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Messenger RNA translation is often studied by means of statistical-mechanical models based on the asym-
metric simple exclusion process �ASEP�, which considers hopping particles �the ribosomes� on a lattice �the
polynucleotide chain�. In this work we extend this class of models and consider the two fundamental steps of
the ribosome’s biochemical cycle following a coarse-grained perspective. In order to achieve a better under-
standing of the underlying biological processes and compare the theoretical predictions with experimental
results, we provide a description lying between the minimal ASEP-like models and the more detailed models,
which are analytically hard to treat. We use a mean-field approach to study the dynamics of particles associated
with an internal stepping cycle. In this framework it is possible to characterize analytically different phases of
the system �high density, low density or maximal current phase�. Crucially, we show that the transitions
between these different phases occur at different parameter values than the equivalent transitions in a standard
ASEP, indicating the importance of including the two fundamental steps of the ribosome’s biochemical cycle
into the model.
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I. INTRODUCTION

The translation of the messenger RNA �mRNA� is the
final step of protein synthesis. During this process the infor-
mation enclosed in the triplet code of the nucleotide chain is
translated into the amino acid sequence of the encoded pro-
teins. Translation is usually viewed as a three-stage process
�1–3�: during initiation a ribosome �complex of proteins and
RNA� binds the mRNA molecule �a sequence of nucleotides
previously transcribed from the DNA� and after a series of
biochemical reactions, it moves along the chain. This stage
in which the protein is built up amino acid by amino acid
according to the mRNA sequence is called elongation. Each
elongation step consists in turn of a series of biochemical
reactions which define the ribosome’s biochemical cycle.
Lastly, the ribosome reaches the termination codon and
leaves the mRNA releasing the protein. This last step is
called termination. In this paper we propose a model for the
elongation stage of mRNA translation.

This process, primarily controlled by the dynamics of ri-
bosomes along the mRNA chain, bears a resemblance to a
one-dimensional driven lattice gas. For this reason, the
mRNA translation inspired a statistical-mechanical class of
models known as asymmetric simple exclusion processes
�ASEPs�. They have been introduced in the biophysical lit-
erature as models representing the dynamics of ribosomes
along an mRNA chain �4,5�. Later, this class of model has
been studied from a more theoretical point of view �6–16�
and the possible biological applications have been rediscov-
ered only recently, not only for protein synthesis �12,17–20�
but also for the movement of molecular motors �21–23�.
Other nonbiological applications have been studied too �see,
e.g., �24��. A detailed discussion of the ASEP can be found,
for instance, in Refs. �10,16�.

A traditional exclusion process consists of particles mov-
ing along a lattice with only steric interactions. In other
words, each lattice site can be occupied just by one particle
at a time. Although this approach is interesting from a theo-
retical point of view, it is however not a realistic way of
describing translation since it encompasses the whole ribo-
somal elongation cycle in a single step. Other approaches to
modeling translation include several �up to fifteen� distinct
phases of the ribosome’s mechanochemical cycle �25–27�.
We want to place ourselves between the class of minimal
models and the more detailed models, which are difficult to
analyze. Consequently, we consider two fundamental steps
of the ribosome’s biochemical cycle following a coarse-
grained picture �Sec. III�. We show that former ASEP-like
models correspond to a limiting case of the model we use. As
will become clear from the discussion, this limiting case is
however biologically not plausible, showing the need for an
extension of previous models.

In the following section we explain the biological frame-
work �in particular the role of ribosomes and transfer RNAs�
and then in Sec. III we introduce the model from a math-
ematical point of view. The results for periodic and open-
boundary systems are presented in Sec. IV. Using the same
approach as Ref. �6� we analyze the model in the mean-field
approximation and compare this model with a typical exclu-
sion process. In addition, we show that the same results can
be achieved by using an extremal principle �28–30�. Al-
though we observe the same variety of phase transitions that
one would expect from the simpler case without the parti-
cle’s internal states, the locations of the critical points change
substantially and depend on the internal dynamics of the par-
ticles. Finally, in Sec. V we discuss the results and the con-
clusions from a theoretical and biological viewpoint.

II. BIOLOGICAL BACKGROUND

Here we briefly introduce the underlying biological pro-
cess that we want to describe. More information can be
found, e.g., in Refs. �1–3�.*l.ciandrini@abdn.ac.uk
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The mRNA is a nucleotide chain composed of four differ-
ent bases �A,C,G,U�; each group of three nucleotides is
called a codon and specifies a certain amino acid. The keys
for deciphering the code �the sequence of codons� are the
transfer RNAs �tRNAs�, freely diffusing molecules carrying
amino acids. They have a region composed of three nucle-
otides �the anticodon� matching the corresponding codon on
the mRNA. Moreover, tRNAs with the same anticodon trans-
port the same amino acid. In most species, there are 35–40
distinct species of tRNA, each responsible for decoding a
particular set of codons. Ribosomes are complexes of pro-
teins and RNA which move along the mRNA in a fixed di-
rection �from the 5� to the 3� region, i.e., from the part of the
chain that has been transcribed first toward the other end�
and catalyze the assembly of amino acids delivered by tR-
NAs. Each ribosome has three regions of interaction for the
tRNA. They are called Aminoacyl �A�, Peptidyl �P� and Exit
�E� sites �see Fig. 1�.

The main steps of the elongation process are shown in
Fig. 2. Following the translation initiation, a tRNA is in the P
site bound with the first amino acid of the growing polypep-
tide chain. Then, a complex of EF1� ·GTP· tRNAaa �with
tRNAaa we denote a tRNA bound to the amino acid aa�
diffuses into the empty A site on the codon at position i. If
the anticodon of the tRNA cannot base pair with the codon,

then the complex EF1·GTP· tRNAaa is released and the pro-
cess is repeated until a correct tRNA binds the ribosome. If
on the other hand the correct tRNA anticodon base-pairs with
the corresponding codon on the mRNA, then GTP is hydro-
lyzed and a conformational change in the ribosomal structure
occurs. This change leads to the transfer of the nascent
peptide from the P-site tRNA, to the amino acid carried by
the A-site tRNA. The altered structure of the ribosome does
not allow the cognate tRNA to unbind and leave the chain.
Following the peptidyl transfer reaction and the incorpora-
tion of the new amino acid into the growing polypeptide
chain, the ribosome translocates one codon �assuming ribo-
some progress is not blocked by any stalled ribosomes at
downstream positions on the mRNA�. The translocation
process is catalyzed by the complex EF2·GTP which in-
duces a second conformational change in the ribosome. The
tRNA at the P site is then transferred to the E site. The
ribosome is now back to the first step of its biochemical
cycle, with the growing polypeptide chain bound to the
tRNA in the P site and the empty A site on the codon i+1,
ready to receive another tRNA complex. This process is it-
erated until the end of the mRNA chain, where the ribosome
disassociates from the system and releases the synthesized
protein. As soon as initiating ribosomes have moved suffi-
ciently downstream to create space at the beginning of the
mRNA, a new ribosome can bind the polynucleotide chain.
Thus, several ribosomes can translate the same mRNA at the
same time.

Experimental data strongly indicate that searching for the
correct tRNA, and not the translocation, is the rate limiting
step of the biochemical cycle of the ribosome �31,32�. There-
fore, in this work we shall approximate the whole biochemi-
cal cycle of the ribosome by a two-state cycle: �i� searching
for the correct tRNA and �ii� translocation from one codon
to the next.

From the modeling point of view, we shall consider par-
ticles changing an internal degree of freedom, or state, which
influences their motion. Thus, a ribosome is represented by a
two-state particle denoting the absence of the cognate tRNA
in its Aminoacyl site �state 1� or its presence �state 2� as
outlined in Fig. 3.

Throughout this work we assume that the concentration of
charged tRNAs is homogeneous and large enough to neglect
fluctuations �the transition rates do not change with time�.
The effects of limited resources �33� and their three-
dimensional �3D� diffusion in the cytoplasm �34� are not
taken into consideration here. The individual charged tRNA
concentrations govern the transition rates, which in general
depend on the particular type of codon.

III. MODEL

We describe the mRNA molecule as a lattice of discrete
sites, each one representing one codon. Ribosomes are rep-
resented by particles hopping from one site of the lattice to
the next. From a more mathematical perspective, the occu-
pation number ni=0,1 ,2 of the site i describes the different
states in which it can be found. We say that a site is empty if
its occupation number is 0. A given site i occupied by a

FIG. 1. �Color online� �a� Illustration of a ribosome with empty
A, P, and E sites along an mRNA chain. �b� Classical representation
of a tRNA with its anticodon in the lower region and the corre-
sponding amino acid �aa� bound together.

FIG. 2. �Color online� Sketch of the translation elongation pro-
cess. Once the ribosome finds the cognate tRNA �1�, the tRNA in
the E site abandons the ribosome �2� and the peptide carried by the
existing, P-site tRNA binds the amino acid on the new, A-site tRNA
�3�. At that point the ribosome translocates provided that the next
codon is empty �4�. The ribosome is thus in the position to accept
another tRNA and iterate the elongation till the end of the mRNA
chain.
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particle in state 1 or 2 is, respectively, described by ni=1 or
ni=2. The set �= �n1 , . . . ,nL�, where L is the length of the
lattice, will give the configuration of the system. The only
transitions allowed are the following:

1 → 2 with rate ki, �1a�

20 → 01 with rate � , �1b�

where the first line means that a particle in state 1 at site i
changes into state 2 with rate ki, which in general depends on
the site i. The second line is a schematic representation of the
translocation of a particle in state 2 to the next site. Notice
that a hopping particle is carried back to the state 1. The
values of ni’s change with time according to these dynamical
rules. This dynamics has been first introduced in the litera-
ture by Klumpp and co-workers in �35� to model the traffic
of molecular motors on a filament.

The mean density �i of particles on site i can be written
discerning the contribution of particles in state 1 and par-
ticles in state 2. Thus, we shall say that �i is the mean density
of particles in state 1 at site i and �i is the analogous for
particles in state 2. One can write these densities in terms of
the occupation numbers,

�i = �ni�2 − ni�� ,

�i = 	 ni�ni − 1�
2


 .

The mean density of particles at site i is then given by �i
=�i+�i. The brackets indicate the average of the quantities
over time.

The lattice in consideration may have periodic or open
boundary conditions. We shall study these cases in Secs.
IV A and IV B, respectively.

From now on we study the case in which ki=k∀ i and use
the mean-field approximation, i.e., we neglect correlations
between the sites ��ninj���ni��nj��. These approximations

simplify the analysis considerably and, as we shall show
later, yield qualitatively the same results.

With these prescriptions, the mean-field equations de-
scribing the evolution of the densities at site i read as fol-
lows:

d�i

dt
= �i−1�1 − �i − �i�� − k�i, �2a�

d�i

dt
= k�i − �i�1 − �i+1 − �i+1�� . �2b�

The current J+
i �J−

i � is defined as the number of particles en-
tering �leaving� the site i per unit time. We can write the
expression of the incoming and outgoing currents by using
Eqs. �2�,

J+
i = �i−1�1 − �i − �i�� ,

�3�
J−

i = �i�1 − �i+1 − �i+1�� .

In this work we consider the steady-state condition
�

d�i

dt =
d�i

dt =0∀ i�, where the currents are the same along the
lattice �JªJ−

i =J+
i ∀ i�.

IV. RESULTS

First we study the effects of two-state particles in closed
lattices and then we investigate the boundary-induced phase
transitions in open systems. The predictions of the mean-
field theory are then compared to numerical simulations per-
formed with a Bortz-Kalos-Lebowitz-like algorithm �36�
modified for the dynamic rules �III�, i.e., a continuous-time
Monte Carlo which uses a random sequential updating
scheme. The first 106 iterations of the algorithm are disre-
garded. Then, with the system in the steady-state, data is
collected every 100 iterations, for a total number of 106 it-
erations.

A. Periodic-boundary conditions

Since all sites in a lattice with periodic-boundary condi-
tions are identical �in the special case of ki=k∀ i�, we
write Eqs. �2� without the indices i. Note that the mean num-
ber of particles in state 1 is equal to the local density �, i.e.,
L−1��i=1

L ni�ni,1
�=�. The same holds for particles in the upper

state: �2L�−1��i=1
L ni�ni,2

�=�. One obtains the following equa-
tions for the current of particles J and for the densities:

J = ��1 − � − ��� , �4�

� =
J

k
, �5a�

� = � − � = � −
J

k
. �5b�

The density � plays the role of the control parameter. For
this reason, it is useful to write Eqs. �4� and �5� as follows:

FIG. 3. �Color online� The two states that a particle assumes
represent a ribosome waiting for the cognate tRNA �state 1� and
ready to translocate �state 2�. The transition from “state 1” to “state
2” occurs with rate k �in general depending on the codon i� which
mainly models the concentration of tRNAaa. The translocation oc-
curs with rate �. The transitions are not reversible.
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J =
��1 − ��k
k

�
+ �1 − ��

, �6�

� =
��1 − ��

k

�
+ �1 − ��

,

� =

k

�
�

k

�
+ �1 − ��

.

These results have been previously obtained in �35�. Note
that both densities � and � are functions of the ratio k /�.
This result is not an artifact of the mean-field approximation,
since simulations confirm this dependence �data not shown�.
For the sake of simplicity, in simulations we can therefore set
the value of � to a fixed value �for instance �=1�. From Eq.
�6� one can obtain the value of � for which the current is
maximal

��
ª 1 +

k

�
−

k

�
1 +

�

k
= 1 − 	 , �7�

where 	ª �k /���1+� /k−1�, and the maximal value of the
density of particles in the state 1 �proportional to the current
J�

��
ª 1 +

2k

�
�1 −1 +

�

k
� = 1 − 2	 . �8�

Therefore,

��
ª �� − �� = 	 . �9�

Figure 4 shows the mean-field solutions for the densities �
and � depending on �, together with the Monte Carlo simu-
lations. The overall agreement between the mean-field ap-

proximation and the simulations is very good. Only when
k /� is very small the discrepancy between the mean-field
and the simulations becomes large �Fig. 4�a��, as already
observed in �35�. Thus, in the case k /�
1, correlations are
no longer negligible and the mean-field overestimates the
current J �or, equivalently, the amount of particles in the
inactive state ni=1�. However, analytical calculations and
simulations show the same qualitative behavior and therefore
the mean-field approximation is sufficient to capture the
main features of the underlying system.

One can see from Eq. �7� and Fig. 5 that as k /� increases,
�� approaches the value 0.5 and the current profile becomes
symmetric with respect to the density �. This limiting case
corresponds to neglecting the internal state of the particles,
i.e., considering that the transition ni=1→ni=2 occurs in-
stantaneously. Note that in this case we recover the results of
an ASEP model with a single hopping rate �.

With increasing � there exist different regimes character-
ized by different amounts of particles in state 1 or 2. If k
��, then the curves of � and � cross at �dª1−k /�, defin-
ing two distinct regimes: for ���d, there is a regime in
which ���, i.e., the density of sites with ni=1 is larger than
the density of sites with ni=2. In other words, the mRNA is
mainly populated by empty �vacant A site� ribosomes. For
���d we have the opposite situation with ���, i.e., the
ribosomes have the tRNA in their A site and are waiting to
hop. These different regimes exist only when k��, other-
wise ��� always. Notice that in general ����d and there-
fore, this transition is different from the queueing transition.
These basic observations, though being a simple study of the
ratio between densities, might reveal an interesting biologi-
cal mechanism �see Sec. V�.

B. Open-boundary conditions

In this section we focus on the open-boundary conditions
and present the corresponding results. We first discuss the
outcomes of the model using an iterative map obtained from
the mean-field Eqs. �2�. Then we recover the same results
using an extremal principle.

A new particle enters the unidimensional lattice with rate
� representing the translation inititation. After the injection
of a new particle, the first site is set to have n1=1. As usual,
the presence/absence of a particle and its state are repre-
sented by the occupation number ni and in the bulk the dy-
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FIG. 4. �Color online� Simulations �dashed lines� and mean-field
�MF� approximation �full lines� of the densities � in black and � in
green �light gray�. This figure shows the curves for a ring with N
=250, �=1 and k=0.05 �a�, k=0.5 �b�, k=1 �c�, k=1.5 �d�.
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FIG. 5. Plot of �� as a function of k /�, Eq. �7�.
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namics follows the above rules �III�. Finally, particles aban-
don the end of the lattice �when nL=2� with probability per
unit time  �translation termination�. With these prescrip-
tions it is clear that Eqs. �2� hold in the bulk, but have to be
modified at the left boundary �injection�

d�1

dt
= ��1 − �1 − �1� − k�1, �10a�

d�1

dt
= k�1 − �1�1 − �2 − �2�� , �10b�

and at the right boundary �depletion�

d�L

dt
= �L−1�1 − �L − �L�� − k�L, �11a�

d�L

dt
= k�L − �L. �11b�

Equations �2� together with the steady-state condition lead
to the following recursive map for the densities �i:

�i+1 = 1 − J�1

k
+

1

��i
� . �12�

The fixed points of this map are as follows:

�� =
1

2
��1 −

J

k
� ��1 −

J

k
�2

−
4J

�
� ,

one of which is stable ��+� and the other unstable ��−�. In an
iterative map like Eq. �12�, �i+1 is said to be the homo-
graphic function of �i and, knowing the value of the starting
point �1, it is possible to find the general term �i of the
recursion,

�i =
− �−�+��+

i−1 − �−
i−1� + �1��+

i − �−
i �

− �−�+��+
i−2 − �−

i−2� + �1��+
i−1 − �−

i−1�
. �13�

Following the approach presented in �6� by Derrida and co-
workers, we reconstruct the phase diagram of the system by
varying the injection rate � and the depletion rate  �which
are both considered to be smaller than ��.

Using Eq. �13� we can calculate �L as a function of �1
and J,

�L = �L��1,J� . �14�

Equation �14�, together with Eqs. �10a� and �11b� in the
steady-state condition, determines the values of �1, �L, and J
as a function of � and . Moreover, note that in the mean-
field approximation the densities �i can be readily calculated
from �i=J /k. The system shows three different regimes that
can be characterized by reasoning on the graphical represen-
tation of Eq. �12� �see Fig. 6�.

Low density phase ��1��− ,�L��+�. If we start to iterate
the map �Eq. �12�� close to the unstable fixed point �−, at the
beginning of the lattice the values of �i remain close to this
value and then move away �black dots in Fig. 7�a��. This is
the so-called low density �LD� phase. The recursion �Eq.
�12�� and Eqs. �10� and �11� provide the solutions

�1 =
�

�
�L =

�k�� − ��
��k + ��

,

J =
�k�� − ��
��k + ��

.

These equations are valid as long as

� � �c ª �	,  � � , �15�

since otherwise Eqs. �10a�, �10b�, �11a�, �11b�, and �12� are
not consistent with the conditions �1=�− and �L��+. The
critical value �c determines the boundary of the LD regime.

High density phase ��1��− ,�L��+�. Similarly, the high
density �HD� phase is reached starting from a value �1
��−. Iterating the map, we reach a value �i arbitrarily close
to the stable point �+ �green �light gray� dots in Fig. 7�a��.
The initial point �1 lies therefore in the domain of attraction
of �+. Following the previous procedure, one obtains the
solutions

FIG. 6. �Color online� Graphical representation of the recursive
map �Eq. �12��. �a� When J�k�1−2	� there are two different fixed
points �−, �+ that collapse when J=k�1−2	� �b�. Panel �c� shows
the map for the finite size case.
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FIG. 7. �Color online� Profiles of the density �i calculated from
Eq. �12�. �a� When the fixed points exist, the density can either start
close to �− and then go away from this value at the end of the chain
�black dots� or reach the value of the stable fixed point �+ after few
iterations �green �light gray� dots�. �b� Typical density profile for the
MC region with high density close to the left boundary and low
density close to the terminating site.

ROLE OF THE PARTICLE’s STEPPING CYCLE IN AN… PHYSICAL REVIEW E 81, 051904 �2010�

051904-5



�1 =
�k� − k� + �2 + k2

��� + k�
�L =

k�� − �
��k + �

,

J =
k�� − �
��k + �

.

These solutions exist when

 � c ª �	,  � � . �16�

It is worth noting that the critical points �c and c delimiting
the LD and the HD phases are functions of k and �.

Maximal current phase ��1�2−1�1−J /k� ,�L�2−1�1
−J /k��. This regime is reached when the two fixed points
collapse and the lattice carries the maximal current allowed.
This phase occurs when

� � �c,  � c, �17�

and we have the solutions

�1 = 1 −
J

k
−

J

�
�L =

J


,

J = k�1 − 2	� .

We expect these results to hold in the limit L→� and the
finite-size effects to be similar to the ones of standard ASEP
�6�. Thus, in a finite-size system, the recursion �Eq. �12��
would not have any real fixed points and the graphical rep-
resentation of Fig. 6�b� would have to be modified into Fig.
6�c�. The role of the limited length L needs further investi-
gation, but this analysis goes beyond the scope of this paper.

Until now we have used Eq. �12� as the starting point to
characterize the different regimes of the process. The maxi-
mal current principle �MCP� is another viable approach
which leads to the same results. It was first presented by
Krug �28� and then later extended �29,30�. According to this
principle, the boundaries are substituted by reservoirs of par-
ticles and the dynamics between the reservoirs and the lattice
is assumed to be the same as in the bulk. The MCP states that
the current J of an open-boundary lattice in the MC regime is
given by

J = max
����L+1,�0�

J��� , �18�

where �0 and �L+1 are, respectively, the densities of the res-
ervoirs of particles at the left and the right boundaries. J��� is
the expression of the current as a function of the density �
that in the bulk we can consider to be given by Eq. �6�. The
densities �0 and �L+1 are chosen to realize the injection and
depletion parameters � and . Equation �18� is valid for
systems in which the current profile has only one maximum,
and has to be modified if J��� presents minima �29,30�.
There are no general prescriptions for choosing the correct
densities �0 and �L+1 of the reservoirs �17�. Here we propose
a way to fix �0 and �L+1 and relate them to the injection and
depletion rate; with these values we recover the results ob-
tained above.

If we imagine having a reservoir of particles or an extra
site at i=0 with density of particles �0=�0+�0, the param-

eter � can be written as �=�P�n0=2�, where P�n0=2� is the
probability of having the occupation number of the site i
=0 equal to 2, i.e., having a particle ready to hop from the
reservoir to the lattice. Since P�n0=2�=�0 one may write
�37�:

� = �0� .

On the right boundary we can assume that the density of
particles at the extrasite L+1 is related to the depletion rate 
as follows:

 = �1 − �L+1�� .

Now, bearing in mind that 	=�� and using Eq. �7�, the maxi-
mal principle yields the location of the critical points by
equating �0 with ��=��−�� and �L+1 with ��. The transitions
occur at the same values �c and c obtained before in Eqs.
�15� and �16�. The current and the bulk densities are then
given by the following equations:

J =�
�k�� − ��
��k + ��

for � �  � �	 �LD�

k�� − �
��k + �

for  � � � �	 �HD�

k�1 − 2	� for �, � �	 �MC�
� ,

� = ��0 for � �  � �	 �LD�
�L+1 for  � � � �	 �HD�
1 − 	 for �, � �	 �MC�

.�
Now we are finally able to construct the rich phase dia-

gram of the system �Fig. 8�. The model shows the same
variety of phase transitions of “standard” �particles without
internal states� ASEPs, but the borders between the different
phases crucially depend on both k and �. There are three
different regimes �LD, HD, MC� and the transitions toward
the MC phase are smooth, i.e., there is a discontinuity in the
second derivative of the current profile. On the other hand,

FIG. 8. �Color online� Phase diagram of the ASEP with two-
state particles. Different colored lines correspond to different criti-
cal values obtained with changing k /�. The MC region is larger for
low values of k /� and approaches the MC region of the standard
ASEP in the limit k /�→�. The dashed line separating the LD and
HD denotes the first order transition between these two regions.
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the transition between LD and HD is an abrupt transition.
The critical points �c and c have the same dependency on
the parameters k and �. The transition line between LD and
HD is a straight line in the �− plane and is given by the
condition �=. Other works taking into account the bio-
chemical cycle of ribosomes �27� find a more complicated
relation between �c and c, apparently due to another choice
of the densities in the reservoirs. However, here we obtain
the same results with both the MCP and the mean-field
analysis.

For a fixed value of the translocation rate �, the bound-
aries between the MC and the LD and HD regimes are
shifted with varying k, and the MC phase becomes larger
than the MC region of standard ASEPs. Importantly, in the
limiting case k→� the critical points approach the values
obtained for an ASEP. Since this limit corresponds to con-
sider transitions ni=1→ni=2 occurring instantaneously by
neglecting the internal state of the particles, we therefore
confirm that the results obtained with our model are consis-
tent with previous findings.

Figure 9 shows the outcomes of numerical simulations.
As in the close-boundary case, the analytical results present
deviations from the Monte Carlo simulations for low values
of k /�. Despite that, a study of the numerical phase diagram
�Fig. 9�c�� shows the same phenomenology of the analytical
treatment of Fig. 8. Only the location of the critical points is
inaccurate in the mean-field theory. For instance, notice that
for some values of the parameters, in Fig. 9�b� the mean-field
predicts a LD-HD transition instead of the smooth LD-MC
transition numerically found, i.e., the MC phase is reached
for lower values of � and  �green circles�. In other words,
the numerically observed MC region is even larger than the
one predicted by the mean-field approximation.

V. DISCUSSION AND CONCLUSIONS

In this work we have proposed a model for mRNA trans-
lation based on an exclusion process. We have extended pre-
vious models based on the ASEP by including the internal
stepping cycle of the ribosomes, which corresponds to allow-
ing the particles to have multiple internal states. The same
model has been previously introduced in �35� to study the
traffic of molecular motors. We have condensed the whole
biochemical cycle of the ribosome into two main steps: �i�
finding the correct tRNA, which occurs with rate k, and �ii�
translocation rate of the ribosome to the next codon, which
happens with rate �.

This extension is crucial in describing the underlying bio-
logical process, since previous ASEP-based models neglect
that ribosomes can find and keep a correct tRNA during the
waiting time due to the occupation of the next codon. The
main result of this work is that the transitions among the
different dynamical regimes of the system occur at different
critical points than the ones predicted by former ASEP mod-
els. These critical points depend on both k and �. For ex-
ample, when k /� is small, the MC phase is substantially
enlarged compared to a standard ASEP with hopping rate �
and which ignores the internal degree of freedom �k→��
�38�. Crucially, this is the biologically relevant regime, as
shown by estimates of the parameters based on experimental
data. Thus, this model describes the biological system much
more accurately, and its predictions can be readily validated
by experimental measurements.

The analysis of the system with periodic-boundary condi-
tions introduces the model and the formalism. This situation
has been studied in �35� where the authors propose a mean-
field approach to analyze the case with periodic-boundary
conditions. Here we present a more complete approach
which recovers the previous results and, in addition, makes
possible the treatment of the model in the open boundary
case. When the ratio between the transition rates k and � is
high, the current profile becomes symmetric and the value of
�� moves toward the expected value of a standard exclusion
process. The deviation between the mean field and our simu-
lations for low values of the transition rate k has yet to be
understood. Furthermore, our model with periodic-boundary
conditions allows us to study whether there is a dominance
of particles in state 1 or 2. In the biological system that we
describe �even if in a coarse-grained perspective�, a lattice
with the majority of sites having ni=2 represents an mRNA
in which ribosomes are carrying the cognate tRNAs and are
waiting for hopping. This might be unfavorable when a finite
number of charged tRNAs is available. Roughly speaking, in
these conditions the charged tRNAs are kept by the ribo-
somes and cannot be used to translate other codons. In this
sense the usage of resources is not optimized if ���. This
result suggests that under starvation or stress conditions,
there might be a transition from the ��� to the ��� re-
gime.

We have shown that this extension of the model has im-
portant consequences for the different boundary-induced
transitions. Namely, depending on the ratio of k and �, the
sizes of the low density �LD�, high density �HD� and maxi-
mal current �MC� phases in the �− parameter space can

FIG. 9. �Color online� Monte Carlo simulations. Panels �a� and
�b� show the current J as a function of � in �a� systems passing from
LD to MC �=1� and �b� from LD to HD phase �=0.12�. Full
lines represent the theoretical predictions and circles are simulation
points �k=1 in black and k=0.1 in green—light gray�. The value of
� is fixed to 1. Panel �c� shows the numerical phase diagram �dif-
ferent colors represent different densities �� for a system with k
=�=1. Drawing the phase diagram for other values of the param-
eters, we reproduce the features illustrated in Fig. 8.
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change substantially, where � and  represent, respectively,
the initiation and termination rate of ribosomes. Crucially,
the phase diagram coincides with the one obtained with the
ASEP if k /��1, whereas if k /�→0, the maximal current
phase is enlarged to a great extent, and the transitions from
the LD and HD to the MC phase occur at much lower values
of � and  �depending on the value of k, simulations show
that the critical points are overestimated by the mean-field
approach and the MC region is even larger than predicted�.

Based on experimental data, the translocation rate � is
estimated to be �=35 s−1 �39� �which is naturally assumed
to be constant for each codon�, and the ratio k /� turns out
to be in the range 0.05–3.38, depending on the codon
�these values are estimates based on �40��. For most codons
��87%� the ratio of the rates is smaller than 1. Therefore, for
physiological conditions, our model predicts a much larger
MC phase in the parameter space than previous ASEP mod-
els which completely neglect the internal state of the ribo-
somes or, equivalently, assume that k /��1 contrary to the
biological conditions. In that unrealistic situation, the ribo-
somes would find the cognate tRNAs as soon as they trans-
locate to the next codon.

Thus one could naively think that the translation process
is optimized to produce the largest possible number of pro-
teins per unit time. In other words, the current J is maxi-
mized, and hence the system is in the MC phase. Although
this assertion is not justified and there might be cases in
which other effects prevent the translation rate to become
maximal, such as particular configurations of slow codons
downstream of the 5� end of the mRNA, competition for
common resources and regulation at the level of translation,
in this work we find signatures in this direction. In particular,

the model predicts that the MC phase occupies a very large
region in the parameter space. Furthermore, the density pro-
files experimentally observed �41� recall the MC density pro-
file of Fig. 7�b�. Finally, ribosome recycling �42� might drive
the system to lie in the region with the highest current. In
fact, the injection parameter � can be decomposed into two
components: one constant coefficient �o being the affinity of
freely diffusing ribosomes to bind to an open mRNA, and an
increasing function of J which represents the probability per
unit time that a ribosome leaving the end of the mRNA will
be recycled. It is clear that � might grow until the current
balances the maximal current J� and as a result, � is larger or
equal to the critical value �c. The ribosome recycling and its
potential impact on translation regulation has been thor-
oughly investigated in �43�.

Further studies on the model proposed in this work will
address lattices with inhomogeneities �slow codons� and the
influence of the size of the particles �ribosomes are known to
cover around nine codons�. On the biological side, we are
planning to implement simulations of real mRNA sequences
from the S. cerevisiae genome and validate the model with
experiments at different levels.
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