
Goal Directed Conflict Resolution and Policy

Refinement

Mukta S. Aphale ⋆, Timothy J. Norman, and Murat Şensoy

Dept. of Computing Science,
University of Aberdeen,

Aberdeen, UK.
{m.aphale,t.j.norman,m.sensoy}@abdn.ac.uk

Abstract. A policy (or norm) is a guideline stating what is allowed,
what is forbidden and what is obligated for an entity, in a certain situa-
tion, so that an acceptable outcome is achieved. Policies occur in many
types of scenarios, whether they are loose social networks of individuals
or highly structured institutions. It is important for policies to be consis-
tent and to support the goals of an organisation. This requires a thorough
understanding of the implications of introducing specific policies and how
they interact. It is difficult, even for experts, to write consistent, unam-
biguous and accurate policies, and conflicts are practically unavoidable.
In this paper we address the challenge of providing automated support
for identifying and resolving logical and functional conflicts. We present
a model of conflict identification and resolution that focuses attention on
conflicts that are most critical to the goals of the organisation.

Keywords: Policies, Norms, Policy Authoring, Conflict Resolution, Intelligent
Agents

1 Introduction

Policies guide and regulate behaviour of various entities in a system. They are
system-level constraints that are independent from the implementation of spe-
cific agents and represent the ideals of behaviour of these agents. The benefits
of a policy-based approach include reusability, extensibility, context-sensitivity,
verifiability, information security, support for simple and sophisticated compo-
nents and reasoning about component behavior [12].

Policies can be classified into two categories — collective and individual. Collec-
tive policies are sets of rules applicable to various entities in a particular group.
They represent an agreement among agents who are responsible for defining the
rules and ensuring that common goals of the group are achieved successfully. For

⋆ The research described here is supported by the award made by the RCUK Dig-
ital Economy programme to the dot.rural Digital Economy Hub; award reference:
EP/G066051/1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aberdeen University Research Archive

https://core.ac.uk/display/4193236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Mukta S. Aphale, Timothy J. Norman, and Murat Şensoy

example, NHS Care Record Guarantee for England is an agreement between NHS
(National Health Service) in England and patients, brokered by patient organ-
isations and senior healthcare experts. Personal preferences of entities are also
often expressed by individual policies. For example, rules for sharing personal
information in a social network. Policies operate in conjunction with individual
and organisational goals, such as the provision of effective patient care. The key
challenge here is: how to specify policies/norms that protect important infor-
mation (secrets) and promote ideal action (normal operating procedures), while
ensuring the achievement of individual/organisational goals?

It is difficult, even for experts to write consistent, unambiguous and accurate
policies. Policies may conflict with each other and with organisational goals in
many situations; i.e., logical and functional conflicts, respectively [4]. Identifying
and resolving such conflicts, and functional conflicts in particular, is an impor-
tant challenge. This question has been explored in the context of practical rea-
soning by Kollingbaum [8], where an agent architecture (NoA) is proposed that
detects direct and indirect conflicts between norms and action choices. Conflicts
are then either resolved through heuristic strategies or labelled for further de-
liberation. Conflicts between beliefs, obligations, intentions and desires are also
explored in the BOID architecture [3], where the aim to to identify maximal
subsets of consistent norms and intentions. Reasoning about plans and norms
has been addressed by Meneguzzi [9], where a BDI agent programming language
was extended to include normative constraint checking. In this way, agents can
modify their behaviour in response to newly accepted norms, by creating new
plans to comply with obligations and suppressing the execution of existing plans
that violate prohibitions.

In other research it has been demonstrated how intelligent agents can assist hu-
mans in complex, norm-governed decision making [11] and prognostically reason
about possible normative violations and replan to avoid these violations [10]. In
addition to supporting human decision-making constrained by norms or policies,
existing research has addressed the problem of supporting humans in authoring
policies. In this research, however, there is very limited automated conflict detec-
tion and resolution for policy authoring. The authoring process is guided through
the use of templates in the work of Johnson et al. [7]. In Uszok et al.[13] some
reasoning support for conflict detection has been explored, but this in confined
to the detection and resolution of logical conflicts.

Hence, conflict detection and resolution with specific focus on functional conflict
detection is emphasised in this paper. Conflicts occurring in a system are of
varying significance. More critical are the ones which have higher chances of oc-
curring and the ones which can impair achievement of goals. Hence, it is crucial
to identify the conflicts, resolution of which, will lead to maximum benefits and
goal achievement. The key questions addressed are: how to identify conflicts that
are most relevant to the domain and goals of organisation, and how to resolve

Goal Directed Conflict Resolution and Policy Refinement 3

conflicts that are most important to the goals of organisation. Since focus of
our research is authoring consistent and functional policies, refining policies and
resolving relevant conflicts to maximise goal-achievement is investigated in this
paper.

This paper is organised as follows: introduction to Polar Agent application that
is developed for policy authoring and planning is given in Section 2. Our notions
of policies and conflicts are illustrated in Section 3. Activity prioritisation model
for identifying conflicts that are relevant to the domain and goals of organisation
is described in Section 4. Conflict detection and resolution methods implemented
by the Polar Agent are described in Section 5 and Section 6 respectively; specific
focus remains on detecting functional conflicts (i.e., conflicts between policies and
organisational goals). Finally, conclusion and scope for future work are presented
in Section 7.

2 Polar Agent

Polar Agent is developed for authoring OWL-POLAR (OWL-based POlicy Lan-
guage for Agent Reasoning) [5] policies and planning using OWL-POLAR poli-
cies (See Section 3). It consists of two core modules — Policy Authoring and
Planning. Automated reasoning, conflict detection and resolution mechanisms
are implemented by the authoring module. All possible plans for a specified goal
can be generated using the planning module. The active policies are taken into
consideration and normative status (i.e., active permissions, prohibitions and
obligations) of each plan, before and after the execution, can be displayed. In-
telligent agent assists in understanding the implications of policies and conflicts
and correctly defining precedence between conflicting policies. The architecture
of the Polar Agent is explained in Fig. 1.

1. Policy Authoring Module consists of an interface for specifying policies
using OWL-POLAR and Conflict Detection and Conflict Resolution mod-
ules.
– Conflict detection module detects logical and functional conflicts. Pri-

oritised activities are provided to this module to aid the goal-directed
detection and resolution of conflicts.

– Conflict resolution module consists of three core processes: Suggesting
Possible Refinements, Explanation and Refinement: Various solutions
are determined for the conflicts detected. Implications of a particular
conflict, characteristics of conflicting policies, priority for resolving the
conflict and implications of each solution are explained. The best possible
solution is recommended to the author.

2. Planning Module contains an interface for specifying goals and an Ac-
tivity Prioritisation Model. The Activity Prioritisation Model consists of a
temporary database to store most probable plans and three core processes:
Plan Generation, Plan Annotation and Activity Prioritisation.

4 Mukta S. Aphale, Timothy J. Norman, and Murat Şensoy

Policy Authoring Planing

Goals

Refinement

Conflict Resolution

Explanation

Suggest Possible
Refinements

Policies

Activity Prioritisation Model

Plan Generation

Plan Annotation

Most Probable Plans

Active Policies

Activity Prioritisation

Conflict Detection

Fig. 1. Polar Agent Architecture

– Plan Generation module generates all possible plans for a particular
goal. The most probable plans are stored in a temporary plan database.
Most probable plans are determined based on various factors such as cost,
previous experience and certainty of goal achievement etc. Depending on
significance of goal, availability of resources and computational capacity;
it is also possible to consider all plans that are generated.

– Plan Annotation is performed on the most probable plans. The anno-
tated plans are used for prioritising activities.

– Activity prioritisation module prioritises activities. High priority ac-
tivities are used by conflict detection module to detect and resolve logical
as well as functional conflicts.

Our notion of policies and conflicts and various functions of the Polar Agent
will be explained in the subsequent sections with specific emphasis on activity
prioritisation and functional conflict detection (i.e., conflicts between policies
and probable plans).

3 Policies and Conflicts

OWL-POLAR [5] is used as a language for expressing policies in this work.
OWL-POLAR is based on OWL-DL and is a powerful OWL 2.0 knowledge rep-
resentation and reasoning mechanism for policies. The expressiveness of OWL-
POLAR is not restricted to DL. Hence, OWL-POLAR is sufficiently expressive
to be used for specifying policies in real-life applications. Since policy-governed
decision making and policy analysis is enabled within bounds of decidability,

Goal Directed Conflict Resolution and Policy Refinement 5

<policy>

<var> ?x </var>

<var> ?a </var>

<var> ?b </var>

<addressee> ?x </addressee>

<role> Doctor(?x) </role>

<modality> P </modality>

<action var = "?a"> Access(?a), PatientRecord(?b),

</policy>

about(?a, ?b), hasActor(?a, ?x) </action>

Fig. 2. RDF Syntax of an OWL-POLAR Policy

reasoning about policies and detection of policy conflicts is efficient using OWL-
POLAR. An example of an RDF representation of an OWL-POLAR policy
‘Doctors are permitted to access patient’s record.’ is given in Fig. 2.

Since OWL-POLAR is based on OWL-DL, it is formally specified within OWL-
DL. An OWL-DL ontology o = (TBoxo, ABoxo) consists of a set of axioms
defining the classes and relations (TBoxo) as well as a set of assertional axioms
about the individuals in the domain (ABoxo). Concept axioms are of the form
C ⊑ D, where C and D are concept descriptions. Relation axioms are expres-
sions of the form R ⊑ S, where R and S are relation descriptions. The ABox
contains concept assertions of the form C(a), where C is a concept and a is
an individual name; and relation assertions of the form R(a, b), where R is a
relation and a and b are individual names.

Conjunctive semantic formulae are used to express policies. A conjunctive se-
mantic formula F o

v
=
∧n

i=0
φi over an ontology o is a conjunction of atomic

assertions φi, where a vector of variables used in these assertions is represented
by v = 〈?x0, . . . , ?xn〉 . For the sake of convenience

∧n
i=0

φi ≡ {φ1, . . . φn} is
assumed in order to consider a conjunctive formula . Based on this, F o

v
can be

considered as T o
v
∪Ro

v
∪Co

v
, where T o

v
is a set of type assertions using the concepts

from o, e.g. {student(?xi), nurse(?xj)}; Ro
v

is set of of relation assertions using
the relations from o, e.g. {marriedTo(?xi, ?xj)} and Co

v
is a set of constraint as-

sertions on variables. Each constraint assertion is of the form ?xi ⊳ β, where β is
a constant and ⊳ is one of the symbols {>,<,=, 6=,≥,≤}. A constant is either
a data literal (e.g. a numerical value) or an individual defined in o.

6 Mukta S. Aphale, Timothy J. Norman, and Murat Şensoy

Variables are divided into two categories: data-type and object variables. A data-
type variable refers to data values (e.g. integers) and can be used only once in
Ro

v
. On the other hand, an object variable refers to individuals (e.g. Univer-

sity of Aberdeen) and can be used any number of times in Ro
v
. Equivalence and

distinction between the values of object variables can be defined using OWL
properties sameAs and differentFrom respectively, e.g. owl:sameAs(?x,?y). In
the rest of the paper, the symbols α, ρ, ϕ, and e are used as a short hand for
semantic formulae.

Definition 1 Given an ontology o, a conditional policy π is defined as α −→
Nχ:ρ (λ : ϕ) /e

– α, a conjunctive semantic formula, is the activation condition of the policy.
– N ∈ {O,P, F} indicates the modality of the policy (i.e., if the policy is an

obligation, permission or prohibition).
– χ is the policy addressee and is described by ρ using only the role concepts

from the ontology (e.g. ?x : student(?x) ∧ female(?x), where student and
female are defined as sub-concepts of the concept role in the ontology). That
is, ρ is of the form

∧n
i=0

ri(χ), where ri ⊑ role. Note that χ may directly
refer to a specific individual (e.g. John) in the ontology or a variable.

– λ : ϕ is the regulated action or state. λ is a variable referring to an action or a
state that is regulated by the policy; where λ, as an action instance or a state,
is described by ϕ using the concepts and properties from the ontology (e.g.
?a : SendFileAction(?a) ∧ hasReceiver(?a, John) ∧ hasF ile(?a, TechReport218

.pdf), where SendFileAction is an action concept). Each action concept has
only a number of functional relations (aka. functional properties) [1] and
these relations are used while describing an instance of that action.

– e is the expiration condition of the policy.

As stated in Section 1 conflicts are practically unavoidable. Efficient conflict de-
tection and resolution mechanisms are required for authoring consistent, unam-
biguous and functional policies. Here, following Castelfranchi [4], we distinguish
between logical and functional conflicts.

Logical Conflicts may arise between policies. If the same action is both pro-
hibited and permitted or both prohibited and obligated at the same time, the
entity adopting these policies will not be able to decide which policy should be
respected. To avoid such conflicts, a thorough understanding of the exact mean-
ing and the implications of a policy, individually and as a part of a set of policies,
is required.

Definition 2 Given logically conflicting policies πi = αi −→ Aχi:ρi

(

λi : ϕi
)

/ei

and πj = αj −→ Bχj :ρj

(

λj : ϕj
)

/ej , The logical conflict L is defined as : L 7−→
πi × πj .

For example, consider two policies defined in healthcare domain.

Goal Directed Conflict Resolution and Policy Refinement 7

– π1 - Doctors are prohibited from modifying the chemotherapy regime of a
patient.

– π2 - Oncology specialists are permitted to modify the chemotherapy regime
of a patient.

Since an Oncology Specialist is a subclass of Doctor, both the policies π1 and π2
are applicable. Hence, a logical conflict exists between π1 and π2. This conflict
arises due to π1 being ill-formed. It should refer to General Practitioners rather
than Doctors in general, since GP is a subclass of Doctor and GP and Oncology
Specialists are distinct.

Functional Conflicts arise between policies and underlaying goals of an organ-
isation [4] or when a policy becomes non-functional as a consequence of existence
of some other policy. Identifying and resolving functional conflicts is a crucial
challenge and little work has been done to date [8].

Definition 3 Given functionally conflicting policies πi = αi −→ Aχi:ρi

(

λi : ϕi
)

/ei and πj = αj −→ Bχj :ρj

(

λj : ϕj
)

/ej , The functional conflict F is defined as :
F 7−→ (πi×πj)type, where type denotes type of the conflict, for example forbidden
side-effects, forbidden pre-condition, inaccessible input/output, etc.

Consider, for example, two policies defined in healthcare domain.

– π1 - Nurses are permitted to perform various tests on patients
– π2 - Nurses are prohibited from updating health-details of patients.

As a side-effect of performing various tests, nurses update health-records of pa-
tients. Hence, a functional conflict (due to side effect) exists between π1 and π2.

Let us consider another example.

– π1 - Doctors are obliged to study cases of patients.
– π2 - Doctors are prohibited from accessing complete medical history of pa-

tients.

Access to complete medical history of a patient is required as a pre-condition for
a thorough study of a case. Hence, a functional conflict (due to precondition)
exists between π1 and π2.

Conflict detection and resolution are computationally expensive. Hence, the rea-
soning mechanism must focus on the most relevant conflicts, given the goals
of the organisation/agent. Conflicts occurring in a system are of varying sig-
nificance. Some conflicts have higher chances of occurring and they need to be
resolved statically, while others have very rare chances of occurring and they can
be resolved at runtime [6]. We argue that, more critical are the conflicts that
can impair achievement of goals. Hence, it is crucial to identify the conflicts,
resolution of which, will lead to maximum benefits and goal achievement.

8 Mukta S. Aphale, Timothy J. Norman, and Murat Şensoy

4 Activity Prioritisation Model

An activity prioritisation model that focuses on detecting and resolving an opti-
mum set of conflicts is implemented. The aim of the activity prioritisation model
is to identify the activities that are most important given the domain and goals
of organisation. This model is based on the Page Rank Algorithm [2] – an algo-
rithm to measure the relative importance of each element within a set. In the
activity prioritisation model relative importance of each activity is determined
based on the weight of the activity. The weight of each activity is computed
according to probability of execution of the activity while achieving a goal (i.e.,
frequency of occurrence of the activity in all the plans), average cost of achieving
the goal from the activity and probability of successful execution of the activity.

First, all possible plans for achieving a goal G from an initial state T are gener-
ated. Let us assume that Ac is a set of all atomic actions defined in the domain
and Plans is a set of all plans generated. The definition of a plan is given below
(Definition 4).

Definition 4 A plan p ∈ Plans is a sequence of atomic actions (α1, α2, ..., αn)
such that αi ∈ Ac.

Once possible plans are identified, each activity is annotated as specified in
Definition 5. Fig. 3 shows an example of graphical representation of plans and
plan annotation.

Definition 5 An annotation τi for action αi is a tuple < Aprecede
i , Afollow

i ,

Υi→g, weightoi , weightui >, where Aprecede
i is the set of all actions preceding αi

in all the plans containing αi; Afollow
i is the set of all actions that follow αi in

all the plans containing αi and Υi→g is a set of costs of every path from αi to αg,
where αg is the last activity of the plan. Original weight and ultimate weight of
αi are represented by weightoi and weightui respectively.

The weights of the activities are then computed. Formulae for calculating the
original weight and ultimate weight of an activity αi are given below:

weightoαi
= Pr(α̂i) ×

(

Υ avg

Υ avg
i→g

)

(1)

Pr(α̂i) represents the probability of successful execution of αi (typically based
on past experience). Υ avg

i→g is the average cost of achieving goal for αi i.e., average
of the values stored in Υi→g (Equation 2). Υ avg is the sum of average costs of
achieving the goal for all the activities being considered (Equation 3).

Υ avg
i→g =

∑

Υi→g

|Υi→g|
(2)

Goal Directed Conflict Resolution and Policy Refinement 9

Cost = 5

Cost = 15

Cost = 11Cost = 10

Cost = 7 Cost = 13

Cost = 18

Priority

40,37,
51,47

35

42

40,46

25

31

18

43.75

35

42

43

25

31

18

5.43428

6.79286

5.66071

5.52907

9.51

7.66935

13.20833

5.43428

5.43427

2.05277

1.71064

1.67086

2.97771

2.45656

2

5

7

6

3

4

1

α1

α1

α21

α21

α22

α22

α3

α3

α41α41

α42

α42

α5α5

τ1

τ21 τ22

τ3

τ41 τ42

τ5

Υi→g Υ avg
i→g ̟o

i ̟u
i

∑

Υ avg
i→g = 237.75

Assumption : Pr(α̂i) = 1 ∀ αi

Fig. 3. Graphical Representation of Plans to Achieve Goal G, Plan Annotation and
Activity Prioritisation

Υ avg =
∑

αi∈

⋃

p∈P lans

p

Υ avg
i→g (3)

Hence, weightoi is inversely proportional to the average cost of achieving the
goal, i.e., lower the average cost of achieving the goal more is the weight of the
activity. weightoi is directly proportional to the probability of successful execu-
tion of the activity, i.e., higher the probability more is the weight of the activity.
The assumption here is that lower cost plans have higher precedence over higher
cost plans.

After determining original weights of all the activities, ultimate weight of each
activity is computed by taking into account the weight induced by its preceding
activities.

weightuα = weightoα if
∣

∣Aprecede
α

∣

∣ = 0

=
∑

β∈A
precede
α

weightuβ ×
weightoα
∑

ǫ∈A
follow

β

weightoǫ

otherwise (4)

The activities preceding α are represented by β. The activities that follow β
(including α) are represented by ǫ. If α is the first activity in a plan, then ulti-
mate weight remains the same as the original weight of α. If an activity is not

10 Mukta S. Aphale, Timothy J. Norman, and Murat Şensoy

the first activity in the plan, ultimate weight of activity α is the sum of weights
induced by all its preceding activities β. A portion of the ultimate weight of β is
induced on each activity that follows β in porportion to the original weights of
the following activities. If β has only one following activity the ultimate weight
of β is completly induced on that activity. If β has more than one following
activities, then its weight is divided among all of them in proportion to their
original weights. Activities are prioritised according to their ultimate weights.
Higher the ultimate weight, higher is the priority. Original weight is considered
if two activities have the same ultimate weights.

Fig 3 shows an example of activity prioritisation. α1 is the first activity in the
plan. Hence, its ultimate weight remains the same as its original weight. The
ultimate weight of α1 is divided among its preceding activities α21, α22 and α3

in proportion to their original weights. Since the activities α21, α22, α41 and
α42 have only one preceding activity each, their weights are not divided. The
ultimate weight of α41 is the sum of its share from the ultimate weights of α3

and α21. Similarly, the ultimate weight of α42 is computed. Finally, the ultimate
weight of α5 is the sum of the ultimate weights of α41 and α42. The ultimate
weights of α1 and α5 are approximately the same. Hence, their priorities are
decided according to their original weights.

5 Conflict Detection

The most significant (i.e., high priority) activities in the plans generated are
identified using the activity prioritisation model. Only the active policies that
regulate the high priority activities are reasoned about to detect and resolve the
most significant logical and functional conflicts. If no policy exists that regulates
a high priority activity, a temporary permission is generated and used by the
reasoning mechanism.

A significant amount of prior research has focused on the detection and resolution
of conflicts between policies i.e., logical conflicts [5][8][14]. Little work to date
has been done in order to detect and resolve functional conflicts. The question
has been explored in the context of practical reasoning, where an agent architec-
ture (NoA) is proposed that detects direct and indirect conflicts (i.e., conflicts
occurring due to the side-effects of an action) between norms and action choices
[8]. OWL-POLAR reasoning mechanism is extended by implementing algorithms
to detect functional conflicts arising due to side-effects of an action (i.e., a pol-
icy suggests some action that has a side-effect that is prohibited by some other
policy) and pre-conditions of action (i.e., policy suggests some action, but its
pre-condition cannot be fulfilled due to some prohibition).

Consider two policies πi = αi −→ Aχi:ρi

(

λi : ϕi
)

/ei and πj = αj −→ Bχj :ρj
(

λj : ϕj
)

/ej . These policies will conflict with each other if the necessary condi-
tions are satisfied i.e., modalities of πi and πj are conflicting (Condition 1) and

Goal Directed Conflict Resolution and Policy Refinement 11

πi and πj are active for the same policy addressee in the same state of the world
∆ (Conditions 2, 3 and 4).

1. A conflicts with B. That is, A ∈ {O,P} while B ∈ {F}.
2. There exists a substitution σi s.t. ∆ ⊢

(

αi ∧ ρi
)

· σi, but no substitution σ′

i

s.t. ∆ ⊢
(

ei · σi

)

· σ′

i

3. There exists a substitution σj s.t. ∆ ⊢
(

αj ∧ ρj
)

· σj , but no substitution σ′

j

s.t. ∆ ⊢
(

ej · σj

)

· σ′

j

4. χi · σi = χj · σj

Algorithm 1 Anticipate if πi may functionally conflict with πj .

1: Input: Policy πi = αi −→ Aχi:ρi

(

λi : ϕi
)

/ei,

Policy πj = αj −→ Bχj :ρj

(

λj : ϕj
)

/ej

type
2: if ((A ∈ {O, P} and B ∈ {F}) then

3: 〈∆, σi〉 = freeze(αi ∧ ρi)
4: rs = query(∆, αi ∧ ρi)
5: for all (σk ∈ rs) do

6: 〈∆, σj〉 = update(∆,
(

αj ∧ ρj
)

· σk)
7: if (isConsistent(∆)) then

8: if (query(∆, ei · σi) = ∅ and query(∆,
(

ej · σk

)

· σj) = ∅) then

9: if (type = sideeffect) then

10: return checkSideEffects(λi, λj , σk, ∆)
11: end if

12: if (type = precondition) then

13: return checkPreconditions(λi · conjunct query preconds, λj , σk, ∆)
14: end if

15: end if

16: end if

17: end for

18: end if

19: return false

Algorithm 1 is presented for checking the necessary conditions stated above. Two
policies πi and πj as specified above and the type of functional conflict that is
being checked for, are expected as inputs by the this algorithm. The first step
of the algorithm is to test if A conflicts with B (line 2). If they are conflicting,
testing further requirements is continued with. A canonical state of the world
∆, in which πi is active, is created by freezing 1

(

αi ∧ ρi
)

with a substitution σi;

1 In order to test whether qA subsumes qB, the standard technique of query freezing
is used to reduce query containment problem to query answering in Description
Logics [5]. In this technique a canonical knowledge-base is built from the query
by replacing variables in the query with fresh individuals, adding each individual
appearing in the query to the canonical knowledge-base and inserting relationships
between individuals and constants defined in the query into the canonical knowledge-
base. As a result of this process, the canonical knowledge-base contains a pattern
that exists only in ontologies that satisfy the query.

12 Mukta S. Aphale, Timothy J. Norman, and Murat Şensoy

mapping the variables in
(

αi ∧ ρi
)

to the fresh individuals in ∆ (line 3). ∆ is then

queried with
(

αi ∧ ρi
)

(line 4). The results of this query satisfy
(

αi ∧ ρi
)

· σi.

For each σk satisfying
(

αi ∧ ρi
)

· σi, ∆ is updated by freezing
(

αj ∧ ρj
)

· σk,
without removing any individual from its existing ABox (line 6). As a result
of this process, σj is the substitution mapping the variables in

(

αj ∧ ρj
)

· σk

to the new fresh individuals in the updated ∆, so that χi · σi =
(

χj · σk

)

· σj .
The consistency of the resulting state of the world ∆ is tested (line 7). If this
is not consistent, it is concluded that it is not possible to have a state of the
world satisfying the requirements. If the resulting ∆ is consistent, the expiration
conditions of the policies are checked. If both policies are active in the resulting
state of the world (line 8), testing for the sufficient conditions is continued with.
If policies are being checked for functional conflicts arising due to side-effects
then (line 9), the function ‘checkSideEffects’ is called and the value returned by
the function is returned (line 10). If policies are being checked for functional
conflicts arising due to pre-conditions then (line 12), the function ‘checkPrecon-
ditions’ is called and the value returned by the function is returned (line 13).
If any of these requirements do not hold then false is returned (line 19). The
functions ‘checkSideEffects’ and ‘checkPreconditions’ are explained in the sub-
sequent algorithms.

Algorithm for Detecting Functional Conflicts Arising Due to Side-

Effects: The policies πi and πj may conflict functionally (due to side-effects)
if, in additions to the necessary conditions stated above, the following sufficient
condition is also satisfied.

– λj is the effect of performing λi (Reasoning about an atomic action λi and
a state λj).

Algorithm 2 Check Side Effects

1: Input: λi, λj , σ, ∆
2: s = clone(∆)
3: res1 = query(s, λj · σ)
4: applyActionToState(λi · σ, s)
5: res2 = query(s, λj · σ)
6: if ((res1 = ∅)and(res2 ! = ∅)) then

7: return true

8: end if

9: return false

Algorithm 2 is used to check side-effects of an atomic task. Permitted/obligated
action (λi), forbidden state (λj), substitution (σ) for which both the policies are
active for the same individuals and the state of the world (∆) where both the
policies are active for the same individuals at the same time, are expected as
inputs. The state of the world (∆) is cloned (line 2). The clone is queried for
(λj · σ) and the results are stored in the set ‘res1’ (line 3). The atomic action
(λi · σ) is applied on the clone (line 4). Again the clone is queried for (λj · σ)
and the results are stored in the set ‘res2’ (line 5). If ‘res1’ is empty and ‘res2’

Goal Directed Conflict Resolution and Policy Refinement 13

is not empty then it is concluded that λj is an effect of performing λi and true
is returned, else false is returned.

Algorithm for Detecting Functional Conflicts Arising Due to Precon-

ditions: The policies πi and πj may conflict functionally (due to preconditions)
if, in additions to the necessary conditions stated above, the following sufficient
condition is also satisfied.

– λj is a precondition of λi (Reasoning about an atomic action λi and a state
λj).

Algorithm 3 Check Preconditions

1: Input: conjunct query preconds, λj , σ, ∆
2: s = clone(∆)
3: 〈s, 〉 = update(s, conjunct query preconds · σ)
4: rs = query(s, λj · σ)
5: if (rs ! = ∅) then

6: return true

7: else

8: return false

9: end if

Algorithm 3 is used to check pre-conditions. A conjunction query of precon-
ditions of the permitted / obligated action (conjunct query preconds), forbid-
den state (λj), substitution (σ) for which both the policies are active for the
same individuals and the state of the world (∆) where both the policies are
active for the same individuals at the same time, are expected as inputs. The
state of the world (∆) is cloned (line 2) and the clone is updated by freezing
(conjunct query preconds ·σ) (line 3). The clone is queried for (λj ·σ) (line 4). If
the result is not empty then, it is concluded that one of the preconditions of the
permitted/obligated action i.e., one of the elements of conjunct query preconds
is the same as the forbidden state λj and true is returned (line 6), else false is
returned (line 8).

6 Conflict Resolution

Various strategies can be used to resolve conflicts, e.g. adding a new policy,
modifying action constraints of a policy, modifying activation window of a pol-
icy, norm-curtailment [14], and prioritising policies etc. However, addition of new
policies or modification of the conflicting policies might introduce new conflicts.
Hence, new/modified policy must be checked for consistency against all exist-
ing policies. Prioritising policies is guaranteed not to introduce new conflicts;
re-checking of the whole set of policies is not required.

Classic forms of policy prioritisation are lex-superior (policies/norms from higher
authority take precedence) and lex-posterior (most recent policies/norms take

14 Mukta S. Aphale, Timothy J. Norman, and Murat Şensoy

precedence) [8]. In the lex-specialis technique generic policy is overridden by spe-
cific policy. All these techniques do not permit a resolution that involves different
policies taking precedence depending on context. Also, it is not appropriate to
apply one resolution method to resolve all the conflicts that occur in the system
[6]. User-defined precedence may play an important role in resolving conflicts.
Policy prioritisation based on cost of violation, specificity and user-input is im-
plemented in Polar Agent.

Extending OWL-POLAR further, a policy refinement method for resolving con-
flicts, is implemented. In this method, a list of references to overriding policies
(e.g. policy names) is maintained by overridden policy. Consider two conflicting
policies πi = αi −→ Aχi:ρi

(

λi : ϕi
)

/ei/Πi and πj = αj −→ Bχj :ρj

(

λj : ϕj
)

/ej/
Πj . Where Πi and Πj are the sets containing references to overriding policies.
Let us consider that after using standard techniques for deciding precedence,
policy πi overrides πj . Hence, Πj will be modified as Πj = {πi}. Consider
that policy πk = αk −→ Cχk:ρk

(

λk : ϕk
)

/ek/Πk also conflicts with πj and πk

overrides πj . Hence, Πj will be modified as Πj = {πi, πk}. Conflict detection
mechanism of OWL-POLAR is augmented so that resolutions are taken into
account.

7 Conclusion and Future Work

The key questions addressed in this paper are: how to identify conflicts that
are most relevant to the domain and goals of organisation, and how to resolve
conflicts that are most important to the goals of organisation. The activity pri-
oritisation model is used to identify the most significant activities that can be
performed while achieving a goal. Active policies that regulate high priority
activities are reasoned about to detect logical and functional conflicts. This en-
sures identification of conflicts that are most relevant to the domain and goals of
organisation. Only those conflicts that have very high chances of impairing the
goal-achievement (i.e., conflicts involving high priority activities) will be resolved
using the conflict resolution techniques described in the paper. Depending on sig-
nificance of goal, resource availability and computational capacity a threshold
can be defined for number of activities to be considered for conflict detection and
resolution. A threshold for number of conflicts that can be resolved offline can
also be defined. Thus, less policy violations and decreased possibility of failures
in plan execution at runtime is ensured by the activity prioritisation model.

In future, the reasoning mechanism of OWL-POLAR will be extended to detect
other types of functional conflicts, e.g. inaccessible input/output and incoherent
domain etc. The activity prioritisation model will be evaluated; and it will be in-
vestigated if it identifies an optimum set of conflicts to resolve, such that the goal
is achieved with likelihood ≥ threshold. Given a set of policies, user-performance
in resolving conflicts and refining policies will be evaluated. Two conditions, con-
trol and aided, will be considered for two scenarios of similar complexity. It will

Goal Directed Conflict Resolution and Policy Refinement 15

be investigated and evaluated if the automated support mechanisms developed
for helping policy authors in resolving policy conflicts and refining policies can
also aid collaborative authoring and refinement.

References

1. W. O. W. Group, OWL 2 Web Ontology Language: Document overview http:

//www.w3.org/TR/owl2-overview
2. Brin S., Page L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine.

Computer Networks and ISDN Systems. 30(1-7), 107–117 (1998)
3. Broersen J., Dastani M., Hulstijn J., Huang J., van der Torre L.: The BOID Ar-

chitecture - Conflicts Between Beliefs, Obligations, Intentions and Desires. In pro-
ceedings of the 5th International Conference on Autonomous Agents, pp 9–16.
ACM Press (2001)

4. Castelfranchi C.: Formalizing the Informal?: Dynamic Social Order, Bottom-Up
Social Control, and Spontaneous Normative Relations. Journal of Applied Logic.
1(1-2), 47–92 (2003)

5. Şensoy M., Norman T.J., Vasconcelos W.W., Sycara K.: OWL-POLAR: Semantic
Policies for Agent Reasoning. In proceedings of the 9th International Semantic
Web Conference, LNCS, vol. 6414, pp. 679–695. Springer-Verlag (2010)

6. Dunlop N., Indulska J., Raymond K.: Methods for Conflict Resolution in Policy-
Based Management Systems. In proceedings of the 7th International Enterprise
Distributed Object Computing Conference, pp 98–109. IEEE Computer Society
(2003)

7. M. Johnson, J. Karat, C.-M. Karat, K. Grueneberg.: Usable Policy Template Au-
thoring for Iterative Policy Refinement. In proceedings of the 2010 IEEE Interna-
tional Symposium on Policies for Distributed Systems and Networks, pp 18–21.
IEEE Computer Society (2010)

8. Kollingbaum M.J.: Norm-Governed Practical Reasoning Agents. Dept. of Comput-
ing Science, University of Aberdeen (2005)

9. Meneguzzi F.: Extending Agent Languages for Multiagent Domains. University of
London, King’s College London (2009)

10. Oh J., Meneguzzi F., Sycara K., Norman T.J.: An Agent Architecture for Prog-
nostic Reasoning Assistance. In Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence, pp. 2513–2518. IJCAI (2011)

11. Sycara K., Norman T.J., Giampapa J.A., Kollingbaum M.J., Burnett C., Masato
D., McCallum M., Strub M.H.: Agent Support for Policy-Driven Collaborative
Mission Planning. The Computer Journal, 53(5), 528–540 (2009)

12. Tonti G., Bradshaw J.M., Jeffers R., Montanari R., Suri N., Uszok A.: Seman-
tic Web Languages for Policy Representation and Reasoning: A Comparison of
KAoS, Rei, and Ponder. In the proceedings of 2003 International Semantic Web
Conference, LNCS, vol. 2870, pp. 419–437. Springer-Verlag (2003)

13. Uszok A., Bradshaw J.M., Breedy M.R., Bunch L., Feltovich P., Johnson M.,
Jung H.: New Developments in Ontology-Based Policy Management: Increasing
the Practicality and Comprehensiveness of KAoS. 2008 IEEE Workshop on Poli-
cies for Distributed Systems and Networks, pp 145–152. IEEE Computer Society
(2008)

14. Vasconcelos W. W., Kollingbaum M.J., Norman T.J.: Normative Conflict Resolu-
tion in Multi-Agent Systems. Auton Agent Multi-Agent Systems. 19(2), 124–152
(2009)

