
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2010

A verification system for interval-based specification languages A verification system for interval-based specification languages

Chunqing CHEN

Jin Song DONG

Jun SUN

Andrew P. MARTIN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5905&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

13

A Verification System for Interval-Based
Specification Languages

CHUNQING CHEN, JIN SONG DONG, and JUN SUN
National University of Singapore
and
ANDREW MARTIN
University of Oxford

Interval-based specification languages have been used to formally model and rigorously reason
about real-time computing systems. This usually involves logical reasoning and mathematical
computation with respect to continuous or discrete time. When these systems are complex, an-
alyzing their models by hand becomes error-prone and difficult. In this article, we develop a
verification system to facilitate the formal analysis of interval-based specification languages with
machine-assisted proof support. The verification system is developed using a generic theorem
prover, Prototype Verification System (PVS). Our system elaborately encodes a highly expressive
set-based notation, Timed Interval Calculus (TIC), and can rigorously carry out the verification
of TIC models at an interval level. We validated all TIC reasoning rules and discovered subtle
flaws in the original rules. We also apply TIC to model Duration Calculus (DC), which is a popular
interval-based specification language, and thus expand the capacity of the verification system.
We can check the correctness of DC axioms, and execute DC proofs in a manner similar to the
corresponding pencil-and-paper DC arguments.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications
—Languages; D.2.4 [Software Engineering]: Software/Program Verification—Formal methods;
validation

General Terms: Verification

Additional Key Words and Phrases: Formal specification languages, real-time systems, theorem
proving

This article is a revised and extended version of a paper presented at the 30th International
Conference on Software Engineering (ICSE’08) [Chen et al. 2008].
This work has been supported in part by ARC Approved Projects under the project “Rigorous
Design Methods and Tools for Intelligent Autonomous Multi-Agent Systems”.
Authors’ addresses: C. Chen, Department of Computer Science, National University of
Singapore, Computing 1, 13 Computing Drive, Singapore 117414, Republic of Singapore; email:
chenchun@comp. nus.edu.sg.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1049-331X/2010/04-ART13 $10.00
DOI 10.1145/1734229.1734232 http://doi.acm.org/10.1145/1734229.1734232

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:2 • C. Chen et al.

ACM Reference Format:
Chen, C., Dong, J. S., Sun, J., and Martin, A. 2010. A verification system for interval-based speci-
fication languages. ACM Trans. Softw. Engin. Method. 19, 4, Article 13 (April 2010), 36 pages.
DOI = 10.1145/1734229.1734232 http://doi.acm.org/10.1145/1734229.1734232

1. INTRODUCTION

Real-time computing systems usually interact with the physical environ-
ment, and they often involve mathematical functions of time. With their
increasing usage in safety-critical situations, it is necessary and important
to rigorously validate the design of these systems associated with proper-
ties of the environment against requirements at an early stage [Cheng and
Atlee 2007]. Consequently, it is desirable for their formal models to cap-
ture various behaviors, such as those described by discrete logics of comput-
erized controllers and continuous dynamics of the environment [Henzinger
and Sifakis 2006]. Moreover, it is crucial for the modeling language to pos-
sess powerful verification capabilities to verify whether the models satisfy
requirements.

Formal models of real-time systems can be divided into two broad
groups [Alur and Henzinger 1991]: those based on time points and those based
on time intervals. Point-based specification languages express system behav-
ior over time points, and they are convenient for describing event occurrences.
Interval-based specification languages are typically used to express behavior
over a period of time points, for instance, using integration. The latter can be
regarded as more appropriate and concise than the former since constraints
on intervals frequently occur in real-time systems [Mattolini and Nesi 2001],
especially in the control engineering domain.

Two prominent interval-based specification languages are Timed Interval
Calculus (TIC) [Fidge et al. 1998b] and Duration Calculus (DC) [Zhou and
Hansen 2004]. Although both languages offer similar operators and capabili-
ties, their bases are different. TIC is based on set-theory and reuses Z [Woodcock
and Davies 1996] mathematical and schema notations. TIC models system
behavior by constraining intervals during which enclosed predicates hold ev-
erywhere. DC is based on interval temporal logic [Moszkowski 1986], and it
represents behavior by constraining state durations by accumulating the
Boolean-valued states over closed intervals. Furthermore, TIC supports ex-
plicit references to interval endpoints, which can specify properties over special
intervals with particular endpoints.

When real-time computing systems are complex, it is difficult to ensure the
correctness of each proof step and to keep track of all proof details in a pencil-
and-paper manner. It is thus necessary and important to develop a verification
system to make proofs easier. Nevertheless, the analysis of these systems usu-
ally involves mathematical reasoning and induction mechanisms for dealing
with arbitrary infinite intervals and continuous time domain. These charac-
teristics are not well supported by model checking [Clarke et al. 1994], which
usually applies a discrete abstraction for infinite state spaces. The abstraction
could decrease the accuracy of analysis in continuous dynamics [Muñoz et al.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

A Verification System for Interval-Based Specification Languages • 13:3

2003]. In contrast, theorem proving [Rushby 2000] can handle infinite state
spaces directly and support expressive specifications.

Instead of building a theorem prover from scratch, we choose one of the pow-
erful generic theorem provers, Prototype Verification System (PVS) [Owre et al.
1992], because of its highly integrated environment for writing formal specifi-
cations and developing rigorous verification. The PVS specification language is
based on higher-order logic associated with a rich type system. Its interactive
theorem prover offers powerful automatic reasoning techniques at low levels,
such as the arithmetic of real numbers and sets. Users can directly control
proof development at a high level, for example by selecting proper user-defined
proof strategies. A recently developed NASA PVS library [Butler 2004] has
formalized and validated the elementary calculus including integration and
differentiation. The library has been successfully applied to verify a practical
aircraft traffic control system [Muñoz et al. 2006]. These strengths of PVS are
useful for achieving our goal of developing the mechanical proof support for
interval-based specification languages.

In this article, we first present a way to systematically develop a verification
system for TIC based upon PVS. We faithfully encode the TIC semantics using
the PVS specification language. A tool is also implemented to support the auto-
matic translation from TIC models to PVS specifications and graphical editing
of TIC models. We further define a collection of supplementary reasoning rules
and proof strategies to simplify the reasoning process. In addition, these proof
strategies assist users by hiding the detailed encoding of TIC.

Using the verification system, we can rigorously analyze TIC models at the
interval level by using the validated supplementary reasoning rules. Proofs
at low levels, such as propositional logic and real numbers, can be automati-
cally discharged by the PVS prover. The system was applied in our published
work [Chen et al. 2007] to help discover semantic incompleteness and a bug
in Simulink [The MathWorks 2008], which is a graphical toolkit for modeling
and simulating dynamic systems. As illustrated in this article, we identify two
subtle flaws in the original TIC reasoning rules, using our rigorous validation.

We further extend our verification system to support other interval-based
specification languages, particularly DC. We formalize the DC constructs using
TIC. Based on the encoding, we check the correctness of the DC axioms and
reasoning rules in our system. Proofs of DC models can thus be rigorously
carried out in a manner similar to the corresponding pencil-and-paper DC
arguments. We apply the resulting system to a common DC case study, and an
incorrect step in its original proof is discovered.

This article is based on our preliminary paper [Chen et al. 2008]. Going
beyond the previous paper, we generalize the verification system to support an-
other popular real-time specification language (DC) besides the expressive no-
tation, TIC. In addition, the presentation of the way to construct TIC semantics
in PVS has been improved significantly. We also provide our full experimental
study that has previously only been sketched and a detailed explanation of the
verification undertaken.

The remainder of this article is organized as follows. Related work is re-
viewed in the next subsection. Section 2 introduces the characteristics of TIC,

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:4 • C. Chen et al.

DC, and PVS. Section 3 illustrates the development of the verification sys-
tem for TIC, and shows the feasibility and benefits of our approach using an
experimental study. Section 4 demonstrates the work on enhancing the verifi-
cation system to support DC, together with the application of a DC case study.
Conclusions and future work are provided in Section 5.

1.1 Related Works

We are aware of two other approaches to supporting TIC by exploiting theorem
provers. Dawson and Goré [2002] applied Isabelle/HOL [Nipkow et al. 2002]
to formalize and check the correctness of TIC reasoning rules. They focused
on the encoding of TIC reasoning rules. Their encoding of the TIC seman-
tics was incomplete; the construction (such as operators used in arithmetics
and inequalities) of TIC predicates and expressions that make up TIC mod-
els was not modeled. It is hence difficult to support the TIC verification in
general as the interpretation of TIC models is essential. Cerone [2001] imple-
mented the axiomatization of TIC in the theorem prover Ergo. Cerone defined
extensive axioms of the time domain, whereas we use the theory of real num-
bers provided with PVS. Cerone allowed a concatenation to be formed by two
both-open intervals, and that is different from the original definition [Fidge
et al. 1998b], which requires two concatenated intervals to meet exactly with
no gap. Moreover, Cerone’s work dealt with only five reasoning rules. In con-
trast, we have constructed complete TIC semantics systematically in PVS,
and validated all reasoning rules. One subtle flaw has been discovered for the
first time. Furthermore, our verification system supports advanced mathemat-
ical analysis such as integral calculus, which is not handled by the previous
works.

Some researchers have investigated the machine-assistant proof for DC.
Heilmann [1999] constructed a proof assistant for DC based on Isabelle [Paul-
son 1994]. The encoding of DC in Heilmann’s approach was syntactic; the
DC syntax and proof rules were introduced as entities of the Isabelle logic.
One advantage of this encoding is that users can carry out DC proofs with-
out having considerable knowledge of the Isabelle logic. On the other hand,
Skakkebæk and Shankar [1994] implemented a proof checker by encoding the
DC semantics within the PVS higher-order logic. The semantic encoding gives
an advantage in utilizing the decision procedures as an integral part of PVS.
They also defined a set of PVS strategies to enable users to work directly with
the syntax and proof rules of DC and not their encoding in PVS. Although DC
is undecidable for continuous time in general, it is mostly decidable for discrete
time. Chakravorty and Pandya [2003] developed a tool to check the validity of
a subclass of discrete-time DC. However, in that work, the duration operator
(which is the key construct of DC) is not semantically encoded, and its proper-
ties are assumed as axioms. In our approach, we encode the duration operator
based on the latest NASA PVS library, and we can hence directly validate those
properties regarding DC durations in our verification system.

There exists some work on developing tools for various interval-based logics.
Mattolini and Nesi [2001] presented temporal-interval logic with compositional

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

A Verification System for Interval-Based Specification Languages • 13:5

operators (TILCO) with formal proof support from Isabelle/HOL. In TILCO, the
time is discrete and the temporal domain is the set of integers; the minimum
time interval corresponds to one time unit. On the other hand, the time domain
of both TIC and DC is continuous-time. Moser et al. [1996] described a set of
tools for real-time graphical interval logic (RTGIL) to assist specifying and
verifying time-bounded properties of concurrent real-time systems. Intervals
in RTGIL are derived from sequences of states and transitions that form their
end-points. An interval is graphically depicted by a left-closed and right-open
line segment. TIC and DC differ from RTGIL in that they treat intervals as
primitive semantic objects, and they are well-suited for modeling and reason-
ing about accumulative behavior. The operator

∫
, for instance, can be used to

specify the duration of a fragment of a computation during which a predicate
holds.

Recently, the interval concept has been used by Mok et al. [2002] to capture
the uncertainty in the exact times of event occurrences when monitoring timing
constraints. In their model, a time stamp of an event consists of a pair of time
values: the start and the end times. They assume that the maximum length of a
time stamp is bounded and known to a monitoring system in advance. Yu et al.
[2006] have extended the work to support the analysis of timing constraint
violations caused by transient failure models with exponential distribution. In
both of these, system models are highly abstract, as functional requirements
are not their main concern. On the other hand, TIC can specify both functional
and timing requirements. With the support of mathematical analysis in TIC
and in PVS, we can reason about functional requirements using our verification
system.

An alternative approach for modeling real-time systems is based on the au-
tomata theory. Hybrid automata [Alur et al. 1992] are used to model embedded
systems with continuous variables, whose value may change at various rates.
Arbitrary linear constraints are allowed for invariance conditions and trigger-
ing conditions. Hytech [Henzinger et al. 1997] is a symbolic model checker for
linear hybrid automata, a subclass of hybrid automata that can be analyzed
automatically by computing with polyhedral state sets. Timed automata [Alur
and Dill 1990] are a special subclass of hybrid automata in which all contin-
uous variables increase their values at a uniform rate and only upper-bound
and lower-bound inequalities of clocks are allowed. Uppaal [Larsen et al. 1997]
is a tool for specifying, simulating, and verifying real-time systems modeled in
timed automata.

2. BACKGROUND

In this section, we briefly present the background information of the notations
and tools that are involved in this article, namely Timed Interval Calculus
(TIC) [Fidge et al. 1998b], Duration Calculus (DC) [Zhou and Hansen 2004],
and Prototype Verification System (PVS) [Owre et al. 1992]. Readers who are
interested in knowing more may refer to the respective references. Table I lists
the special symbols used in this article, with their informal meanings.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:6 • C. Chen et al.

Table I. Symbols and their Informal Descriptions

Symbol Explanation Symbol Explanation
T time domain � � a set of both-open intervals
I all non-empty intervals � � a set of left-closed, right-open intervals
α starting point of an interval � � a set of left-open, right-closed intervals
ω ending point of an interval � � a set of both-closed intervals
δ length of an interval � � a union of the four interval brackets

� connect two sets of intervals � chop two Duration Calculus formulas

2.1 Timed Interval Calculus

TIC is set-theory based and reuses the well-known formal notation,
Z [Woodcock and Davies 1996] mathematical and schema notations. It uses
total function of continuous time to represent system dynamics [Mahony and
Hayes 1992], and defines interval brackets to concisely model system behavior
in terms of intervals [Fidge et al. 1998b]. Interval endpoints can be explic-
itly accessed, and hence TIC can model behavior over special intervals with
particular endpoints.

The time domain, T, is denoted by nonnegative real numbers. An interval is
a continuous range of time points, and intervals are classified into four basic
types based on the inclusion/exclusion of endpoints. For example, both-closed
intervals are defined in the following Z axiomatic style, where P is the power-set
constructor and R denotes real numbers. Three other types of intervals, namely,
both-open, left-open and right-closed, and left-closed and right-open are defined
similarly.

[. . .] : T × T → PT

∀ x, y : R • [x . . . y] = {z : T | x ≤ z ≤ y}
There are three primitive types of elements to construct TIC models.

—Constants. A constant is independent of time points and intervals. For ex-
ample, a maximum temperature that is a real number can be declared as a
constant MaxTmp : R.

—Timed traces. Timed traces model the dynamic (continuous or discrete) vari-
ables of systems. A timed trace is a total function from time domain to the
type of the variable. For example, temperature in a room is represented by a
timed trace Tmp : T → R.

—Interval operators. Distinct from the timed traces, an interval operator is a
function from intervals to the type of the variable. There are three predefined
interval operators in TIC, namely, α, ω, and δ, which have the same type,
I → T, where the symbol I denotes all nonempty intervals. These operators
respectively return the starting point, ending point, and length of an interval.

A key construction of TIC is interval brackets. A pair of interval brackets
associated with a predicate returns all intervals during which the predicate
is true everywhere. An enclosed predicate is usually expressed in the first-
order logic, and all references to the time domain and intervals are elided in
the predicate. For example, a TIC expression, �Tmp(α) ≤ Tmp�, represents a

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

A Verification System for Interval-Based Specification Languages • 13:7

set of both-closed intervals, and in each interval the value of Tmp at each
time point is not less than the value at the starting point. This is shown in
the following equivalent expression (a set comprehension), where the domain
of Tmp is time, and the domain of α is intervals. Without using the interval
brackets, � �, we need to explicitly associate timed traces and interval operators
with their corresponding time points and intervals.

�Tmp(α) ≤ tmp�
= {x, y : T | (∀ t : [x . . . y] • Tmp(α([x . . . y])) ≤ Tmp(t)) • [x . . . y]}

Set operators such as ∪ and ∩ are applied to compose TIC expressions. To
capture the sequential behavior over intervals, TIC defines an operator � to
concatenate two sets of intervals end-to-end, namely, no gap and no overlap.

� : PI × PI �→ PI

∀ X, Y : PI • X � Y =
{z : I | ∃ x : X; y : Y • z = x ∪ y ∧ (∀ t1 : x; t2 : y • t1 < t2)}

By specifying relationships among TIC expressions, we can model system
properties and requirements at the interval level. For example, the following
TIC predicate as a subset relationship specifies a periodic behavior that a
detector should store the temperature Tmp in every k time units, where N

denotes natural numbers.

�∃ i : N • α = i ∗ k ∧ ω = (i + 1) ∗ k� ⊆ �store = Tmp in(α)�

In this TIC predicate, the TIC expression at the left side of ⊆ decomposes the
time domain into a sequence of left-closed and right-open intervals (by � �), and
each interval lasts k time units; the TIC expression at the right side depicts
the periodic update of the stored temperature.

To manage TIC models in a structural manner, we adopt the Z schema nota-
tion to group a list of variables in its declaration part and specify relationships
of these variables in its predicate part. The following schema represents the
previous detector, where the symbol� (defined in Fidge et al. [1998a]) indicates
that Tmp in is a continuous function over the time domain.

Detector
Tmp in : T� R; store : T → R [Declaration]

�∃ i : N • α = i ∗ k ∧ ω = (i + 1) ∗ k� ⊆ �store = Tmp in(α)� [Predicate]

TIC contains a set of primitive rules about the properties of sets of intervals.
These rules are used to carry out TIC verification at the interval level. For
example, the following rule states that for any nonpointer interval (namely,
δ > 0) in which a predicate holds, the interval can be decomposed into two
concatenated subintervals and the predicate is still true in each subinterval.

If α, ω, and δ do not appear free in a predicate P, then we have
�P ∧ δ > 0� = �P�� �P�.

In the above specification, the interval brackets � � denote a union of four
basic types of interval brackets: �P� == �P� ∪ �P� ∪ �P� ∪ �P�. This operator is

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:8 • C. Chen et al.

used when predicates are independent of interval endpoints. Moreover, the rule
in the previous example is valid provided the time domain is continuous.

Using TIC, we can specify important requirements such as safety and
bounded liveness requirements, and prove that system designs imply require-
ments by deduction. A proof is usually decomposed into several subproofs, and
each subproof concentrates on a simple requirement of a subsystem. Each de-
ductive step in a proof is reached by rigorously applying a hypothesis (as an
axiom), a TIC reasoning rule, a mathematical law, or a proved requirement
from a subproof.

2.2 Duration Calculus

DC is a logic-based approach to formal design of real-time systems. The basic
calculus of DC [Zhou et al. 1991] and its extensions, including Mean Value Cal-
culus [Zhou and Li 1994] and Extended Duration Calculus [Zhou et al. 1993],
are founded on the interval temporal logic and integral calculus. We consider
the basic DC in this article. It axiomatizes state durations for the Boolean state
model, namely, integrals of Boolean-valued functions. Other extensions of the
basic DC are introduced by adding extra axioms that formalize the extended
models and also their interrelations with the Boolean state model.

In the basic calculus of DC (abbreviated as DC henceforth), state variables
are the basic type to model system states. A state variable P is a function from
time to Boolean values {0, 1}, namely, P : T → {0, 1}. Furthermore, DC assumes
that state variables hold finite variability, which stipulates that a state variable
can only change its value finitely many times in any bounded interval. This
assumption ensures that state variables are integrable in every interval.

State expressions are formed by applying propositional logic operators over
state variables, following the abstract syntax: S ::= 0 | 1 | P | ¬ S1 | S1 ∧ S2,
where S, S1, and S2 are state expressions. Semantically, a state expression
returns a value of 0 or 1 at a time point. For example, two state variables, Gas
and Flame, are introduced in a gas burner system to characterize the flowing
and burning of gas. Gas(t) = 1 means that gas is flowing and Flame(t) = 1
means that flame is burning. Hence, Gas ∧ ¬ Flame is the state expression
specifying the leaking of gas, and it is interpreted with respect to a given time
point t in the following way, where (¬ Flame)(t) = 1 − Flame(t).

(Gas ∧ ¬ Flame)(t) =
{

1 if Gas(t) = 1 and (¬ Flame)(t) = 1
0 otherwise

Temporal variables in DC, which are real-valued functions of intervals, can
have a structure

∫
S to denote the duration of a state expression S over a

closed time interval [b, e], where b ≤ e. The duration is the accumulated pres-
ence time of S in the interval, namely, (

∫
S)([b, e]) = ∫ e

b S(t)dt. Another prede-
fined temporal variable in DC is �, which denotes the interval length, namely,
�([b, e]) = e − b.

DC terms are built upon temporal variables or constants using mathematical
operators. DC formulas are composed by constraining DC terms or subformulas.
Besides the conventional predicate logic operators such as the disjunction ∨
ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

A Verification System for Interval-Based Specification Languages • 13:9

and the universal quantifier ∀, DC also adopts the chop operator �. A formula
φ � ψ , where φ and ψ are formulas, is satisfied by an interval if and only if the
interval can be chopped into two adjacent both-closed subintervals such that
the first subinterval satisfies φ and the second satisfies ψ . Based on the chop
operator, two commonly used operators over subintervals, � (eventually) and

� (always), are defined as follows: �φ == (true �φ) � true and �φ == ¬ �(¬ φ).
For example, an interval [b, e] satisfies �φ provided there exist c and d such
that b ≤ c ≤ d ≤ e and the interval [c, d] satisfies φ.

A formula is valid in DC if and only if it holds in all intervals. For instance,
a design property of a gas burner is that any leak represented by a state
variable Leak should not last longer than one time unit. This design property
can be represented by the formula, �(��Leak�� ⇒ � ≤ 1), where ��Leak�� is an
abbreviation of the formula

∫
Leak = � ∧ � > 0. Note that � indicates that the

design property holds in any interval.
Properties of state durations are declared as axioms in DC. These ax-

ioms are important for deriving DC reasoning rules in DC proofs. Taking
the axiom DCA5 from Zhou and Hansen [2004] as an example, the axiom
as shown below captures the relationship between the duration length (where
x and y are nonnegative real numbers) of a state expression and the chop
operator.

DCA5 (
∫

S = x) � (
∫

S = y) ⇒ ∫
S = x + y.

As we will show in Section 4.2, the DC axioms are declared as lemmas and
they can be formally validated using our verification system.

Although DC and TIC possess similar capabilities, their bases are differ-
ent. TIC is based on set theory, while DC is based on interval temporal logic.
Furthermore, TIC supports explicit references of interval endpoints, which can
specify properties over special intervals with particular endpoints.

2.3 Prototype Verification System

PVS is an integrated environment for formal specification and formal verifica-
tion. It builds on over 25 years of experience at SRI in developing and using
tools to support formal methods. The specification language of PVS is based on
classic typed, higher-order logic. Built-in types in PVS include Boolean (bool),
real numbers (real), natural numbers (nat), and so on. Standard operations
of predicate logic and arithmetic, such as conjunction (and), less-inequality (<),
and addition (+) on the built-in types are also defined in PVS.

New types can be defined from the built-in types using type constructors such
as predicate subtypes and record types. A predicate subtype denotes a subset
of individuals in a type satisfying a given predicate. For example, nonzero
real numbers are written as {x: real | x /= 0}. Note that types in PVS are
modeled as sets. Record types are of the form [# a1:t1, ..., an:tn #], where
a1 is a record accessor and t1 is the associated type.

Overloading is supported in PVS. In particular, functions can have the same
name as long as they have different argument types. Specifications in PVS
are built from theories, which usually contain type declarations, functions, and

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:10 • C. Chen et al.

lemmas. A theory can be reused in other theories by means of the importing
clause.

The PVS prover maintains a proof tree, and the objective is to construct
a complete proof tree in which all leaves are trivially true. Each node in a
proof tree is a proof goal, which is a sequent consisting of a list of formulas
named antecedents and a list of formulas called consequents. The intuitive
interpretation of a proof goal is that the conjunction of the antecedents implies
the disjunction of the consequents.

The prover provides a collection of primitive proof commands such as expand-
ing definitions (expand) and eliminating quantifies (skosimp), to manipulate
proof trees. A frequently used powerful proof command is grind, which does
skolemization, instantiation, simplification, rewriting, and applying decision
procedures. Users can introduce more powerful proof strategies that combine
basic proof commands so as to enhance the automation of verification in PVS.

PVS contains many built-in theories about logics, sets, numbers, and so on.
These theories cover much of the mathematics needed to support specification
and verification in PVS. Recently the NASA PVS library has formalized the
definitions of limits, derivatives, continuity, and integration. The library has
also validated a number of properties of these definitions and hence supports
the rigorous analysis of continuous dynamics.

3. A VERIFICATION SYSTEM FOR TIC

We describe the development of a verification system for TIC built upon PVS
in this section. The TIC semantics is faithfully encoded and all TIC reasoning
rules are validated in PVS. A translator is implemented to automatically trans-
late TIC models to PVS specifications. A collection of supplementary rules and
proof strategies are defined to ease the verification process. An experimental
study is provided at the end to show the feasibility and effectiveness of the
verification system.

3.1 Encoding TIC Semantics in PVS

The encoding of TIC semantics forms a foundation from which we formalize the
TIC reasoning rules and carry out the verification of TIC models. An important
requirement is that the resulting PVS specifications should be concise in a way
close to the structure of the TIC models, so any diagnostic information obtained
at the level of PVS can be easily reflected back to the level of TIC. The PVS
theories of the TIC semantics are formed in a bottom-up manner, and each
subsection below corresponds to a PVS theory. Simple theories are hence used
to compose complex ones (the complete PVS theories are available online [Chen
2008]). To avoid the problem of subgoal explosion, which often occurs in reason-
ing procedures, we model TIC constructs, especially the interval brackets and
concatenation operator, in a hierarchical manner. Moreover, the flexible style
of type declaration in PVS reduces the size of the PVS specifications.

3.1.1 Time and Interval Domains. The time domain is represented by the
PVS built-in type nnreal as a set of nonnegative real numbers.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

A Verification System for Interval-Based Specification Languages • 13:11

Time: TYPE = nnreal;

An interval is modeled as a tuple and its type is GenInterVal as shown in the
following: the first element (invt) indicates the interval type (for example, CO
indicating that the interval is left-closed and right-open); the second element
is also a tuple, which consists of the starting point (stp) and the ending points
(etp).

Interval_Type: TYPE = {OO, OC, CO, CC};

GenInterval: TYPE = [invt: Interval_Type, {stp, etp: Time | stp <= etp}];

The following type II denotes all nonempty intervals, and the constraints
of interval endpoints with respect to interval types are captured. For example,
the predicate i‘1 = CC and i‘2‘1 <= i‘2‘2 specifies that the ending point
can be equal to the starting point if the interval is both-closed (indicated by CC),
where the apostrophe ‘ is the PVS projection operator to refer to components
in a tuple. By using the predicate subtype technique in PVS, specific interval
types are easily constructed based on II. For instance, COInteral, which
represents left-closed and right-open intervals restricts the interval type to be
CO.

II: TYPE = {i: GenInterval | (i‘1 = CC and i‘2‘1 <= i‘2‘2)

or (i‘1 /= CC and i‘2‘1 < i‘2‘2)};

COInterval: TYPE = {i: II | i‘1 = CO};

3.1.2 Timed Traces and Interval Operators. A timed trace (Trace) is a
function from time to the real numbers. We further model discrete timed traces
(BTrace) whose ranges consist of two values, 0 and 1.

Trace: TYPE = [Time -> real];

BTrace: TYPE = [Time -> {x:real | x = 0 or x = 1}];

Interval operators are functions of intervals. They are independent from the
inclusion/exclusion of interval endpoints. That is to say, we only need to define
their functionalities with respect to II without respectively listing those of
specific interval types (for example, COInterval). The following PVS specifica-
tions correspond to three predefined TIC interval operators, namely, α, ω, and δ.

ALPHA(i: II): Time = i‘2‘1; OMEGA(i: II): Time = i‘2‘2;

DELTA(i: II): Time = OMEGA(i) - ALPHA(i);

3.1.3 Expressions and Predicates. As a modeling feature of TIC, the refer-
ences to the time domain and interval domain are elided in the expressions and
predicates that are enclosed in a pair of interval brackets. However, it is neces-
sary for these references to be explicitly shown for the correct interpretation of
the expressions and predicates. We declare expressions (TExp) and predicates
(TPred) to be functions in PVS where time and intervals compose the domain.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:12 • C. Chen et al.

TExp: TYPE = [Time, II -> real]; TPred: TYPE = [Time, II -> bool];

Primitive elements of TIC form expressions and in turn, predicates. An
element is a constant, a timed trace, or an interval operator. By the over-
loading mechanism of PVS, the following function LIFT performs different
functionalities according to the type of its first argument.1 LIFT returns the
value at a time point, t, for a timed trace while evaluating an interval operator
with respect to an interval, i.

LIFT(c)(t, i): real = c; % c: real, t: Time, i: II

LIFT(tr)(t, i): real = tr(t); % tr: Trace

LIFT(tm)(t, i): real = tm(i); % tm: Term

When interpreting an expression of TIC, we pass its parameters denoting
the time domain and interval domain to its constituent expressions. This
propagation repeats until all constituent expressions are primitive elements.
For instance, a (prefix) subtraction of TIC is interpreted in the following in
PVS, where the pair (t, i) is passed to the component expressions el and
er. A similar approach is used to handle predicates (a disjunction of TIC is
provided as an example).

-(el, er)(t, i): real = el(t, i) - er(t, i); % el, er: TExp

or(pl, pr)(t, i): bool = pl(t, i) OR pr(t, i); % pl, pr: TPred

We remark that TIC supports elementary calculus including integration
and differentiation. The calculus is handled in our system with the formal
definitions from the NASA PVS library. For example, the expression

∫ ω(i)
α(i) tr

is represented by the following PVS function TICIntegral, which invokes
function Integral, which is defined in the NASA PVS library.

TICIntegral(tr)(t, i): real = Integral(ALPHA(i), OMEGA(i), tr)

3.1.4 TIC Expressions. A TIC expression denotes a set of intervals. The
basic structure of TIC expressions is a pair of interval brackets that enclose
a predicate. Common set operators can be applied to make up complex TIC
expressions. Here we demonstrate how to encode the TIC expressions with
interval brackets and the special set operator of TIC, namely the concatenation
operator. Other types of TIC expressions can be constructed by the built-in
functions in the PVS set theory.

A pair of interval brackets enclosing a predicate represents a set of intervals,
and in each interval the predicate holds everywhere, namely, at all time points
of the interval. In the following PVS specifications, the function t_in_i detects
whether a time point is within an interval according to the interval type.
Note that there are four basic types of interval brackets. Based on t_in_i, we
define the function Everywhere? to check if a predicate holds in an interval.
TIC expressions containing general interval brackets � � are thus modeled

1Characters following the symbol ‘%’ are comments in PVS.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

A Verification System for Interval-Based Specification Languages • 13:13

by the function AllS. In addition, TIC expressions of basic types of interval
brackets are easily specified by applying the predicate subtype mechanism (for
example, the function COS for � �).

t_in_i(t, i): bool = (i‘1 = OO and t > i‘2‘1 and t < i‘2‘2) or

(i‘1 = OC and t > i‘2‘1 and t <= i‘2‘2) or

(i‘1 = CO and t >= i‘2‘1 and t < i‘2‘2) or

(i‘1 = CC and t >= i‘2‘1 and t <= i‘2‘2);

Everywhere?(pl, i): bool = forall t: t_in_i(t, i) => pl(t, i);

AllS(pl): setof[II] = {i | Everywhere?(pl, i)};

COS(pl): setof[COInterval] = {i: COInterval | Everywhere?(pl, i)};

A concatenation in TIC requires that two connected intervals must meet
exactly, that is, with no overlap and no gap. There are thus eight correct ways
of concatenating from four basic types of intervals. Instead of modeling each
one individually, we represent all eight cases together by the following function
concat. The function takes two sets of intervals as parameters (namely, iisl
and iisr), which may contain any type of interval, and each interval in the
returned set is composed by two adjacent intervals respectively from two
parameters.

ConcatType(l, r, re: II): bool =

(re‘1 = OO AND ((l‘1 = OC AND r‘1 = OO) OR (l‘1 = OO AND r‘1 = CO)))

OR (re‘1 = CO AND ((l‘1 = CC AND r‘1 = OO) OR (l‘1 = CO AND r‘1 = CO)))

OR (re‘1 = OC AND ((l‘1 = OO AND r‘1 = CC) OR (l‘1 = OC AND r‘1 = OC)))

OR (re‘1 = CC AND ((l‘1 = CO AND r‘1 = CC) OR (l‘1 = CC AND r‘1 = OC)));

concat(iisl, iisr: PII): PII = {i | exists (i1, i2: II):

ConcatType(i1, i2, i) AND member(i1, iisl) AND member(i2, iisr) AND

OMEGA(i1) = ALPHA(i2) AND ALPHA(i1) = ALPHA(i) AND OMEGA(i2) = OMEGA(i)};

In these PVS specifications, function ConcatType constrains the types of
concatenated intervals. The constraints cover all eight cases. Being different
from other constraints in concat (for example, OMEGA(i1) = ALPHA(i2) indi-
cates that a concatenated interval’s ending point is equal to the starting point
of the other), the application of ConcatType in concat encapsulates the predi-
cates of interval types at a lower level. That is to say, we create a hierarchical
structure. This structure is useful to avoid the problem of subgoal explosion,
which is often encountered during reasoning procedures in PVS. That is, the
PVS prover automatically splits a proof goal into a number of subgoals at a
proof step, although the split is unnecessary at that step since there are many
repetitive proof commands used to discharge those subgoals. For instance, if
we directly specify eight constraints of interval types in concat, the prover
would automatically split one proof goal into eight subgoals when expanding
the concatenation definition in PVS, although these subgoals can be proved by
applying many repetitive proof commands.

So far, we have carefully formalized the TIC constructs in PVS, while the way
of handling TIC schemas and TIC predicates will be presented in Section 3.3.1.
During the encoding, the overloading mechanism has assisted us to define the
function LIFT with different functionalities, and the higher-order logic of the
PVS specification language has facilitated the interpretation of expressions

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:14 • C. Chen et al.

and predicates of TIC in a bottom-up manner. These PVS theories of the TIC
semantics form a base from which to validate the TIC reasoning rules and
support mechanical verification of TIC models, as we will show in the following
sections.

3.2 Checking TIC Reasoning Rules

TIC reasoning rules capture the properties of sets of intervals. They are used
to verify TIC models at the interval level. Guaranteeing their correctness is
thus necessary and important. In this section we first describe the challenge
of validation. Next we demonstrate the flaws discovered from our rigorous
reasoning process and provide remedies.

Checking TIC reasoning rules is not trivial. Though some of these rules are
automatically proved by the PVS prover, others require complicated analysis
covering all types of intervals and various types of predicates (for example,
whether a predicate is dependent on interval operators). Taking the rule
introduced in Section 2.1 as an example, its PVS specification is represented
based on the encoding in the previous section, where function No_Term? returns
true when a predicate pl is independent with interval operators.

CONC_CONC: LEMMA No_Term?(pl) =>

AllS(pl AND LIFT(DELTA) > LIFT(0)) = concat(AllS(pl),AllS(pl));

To validate this rule, we need to consider the concatenation of two sets of all
types of intervals. Therefore there are eight cases. In the reasoning process,
human interactions are helpful to increase the efficiency. Our simplified proof
goal in the following aims to show that there exist two concatenated intervals,
which form an interval x!1 and satisfy the hypotheses depicted by three
antecedents (prefixed by negative integers). For instance, the antecedent at
[-1] restricts the type of x!1 to be left-closed and right-open. To prove the goal,
we select the middle point of x!1 as the connecting point, namely, (ALPHA(x!1)
+ OMEGA(x!1))/ 2, and then instantiate the requested intervals by applying
our defined proof strategy assignconct.

[-1] TypeOf(x!1) = CO

[-2] No_Term?(pl1!1)

[-3] AllS(pl1!1 AND LIFT(DELTA) > LIFT(0))(x!1)

|-------

[1] concat(AllS(pl1!1), AllS(pl1!1))(x!1)

Rule? (assignconcat 1 "(CO, (ALPHA(x!1), (ALPHA(x!1) + OMEGA(x!1))/2))"

"(CO, ((ALPHA(x!1) + OMEGA(x!1))/2, OMEGA(x!1)))")

The PVS prover always checks the correctness of assignments, so we are
required to show that these user-specified intervals satisfy the concatenation
definition indicated by the function concat. Doing so can thus prevent mistakes
from users such as assigning two concatenated intervals with the both-open
interval type.

During our rigorous validation of all TIC reasoning rules, two subtle flaws
in the original reasoning rules have been discovered. We present these prob-
lematic rules with counterexamples, followed by their corresponding solutions,

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

A Verification System for Interval-Based Specification Languages • 13:15

which have been validated in PVS.

—The True and False rule is frequently used to reason about safety require-
ments. The original rule states that a predicate P is true in all intervals if
and only if its negation is true nowhere. That is, �P� = I ⇔ �¬ P� = ∅.
However, the implication, �¬ P� = ∅ ⇒ �P� = I, does not hold in certain
circumstances.

For example, let x be a timed trace having the value 1 from time points 5
to 7 and the value 0 elsewhere. It is obvious to see that the predicate ¬ P ==
x = 1 ∧ δ = 3 fails everywhere, although its negation P == x �= 1 ∨ δ �= 3 is
false in some intervals such as the interval [5 . . . 8].

To solve the problem, a stronger hypothesis is needed. The predicate within
interval brackets should be independent of interval characteristics: the start-
ing point, ending point and length of an interval. The modified rule is ex-
pressed in PVS as a lemma named Emp_to_All, where sets emptyset and
fullset denote respectively the empty set and the set of all intervals.

Emp_to_All: LEMMA No_Term?(pl) =>

AllS(not pl) = emptyset => AllS(pl) = fullset;

—The Concatenation Duration rule is useful to deal with proofs involving con-
catenation. Using the rule, a set of intervals can be decomposed into two
concatenated sets of intervals with specified interval lengths. So given a
predicate P where interval operators do not occur, if we have r, s : T and r >

0 ∨ s > 0, then we can deduce �P ∧ δ = r + s� = �P ∧ δ = r�� �P ∧ δ = s�.
However this equality in terms of sets of intervals does not always hold.

For example, if r = 0, then any interval of �P ∧ δ = r� must be both-closed
according to the interval definition. However, it is possible that �P ∧ δ = r+s�
contains intervals that are left-open, hence type conflict occurs. The conflict
can be removed by a stronger assumption, namely, r > 0 ∧ s > 0.

We remark that this is the first time that the first flaw has been discovered
(while the second flaw has also been observed by Dawson and Goré [2002]).
These discoveries demonstrate the benefits of exploiting a theorem prover for
rigorous verification.

Based on the lemma Emp_to_All, we further derive a new rule, EmpCC_to_All
to reduce the proof complexity. When applying Emp_to_All, we have to show
that the proof goal can be discharged with respect to four basic interval
types, although usually each subproof follows a similar reasoning process.
In contrast, the new rule allows us to focus on just one type of interval:
both-closed intervals (as indicated by CCS).

EmpCC_to_All: LEMMA No_Term?(pl) =>

CCS(not pl) = emptyset => AllS(pl) = fullset;

Currently, we have validated all TIC reasoning rules in PVS. These rules
can thus be applied as lemmas in PVS to verify TIC models. Two flaws have
been discovered and fixed.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:16 • C. Chen et al.

3.3 Translating TIC Models to PVS Specifications

Based on the encoding of TIC semantics in PVS (refer to Section 3.1), we
present in this section the translation from TIC models to PVS specifications,
with an adaptive temperature control system as an illustration. The translated
PVS specifications closely follow the original TIC models, so the diagnostic
information obtained at the level of PVS can be reflected back to the level of
TIC.

3.3.1 Representing TIC Models in PVS. Using TIC, system properties and
requirements are specified at the interval level. TIC schemas model the prop-
erties, and TIC predicates model the requirements. In the following, we explain
the way to represent them in PVS.

—TIC schemas are used to structure and compose models; collating pieces of
information, encapsulating them and naming them for reuse. Each schema
represents a composite type, which is made up of a set of bindings; each
binding relates a declared variable with its restrictive values. This modeling
feature enables schemas to be used as types, to support the methodology of
component-based design.

Each schema is represented by a PVS record type. We construct a set of
records in PVS, where schema declarations are denoted by record accessors
associated with corresponding types and schema predicates are used to con-
strain relationships over the record accessors. Moreover, implicit properties
indicated by certain kinds of functions in TIC, such as continuity and inte-
grability, are captured by additional constraints in PVS to further restrict
the record type.

—A TIC predicate specifies a requirement of a system or some components,
and is constructed based on the TIC schemas of the relevant system or
components. Each TIC predicate is represented by a PVS theorem formula
constructed based on the PVS specifications that represent corresponding
TIC schemas.

These relationships between TIC models and PVS specifications can be infor-
mally illustrated in the following, where temp in the construction for schemas
is an auxiliary variable to access record accessors in the generated Predicate
specification.

schema name
declaration

predicate

requirement name ==
predicate

SchemaName: TYPE = {temp:
[# Declaration #] |
Predicate }
RequirementName : THEOREM
Predicate

To automatically translate TIC models to PVS specifications, we develop
an automated process which consists of three steps: scanning, parsing, and
translating. A scanner splits TIC models into a sequence of meaningful tokens
such as TIC interval brackets, mathematical operators and so on. A parser
constructs a set of abstract syntax trees (ASTs) for TIC models based on those

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

A Verification System for Interval-Based Specification Languages • 13:17

tokens. Each AST represents a TIC model, and the leaves of an AST denote
the primitive elements of a TIC model: constants, timed traces, and interval
operators. A translator traverses an AST in a top-down order to produce corre-
sponding PVS specifications.

We have developed a tool using Java to implement the translation algorithm.
Besides supporting the automatic translation, the tool also provides function-
ality to facilitate the use of TIC including graphical editing as well as syntax
and type checking. The tool is available online [Chen 2008].

3.3.2 A Temperature Control System. A temperature control sys-
tem [Nicollin et al. 1992; Tiwari et al. 2003] is a hybrid application that controls
the temperature by turning a heater on and off. The system involves discrete
logic and continuous dynamics, and is designed to fulfill important require-
ments such as safety requirements. We present the system properties and
requirements in TIC and their translated PVS specifications. The system will
be applied to demonstrate the advantages of our verification system, in the
next section.

The control system is composed by two subsystems: a plant represents
the physical environment where the temperature changes continuously fol-
lowing different integral equations based on the heater status; and a con-
troller that turns the heater on and off according to the temperature of the
plant.

In the plant subsystem, there are two conditions.

—When the heater (denoted by heater in) is off, namely, heater in = 0, in an
interval, say [b, e], the temperature (by tmp out) decreases and follows the
integral equation: tmp out(e) = tmp out(b) − 0.1 ∗ ∫ e

b tmp out.
—When the heater is on in an interval [b, e], the temperature increases and

follows the integral equation: tmp out(e) = tmp out(b) + 6 ∗ (e − b) − 0.1 ∗∫ e
b tmp out.

The TIC schema of this subsystem and the corresponding PVS record type
are given in the following, where the PVS variables (for example, Trace) and
functions (for instance, LIFT) for encoding TIC have been defined in Section 3.1.
Other special symbols include the PVS projection function (‘), which acts like
the Z selector operator “.” to select a component/attribute from a schema, and
the function composition operator o in PVS. Note that the temperature is de-
clared as a continuous function (indicated by �); this characteristic is also
captured by the function continuous from the NASA PVS library.

Plant
tmp out : T� R; heater in : T → {0, 1}
�heater in = 0� ⊆ �tmp out(ω) = tmp out(α) − (1/10) ∗ ∫

tmp out�
�heater in = 1� ⊆ �tmp out(ω) = tmp out(α) + 6 ∗ δ − (1/10) ∗ ∫

tmp out�

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:18 • C. Chen et al.

Plant: TYPE = { temp: [# tmp_out: Trace, heater_in: BTrace #] |

subset?(AllS(LIFT(temp‘heater_in) = LIFT(0)),

AllS((LIFT(temp‘tmp_out) o LIFT(OMEGA)) =

(LIFT(temp‘tmp_out) o LIFT(ALPHA)) -

LIFT(1/10) * TICIntegral(temp‘tmp_out))) AND

subset?(AllS(LIFT(temp‘heater_in) = LIFT(1)),

AllS((LIFT(temp‘tmp_out) o LIFT(OMEGA)) =

(LIFT(temp‘tmp_out) o LIFT(ALPHA)) + LIFT(6) * LIFT(DELTA) -

LIFT(1/10) * TICIntegral(temp‘tmp_out))) AND

continuous(temp‘tmp_out)};

In the controller subsystem, the heater must be on, namely, heater out = 1,
when the temperature tmp in is not higher than the minimum value 20; and
the heater must be off when the temperature is not lower than the maximum
value 40.

Controller
tmp in : T� R; heater out : T → {0, 1}
�tmp in ≤ 20� ⊆ �heater out = 1� ∧ �tmp in ≥ 40� ⊆ �heater out = 0�

Controller: TYPE = { temp: [# tmp_in: Trace, heater_out: BTrace #] |

subset?(AllS(LIFT(temp‘tmp_in) <= LIFT(20)),

AllS(LIFT(temp‘heater_out) = LIFT(1))) AND

subset?(AllS(LIFT(temp‘tmp_in) >= LIFT(40)),

AllS(LIFT(temp‘heater_out) = LIFT(0))) AND

continuous(temp‘tmp_in)};

We specify the connections between these two subsystems and the initial
situation of the control system in the following TIC schema. The heater is off
and the temperature is 30 at time point 0.

System
con : Controller; pla : Plant

I = �con.tmp in = pla.tmp out� ∧ I = �pla.heater in = con.heater out�
�α = 0� ⊆ �pla.tmp out(α) = 30 ∧ con.heater out(α) = 0�

System: TYPE = { temp: [# con: Controller, pla: Plant #] |

fullset = AllS(LIFT(temp‘con‘tmp_in) = LIFT(temp‘pla‘tmp_out)) AND

fullset = AllS(LIFT(temp‘pla‘heater_in) = LIFT(temp‘con‘heater_out)) AND

subset?(AllS(LIFT(ALPHA) = LIFT(0)),

AllS((LIFT(temp‘pla‘tmp_out) o LIFT(ALPHA)) = LIFT(30) AND

(LIFT(temp‘con‘heater_out) o LIFT(ALPHA)) = LIFT(0)))};

Based on these specifications of system properties, we can specify a safety
requirement that the temperature is always within a valid range from the
value 20 to the value 40 in all nonempty intervals.

Safety == ∀ s : System • I = �s.pla.tmp out ≤ 40 ∧ s.pla.tmp out ≥ 20�

Using TIC, we can specify important timing requirements. As shown in
the following, the requirement Length says that given an interval starting
from the time point 0 (namely, α = 0), the accumulation of the lengths of the

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

A Verification System for Interval-Based Specification Languages • 13:19

intervals in which the heater is on is always less than three-fourths of the
length of the interval. We remark that this requirement is not supported in the
original [Nicollin et al. 1992; Tiwari et al. 2003] as they lack the capacity to
model continuous behavior.

Length == ∀ s : System • �α = 0� ⊆ �∫ s.con.heater out ≤ 3
4 ∗ δ�

In this section, we have presented a way to translate TIC schemas and
TIC predicates to PVS specifications with the illustration of a hybrid applica-
tion. We remark that representing TIC schemas as PVS record types supports
the modeling technique of Z (namely, using schemas as types to handle large
scale systems). For example, the record accessor con in the record System de-
notes the controller subsystem. This approach is different from that of Gravell
and Pratten [1998], who discussed issues on embedding Z into both PVS and
HOL [Gordon and Melham 1993]. They interpreted Z schemas as Boolean func-
tions of record types and it is thus difficult to handle the case where schemas
are declared as types. Moreover, a means to handle schemas was missing in the
work of Stringer-Calvert et al. [1997], who applied PVS to prove Z refinements
for a compiler development; their work focused on supporting partial functions
of Z in PVS.

3.4 Machine-Assisted Proof Support for TIC

Verification of TIC models is nontrivial, since real-time computing systems
usually contain continuous dynamics and requirements often involve arbitrary
intervals and continuous time domain. We demonstrate in this section how
our verification system facilitates verification with a high level of automation.
We begin by defining a collection of supplementary rules of TIC and proof
strategies to simplify the reasoning process. Next we present a general proof
procedure to systematically analyze TIC models. In the end, we apply them
to the temperature control system to show the advantages of the verification
system.

3.4.1 Supplementary Rules and Proof Strategies. The TIC reasoning
rules validated in Section 3.2 capture primitive properties of sets of intervals.
They are inadequate to support domain-specific characteristics. For example,
if a continuous timed trace, tr, crosses a threshold TH at an interval i in
a way tr(α(i)) < TH ∧ tr(ω(i)) > TH, then we can deduce that i can be
decomposed into three connected intervals, where the values of tr are larger
than TH everywhere in the last subinterval and are equal to TH in the middle
subinterval. This property is expressed by the following PVS lemma, where the
function continuous expresses the property that a timed trace tr is continuous
over the time domain.

mid_ivl_exi: LEMMA continuous(tr) => subset?(

AllS((LIFT(tr) o LIFT(ALPHA)) < LIFT(TH) and

(LIFT(tr) o LIFT(OMEGA)) > LIFT(TH)),

concat(AllS(TRUE), concat(AllS(LIFT(tr) = LIFT(TH)),

AllS(LIFT(tr) > LIFT(TH)))));

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:20 • C. Chen et al.

Note that this domain-specific property is not captured by any existing TIC
reasoning rule. It is derived from the classic intermediate value theorem of
continuous functions. Its correctness has been validated in PVS, and we can
hence apply mid_ivl_exi when analyzing continuous dynamics.

To make the reasoning process in PVS more automated and shield users
from the detailed TIC encoding, we have developed several PVS proof strate-
gies. Each strategy combines repetitive proof commands that are frequently
used in practice. These strategies mainly cope with quantified PVS formulas,
since the PVS prover possesses powerful capabilities (such as automatic
deduction and simplification) on reasoning about primitive formulas that
are represented in the propositional logic. According to the quantifier type,
these strategies are classified into two groups. One eliminates the universal
quantifier by Skolemization, and the other removes the existential quantifier
by proper instantiation. In addition, they usually automatically expand PVS
functions that encode the TIC semantics, so detailed encoding of TIC can hence
be hidden from users. We present the strategy, AssignInvlnTime, which offers
a flexible way to assign an interval and a time point to a user-specified formula.

1: (defstep AssignInvlnTime (fnum &OPTIONAL ivl pt)

2: (try (else (expand "OOS" fnum) (else (expand "OCS" fnum)

3: (else (expand "COS" fnum) (else (expand "CCS" fnum)

4: (else (expand "AllS" fnum) (skip))))))

5: (then (if ivl (inst fnum ivl) (inst? fnum))

6: (expand "Everywhere?" fnum)

7: (if pt (inst fnum pt) (inst? fnum)))

8: (skip)))

Using this strategy, we can either instantiate explicit values of an interval
(denoted by ivl at line 1) and a time point (by pt), or let the PVS prover auto-
matically fix the values by using the PVS proof command inst? (at lines 5 and
7). This strategy handles all interval types, by repeatedly applying the basic
PVS proof strategy else2 from line 2 to line 4 to expand proper PVS functions
that encode interval brackets. Note that at line 6 AssignInvlnTime automat-
ically expands the function Everywhere? (defined in Section 3.1.4). In other
words, the strategy hides the detailed encoding of TIC, namely, Everywhere?,
from users.

We have constructed 25 supplementary rules and 11 PVS strategies that
are frequently used in practice. They ease the verification of TIC models by
elevating the grade of automation.

3.4.2 A General Proof Procedure. In general, to verify TIC models is to
prove that the logical implication relationships among TIC models are valid,
to check whether the TIC schemas representing system properties imply the
TIC predicates denoting requirements. A proof is a deduction that starts from
hypotheses (namely, TIC schemas) and proceeds in a forward manner. Each
deductive step involves applying a TIC reasoning rule or a mathematical law

2The else proof strategy executes the first step, and if that does nothing, then the second step is
executed.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

A Verification System for Interval-Based Specification Languages • 13:21

to a hypothesis. Usually a proof can be decomposed into several subproofs over
subsystems.

Our primary aim of developing the verification system is to systematically
carry out the verification with a high degree of automation. Moreover, the
reasoning process in the system is intended to closely follow the manual TIC
arguments. Based on our experiments, we describe a general proof procedure
with respect to a proof goal that is a PVS sequent (introduced in Section 2.3),
which is initially expressed in terms of intervals. The proof procedure is ef-
fective and efficient in practice to accomplish our aims. The main objective of
the procedure is to eliminate quantified formulas in the sequent by assigning
appropriate values to intervals and time points. Following that, the PVS prover
can directly manipulate the sequent and automatically discharge most of the
tedious proof, for instance reasoning about linear arithmetic and sets.

(1) Introduce new antecedents representing system properties to the sequent. At
the beginning of a proof, the consequent of the sequent is a PVS theorem
that denotes a requirement. The consequent only contains the names of
PVS records that model the properties of a system or components. These
records can be inserted as new antecedents to the sequent by applying the
PVS proof command typepred to the relevant record names.

(2) Use TIC reasoning rules and supplementary rules. The sequent is modified
in two directions. (1) Backward proof : generating new consequents if some
of the current consequents match the conclusion of a rule. (2) Forward proof :
generating new antecedents if some of the current antecedents satisfy the
hypotheses of a rule.

(3) Exploit proved lemmas. These lemmas are usually subgoals that capture
requirements over some components/subsystems, which can be used to com-
pose complex proofs.

(4) Instantiate intervals and time points. This step removes the quantifiers that
indicate intervals and time points in the sequent. The values of intervals
and time points can be manually assigned by users or automatically fixed
by the PVS prover.

(5) Adopt mathematical laws. As TIC models often contain continuous dy-
namics modeled by the integral and differential calculus, we can choose
dedicated mathematical laws from the NASA PVS library to support the
analysis.

(6) Apply the PVS proof command grind as the last step to automatically
discharge the proof goal.

In this procedure, the first three steps manipulate a proof goal at the interval
level, and the last step reduces human effort on checking proofs at the low level
by taking advantage of the powerful PVS reasoning capabilities. Furthermore,
for Steps 4 and 5, human heuristics sometimes improve the efficiency, for exam-
ple, assigning a proper interval value by hand instead of letting the PVS prover
try out all possible instantiations. In the next section, we will demonstrate how
the proposed proof procedure facilitates the analysis of our case study.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:22 • C. Chen et al.

3.4.3 Evaluation with the Temperature Control System. We present the
verification of two requirements specified in Section 3.3.2. The first illustrates
the advantages of the general proof procedure, and the second demonstrates
the ability to handle induction proofs in the verification system. At the end, we
summarize the experimental result. The detailed specifications of the proved
lemmas with their complete proofs can be found online [Chen 2008].

Proof of the Safety Requirement. Instead of checking the temperature in all
intervals, we use the proof by contradiction mechanism to show that there is
no interval during which the temperature is outside the valid range. According
to the reasoning rule EmpCC_to_All defined in Section 3.2, we further reduce
the proof complexity by only checking that no both-closed interval exists.

The proof is divided into two subproofs that check whether the temperature
is greater (or lower) than the maximum (or minimum). Each subproof relies on
a lemma that depicts the continuous behavior of the temperature. For example,
the lemma Decreasing specifies here that the temperature at the ending point of
a both-closed interval is not higher than that at the starting point of the interval
provided the temperature is not lower than the value 40 in the interval.

Decreasing == ∀ s : System •
�s.pla.tmp out ≥ 40� ⊆ �s.pla.tmp out(ω) ≤ s.pla.tmp out(α)�

This lemma can be systematically proved by the general proof procedure
proposed in Section 3.4.2; the proof commands are listed below.

1: ((skosimp)

2: (expandsubset)

3: (typepred "s!1")(typepred "s!1‘con")

4: (assignsubset -1)

5: (("1" (typepred "s!1‘pla")

6: (assignsubset -1)

7: (("1" (lemma "Integral_ge_0")

8: (inst - "ALPHA(x!1)" "OMEGA(x!1)" "s!1‘pla‘tmp_out") (ground)

9: (("1" (grind)) ("2" (grind))

10: ("3" (use "cont_Integrable?")(grind))

11: ("4" (skosimp) (grind))))

12: ("2" (rewrite "Invariant_True_R")

13: (expintervaltotime 1) (grind))))

14: ("2" (rewrite "Invariant_True_R")(grind))))

—The properties of the whole system, s!1, and its subsystems, the controller
s!1‘con and the plant s!1‘pla, are added as new antecedents to the proof
goal by applying typepred to relevant names (at lines 3 and 5). For instance,
(typepred "s!1") introduces the connections between s!1‘con and s!1‘pla.

—The proof strategies defined in Section 3.4.1 make the reasoning process more
automated (at lines 2, 4, 6, and 13). The application (assignsubset -1) at
line 4 for example directs the PVS prover to automatically instantiate an
interval to the first antecedent of the sequent.

—As the temperature changes continuously, we exploit special lemmas from
the NASA PVS library (at lines 7 and 10) to cope with advanced analysis.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

A Verification System for Interval-Based Specification Languages • 13:23

The lemma Integral_ge_0 (at line 7) represents the mathematical law that
the integral of a function over a closed interval is nonnegative if this function
is integrable and has only nonnegative values in the interval.

—At each branch of a subproof, invoking the proof command grind automati-
cally discharges the proof (at lines 9, 10, 11, 13 and 14).

In this verification, all instantiations of intervals and time points are auto-
matically accomplished. Nevertheless the assignment at line 8 is manual for
the mathematical law of integral calculus, and this is acceptable, as human
heuristics are helpful to efficiently choose proper arguments of the law. Note
that the PVS prover always checks the correctness of user-specified values, so
OMEGA(x!1) must be less than ALPHA(x!1) in the manual assignment.

Proof of the Length Requirement. Based on the assumption of finite variabil-
ity [Zhou and Hansen 2004], we apply the proof by induction mechanism to
show that the requirement holds in any interval. The finite variability ensures
that a discrete-valued state in a bounded interval changes only finitely many
times. In other words, we assume that an interval can be classified into one
of the following groups with respect to a discrete timed trace: (1) the timed
trace is constant during the interval; or (2) the interval can be decomposed into
a sequence of connected subintervals where the trace has different values in
adjacent subintervals. We formalize this assumption in PVS as presented in
Section 4.1.1, and hence we can analyze behavior over arbitrary intervals by
means of induction.

The Length requirement is concerned with intervals that start with time
point 0, namely �α = 0�. Since the heater status heater out in the controller
is a discrete timed trace; according to finite variability, each of these intervals
can be divided into a sequence of concatenated subintervals, where the heater
is off in the first subinterval (the initial condition specified by the schema
System) and the heater is either off or on in the last subinterval. Moreover, the
integration of the heater status is 0, namely,

∫
heater out = 0, when the heater

is off, and we can hence focus on the analysis for a subset of the intervals with
an additional constraint: the heater is on in the last subinterval. These special
intervals can be constructed by the function superCon defined in the following.
It takes three parameters: k is natural number acting as a counter, base is a
set of intervals, and unit is a set of intervals as well. The function returns a set
of intervals by repeatedly concatenating unit for k times to base.

superCon : N × PI × PI → PI

∀ k : N; base, unit : PI • superCon(k, base, unit) =
if k = 0 then base else superCon(k − 1, base, unit) � unit

These special intervals can hence be easily represented by an application
of superCon, superCon(k, base, unit), where the values of the parameters base
and unit are shown in the following. Base denotes the first state transition of
the heater, turning on from its initial off state; and unit denotes a sequential
behavior of the heater, becoming on from off.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:24 • C. Chen et al.

Table II. Experiment Results of the Verification of the Temperature Control System

Lemma Name Steps Time (Seconds) Lemma Name Steps Time (Seconds)
Decreasing 21 14.45 Off On Off 44 20.92
Increasing 24 16.66 end with On 14 21.88
Safe1 28 14.15 invariant 79 458.8
Safe2 27 14.68 super and BT 23 10.59
Safety 7 12.88 Length Cover 98 562.32
On Off On 46 22.47 Length 26 59.67

base = �α = 0 ∧ s.con.heater out = 0�� �s.con.heater out = 1�
unit = �s.con.heater out = 0�� �s.con.heater out = 1�

For the sake of simplicity, we take the following lemma, end with On, as an
example to demonstrate how our system supports inductive proofs. The lemma
states that the heater is on at the end of all special intervals that are produced
by applying the function superCon.

end with On == ∀ s : System • ∀ k : N •
superCon(k, base, unit) ⊆ �true�� �s.con.heater out = 1�

The proof script of the lemma including the proof commands invoked follows.

1: ((skosimp)

2: (induct "k")

3: (("1" (expandsubset) (expand "superCon") (expandconcat -1)

4: (assignconcat 1 "i1!1" "i2!1") (grind))

5: ("2" (skosimp) (expandsubset) (expand "superCon")

6: (expandconcat -2 1) (expandconcat -1)

7: (assignconcat 1 "TwoTOneIvl(i1!1, i1!2)" "i2!2") (grind))))

Because superCon is defined recursively, induction is necessary. Using the
PVS proof command induct at line 2, (induct "k"), directs the PVS prover to
employ its induction scheme to the variable k. Two subproof goals are automat-
ically generated: one denotes the base case, where k = 0 (at line 3); and the
other corresponds to the induction case (at line 5).

We remark that the proof of the inductive case takes into account two con-
nections among three sets of intervals as indicated by expanding the function
concat twice at line 6. If the proof is carried out by hand, we have to examine
sixteen situations with respect to the interval types from three sets. In con-
trast, this tedious work is automatically completed in our verification system
by assigning appropriate values to the intervals at line 7 (where the function
TwoTOneIvl creates a new interval from two adjacent intervals).

Experimental Results. We summarize our experimental results in Table II,
which lists the names of lemmas associated with the steps of proof commands
entered from users and the execution time (in seconds) of the PVS prover. The
experiments are conducted on the SunOS 5.10 platform with PVS version 3.2.
In total, we have proved twelve lemmas, some of which have been explained
early, namely, Decreasing, Safety, end with On, and Length. We sketch the rest
in the following, while their specifications and the complete proof scripts are
available online [Chen 2008].

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

A Verification System for Interval-Based Specification Languages • 13:25

—Increasing describes the situation that the temperature increases in an in-
terval, with the temperature not greater than the value 20 throughout the
interval.

—Safe1 claims that the temperature is always lower than or equal to the
maximum value 40, and Safe2 that the temperature is always greater than
or equal to 20.

—On Off On (Off On Off) checks the length bound of the interval (1) in which
the heater is off (on), and (2) which is between two consecutive intervals
during which the heater is on (off).

—The lemma invariant shows that the special intervals highlighted in the
previous subsection (using the function superCon) satisfy the Length re-
quirement.

—The lemma super and BT indicates that any interval that starts with time
point 0 and can be decomposed into k parts of subintervals according to the
finite variability, can also be formed by executing superCon for k times.

—Length Cover shows that any interval starting with 0 can be constructed in
one of the three ways based on superCon.

During the proofs, mathematical reasoning, in particular the theories of
integral calculus, is frequently involved (for lemmas Decreasing, Increasing,
On Off On and Off On Off), since the temperature changes continuously in
the control system. Moreover the induction mechanism plays an important role
in tackling the analysis over infinite intervals (for lemmas end with On, in-
variant and super and BT). Last but not least, our developed supplementary
rules for domain-specific features can ease proofs. For instance, the supple-
mentary rule mid_ivl_exi defined in Section 3.4.1 has been applied to verify
lemmas Safe1 and Safe2.

In this section, we have developed a verification system for TIC based on
PVS. Based on the encoding of TIC semantics in PVS, all TIC reasoning rules
have been formalized and validated, and two subtle flaws have been discov-
ered. A translator has been implemented in Java to translate TIC models to
PVS specifications. We have successfully applied the verification system to val-
idate the temperature control system as a hybrid application against timing
requirements.

4. SUPPORTING MORE INTERVAL-BASED SPECIFICATION LANGUAGES

Up to now, we have developed a verification system based on PVS to support
TIC verification. With the expressive power of TIC, the verification system is
generic and can be applied to handle other interval-based specification lan-
guages. As introduced in Section 2.2, DC [Zhou and Hansen 2004] is another
popular real-time specification language based on interval temporal logic. We
will describe in this section how to systematically extend the system to support
DC.

First, DC constructs are carefully modeled in TIC. Next, DC axioms and
reasoning rules are formalized based on the encoding of TIC and are in turn
validated in our verification system. We hence apply our expanded system to

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:26 • C. Chen et al.

a typical case study in DC, and identify an improper proof step in its original
presentation.

4.1 Modeling DC Semantics in TIC

In this section, we demonstrate the way to model DC semantics including
special DC constructs in TIC. We also discuss how to resolve the differences
between TIC and DC. The demonstration follows a bottom-up path, from basic
DC constructs to complex ones. Corresponding PVS specifications are provided
when needed.

4.1.1 State Variables. State variables in DC are functions from time to
Boolean values {0, 1}, and each state variable is integrable in all intervals. We
represent each state variable as an integral function whose range consists of

values 0 and 1, that is, T
�−→ {0, 1}, where the symbol

�−→ of TIC [Fidge et al.
1998a] indicates the integrability of the declared function. The type of state
variables is modeled in the following PVS type declaration, where the function
Integrable? indicates whether the declared timed trace is integrable in any
interval and the type BTrace, defined in Section 3.1.2, denotes that the timed
trace is Boolean-valued.

DCState: TYPE = {bt: BTrace | forall (a, b: Time): Integrable?(a, b, bt)};

An important property of state variables is finite variability. This property
indicates that any non-empty interval can be decomposed into a finite se-
quence of subintervals where a state variable is constant in each subinterval,
which enables the application of mathematical induction. We show the PVS
specifications of the property followed by detailed explanations (a similar
approach was adopted by Skakkebaek [1994]).

k: var posnat; dcs1: var DCState; i: var II;

Cnst(dcs1)(i): bool = ALPHA(i) < OMEGA(i) and exists (x: real):

forall (t: Time): t < OMEGA(i) and t > ALPHA(i) => dcs1(t) = x;

fvl(k)(dcs1)(i): RECURSIVE bool = IF k = 1 THEN Cnst(dcs1)(i)

ELSE exists (m: Time): m < OMEGA(i) and m > ALPHA(i) and

Cnst(dcs1)((OO, (ALPHA(i), m))) and fvl(k - 1)(dcs1)((OO, (m, OMEGA(i))))

ENDIF MEASURE k;

fvr(k)(dcs1)(i): RECURSIVE bool = IF k = 1 THEN Cnst(dcs1)(i)

ELSE exists (m: Time): m < OMEGA(i) and m > ALPHA(i) and

fvr(k - 1)(dcs1)((OO, (ALPHA(i), m))) and Cnst(dcs1)((OO, (m, OMEGA(i))))

ENDIF MEASURE k;

fv(k)(dcs1)(i): bool = fvl(k)(dcs1)(i) and fvr(k)(dcs1)(i);

DCState_is_FV: AXIOM forall i: ALPHA(i) = OMEGA(i) or exists k: fv(k)(dcs1)(i);

—Cnst is a function to check if a state variable dcs1 is equal to a constant x
at all time points in a non-empty interval. Note that the values of a state
variable at the endpoints of an interval are ignored in DC. That is to say, we
only need to constrain the values over both-open intervals in TIC.

—The function fvl recursively decomposes an interval into a sequence of both-
open subintervals where two successive subintervals share one endpoint.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

A Verification System for Interval-Based Specification Languages • 13:27

At each step of the decomposition, an interval i as a parameter is di-
vided to two both-open intervals, where a state variable dcs1 is constant
in the first interval (OO, (ALPHA(i),m)) and fvl holds in the second in-
terval (OO, (m, OMEGA(i))). The variable k in the PVS measure function,
MEASURE k, is used as a counter to measure and terminate the decompo-
sition. In other words, fvl unfolds an interval from the left-hand end with
respect to a state variable. Similarly, we define the function fvr to recursively
unfold an interval from the right-hand end.
Both fvl and fvr play an important role in enabling the application of a
powerful proof method that is proof by induction. For instance, we can guide
the PVS prover to invoke an induction scheme to the counter k from fvl
or fvr by the instruction (induct "k"). Note that the construction of the
constituent subintervals can exclude the endpoints of intervals (indicated
by the interval type OO) due to the irrelevance of these endpoints when
interpreting DC state variables.

—DCState_is_FV is an axiom that assumes: given a state variable, we can
deduce that for any interval, either the interval is a point interval, or there
exists a k-partition for some k such that functions fvl and fvr hold with
respect to the state variable and the interval.

4.1.2 State Expressions. In DC, state expressions are produced by apply-
ing propositional logic operators to state variables. Semantically, state expres-
sions are also functions from time to Boolean values {0, 1}. In the following
we describe the conversion of three primitive logical operators including the
negation (¬), conjunction (∧), and disjunction (∨), in state expressions.

Let S1 and S2 be state expressions, and t be a time point.

—(¬ S1)(t) = 1 − S1(t);
—(S1 ∧ S2)(t) = S1(t) ∗ S2(t);
—(S1 ∨ S2)(t) = 1 − (1 − S1(t) ∗ (1 − S2(t)) = S1(t) + S2(t) − S1(t) ∗ S2(t), since

in the propositional logic, we have (S1 ∨ S2)(t) ⇔ (¬ (¬ S1 ∧ ¬ S2))(t).

4.1.3 Temporal Variables. As temporal variables in DC are functions of
intervals, they can be straightforwardly modeled as the interval operators of
TIC. We demonstrate here the way to handle two predefined temporal variables
in DC. One is the symbol �, which denotes the length of an interval; this
functionality is the same as δ in TIC (the corresponding PVS specification is
defined in Section 3.1.2). Another is the duration operator

∫
S where S is a state

expression; this operator is supported in TIC as well (its PVS specification is
shown in Section 3.1.3).

4.1.4 Formulas. Formulas of DC are evaluated with respect to intervals
only. In other words, their semantics is independent of the interval endpoints.
Hence DC formulas are considered to be a subset of predicates of TIC, where
these predicates usually rely on both time points and intervals. As shown in the
following PVS specifications based on the encoding of TIC in PVS in Section 3.1,
a DC formula is a special predicate in which the values are independent of
interval types (by the constraint at the second row) and time points within an
interval (at the third row).

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:28 • C. Chen et al.

DCFormula?(p: TPred): bool = % i1, i2: II; t1, t2: Time

forall i1, i2: ALPHA(i1)= ALPHA(i2) and OMEGA(i1) = OMEGA(i2) =>

forall t1, t2: t_in_i(t1, i1) and t_in_i(t2, i2) => p(t1, i1) = p(t2, i2);

DCFormula: TYPE = {p: TPred | DCFormula?(pred)};

The particular operator in DC is the chop operator (�) used to specify that
two formulas respectively hold in two subintervals that overlap at one time
point. Note that DC is concerned with closed intervals. The chop operator may
look like the concatenation operator (�) in TIC, since both can model sequential
behavior at the interval level. However they are different: first of all, � links
DC formulas, which are indeed predicates of TIC, while � concatenates sets of
intervals; furthermore, there is no overlap and no gap between two connected
intervals in TIC. These differences indicate that we cannot simply replace
� by �. For example, a point interval i, α(i) = ω(i)), may satisfy the DC
formula φ � ψ , although it is impossible for a point interval to be the result of
a concatenation operation in TIC as any point interval cannot be divided into
two non-overlapped intervals. Therefore, we define a function to represent the
chop operator in TIC, where I → B indicates the type of DC formulas and the
symbol B (where B ::= true | false) for a Boolean type.

� : (I → B) × (I → B) → (I → B)

∀ φ,ψ : I → B; i : I • (φ � ψ)(i) ⇔
∃ i1, i2 : I • α(i) = α(i1) ∧ ω(i) = ω(i2) ∧ ω(i1) = α(i2) ∧ φ(i1) ∧ ψ(i2)

This definition takes two predicates of TIC as arguments, and returns a
predicate of TIC that holds in an interval if and only if there are two special
subintervals in the interval and the passed predicates are true respectively in
the subintervals. Specifically, these subintervals share one endpoint, and their
other endpoints are equal to the endpoints of the interval. Note that we only
constrain the values of the interval endpoints without taking into account the
types of these endpoints. The PVS specification of the chop operator is given in
the following.

dcf1, dcf2: var DCFormula;

DCChop(dcf1, dcf2)(t, i): bool = exists (i1, i2: II):

ALPHA(i) = ALPHA(i1) and OMEGA(i) = OMEGA(i2) and OMEGA(i1) = ALPHA(i2) and

Everywhere?(dcf1, i1) and Everywhere?(dcf2, i2);

Based on the encoding of �, we specify two frequently used DC operators, �

and �, in TIC, and in turn in PVS, following the DC syntax construction style
introduced in Section 2.2. The result of each operation is a DC formula as well.
The function TTRUE used in the following PVS specifications always returns
true in PVS, namely, TTRUE(t, i): bool = true.

<>(dcf1): DCFormula = DCChop(DCChop(TTRUE, dcf1), TTRUE);

[](dcf1): DCFormula = not(<>(not(dcf1)));

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

A Verification System for Interval-Based Specification Languages • 13:29

We have presented so far the way to formalize DC constructs using TIC and
PVS. The differences between DC and TIC have been discussed and solutions
have been proposed, such as supporting the chop operator and the finite vari-
ability of state variables. This encoding serves as a foundation for performing
rigorous validation of DC axioms and reasoning rules as well as proofs of DC
models in the following sections.

4.2 Validating DC Axioms and Reasoning Rules

In DC, reasoning rules are derived from the axioms of state durations. Check-
ing the correctness of these axioms and reasoning rules is important when
developing machine-assisted proof support for DC. Existing works [Skakke-
baek 1994; Heilmann 1999; Rasmussen 2002] directly assume the validity of
the axioms. Our approach differs from them in that we represent the axioms
based on the encoding from the previous section and rigorously reason about
their correctness using our verification system. The DC reasoning rules are in
turn validated as well.

DC axioms and reasoning rules are required to be true in all closed intervals.
They are modeled as predicates in TIC and hence their correctness can be ver-
ified with respect to intervals. We remark that intervals considered in TIC are
classified into four basic types based on the inclusion/exclusion of interval end-
points. That is to say, the intervals involved in the validation of each axiom and
rule are not just closed intervals. Nevertheless this method of interpretation is
acceptable because DC formulas are independent of the interval types.

Mathematical analysis, especially mathematical laws of integral calculus,
is important in the validation. The axiom DCA5 from Section 2.2 is an exam-
ple; the axiom captures the association between state durations and the chop
operator. We formalize the axiom in the following TIC predicate and PVS spec-
ifications, where the symbol S represents a state expression and variables x
and y nonnegative real numbers. Note that we take into account all interval
types (indicated by � � and AllS) in the formalizations of the axiom.

DCA5 == I = �(∫ S = x) � (
∫

S = y) ⇒ ∫
S = x + y�

S: var DCState; x, y: var nnreal;

DC_DCA5: LEMMA fullset =

AllS(DCChop(TICIntegral(S) = LIFT(x), TICIntegral(S) = LIFT(y))

=> TICIntegral(S) = LIFT(x + y));

The mathematical analysis of integration is necessary to check DCA5. For
instance, one proof sequent in the reasoning process is shown in the following:
two intervals, il!1 and ir!1, are automatically generated as Skolem constants
from the interval x!2 according to the chop definition, and the constraints over
the endpoints of these intervals are expressed by the antecedents indexed by
−3, −4, and −5; the first two antecedents (indexes are −1 and −2) say that the
accumulations of the state expression S!1 in il!1 and ir!1 are equal to two
nonnegative real numbers, x!1 and y!1, respectively.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:30 • C. Chen et al.

{-1} Integral(ALPHA(ir!1), OMEGA(ir!1), S!1) = y!1

{-2} Integral(ALPHA(il!1), OMEGA(il!1), S!1) = x!1

[-3] ALPHA(x!2) = ALPHA(il!1)

[-4] OMEGA(x!2) = OMEGA(ir!1)

[-5] OMEGA(il!1) = ALPHA(ir!1)

|-------

{1} Integral(ALPHA(x!2), OMEGA(x!2), S1!1) = x!1 + y!1

To accomplish this proof goal, we need to apply the lemma Integral_split,
which captures the additivity of integration on intervals, where its contents
are explicitly displayed as an antecedent.

Rule? (lemma "Integral_split")

this simplifies to:

{-1} FORALL(a, b, c: Time, f: [Time -> real]):

Integrable?(a, b,f) AND Integrable?(b, c, f)

=> Integrable?(a, c, f) AND

Integral(a, b, f) + Integral(b, c, f) = Integral(a, c, f)

...

Besides the mathematical analysis of continuous dynamics, induction is also
frequently used for complex DC formulas. For example, the reasoning rule
DC15 from Zhou and Hansen [2004] states that if the duration of a state
expression S is positive in an interval then the interval can be chopped into
three subintervals: the duration of S is zero in the first interval and S is
true almost everywhere in the middle interval. Note that ��S�� is short for∫

S = � ∧ � > 0 in DC.

DC15
∫

S > 0 ⇒ (
∫

S = 0) � ��S�� � true

The validation of this rule is sketched in the following. The formal reasoning
process, which takes more than fifty proof commands is available online [Chen
2008]. First, an interval in which the duration of S is positive (

∫
S > 0) can

be divided into k subintervals; S is constant in each subinterval, based on the
axiom DCState_is_FV (from Section 4.1.1). Next, we invoke an induction proof
over k, which is a positive natural number according to DCState_is_FV.

—The base case is k = 1, which indicates that S is constant in the interval. As
the range of a state expression is Boolean-valued, the constant value of S is
either 0 or 1. Moreover, the hypothesis

∫
S > 0 constrains the constant value

to only be 1. Therefore by forming the first interval and the last interval as
point intervals, the consequence holds since the duration in a point interval
is always 0 and the predicate true also holds in point intervals.

—The inductive case assumes that the consequence is true when k = n, where
n is an arbitrary positive natural number, and we need to prove that the
consequence holds when k = n+1. We apply the finite variability formalized
in Section 4.1.1, in particular, the function fvr, which unfolds an interval
from the right-hand end. When we expand the application fvr(n + 1) for an
interval, the interval is decomposed into two consecutive both-open subin-
tervals. The first subinterval satisfies the consequence due to the inductive
hypothesis; S is constant in the second subinterval, which follows the first

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

A Verification System for Interval-Based Specification Languages • 13:31

subinterval. Because the predicate true holds in the second subinterval, it is
easy to show that the second subinterval has little influence on the validity
of the consequence.

Therefore, the reasoning rule is proved by induction.
Currently, we have formalized and checked all DC axioms and the reasoning

rules that are used in our example studies, as illustrated in the following
section.

4.3 Handling DC Proofs

So far, we have modeled the DC constructs in Section 4.1, and validated the DC
axioms and reasoning rules in Section 4.2. Based on this work, we can handle
DC proofs using our verification system in a manner that closely follows the
manual DC arguments. In this section, we demonstrate the usability of our
approach with a typical DC case study, a gas burner [Zhou and Hansen 2004].

A gas burner is a software-embedded system in a safety-critical context. Let
Leak be a state variable modeling the critical behavior, namely, Leak : T →
{0, 1}, where the value 1 means that gas is leaking and the value 0 means no
leaking. There are two design properties for the gas burner system. The first
design property (also mentioned in Section 2.2) is that any leak should last for
not longer than 1 time unit. The second design property is that the interval
length between two consecutive leaks must be at least 30 time units. Both
properties are modeled here in DC.

Des1 == �(��Leak�� ⇒ � ≤ 1)
Des2 == �(��Leak�� � ��¬ Leak�� � ��Leak�� ⇒ � ≥ 30)

A real-time requirement is that the proportion of the leaking time in an
interval is always less than or equal to one-twentieth of the interval, provided
the interval lasts at least 60 time units. This requirement is expressed here in
DC, based on Leak.

GbReq == � ≥ 60 ⇒ 20 ∗ ∫
Leak ≤ �

We remark that the GbReq requirement here is different from the Length
requirement of the temperature control system in Section 3.3.2. Length is con-
cerned with the intervals that start from time point 0. However, the intervals
considered by GbReq are restricted by their lengths.

These properties and the requirement are DC formulas. They are modeled
by the following PVS specifications, where the function pq denotes the
abbreviation �� �� and other PVS symbols for DC constructs are defined in
Section 4.1.

Leak: DCState;

Des1: DCFormula = [](pq(Leak) => LIFT(DELTA) < LIFT(1));

Des2: DCFormula = [](DCChop(DCChop(pq(Leak), pq(not(Leak))), pq(Leak))

=> LIFT(DELTA) >= LIFT(30));

GbReq: DCFormula = LIFT(DELTA) >= LIFT(60)

=> LIFT(20) * TICIntegral(Leak) <= LIFT(DELTA);

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:32 • C. Chen et al.

To prove the correctness of the design properties, we need to show that
the formula Des1 ∧ Des2 ⇒ GbReq is valid. That is, the formula is true in
all intervals. Hence, our proof goal is I = �Des1 ∧ Des2 ⇒ GbReq�, which is
equivalently converted to the following goal �Des1� ∩ �Des2� ⊆ �GbReq�. That
is to say, an interval in which both design properties hold is also the interval
in which the requirement is true. This proof goal is expressed here by a PVS
theorem named ProofGoal.

ProofGoal: theorem subset?(intersection(AllS(Des1), AllS(Des2)), AllS(GbReq));

Using our verification system, the proof process for this goal can strictly
comply with the original process [Zhou and Hansen 2004] in terms of the
order of applying DC reasoning rules and lemmas. These rules and lemmas
are also validated. In the following, we informally describe important steps in
the process associated with a simplified proof script.

("1"... (lemma "Math_PL1") ...

(("1" ... (lemma "Lemma3_5") ...

(("1" ... (lemma "Lemma3_6") ...

(("1" ... (lemma "DC_DC8") ...

(1) Lemma Math_PL1 captures the property that any interval, in which two
design properties hold, can be partitioned into a sequence of n parts of
intervals of size 30 time units followed by an interval whose size does not
exceed 30 time units, where n is a natural number.

(2) From both design properties we can deduce that the duration of leaking
does not exceed 1 time unit in any interval that lasts not longer than 30
time units. This result is modeled by the lemma Lemma3_5.

(3) Based on Lemma3_5, we can deduce that gas can be leaking for n time units
during the first n intervals of size 30 (produced at the first step). This is
specified by the lemma Lemma3_6.

(4) From Lemma3_5, we conclude that the leaking duration is less than 1
time unit in the interval that follows the first n intervals; we can
thus apply DC reasoning rule DC8 from Zhou and Hansen [2004]
to accumulate the leaking time of the first n intervals and this
interval.

After these steps, the proof can be automatically accomplished.
In the rigorous verification performed in our verification system, we have

identified an improper proof step in the original proof [Zhou and Hansen 2004].
A proof obligation before applying DC8 is (

∫
Leak ≤ n) � (

∫
Leak ≤ 1) ⇒

(
∫

Leak ≤ n + 1), and the original proof adopts the axiom DCA5 (mentioned in
Section 2.2); however, it is obvious to see that DCA5 cannot resolve the obliga-
tion. Instead, the appropriate reasoning rule is DC8, which easily discharges
the proof obligation.

DC8 (
∫

S ≤ x) � (
∫

S ≤ y) ⇒ ∫
S ≤ x + y

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

A Verification System for Interval-Based Specification Languages • 13:33

The gas burner is a typical DC case study to which our extended verification
system has been applied in this section. We have presented the correspond-
ing PVS specifications of the system design and real-time requirement. The
DC reasoning rules and lemmas used in analyzing the gas burner have been
formalized and checked. Thus the reasoning process in the verification system
follows a manner similar to the manual DC arguments. We have also shown
our discovery of the incorrect proof step in the original proof.

In this section, we have generalized the verification system to support other
interval-based specification languages, in particular, DC. This enhancement
has been accomplished by applying TIC to model DC. We have carefully encoded
DC constructs in TIC, and further formalized and validated the DC axioms as
well as reasoning rules. The resulting system enables users to carry out DC
proofs along the lines of the hand proof without knowing the detailed encoding.
Furthermore, the rigorous verification capability of the system elevates the
confidence level of DC proofs, for example the improper proof step identified in
the original manual DC arguments of the gas burner.

5. CONCLUSION

We developed a verification system to support formal interval-based specifica-
tion languages, TIC and DC, which model real-time computing systems. The
verification of these systems is difficult due to the analysis of continuous dy-
namics as well as the reasoning over arbitrary (infinite) time intervals. Our
verification system supports mathematical analysis including integration, and
is capable of handling infinite systems by induction.

The verification system is built upon PVS and encodes the TIC semantics
and reasoning rules. It is generic enough to support DC by representing the DC
constructs in TIC as well as the DC axioms and reasoning rules. The verification
of TIC in our verification system is carried out directly at the interval level by
applying the reasoning rules and supplementary rules that capture domain-
specific features. Low level proof goals, for example the decision procedures on
sets and linear arithmetic on real numbers, can be automatically discharged
by the PVS powerful prover. Furthermore, we have developed 11 PVS proof
strategies to save the users from needing to understand the detailed encoding
of TIC in PVS. Likewise, DC proofs constructed in the verification system can
closely follow the corresponding manual DC reasoning procedure.

The rigorous reasoning feature of the verification system can elevate the
level of confidence in system designs. From our experimental study, two subtle
flaws of TIC original reasoning rules (which are often used to verify safety
requirements) have been discovered, and an improper proof step in the original
manual DC arguments of a gas burner has also been identified.

In general, our approach to verification of TIC models is not fully automated.
This is the price to be paid for the highly expressive power of TIC. The main
challenge is to instantiate appropriate values (for example, intervals or time
points) to eliminate quantified formulas in PVS. From the experiments, we
find that there are heuristics that can elevate the amount of automation (for
example, when instantiating a time point in an interval during a proof, usually

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:34 • C. Chen et al.

the proof can be successfully accomplished in one of three following ways in the
instantiation: either one of the interval endpoints or the middle point of the
interval). We are in the process of developing more intelligent proof strategies
to implement these heuristics so as to support mechanized proofs of TIC at a
higher level. Moreover, another of our goals is implementing a translator to
automatically transform DC models into TIC models.

ACKNOWLEDGMENTS

We thank Yuzhang Feng and Ian Hayes for their insightful discussion. We
appreciate Anders P. Ravn and Chaochen Zhou for their help on Duration
Calculus.

REFERENCES

ALUR, R., COURCOUBETIS, C., HENZINGER, T. A., AND HO, P.-H. 1992. Hybrid Automata: An algorith-
mic approach to the specification and verification of hybrid systems. In Hybrid Systems. Springer,
209–229.

ALUR, R. AND DILL, D. L. 1990. Automata for modeling real-time systems. In Proceedings of the
17th International Colloquium on Automata, Languages and Programming. Springer, 322–335.

ALUR, R. AND HENZINGER, T. A. 1991. Logics and models of real time: A survey. In Proceedings of
the Real-Time: Theory in Practice, REX Workshop. Springer-Verlag, 74–106.

BUTLER, R. W. 2004. Formalization of the integral calculus in the PVS theorem prover. Tech.
rep., NASA Langley Research Center, VA.

CERONE, A. 2001. Axiomatisation of an interval calculus for theorem proving. In Electronic Notes
in Theoretical Computer Science 42.

CHAKRAVORTY, G. AND PANDYA, P. K. 2003. Digitizing interval duration logic. In Proceedings of the
15th International Conference on Computer-Aided Verification. Springer, 167–179.

CHEN, C. 2008. A Verification System for interval-based specification languages.
http://www.comp.nus.edu.sg/~chenchun/verifysys.

CHEN, C., DONG, J. S., AND SUN, J. 2007. Machine-assisted proof support for validation beyond
Simulink. In Proceedings of the 9th International Conference on Formal Engineering Methods.
Springer, 96–115.

CHEN, C., DONG, J. S., AND SUN, J. 2008. A verification system for timed interval calculus. In
Proceedings of the 30th International Conference on Software Engineering. ACM, 271–280.

CHENG, B. H. C. AND ATLEE, J. M. 2007. Research directions in requirements engineering. In
Proceedings of the International Conference on Software Engineering. IEEE Computer Society,
285–303.

CLARKE, E. M., GRUMBERG, O., AND LONG, D. E. 1994. Model checking and abstraction. ACM Trans.
Prog. Lang. Syst. 16, 5, 1512–1542.

DAWSON, J. E. AND GORÉ, R. 2002. Machine-checking the timed interval calculus. In Proceedings
of the 15th Australian Joint Conference on Artificial Intelligence. Springer-Verlag, 95–106.

FIDGE, C. J., HAYES, I. J., AND MAHONY, B. P. 1998a. Defining differentiation and integration in
Z. In Proceedings of the 2nd International Conference on Formal Engineering Methods. IEEE
Computer Society, 64–73.

FIDGE, C. J., HAYES, I. J., MARTIN, A. P., AND WABENHORST, A. 1998b. A set-theoretic model for
real-time specification and reasoning. In Proceedings of the 4th International Conference on
Mathematics of Program Construction. Springer, 188–206.

GORDON, M. J. C. AND MELHAM, T. F., EDS. 1993. Introduction to HOL: A Theorem-Proving Envi-
ronment for Higher-Order Logic. Cambridge University Press.

GRAVELL, A. M. AND PRATTEN, C. H. 1998. Embedding a formal notation: Experiences of automat-
ing the embedding of Z in the higher order logics of PVS and HOL. In Proceedings of 11th
International Conference on Theorem Proving in Higher Order Logics (supplementary proceed-
ings). Springer, 73–84.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

A Verification System for Interval-Based Specification Languages • 13:35

HEILMANN, S. T. 1999. Proof support for duration calculus. Ph.D. thesis, Department of Informa-
tion Technology, Technical University of Denmark.

HENZINGER, T. A., HO, P.-H., AND WONG-TOI, H. 1997. HYTECH: A model checker for hybrid
systems. In Proceedings of the 9th International Conference on Computer Aided Verification.
Springer, 460–463.

HENZINGER, T. A. AND SIFAKIS, J. 2006. The embedded systems design challenge. In Proceedings
of the 14th International Symposium on Formal Methods. Springer, 1–15.

LARSEN, K. G., PETTERSSON, P., AND YI, W. 1997. UPPAAL in a nutshell. Int. J. Softw. Tools Tech.
Transf. 1, 1-2, 134–152.

MAHONY, B. P. AND HAYES, I. J. 1992. A case-study in timed refinement: A mine pump. IEEE
Trans. Softw. Engin. 18, 9, 817–826.

MATTOLINI, R. AND NESI, P. 2001. An interval logic for real-time system specification. IEEE Trans.
Softw. Engin. 27, 3, 208–227.

MOK, A. K., LEE, C.-G., WOO, H., AND KONANA, P. 2002. The monitoring of timing constraints on
time intervals. In Proceedings of the 23rd IEEE Real-Time Systems Symposium. IEEE Computer
Society, 191–200.

MOSER, L. E., MELLIAR-SMITH, P. M., RAMAKRISHNA, Y. S., KUTTY, G., AND DILLON, L. K. 1996. The
real-time graphical interval logic toolset. In Proceedings of the 8th International Conference on
Computer Aided Verification. 446–449.

MOSZKOWSKI, B. 1986. Executing Temporal Logic Programs. Cambridge University Press.
MUÑOZ, C., CARREÑO, V., AND DOWEK, G. 2006. Formal analysis of the operational concept for

the Small Aircraft Transportation System. In Rigorous Development of Complex Fault-Tolerant
Systems. Springer, 306–325.

MUÑOZ, C., CARREÑO, V., DOWEK, G., AND BUTLER, R. W. 2003. Formal verification of conflict detec-
tion algorithms. Int. J. Softw. Tools Tech. Transf. 4, 3, 371–380.

NICOLLIN, X., SIFAKIS, J., AND YOVINE, S. 1992. From ATP to timed graphs and hybrid systems.
In Proceedings of the Real-Time: Theory in Practice, REX Workshop. Springer-Verlag, 549–
572.

NIPKOW, T., PAULSON, L. C., AND WENZEL, M. 2002. Isabelle/HOL—A proof assistant for higher-
order logic. Lecture Notes in Computer Science, vol. 2283. Springer.

OWRE, S., RUSHBY, J. M., AND SHANKAR, N. 1992. PVS: A prototype verification system. In Proceed-
ings of the 11th International Conference on Automated Deduction. Springer, 748–752.

PAULSON, L. C. 1994. Isabelle: A generic theorem prover. Lecture Notes in Computer Science,
vol. 828. Springer.

RASMUSSEN, T. M. 2002. Interval logic—proof theory and theorem proving. Ph.D. thesis, Technical
University of Denmark.

RUSHBY, J. M. 2000. Theorem proving for verification. In Proceedings of the 4th Summer School
on Modeling and Verification of Parallel Processes. Springer, 39–57.

SKAKKEBAEK, J. U. 1994. A verification assistant for a real-time logic. Ph.D. thesis, Department
of Computer Science, Technical University of Denmark.

SKAKKEBÆK, J. U. AND SHANKAR, N. 1994. Towards a duration calculus proof assistant in PVS. In
Proceedings of the 3rd International Symposium Organized on Formal Techniques in Real-Time
and Fault-Tolerant Systems. Springer, 660–679.

STRINGER-CALVERT, D. W. J., STEPNEY, S., AND WAND, I. 1997. Using PVS to prove a Z refinement:
A case study. In Proceedings of the 4th International Symposium of Formal Methods Europe.
Springer, 573–588.

THE MATHWORKS 2008. Simulink� 7—Using Simulink. The MathWorks.
TIWARI, A., SHANKAR, N., AND RUSHBY, J. M. 2003. Invisible formal methods for embedded control

systems. Proc. IEEE 91, 1, 29–39.
WOODCOCK, J. AND DAVIES, J. 1996. Using Z: Specification, Refinement and Proof. Prentice-Hall,

Inc., Upper Saddle River, NJ.
YU, Y., REN, S., AND FRIEDER, O. 2006. Prediction of timing constraint violation for real-time

embedded systems with known transient hardware failure distribution model. In Proceedings of
the 27th IEEE International Real-Time Systems Symposium. IEEE Computer Society, 454–466.

ZHOU, C. AND HANSEN, M. R. 2004. Duration Calculus: A Formal Approach to Real-Time Systems.
Springer-Verlag.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

13:36 • C. Chen et al.

ZHOU, C., HOARE, C. A. R., AND RAVN, A. P. 1991. A calculus of durations. Inform. Proc. Lett. 40, 5,
269–276.

ZHOU, C. AND LI, X. 1994. A mean value calculus of durations. In A Classical Mind: Essays in
Honour of C. A. R. Hoare. Prentice-Hall International Ltd., 431–451.

ZHOU, C., RAVN, A. P., AND HANSEN, M. R. 1993. An extended duration calculus for hybrid real-time
systems. In Hybrid Systems. Springer, 36–59.

Received October 2008; revised February 2009; accepted February 2009

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

	A verification system for interval-based specification languages
	TOSEM1904-13

