highly expres-
sed, whereas C and D depict ROIs in which constituent genes of the
Temperament SNP sets of the self-awareness network are highly
expressed.
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input from the frontotemporal cortex to the cerebellum, are in
the brain region with the densest co-expression of genes for
both character and temperament (Supplementary Table S14).

In addition, we found that the genes related to the
temperament were significantly over-expressed in the
hippocampus, septum, amygdala, cingulate cortex, para-
hippocampal gyrus, fusiform gyrus, thalamus, cerebellum,
and brainstem (Fig. 3C, D, Supplementary Table S14), as
expected from the role of these regions in recognition,
evaluation, and self-regulation of emotional expression.

When associated with genes found only in Sapiens,
genes from both the self-awareness and self-control net-
works were significantly over-expressed in the brain regions
that comprise the pathways for self-awareness and self-
regulation of emotions and goals. Put another way, the
regulation of gene co-expression by genes found only in
Sapiens provided a mechanism to integrate self-awareness
and self-control so that human emotions, goals, and values
could be self-directed in ways that are coherent, reasonable,
and advantageous.

Discussion

This is the first study to identify the genotypic differences
among chimpanzees, Neanderthals, and modern humans
that may account for the rapid emergence of human crea-
tivity and other components of behavioral modernity,
including its physical, emotional, cognitive, social, and
spiritual features. In preparatory work we identified three
naturally occurring genotypic networks for emotional
reactivity, intentional self-control, and self-awareness. The
972 genes in these networks account for nearly all the
heritable variation of human personality, including the
characteristics of behavioral modernity (namely, creativity,
prosocial behavior, and healthy longevity). Now we have
found that 267 of these genes are absent in both chimpan-
zees and Neanderthal genomes, and we replicated this
finding in three high-coverage Neanderthal genomes.

We also found that Neanderthals had nearly the same
proportions of genes for emotional reactivity as chimpan-
zees. Excluding 54 genes found only in Sapiens, 72% of the
195 genes for emotional reactivity were common to all three
species. On the other hand, Neanderthals were intermediate
to chimpanzees and Sapiens in their proportions of genes for
self-control and for self-awareness. Putting aside the genes
for personality present in chimpanzees, Neanderthals had
33% of the genes for self-awareness and 37% of the genes
for self-control that are present in Sapiens. Nevertheless,
when we took into account the modular organization of these
genes in clusters with other genes, we estimated the relative
well-being of Neanderthal-like humans was 61–70% of that
of prototypical Sapiens who carried genes found only in

modern humans. Prototypical Sapiens have much stronger
genotypic predisposition to the characteristics of behavioral
modernity than Neanderthal-like humans, particularly from
sets of genes in the self-awareness network associated with
creativity, prosocial behavior, and longevity (F (3,252), p <
00001, Cohen’s effect size f= 0.34).

In addition, we obtained evidence that the genes found
only in Sapiens were likely to be regulatory and advanta-
geous. Specifically, 94% of the 267 genes found only in
Sapiens were not protein-coding, including many lncRNAs
(46%), pseudogenes (35%), and ncRNAs (6%). 64% of the
genes found only in Sapiens were in the self-awareness
network, especially lncRNAs that we found to be under
positive selection.

Finally, we tested the importance of the genes unique to
Sapiens for human well-being and behavioral modernity by
identifying the brain regions in which they were over-
expressed. We confirmed that naturally occurring clusters of
genes associated with one or more genes found only in
Sapiens were over-expressed in the core brain regions for
human self-awareness, which is strongly associated with the
human well-being, including the characteristics identified
by anthropologists as distinguishing Sapiens from other
hominids whom they replaced by 40 kya.

With these key findings in mind, we will discuss both the
anthropological and the genetic data available to test our
hypotheses related to the successive emergence of nearly
disjoint networks for regulation of emotional reactivity,
intentional self-control, and creative self-awareness in the
hominoid lineage of modern humans. From our preparatory
studies of the phenotypi–genotypic architecture of human
personality, we recognize that these three networks function
cooperatively so that a person can learn to integrate their
habits, goals, and values in adapting to changes in their
internal and external milieu. Available information about
the coincident changes in brain and behavioral functioning
in the phylogeny of Sapiens help to guide our interpretation
of our findings based on comparison of the genomes of
chimpanzees, Neanderthals, and Sapiens.

Emergence of the network for regulation of social
emotions

The mammalian ancestors of anthropoid primates were
mostly small, nocturnal, and solitary; but as temperatures
cooled and tropical forests receded during the late Eocene,
around 40 million years ago (mya), there was probably a
selective advantage in social cooperation among higher
primates as a protection against predators when foraging in
the daytime [12, 14]. Social learning similar in kind to that
of humans consequently developed among monkeys and
apes, resulting in social attachment [98, 99] and the reg-
ulation of emotional reactivity based on social context and
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the reduction of emotional distress by reconciliation [100],
as among chimpanzees today who, following a fight, often
engage in mouth-to-mouth kissing and ventral embraces.
Social learning also allows proto-cultural transmission of
traditions in grooming, courting, foraging, and food pre-
paration [101–103]. Emotional gestures and vocal calls
facilitate social relations among triads and larger groups of
higher primates, so that a third party, such as a high-ranking
group leader, can intervene to resolve conflicts [100, 104].

On the other hand, while chimpanzees show emotional
reactivity and learning abilities similar to those of a 2- or 3-
year-old modern human child, they do not exhibit the reg-
ulatory capacities of older modern human children [105].
Chimpanzees use tools to solve simple tasks, like cracking
nuts or catching termites; but they do not teach each other to
manufacture and use these tools [1]. They can be taught to
use signs and form two-to-four-word sentences at a rate
consistent with behavioral conditioning, but, unlike modern
human children, they do not spontaneously acquire symbolic
language [45, 106, 107]. The self-aware memory of modern
human children begins to mature around 4 years of age, and
afterward they show greater capacity than chimpanzees for
delay of gratification, reasoning about beliefs, and solving
problems about internal memories [57, 105–108].

When the brains of higher primates are compared to
those of more distant relatives of humans [12, 45], the
prefrontal cortex is typically enlarged, projecting directly to
the hypothalamus, striatum, thalamus, septum, and basal
amygdala. Affective information is also relayed to the
middle insular cortex, which allows regulation of sensuality.
The mirror neuron system emerges, allowing the under-
standing of action and the imitation of observed behaviors,
a necessary precursor of language. In great apes, there is
also differentiation of the anterior insular cortex, allowing
the enhanced emotional awareness that supports the com-
munication of social emotions. On the basis of these find-
ings of coincident changes in brain and behavior, we
hypothesized that the genome of chimpanzees is likely to
have the genetic network for regulation of emotional reac-
tivity, but not those for either intentional self-control or
creative self-awareness [12, 45]. Our current findings
strongly confirm this hypothesis: the emotional reactivity
network is well-developed in all three hominoid species that
we evaluated. Putting aside the 54 genes found only in
Sapiens, 72% of the 195 genes in the emotional reactivity
network were shared by all three species (Table 1).

Emergence of the network for regulation of
intentional self-control

Early hominins rapidly became distinguished from great
apes by a greater facility for purposeful goal-seeking
behaviors such as tool-making and coordinated hunting

for food [12, 45]. Current indications are that the use and
manufacture of stone tools were introduced by archaically-
proportioned “australopiths” (e.g., [109]) at a time when
open habitats were becoming more widespread as tropical
forests shrank. Subsequently, the possession of more or less
modern limb proportions by the earliest properly diag-
nosable members of the genus Homo indicates that homi-
nins had finally committed themselves to those open
habitats by a little under 2 million years ago. This crucial
transition is poorly documented in behavioral terms, but it
certainly represented an extreme environmental and eco-
nomic shift that must have had profound cognitive and
social sequelae.

Once committed to open habitats, the brain size of
hominins began to increase rapidly. Homo ergaster (lit-
erally, working man) was reasonably tall and slenderly built
in the basic manner of modern humans, and introduced the
Acheulian tool industry of symmetrical bifacial hand-axes
before 1.6 mya. These implements were intentionally flaked
to conform to a template held in their makers’ minds. Later
hominines continued this tool-making tradition without
radical innovation until around 400 kya [9, 10]. This
archeological record of technological stasis for over a mil-
lion years documents that early humans had the capacity for
intentional self-control, but that humans living prior to 400
kya, including the common ancestor of Neanderthals and
Sapiens, did not manifest the creativity associated with the
genotypic network for self-awareness of Sapiens [12].

Homo neanderthalensis, a species that evolved from an
endemic European precursor some 200 thousand years ago,
was one highly evolved end-product of the human com-
mitment to living in open habitats. Neanderthals were
clearly purposeful and resourceful creatures who typically
lived in small bands of perhaps 12–25 individuals that
foraged across vast landscapes [110]. They were clearly
sophisticated beings who were highly opportunistic in the
resources they exploited: they hunted some frighteningly
large prey when circumstances dictated (thereby possibly
accounting for a reported high incidence of bone fractures
[110]); at least occasionally they built shelters, and they
controlled fire in hearths [111–113]. There is evidence at
Shanidar cave in northern Iraq of a Neanderthal surviving
to advanced age despite being severely handicapped by a
useless arm, suggesting social cooperation and empathy for
others within their small groups [113]. On the other hand,
while Neanderthals buried their dead, they typically did so
without the grave artifacts characteristic of later Cro-
Magnon burials [113, 114]. Neanderthals produced arti-
facts that have been interpreted as symbolic art, but these
infrequent expressions were simple and two-dimensional
[73–75], possibly comparable to pictures produced by
modern human children before the age of 7 years [115].
Their low genetic diversity suggests that they lived in small
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isolates with limited mating between groups [110, 116],
although there is some evidence for female exogamy [115].

In the period following 40 thousand years ago the
Neanderthals were rapidly replaced in Europe, albeit with
some minor gene exchange [117], by invading Homo
sapiens whose lives showed unprecedented cultural and
technological sophistication. While still itinerant hunter-
gatherers, these anatomically and behaviorally distinctive
new humans populated the landscape in higher densities
and brought with them the symbolic tradition of narrative
cave art with use of pictorial depth cues in integrated
compositions of great complexity and beauty [118]. This
innovative practice of creating pictures from the imagina-
tion—“the mind’s eye”—is the most powerful indicator we
have of the awakening of the modern sensibility, with its
profusion of abstract but clearly meaning-laden signs in
addition to the sophisticated animal images famous from
such localities as Chauvet and Lascaux [73].

The brains of extinct humans are available only as fossil
endocasts, limiting the observations that can be made.
Compared to chimpanzees, fossil data document the emer-
gence of hemispheric asymmetry along with bipedality in
australopiths and non-Sapiens. Arising late in hominin
history, Neanderthals had large brains that averaged about
1500 ml in volume, more or less identical to those of con-
temporaneous Pleistocene Homo sapiens (although modern
human brains are almost 13% smaller [117]). However,
those brains appear to have been organized differently from
modern ones: Neanderthals had relatively larger visual
areas, while Sapiens have expanded parietal lobes [69]
and higher prefrontal regions. On the basis of these findings
of coincident differences in brain and behavior, we hypo-
thesized that the genome of Neanderthals would likely
be found to have the genetic network for regulation of
emotional reactivity and some of the genes of the
network for intentional self-control, but not that for self-
awareness [12, 45].

Our current findings confirm that the genotypic network
for intentional self-control is well-developed in Nean-
derthals but not in chimpanzees. They also suggest that
Neanderthals had acquired genes for self-control and self-
awareness in numbers intermediate between modern human
and chimpanzees. Excluding genes already present in
chimpanzees, Neanderthals had 33% of the 254 genes for
self-awareness and 37% of the 186 genes for self-control
that are present in Sapiens. Taking into account the modular
organization of groups of genes within human learning
networks, we estimated that the relative level of genotypic
predisposition to well-being and modernity of Neanderthal-
like humans was 61–70% of that of prototypical Sapiens.
When compared to prototypical Sapiens, the genotypic
predisposition to modernity of Neanderthal-like humans is
lowest for self-awareness (Cohen’s effect size f= 0.34).

These findings suggest that the crucial event that sparked
the emergence of behavioral modernity was the advanced
evolution of the genotypic network for self-awareness in
Sapiens, but we need to consider alternative explanations
for these findings.

Of course, one possible alternative explanation is that all
the genes present in Neanderthals may not have been
documented in the genomic information currently available
to us, even though we replicated our findings using the
2010 draft genome separately in each of the three high-
coverage Neanderthal genomes that are available: Vindija
33.19 from the central range of Neanderthals in Croatia, as
well as the genomes of a Neanderthal from the Altai
Mountains and another from the Chagyrskaya Cave in
Russia [110, 116, 117, 119]. These replicated findings
provided robust support for our comparative analyses, but
we still needed to know whether the genes we did find
provided a mechanism that might account for the emer-
gence of creativity.

Emergence of the network for creative self-
awareness

What mechanism promoted the emergence of the genetic
network for creative self-awareness in behaviorally modern
human beings? The brains of Sapiens are unique in having a
system for self-awareness that connects the late-myelinating
regions of the frontal, parietal, and temporal cortices
[57, 120]. These most recently evolved regions of the brain
are the final association areas in which information is
integrated and evaluated, and are linked into a unified net-
work for episodic memory by projections from visual cortex
[12, 45]. Autobiographical learning and memory mediate
awareness of the self as a continuous identity across space
and time. Psychologically, the creative network is so-named
because it is found in people who are imaginative, inven-
tive, prosocial, and spiritual [42, 47, 48, 55, 80, 121]. Such
self-transcendent thinking involves the ability to perceive
oneself as a local aspect of a larger spatio-temporal whole,
which permits thinking that is free and creative (i.e., “out-
side the box” of logical deduction and cultural tradition) and
theoretically inductive (i.e., extrapolation beyond prior
examples based on insight and creative imagination), as
expressed in art, science, spirituality, and narrative syntac-
tical language [12, 45]. On the basis of findings of the
unique association of coincident changes in brain with
cognitive functions for self-awareness and creativity, we
hypothesized that only Sapiens were likely to have the
genotypic network for self-awareness.

However, this hypothesis was only partially supported.
We found that Neanderthals had only 33% of the genes for
self-awareness present in Sapiens; but these genes, when
organized in clusters with other human genes, were
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sufficient for Neanderthal-like humans to function at
61–70% of the level of well-being of prototypical Sapiens.
This still does not inform us whether Neanderthals had
crossed the genotypic threshold needed to have the potential
to express some or all of the features of behavioral mod-
ernity, even if that capacity has not been adequately docu-
mented in the archeological record.

Therefore, we asked whether the genetic differences
between Neanderthals and Sapiens revealed molecular
mechanisms that qualitatively distinguished them and/or
accounted for greater reproductive fitness in Sapiens. We
found that the lincRNAs unique to Sapiens are under
positive selection and are functionally different than those
found in the Neanderthal genome. LincRNAs are known to
evolve rapidly [122], and to influence complex patterns of
adaptive functioning, plasticity, and health by regulation of
gene expression [123, 124] and co-expression of groups of
genes [125]. We found that 70% of the lincRNAs under
positive selection and unique to Sapiens are in the genotypic
network for self-awareness. When reared under conditions
of parental warmth and tolerance, Sapiens with the geno-
typic network for self-awareness are likely to develop a
creative-reliable personality profile characterized by crea-
tivity, altruism, and healthy longevity [19], thereby creating
a distinctive social dynamic. This interpretation is directly
supported by our additional finding that the genes for
Sapiens are found in multi-locus genotypic clusters that are
over-expressed in the brain regions that define the self-
awareness network.

Furthermore, the characteristics of altruism and healthy
longevity may have provided conditions necessary for kin
selection for creativity in Sapiens as an adaptive response to
intense ecological pressure from climatic fluctuations and
unpredictable variability in resource availability in East
Africa, but not Neanderthals who were not under the same
pressures in Europe. The importance of prosocial environ-
ments for creative achievement is still evident in behavioral
differences among modern humans observed today: even
Sapiens with the genotypic network for self-awareness are
still vulnerable to physical, emotional, cognitive, and social
ill-being under hostile or inequitable social conditions [19],
as shown in Figure S5D. Consequently, altruistic and
creative behaviors are frequent, but inconsistent, features of
Sapiens [121, 126].

Considering all the evidence available, we know that
Neanderthals were intermediate between chimpanzees and
Sapiens in the development of the genotypic network for
self-awareness. We also know that Sapiens have a dis-
tinctive set of genes that are mostly in the self-awareness
network, are under positive selection, and are not present in
Neanderthals. Our genotypic findings document molecular
mechanisms that may provide a likely explanation for the
archeological record that has found only rudimentary

evidence of creativity and other signs of behavioral mod-
ernity in Neanderthals. We, therefore, need to carefully
consider these potentially crucial mechanisms in detail.

Hypotheses about selection for creativity

The newly emergent creativity may have provided selective
advantages to behaviorally modern humans beyond its
purely cognitive advantages. Physiologically, it is asso-
ciated with enhanced memory functions, health, and well-
being (Supplementary Figs. 5 and 6), including a predis-
position to longevity and resilience against stress, injury,
and chronic diseases including cardiovascular and neuro-
degenerative diseases [19, 64, 65]. Living longer and
healthier lives may have allowed behaviorally modern
Homo sapiens to disperse rapidly and widely around the
world, and it may also have helped individuals support their
children, grandchildren, and others in interconnected social
communities, thereby possibly leading to positive selection
for traits such as creativity, innovativeness, prosociality, and
wisdom [127–131]. We hypothesized that the genetic net-
work for creativity was positively selected because we had
previously found that longevity and well-being are pro-
moted by the integration of creative functioning, plasticity,
and virtues like moderation, altruism, and wisdom [19].
This hypothesis is further supported by our finding that 70%
of the advantageous lncRNAs unique to Sapiens were in the
self-awareness network, which is strongly associated with
creativity, prosociality, and healthy longevity [19, 55, 80].
Hence it is a crucial observation that most of the key reg-
ulatory genes for creative self-awareness are only present in
Sapiens, and not in Neanderthals: of the 130 lncRNAs in the
self-awareness network, none were present in chimpanzees,
42% were shared by Sapiens and Neanderthals, and 58%
were found only in modern humans (Table 1, Fig. 2, Sup-
plementary Table S3).

Role of LncRNAS in rapid evolutionary change

What mechanism can account for the rapidity of the evo-
lution of creativity, healthy longevity, and fitness in Sapiens
[1–4, 132]? Changes in mutation rates do not provide an
explanation because they remained stable in the transition
from archaic to modern humans [119, 133]. We considered
mechanisms by which new genes appear in ways that do not
depend on the mutation rate of ancestral genes [134]. We
observed that 67% of the genes associated with human self-
regulation and creativity were regulatory genes [64],
including a significant predominance of lncRNA genes and
pseudogenes when compared to the genes related to beha-
vioral conditioning of temperament [65]. We know that
differences in complexity of functions between species
usually depend on differences in the regulation of gene
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expression of a highly conserved core of protein-coding
genes, as has been shown for the differences between
chimpanzees and humans [135–137].

More specifically, we know that lncRNA gene are often
important regulators of gene expression [138] and are often
acquired by horizontal gene transfer (HGT) [88]. HGT (i.e.,
the acquisition of genes from an organism other than a
direct ancestor) allows genomes to expand rapidly, assem-
ble new pathways, and express new functions [139]. HGT is
the main mechanism for acquisition of new genes in pro-
karyotes and single-celled eukaryotes, and also is wide-
spread in primates, including humans. Many new genes
have been acquired throughout the modern human genome,
especially protein-coding and lncRNA (e.g., lincRNA and
antisense) genes [88]. Therefore, we tested the hypothesis
that modern human beings acquired the genes that enabled
the rapid evolution of creativity and healthy longevity by
HGT. We found that genes for human personality are
enriched in HGT regions, but the enrichment was observed
for genes in the emotional reactivity network as well as the
others. Furthermore, only 2 of the 39 genes we found in
HGT regions were unique to modern humans. Therefore,
we concluded that HGT may have contributed to person-
ality development in hominoids in general, but it did not
have a major role in the development of the creative per-
sonality or self-awareness.

In contrast, our findings that 70% of lincRNAs unique to
humans and under positive selection were found exclusively
in the self-awareness network does provide evidence of
their involvement in the evolution of self-awareness and the
various aspects of human well-being and behavioral mod-
ernity. Likewise 35% of the genes unique to Sapiens were
pseudogenes, which are also often under positive selection
in primates [140, 141] and involved in regulation of human
cognition [142]. Pseudogenes were more frequent in genes
associated with personality in Sapiens (8% of 972) than in
Neanderthals (2% of 652). However, in Sapiens, pseudo-
genes were more frequent in the network for self-control
(43%) than for self-awareness (28%). Therefore, lncRNAs
appear to have played a more direct role in the emergence of
creativity in Sapiens, although pseudogenes also contribute
substantially to the differences between the two human
species that emerged under distinct ecological conditions.

In contrast to the differences that we observed in bio-
types between species, we found that the biotypes of the
genes are similar for each of the three networks within each
species (Fig. 1). In sum, both the differences in biotypes
between species and the similarity of biotypes across
adaptive networks within species support our hypothesis
that the nearly disjoint genotypic networks are likely to
have emerged in incremental steps. The initial emergence
of intentional goal-setting in early hominins and later the
emergence of the creative imagination of Sapiens has

allowed modern humans to adapt to social and environ-
mental challenges by brain functions that are associated
with distinctive molecular processes and many regulatory
genes that are found in modern humans, but not chim-
panzees or Neanderthals.

Strengths and limitations

The major innovation and strength of our study of the evo-
lution of human creativity is our having begun by first
characterizing the complex genotypic–phenotypic architecture
of human personality that underlies the human capacity for
self-awareness, symbolism, and creativity. We identified and
replicated the genotypic networks underlying the three major
systems for learning in Sapiens (behavioral conditioning,
intentionality, and self-awareness). This allowed us to focus
comparative genomic analyses on 972 genes that account for
modern human personality and learning capacities.

A major challenge was that there is less information
about the Neanderthal genome than there is for modern
Homo sapiens and chimpanzees. The annotated genome
from the Neanderthal Genome Project from 2010 is based
on low-coverage data, nearly all of which was from the
Vindija Cave in Croatia that lay in the central range of
Neanderthals throughout most of their existence. For-
tunately, we were able to replicate our initial findings with
the complete high-coverage (~50×) genome of the Altai
Neanderthal, which confirmed the same 267 genes of
Sapiens that were absent in Neanderthals from Vindija. Our
findings were also confirmed in separate analyses of two
other high-coverage (~30×) genomes from caves in both
Croatia and Russia, so our findings are robust.

Another limitation of all work about complex phenotypes
is that extinct hominids can never be available for quanti-
tative phenotypic assessments comparable to those of
modern humans using the TCI. Fortunately, the TCI has
been directly validated with measures that correspond to
descriptions of behavioral modernity by paleoanthropolo-
gists. Our genotypic measures and phenotypic measures are
strongly related (Supplementary Fig. S3 and Table S2), and
we have characterized the complex hierarchical and modular
organization of their phenotypic–genotypic relations. As a
result, we were able to use our genotypic measures to esti-
mate the relative genotypic predisposition to the well-being
and modernity of Neanderthal-like humans to prototypical
Sapiens. Unfortunately, we still cannot state definitely what
aspects of self-awareness Neanderthals may have displayed.
We know that even chimpanzees have some rudimentary
aspects of self-awareness, including mirror recognition and
some recognition of self-agency [143]. However, chimpan-
zees lack flexibility in reasoning about abstractions, such as
beliefs and intentions, an aspect of creativity and self-
awareness that emerges between 3 and 5 years of age in
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modern human children [108, 144]. Therefore, we expect
that Neanderthals had at least rudimentary aspects of self-
awareness intermediate between chimpanzees and Sapiens,
even though Neanderthals lacked most of the lncRNAs for
self-awareness that we found in modern humans.

Because we focused only on the 972 genes that account
for personality in Sapiens, we cannot exclude the possibility
that Neanderthals had genes that were not present in
Sapiens and influenced their personality and learning abil-
ities. These genes could have been inherited from the
common ancestor of Neanderthals and Sapiens or acquired
by Neanderthals subsequently. Any such unique Nean-
derthal genes could have had functions homologous or
distinct to those present in modern humans. However, we
have identified what genes found in Sapiens, but not in
Neanderthals, account for the emergence of the advanta-
geous capacities of Sapiens, including creative self-aware-
ness, prosocial behavior, and healthy longevity. Available
behavioral data also indicate that these same capacities were
absent in Neanderthals and other extinct hominids, and
more detailed genotypic-phenotypic analyses comparable to
what we have done in modern humans are impossible.
Therefore, it is likely to be much more useful to pursue a
more detailed understanding of the functions of the genes
unique to Sapiens than those unique to extinct hominids.

Another major challenge was the limited information
known about the functions of the non-coding RNA genes
that comprised most of the genes found only in Sapiens.
Fortunately, lncRNA genes have been shown to regulate the
expression of sets of other genes, so we were able to
identify the specific brain regions in which the multi-locus
genotypes that map to the SNP sets related to self-awareness
in Sapiens are expressed. Our findings of gene expression in
the brain of the self-awareness network confirmed findings
from functional brain imaging about the brain regions
involved in various functions of self-awareness, including
autobiographical memory, prospection, theory of mind, and
the default mode [59]. Our findings extended this by
revealing additional subcortical structures that are involved
in cortical feedback loops important for the automatic pro-
cessing and integration of information in self-awareness.
The replicability of our genetic findings and their mean-
ingful association with specific brain circuitry for complex
human functions provides strong evidence for the validity
of the data-driven methods we have developed and applied
to characterize complex adaptive systems [64].

Overview

Our findings have broad implications for understanding
what enabled Sapiens to displace Neanderthals and other
species of Homo in the geologically recent past, as well as
literally to reshape the world during the Anthropocene.

Living longer, healthier lives may have promoted and
valorized the extended periods of juvenile and adolescent
learning that allow the accumulation of knowledge that is
such a remarkable feature of behaviorally modern humans,
and that is such an important factor in the economic success
and complex social structures and relationships of Homo
sapiens [145]. It may also have encouraged cooperation
among individuals to promote the success of their children,
grandchildren, and others in their extended communities
[128, 131], enabling the technological innovativeness, beha-
vioral flexibility, and exploratory disposition needed to allow
Homo sapiens to spread throughout the world more suc-
cessfully than other human lineages [1–3]. Further work is
needed to understand the specific functions of the lncRNAs
associated with self-awareness that underlie the capacity of
modern humans for healthy longevity, prosociality, and
creativity. Fuller understanding is greatly needed because of
the frequent failure of these beneficial capacities of modern
humans to be self-actualized during the Anthropocene [52].
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