
Journal Pre-proofs

Use of complex visual stimuli allows controlled recruitment of cortical net-
works in infants

Eero Ahtola, Susanna Stjerna, Anton Tokariev, Sampsa Vanhatalo

PII: S1388-2457(20)30141-3
DOI: https://doi.org/10.1016/j.clinph.2020.03.034
Reference: CLINPH 2009200

To appear in: Clinical Neurophysiology

Received Date: 10 September 2019
Revised Date: 25 February 2020
Accepted Date: 16 March 2020

Please cite this article as: Ahtola, E., Stjerna, S., Tokariev, A., Vanhatalo, S., Use of complex visual stimuli
allows controlled recruitment of cortical networks in infants, Clinical Neurophysiology (2020), doi: https://
doi.org/10.1016/j.clinph.2020.03.034

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.clinph.2020.03.034
https://doi.org/10.1016/j.clinph.2020.03.034
https://doi.org/10.1016/j.clinph.2020.03.034


Use of complex visual stimuli allows controlled recruitment of cortical networks in infants

Authors: Eero Ahtola1,2, Susanna Stjerna1, Anton Tokariev1,3, Sampsa Vanhatalo1,3

Affiliations:

1. BABA Center and Department of Clinical Neurophysiology, Children’s Hospital, Helsinki 
University Hospital and University of Helsinki, Helsinki, Finland

2. Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 
Espoo, Finland

3. Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland

Corresponding Author: 

Eero Ahtola
Department of Clinical Neurophysiology, Children’s Hospital, Helsinki University Hospital
Stenbäckinkatu 9, 00029 HUS, Helsinki, Finland. 
Email: eero.ahtola@hus.fi, tel. +358503630810.

Abstract
Objective: To characterize cortical networks activated by patterned visual stimuli in infants, and to evaluate 
their potential for assessment of visual processing and their associations with neurocognitive development.

Methods: Three visual stimuli, orientation reversal (OR), global form (GF), and global motion (GM), were 
presented to cohort of five-month-old infants (N=26). Eye tracker was used to guide the stimulation and to 
choose epochs for analysis. Visual responses were recorded with electroencephalography and analysed in 
source space using weighted phase lag index as the connectivity measure. The networks were quantified 
using several metrics that were compared between stimuli and correlated to cognitive outcomes.

Results: Responses to OR/GF/GM stimuli were observed in nearly all (96/100/100%) recordings. All stimuli 
recruited cortical networks that were significantly different in their properties. The more complex GF and 
GM conditions recruited wider global networks than OR. Additionally, strength of the GF network showed 
positive association with later cognitive performance.

Conclusions: Network analysis suggests that visual stimulation recruits vast cortical networks extending far 
beyond the conventional visual streams and differ between stimulation conditions.

Significance: The method allows controlled recruitment of wide cortical networks, which holds promise for 
the early assessment of visual processing and its related higher-order cognitive processes.

Keywords
Visual Evoked Response, Visual System, Infant, Brain Connectivity, Functional networks, Neurodevelopment

Highlights
 Visual stimulation recruits wide cortical networks in infants.
 Network organization varies with the type of visual stimulus.
 Quantitative descriptors of these networks correlate with later cognitive performance. 
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Abbreviations
BSID-III, Bayley Scales III; CC, clustering coefficient; CN, consistent network; CN wPLI, average connectivity 
within a consistent network; CPL, characteristic path length; EEG, electroencephalography; f, stimulation 
frequency; FDR, false discovery rate; GF, global form; GM, global motion; MRI, magnetic resonance 
imaging; OR, orientation reversal; pFDR, FDR corrected p-value; T2

circ, circular T2-based test statistic; SD, 
standard deviation; VEP, visual evoked potential; wPLI, weighted phase lag index.
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1 Introduction
Rapid developments in the neurological care of newborns and infants have raised the need to improve 
early neurological assessments for benchmarking early interventions as well as for individualizing 
therapeutic strategies (Spittle and Treyvaud 2016). Current evidence suggests that early therapeutic 
interventions may work best if they are started already during the first months after the birth (Spittle et al. 
2015; Spittle and Treyvaud 2016). Such practice would need more sophisticated methods suitable for 
assessing the brain function in early infancy.

A range of clinical studies have shown that brain functions related to the infant’s higher order visual  
information processing are involved in deficits found in many neurodevelopmental disorders (Brémond-
Gignac et al. 2011; Stjerna et al. 2015), while visual system disorders are also a common mechanism 
underlying later neurocognitive compromise (Chorna et al. 2017; Leung et al. 2018). Hence, developing 
principled means for functional assessment of infant visual system could provide insight to a common 
pathway that links the medical adversities to neurodevelopmental compromise, i.e. valuable proxy tools for 
the assessment of wider neurocognitive development or its risks.

An established way for studying infant visual system is the assessment of cortical responses during 
repeated patterned stimulations. Three different stimuli, orientation reversal (OR), global form (GF), and 
global motion (GM), have been developed to specifically target putatively complementary pathways of 
cortical processing in the visual system (Wattam-Bell et al. 2010; Braddick and Atkinson 2011). In the infant 
context, cortical responses to global form and motion stimuli are especially interesting as they are 
suggested to employ ventral and dorsal visual stream mechanisms, respectively (Braddick et al. 2000; 
Braddick and Atkinson 2011), the two distinctly affected visual pathways after newborn adversities (Birtles 
et al. 2007; Leung et al. 2018). We have shown that this method, when coupled to eye tracking assistance 
(Ahtola et al. 2017), may offer reliable visual system studies at a few months of age, i.e. within the time 
frame with pressing clinical needs for new diagnostic options (Spittle et al. 2015; Spittle and Treyvaud 2016; 
Chorna et al. 2017).

Recent methodological developments in network neuroscience have shown promise for disclosing 
mechanisms that underlie various brain disorders (Bassett and Bullmore 2009; Bassett and Sporns 2017; 
Wig 2017), including brain effects after neonatal adversities (Tokariev et al. 2019a, 2019b). Those analyses 
are usually based on measuring large-scale correlations in measures of brain activity or blood flow during 
spontaneous brain activity, i.e. without apparent experimental tasks.

In addition to such networks of spontaneous neuronal activity, it is also possible to examine large-scale 
brain networks recruited in a more controlled manner using sensory stimulation, which has been 
successfully implemented in studies on cognitive brain mechanisms (e.g. working memory; Siebenhühner et 
al. 2016; Rodriguez-Larios and Alaerts 2019). In the context of primary sensory systems, use of periodic 
stimulation evokes steady-state electroencephalography (EEG) responses that are well characterized for 
the visual (Zhang et al. 2013; Norcia et al. 2015; Guo et al. 2018), somatosensory (Colon et al. 2012; Vakorin 
et al. 2019), and auditory systems (Picton et al. 2003; Farahani et al. 2017). They are used, for instance, in 
developing methods for brain-computer interface (BCI; Baek et al. 2019). The steady-state responses are 
typically studied as frequency-specific response at the given electrode, or cortical location only. Although 
this provides only a limited perspective to the investigated brain function that is likely to involve multiple 
brain regions via integrative oscillatory interactions (Bassett and Sporns 2017), there exist only a few prior 
works on exploring neuronal networks in the context of steady-state responses (e.g. Omidvarnia et al. 
2014; Ying et al. 2015; Lea-Carnall et al. 2016; Vakorin et al. 2019).

Here, we set out to study whether cortical networks associated with steady-state responses after patterned 
visual stimuli (OR, GF, GM; Ahtola et al. 2017) in infants are as distinct as previously postulated (Braddick et 
al. 2000, 2005; Wattam-Bell et al. 2010), and if so, whether they could offer means for differential 
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assessment of visual processing streams. After first characterizing the cortical networks evoked by 
OR/GF/GM stimuli in the cohort of typically developing 5-month-old infants, we also wanted to assess 
whether these network properties could potentially offer prediction of long-term outcomes by assessing 
their correlation with cognitive performance at two years of age.

2 Materials and methods
2.1 Participants
A cohort of typically developing infants was recruited (N = 26; 9 females). The infants were all born at full-
term (>37 weeks of gestation) at the Helsinki University Hospital, and they had no medical issues as per 
parents’ interviews. The recordings of the visual responses were performed at about five months of age 
(average age of 5.1 ±0.4 months (SD)). Eighteen of these infants (see Supplementary Information S1) 
attended neuropsychological follow-up assessment at the mean age of 24.5 ±0.4 months (SD) using Bayley 
III (Bayley 2006) that examines different aspects of infant’s developmental status.

The Ethics Committee of Children’s hospital in Helsinki University Hospital had approved the study 
protocol. The parents or guardians of the infants signed an informed consent to approve the involvement in 
this study. The individual shown in Figure 1A has given a written informed consent to publish the 
photograph.

2.2 Recording sessions
An EEG cap was laid on infant’s head and the infant was placed on caregiver’s lap in front of the stimulation 
screen at viewing distance of 59 ±4 cm (SD; see the demonstration video at  https://youtu.be/v8srf2Wwi2I 
(Vanhatalo 2014)). The visual stimuli were presented using Tobii T120 remote eye tracker (Tobii Technology 
AB, Stockholm, Sweden) that encompasses a built-in 17” thin-film transistor monitor (refresh rate = 60 Hz, 
response time = 4 ms). The eye tracking data, sampled at 120 Hz by the eye tracker, was used to guide the 
stimulation procedure online, and later to exclude invalid recording segments with gaze off-screen (setup 
described in detail in Ahtola et al. 2017). The brain responses to the stimulation were measured using a 31-
channel Waveguard EEG cap and 88-channel eego sports EEG amplifier (ANT-Neuro, Enschede, The 
Netherlands). The electrodes included were Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, M1, T7, C3, Cz, 
C4, T8, M2, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, POz, O1, Oz, O2 positioned consistently with the common 
the 10–10-system (see layout in Fig. 1C). The EEG caps had recording reference in CPz, and we used 
sampling rate of 512 Hz. As to stimulation, we targeted at least 100 s of data with appropriate gaze 
orientation per stimulus type.

2.3 Visual stimuli
We used three different, previously published visual stimuli: orientation reversal (OR), global form (GF), and 
global motion (GM). They were presented at the eye tracker screen as digital videos created in advance 
using the MATLAB functions of Psychophysics Toolbox (version 3; Brainard 1997). The video files are 
available upon request from the author.

Orientation reversal (OR). In the OR stimulus, black and white sine wave grating patterns (spatial resolution 
0.45 cycle/degree) alternate orientation between angles of 45° and 135° at reversal rate of 4 Hz. On top of 
that, the phase of the grating pattern is set to change randomly at a higher, 24 Hz frequency. Because the 
local contrast variations in the stimulus are similar at every phase and orientation shift, this technique 
allowed us to separate the components elicited by the local changes from the orientation-specific response 
at the frequency domain. (Fig. 1B; Braddick et al. 2005).

Global form (GF). In GF stimulus, an ensemble of 2000 white arc segments (length 1.3°) is presented over a 
black background. The general alignment of the arcs alternate between coherent and non-coherent phases 

https://youtu.be/v8srf2Wwi2I
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at 2 Hz rate (for full cycles). In the former phase, the arcs are arranged concentrically so that they create a 
perception of a global circular form pattern; In the latter phase, the orientations are randomized to lose the 
global form perception (Fig. 1B; Wattam-Bell et al. 2010).

Global motion (GM). In GM stimulus, an ensemble of 2000 white dots (diameter 0.3°) is presented over a 
black background, and their motion pattern switches at a rate of 2Hz between two alternative phases. The 
coherent phase is perceived as global rotational movement where the dots move along mutually coherent, 
circular trajectories. In the non-coherent phase, the dots are moving along random and mutually unrelated 
trajectories (Fig. 1B; Wattam-Bell et al. 2010).

2.4 Neuropsychological assessment
Part of the original cohort (N = 18) participated in a neuropsychological assessment at the age of two years. 
The assessment was performed according to Bayley Scales III (BSID-III; Bayley 2006) which is widely used in 
research and clinical context when assessing infants’ neurodevelopment. BSID-III consists of five different 
subscales: cognitive, fine motor, gross motor, receptive language and expressive language subscales. For 
the present work, we selected the cognitive subscale from BSID-III as we aimed to examine relationships 
between the metrics of brain networks and general cognitive development. The cognitive scale tasks recruit 
several aspects of the cognitive performance such as visual perceptual abilities, symbolic play and object 
manipulation, memory, and early development of the conceptual reasoning and categorizing. The overall 
performance may be affected by the co-operation and self-regulation skills as well as the capability to 
comprehend given instructions.

2.5 Signal analysis
The overview of the EEG analysis pipeline is presented as a workflow schematic in Fig. 1C, and with more 
technical details in the Supplementary Figure S1 (see also Tokariev et al. 2019b).

2.5.1 Pre-processing
Raw EEG data was band-pass filtered around the stimulation frequency (f = 4 Hz for OR; f = 2 Hz for GF/GM) 
with a pair of digital low-pass and high-pass FIR filters with corresponding cut-off frequencies (f ± 0.3 Hz, 
Hamming-window based linear-phase filter, order 1250, i.e. 5 cycles at 2 Hz). To avoid phase shifts, we 
applied the filters both in forward and in backward directions. To reduce the computational load, the 
filtered data was then resampled down to 100 Hz (anti-aliasing filter applied).

Based on the eye tracking information, we selected the best 60 1-s-long epochs from each stimulation 
paradigm. This was done to minimize potential confound from differences between infants’ performance 
across the tests. The accepted EEG epochs were concatenated to a single time series, and epochs with 
abnormally high peak-to-peak amplitude were excluded as plausible artefacts.

The epochs were selected based on gaze quality index which measured how much the infant had been 
watching the visual stimulus during a given time period. An optimization algorithm aimed to maximize this 
index in the epoch selection. Technical details of the gaze quality index calculation and the epoch selection 
procedure are described in the Supplementary Information S2. In addition, the MATLAB code for the 
optimization algorithm is shared as a downloadable package in 
https://github.com/ahtolee/GazeBasedEpochSelection together with test data from one recording.

Overall, the study setting allowed collection of data with very high performance; the average gaze quality 
index over the analysed time interval was 86%, 98%, and 96% for OR, GF, and GM stimuli, respectively. A 
gaze quality index below 35% was taken as threshold for rejecting all data from the given condition in the 
given infant (two recordings were excluded with this criterion). Additionally, we also excluded the 

https://github.com/ahtolee/GazeBasedEpochSelection
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recordings where the total number of the artefact-free epochs was less than 60 (three recordings were 
excluded with this criterion).

2.5.2 Computation of cortical signals
To compute cortical source signals, we used a generic infant head model for all subjects. The model 
included scalp, skull, and intracranial volume surfaces that were derived from anatomical magnetic 
resonance imaging (MRI) data and approximated with 2562 equidistant vertices each (Tokariev et al. 2016). 
It is noteworthy that we used realistic conductivity values for these tissue types of infant head: 0.43 S/m for 
scalp, 0.2 S/m for skull, and 1.79 S/m for cerebrospinal fluid (Despotovic et al. 2013; Odabaee et al. 2014). 
As a source space we opted to use 'Colin 27' cortical surface, available in Brainstorm software (Tadel et al. 
2011), which was first appropriately scaled and smoothed to fit size and gyration of infant brain (Tokariev 
et al. 2019b). 

Source space comprised 8014 dipoles of fixed normal orientation relative to cortical surface. Electrode 
positions in the head model corresponded to the EEG cap layout used at recordings (Fig. 1C). Forward 
solution was computed with symmetric boundary element method (Gramfort et al. 2010), and to get 
inverse solution, we applied dynamic statistical parametric mapping (Dale et al. 2000). Next, all 8014 
cortical dipoles were collapsed into 58 parcels (Fig. 1C) and corresponding parcel signals were computed as 
weighted mean activity of sources within them (more details in Tokariev et al. 2019b). Finally, we labelled 
all parcels according to their anatomical location into frontal (F), central (C), temporal (T), and occipital (O) 
groups (Fig. 1C).

2.5.3 T2
circ response detection

We used circular T2
circ test statistic (Victor and Mast 1991) to determine whether the recorded EEG 

contained an evoked steady-state response. To this end, we applied an established paradigm (Wattam-Bell 
et al. 2010; Ahtola et al. 2017) that served as an additional step of quality control: all sessions without a 
statistically significant (p<0.05) response in the postcentral parcel signals were excluded from the further 
network analyses (one session was excluded with this criterion). The family-wise error rate of the 
detections was controlled with the false discovery rate (FDR) correction by Benjamini and Hochberg (1995) 
with q-value threshold set to 0.05.

After the exclusion procedures, the final number of the accepted recordings per stimulus type were 23, 25, 
and 24 for OR, GF, and GM, respectively. In the further discussion, this dataset is referred as the full 
dataset. Some of our statistical analyses were performed pairwise between stimulus types, therefore 
needing data from all three conditions that was available from 22 infants. Correspondingly, this dataset is 
referred as the pairwise dataset. For individual break out of these results, see Supplementary Information 
S1.

2.5.4 Calculation of functional connectivity
Functional connectivity between pairs of cortical parcel signals (58x58) was estimated using debiased 
estimator of the squared weighted phase lag index (wPLI; Vinck et al. 2011), which aims to minimize 
potential confounding by linear mixing of common sources that are typically seen at near zero phase lags. 
The values of wPLI range from 0 and 1, referring to completely uncorrelated and fully synchronized signals, 
respectively. The resulting connectivity matrix is then taken as functional network where parcels are nodes 
and the corresponding wPLI values are edges representing strength of functional interaction between them 
(see example in Fig. 1C).

There is a certain level of variation on how reliably the measured (and transformed) signals can describe 
the connectivity between the parcels in the current recording configuration. In order to remove spurious 
interactions that may arise from compromised reliability in our model, we used a binary fidelity operator 
that rejects unreliable connections (for more details, see Tokariev et al. 2019b). With our recording 
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constellation, this procedure rejected 20% of all possible edges from further analysis, leaving 1330 edges to 
the final network.

2.5.5 Analysis of response networks 
Consistent networks. Starting from the individual adjacency matrices, we calculated consistent networks 
(CN), i.e. networks that comprise the strongest edges most consistently across the cohort (Tokariev et al. 
2019b). The calculations were done at group-level separately for OR, GF, and GM stimulus. In short, we first 
determine the strongest 20% edges in each adjacency matrix (10% and 30% were also tested for control). 
The resulting binary arrays were combined per stimulus condition over the cohort to yield a matrix with 
only strongest edges per stimulus condition. A binomial test was used to assess consistency of edges across 
the cohort, setting probability of success to 20%, alpha level to 0.05, and trial number to the number of 
infants. Multiple comparisons were controlled by rejecting a fraction of the weakest significant 
observations, where 5% fraction was taken from the overall number of tests to correspond to the expected 
level of false positives (Palva et al. 2010). Next, the network density was calculated as a fraction between 
the number of consistent edges and all possible network edges. Network densities were computed both 
globally and regionally by calculating the proportion of edges that belong to a specific area (frontal, central, 
temporal, occipital) and were included in the CN. Generally, higher density would indicate a wider network 
that entrains larger number of nodes. Finally, we calculated average strengths of the consistent networks 
(CN wPLI), taken as the mean wPLI value of the edges belonging to the given CN. Here, the CN derived at 
group-level was used as the mask for computing mean wPLI for each infant separately. These CN wPLI 
values were used in a correlation analysis aimed to examine the associations between the metrics of brain 
networks and cognitive development.

Graph measures. In addition to the regional comparisons, we also studied networks using two graph 
theoretical metrics that are taken to quantify different aspects of functional segregation and integration of 
a complex network: clustering coefficient (CC) and characteristic path length (CPL) (Rubinov and Sporns 
2010). The optimal balance between these two coexisting properties is essential for the processes in large-
scale human brain networks. In general, segregation gives brain the ability for specialized processing to 
occur within functionally isolated subsystems, whereas integration provides a way for associating 
interactions across the distinct modules (Wig 2017).

Statistics. The statistical comparisons between the networks related to the stimuli were done using 
pairwise Wilcoxon signed-rank test, or using nonparametric Kruskall-Wallis when all three stimuli were 
compared. Alpha level for both tests was set to 0.05 with FDR correction applied to control multiple 
comparisons (Benjamini and Hochberg 1995; q-level set to 0.20 unless stated otherwise). For the group-
level comparisons of the graph measures, we used nonparametric Wilcoxon rank-sum test. The correlations 
between average strengths of the consistent networks and cognitive scores from BSID-III were calculated 
using Pearson’s method.

2.6 Analysis software
All calculations and signal processing steps were done with custom-scripted MATLAB routines (version 
R2018A, MathWorks, Natick, MA, USA) and freely available toolboxes. A head model was computed using 
openMEEG Toolbox (Gramfort et al. 2010). Brainstorm Toolbox (Tadel et al. 2011) was used to compute 
cortical source signals. Brain Connectivity Toolbox (Rubinov and Sporns 2010) provided the functions for 
calculations of the network metrics. Code for computation of consistent networks is freely available online 
from https://github.com/babyEEG/neoNets. The full analysis pipeline is available from the corresponding 
authors upon request.

https://github.com/babyEEG/neoNets
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3 Results
3.1 Cortical responses to patterned stimuli are reliably detected in infants 
Analysis of T2

circ responses in each cortical parcel showed that apart from one OR recording, every infant 
yielded significant postcentral responses for all three stimuli. Projecting the mean T2

circ results on a 
topographical 3D model (Fig. 2) shows that all stimuli resulted in responses mainly on the occipital area. 
The GM responses, however, also extended wider towards temporal and central areas, which is clearly 
noticeable also in the corresponding parcel-specific average response rates that are presented in the 
Supplementary Figure S2.

3.2 Cortical networks are modified by the type of visual stimulus
Functional networks were further examined visually using circular connectivity diagrams (Fig. 3A; full 
dataset) and consistent network graphs (Fig. 3C; full dataset), as well as statistically though comparison of 
averaged regional wPLI values (Fig. 3B; pairwise dataset). The consistent networks were calculated from the 
strongest 20% edges in the individual networks, but corresponding results with 10% and 30% are presented 
the Supplementary Figure S3.

The network related to OR stimulus was mainly occipital, including some temporal areas (Fig. 3A), and only 
very few frontal or central connections (Fig. 3C). The strongest edges in the GF responses provided a 
pattern similar to OR, however GF connections were generally weaker. The CN associated with GF stimulus 
extended far more to frontal and central regions, as also seen in the highest global density value of all three 
stimuli (5.2%; Fig. 3C). GM stimulus, in turn, resulted in the strongest global network, recruiting large areas 
across the cortex. Compared to the GF stimulus, the CN related to the GM stimulus was more uniformly 
spread across the regions (Fig. 3C).

Statistical comparison (Kruskall-Wallis) between all three stimuli showed significant regional differences 
only at connections that involve frontal areas (Fig. 3B). This was most probably due to the generally weak 
frontal connections in the OR network. All the aforementioned findings sustained the FDR correction for 
multiple comparisons (Benjamini and Hochberg 1995; q-level 0.20). The post hoc analysis, performed 
between pairs of stimulus types showed most differences between OR and GM (Fig. 3B), and all differences 
involved frontal areas (F, FF, FC, FO). Some differences were also seen between OR and GF, especially in 
connections involving frontal areas (GF stronger; F, FF), but these findings did not survive the FDR 
correction. 

Since the visual inspection of connectivity graphs suggested rather global differences, we next assessed 
whether global graph measures would be able to differentiate between stimulus conditions. To this end, 
we used metrics that are often taken to reflect the level of functional integration and segregation, 
clustering coefficient (CC), characteristic path length (CPL), respectively. CC was computed for each node 
separately, hence allowing topographic assessment as well (Fig. 4A; full dataset). Comparison of the group 
mean CC distributions indicated that the topographic CC patterns of OR and GF responses are rather 
comparable, with tightly connected clusters mainly in the occipital and temporal areas. However, GM 
appeared to be different, with typically high average CC values throughout all cortical regions, which was 
also confirmed in the statistical comparison of CC levels in different regions (Fig. 4B; full dataset). In 
addition, central, temporal, and occipital regions showed significant differences between GF and GM 
responses, whereas GM and OR networks were different in the frontal region. Analysis of global CPL values 
(Fig. 4C, full dataset) showed that GM networks are typically the shortest (low CPL) and they are statistically 
significantly different from both OR and GF. However, CPL in networks related to OR and GF are 
comparable. Comparison of average wPLI strengths within the consistent networks (CN wPLI) showed that 
GF stimulus leads to generally weak wPLI, which is significantly weaker than the network seen after GM 
stimulus (Fig. 4C, full dataset).
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3.3 Networks related to global form processing correlate with later neurocognition
As the cortical networks appeared to differ between stimulus modalities, we then wanted to assess 
whether these networks associated with infant cortical visual processing could also be associated with later 
neurocognitive development. To this end, the cognitive neuropsychological scores of the infants at two 
years of age were compared to the strength of networks using the group-level, stimulus-specific consistent 
networks as templates (CN wPLI; Fig. 5). 

We found positive association (r = 0.47; p = 0.042, Pearson; pFDR = 0.126, Benjamini-Hochberg) between 
BSID-III cognitive scale scores and the strengths of GF consistent network. At the same time, no significant 
relationships were found between OR or GM networks versus later cognitive performance scores (both had 
r < 0.07 and uncorrected p > 0.79). Together these results perhaps indicate that GF stimulus might trigger 
specific network patterns that play important role for later cognitive processing.

4 Discussion
Our findings show that cortical source responses to complex visual stimuli can be reliably recorded in the 
infants, and the responses encompass brain-wide networks with at least partial specificity to the given 
stimulus condition. The observations are fully compatible with prior literature showing the responses in 
individual scalp EEG signals (Braddick et al. 2005; Wattam-Bell et al. 2010; Ahtola et al. 2017). We extend 
earlier knowledge by characterizing the cortico-cortical interactions and their differences between stimuli, 
which are considered to recruit distinct mechanisms in the visual system (Braddick and Atkinson 2011). By 
analysing brain responses from the transformed source signals instead of scalp EEG derivations, we 
obtained response rates that were even higher than previously reported, yielding response detections in 
96-100% of infants.

The nodal level response, T2
circ, was predominantly found in the occipital area, which is around primary 

visual area and hence expected as the first relay for cortical visual processing of all stimulus types. Yet, we 
found significant response components also outside the occipital lobe, supporting the idea of wider cortical 
involvement in visual information processing, such as parietal, temporal and frontal areas. While this was 
expected based on prior scalp level analyses (Wattam-Bell et al. 2010; Ahtola et al. 2017), it also prompted 
the idea of looking for brain wide network interactions. Moreover, the conventional method for assessing 
responses locally from the T2

circ test statistic is technically efficient for binary assessment (Victor and Mast 
1991), however it suffers from significant sensitivity to technical peculiarities such as varying amounts of 
data (Ahtola et al. 2017), calling for more sophisticated means to look for global brain responses.

Visual comparison of networks after different visual stimuli suggested that the OR network is locally 
strongest, but spatially constrained predominantly to the occipital regions, while the GM and GF responses 
encompass much wider distribution. Compared to GF, the connections within a typical GM related network 
are generally stronger and comprise a network structure that consist of multiple regional hubs that share 
strong local connectivity between the neighbouring nodes. The differences between modalities were also 
supported by statistical comparison of several network-derived measures. These observations are by and 
large compatible with the prior idea that OR stimulus is primarily processed in and near the primary visual 
areas. Our findings from the GM and GF responses are, however, partly challenging the perhaps simplistic 
view (e.g. Braddick and Atkinson 2011) that processing of GM and GF stimuli would be limited to dorsal and 
ventral streams, respectively). Indeed, our network findings provide no evidence for such distinction, while 
they rather speak for a brain-wide involvement. It is possible that such near-global recruitment is at least 
partly due to the immaturity of high order visual systems (Wattam-Bell et al. 2010; Braddick and Atkinson 
2011), however recent literature using network neuroscience framework provides ample evidence for the 
idea that higher order processing would be rather more distributed than localized (van den Heuvel and 
Sporns 2013; Wig 2017; Hirvonen et al. 2018).
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With respect to conclusions on sensory physiology, our study has limitations that may arise from the 
analytic approach but also partly from unavoidable individual variability. Here we assessed phase 
synchronization at the stimulation frequency, which allows assessment of the networks related to the 
steady-state response. However, higher order cortical processing, at least in the older subjects, is shown to 
involve large-scale phase synchrony at higher frequencies. It is possible that our findings are more about 
cortical entrainment by the stimulus (Zhang et al. 2013), while analysis of e.g. alpha and beta frequency 
phase synchrony could disclose more delimited networks related to the perception. Such analysis requires 
substantial efforts to account for spurious findings; it would be useful to perform such analyses on datasets 
with more clinical variability to allow better searching for correlations with clinical performance at the 
same time.

Prior work has suggested that the steady-state VEPs could be potentially used for outcome assessment, or 
prediction of future neurocognitive development (Mercuri et al. 1998; Braddick and Atkinson 2011). Recent 
development of the setup using eye tracking control and optimized analysis tools yields method 
performance (e.g. sensitivity and specificity) that would allow its use in clinical diagnostics.  Our present 
finding supports such idea by also showing different brain-wide networks associated with each stimulus 
type. Indeed, we found an interesting positive association between GF consistent networks and cognitive 
performance at two years of age. This finding should be considered only as preliminary observation that is 
promising when considering the relatively narrow range in the typically seen infant population. More data 
with much wider range of outcomes is needed to evaluate the true clinical reliability and/or added value in 
the context of other known information. Those studies would also need to benchmark the VEP networks 
with more fine-grained assessment of visual cognitive skills, to show, e.g. the potential for differential 
assessment of visual processing streams.
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Figure captions

Fig. 1. Study design and analysis workflow. 
A) During the recording, infant is placed on caregiver’s lap with EEG cap in place, and visual stimulations are 
presented from the screen of the eye tracker. B) Still images of the two alternating phases of each visual 
stimulation (OR, orientation reversal; GF, global form; GM, global motion). The white square in the lower 
right corner was used for delivering timing impulse to the EEG system to ensure synchronization. C) An 
illustration of the EEG analysis pipeline. The filtered EEG segments were selected based on the gaze data 
and transformed into cortical parcel signals. Then analytic phase was extracted to allow computation of 
phase-phase interactions. The resulting functional networks were assessed using nodal and global network 
metrics, and the results were visualized over 3D cortex model or circular graph.

Fig. 2. Spatial distribution of the T2
circ responses.

T2
circ statistic was used to detect the presence of statistically significant response at the parcel level. Figures 

depict spatial distributions of the mean T2
circ values over the study cohort (full dataset) projected on a 3D 

cortex model. Results for the three stimuli are presented separately (OR, orientation reversal; GF, global 
form; GM, global motion). In the figures, each dot represents centroid of a parcel, coloured according to its 
T2

circ value. Note the GM response components also outside the occipital area.

Fig. 3. VEP response networks.
A) Circle diagrams visualize the mean wPLI over all infants in the given edges (strongest 20%). Note the 
dominance of posterior connections in the orientation reversal (OR) network, while global form (GF) and 
motion (GM) connections are more uniformly distributed. B) Comparison of regional (F, frontal; C, central; 
T, temporal; O, occipital) connection strengths shows that OR differs most from the other modalities. The 
leftmost block between vertical separators contains intra–regional intra–hemispheric connections, the 
second block contains intra–regional inter–hemispheric connections, and the third block inter–regional 
intra–hemispheric connections. Additionally, the three columns labelled ‘All’ contain all connections of that 
block type. Each box is coloured according to group-level mean wPLI of the corresponding subset of 
connections. An asterisk marker (*) above a column indicates that the differences between the three 
networks were statistically significant (p<0.05; Kruskall-Wallis). A vertical segment between two rows 
indicates that the differences between the two conditions was statistically significant in a post-hoc test 
(p<0.05; Wilcoxon signed-rank). The findings coloured with grey yielded significant p-values but failed in the 
subsequent FDR correction. C) Circle diagrams show the CN of each stimulus condition, and the colour hues 
reflect the frequency (prevalence) of the given edge in the cohort. The bars below depict global (G) and 
regional (F, C, T, O) densities of the CNs. The 3D cortex models in the bottom visualize the given CNs for 
easier topographical assessment (same as in the circle graph above). Note the overall difference where OR 
is mostly occipital while GM and GF relate to a more global CN.

Fig. 4. Network metrics.
A) The figures depict the group-level topographies of the clustering coefficients (CC) of the VEP networks 
(averaged over the cohort). Results for the three stimuli are presented separately (OR, orientation reversal; 
GF, global form; GM, global motion). B) The figure shows distributions of the spatially averaged CC values 
for each infant. In the regional breakdown, the clustering coefficients in parcels were grouped based on the 
brain regions they belong to. The ‘Global’ condition covers all regions. Each violin graph depicts the median 
value (horizontal line), the probability density estimate of the inspected distribution (vertical envelope), 
and the actual data points. Statistically significant (p<0.05; Wilcoxon rank-sum) differences between the 
stimulus types are marked with asterisk signs. C) The figure shows violin plot distributions of characteristic 
path length (left) and mean wPLI in the edges belonging to a consistent network (CN wPLI; right) for each 
infant. An asterisk marker denotes a statistically significant (p<0.05; Wilcoxon rank-sum) differences in a 
comparison between two stimuli.
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Fig. 5. Correlation of the network strength with cognitive outcome at 2 years of age.
The graphs show relationship of VEP network strengths (CN wPLI, mean wPLI in the edges of a consistent 
network) at 5 months and the cognitive scores at 2 years of age (least-squares fit). The r denotes 
correlation coefficients, whereas p and pFDR denote significance levels of the correlation coefficients 
before and after false discovery rate correction (Benjamini-Hochberg), respectively.

Supplementary material

Supplementary Information S1. Measurement information table.
The table shows information of the measurements and effect of the epoch segmentation for all infants 
within the studied cohort (#1 – #26). Data is presented separately for all three stimulus types (OR, 
orientation reversal; GF, global form; GM, global motion). The first row shows whether an adequate 
amount of artefact-free EEG was available for the analysis (x = yes). The first row shows the general gaze 
quality within the 60 epochs that were selected for the response analysis. Measurements with gaze quality 
less than 35% were excluded from the further analyses (marked with red). The third row shows whether a 
statistically significant (p<0.05; T2

circ) posterior response could be detected from the analysed data (x = yes). 
Recordings without a response were excluded from the further analyses.

The column on the right shows the number of valid recordings along the described exclusion steps. From 
the cohort of 26 infants, we could finally analyse 23 OR, 25 GF, and 24 GM recordings (full dataset). The 
average gaze qualities of these recordings are given in the same column (‘AVG’). The number of infants 
with valid data from all three stimulus types was 22 (pairwise dataset).

Part of the original cohort (N = 18) participated also in a neuropsychological assessment (Bayley Scales III) 
at the age of two years. The last row presents their cognitive subscale scores that were used in the 
correlation analysis. Labels of the infants with adequate VEP tests, but missing cognitive scores are marked 
with orange.

Supplementary Information S2. Use of the eye tracker data and gaze-based epoch selection algorithm.
Illustrated section describes in detail how the eye tracking data was used in this study. This includes 
descriptions of the data structures, calculation of the gaze quality index, and design of the gaze data -based 
epoch selection algorithm that aim to maximize the gaze quality within the analysed epochs.

Supplementary Figure S1. Workflow of the test paradigm.
The flow chart compiles the signal processing pipelines that were used in the work, starting from the data 
acquisition, and resulting in the network metrics and statistical analyses. Boxes show all the major 
processing steps and the specific parameters for them are given in brackets.

Supplementary Figure S2. T2
circ response rates.

We used T2
circ statistic to evaluate of the statistical significance of an evoked steady-state responses, and 

applied it as a criterion for the recordings to be included in the subsequent connectivity analyses. The 
figures here depict the group-level topography of the nodal average response rates (p<0.05) for all three 
stimulus types (OR, orientation reversal; GF, global form; GM, global motion).

Supplementary Figure S3. Effect of the alleged network size on the consistent network analysis.
Consistent network (CN) comprise the set of the strongest edges that emerge coherently across the cohort. 
The calculation of CN started by determination of certain amount of strongest edges in each adjacency 
matrix. This amount (k) specifies the alleged size of the network of which consistency is being inspected. 
We wanted to see how the CN properties would change, if different k-values were used. The 
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Supplementary Figures S3 presents the consistent network analyses similar to Fig. 3C, for k = 10%, 20%, and 
30%. Note how GF network gets denser and GM network sparser, when k is increased. 
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