Resource Access with Variably Typed Return

Gabrielle Anderson Julian Rathke
University of Southampton University of Southampton
Southampton, Hants, UK Southampton, Hants, UK
gabrielle.anderson@soton.ac.uk jr2@ecs.soton.ac.uk
Abstract

Shared resources are a feature of many concurrent distributed systems. Access to these resources
often involves using data of different types at each access. We consider the use of static analysis to
guarantee type safety in such such systems and provide a view of generalised resource usage which
subsumes that of session typing systems.

1 Introduction

In many real world systems we often need to be able to obtain, and use type-safely, values from shared
resources; such systems include, for example, multithreaded message passing systems, where the shared
resources are channels with associated queues, or those where mobile code is transmitted between lo-
cations. When the type or the effect of these values is variable, say for untyped channels in a message
passing system, it is possible to send a value which is not of the type that the receiver is expecting. If
the receiver does not dynamically check the type of the received value itself it could then use the value
inappropriately and cause a run time type error.

Traditionally many systems solve this problem by performing runtime checks on all values received.
This is true, for example, for deserialisation of objects in Java. This approach has obvious runtime costs
and in general one might seek to mitigate these costs through static analysis. There are different static
approaches which can be applied to this problem; we can use model checking to examine the types of all
possible values returned, and in some cases we can use structural analyses of the impure actions such as
sending messages. In the specific case of message passing systems a number of static analyses known as
session typing [[2-6] have been developed to address this issue. These approaches leverage the semantics
of the message passing system, such as blocking receives and FIFO queues for sent messages, to observe
that if two threads act on a channel and their actions are complementary [4] then there will be no run
time type errors. We argue that the session typing analysis exemplifies a more general analysis of type
and effects for resource accesses with variable types. The specific details of message passing systems
can be factored out in to a semantics of resource access so that the underlying mechanics of the type
safety proof are independent of the particular resources being accessed. Doing this has the advantages of
making the proof of type safety robust with respect to changes in the resource model being used, thereby
allowing one to obtain the guarantees of type safety without having to reprove the result.

In this paper, following [7]], we present a generalised notion of resource with variably typed access,
discuss static analysis for these and state the key properties of subject reduction and fidelity for this
analysis. We show how this general model can be instantiated to yield session type analyses for message-
passing systems. Crucially we separate the aspects of the safety proof which can be done for general
systems from those which are dependent on the semantics of accessing the resources (Section). The
general solution to proving safety is a model checking approach (for which we do not consider the
algorithms). We show how to prove safety in various examples, and how the additional knowledge
allows us to simplify and reduce the cost of the proofs.

gabrielle.anderson@soton.ac.uk
jr2@ecs.soton.ac.uk

Variably Typed Return Anderson and Rathke

[c—0]@ || ¢ | c?(int); ¢?(BooL)

[c — 0] c!(BooL) || c?(InT) [c — InT| c!(Boor) || ¢?(InT) .
— [c+> BooL] € || ¢?(InT) — [c > Int,Boor] € || ¢?(InT) — [c— vr,..] € || €] €?(Boot)
— error — [c+> BooL] € || € — error

where ¢ = c¢!(Int); ¢!(BooL)
Figure 1: Message Passing Figure 2: Message Passing

Error Success Figure 3: Message Passing

Error From Interleaving

2 Message Passing Systems

In this section we consider message passing systems as a means to discussing our generalised notion
of resource. Message passing systems consist of multiple threads of code that uses shared channels.
Accesses to shared channels can add and remove values of varying types from channel queues.

In message passing systems type usage errors can occur when the value obtained from a receive
action is not of the expected type, for example consider the abstracted code effects in Figure [T] which
uses a suggestive notation ¢ — T1,. .., T; for the type of a channel queue and ¢!(T) for code which sends
a value of type T on channel ¢ and ¢?(T') for code which expects to receive a value of type T

Session typing analyses are static analyses that can be used to determine whether a program in a
message passing system with untyped channels will have any type errors due to the values sent and
received on the channels. In essence this is done as follows: perform a type and effect analysis on the
code to obtain an effect which represents the behaviour of the system on resources and then define some
predicate over these effects that exploits knowledge of the semantics of resources to ensure that no type
errors occur. For example, for systems in which it is known that only two threads use each channel; one
thread for sending only and one for receiving only, then we could define a predicate that asserts that for
each receive action in a given thread there is an entry at the front of queue of the correct type or the queue
is empty and there is a complementary send of the same type in the other thread. This will then catch the
error in Figure[I] as the value sent is not of the type expected by the receiver. Note that whether or not
a type error occurs may depends on the starting state of the resources. For example, with the same code
and different starting resources, as in Figure 2] no error occurs. The predicate described above accounts
for this. If we could not rely on channels only being used by two threads, or that the threads use the
channel to send or receive only, then the effects being complementary would not be a sufficient condition
to prevent errors; in Figure [3| the effect of each of the senders is complementary to that of the receiver,
but as there are multiple senders the sends can interleave resulting in a value of an unexpected type being
received.

What we see from the example above is that in checking type safety of code that accesses resources
the relevant information is

« the code’s effect on the resources,
* the initial state of the resources, and
* semantics of the resources within the system

The first of these can be calculated using a standard type and effect system [8]. The latter two inform our
generalised analysis.

Variably Typed Return Anderson and Rathke

3 Generalised System

We now present our generalised resource system and describe the type and effect analysis used to guar-
antee type safety. We will work with a simply-typed lambda calculus with recursion and primitives acc’
to describe resource access. The labels [are of the form o(vy,...,v,) for some action o and values
v;. We will consider systems P of parallel threads of these lambda terms. We parameterise our work
on a resource model, which is a collection of sfates ranged over by ¢ and a function that maps a state

. ! .
and a label to a return value and another state: we write 6(/) = v and 6 — ¢’ to denote this map. The
semantics of systems is given with respect to a resource state: [6]P — [0’]P’ in a mostly obvious way
such that a resource access acc’ respects the semantics of the resource model:

cbo
[o]acc! — [0'] o ()

The resource model is a generalised model, and hence can be instantiated with either finite or infinite
models. In order to present our analysis we make use of an abstract resource model which abstracts
away from particular values associated with resource states and provides a representation of the resource
types. An abstract resource model is a collection of abstract states ranged over by X and a function that

maps a state and an abstract label to a type and another abstract state: we write X(L) =T and £ Ly as
above. Abstract labels L are of the form o(77,...,7,) so that a label / corresponds to a unique abstract
label L via simple typing of values. We relate the resource model and abstract resource model via an
abstraction map A with the property that ¢ Lo implies A(o) L A(c’)andTH o (1) : A(o)(L), under
type variable assumptions I

We would now like to define our type and effect system in a standard way following [8] where the
judgements are of the form ¢; I'-17: T for effects ¢ and simple type T. However, as we are working in
a system in which resource accesses may return values of different types depending on the state of the
resource it is not generally possible to locally determine a type for the resource access primitive acc!.
Indeed, the type of this expression will depend on the state in which it is accessed. What we can do
locally is determine the expected type of the acc! expression with respect to the remainder of the thread
in which the value returned is used. This generates a constraint on the effect for that thread which will
be solved globally when all threads are placed together in parallel. In order to do this, the effect of a
primitive access acc! takes the form (L, T) where L is the corresponding abstract label and T records the
expected type of the value to be returned.

(L,T);Ttacc: T

Our language of effects is

pu=¢lx|[(LT)| ;0| ux.e Pu=¢ P[P

where we allow sequencing of effects and recursive effects (infinitely unfolded). Given an effect ¢ it
is easy to see how to lift the reduction relation over states and threads to abstract states and effects

[X] ¢ — [X'] ¢’ by making use of the = L, ¥ relation. We add error transitions to this as follows

S(L)=T T#T
[Z] (L,T"); ¢ — error

We define the judgement - P : ® using a type and effect system in the usual way modulo the rule for
acc’ expressions as discussed above. This judgement says that the system consists of well-typed threads

Variably Typed Return Anderson and Rathke

whose effects make up ®. Our global check on the consistency of the local constraints in the effects is
expressed in the rule:

FP:® 3¢ .4 (A(0),®) and (¢ — ¥)

F[o]P: ®
where
int(@r | @) & UL {T):; @ o= (LT); o)A@ €int(@r || ... | @] || @u})
def . .
compGen(@; || ... || @1,2) = Vo cint(or | ...| ¢).[X]@ A []error

In order to guarantee type safety we need to verify that each resource access returns a value of the
expected type annotated on the effect of that resource access. This must be true irrespective of the
interleaving of accesses which may occur before it. In the worst case we must look at all possible
interleavings of a parallel effect and ensure that none of these reduce to an error under the resource
reduction semantics. However, it may be that we can find a predicate over abstract states and effects that
implies this property. We discuss this point further in the next section but for now we state our main
properties of the generalised analysis:

Theorem 3.1. (Subject Reduction and Fidelity) If - [G]P: ® and [G] P — [0'] P then there exists some
@' such that - [6'|P': @ and [A(0)]| P — [A(0”)] D

4 Invariability Proofs

The compGen(X,®) predicate is a formal statement of the safety of possible interleavings of the effects
on the resources L. Establishing ¢ amounts to model checking the space of all traces on [£]®. Whilst
this approach has exponential complexity, it is a general solution where we have no additional knowledge
about the structure of the resources, the permissible accesses, or the reduction semantics of the resources.
Given more information about the resource’s reduction relation then we may be able to define some other
check which is much easier to establish but still implies ¢ in that system. We illustrate this with the
following examples.

Blocking Message Passing. In order to define a less costly check than model checking we consider a
resource model of shared channels and channel queues with resource accesses c!(v) and ¢?(). It is easy
to define an appropriate resource model and a corresponding abstract resource model for these: the states
represent the current state of the channel queues and the actions move values in and out of these queues.
The receive action has a blocking semantics so it has no action on an empty queue but will return the
value at the head of the queue otherwise. The send action always returns a unit value. Suppose we know
that each channel is shared between at most two threads and that threads use channels uni-directionally.
Let us also suppose that systems always start with empty queues. Using this information we can define
a complementary relation [4]:

Definition 4.1. Complementary relation for blocking message passing systems:
compl((e!(T), T'); @1, (20, T"); ¢2) & T' = Unit AT = T" A compl (1, 9»)
compl(Qr,¢2) = @r=eVp=¢

Given this we define compatibility as:

Variably Typed Return Anderson and Rathke

Definition 4.2. Compatibility for blocking message passing systems:
compatible(X, @) e com pl(@1 [c, @2 [¢)Vecompl(ga [¢, [)

where @ | c projects the effect @ to just the actions using channel ¢ and Q| and @, are the effects of the
two threads that use c.

Given this definition it is not too hard to show that compatible(X¢, @) implies ¢ (X¢, D) where X
is the abstract state representing empty channel queues. We can use this predicate in establishing that
blocking message passing systems are well-typed, and hence are type safe, from the initial resource state.
Subject reduction tells us that well-typed systems stay safe under reduction. This check is linear in the
size of the effects which use the channel.

We sketch the proof that compatible(Xs, @) implies ¢ (X¢,®) as follows. We know that only two
threads perform accesses using that channel. In combination with our knowledge from the semantics
that only actions using a channel can modify that channel’s queue we can consider only the possible
interleavings of the actions of these two threads which make use of a given channel (¢; [c and ¢, | ¢
respectively). If the usage is uni-directional, then irrespective of the interleavings the latter can only
perform receive actions after the former performs a send action, as receive is a blocking action. In
combination with FIFO access semantics then the receiver will receive values in the order that they are
sent by the sender. This is true irrespective of whether all the sends are performed first and then all the
the receives, whether the sends and receives interchange, or any other interleaving. Hence we preserve
compatibility.

Non-Blocking Message Passing. A slightly different example is a message passing system where the
receive actions are non-blocking. This uses the same resource and abstract models as blocking message
passing, with one exception; the receive action has a non-blocking semantics where it returns a default
(unit) value when performed on an empty queue and the head of the queue otherwise. We again suppose
that two threads use a given channel uni-directionally and that we start with empty queues. Then the
complementary behaviour to sending a value is polling a channel until a non-default value is received.
In order to represent polling we need to add recursion and (external) choice to the language. We use the
notation ph. to define recursion where the recursive variable h is bound in ¢ and the notation @&,
to define external choice, which reduces as follows:

Qo — @ icl1,2

o1&, L g

(:EEXTCHOICE)

Using this information we can define another complementary relation:

Definition 4.3. Complementary relation for non-blocking message passing systems:

compl((c¢(T), T"); @1, uh.(c(T"); 2&c?(Unit); h)) e UnitAT = T" A compl(@y, ¢2)
compl(@1,) = @r=eVg=c¢
compl(phy. @i, 1uhy.@2) = compl(¢r,)
compl(h,h) = true

We can again show that compatible(X¢,®) implies ¢ (X¢, P). As before we can only need to consider
the effect of the two threads which are communicating uni-directionally using the channel. In order to
guarantee that in the case of receiving a unit value the receiver doesn’t go on to performing the next
receive in its sequence we require it to perfom polling and wait to receive the non-default value. Hence

Variably Typed Return Anderson and Rathke

the receiver will receive all the values in the order sent. This may seem like a re-engineering of blocking
receive, but recall that we are working with effects projected onto a specific channel; the receiver could
go off and do some other behaviour on other channels before looping round and this would be invisible
when performing the complementary check for this channel.

Bounded message passing To demonstrate the robustness of our technique we consider a resource
model with a different semantics. In this case, the c!(v) action will block if the channel queue is full
with K messages waiting in it. The semantics for this are easy to define. The changes we need to
make to our analysis lie in the compl(¢;, ¢,) predicate given above. In this case we simply introduce
a counter in the definition clause for compl((c!(T),T"); ¢1,€) so that the predicate becomes true when
the counter reaches K. Again, it is easy to show that this predicate implies ¢ and therefore may be used
in establishing type-safety of such systems. In particular, we do not need to reprove subject reduction in
this case.

5 Conclusion

In this paper we present a general resource model for resource accesses that return values of varying
type. We provide a type and effect system for a multithreaded simply typed lambda calculus that features
locally inferred return types as constraints in the effect annotations. These constraints are resolved glob-
ally between the multiple threads of the system in worst case by considering all possible interleavings of
effects upon the resource state. This is tantamount to model checking and we provide examples in which
we show that, given specific knowledge of the resource semantics, it is possible to define predicates that
are easier to establish than the full model check yet nonetheless are sound. We believe that this approach
clarifies the link between the semantics of the resources and the more routine aspects of the type safety
proof and moreover allows reuse of the subject reduction and fidelity results for the general system.

The technical details of this work are included in our technical report [1] where we also include
details of how to handle internal and external choice. In future work we intend to explore dynamic
software updating for such systems and how the semantics of specific systems can inform safety proofs
in the same way that the semantics informs compatibility definitions.

References

[1] Gabrielle Anderson. Behavioural Properties and Dynamic Software Updating- Thesis Report,
http://eprints.ecs.soton.ac.uk/21995/, 2011.

[2] Lorenzo Bettini, Mario Coppo, Marco De Luca, Mariangiola Dezani-ciancaglini, and Nobuko Yoshida. Global
Progress in Dynamically Merged Multiparty Sessions, pages 418—433. Springer Berlin / Heidelberg, 5201
edition, 2008.

[3] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia Drossopoulou. Session
Types for Object-Oriented Languages, book part (with own title) 20, pages 328-352. Lecture Notes in Com-
puter Science. 2006.

[4] Kohei Honda. Types for Dyadic Interaction. Lecture Notes in Computer Science, 715(CONCUR’93):509-523,
1993.

[5] Kohei Honda, Makoto Kubo, and Vasco Vasconcelos. Language Primitives and Type Discipline for Structured
Communication-Based Programming. In In ESOP’98, volume 1381 of LNCS, volume 171, pages 122—138,
July 1998.

[6] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. SIGPLAN Not.,
43(1):273-284, January 2008.

Variably Typed Return Anderson and Rathke

[7]1 Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. ACM Transactions on Programming Lan-
guages and Systems, 27(2):264-313, March 2005.

[8] Flemming Nielson and Hanne Riis Nielson. Type and Effect Systems. pages 114—136. Springer-Verlag, 1999.

	Introduction
	Message Passing Systems
	Generalised System
	Invariability Proofs
	Conclusion

