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Abstract

Music alignment links events in a score and points on
the audio performance time axis. All the parts of a
recording can be thus indexed according to score in-
formation. The automatic alignment presented in this
paper is based on a dynamic time warping method.
Local distances are computed using the signal’s spec-
tral features through an attack plus sustain note mod-
eling. The method is applied to mixtures of har-
monic sustained instruments, excluding percussion
for the moment. Good alignment has been obtained
for polyphony of up to five instruments. The method
is robust for difficulties such as trills, vibratos and
fast sequences. It provides an accurate indicator giv-
ing position of score interpretation errors and extra or
forgotten notes. Implementation optimizations allow
aligning long sound files in a relatively short time.
Evaluation results have been obtained on piano jazz
recordings.

1 Introduction

Score alignment means linking score information to an audio
performance of this score. The studied signal is a digital record-
ing of musicians interpreting the score. Alignment associates
score information to points on the audio performance time axis.
It is equivalent to a performance segmentation according to the
score.

To do this, we propose a dynamic time warping (DTW) based
methodology. Local distances are computed using spectral fea-
tures of the signal, and an attack plus release note modeling
(Orio & Schwarz, 2001). Very efficient on monophonic signals,
this method can now cope with any poly-instrumental perfor-
mance made up of less than five instruments without percus-
sion.

After a brief overview of possible applications in section 1.1,
the note model and DTW implementation are discussed in sec-
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tion 2. Finally, results obtained with this method are presented
in section 3.

1.1 Applications, Goal and Requirements

Automatic score alignment has several applications. Each goal
requires specific information from this automatic process. The
most important applications are:

1. Inapplications that deal with symbolic notation, alignment
can link this notation and a performance, allowing musi-
cologists to work on a symbolic notation while listening to
a real performance (Vinet, Herrera, & Pachet, 2002).

2. Indexing of continuous media through segmentation for
content-based retrieval. The total alignment cost between
pairs of documents can be considered as a distance mea-
sure (as in early works on speech recognition). This allows
finding of the best matching documents from a database.
These first two applications only need a good global preci-
sion and robustness.

3. Musicological comparison of different performances,
studying expressive parameters and interpretation charac-
teristics of a specific musician.

4. Construction of a new score describing exactly a selected
performance by adding information such as dynamics, mix
information, or lyrics. This information can be added to
pitch and length labeling when building a database. Nev-
ertheless re-transcription of tempo necessitates high time
precision.

5. Performance segmentation into note samples automati-
cally labeled and indexed in order to build a unit database,
for example for data-driven concatenative synthesis based
on unit selection (Schwarz, 2000, 2003a, 2003b) or model
training (Orio & Déchelle, 2001). This segmentation re-
quires a precise detection of the start and end of a note.
However, notes that are known to be misaligned can be
disregarded (see section 3.3).

Alignment is close to real time synchronization between a per-
former and a computer, known as score following (Orio &
Déchelle, 2001; Orio, Lemouton, Schwarz, & Schnell, 2003).
However, in alignment, the whole signal can be used and more
accurate resolution can be obtained if required by the applica-
tion. Nevertheless, alignment can be a good bootstrap proce-
dure for training score followers which use statistical models.



For now, the goal of the present work is to obtain a correct
global alignment, i.e. a precise pairing between notes present
in the score and those present in the recording. On this basis,
very precise estimation of the beginning and end of notes will
be added in the future, as detailed in section 4.

1.2 Previous Work

Automatic alignment of sequences is a very popular research
topic, especially in genetics, molecular biology and speech
recognition. A good overview of this topic is (Rabiner & Juang,
1993). There are two main strategies: the oldest uses dynamic
programming (DTW) and the other uses hidden Markov mod-
els (HMMs). For pairwise alignment of sequences, HMMs
and DTW are quite interchangeable techniques (Durbin et al.,
1998).

Concerning automatic alignment specifically, the main works
are score following techniques tuned for off line use (Raphael,
1999), the previous work of (Orio & Schwarz, 2001), or
(Meron, 1999). A different approach of music alignment is very
briefly described in (Turetsky, 2003). All of these techniques
consider mainly monophonic recordings.

For note recognition, there are many pitch detection techniques
using signal spectrum or auto-correlation, for instance. These
techniques are often efficient in monophonic cases but none of
these use score information and are therefore sub-optimal in our
situation.

1.3 Principle

Score alignment is performed in four stages:

e First, construction of the score representation by parsing
of the MIDI file into score events.

e Second, extraction of audio features from signal.

e Third, calculation of local distances between score and
performance.

e Fourth, computation of the optimal alignment path which
minimizes the global distance.

This last stage is carried out using DTW. Our choice for this al-
gorithm is due to the possibility of optimizing memory require-
ments. Also, unlike HMMs, DTW does not have to be trained,
so that a hand made training database is not necessary.

2 TheMethod

For each sequence, the score and the performance are divided
into frames described by features. Score information is ex-
tracted from standard MIDI files, the format of most of the
available score databases. However this format is very hetero-
geneous and does not contain all classical score symbols. The
only available features from these MIDI files are the fundamen-
tal frequencies present at any time, and note attack and end po-
sitions. As implicitly introduced in (Orio & Schwarz, 2001), the
result of the score parsing is a time-ordered sequence of score
events at every change of polyphony, i.e. at each note start and
end, as exemplified in figure 1.

The features of the performance are extracted through sig-
nal analysis techniques using short time Fourier transforma-
tion (usually with a 4096 points hamming window, 93 ms at
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Figure 1: Parsing of a MIDI score into score events and the
states between them.

44.1 kHz). The temporal resolution needed for the alignment
determines the hop size of frames in the performance. The score
is then divided into approximately the same number of frames
as the performance. In consequence, the global alignment path
should follow approximately the diagonal of the local distance
matrix (see section 2.2).

Finally, DTW finds the best alignment based on local distances
using a Viterbi path finding algorithm which minimizes the
global distance between the sequences.

2.1 Model: Local Distance Computation

The local distance is calculated for each pair made up of a frame
m in the performance and a frame n in the score. This distance,
representing the similarity of the performance frame m to the
score frame n, is calculated using spectral information. The lo-
cal distances are stored in the local distance matrix ldm(m,n).

The only significant features contained in the score are the pitch,
the note limits and the instrument. Since having a good instru-
ment model is difficult, only pitch and transients were chosen
as features for the performance. This is why the note model is
defined with attack frames using pitch and onset information,
and sustain frames using only pitch.

2.1.1 Sustain Model

The sustain model uses only pitch. As pitch tracking algorithms
are error prone, especially for polyphonic signals, a method
called Peak Structure Match (Orio & Schwarz, 2001) is used.
With this method, the local Peak Structure Distance (PSD) is
the ratio of the signal energy filtered by harmonic band pass fil-
ters corresponding to each expected pitch present in the score
frame, over total energy.

This technique is very efficient in monophonic cases. However
in the poly-instrumental situation, the different instruments do
not have the same loudness, and it is very difficult to localize
low and short notes under continuous loud notes. Coding en-
ergies on a logarithmic scale reduces level ratio between the
different instruments and thus improves results.

However, this model has two major drawbacks. First, in poly-
phonic cases, filter banks corresponding to a chord tend to cover
the major part of the signal spectrum, increasing the likeness of
this chord with any part of the performance. As result, filters
need to be as precise as possible.

Secondly, such a model with narrow filters is adapted to fixed
pitch instruments, such as the piano, in which small frequency
variations, error, or vibrato, are impossible. For string instru-



ments and the voice, such variations can be as large as a semi
tone around the nominal frequency of the note. A simple solu-
tion is to define vibrato as a chord of the upper and the lower fre-
quency, but vibrato is not included in most MIDI based scores.
Another solution is to give a degree of freedom to each filter
around its nominal frequency. For each performance frame, the
filter is tuned within a certain range to yield the highest energy.
The energy is weighted by a Gaussian window centered on the
nominal frequency of the filter, lowering the preference for a
high energy peak far away and favoring a low but close one.
Amazingly, we have observed that shifting filters independently
gives better results than shifting the whole harmonic comb.

Moreover, this filter tolerance improves distance calculation for
slightly inharmonic instruments. After a number of tests, work-
ing with the first F,, = 6 harmonics filters gives acceptable re-
sults. Equivalent results were obtained for F,, =7 or 8. The
best and most homogeneous results are obtained with a filter
width of %th semitone (10 cents) and a tolerance of about %th
semitones (75 cents around the nominal frequency.

2.1.2 Attack Model

Tests using only the sustain model show some imprecision of
the alignment marks, which are often late. Worse, in very poly-
phonic cases (more than three simultaneous notes), some notes
are not detected at all.

There are two reasons for the markers’ imprecision. First, the
partials’ reverberation of the previous notes is still present dur-
ing the beginning of the next one. Second, during attacks, en-
ergy is often spread all over the spectrum and the energy maxi-
mum in the filters is reached several frames after the true attack.
With the sustain model alone, alignment marks are set at the in-
stant when the energy of the current note rises above the energy
of the last note, several hundredths of a second after the true
onset.

Moreover, in the polyphonic case, during chords, several notes
often have common partials. If only one note of this chord
changes, too few partials may vary to cause enough difference
in the spectral structure to be detectable by the PSD.

A more accurate indication of a note beginning is given by the
variation in the filters. Thus, special score frames using energy
variations A¥ in the harmonic filter band 4 of the note % instead
of PSD were created at every onset. In these frames, the attack
distance AD is given by the sum of the energy variations (in
dB) in every tuned filter band i. In the case of simultaneous
onsets, the distance AD is computed for every beginning note
and averaged out:

Fy
AD = meany, (1 — tanh (a (Z |A%|| - 6a>>> (1)
i=1

with A¥ the energy difference in dB with the precedent local
extremum in the filter band ¢ of note &, 6, a threshold, and « a
scaling factor.

Small note changes during chords seem to be grasped by hu-
man perception mostly due to their onsets. Therefore, the local
distance AD is amplified by the scaling factor o to favor onset
detection over PSD. After carrying out some tests, 6, was set to
6.5 dB and « to 50.

The example in figure 2 is characteristic of the principal prob-

lems of the sustain detection: For the first second of this Mozart
string and oboe quartet, violins and oboe play a loud contin-
uous note while the cello is playing small notes in their sub-
harmonics. The cello has many common partials with the other
notes and global energy variations are due to violin vibrato and
not cello onset. As shown by the PSD diagram in figure 2(b),
detection by use of the sustain model (PSD) is not possible. On
the contrary, the three notes E2, A2 and C3 can easily be local-
ized on the energy variation diagram as indicated by the vertical
dash-dotted lines.
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Figure 2: First second of Mozart quartet

2.1.3 Silence Model

Short silences due to short rests in the score and non-legato
playing are difficult to model, since reverberation has to be
taken into an account. We only model rests longer than 100 ms.



Shorter rests are merged with the previous note. The local dis-
tance SD for long rests is computed using an energy thresh-
old 6,:

E—-6§, if E>0,,

0 if £<46,. )

SD(m,n) = {

where E is the energy of the signal in the performance frame m.
2.2 Dynamic Time Warping

DTW is a consolidated technique for the alignment of se-
quences, the reader may refer to (Rabiner & Juang, 1993) for
a tutorial. Using dynamic programming, DTW finds the best
alignment between two sequences according to a number of
constraints. The alignment is given in the form of a path in a
local distance matrix where each value [dm(m,n) is the like-
ness between the score frame m and the performance frame
n. If a path goes through [m,n], the frame m of the perfor-
mance is aligned with frame n of the score. The following con-
straints have been applied: The end points are set to be [1, 1] and
[M, N], where M and N are the number of frames of the per-
formance and of the score, respectively. The path is monotonic
in both dimensions. The score is stretched to approximately the
same duration as the performance (M =~ N). The optimal path
should then be close to the diagonal, so that favoring the diago-
nal would prevent deviating paths.

Three different local neighborhoods of the DTW have been
tested. Several improvements have been added to the classical
DTW algorithm in order to lower processing time or memory
requirements and thus allow long performances to be analyzed.
The most important of these improvements are the path pruning
and the short cut path implementation.

2.2.1 Local Constraints

The DTW algorithm calculates first the augmented distance ma-
trix adm(m, n) which is the cost of the best path up to the point
[m,n]. To compute this adm matrix, different types of local
constraints have been implemented in which the weights along
the local path constraint branches can be tuned in order to favor
one direction. These weights [ w, wp, wy ] are explained in the
figure 3. The different type names, I, 111 and V follow the nota-
tion in (Rabiner & Juang, 1993) and are calculated as follows,
with ldm(m, n) abbreviated to A:

Typel :

adm(m —1,n —1) +wg A
+wp Ay (39)
+ Wy A

adm(m,n) = min < adm(m — 1,n)

adm(m,n — 1)
Type lll :
adm(m —1,n — 1) +wg A

adm(m — 2,n — 1) +w, A p (3b)
adm(m — 1,n — 2) + wy A

adm(m,n) = min

(m,n-1) wy (m,n) m.n)
o le
(m-1n-1)  (m-1,n) (M?L,n-2) (m*LnA)
(m-2,n-1) ®
Typel Type Il

(m-3,n-1)

Type V

Figure 3: Neighborhood on point (m,n) in type I, Il and V

TypeV :
((adm(m — 1,n — 1) + wg \)
adm(m — 2,n — 1) + w, A
+wgldm(m — 1,n)
adm(m —1,n — 2) +wp A
+wgldm(m,n — 1)
adm(m,n) = min ¢ adm(m —3,n— 1) +wy A { (3€)
+wg ldm(m — 2,n)
+wy ldm(m — 1,n)
adm(m —1,n —3) + wp A
+wp ldm(m,n — 1)
L +wgqldm(m,n — 2))

The constraint type | is the only one allowing horizontal or ver-
tical paths and thus admitting extra or forgotten notes. Since it
allows for vertical or horizontal paths, the drawback of this con-
straint type is as follows: The path can be stuck in a frame of a
given axis with erroneous small local distance with successive
frames of the other axis. It leads to bad results in the polyphonic
case by detecting too many extra or forgotten notes.

The types 11l and V constrain the slope to be respectively be-

tween 2 and % or 3 and % Since it is very rare to hear a per-

formance with passages played more than three times faster or



slower than the score, it gives good alignment but will accept
neither vertical nor horizontal paths and thus does not directly
handle forgotten or extra notes. These constraints Il and V
give approximately the same result, the type V takes more re-
sources and more time but gives more freedom to the path al-
lowing greater slope. Using Type V is preferable but type Il
can still be used for long pieces.

The standard values for the local path constraints [ w, wp wg ]
=[11 2]fortypelandVor[3 3 2] fortype Ill, do not
favor any direction and are used in our method. Note that our
experiments showed that lowering w, favors the diagonal and
prevents extreme slopes.

2.2.2 Path Pruning

As the frame size is usually around 5.8 ms, three minute
long performances contain about 36000 frames, so that about
1.3 - 10° elements need to be computed in the local distance
matrix and as many for the augmented distance matrix. The
memory required to store them is 2.5 GB. To reduce the
computation time and the resources needed, at every iteration
m, only the best paths are kept, by pruning the paths with an
augmented distance adm(m,n) over a threshold #p. This
threshold is dynamically set using the minimum of the previous
adm row. After various experiments this threshold was set to:

0p(m) = 1.1 min (adm(m — 1)) 4)

However, the paths between the corridor of selected paths and
the diagonal are not pruned to leave more possible paths. Usu-
ally the corridor width is about 400 frames.

2.2.3 Shortcut Path

Most applications only need to know the note start and end
points, and not the alignment within the note. Therefore, only a
shortcut path, linking all the score events in the path, is stored
as explained in (Orio & Schwarz, 2001). As the local constraint
types Il or V need computation with a depth of 3 or 4 frames re-
spectively, only 2 or 3 frames per performance frame are stored
for each score event reducing memory requirements by about
95%.

3 Results

All tests were performed with a default frame hop size of 5.8 ms
(usually 256 points) which is a good compromise between pre-
cision and number of frames to compute. This hop-size can be
lower for a better resolution when considering small recordings
or higher for quick preview of the alignment.

Due to the absence of previously aligned databases and the diffi-
culty of building one by human alignment, quantitative statistics
were done on a small database. However, many qualitative tests
were performed by listening to performances and their reconsti-
tuted MIDI files, which permitted the evaluation of global align-
ment. These tests were performed with various types of music
(classical, contemporary, songs without percussion, for instance
Bach, Chopin, Boulez, Brassens, etc.) achieving very good re-
sults. Even with difficult signals such as voices, very fast violin
or piano sections, trills, vibrato, poly-instrumental pieces, the
algorithm showed good results and good robustness with only
few imprecisions on onset for multi-instrumental pieces.

3.1 Limits

Notes shorter than 4 frames (23 ms) are very difficult to detect
and often lead to errors for neighbor notes. Therefore, all the
events that are too short, are merged in a chord with the next
event. This technique makes it possible to handle unquantised
chords from MIDI files recorded on a keyboard. Alignment
is efficient for pieces with less than five harmonic instruments
such as singing voice, violin, piano, etc. As the memory re-
quirement is still too high, only pieces shorter than six minutes
and with about four thousand or less score events are currently
treatable (a little less with local constraint V), but this is enough
to align most pieces. The longest successful test was performed
on a five minute and twelve second long jazz performance of
4200 score events with time resolution of 5.8 ms (53926 frames)
taking about 400 MB of RAM and 146 minutes on a Pentium
IV 2.8 GHz running C++ and Matlab® routines.

3.2 Automatic Evaluation

As performers rarely play with sudden variations in tempo, ex-
treme slopes of alignment path, with large variation, usually in-
dicate score—performance mismatching. Thus, the path slope
can be a good error indicator. If the slope is % for several notes,
it is very likely that some notes are missing in the performance.
On the other hand if the slope is 3, there are certainly extra notes
in it.

This indicator was able to find with precision the position of an
unknown extra measure in a score of Bach’s prelude, as can be
seen in figure 4.
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Figure 4: Piano roll representation of aligned MIDI, and path
slope in log units in the Bach’s prelude between 45 sec and 60
sec.

3.3 Robustness

Tests with audio recording that do not exactly coincide with
the MIDI files showed very strong robustness and a very good
global alignment. For instance, alignment of the first prelude
for piano of Bach (80 sec and 629 score events) with an extra
measure at the 51% second was correctly aligned until the 50™
and after the 55", and another test with a Bach sonata for violin
showed a very good global alignment even though a passage of
52 notes was missing in the score!

Vibratos and trills can be aligned very efficiently as well, as
shown in the very large vibrato section of Anthémes 2 by
Boulez.



3.4 Error Rate

Quantitative tests were performed on several jazz piano impro-
visations played by 3 different pianists, where sound and MIDI
were both recorded. These are very fast (an attack every 70 ms
on the average) and long pieces (about four minutes) with many
trills and a wide dynamical range.

As reverberation prevents precise note end determination, we
focused on note onset detection. Only a good global alignment
was looked for. A correct pairing between score and perfor-
mance means that the detected note onset is closer to its corre-
sponding onset in the performance than any other. With this cri-
terion, tests showed a 9.7% error rate of onset detection over the
9024 considered onsets, about 65% of these errors were made
on notes shorter than 80 ms, corresponding to a rate of 12 notes
per second. These results need several comments:

1. Due to the MIDI recording system used, the MIDI file,
though recorded from the keyboard simultaneously with
the audio seems to be relatively imprecise when compared
to the audio.

2. During the MIDI parsing, every note shorter than 4 frames
(usually 23 ms) is merged with the preceding note, increas-
ing error rate of small notes (numerous in our tests).

3. The hop size gives 5.8 ms maximum resolution between
each possible detection.

4. Finally, as audio features are extracted from a short time
fast Fourier transform computed on a 93 ms (4096 points)
window, the center of this window is taken to determine
frame position in the recording. A better solution would
be to take the center of gravity of energy in this window,
but this function is not yet implemented.

As a consequence, tests showed a 23.8 ms standard deviation
between the score onset and the detected one. This result can
easily be improved in the near future, by a second stage of pre-
cise time alignment within the vicinity of the alignment mark.
The precise alignment was not the goal pursued in this present
work.

4 Conclusion and Future Work

Our method, which is being used at IRCAM for research in mu-
sicology, can efficiently perform alignment on difficult signals
such as multi-instrumental music (of less than five instruments),
trills, vibrato, accentuated or fast sequences, with an acceptable
error rate.

We are currently working on an onset detector which re-
analyzes the signal around the alignment mark, thus improving
the resolution for applications which need better precision. Fur-
thermore, a percussion detection process is being worked on to
be included soon in the alignment process.

One of the fundamental problems remaining is the inadequacy
of the score representation. MIDI files contain very little infor-
mation compared to real musical scores and so too few features
can be used in the alignment.
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