Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

4-2010

A verification system for interval-based specification languages

Chunging CHEN
Jin Song DONG
Jun SUN

Andrew P. MARTIN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5905&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

RIGHTS

i,

A Verification System for Interval-Based
Specification Languages

CHUNQING CHEN, JIN SONG DONG, and JUN SUN
National University of Singapore

and

ANDREW MARTIN

University of Oxford

Interval-based specification languages have been used to formally model and rigorously reason
about real-time computing systems. This usually involves logical reasoning and mathematical
computation with respect to continuous or discrete time. When these systems are complex, an-
alyzing their models by hand becomes error-prone and difficult. In this article, we develop a
verification system to facilitate the formal analysis of interval-based specification languages with
machine-assisted proof support. The verification system is developed using a generic theorem
prover, Prototype Verification System (PVS). Our system elaborately encodes a highly expressive
set-based notation, Timed Interval Calculus (TIC), and can rigorously carry out the verification
of TIC models at an interval level. We validated all TIC reasoning rules and discovered subtle
flaws in the original rules. We also apply TIC to model Duration Calculus (DC), which is a popular
interval-based specification language, and thus expand the capacity of the verification system.
We can check the correctness of DC axioms, and execute DC proofs in a manner similar to the
corresponding pencil-and-paper DC arguments.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications
—Languages; D.2.4 [Software Engineering]: Software/Program Verification—Formal methods;
validation

General Terms: Verification

Additional Key Words and Phrases: Formal specification languages, real-time systems, theorem
proving

This article is a revised and extended version of a paper presented at the 30th International
Conference on Software Engineering (ICSE’08) [Chen et al. 2008].

This work has been supported in part by ARC Approved Projects under the project “Rigorous
Design Methods and Tools for Intelligent Autonomous Multi-Agent Systems”.

Authors’ addresses: C. Chen, Department of Computer Science, National University of
Singapore, Computing 1, 13 Computing Drive, Singapore 117414, Republic of Singapore; email:
chenchun@comp. nus.edu.sg.

Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2010 ACM 1049-331X/2010/04-ART13 $10.00

DOI 10.1145/1734229.1734232 http://doi.acm.org/10.1145/1734229.1734232

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

RIGHTS

i,

13:2 o C.Chenetal.

ACM Reference Format:

Chen, C., Dong, J. S., Sun, J., and Martin, A. 2010. A verification system for interval-based speci-
fication languages. ACM Trans. Softw. Engin. Method. 19, 4, Article 13 (April 2010), 36 pages.
DOI = 10.1145/1734229.1734232 http://doi.acm.org/10.1145/1734229.1734232

1. INTRODUCTION

Real-time computing systems usually interact with the physical environ-
ment, and they often involve mathematical functions of time. With their
increasing usage in safety-critical situations, it is necessary and important
to rigorously validate the design of these systems associated with proper-
ties of the environment against requirements at an early stage [Cheng and
Atlee 2007]. Consequently, it is desirable for their formal models to cap-
ture various behaviors, such as those described by discrete logics of comput-
erized controllers and continuous dynamics of the environment [Henzinger
and Sifakis 2006]. Moreover, it is crucial for the modeling language to pos-
sess powerful verification capabilities to verify whether the models satisfy
requirements.

Formal models of real-time systems can be divided into two broad
groups [Alur and Henzinger 1991]: those based on time points and those based
on time intervals. Point-based specification languages express system behav-
ior over time points, and they are convenient for describing event occurrences.
Interval-based specification languages are typically used to express behavior
over a period of time points, for instance, using integration. The latter can be
regarded as more appropriate and concise than the former since constraints
on intervals frequently occur in real-time systems [Mattolini and Nesi 2001],
especially in the control engineering domain.

Two prominent interval-based specification languages are Timed Interval
Calculus (TIC) [Fidge et al. 1998b] and Duration Calculus (DC) [Zhou and
Hansen 2004]. Although both languages offer similar operators and capabili-
ties, their bases are different. TIC is based on set-theory and reuses Z [Woodcock
and Davies 1996] mathematical and schema notations. TIC models system
behavior by constraining intervals during which enclosed predicates hold ev-
erywhere. DC is based on interval temporal logic [Moszkowski 1986], and it
represents behavior by constraining state durations by accumulating the
Boolean-valued states over closed intervals. Furthermore, TIC supports ex-
plicit references to interval endpoints, which can specify properties over special
intervals with particular endpoints.

When real-time computing systems are complex, it is difficult to ensure the
correctness of each proof step and to keep track of all proof details in a pencil-
and-paper manner. It is thus necessary and important to develop a verification
system to make proofs easier. Nevertheless, the analysis of these systems usu-
ally involves mathematical reasoning and induction mechanisms for dealing
with arbitrary infinite intervals and continuous time domain. These charac-
teristics are not well supported by model checking [Clarke et al. 1994], which
usually applies a discrete abstraction for infinite state spaces. The abstraction
could decrease the accuracy of analysis in continuous dynamics [Mufoz et al.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

RIGHTS

i,

A Verification System for Interval-Based Specification Languages . 13:3

2003]. In contrast, theorem proving [Rushby 2000] can handle infinite state
spaces directly and support expressive specifications.

Instead of building a theorem prover from scratch, we choose one of the pow-
erful generic theorem provers, Prototype Verification System (PVS) [Owre et al.
1992], because of its highly integrated environment for writing formal specifi-
cations and developing rigorous verification. The PVS specification language is
based on higher-order logic associated with a rich type system. Its interactive
theorem prover offers powerful automatic reasoning techniques at low levels,
such as the arithmetic of real numbers and sets. Users can directly control
proof development at a high level, for example by selecting proper user-defined
proof strategies. A recently developed NASA PVS library [Butler 2004] has
formalized and validated the elementary calculus including integration and
differentiation. The library has been successfully applied to verify a practical
aircraft traffic control system [Mufoz et al. 2006]. These strengths of PVS are
useful for achieving our goal of developing the mechanical proof support for
interval-based specification languages.

In this article, we first present a way to systematically develop a verification
system for TIC based upon PVS. We faithfully encode the TIC semantics using
the PVS specification language. A tool is also implemented to support the auto-
matic translation from TIC models to PVS specifications and graphical editing
of TIC models. We further define a collection of supplementary reasoning rules
and proof strategies to simplify the reasoning process. In addition, these proof
strategies assist users by hiding the detailed encoding of TIC.

Using the verification system, we can rigorously analyze TIC models at the
interval level by using the validated supplementary reasoning rules. Proofs
at low levels, such as propositional logic and real numbers, can be automati-
cally discharged by the PVS prover. The system was applied in our published
work [Chen et al. 2007] to help discover semantic incompleteness and a bug
in Simulink [The MathWorks 2008], which is a graphical toolkit for modeling
and simulating dynamic systems. As illustrated in this article, we identify two
subtle flaws in the original TIC reasoning rules, using our rigorous validation.

We further extend our verification system to support other interval-based
specification languages, particularly DC. We formalize the DC constructs using
TIC. Based on the encoding, we check the correctness of the DC axioms and
reasoning rules in our system. Proofs of DC models can thus be rigorously
carried out in a manner similar to the corresponding pencil-and-paper DC
arguments. We apply the resulting system to a common DC case study, and an
incorrect step in its original proof is discovered.

This article is based on our preliminary paper [Chen et al. 2008]. Going
beyond the previous paper, we generalize the verification system to support an-
other popular real-time specification language (DC) besides the expressive no-
tation, TIC. In addition, the presentation of the way to construct TIC semantics
in PVS has been improved significantly. We also provide our full experimental
study that has previously only been sketched and a detailed explanation of the
verification undertaken.

The remainder of this article is organized as follows. Related work is re-
viewed in the next subsection. Section 2 introduces the characteristics of TIC,

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

RIGHTS

i,

13:4 o C.Chenetal.

DC, and PVS. Section 3 illustrates the development of the verification sys-
tem for TIC, and shows the feasibility and benefits of our approach using an
experimental study. Section 4 demonstrates the work on enhancing the verifi-
cation system to support DC, together with the application of a DC case study.
Conclusions and future work are provided in Section 5.

1.1 Related Works

We are aware of two other approaches to supporting TIC by exploiting theorem
provers. Dawson and Goré [2002] applied Isabelle/HOL [Nipkow et al. 2002]
to formalize and check the correctness of TIC reasoning rules. They focused
on the encoding of TIC reasoning rules. Their encoding of the TIC seman-
tics was incomplete; the construction (such as operators used in arithmetics
and inequalities) of TIC predicates and expressions that make up TIC mod-
els was not modeled. It is hence difficult to support the TIC verification in
general as the interpretation of TIC models is essential. Cerone [2001] imple-
mented the axiomatization of TIC in the theorem prover Ergo. Cerone defined
extensive axioms of the time domain, whereas we use the theory of real num-
bers provided with PVS. Cerone allowed a concatenation to be formed by two
both-open intervals, and that is different from the original definition [Fidge
et al. 1998b], which requires two concatenated intervals to meet exactly with
no gap. Moreover, Cerone’s work dealt with only five reasoning rules. In con-
trast, we have constructed complete TIC semantics systematically in PVS,
and validated all reasoning rules. One subtle flaw has been discovered for the
first time. Furthermore, our verification system supports advanced mathemat-
ical analysis such as integral calculus, which is not handled by the previous
works.

Some researchers have investigated the machine-assistant proof for DC.
Heilmann [1999] constructed a proof assistant for DC based on Isabelle [Paul-
son 1994]. The encoding of DC in Heilmann’s approach was syntactic; the
DC syntax and proof rules were introduced as entities of the Isabelle logic.
One advantage of this encoding is that users can carry out DC proofs with-
out having considerable knowledge of the Isabelle logic. On the other hand,
Skakkebaek and Shankar [1994] implemented a proof checker by encoding the
DC semantics within the PVS higher-order logic. The semantic encoding gives
an advantage in utilizing the decision procedures as an integral part of PVS.
They also defined a set of PVS strategies to enable users to work directly with
the syntax and proof rules of DC and not their encoding in PVS. Although DC
is undecidable for continuous time in general, it is mostly decidable for discrete
time. Chakravorty and Pandya [2003] developed a tool to check the validity of
a subclass of discrete-time DC. However, in that work, the duration operator
(which is the key construct of DC) is not semantically encoded, and its proper-
ties are assumed as axioms. In our approach, we encode the duration operator
based on the latest NASA PVS library, and we can hence directly validate those
properties regarding DC durations in our verification system.

There exists some work on developing tools for various interval-based logics.
Mattolini and Nesi [2001] presented temporal-interval logic with compositional

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

RIGHTS

i,

A Verification System for Interval-Based Specification Languages . 13:5

operators (TILCO) with formal proof support from Isabelle/HOL. In TILCO, the
time is discrete and the temporal domain is the set of integers; the minimum
time interval corresponds to one time unit. On the other hand, the time domain
of both TIC and DC is continuous-time. Moser et al. [1996] described a set of
tools for real-time graphical interval logic (RTGIL) to assist specifying and
verifying time-bounded properties of concurrent real-time systems. Intervals
in RTGIL are derived from sequences of states and transitions that form their
end-points. An interval is graphically depicted by a left-closed and right-open
line segment. TIC and DC differ from RTGIL in that they treat intervals as
primitive semantic objects, and they are well-suited for modeling and reason-
ing about accumulative behavior. The operator [, for instance, can be used to
specify the duration of a fragment of a computation during which a predicate
holds.

Recently, the interval concept has been used by Mok et al. [2002] to capture
the uncertainty in the exact times of event occurrences when monitoring timing
constraints. In their model, a time stamp of an event consists of a pair of time
values: the start and the end times. They assume that the maximum length of a
time stamp is bounded and known to a monitoring system in advance. Yu et al.
[2006] have extended the work to support the analysis of timing constraint
violations caused by transient failure models with exponential distribution. In
both of these, system models are highly abstract, as functional requirements
are not their main concern. On the other hand, TIC can specify both functional
and timing requirements. With the support of mathematical analysis in TIC
and in PVS, we can reason about functional requirements using our verification
system.

An alternative approach for modeling real-time systems is based on the au-
tomata theory. Hybrid automata [Alur et al. 1992] are used to model embedded
systems with continuous variables, whose value may change at various rates.
Arbitrary linear constraints are allowed for invariance conditions and trigger-
ing conditions. Hytech [Henzinger et al. 1997] is a symbolic model checker for
linear hybrid automata, a subclass of hybrid automata that can be analyzed
automatically by computing with polyhedral state sets. Timed automata [Alur
and Dill 1990] are a special subclass of hybrid automata in which all contin-
uous variables increase their values at a uniform rate and only upper-bound
and lower-bound inequalities of clocks are allowed. Uppaal [Larsen et al. 1997]
is a tool for specifying, simulating, and verifying real-time systems modeled in
timed automata.

2. BACKGROUND

In this section, we briefly present the background information of the notations
and tools that are involved in this article, namely Timed Interval Calculus
(TIC) [Fidge et al. 1998b], Duration Calculus (DC) [Zhou and Hansen 2004],
and Prototype Verification System (PVS) [Owre et al. 1992]. Readers who are
interested in knowing more may refer to the respective references. Table I lists
the special symbols used in this article, with their informal meanings.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

RIGHTS

Ay

13:6 . C.Chenetal.

Table I. Symbols and their Informal Descriptions

Symbol Explanation Symbol Explanation
T time domain) a set of both-open intervals
I all non-empty intervals £y a set of left-closed, right-open intervals
o starting point of an interval €] a set of left-open, right-closed intervals
13) ending point of an interval £ a set of both-closed intervals
8 length of an interval (@] a union of the four interval brackets
~ connect two sets of intervals - chop two Duration Calculus formulas

2.1 Timed Interval Calculus

TIC is set-theory based and reuses the well-known formal notation,
Z [Woodcock and Davies 1996] mathematical and schema notations. It uses
total function of continuous time to represent system dynamics [Mahony and
Hayes 1992], and defines interval brackets to concisely model system behavior
in terms of intervals [Fidge et al. 1998b]. Interval endpoints can be explic-
itly accessed, and hence TIC can model behavior over special intervals with
particular endpoints.

The time domain, T, is denoted by nonnegative real numbers. An interval is
a continuous range of time points, and intervals are classified into four basic
types based on the inclusion/exclusion of endpoints. For example, both-closed
intervals are defined in the following Z axiomatic style, where IP is the power-set
constructor and R denotes real numbers. Three other types of intervals, namely,
both-open, left-open and right-closed, and left-closed and right-open are defined
similarly.

‘ [....]1:TxT—PT

‘ Va,y:Re[x..y]={z:T|x<z =<y}
There are three primitive types of elements to construct TIC models.

—Constants. A constant is independent of time points and intervals. For ex-
ample, a maximum temperature that is a real number can be declared as a
constant MaxTmp : R.

—Timed traces. Timed traces model the dynamic (continuous or discrete) vari-
ables of systems. A timed trace is a total function from time domain to the
type of the variable. For example, temperature in a room is represented by a
timed trace Tmp : T — R.

—Interval operators. Distinct from the timed traces, an interval operator is a
function from intervals to the type of the variable. There are three predefined
interval operators in TIC, namely, «, w, and §, which have the same type,
I — T, where the symbol I denotes all nonempty intervals. These operators
respectively return the starting point, ending point, and length of an interval.

A key construction of TIC is interval brackets. A pair of interval brackets
associated with a predicate returns all intervals during which the predicate
is true everywhere. An enclosed predicate is usually expressed in the first-
order logic, and all references to the time domain and intervals are elided in
the predicate. For example, a TIC expression, [Tmp(a) < Tmp], represents a

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

RIGHTS

i,

A Verification System for Interval-Based Specification Languages . 137

set of both-closed intervals, and in each interval the value of Tmp at each
time point is not less than the value at the starting point. This is shown in
the following equivalent expression (a set comprehension), where the domain
of Tmp is time, and the domain of « is intervals. Without using the interval
brackets, f], we need to explicitly associate timed traces and interval operators
with their corresponding time points and intervals.

FTmp(a) < tmp]
={x,y:T|Vt:[x...y] e Tmp(a([x...y]D)) < Tmp(t)) o [x...yl}

Set operators such as U and N are applied to compose TIC expressions. To
capture the sequential behavior over intervals, TIC defines an operator ~ to
concatenate two sets of intervals end-to-end, namely, no gap and no overlap.

‘ __:PI xPI+ PI

VX, Y : Ple XY =
{z:T1|3x:X;y: Yez=xUyANVitl:x; t2:y e tl < 2)}

By specifying relationships among TIC expressions, we can model system
properties and requirements at the interval level. For example, the following
TIC predicate as a subset relationship specifies a periodic behavior that a
detector should store the temperature Tmp_in every k time units, where N
denotes natural numbers.

[3i:Nea=ixkAw=_>0+1)x*k)C [store = Tmp_in(a))

In this TIC predicate, the TIC expression at the left side of C decomposes the
time domain into a sequence of left-closed and right-open intervals (by [)), and
each interval lasts £ time units; the TIC expression at the right side depicts
the periodic update of the stored temperature.

To manage TIC models in a structural manner, we adopt the Z schema nota-
tion to group a list of variables in its declaration part and specify relationships
of these variables in its predicate part. The following schema represents the
previous detector, where the symbol > (defined in Fidge et al. [1998a]) indicates
that Tmp_in is a continuous function over the time domain.

__Detector
Tmp_in : T o R; store : T — R [Declaration]

[3i:Nea=ixk Aw=_>0+1)x*k)C [store = Tmp_in(a)) [Predicate]

TIC contains a set of primitive rules about the properties of sets of intervals.
These rules are used to carry out TIC verification at the interval level. For
example, the following rule states that for any nonpointer interval (namely,
8§ > 0) in which a predicate holds, the interval can be decomposed into two
concatenated subintervals and the predicate is still true in each subinterval.

If o, w, and § do not appear free in a predicate P, then we have
[P A S > 0) = EPY ~ [EPI.

In the above specification, the interval brackets [J denote a union of four
basic types of interval brackets: [Pj == (P) U ¢(P] U [Py U [P]. This operator is

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

RIGHTS

i,

13:8 . C.Chenetal.

used when predicates are independent of interval endpoints. Moreover, the rule
in the previous example is valid provided the time domain is continuous.

Using TIC, we can specify important requirements such as safety and
bounded liveness requirements, and prove that system designs imply require-
ments by deduction. A proof is usually decomposed into several subproofs, and
each subproof concentrates on a simple requirement of a subsystem. Each de-
ductive step in a proof is reached by rigorously applying a hypothesis (as an
axiom), a TIC reasoning rule, a mathematical law, or a proved requirement
from a subproof.

2.2 Duration Calculus

DC is a logic-based approach to formal design of real-time systems. The basic
calculus of DC [Zhou et al. 1991] and its extensions, including Mean Value Cal-
culus [Zhou and Li 1994] and Extended Duration Calculus [Zhou et al. 1993],
are founded on the interval temporal logic and integral calculus. We consider
the basic DC in this article. It axiomatizes state durations for the Boolean state
model, namely, integrals of Boolean-valued functions. Other extensions of the
basic DC are introduced by adding extra axioms that formalize the extended
models and also their interrelations with the Boolean state model.

In the basic calculus of DC (abbreviated as DC henceforth), state variables
are the basic type to model system states. A state variable P is a function from
time to Boolean values {0, 1}, namely, P : T — {0, 1}. Furthermore, DC assumes
that state variables hold finite variability, which stipulates that a state variable
can only change its value finitely many times in any bounded interval. This
assumption ensures that state variables are integrable in every interval.

State expressions are formed by applying propositional logic operators over
state variables, following the abstract syntax: S = 0| 1| P | —=S;1|S1 A Sq,
where S, S;, and S, are state expressions. Semantically, a state expression
returns a value of 0 or 1 at a time point. For example, two state variables, Gas
and Flame, are introduced in a gas burner system to characterize the flowing
and burning of gas. Gas(t) = 1 means that gas is flowing and Flame(t) = 1
means that flame is burning. Hence, Gas A — Flame is the state expression
specifying the leaking of gas, and it is interpreted with respect to a given time
point ¢ in the following way, where (— Flame)(t) = 1 — Flame(t).

1 if Gas(t) = 1 and (= Flame)(t) =1

(Gas N — Flame)(t) = { 0 otherwise

Temporal variables in DC, which are real-valued functions of intervals, can
have a structure [S to denote the duration of a state expression S over a
closed time interval [b, e], where b < e. The duration is the accumulated pres-
ence time of S in the interval, namely, (/' S)[b,e]) = [, S(t)dt. Another prede-
fined temporal variable in DC is ¢, which denotes the interval length, namely,
[b,e]) =e —b.

DC terms are built upon temporal variables or constants using mathematical
operators. DC formulas are composed by constraining DC terms or subformulas.
Besides the conventional predicate logic operators such as the disjunction v

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

RIGHTS

i,

A Verification System for Interval-Based Specification Languages . 13:9

and the universal quantifier V, DC also adopts the chop operator ~. A formula
¢ " v, where ¢ and ¢ are formulas, is satisfied by an interval if and only if the
interval can be chopped into two adjacent both-closed subintervals such that
the first subinterval satisfies ¢ and the second satisfies ¥'. Based on the chop
operator, two commonly used operators over subintervals, ¢ (eventually) and
0 (always), are defined as follows: ¢ == (true "¢) "~ true and ¢ == — ¢(— ¢).
For example, an interval [b, e] satisfies ¢¢ provided there exist ¢ and d such
that b < ¢ < d < e and the interval [c, d] satisfies ¢.

A formula is valid in DC if and only if it holds in all intervals. For instance,
a design property of a gas burner is that any leak represented by a state
variable Leak should not last longer than one time unit. This design property
can be represented by the formula, o([Leak] = ¢ < 1), where [Leak] is an
abbreviation of the formula [Leak = ¢ A ¢ > 0. Note that 7 indicates that the
design property holds in any interval.

Properties of state durations are declared as axioms in DC. These ax-
ioms are important for deriving DC reasoning rules in DC proofs. Taking
the axiom DCAS5 from Zhou and Hansen [2004] as an example, the axiom
as shown below captures the relationship between the duration length (where
x and y are nonnegative real numbers) of a state expression and the chop
operator.

DCA5 ([S=x)"([S=y)= [S=x+y.

As we will show in Section 4.2, the DC axioms are declared as lemmas and
they can be formally validated using our verification system.

Although DC and TIC possess similar capabilities, their bases are differ-
ent. TIC is based on set theory, while DC is based on interval temporal logic.
Furthermore, TIC supports explicit references of interval endpoints, which can
specify properties over special intervals with particular endpoints.

2.3 Prototype Verification System

PVSis an integrated environment for formal specification and formal verifica-
tion. It builds on over 25 years of experience at SRI in developing and using
tools to support formal methods. The specification language of PVS is based on
classic typed, higher-order logic. Built-in types in PVS include Boolean (bool),
real numbers (real), natural numbers (nat), and so on. Standard operations
of predicate logic and arithmetic, such as conjunction (and), less-inequality (<),
and addition (+) on the built-in types are also defined in PVS.

New types can be defined from the built-in types using type constructors such
as predicate subtypes and record types. A predicate subtype denotes a subset
of individuals in a type satisfying a given predicate. For example, nonzero
real numbers are written as {x: real | x /= 0}. Note that types in PVS are
modeled as sets. Record types are of the form [# al:t1, ..., an:tn #], where
al is a record accessor and t1 is the associated type.

Overloading is supported in PVS. In particular, functions can have the same
name as long as they have different argument types. Specifications in PVS
are built from theories, which usually contain type declarations, functions, and

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

RIGHTS

i,

13:10 . C. Chen et al.

lemmas. A theory can be reused in other theories by means of the importing
clause.

The PVS prover maintains a proof tree, and the objective is to construct
a complete proof tree in which all leaves are trivially true. Each node in a
proof tree is a proof goal, which is a sequent consisting of a list of formulas
named antecedents and a list of formulas called consequents. The intuitive
interpretation of a proof goal is that the conjunction of the antecedents implies
the disjunction of the consequents.

The prover provides a collection of primitive proof commands such as expand-
ing definitions (expand) and eliminating quantifies (skosimp), to manipulate
proof trees. A frequently used powerful proof command is grind, which does
skolemization, instantiation, simplification, rewriting, and applying decision
procedures. Users can introduce more powerful proof strategies that combine
basic proof commands so as to enhance the automation of verification in PVS.

PVS contains many built-in theories about logics, sets, numbers, and so on.
These theories cover much of the mathematics needed to support specification
and verification in PVS. Recently the NASA PVS library has formalized the
definitions of limits, derivatives, continuity, and integration. The library has
also validated a number of properties of these definitions and hence supports
the rigorous analysis of continuous dynamics.

3. A VERIFICATION SYSTEM FOR TIC

We describe the development of a verification system for TIC built upon PVS
in this section. The TIC semantics is faithfully encoded and all TIC reasoning
rules are validated in PVS. A translator is implemented to automatically trans-
late TIC models to PVS specifications. A collection of supplementary rules and
proof strategies are defined to ease the verification process. An experimental
study is provided at the end to show the feasibility and effectiveness of the
verification system.

3.1 Encoding TIC Semantics in PVS

The encoding of TIC semantics forms a foundation from which we formalize the
TIC reasoning rules and carry out the verification of TIC models. An important
requirement is that the resulting PVS specifications should be concise in a way
close to the structure of the TIC models, so any diagnostic information obtained
at the level of PVS can be easily reflected back to the level of TIC. The PVS
theories of the TIC semantics are formed in a bottom-up manner, and each
subsection below corresponds to a PVS theory. Simple theories are hence used
to compose complex ones (the complete PVS theories are available online [Chen
2008]). To avoid the problem of subgoal explosion, which often occurs in reason-
ing procedures, we model TIC constructs, especially the interval brackets and
concatenation operator, in a hierarchical manner. Moreover, the flexible style
of type declaration in PVS reduces the size of the PVS specifications.

3.1.1 Time and Interval Domains. The time domain is represented by the
PVS built-in type nnreal as a set of nonnegative real numbers.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

RIGHTS

i,

A Verification System for Interval-Based Specification Languages . 13:11

’ Time: TYPE = nnreal; ‘

An interval is modeled as a tuple and its type is GenInterVal as shown in the
following: the first element (invt) indicates the interval type (for example, CO
indicating that the interval is left-closed and right-open); the second element
is also a tuple, which consists of the starting point (stp) and the ending points
(etp).

Interval_Type: TYPE = {00, 0C, CO, CC};
GenInterval: TYPE = [invt: Interval_Type, {stp, etp: Time | stp <= etp}];

The following type II denotes all nonempty intervals, and the constraints
of interval endpoints with respect to interval types are captured. For example,
the predicate i‘1 = CC and i‘2¢1 <= i‘2‘2 specifies that the ending point
can be equal to the starting point if the interval is both-closed (indicated by CC),
where the apostrophe ¢ is the PVS projection operator to refer to components
in a tuple. By using the predicate subtype technique in PVS, specific interval
types are easily constructed based on II. For instance, COInteral, which
represents left-closed and right-open intervals restricts the interval type to be
CO.

II: TYPE = {i: GenInterval | (i‘1 = CC and i‘2‘1 <= i‘2°2)
or (i1 /= CC and 121 < i‘2¢2)};
COInterval: TYPE = {i: II | i‘1 = CO};

3.1.2 Timed Traces and Interval Operators. A timed trace (Trace) is a
function from time to the real numbers. We further model discrete timed traces
(BTrace) whose ranges consist of two values, 0 and 1.

Trace: TYPE = [Time -> reall;
BTrace: TYPE = [Time -> {x:real | x = 0 or x = 1}];

Interval operators are functions of intervals. They are independent from the
inclusion/exclusion of interval endpoints. That is to say, we only need to define
their functionalities with respect to II without respectively listing those of
specific interval types (for example, COInterval). The following PVS specifica-
tions correspond to three predefined TIC interval operators, namely, o, w, and §.

ALPHA(i: II): Time
DELTA(i: II): Time

i291; OMEGA(i: II): Time = i‘2‘2;
OMEGA(i) - ALPHA(di);

3.1.3 Expressions and Predicates. As a modeling feature of TIC, the refer-
ences to the time domain and interval domain are elided in the expressions and
predicates that are enclosed in a pair of interval brackets. However, it is neces-
sary for these references to be explicitly shown for the correct interpretation of
the expressions and predicates. We declare expressions (TExp) and predicates
(TPred) to be functions in PVS where time and intervals compose the domain.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

RIGHTS

i,

13:12 o C. Chen et al.

TExp: TYPE = [Time, II -> reall; TPred: TYPE = [Time, II -> booll;

Primitive elements of TIC form expressions and in turn, predicates. An
element is a constant, a timed trace, or an interval operator. By the over-
loading mechanism of PVS, the following function LIFT performs different
functionalities according to the type of its first argument.! LIFT returns the
value at a time point, t, for a timed trace while evaluating an interval operator

with respect to an interval, i.

LIFT(c)(t, i): real = c; % c: real, t: Time, i: II
LIFT(tr) (t, i): real = tr(t); % tr: Trace
LIFT(tm) (t, i): real = tm(i); % tm: Term

When interpreting an expression of TIC, we pass its parameters denoting
the time domain and interval domain to its constituent expressions. This
propagation repeats until all constituent expressions are primitive elements.
For instance, a (prefix) subtraction of TIC is interpreted in the following in
PVS, where the pair (t, i) is passed to the component expressions el and
er. A similar approach is used to handle predicates (a disjunction of TIC is

provided as an example).

-(el, er)(t, i): real = el(t, i) - er(t, i);
or(pl, pr)(t, i): bool = pl(t, i) OR pr(t, i);

% el, er: TExp
% pl, pr: TPred

We remark that TIC supports elementary calculus including integration
and differentiation. The calculus is handled in our system with the formal

definitions from the NASA PVS library. For example, the expression |

w(i)
i) tr

is represented by the following PVS function TICIntegral, which invokes
function Integral, which is defined in the NASA PVS library.

’ TICIntegral(tr) (t, i): real = Integral (ALPHA(i), OMEGA(i), tr)

3.1.4 TIC Expressions. A TIC expression denotes a set of intervals. The
basic structure of TIC expressions is a pair of interval brackets that enclose
a predicate. Common set operators can be applied to make up complex TIC
expressions. Here we demonstrate how to encode the TIC expressions with
interval brackets and the special set operator of TIC, namely the concatenation
operator. Other types of TIC expressions can be constructed by the built-in

functions in the PVS set theory.

A pair of interval brackets enclosing a predicate represents a set of intervals,
and in each interval the predicate holds everywhere, namely, at all time points
of the interval. In the following PVS specifications, the function t_in_i detects
whether a time point is within an interval according to the interval type.
Note that there are four basic types of interval brackets. Based on t_in_i, we
define the function Everywhere? to check if a predicate holds in an interval.
TIC expressions containing general interval brackets [j are thus modeled

LCharacters following the symbol ‘%’ are comments in PVS.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

RIGHTS

i,

A Verification System for Interval-Based Specification Languages J 13:13

by the function A11S. In addition, TIC expressions of basic types of interval
brackets are easily specified by applying the predicate subtype mechanism (for
example, the function COS for [).

t_in_i(t, i): bool = (i‘1 00 and t > i‘2°1 and t < i‘2‘2) or
(i1 = 0C and t > 121 and t <= i‘22) or
(i‘1 = CO0 and t >= i‘2°1 and t < i‘2°2) or
(i1 = CC and t >= i‘2°1 and t <= i‘22);

Everywhere?(pl, i): bool = forall t: t_in_i(t, i) => pl(t, i);

A11S(pl): setof[II] = {i | Everywhere?(pl, i)};

CO0S(pl): setof[COInterval] = {i: COInterval | Everywhere?(pl, i)};

A concatenation in TIC requires that two connected intervals must meet
exactly, that is, with no overlap and no gap. There are thus eight correct ways
of concatenating from four basic types of intervals. Instead of modeling each
one individually, we represent all eight cases together by the following function
concat. The function takes two sets of intervals as parameters (namely, iisl
and iisr), which may contain any type of interval, and each interval in the
returned set is composed by two adjacent intervals respectively from two
parameters.

ConcatType(l, r, re: II): bool =

(re‘l = 00 AND ((1¢1 = OC AND r‘1 = 00) OR (11 = 00 AND r‘1 = C0)))
OR (re‘l = CO AND ((11 = CC AND r‘1 = 00) OR (11 = CO AND r‘1 = C0)))
OR (re‘l = OC AND ((1‘1 = 00 AND r‘1 = CC) OR (1¢1 = OC AND r‘1 = 0C)))
OR (re‘1l = CC AND ((1‘1 = CO AND r‘1 = CC) OR (1¢1 = CC AND r‘1 = 0C)));

concat(iisl, iisr: PII): PII = {i | exists (i1, i2: II):
ConcatType(il, i2, i) AND member(il, iisl) AND member(i2, iisr) AND
OMEGA(i1) = ALPHA(i2) AND ALPHA(i1) = ALPHA(i) AND OMEGA(i2) = OMEGA(i)};

In these PVS specifications, function ConcatType constrains the types of
concatenated intervals. The constraints cover all eight cases. Being different
from other constraints in concat (for example, OMEGA(i1) = ALPHA(i2) indi-
cates that a concatenated interval’s ending point is equal to the starting point
of the other), the application of ConcatType in concat encapsulates the predi-
cates of interval types at a lower level. That is to say, we create a hierarchical
structure. This structure is useful to avoid the problem of subgoal explosion,
which is often encountered during reasoning procedures in PVS. That is, the
PVS prover automatically splits a proof goal into a number of subgoals at a
proof step, although the split is unnecessary at that step since there are many
repetitive proof commands used to discharge those subgoals. For instance, if
we directly specify eight constraints of interval types in concat, the prover
would automatically split one proof goal into eight subgoals when expanding
the concatenation definition in PVS, although these subgoals can be proved by
applying many repetitive proof commands.

So far, we have carefully formalized the TIC constructs in PVS, while the way
of handling TIC schemas and TIC predicates will be presented in Section 3.3.1.
During the encoding, the overloading mechanism has assisted us to define the
function LIFT with different functionalities, and the higher-order logic of the
PVS specification language has facilitated the interpretation of expressions

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

RIGHTS

i,

13:14 o C. Chen et al.

and predicates of TIC in a bottom-up manner. These PVS theories of the TIC
semantics form a base from which to validate the TIC reasoning rules and
support mechanical verification of TIC models, as we will show in the following
sections.

3.2 Checking TIC Reasoning Rules

TIC reasoning rules capture the properties of sets of intervals. They are used
to verify TIC models at the interval level. Guaranteeing their correctness is
thus necessary and important. In this section we first describe the challenge
of validation. Next we demonstrate the flaws discovered from our rigorous
reasoning process and provide remedies.

Checking TIC reasoning rules is not trivial. Though some of these rules are
automatically proved by the PVS prover, others require complicated analysis
covering all types of intervals and various types of predicates (for example,
whether a predicate is dependent on interval operators). Taking the rule
introduced in Section 2.1 as an example, its PVS specification is represented
based on the encoding in the previous section, where function No_Term? returns
true when a predicate pl is independent with interval operators.

CONC_CONC: LEMMA No_Term?(pl) =>
A11S(pl AND LIFT(DELTA) > LIFT(0)) = concat(Al11S(pl),Al1S(pl));

To validate this rule, we need to consider the concatenation of two sets of all
types of intervals. Therefore there are eight cases. In the reasoning process,
human interactions are helpful to increase the efficiency. Our simplified proof
goal in the following aims to show that there exist two concatenated intervals,
which form an interval x!1 and satisfy the hypotheses depicted by three
antecedents (prefixed by negative integers). For instance, the antecedent at
[-1] restricts the type of x!1 to be left-closed and right-open. To prove the goal,
we select the middle point of x!1 as the connecting point, namely, (ALPHA(x!1)
+ OMEGA(x!1))/ 2, and then instantiate the requested intervals by applying
our defined proof strategy assignconct.

[-1] TypeOf(x!'1) = CO
[-2] No_Term?(pli!1)
[-3] A11S(pli1!'1l AND LIFT(DELTA) > LIFT(0))(x!'1)

[1] concat (A11S(pl1!1), Al1S(pli!1))(x!'1)
Rule? (assignconcat 1 "(CO, (ALPHA(x!'1), (ALPHA(x!1) + OMEGA(x!1))/2))"
"(CO, ((ALPHA(x!'1) + OMEGA(x!'1))/2, OMEGA(x'1)))")

The PVS prover always checks the correctness of assignments, so we are
required to show that these user-specified intervals satisfy the concatenation
definition indicated by the function concat. Doing so can thus prevent mistakes
from users such as assigning two concatenated intervals with the both-open
interval type.

During our rigorous validation of all TIC reasoning rules, two subtle flaws
in the original reasoning rules have been discovered. We present these prob-
lematic rules with counterexamples, followed by their corresponding solutions,

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 13, Pub. date: April 2010.

RIGHTS

i,

A Verification System for Interval-Based Specification Languages J 13:15
which have been validated in PVS.

—The True and False rule is frequently used to reason about safety require-
ments. The original rule states that a predicate P is true in all intervals if
and only if its negation is true nowhere. That is, [P) = 1 & [~ P) = @.
However, the implication, — P) = @ = [P) = I, does not hold in certain
circumstances.

For example, let x be a timed trace having the value 1 from time points 5
to 7 and the value 0 elsewhere. It is obvious to see that the predicate — P ==
x =1 A 8§ = 3 fails everywhere, although its negation P==x #1 Vv § # 3 is
false in some intervals such as the interval [5...8].

To solve the problem, a stronger hypothesis is needed. The predicate within
interval brackets should be independent of interval characteristics: the start-
ing point, ending point and length of an interval. The modified rule is ex-
pressed in PVS as a lemma named Emp_to_Al1l, where sets emptyset and
fullset denote respectively the empty set and the set of all intervals.

Emp_to_All: LEMMA No_Term?(pl) =>
A11S(not pl) = emptyset => Al1S(pl) = fullset;

—The Concatenation Duration rule is useful to deal with proofs involving con-
catenation. Using the rule, a set of intervals can be decomposed into two
concatenated sets of intervals with specified interval lengths. So given a
predicate P where interval operators do not occur, if we have r,s : T and r >
0vs>0,then wecandeduce ([PAS=r + =P AS=r]~ [P A5 =s).

However this equality in terms of sets of intervals does not always hold.
For example, if r = 0, then any interval of [P A § = r)] must be both-closed
according to the interval definition. However, it is possible that [P A § = r+sj
contains intervals that are left-open, hence type conflict occurs. The conflict
can be removed by a stronger assumption, namely, r > 0 A s > 0.

We remark that this is the first time that the first flaw has been discovered
(while the second flaw has also been observed by Dawson and Goré [2002]).
These discoveries demonstrate the benefits of exploiting a theorem prover for
rigorous verification.

Based on the lemma Emp_to_A11, we further derive a new rule, EnpCC_to_A1l
to reduce the proof complexity. When applying Emp_to_All, we have to show
that the proof goal can be discharged with respect to four basic interval
types, although usually each subproof follows a similar reasoning process.
In contrast, the new rule allows us to focus on just one type of interval:
both-closed intervals (as indicated by CCS).

EmpCC_to_All: LEMMA No_Term?(pl) =>
CCS(not pl) = emptyset => Al1lS(pl) = fullset;

Currently, we have validated all TIC reasoning rules in PVS