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Abstract

The rate at which plants grow is a major functional trait in plant ecology. However, little is

known about its evolution in natural populations. Here, we investigate evolutionary and envi-

ronmental factors shaping variation in the growth rate of Arabidopsis thaliana. We used

plant diameter as a proxy to monitor plant growth over time in environments that mimicked

latitudinal differences in the intensity of natural light radiation, across a set of 278 genotypes

sampled within four broad regions, including an outgroup set of genotypes from China. A

field experiment conducted under natural conditions confirmed the ecological relevance of

the observed variation. All genotypes markedly expanded their rosette diameter when the

light supply was decreased, demonstrating that environmental plasticity is a predominant

source of variation to adapt plant size to prevailing light conditions. Yet, we detected signifi-

cant levels of genetic variation both in growth rate and growth plasticity. Genome-wide asso-

ciation studies revealed that only 2 single nucleotide polymorphisms associate with genetic

variation for growth above Bonferroni confidence levels. However, marginally associated

variants were significantly enriched among genes with an annotated role in growth and

stress reactions. Polygenic scores computed from marginally associated variants confirmed

the polygenic basis of growth variation. For both light regimes, phenotypic divergence

between the most distantly related population (China) and the various regions in Europe is

smaller than the variation observed within Europe, indicating that the evolution of growth

rate is likely to be constrained by stabilizing selection. We observed that Spanish genotypes,

however, reach a significantly larger size than Northern European genotypes. Tests of

adaptive divergence and analysis of the individual burden of deleterious mutations reveal

that adaptive processes have played a more important role in shaping regional differences

in rosette growth than maladaptive evolution.
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Author summary

The rate at which plants grow is a major functional trait in plant ecology. However, little is

known about its genetic variation in natural populations. Here, we investigate genetic and

environmental factors shaping variation in the growth rate of Arabidopsis thaliana and

ask whether genetic variation in plant growth contributes to adaptation to local environ-

mental conditions. We grew plants under two light regimes that mimic latitudinal differ-

ences in the intensity of natural light radiation, and measured plant diameter as it grew

over time. When the light supply was decreased, plant diameter grew more slowly but

reached a markedly larger final size, confirming that plants can adjust their growth to pre-

vailing light conditions. Yet, we also detected significant levels of genetic variation both in

growth rate and in how the growth dynamics is adjusted to the light conditions. We show

that this variation is encoded by many loci of small effect that are hard to locate in the

genome but overall significantly enriched among genes associated with growth and stress

reactions. We further observe that Spanish genotypes tended to reach, on average, a signif-

icantly larger rosette size than Northern European genotypes. Tests of adaptive divergence

indicate that these differences may reflect adaptation to local environmental conditions.

Introduction

Growth rate is a crucial component of individual fitness, as it reflects the capacity of the organ-

ism to acquire resources and conditions reproductive output [1,2]. In experimental evolution-

ary studies, relative growth rate provides a measure of microbial adaptation in response to

selection [3]. In plants, however, little is known about the evolutionary processes that influence

variation in plant growth rate, despite its cornerstone importance in plant ecology [4–6].

Four processes may explain variation in growth rate: random evolution due to drift, plastic-

ity, adaptation or maladaptation. Plasticity describes the immediate adjustment of plant

growth rate in response to environmental modifications [7]. Such change may occur as a pas-

sive consequence of resource limitations. Plant growth, for example, is slower in drought con-

ditions or at lower temperatures [8,9]. Plastic adjustments of plant growth, however, can also

actively contribute to maintaining fitness under challenging conditions. For example, shade

avoidance allows plants to outgrow neighbors competing for light [10]. Such reactions may

allow the organism to maintain high fitness when the environment becomes challenging, with-

out having to evolve genetically [11].

As the distribution range of a species expands, plastic modifications may become insuffi-

cient to adjust fitness, and genetic variation may be required for local adaptation [7,12]. There

is clear evidence that genetic variation in plastic life history traits such as flowering time or

seed dormancy contributes to the evolution of life-history decisions that are tailored to the

local optimal growth season [13–16]. Surprisingly, the extent to which genetic variation in

plant growth rate itself contributes to local adaptation is not known. Answering this question

requires that the effect of natural selection on phenotypic divergence be disentangled from the

effect of drift [17].

Genetic variation in growth rate may also arise in the absence of a compelling environmen-

tal change, as a consequence of population genetics processes. In bottlenecked populations, or

in the aftermath of rapid range expansion, increased drift hampers the efficient removal of del-

eterious mutations, and individuals may become less fit [18–22]. Because plant growth is a

component of fitness, genotypes carrying a larger burden of deleterious mutations may show
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decreased growth. Genetic variation in growth rates may thus also reflect maladaptation result-

ing from decreased population size.

The annual species A. thaliana has become a model system for both molecular and evolu-

tionary biology, and it is well suited for determining the ecological and evolutionary signifi-

cance of plant growth rates [23,24]. A. thaliana individuals can adjust their growth rate

plastically to maintain their fitness. Plant rosettes grow to a larger diameter when light

becomes limited [10,25]. Ample genetic variation in plant growth rates has also been docu-

mented in this species [26–28]. In addition, there is evidence that the resources allocated to

growth are not identical throughout the species’ range, because trade-offs between growth rate

and development change with latitude (reviewed in [12,29,30]). Furthermore, traits related to

how resources are allocated to growth, such as growth inhibition upon the activation of plant

defense, or plant dwarfism, have been associated with adaptation [31–35]. In summary, adap-

tive variation in the rate of plant growth may have evolved in A. thaliana. At the same time,

the maladaptive or neutral evolution of a decreased growth rate cannot be excluded a priori.
Indeed, A. thaliana has experienced recent severe bottlenecks in parts of its range, such as in

Northern European or Chinese populations, which locally increased the rate of genetic drift

and led to an accumulation of deleterious genetic variants [36–38]. Neutral evolutionary forces

could therefore also have modified growth rate in these populations.

To determine the roles of deleterious variation, adaptive evolution and/or plasticity in the

genetic variation among plant growth rates, we analyzed variation among rosette growth rates

across genotypes sampled from four broad regions (China, Spain, Northern and Western

Europe). To assess the relative roles of genetic and plastic variation, we grew plants under two

light regimes that mimicked constitutive latitudinal differences in natural light intensity and

characterized genetic variation in growth plasticity. This analysis reveals significant regional

differences in growth dynamics, most of which have a polygenic basis. Population genetics

analyses indicate that local selective pressures have helped shape this variation.

Materials and methods

Phenotypic analysis and estimation of growth rate parameters

We chose 278 genotypes of Arabidopsis thaliana originating from 220 locations distributed

throughout 4 regions for phenotypic analyses of growth rate variation (Northern Europe,

Western Europe, Spain and Central-Eastern China, S1 Table and S1 Fig). A PCA confirmed

that genotypes within these regions formed distinct phylogeographic clusters (S2 Fig), whose

specific evolutionary history has been previously documented [13,37–39].

Seeds were stratified for 3 days at 4˚C in the dark on wet paper, and six replicate seedlings

per genotype were replanted, each in one 6x6 cm round pots containing soil (“Classic” from

Einheitserde) mixed with perlite. Growth was measured in a split-plot design, under two light

regimes, high light (HL) and low light (LL) in the same chamber but in successive independent

trials. Plants were grown in a temperature-controlled walk-in growth chamber (Dixell, Ger-

many) set at 20˚C day and 18˚C night, and watered once a week. For each light regime, pots

were randomized within three blocks of 8 trays with 7x5 pots, with one replicate of each geno-

type in each block. Trays were randomized and the rows in the trays were rotated every two to

three days to account for variability within the chamber. The plants were exposed to light for

12 h with LEDs (LED Modul III DR-B-W-FR lights by dhlicht) set to 100% intensity of blue

(440nm), red (660nm) and white (HL conditions) or 30% of red and blue plus 100% of white

light (LL conditions), followed by a 10 min far-red light pulse to simulate sunset (40% intensity

at 735nm). The total measured light intensity was 224 +/- 10 μmol/m2s in HL and 95 +/- 7 in

LL. These two light regime mimick latitudinal differences in natural light intensity (S3 Fig).
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Individual plants were photographed approximately bi-weekly with a Canon EOS 5D Mark

III digital camera until days 46 (8 weeks) and 89 (13 weeks), for those grown under the HL and

LL regimes, respectively (image data is available on dryad, doi:10.5061/dryad.s1rn8pk5m)

[40]. We only measured diameter for one time point per week, but included additional mea-

surements if it was necessary to fit the logistic curves. Flowering time was measured as days to

first flower opening. For genotypes without a flowering individual by the end of the experi-

ment, a flowering time value of 59 or 90 days (last date that flowering was scored) was assigned

to HL and LL plants, respectively. Since only 37% of the plants in the experiment flowered, we

also used flowering time data from the 1001 Genomes project, according to which flowering

was scored at 10 and 16˚C for 177 genotypes [39]. A measure of the diameter of each plant

(defined as the longest distance between two leaves) was extracted at least once a week with

ImageJ (v.1.50b, [41]). In a preliminary experiment conducted on a subset of 17 genotypes, we

used Rosette Tracker, an ImageJ tool [42], to show that diameter correlated positively with

rosette area under both light regimes (HL r = 0.83, p<3.2e-5, LL r = 0.56, p<0.0186). We con-

firmed that plant diameter accurately predicts rosette area on this larger data set (r = 0.929, p =

<2.2e-16 in HL). Rosette diameter was therefore used to determine the increase in rosette area

over time.

We conducted two additional experiments to test the ecological relevance of rosette growth

variation measured under controlled conditions. First, all genotypes were grown under HL

conditions, in 5 replicates. In this experiment, instead of rosette diameter, we measured hypo-

cotyl length after 15 days, to quantify variation in seedling growth. We further weighted

3-week old plants with a precision balance (Sartorius AC 210 P with accuracy of 0.1 mg) to

quantify variation in plant biomass. We also followed a similar experimental design to measure

the diameter of plants grown outdoor in 2 replicates in the field of the Cologne Institute of

Plant Sciences. Sand was used instead of soil in 9 cm diameter pots. Seeds were sown in Sep-

tember 2016, which corresponds to the native season in the area and put outside after a week.

Statistical analysis of genetic variance

All following analyses were conducted using R (version 3.6.3) [43], and function names refer

to those in the R package mentioned unless otherwise noted. We provide an Rmarkdown

script detailing the statistical analysis of phenotypic variation (S1 File).

The split-plot design of our study allowed us to conduct the analysis in successive steps.

First, we extracted three parameters that together provided a comprehensive description of

individual rosette growth. For this, rosette diameter measurements over time (our input phe-

notype) were modeled as a three-parameter logistic growth using the drm function from the

drc package in R [44]. The three following growth parameters were extracted: final size (FS,

largest estimated rosette diameter in cm), slope (factor of magnification in the linear phase)

and t50 (inflection point; time at which growth is maximum and half of FS has been reached,

which quantifies the duration of the rosette area growth phase in number of days). We show

examples for the estimation of growth rate in S4 Fig For each parameter, a genotypic mean

correcting for block, tray and position effect was computed with a generalized linear model

with a Gaussian error distribution and the following model: parameter~accession+block+tray/
(row+col)+error. Genotypic means in HL and LL were extracted separately, because light treat-

ments had to be performed in separate trials. To quantify the plasticity of growth to the light

regime of each genotype, we correlated genotypic means in LL against HL and extracted the

residuals. GxE estimates thus quantify the deviation of the response of a given genotype from

the mean response of all genotypes for the respective parameter. The estimate increases with

the magnitude of growth plasticity induced by a decrease in light intensity (S5 Fig). Broad-
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sense heritability (H2) was determined for each trait in each environment as previously

reported [45]. Briefly, genetic and environmental variances were estimated using the lme func-

tion from the nlme package [46], with the block as fixed and genotype as random effect and

heritability was determined as the ratio of genetic variance over the total variance. The herita-

bility of GxE was not estimated, because we quantified plasticity on the basis of changes in

genotypic means in the two light conditions. For this reason, we also computed trait pseudo-

heritability, which is based on the genome-wide association study (GWAS) mixed model (see

below) and allowed us to estimate the proportion of the observed phenotypic variance that is

explained by genotypic relatedness for all traits [47].

To assess the correlation of phenotypic traits with climatic variables, we investigated solar

radiation estimates, temperature, precipitation, humidity and wind speed with 2.5-min grid

resolution (WorldClim2 database, [48], accessed on March 20, 2018) and soil water content

[49]. Following [45], we estimated the mean over the putative growth season for each genotype

in addition to the annual averages.

Because of the strong correlations between climatic variables, we conducted principal com-

ponent analyses (PCAs) to combine the data. We analyzed annual average radiation separately

and combined the other variables into the PCAs: growing season data, variables related to pre-

cipitation and to temperature. Raw climatic data and the principle components (PCs) are in S1

Table and the loadings of the PCA are in S11 Table.

Regional differences in mean growth parameters were tested with a multivariate analysis,

using themanova function, the matrix of growth parameters (genetic means) or plasticity and

the following model: growth~ population�light regime. Significance levels were determined by

the Pillai test.

For univariate analysis, we used GLMs to test the effect of population of origin on the geno-

typic means. A Gaussian distribution was taken for error distribution, and the dispersion

parameter was estimated by the glm function. Group means were compared with the glht func-

tion (which performs general linear hypothesis testing) and plotted on boxplots using the cld
function, both of themultcomp package [50].

Pairwise trait correlations within and across populations were calculated with the cor.test
function (Pearson’s product-moment correlation), and p-values were established using the

lmekin function in R, which includes a kinship matrix of individuals (see below) and thus cor-

rects for population structure (after [29]). We used the corrplot function from the corrplot
package to plot correlations [51]. Plots were modified using inkscape version 0.92.3 (inkscape.

org, [52]). Significance levels were adjusted for false-discovery rates with the function p.adjust.

Genome-wide association studies

Genomic data were available for 231 of the 278 genotypes included in the phenotypic analysis, i.e.

for 84 genotypes from Northern Europe (NE, predominantly Sweden), 3 from Western Europe

(WE), 119 from Spain (SP) and 15 from China (CH) [38,39]. Chinese genotypes were excluded

from the GWAS because of their limited number (15 genotypes) and their strong genetic diver-

gence ([38], S2 Fig). In total, the growth parameters of 203 and 201 genotypes grown under HL

and LL, respectively, were used for the GWAS. Genome-wide association studies were conducted

using the method from [53]. The corresponding GWAS package was downloaded from https://
github.com/arthurkorte/GWAS. Single Nucleotide Polymorphisms (SNPs) with minor allele fre-

quency below 5% or with more than 5% missing data were removed from the genotype matrix,

resulting in a matrix of 1,448,192 SNPs, produced with vcftools (—012 recode option) (version

0.1.15, [54]). A kinship matrix was computed with the emma.kinship function. For each growth

parameter, genotypic means were used as phenotype measurements. We performed GWAS
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across the European sample of genotypes but also within region (Spain and Northern Europe).

For each SNP, the script output delivered p-values, which were Bonferroni corrected for multiple

testing, and effect sizes. For each trait, we estimated pseudo-heritability, the proportion of the

observed phenotypic variance that is explained by the estimated relatedness (e.g. kinship matrix,

[47]). To identify candidate genes underpinning significant GWAS associations, we calculated

the linkage disequilibrium (LD) around the SNP of interest and selected all genes that were in a

genomic window with LD above 0.5 within a 250 kb window around the SNP. The LD was calcu-

lated as the Pearson correlation between the frequencies of allele pairs. Additionally, we down-

loaded an annotation of loss-of-function (LOF) variants [55] and performed a GWAS association

following the procedure described above except that the SNP data set was replaced with the LOF

data set, which assigned one of two states (functional or LOF), for each genotype and each of the

2500 genes with known LOF alleles.

Validation of the polygenic signal

In humans, where population structure and environmental variation are correlated, insuffi-

cient correction of the genetic associations caused by shared ancestry has been shown to create

spurious associations [56–58]. Even though environmental variance is much better controlled

in common garden experiments including kinship as a covariate, association tests can still be

confounded by genetic relatedness [57]. This is of particular concern when many trait/SNP

associations are below the Bonferroni significance threshold. The rate of false positive was not

excessively inflated by genomic differentiation between regions, because GWAS performed

within regions (Northern Europe or Spain) had similar p-value distributions than GWAS per-

formed on the complete phenotypic dataset (S6 and S7 Figs). We nevertheless used two addi-

tional approaches to confirm the polygenic basis of traits. First, we examined whether

phenotypic variation could be predicted by polygenic scores derived from sub-significant

GWAS hits, with p<10−4. To this end and for each trait, we calculated genotypic means, per-

formed GWAS, as described above, and computed polygenic scores following [53]. SNPs with

a significant association with the phenotype were pruned to remove SNPs standing in strong

linkage disequilibrium with plink version 1.90 [59], following [56]. The plink -clump function

was set to select SNPs below a (GWAS) P- value threshold of 0.0001, start clumps around these

index SNPs in windows of 1 Mb, and remove all SNPs with P< 0.01 that are in LD with the

index SNPs. The SNP with the lowest p-value in a clump was retained for further analysis.

Briefly, input files, including allele frequencies for all SNPs, all SNPs with GWAS p-values

lower than 10−4 and their effect size estimates were created with a custom R script. We defined

each genotype as its own population (genotypes from Spain and Northern Europe were

grouped in regions). Scripts were downloaded from https://github.com/jjberg2/
PolygenicAdaptationCode. The pipeline was run with default parameters, and polygenic scores

(Z-scores) were estimated. We used three approaches to validate the relevance of GWAS asso-

ciations for predicting the phenotype. First, we used 80% of the genotypes and used the result-

ing GWAS association to compute a polygenic score for the remaining genotypes. Second, we

took two replicates to compute the polygenic scores, and tested whether it predicted the phe-

notype of the third replicate. Third, we correlated the phenotypic values predicted by polygenic

scores (calculated this time on the basis of all three replicates) with the observed phenotypic

value. We repeated this replacing the set of SNP associated at p<10−4 with 1000 sets of an

equal number of randomly chosen SNPs. We then compared the correlation of polygenic

scores to the input phenotype for SNPs associated at subsignificant level (p<10–4) to the cor-

relation expected for random sets of SNPs. Correlations were calculated with the R function

cor.test (Pearson’s product-moment correlation).
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In addition, we investigated functional enrichment among genes within 10kb of GWAS

associated SNPs. To assign a single GWAS p-value for each gene, either we assigned for each

trait the lowest p-value of SNPs within the gene, or, if no SNP was within the gene, we assigned

the p-value from the physically closest SNP [47]. When there were GWAS hits in the vicinity

of duplicated genes, we removed tandem duplicated genes within a 10-gene sliding window.

For this, we first aligned all TAIR10 genes against each other by using BLAST (version 2.9.0,

available at https://blast.ncbi.nlm.nih.gov). Then the duplicated genes were selected as genes

with an e-value <1e-30. Finally, tandem duplicated genes identified with gene distance

<10-genes were filtered out to avoid inflated functional enrichments. If the polygenic signal

only due to insufficient correction for population structure, we expect that similar functions

will be enriched among population structure outliers and among genes with low GWAS p-val-

ues. We thus computed Fst-values for each gene with the F_ST.stats function of the PopGen-

ome library [60]tween Spain and Northern Europe. Negative Fst values were set to zero.

Enrichments were tested as previously described [61]. To call GO enrichment significant,

we determined the conservative threshold p = 0.008. This threshold was determined as the

0.01% quantile of the p-value distribution when GO enrichments were tested for 1000 random

sets of the same number of SNP. To assess similarity between traits in Gene Ontology (GO)

enrichments, we calculated graph-based similarity with the GOSemSim package [62]. A dis-

tance matrix was estimated with average connectivity between the GO terms. The clustered

GO categories were then plotted as a dendrogram with the plot.phylo function from the ape
package (version 5.3, [63]). GO categories enriched at p-value below 0.001 were highlighted.

The distribution of enriched GO categories was evaluated by visual inspection.

Testing for adaptation or maladaptation

For population genetics analyses, we sampled one genotype at random whenever plants were

sampled in the same location, acquiring a total of 220 genotypes. As a proxy for the genomic

load imposed by deleterious mutations, the number of derived non-synonymous mutations

per haploid genome has been proposed [64]. This approach was not possible here because the

genomes of individuals from China and Europe were sequenced in different labs, and the

depth and quality of sequencing varied too much to make a fair comparison. Instead, we used

two data sets that together catalogued LOF alleles after controlling as much as possible for het-

erogeneity in sequencing quality: one that included European genotypes [55] and a more

recent data set that included Chinese genotypes [65]. As an estimate of the individual burden

of deleterious mutations, we counted the number of LOF alleles for each individual and tested

whether individuals with a larger number tended to have a lower growth rate using the Spear-

man rank correlation.

To search for footprints of adaptive evolution, we computed an Fst value between Spain

and Northern Europe for each SNP in the GWAS analysis using the R-package hierfstat and

the basic.stats function [66]. Negative Fst values were set to zero, and the quantile function was

used to calculate the 95th percentile. The Fst distribution of SNPs associated with any GWAS

(p<10e-4) was compared to the genome-wide distribution with a Kolmogorov-Smirnov test.

We also computed the likelihood that its 95th percentile was greater than the 95th percentile of

10 000 random samples of an equally large set of SNPs. To compare the phenotypic differentia-

tion of traits, Qst values for the phenotypic traits were estimated as previously described [45].

Briefly, Qst was estimated as VarB / (VarW + VarB), where VarW is the genotypic variance

within and VarB between regions. These variances were estimated with the lme function of the

nlme package [46], with the block as fixed and population/genotype as random effect. We

extracted the intercept variance for VarB and the residual variance for VarW. Since replicates

PLOS GENETICS Polygenic adaptation of rosette growth in Arabidopsis thaliana

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008748 January 25, 2021 7 / 27

https://blast.ncbi.nlm.nih.gov/
https://doi.org/10.1371/journal.pgen.1008748


were taken from the selfed progeny of each genotype, VarB and VarW are broad-sense genetic

variance components. To reveal signatures of local adaptation, the Qst of each trait was com-

pared to the 95th percentile of the Fst distribution (between Spain and Northern Europe)

[67,68]. We verified that outlier Qst values were unlikely to arise randomly. For this, we per-

muted phenotypic data by randomizing genotype labels and verified that the difference

between observed Qst and 95th percentile of Fst was significantly greater than for randomized

Qst, following [45]. In a second approach, we used a multivariate normal distribution to gener-

ate phenotypic divergence based on the kinship matrix to generate an expected Qst distribu-

tion [69]. Finally, we applied the over-dispersion test (Qx test), which compares polygenic

scores computed for associated versus random SNPs (null model), in a process similar to a

Qst/Fst comparison, but assuming that each population is composed of the selfing progeny of

one genotype [53]. A Qx significantly larger than the Qx computed for the null model indicates

that polygenic trait prediction is more differentiated than expected from the kinship matrix

and can be taken as an indication that the trait has evolved under divergent selection, either

within or between regions [53].

Results & discussion

Ecological relevance of rosette growth variation

On the basis of the more than 15,000 rosette images we collected, we used rosette diameter as a

proxy to describe rosette growth variation with three parameters; each refers to the ways in

which growth can differ among genotypes: i) the time until the exponential growth phase is

reached (t50), ii) the speed of growth during the linear growth phase (slope) and iii) the final

size (FS) at which rosette diameter plateaus at the end of the rosette growth phase (Fig 1 and

S2 and S3 Tables). Of the parameters, FS displayed the highest broad-sense heritability, in

plants grown under both regimes: high light (HL, H2 = 0.636) and low light (LL, H2 = 0.794, S4

Table). Trait variation measured in controlled settings sometimes fails to reflect variation

expressed in natural conditions [70,71]. This is not the case for rosette growth variation in A.

thaliana. FS in HL conditions correlated positively with plant biomass (r = 0.267, p-

value = 4.6e-5) and seedling growth (r = 0.372, p-value = 9.1e-7) in the growth chamber. FS

measured in HL also correlated positively with plant diameter measured under natural light in

the field (r = 0.263, p-value = 0.0009). This indicates that a significant part of the variation we

report is ecologically relevant.

Environmental plasticity has the strongest impact on plant growth

variation

Light regimes revealed that plasticity has the strongest impact on rosette growth (Fig 1, MAN-

OVA HL vs LL: F = 2275.37, df = 1, p-value = <2.2e-16, Table 1). In plants grown under LL,

the maximum growth rate was delayed and rosette growth plateaued at a larger size (Table 1

and Fig 2). This observation was in agreement with the reduced relative growth rate reported

in many plant species when light supply decreases, whereas the larger FS reflected the expected

shade avoidance reaction [72]. We observed that plants reached a larger diameter (and rosette

area) by elongating their petiole and minimizing leaf blade overlap in LL, a reaction known as

the shade avoidance response. This strong modification of leaf shape may explain the predomi-

nant impact of environmental variation we report here (Table 1). Nevertheless, we detect sig-

nificant levels of genetic variation in growth plasticity to light (F = 2.0, df = 270, p<2.2e-16).

We quantified growth plasticity as the individual deviation of the genotypic mean of each
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genotype in HL and LL from the average reaction of the population to the change in light

regime (S8 Fig).

Spanish genotypes show the most vigorous rosette growth

We found evidence for rosette growth variation across regions (MANOVA in Table 1 and Figs

1 and 2). Within Europe, Spanish genotypes reached the largest FS in both HL and LL plants

Fig 1. Regional growth rate estimates in HL and LL. Predicted growth curves averaged over region (from drm function). The growth curves were estimated

from diameter measurements at different time points. Diameter measurements for HL are from day 11 to 46 and for LL from day 24 to 89. An illustration of the

parameters that are estimated from these growth curves are included in the plot (Final Size is a diameter, t50 a time point and Slope the fold increase in the linear

phase). HL (dashed line), LL (solid line), China (orange), Northern Europe (green), Spain (purple) and Western Europe (red).

https://doi.org/10.1371/journal.pgen.1008748.g001

Table 1. Multi- and uni-variate analyses of growth variation in response to light regime, genotype and their interaction. The multivariate analysis was conducted on

the estimates of FS, t50 and slope for all 270 genotypes in three replicates and accounting for block effects nested within light treatment.

Multivariate analysis (MANOVA) Final Size t50 Slope

Response df F p-value F p-value F p-value F p-value

Block 4 27.5 < 2.2E-16 30.15 < 2.2E-16 12.24 9.8e-10 30.50 < 2.2E-16

Light regime 1 7388.7 < 2.2E-16 15687.23 < 2.2E-16 9289.44 < 2.2E-16 34.01 7.2e-9

Genotype 279 3.6 < 2.2E-16 8.43 < 2.2E-16 2.51 < 2.2E-16 2.036 < 2.2E-16

Light�Genotype 270 2.0 < 2.2E-16 2.97 < 2.2E-16 1.59 2.3e-07 1.61 4.4e-08

https://doi.org/10.1371/journal.pgen.1008748.t001
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(Tables 1 and S5, MANOVA: F = 16.37, df = 3, p-value = 5.35e-10). Although the growth slope

did not differ significantly across regions, we observed that, under HL conditions, Spanish

genotypes reached 50% of their FS (= t50) significantly later than the genotypes originating

from Northern Europe (t50 = 15.17 vs 13.79, respectively, GLHT z = 3.061, p-value = 0.011,

Fig 2C). This effect was also observed for plants grown under LL conditions but we detected

no regional difference in GxE (Fig 2D). Since Spain and Northern Europe do not differ in

their average flowering time (S9 and S10 Figs), the larger rosette size observed in Spain is not

due to an extension of the duration of vegetative growth in this population.

Chinese genotypes show that growth rate variation is constrained in

evolution

Despite a long history of population isolation that was magnified by a strong bottleneck after

the last glacial period [38,73], the growth rate of Chinese genotypes was comparable to that

shown by most European genotypes (S5 Table and Fig 2A and 2B). Under LL conditions, Chi-

nese genotypes showed lower t50 and FS values only when compared to Spanish genotypes (S5

Table and Fig 2A–2D). Under HL, genotypes from China did not differ significantly from

those from any other region (Figs 2 and S11). The analysis of Chinese genotypes indicates that

the phenotypic evolution of rosette growth does not scale with the extent of genetic divergence

(Fst between Europe and China is 0.057 on average, with a standard deviation of 0.147, and

Fig 2. Significant regional differentiation of Final Size and t50 in HL and LL. A.thaliana genotypes are grouped based on geographical origin. Box plots show

regional variation in Final Size (upper row) and t50 (lower row) for HL (left) and LL (right). Groups that do not share a letter are significantly different according to

Tukey’s HSD (p-value< 0.05). Region information: China (CH, n = 20), Northern Europe (NE, n = 58), Spain (SP, n = 119) & Western Europe (WE, n = 29).

https://doi.org/10.1371/journal.pgen.1008748.g002
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much greater than Fst between Spain and Northern Europe, KS test, D = 0.39, p<2.2e-16). A

parsimonious explanation to the fact that growth rate has not significantly changed despite

extensive population divergence, is that the evolution of growth rate is likely to be constrained

by stabilizing selection around a growth optimum [1].

The Chinese population was also the only one to show a difference in GxE (S8 Fig). Com-

pared to Spanish genotypes, Chinese genotypes displayed a GxE that was lower for t50 and

higher for slope (t50: GLHT z = 2.748, p-value = 0.028; slope: GLHT z = -3.224, p-

value = 0.006; S8 Fig). When grown under the LL regime, these genotypes displayed a lower FS

than genotypes from Spain. In contrast, within Europe, we observed no significant difference

in the growth plasticity of plants in relation to light regime, despite the fact that Northern pop-

ulations are exposed to lower average light intensity (S3 Fig).

GWAS reveal only two SNPs significantly associated with rosette growth

variation

We used GWAS to determine the genetic basis of variation in growth rate within Europe (Figs

3 and S12–S17). The sample size (15) and strong population structure of Chinese genotypes

precluded their inclusion in this analysis (S2 Fig). Henceforth, we focused on the analysis of

genetic variation within and among European populations. Overall, we found few significant

genetic associations, indicating that genetic variance for growth rate is generally polygenic.

One SNP (chromosome 1, position 24783843) associated with t50 variations in LL plants

(effect size = -2.475, p-value = 2.6E-9, Fig 3 and S6 Table). A second SNP (chromosome 3,

position 951043) was significantly associated with the slope of rosette diameter growth in HL

plants within Spain (effect size = 1.229, p-value = 8.4E-7, Fig 3 and S6 Table) and was polymor-

phic only in the Spanish set of genotypes. This SNP was within a 1Mb DNA fragment showing

strong local LD and enclosing 21 genes. Two additional SNPs were associated with GxE for FS

and t50 in HL plants in Northern Europe, respectively, with p-values just below the Bonferroni

threshold (S6 Table). Yet, we found no SNP significantly associated with FS above the Bonfer-

roni threshold, although FS is the most heritable trait (S4 Table). Diverse genetic setups can

result in such polygenic architecture: large effect size variants that are too rare to be detected,

many variants with effect sizes too small to be individually significant, or the presence of multi-

ple alleles at causal loci that will blur the genetic association signal [47,74]. Local genetic varia-

tion in slope and t50, growth parameters which display moderate but significant genetic

variance, appear to be controlled by low-frequency variants of comparatively larger effect,

since some of them were associated above Bonferroni threshold (S6 Table). This genetic archi-

tecture resembles that reported in the same species for flowering time [75,76]. In contrast to

slope and t50, variation in FS appeared more polygenic since it has the highest heritability and

no SNP association above Bonferroni confidence levels.

Polygenic scores and functional enrichments confirm the polygenic basis of

growth variation

Traits with polygenic architecture are controlled by variation in many loci of low frequency

and/or low effect sizes and dissecting their evolution is arguably a major challenge today in

evolutionary biology [77–80]. Specifically, random SNPs with outlier frequency are not always

sufficiently corrected for with the kinship matrix and these may give rise to spurious associa-

tions. Studies of polygenic traits such as human height have shown that residual effects of pop-

ulation structure can give signals of genetic association [56,81]. Similar effects were also

encountered in studies of phenotypic variation in plant systems [57]. They are expected when-

ever environmental variance co-varies with population structure, as is likely the case in human
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studies, but can also persist in common garden studies if populations are geographically differ-

entiated in the genetic component of the trait. To confirm the polygenic basis of growth varia-

tion, we evaluated the biological relevance of marginally significant genetic associations. The

associated sets were composed of 22 to 37 unlinked SNPs. We used their effect sizes to com-

pute polygenic scores for each parameter [53]. We first used to use 80% of the data to identify

SNPs associating with rosette growth and test whether they can be used to correctly predict the

phenotype of the remaining 20% of the data. This approach, however, did not yield significant

predictions (rho = 0.07979094, p = 0.6189), which is not surprising because it usually does not

perform well in structured populations [82]. We took a second approach to measure polygenic

score accuracy. We used two of the three replicates to compute polygenic scores and tested

whether they correlated significantly with the phenotype measured independently in the third

replicate (S7A Table). The correlation was highest for FS measured in LL plants (Rho = 0.567,

p =<2.2e-16). In fact, FS, the most heritable trait, could be predicted with the highest accuracy

in plants grown under both light regimes (S7A Table). When we used random sets of SNPs as

input, the computed polygenic scores were significantly correlated with the observed pheno-

type, indicating that population structure contributes to a significant but small fraction of the

variance in polygenic scores. Nevertheless, with this third approach, we showed that polygenic

Fig 3. GWAS-results for 4 phenotypes. Manhattan plots of GWAS of t50 in LL with all European genotypes (a), with a peak on Chromosome 1, GxE of Final Size

with all European genotypes (b) with a peak on Chromosome 2, Slope in HL within Spain (c) with a peak on Chromsome 3 and t50 in HL in Northern Europe (d)

with a peak on Chromosome 1. The dotted line shows the corresponding Bonferroni threshold adjusted for a p-value of 0.05.

https://doi.org/10.1371/journal.pgen.1008748.g003
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scores computed on the effect sizes of SNPs associated at sub-significant level were markedly

more correlated with the observed phenotype than those computed with random SNP sets

(S7B Table). This confirms that sub-significant genetic associations, despite their marginal sig-

nificance, effectively recapitulate some of the traits’ heritability.

We further asked whether sub-significant associations could collectively reveal the spe-

cific molecular basis of each trait. We selected SNPs showing a sub-significant association

(p<0.0001) and investigated functional enrichment among genes that mapped within 10kb

of the SNP. To consolidate our confidence in the functional enrichment, we also pruned

tandem duplicates from the annotated set, and determined a p-value threshold that was

below the level of significance that can be obtained with GWAS on a permuted data set (see

Materials and Methods). While the results reveal many categories without an easily inter-

pretable link to growth, many traits showed functional enrichment within gene ontology

(GO) categories, whose link to growth has been documented (S9 Table). For example, genes

associated with variation in FS, the most polygenic trait, were enriched among genes

involved in the growth-related functions “cotyledon development”, “auxin polar transport”

and “response to mechanical stimulus”(p-value = 0.0053 or lower). Interestingly, mechani-

cal stimuli have been shown to strongly influence seedling growth, and we observed that FS

correlated with hypocotyl length and biomass in 3-week-old plants (S18 Fig, [82]). Addi-

tionally, several categories related to defense and stress reactions, such as “response to salt

stress”, “response to chitin”, “regulation of defense response to fungus” and “negative regu-

lation of defense response”, were enriched. Variation in stress-related functions is known to

have an impact on plant growth in A. thaliana [33]. Furthermore, we also found that SNPs

associated with FS plasticity to light are enriched among genes involved in the shade avoid-

ance response (p = 0.0023), by which plants exposed to limited light conditions increase

stem elongation [10,83]. Associated genomic regions included, for example, PHY RAPIDLY

REGULATED 2 (PAR2, AT3G58850), a negative regulator of shade avoidance [84] or

LONG HYPOCOTYL UNDER SHADE (BBX21, AT1G75540), a regulator of de-etiolation

and shade avoidance [85]. Altogether, functional enrichments among genes located in the

vicinity of GWAS hits indicated that a biological signal is detectable among sub-significant

genetic associations.

As shown above, population structure impacts the results of GWAS and population

structure outliers may drive this signal of association. Indeed, genes with elevated Fst

reflecting population structure or even regional adaptation of (other) traits could create

spurious associations with traits that have a distinct genetic basis but are also differentiated

between regions. We thus verified that functional enrichment among genes with SNP asso-

ciations were different from those observed among genes with elevated Fst. We determined

enriched GO categories among genes in the vicinity of GWAS associated loci (p<10–4) and

among genes ranked by Fst between Spain and Northern Europe. We visualized overlaps in

functional enrichment by clustering GO terms on the basis of the genes they shared (S19

Fig). The enrichment based on Fst revealed three strongly enriched GO terms: “organ mor-

phogenesis”, “circadian rhythm” and “virus-induced gene silencing” (p = 0.0009 or lower,

S10 Table). The enrichment in GO category “circadian rhythm” may reflect the local adap-

tation to Northern variations in day length [86,87]. Genes close to SNPs associated with the

different growth parameters, however, had clearly distinctive patterns of functional enrich-

ment (S19 Fig and S10 Table). We therefore argue that even though population structure

outliers may create some false-positive associations, the polygenic pattern of association

that we observe at sub-significant level cannot be explained by the history of population

divergence alone.
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No association between per-individual burden and growth

In areas located at the edge of the distribution range of A. thaliana, populations may have

accumulated an excess of deleterious mutations in the aftermath of their genetic isolation

[39,88]. This could have resulted in a mutational load that would have decreased fitness com-

ponents such as plant growth, because it influences the resources available for the production

of progeny [1,20,22]. We thus hypothesized that the lower FS observed in Northern Europe

may result from maladaptive forces associated with the demographic history of the region.

This hypothesis could not be supported. No significant difference was detected in total

number of LOF mutations per genome in Northern Europe compared to Spain (GLHT: z-

value = 0.634, p-value = 0.526, S20 Fig). This observation has been previously reported [55]. In

addition, we detected no significant correlation between the number of LOF alleles per

genome and the average final size in HL or LL plants within Europe (r in HL = 0.079,

p = 0.262, r in LL = 0.029, p = 0.684). Furthermore, we observed no significant difference in

growth between Northern European and Chinese populations, despite their significantly

higher burden of LOF alleles per genome (GLHT China versus Northern Europe: z-value =

-20.259, p-value =<1e-4, S21 Fig, [65]). Therefore, we conclude that the individual burden of

LOF mutations is unrelated to rosette growth variation.

We reasoned that lower growth rate might also be associated with a small subset of LOF

mutations. To test this hypothesis, we investigated genetic associations between LOF alleles

and the three growth parameters (see Materials and Methods). This analysis is similar to a

GWAS, but utilises information on approximately 2500 genes that have at least one loss-of-

function allele in any of the 1001 Genomes lines [39,55]. We detected no association between

LOF alleles and FS, yet there was a significant association of LOF variation at gene AT2G17750

with variation in both t50 in LL plants and t50 plasticity (Fig 4, effect size = -3.542, p-

value = 7.49e-6, gene-Fst = 0.113, and effect size = -4.470, p-value = 4.99e-6 for t50 and t50

plasticity, respectively). AT2G17750 encodes the NEP-interacting protein (NIP1) active in

chloroplasts, which was reported to mediate intra-plastidial trafficking of an RNA polymerase

encoded in the nucleus [89]. NIP1controls the transcription of the rrn operon in protoplasts or

amyloplasts during seed germination and in chloroplasts during later developmental stages

[89]. The LOF variant is present primarily in Northern Europe (MAF = 16 and 0.8% in North-

ern Europe and Spain, respectively) but is unlikely to be deleterious: it correlates with a

decrease of t50, which is a faster entry in the exponential growth phase indicative of increased

growth vigor (Fig 4). Taken together, this result does not support the hypothesis that decreased

FS in Northern Europe or China is controlled by deleterious variation.

FS variation might reflect local adaptation at the regional scale

During the growth season, Northern European A. thaliana populations are exposed to lower

average temperatures (S3 Fig). Smaller rosettes are more compact, and increased compactness

is often observed in populations adapted to cold temperatures [32,90–92]. Freezing tolerance,

which was indeed reported to be higher in Northern Europe, is associated with functions

affecting rosette size [93]. We thus hypothesized that the decreased FS and t50 observed for

Northern European genotypes grown under both light regimes is the result of polygenic adap-

tation to lower average temperatures. We used the 14 to 47 LD-pruned set of SNPs associating

in GWAS at a sub-significant level (p<1e-4) to compute polygenic scores for each genotype

and each trait, and used Qx, a summary statistic that quantifies their variance across locations

of origin. A Qx value outside of neutral expectations inferred from the kinship variance in the

population, indicates excess differentiation of polygenic scores, as expected if individual popu-

lations evolved under divergent selection [53]. We observed that all traits displayed a strongly
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significant Qx (S8 Table). The differentiation of polygenic scores between the individual popu-

lations of origin suggests that divergent selection may be acting locally. Local adaptation has

indeed been reported at this scale in this species [94]. This result should however be taken with

caution, because, like the GWAS hits it is using, the Qx statistics is sensitive to population

structure outliers. Clearly, population structure might underpin more of the GWAS signal

detected for slope or t50, which are markedly less heritable than FS.

Interestingly, we observed that FS measured in HL and t50 measured in LL displayed poly-

genic scores that differed significantly between regions (p-value = 0.0162 and 0.0309, respec-

tively, S22 Fig). We thus further tested whether, at the phenotypic level, regional

differentiation in growth rate departed from neutral expectations. We first investigated

whether variants associated with phenotypic variation in rosette diameter showed increased

genetic differentiation. Compared to the Fst distribution of 10 000 random sets of SNPs, the

95th percentile of 1360 SNPs associating with all three parameters was always higher (p<10−4).

Thus, associated SNPs are collectively more likely to be differentiated than the rest of the

genome. This pattern is not caused by the confounding effect of population structure, because

the functional enrichments are mostly specific to the phenotypes (S19 Fig). We note, however,

that a few spurious genetic associations could contribute to both higher Fst and over-disper-

sion of polygenic scores [56–58]. Additional evidence based on approaches independent of

Fig 4. Loss-of-function association and phenotype of t50 in LL/GxE. Manhattan plot of a GWAS with loss-of-funcion alleles and t50LL (a) and t50GxE (c) as input

phenotypes with the same association (AT2G17750) above the Bonferroni threshold (dashed line). Boxplot of the phenotype of t50LL (b) and t50GxE (d) versus the

allele state at AT2G17750 (0 means functional, 1 is a loss-of-function). The colors separate the populations into Spain (purple) and Northern Europe (green).

https://doi.org/10.1371/journal.pgen.1008748.g004
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GWAS is therefore required to support the adaptive significance of regional differences in

growth rate in Europe. To this end, we used the population kinship matrix to parameterize a

multivariate normal distribution and predict the amount of additive phenotypic divergence

expected if the trait evolves neutrally [69]. We observed that differentiation for FS measured in

HL plants was marginally more differentiated than predicted under neutral conditions

(Qst = 0.325, p-value = 0.085, Fig 5). The other parameters did not depart from neutrality (Qst

ranging from 0.029 to 0.27, min p = 0.11, Fig 5). Since the divergent Chinese population indi-

cates that the unconstrained evolution of growth rate variation is unlikely, this test might be

overly conservative. In addition, it predicts the divergence in additive genetic variance, but in

the selfing species A. thaliana, the whole genetic variance, i.e. broad sense heritability, can con-

tribute to adaptation. We also compared the distribution of phenotypic variation within and

between regions to the SNP Fst-distribution [68]. We used the Fst between Northern Europe

and Spain as an estimate for nucleotide differentiation and compared it to the differentiation

of these populations at the phenotypic level (Qst) [13,45,67]. For FS and t50, the Qst was signif-

icantly greater than genetic differentiation at 95% of single nucleotide (Table 2). This suggests

that selective forces have contributed to the regional adaptation of FS in Europe. Other cli-

matic components like temperature could also have strong effects on growth differences

between populations. Nevertheless, we detected only weak correlations between growth varia-

tion and temperature at the location of origin (S23 Fig and S11 Table), suggesting that growth

rate could be locally adapted to the conditions prevailing in each region. The environmental

factors contributing to adaptive divergence in plant growth thus remain to be determined in

this species.

Fig 5. Expected distribution for quantitative trait differentiation between the Spanish and Northern European population.

Qst. The expectation is based on a multivariate normal distribution assuming a neutral trait with polygenic basis. Vertical lines

indicate observed Qst for the individual growth parameters, FS (Solid line), t50 (Dashed line), Slope (Dot line), in HL (orange)

and LL (cyan). The red arrows show the 90th, 95th and 99th percentiles of the distribution.

https://doi.org/10.1371/journal.pgen.1008748.g005
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Conclusion

Our comprehensive analysis of genetic diversity in rosette growth rate, within and between

three broad regions of the distribution area of A. thaliana, reveals the environmental and evo-

lutionary factors that control this complex trait, which is of central importance for plant ecol-

ogy. We show that plastic reactions to light intensity have the strongest impact on variation in

rosette growth rates. Yet, we also provide evidence for significant genetic variation within and

between regions. We observed that Spanish genotypes show more vigorous rosette growth and

reach the larger size, regardless of light conditions. Although GWAS reveal very few associa-

tions that pass Bonferroni correction, analyses of functional enrichments and polygenic scores

demonstrate that the polygenic basis of trait variation can also be explored in the presence of

moderately significant genetic associations. The greater phenotypic differentiation observed

within Europe compared to between Europe and China, a pattern opposite to measures of

genetic divergence, provides a strong indication that stabilizing selective forces constrain the

evolution of growth rate over time. The analysis of polygenic scores and patterns of differentia-

tion suggests that much of the variation observed within Europe has been shaped by natural

selection, rather than by the burden imposed by deleterious mutations. Leveraging polygenic

associations in local adaptation studies remains challenging [78]. Methodological develop-

ments that improve the use polygenic associations for the study of local adaptation are needed

to consolidate these conclusions. Understanding the potential of polygenic trait architectures

will help better integrate complex traits in our understanding of the genetic processes under-

pinning ecological specialization [6,95].

Supporting information

S1 Fig. Genotype origin map. Each dot represents the sampling point of a genotype. The

genotypes where assigned to Northern Europe (green), Western Europe (red), Spain (purple)

and China (orange).

(RAR)

S2 Fig. Principal component analysis of 227 genotypes. The PCA is based on 1.5 millions

SNPs with a minor allele frequency larger than 0.05. The first two principle components

explain about 16% of the variance between the genotypes. Regions: China (orange), Northern

Europe (green), Spain (purple), Western Europe (red).

(TIFF)

Table 2. FS and t50 quantitative differentiation (Qst) exceed differentiation given by single SNPs.

Trait Qst Percentile of Fst

FSHL 0.379 96.57

FSLL 0.282 95.80

t50HL 0.300 95.95

t50LL 0.189 94.79

SLHL 0.081 93.23

SLLL 0.010 91.62

Qst for each trait measured in HL and LL plants. Linear mixed models were used to quantify the ratio of genetic

variation between versus within Spain and Northern Europe (Qst). The 95th percentile of the distribution for single

SNP Fst between these two regions was 0.205. Permutations confirmed that this test is conservative (see Materials

and Methods). HL: plants grown under high light regime, LL: plants grown under low Light regime, FS: Final Size,

t50: time to maximum growth and SL: slope.

https://doi.org/10.1371/journal.pgen.1008748.t002
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S3 Fig. Climatic variation between regions. A) Annual average of the monthly radiation

(left), monthly average temperature (center) and monthly precipitation (right) estimates for

the sampling location of each genotype from Worldclim2 data (estimate per ~1km2). Boxplots

with different letters are significantly different according to Tukey’s HSD (p-value < 0.05).

Region information: China (CH, 20 unique locations), Northern Europe (NE, 46 unique loca-

tions), Spain (SP, 120 unique locations) & Western Europe (WE, 15 unique locations). B)

Experimental Set-up in the growth chamber with the light-spectrum and intensity in HL (left)

and LL (right). The bottom bar represent the timing of the light.

(TIF)

S4 Fig. Projected growth rates and diameter measurements of individual genotypes in HL

and LL. Predicted growth curves averaged per genotype (from drm function). To represent

the regions 5 genotypes per region were chosen randomly. The growth curves were estimated

from diameter measurements at different time points (points for three input replicates). Diam-

eter measurements for HL are from day 11 to 46 and for LL from day 24 to 89. Legend: Title:

Region and ID; HL (dashed line, red points), LL (solid line, blue points), China (orange),

Northern Europe (green), Spain (purple) and Western Europe (red).

(TIF)

S5 Fig. GxE for Final Size. GxE was estimated based on a glm(Final Size ~ genotype � environ-

ment) and is indicated by the color. Each dot corresponds to a genotype with its phenotype in

HL (x-axis) and LL (y-axis) (269 genotypes in total). The black dot shows the average over all

genotypes with standard deviation. The line shows a linear model for Final Size in LL ~ Finals

Size HL.

(TIF)

S6 Fig. Regional comparison of the GWAS results within Spain to across Europe. qq-plots

comparing the GWAS data in S13 Fig (Spain, 117 genotypes, x-axis) to the data from S12 Fig

(Europe, 201 genotypes, y-axis). The traits are Final Size (upper row), t50 (2nd row) and Slope

(lower row) in HL (left column), LL (middle column) and their GxE (right column). The grey

dotted line indicates the neutral expectation.

(TIF)

S7 Fig. Regional comparison of the GWAS results within Northern Europe to across

Europe. qq-plots comparing the GWAS data in S14 Fig (Northern Europe, 83 genotypes, x-

axis) to the data from S12 Fig (Europe, 201 genotypes, y-axis). The traits are Final Size (upper

row), t50 (2nd row) and Slope (lower row) in HL (left column), LL (middle column) and their

GxE (right column). The grey dotted line indicates the neutral expectation.

(TIF)

S8 Fig. Regional differences for GxE for each trait. GxE for FS (left), t50 (center) and Slope

(SL, right). The phenotypic values are based on 217 genotypes of Arabidopsis thaliana. Groups

that do not share a letter are significantly different according to Tukey’s HSD (p-value < 0.05).

Region information: China (CH, n = 14), Northern Europe (NE, n = 58), Spain (SP, n = 117)

& Western Europe (WE, n = 28).

(TIF)

S9 Fig. Flowering time from 1001 Genomes. Flowering time in 16˚C conditions of each

genotype plotted for Northern Europe (green, n =) and Spain (purple, n =, based on data from

1001Genomes, 2016). The regions showed no phenotypic difference, as indicated by the same

letter (pairwise GLHT, p-value> 0.05).

(TIF)
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S10 Fig. Flowering time in the experiment. Flowering time of each genotype in HL (left) and

LL conditions(right). Missing values were replaced with 59 (HL) or 90 (LL) days after sowing.

Boxplots with different letters are significantly different according to Tukey’s HSD (p-

value < 0.05). Population information: China (CH, n = 22), Northern Europe (NE, n = 84),

Spain (SP, n = 121) & Western Europe (WE, n = 53).

(TIF)

S11 Fig. Regional differences in Slope. The phenotypic values are based on 220 genotypes of

Arabidopsis thaliana in HL (left) and LL conditions (right). Groups that do not share a letter

are significantly different according to Tukey’s HSD (p-value < 0.05). Region information:

China (CH, n = 15), Northern Europe (NE, n = 58), Spain (SP, n = 119) & Western Europe

(WE, n = 28).

(TIF)

S12 Fig. GWAS results for all phenotypes across Europe. Manhattan plots using 201 (or

more) genotypes from Europe (Spain and Northern Europe) as input. The traits are Final Size

(upper row), t50 (2nd row) and Slope (lower row) in HL (left column), LL (middle column)

and their GxE (right column). The dotted line denotes the 5% Bonferroni-corrected threshold.

(TIF)

S13 Fig. GWAS results for all phenotypes within Spain. Manhattan plots using 117 (or

more) genotypes from Spain as input. The traits are Final Size (upper row), t50 (2nd row) and

Slope (lower row) in HL (left column), LL (middle column) and their GxE (right column). The

dotted line denotes the 5% Bonferroni-corrected threshold.

(TIF)

S14 Fig. GWAS results for all phenotypes within Northern Europe. Manhattan plots using

83 (or more) genotypes from Northern Europe as input. The traits are Final Size (upper row),

t50 (2nd row) and Slope (lower row) in HL (left column), LL (middle column) and their GxE

(right column). The dotted line denotes the 5% Bonferroni-corrected threshold.

(TIF)

S15 Fig. QQ-plots for GWAS results for all phenotypes across Europe. QQ-plots of GWAS

using 201 genotypes from Europe (Spain and Northern Europe) as input. The traits are Final

Size (upper row), t50 (2nd row) and Slope (lower row) in HL (left column), LL (middle col-

umn) and their GxE (right column). The grey line denotes the neutral expectation and the red

line the observation from the data. The axes describe the expected (x) and observed (y) values

for -log10(p).

(TIF)

S16 Fig. QQ-plots for GWAS results for all phenotypes within Spain. QQ-plots of GWAS

using 117 genotypes from Spain as input. The traits are Final Size (upper row), t50 (2nd row)

and Slope (lower row) in HL (left column), LL (middle column) and their GxE (right column).

The grey line denotes the neutral expectation and the red line the observation from the data.

The axes describe the expected (x) and observed (y) values for -log10(p).

(TIF)

S17 Fig. QQ-plots for GWAS results for all phenotypes within Northern Europe. QQ-plots

of GWAS using 83 genotypes from Northern Europe as input. The traits are Final Size (upper

row), t50 (2nd row) and Slope (lower row) in HL (left column), LL (middle column) and their

GxE (right column). The grey line denotes the neutral expectation and the red line the
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observation from the data. The axes describe the expected (x) and observed (y) values for

-log10(p).

(TIF)

S18 Fig. Correlation of phenotypic traits. Pearson correlations for each pair of traits. Colored

boxes show significant correlations (p<0.05 after multiple testing correction (FDR correction)

and correction for populations structure (lmekin)) for 193 genotypes across experiments. The

significance is illustrated by box size (larger box represents lower p-values) and the color

shows the direction and strength of correlation. Abbreviations are: HL = high light,

GxE = Genome x Environment interaction, LL = low light, SL = Slope, FT = Flowering time,

FS = Final Size, DiamFieldM2 = Diameter in Field conditions after 2 Months,

Biomass21d = Biomass in controlled (HL) conditions after 21 days.

(TIF)

S19 Fig. Functional enrichment dendrogram for GO enrichment. The enrichment is either

based on ranking genes by p-value of the nearest SNP in GWAS (columns 1–9) or Fst of the

gene (column 10). The GO terms are arranged into 9 clusters of similar function on the right

side of the plot. Depicted are only enrichments with a p-value < 0.001.

(TIF)

S20 Fig. Loss-of-function alleles per population. Based on data from Monroe et al. (2018).

The sum of LOF alleles per genotype for Northern Europe (green, n =) and Spain (purple, n

=). The regions were not different from each other (GLHT: z-value = 0.634, p-value = 0.526,

negative binomial distribution).

(TIF)

S21 Fig. Loss-of-function alleles per population. Based on data from Xu et al. (2019). Boxplot

of the sum of LOF alleles per genotype for each region. Boxplots with different letters are sig-

nificantly different according to Tukey’s HSD (p-value < 0.05). Region information: China

(CH, n = 21), Northern Europe (NE, n = 84) & Spain (SP, n = 121).

(TIF)

S22 Fig. Polygenic Scores and regional differentiation for each trait. Summary results from

the analysis after Berg and Coop (2014). Each boxplot depicts the polygenic scores of a trait for

genotypes from Northern Europe (green) & Spain (purple). Boxplots with different letters are

significantly different according to Tukey’s HSD (p-value< 0.05). Furthermore, the plot con-

tain information about the number of SNPs used as input, the Qx score for excess variance in

SNPs associated with the trait and the p-value of the Qx-analysis. Traits: FS = Final Size, t50,

SL = Slope, HL = High Light treatment, LL = Low Light treatment.

(TIF)

S23 Fig. Correlation of phenotypic traits and climate. Pearson correlations for each pair of

traits/climatic variable. Colored boxes show significant correlations (p<0.05 after multiple

testing correction (FDR correction) and correction for populations structure (lmekin)) for 195

genotypes across experiments. The significance is illustrated by box size (larger box represents

lower p-values) and the color shows the direction and strength of correlation. Abbreviations

are: HL = high light, GxE = Genome x Environment interaction, LL = low light, SL = Slope,

FT = Flowering time, FS = Final Size, DiamFieldM2 = Diameter in Field conditions after 2

Months, Biomass21d = Biomass in controlled (HL) conditions after 21 days, Radiation in kJ/

m2/day, PC1/2_growS = Principle component 1 and 2 of all climatic data in the estimated

growing Season (explaining 88.7 and 10.7% of the variance), PC1/2_T = Principle component

1 and 2 for climatic variables related to Temperature (explaining 98.1 and 1.3% of the

PLOS GENETICS Polygenic adaptation of rosette growth in Arabidopsis thaliana

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008748 January 25, 2021 20 / 27

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008748.s018
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008748.s019
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008748.s020
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008748.s021
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008748.s022
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008748.s023
https://doi.org/10.1371/journal.pgen.1008748


variance), PC1/2_P = Principle component 1 and 2 for climatic variables related to Precipita-

tion (explaining 89.8 and 8.22% of the variance).

(TIF)

S1 Table. Information on the genotypes used in this study, with their country of origin,

assigned region, Genotype name and ID in 1001 Genomes, info on the sampling location

and position (latitude and longitude) and the Collector. In the second part of the table the

climatic information on the respective location is summarized with: Number of growing

months; in the growing season: average Temperature [˚C], Soil water content [%], Water

vapor pressure [kPa], Wind speed [m s-1], Radiation [kJ m-2 day-1], Rain [mm]. Afterwards

the Bioclim variables 1 t 19 from the Worldclim database (http://worldclim.org/version2).

After this the first 2 PCs for PCA on data based on growing season, Temperature variables

from bioclim data and precipitation variables from bioclim data.

(XLSX)

S2 Table. Raw phenotypic measurements for each plant In the experiment. Replicate is the

block the plant was growing in with the corresponding tray number and row and column for

position on the tray (5 rows and 7 columns per tray). The “diam” measurements are diameter

measurements where the number corresponds to days after sowing.

(XLSX)

S3 Table. Genotypic mean of each genotype after correction for positional effects. Informa-

tion of the usage of genotypes: Phenotype_analysis is 1, if the genotype was used for pheno-

type-related analysis (regional differentiation, Qst) and GWAS is 1, if the genotype was used in

GWAS and following analyses (also GO enrichment & polygenic scores). Additionally data

from other experiments that was used for correlations: DiamFieldM2: Diameter in mm in the

field in Cologne, after 2 months; Hypocotyllength: length of hypocotyls in mm in HL condi-

tions, 15 days after sowing; Biomass21d: Plant dry weight in g after 21 days after sowing in HL

conditions; FT_10/FT_16: flowering time in 10/16˚C from 1001 Genomes, 2016.

(XLSX)

S4 Table. Estimated heritabilities and pseudo-heritability from EMMAX. Rows contain the

input sample size (N), heritability (H2) and pseudo-heritability for each trait, treatment and

population. The p-value of a heritabily is the genotype effect of the mixed linear model.

(XLSX)

S5 Table. Pairwise comparisons of phenotypes for each trait and treatment. The mean dif-

ference between traits is given with Z- and p-value from a GLHT of a glm(parameter~popula-

tion).

(XLSX)

S6 Table. Associated SNPs for the different datasets, traits and environment. For each asso-

ciated SNP the Chromosome, Base, minor allele frequency (MAF), -log10(P) and effect size

are given. The LD for the focal SNP was estimated, with the number of SNPs and genes within

the LD range. The p-value of two SNPs that exceeded the Bonferroni threshold are marked in

bold, the others were just below threshold.

(XLSX)

S7 Table. Testing the accuracy of polygenic trait predictions. A. Polygenic scores were com-

puted based on the phenotypic measurements for two replicates, and correlated with the phe-

notype observed for the third replicate. Correlation was tested with a Spearman rank

correlation test Rho..Nr_SNPs: number of SNPs associated with each trait at p<10–4. B. SNPs
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associated with the phenotype at sub-significant level improve significantly the phenotype pre-

diction but random SNPs show that population structure plays an important role. Rho_asso-

ciated shows the correlation between polygenic score and the genotypic values. Based on 1000

random samples of an equal number of SNPs, a distribution of random Zscores was computed

and compared to the spearman correlation of the prediction of associated variants to the input

phenotypes (Rho_associated). The distributions of spearman correlations of the 1000 random

sets is described with the median (Rho_random_median), 95th quantile (Rho_random_95-

quantile) and the maximal Rho (Rho_random_max). The correlation obtained with random

SNP set is also often significant at p<0.05 (Percentage_significant), but the maximum correla-

tion coefficient (Rho_random_max) is always markedly lower than the one obtained with sub-

significant SNPs (Rho_associated).

(XLSX)

S8 Table. Results from Polygenic adaptation test after Berg & Coop (2014). The trait col-

umn contains the respective traits that were used as input and a random set of equal size which

was used to predict FSHL in the last row. Qx is the test statistic for a signal of polygenic adapta-

tion using all phenotypic data. Rho are the results from a spearman correlation of Z-scores pre-

dicted versus the input phenotypes. The regional Z-values for Northern Europe and Spain are

the region specific effect on the trait. P-values from each test are in parentheses. The SNPs col-

umn contains the number of input SNPs for the estimation of polygenic adaptation (after

pruning).

(XLSX)

S9 Table. GO-enrichment of genes in LD (within 10kb) to SNPs with p < 0.008 (based on

permutation) in a GWAS for the respective trait. Shown are terms with an

enrichment < 0.001. GO.ID and term give information on the enriched GO term. Annotated

states all genes that are in the term, Significant is the number of genes that are associated in the

input data set and Expected the number of genes that are expected to be enriched by chance.

The resultFisher gives the Fisher score for enrichment. We only report GO terms with >5

genes in them.

(XLSX)

S10 Table. GO-enrichment of all genes ranked by their Fst or p-value of the closest SNP in

a GWAS of the respective trait. Shown are terms with an enrichment < 0.001. GO.ID and

term give information on the enriched GO term. Nr_Genes is the number of genes in the

respective term. The resultKS gives the Kolmogorov-Smirnov score for enrichment.

(XLSX)

S11 Table. Loadings of the climate PCAs for S23 Fig. The input variables for the respective

PCA are in the column Climatic_variable and the loading for PC1 and PC2 are in the following

columns. The PCAs were performed with data within the projected growing season (PCA_-

growing_season, 185 unique locations), for bioclimatic variables related to temperature

(PCA_temperature, 180 unique locations) and bioclimatic variables related to precipitation

(PCA_precipitation, 180 unique locations).

(XLSX)

S1 File. R Markdown detailing the statistical analysis of rosette diameter variation.

(HTML)
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6. Byers KJRP, Xu S, Schlüter PM. Molecular mechanisms of adaptation and speciation: why do we need

an integrative approach? Mol Ecol. 2017; 26: 277–290. https://doi.org/10.1111/mec.13678 PMID:

27230590

7. Chevin LM, Lande R. When do adaptive plasticity and genetic evolution prevent extinction of a density-

regulated population? Evolution (N Y). 2010; 64: 1143–1150. https://doi.org/10.1111/j.1558-5646.2009.

00875.x PMID: 19863583

8. Bac-Molenaar JA, Granier C, Keurentjes JJB, Vreugdenhil D. Genome wide association mapping of

time-dependent growth responses to moderate drought stress in Arabidopsis. Plant Cell Environ. 2016;

39: 88–102. https://doi.org/10.1111/pce.12595 PMID: 26138664

9. Körner C. Paradigm shift in plant growth control. Curr Opin Plant Biol. 2015; 25: 107–114. https://doi.

org/10.1016/j.pbi.2015.05.003 PMID: 26037389
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12. Takou M, Wieters B, Kopriva S, Coupland G, Linstädter A. Linking genes with ecological strategies in

Arabidopsis thaliana. J Exp Bot. 2019; 70: 1141–1151. https://doi.org/10.1093/jxb/ery447 PMID:

30561727
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locus control seed dormancy in Swedish Arabidopsis. Elife. 2016; 5: e22502. https://doi.org/10.7554/

eLife.22502 PMID: 27966430

15. Navarro JAR, Wilcox M, Burgueño J, Romay C, Swarts K, Trachsel S, et al. A study of allelic diversity

underlying flowering-time adaptation in maize landraces. Nat Genet. 2017; 49: 476–480. https://doi.org/

10.1038/ng.3784 PMID: 28166212

16. Hughes PW, Soppe WJJ, Albani MC. Seed traits are pleiotropically regulated by the flowering time

gene PERPETUAL FLOWERING 1 (PEP1) in the perennial Arabis alpina. Mol Ecol. 2019; 28: 1183–

1201. https://doi.org/10.1111/mec.15034 PMID: 30712274

17. Lewontin RC, Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality

of polymorphisms. Genetics. 1973; 74: 175–195. PMID: 4711903

18. Hallatschek O, Hersen P, Ramanathan S, Nelson DR. Genetic drift at expanding frontiers promotes

gene segregation. Proc Natl Acad Sci U S A. 2007; 104: 19926–19930. https://doi.org/10.1073/pnas.

0710150104 PMID: 18056799

19. Excoffier L, Foll M, Petit RJ. Genetic Consequences of Range Expansions. Annu Rev Ecol Evol Syst.

2009; 40: 481–501. https://doi.org/10.1146/annurev.ecolsys.39.110707.173414

20. Willi Y, Fracassetti M, Zoller S, Van Buskirk J. Accumulation of Mutational Load at the Edges of a Spe-

cies Range. Mol Biol Evol. 2018; 35: 781–791. https://doi.org/10.1093/molbev/msy003 PMID:

29346601

21. Klopfstein S, Currat M, Excoffier L. The Fate of Mutations Surfing on the Wave of a Range Expansion.

Mol Biol Evol. 2006; 23: 482–490. https://doi.org/10.1093/molbev/msj057 PMID: 16280540
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in flowering time of Iberian Arabidopsis thaliana estimated in field and glasshouse conditions. New Phy-

tol. 2013; 197: 1332–1343. https://doi.org/10.1111/nph.12082 PMID: 23252608

76. Shindo C, Aranzana MJ, Lister C, Baxter C, Nicholls C, Nordborg M, et al. Role of FRIGIDA and FLOW-

ERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol. 2005; 138:

1163–1173. https://doi.org/10.1104/pp.105.061309 PMID: 15908596
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