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Abstract

We study “Fibonacci type” groups and semigroups. By establishing asphericity of their presen-
tations we show that many of the groups are infinite. We combine this with Adjan graph techniques
and the classification of the finite Fibonacci semigroups (in terms of the finite Fibonacci groups) to
extend it to the Fibonacci type semigroups.
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1 Introduction

In [6] the Fibonacci semigroups S(r, n, k) defined by the cyclic presentations

F(r, n, k) = 〈x0, . . . , xn−1 | xixi+1 . . . xi+(r−1) = xi+(r−1)+k (0 ≤ i ≤ n− 1)〉

were studied and the finite semigroups S(r, n, k) were classified in terms of the finite Fibonacci groups
F (r, n, k) (i.e. the groups defined by F(r, n, k)). Here we prove the corresponding result for the
more general Fibonacci type semigroups T (r, n, k, h) and groups R(r, n, k, h) defined by the cyclic
presentations

R(r, n, k, h) = 〈x0, . . . , xn−1 | xixi+h . . . xi+(r−1)h = xi+(r−1)h+k (0 ≤ i ≤ n− 1)〉

(k ≥ 0, h ≥ 1, n ≥ 2, r ≥ 2, subscripts mod n), that were introduced in [5]. In that paper it was
shown that for certain choices of the parameters the group R(r, n, k, h) is finite and metacyclic, and
that the family contains instances of finite, non-metacyclic cyclically presented groups (such groups
are rare). More recently the groups R(2, n, k, h) – the so-called Cavicchioli-Hegenbarth-Repovš groups
Gn(h, h + k) – have been of interest for their algebraic and topological properties (see [3],[9]). With
the exception of two unresolved cases the finite groups R(r, n, k, h) were classified in [17],[18],[10] and
the present paper arose from a desire to classify the finite semigroups T (2, n, k, h). In doing so we
found that the asphericity methods used in [3],[17] are effective in the more general setting and can
be combined with the Adjan graph and semigroup rewriting techniques of [6],[7] to classify the finite
semigroups T (r, n, k, h) in terms of the finite groups R(r, n, k, h). Our main results are as follows.

Theorem A Suppose r ≥ 3, ((r − 1)h + k, n) > 1, (k, n) > 1, (h, n) > 1. Then R(r, n, k, h) and
T (r, n, k, h) are infinite.

Theorem B The semigroup T (r, n, k, h) is finite if and only if ((n, (r − 1)h + k) = 1 or (n, k) = 1)
and R(r, n, k, h) is finite, in which case T (r, n, k, h) is respectively the union of (n, k) disjoint left ideals
or (n, (r − 1)h + k) disjoint right ideals, each isomorphic to R(r, n, k, h).
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The classification of the finite semigroups S(r, n, k) obtained in [6],[7] corresponds to the case h = 1
in Theorem B. If the hypothesis (h, n) > 1 is removed from Theorem A then the group R(r, n, k, h)
may be finite (for example F (2, 6, 2) ∼= Z7) yet the semigroups T (r, n, k, h) are all infinite. This was
proved in [7, Theorem 3.5] as an application of the Reidemeister-Schreier style rewriting techniques
for semigroups developed there. Our methods differ in that for (h, n) > 1 we use asphericity of the
presentations to prove both the semigroups and groups infinite.

2 The groups

Let Fn be the free group with generators x0, . . . , xn−1 and let θ : Fn → Fn be the automorphism of
Fn given by θ(xi) = xi+1 for each 0 ≤ i ≤ n − 1 (subscripts mod n). This induces an action of the
cyclic group T = 〈t | tn〉 of order n on the presentation Gn(w). Specifically, txit

−1 = xi+1 (0 ≤ i ≤
n− 1) and therefore tix0t

−i = xi. Writing x = x0 we see that the relator x0xh . . . x(r−1)hx−1
(r−1)h+k of

R(r, n, k, h) rewrites to (xth)rtk−hx−1t−(r−1)h−k. Setting y = t−hx−1 and eliminating x this becomes
y−rtkyt−(r−1)h−k and so the split extension N(r, n, k, h) of R(r, n, k, h) by T has a presentation

N (r, n, k, h) = 〈y, t | tn, yrtαy−1tβ〉

where
α = (r − 1)h + k, β = −k.

The presentation N (r, n, k, h) may be regarded as a relative presentation 〈T, y | yrtαy−1tβ〉, in
the sense of Bogley and Pride [4], and we will require their concept of relative asphericity. We will
call an (ordinary) presentation aspherical if the standard 2-complex associated with the presentation
is topologically aspherical. The following result is a special case of [15, Lemma 5] and a routine
generalization of [13, Lemma 3.1].

Theorem 1 ([13],[15]) If the relative presentation N (r, n, k, h) is (relatively) aspherical then the
presentation R(r, n, k, h) is aspherical.

Our method of proof is to establish asphericity of the presentations R(r, n, k, h) by combining
the above result with theorems concerning relative asphericity of relative presentations of the form
〈H, y | yray−1b = 1〉. For the case r ≥ 4, the appropriate theorem is provided by Davidson [11], and
for r = 3 it is provided by Ahmad [2].

Theorem 2 ([11, Theorem 1.2]) Let P = 〈H, y | yray−1b = 1〉 be a relative presentation, where
r ≥ 4 and a, b are non-trivial elements of H with b 6= a±1. Suppose o(a) 6= 2, o(b) 6= 2, and that P is
not one of the following exceptional cases:

(E1a) a = b2 and 3 < o(b) < ∞; (E2a) a = b−2 and 3 < o(b) < ∞; (E3a) a = b3 and o(b) = 9;
(E1b) b = a2 and 3 < o(a) < ∞; (E2b) b = a−2 and 3 < o(a) < ∞; (E3b) b = a3 and o(a) = 9.

Then P is relatively aspherical if and only if 1/o(a) + 1/o(b) + 1/o(ab−1) ≤ 1.
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Theorem 3 ([2, Theorem 5.2.1]) Let P = 〈H, y | yray−1b = 1〉 be a relative presentation, where
r = 3 and a, b are non-trivial elements of H with b 6= a±1. Suppose that P is not one of the following
exceptional cases:

(F1a) ab = ba and o(a) = 2, o(b) ≥ 4; (F2a) a = b2 and 3 ≤ o(a) < ∞;
(F1b) ba = ab and o(b) = 2, o(a) ≥ 4; (F2b) b = a2 and 3 ≤ o(b) < ∞.

Then P is relatively aspherical if and only if 1/o(a)+1/o(b)+1/o(ab−1) ≤ 1 and none of the following
hold:

(S1a) a2 = 1, b3 = 1 and 〈a, b〉 ∼= Z6; (S2a) a2 = 1 and a = b2; (S3a) a2 = 1 and a = b3;
(S1b) b2 = 1, a3 = 1 and 〈b, a〉 ∼= Z6; (S2b) b2 = 1 and b = a2; (S3b) b2 = 1 and b = a3.

(Where 〈a, b〉 denotes the subgroup of H generated by a and b.)

Corollary 4 Suppose r ≥ 3, α 6≡ 0, β 6≡ 0, β 6≡ ±α, 2α 6≡ 0, 2β 6≡ 0, α 6≡ ±2β, β 6≡ ±2α, α 6≡ 3β,
β 6≡ 3α (all mod n). Then R(r, n, k, h) is aspherical.

Proof
The presentation N (r, n, k, h) may be regarded as a relative presentation 〈H, y | yray−1b = 1〉, where
H = 〈t | tn〉, a = tα, b = tβ. The hypotheses imply that a, b are non-trivial elements of H, b 6= a±1

and none of the exceptional cases (E1),(E2),(E3) of Theorem 2 and none of the exceptional cases
(F1),(F2) or the cases (S1),(S2),(S3) of Theorem 3 hold. If 1/o(a)+1/o(b)+1/o(ab−1) > 1 then (since
o(a), o(b) 6= 2) we have that o(ab−1) = 2 and o(a) = 3 or o(b) = 3. That is, 2α ≡ 2β mod n and
3α ≡ 0 mod n or 3β ≡ 0 mod n, which contradicts α 6≡ −2β and β 6≡ −2α. Thus Theorems 2 and 3
imply that N (r, n, k, h) is relatively aspherical, and so R(r, n, k, h) is aspherical, by Theorem 1. 2

Further technical conditions that ensure the asphericity of R(r, n, k, h) may be extracted from
Theorems 2 and 3. In investigating the (S1),(S2),(S3) conditions of Theorem 3 we found that the
corresponding groups R(r, n, k, h) are free products of copies of F (3, 12, 4) (for (S1)), of F (3, 8, 2)
(for (S2)), and of either F (3, 6, 1) or R(3, 6, 5, 2) (for (S3)). Simplifying the presentations in GAP [12]
reveals that F (3, 12, 4) = 〈x2, x5 | (x2x5)37〉 ∼= Z37 ∗ Z and that (writing a = x1x0, b = x1x2, c = x0)
F (3, 8, 2) = 〈a, b, c | a3, b3, aba−1b−1〉 ∼= (Z3 × Z3) ∗ Z. The groups F (3, 6, 1) and R(3, 6, 5, 2) were
identified in [5] as distinct, non-metacyclic groups of order 1512. Since these all have torsion it follows
that none of the corresponding presentations are aspherical.

We can now prove Theorem A.

Proof of Theorem A
If the semigroup T (r, n, k, h) is finite then the group R(r, n, k, h) is a homomorphic image of T (r, n, k, h),
under the natural homomorphism, so it suffices to show that R(r, n, k, h) is infinite.

The group N(r, n, k, h) maps onto 〈y, t | t(α,β,n), yr−1〉 ∼= Z(α,β,n) ∗ Zr−1. If (α, β, n) > 1 then
this is infinite, and hence so is R(r, n, k, h), so we may assume (α, β, n) = 1. Together with the hy-
potheses (α, n) > 1, (β, n) > 1 this implies α 6≡ 0, β 6≡ 0, β 6≡ ±α, α 6≡ ±2β, β 6≡ ±2α, α 6≡ 3β,
β 6≡ 3α (all mod n). Suppose 2α ≡ 0 mod n. If β is even then α is odd and hence (r − 1)h is odd
so 1 < (h, n)|((r − 1)h, n) = ((r − 1)h, n/2, n) = (α + β, α, n) = (α, β, n) = 1, a contradiction. If
β is odd then 1 < (β, n) = (β, n/2) = (α, β, n) = 1, again a contradiction. Thus 2α 6≡ 0 mod n;
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similarly 2β 6≡ 0 mod n. Corollary 4 then implies that R(r, n, k, h) is aspherical and so R(r, n, k, h) is
torsion-free. Since the exponent sum of the relators is r − 1 ≥ 2, the abelianization R(r, n, k, h)ab is
non-trivial (see [14, Section 9]), so R(r, n, k, h) is non-trivial and hence is infinite. 2

Although not necessary for the proof of Theorem B we take the opportunity to deal with the cases
α ≡ 0 or β ≡ 0 mod n. In these cases, by partitioning the generators and relators, it is easy to see
that R(r, n, k, h) is isomorphic to the free product of (n, h) copies of G(r − 1, n), where

G(s, n) = 〈x0, . . . , xn−1 | xixi+1 . . . xi+s−1 = 1 (i = 0, . . . , n− 1)〉.

In [16, Theorems 2 and 3] Umar proved that G(s, n) is finite if and only if (n, s) = 1, in which case
G(s, n) ∼= Zs. We generalize this by identifying the group.

Theorem C The group G(s, n) ∼= Zs/(n,s) ∗ Z ∗ . . . ∗ Z︸ ︷︷ ︸
(n,s)−1

.

Proof
Let δ = (n, s). Then there exist p, q ∈ Z such that δ = ps + qn so δ ≡ ps mod n. The relation
xixi+1 . . . xi+s−1 = 1 implies xi(xi+1 . . . xi+s−1xi+s) = xi+s so xi = xi+s and hence xi = xi+s =
xi+2s = . . . = xi+ps. But xi+ps = xi+δ so we have xi = xi+δ for each 1 ≤ i ≤ n − 1. Eliminating
generators xδ, . . . , xn−1 gives

G(s, n) = 〈x0, . . . , xδ−1 | (xixi+1 . . . xi+δ−1)s/δ = 1 (i = 0, . . . , δ − 1)〉
= 〈x0, . . . , xδ−1 | (x0x1 . . . xδ−1)s/δ = 1〉

and the result follows. 2

3 The semigroups

We recall the concept of Adjan graphs [1]. The left (resp. right) Adjan graph of the positive presentation

〈x0, . . . , xn−1 | ui(x0, . . . , xn−1) = vi(x0, . . . , xn−1) (0 ≤ i ≤ m− 1)〉

is defined to be the graph with vertices x0, . . . , xn−1 and where vertices xi, xj are joined by an edge
if and only if there is a relation uk = vk (0 ≤ k ≤ m − 1) such that xi, xj are the initial (resp. final)
letters of uk, vk. Thus, for the left Adjan graph of R(r, n, k, h) the edges are {xi, xi+α} and for the
right Adjan graph the edges are {xi, xi+β}. Therefore the left graph has dL = (α, n) components (each
a cycle) and the right graph has dR = (β, n) components (each a cycle).

As part of their investigations into the semigroups S(r, n, k) Campbell, Robertson, Ruškuc, Thomas
proved the following result:

Theorem 5 ([6, Theorem 1.3],[8, Theorem 4])
Let Q = 〈x0, . . . , xn−1 | xj = vj(x0, . . . , xn−1) (0 ≤ j ≤ n− 1)〉 where each vj is a positive word of
length at least 2 and each xi occurs as the first (resp. last), the second (resp. penultimate), and the last
(resp. first) letter of three of the vj. Suppose that the right (resp. left) Adjan graph of Q is connected
and that the left (resp. right) Adjan graph has d components. Then the semigroup defined by Q is a
union of d disjoint right (resp. left) ideals each isomorphic to the group defined by Q. In particular the
semigroup is finite if and only if the group is finite.
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Applying this to the generalized Fibonacci groups F (r, n, k) and semigroups S(r, n, k) their main
theorem is obtained:

Theorem 6 ([6, Theorem 1.2]) If (n, r − 1 + k) = 1 (resp. (n, k) = 1) then S(r, n, k) is the union
of (n, k) (resp. (n, r − 1 + k)) disjoint left (resp. right) ideals each isomorphic to F (r, n, k).

It is also shown in [6, Section 3] that if (n, k, r − 1 + k) > 1 then S(r, n, k) is infinite. The
classification of the finite semigroups S(r, n, k) in terms of the finite groups F (r, n, k) (Theorem B
with h = 1) is completed by the following theorem.

Theorem 7 ([7, Theorem 3.5]) Suppose (n, k, r − 1 + k) = 1, dL = (n, r − 1 + k) > 1 and dR =
(n, k) > 1. Then S(r, n, k) is the disjoint union of dLdR copies of a group that can be presented by
n + (dL − 1)(dR − 1) generators and n relations. In particular, S(r, n, k) is infinite.

We can now prove Theorem B.

Proof of Theorem B
If ((r − 1)h + k, n) = 1 or (k, n) = 1 then the result follows from Theorem 5 so we may assume
that ((r − 1)h + k, n) > 1 and (k, n) > 1. If (h, n) = 1 then, by applying an automorphism of Zn

to the subscripts of the generators x0, . . . , xn−1 we may assume h = 1 so the relations are those of
the generalized Fibonacci semigroup S(r, n, k), and this is infinite by Theorem 7 (together with the
comments above it).

Suppose then that (h, n) > 1. If r ≥ 3 then R(r, n, k, h) and T (r, n, k, h) are infinite by Theorem A,
so we may assume r = 2. If α 6≡ 0 and β 6≡ 0 mod n then R(2, n, k, h), and hence T (2, n, k, h), is
infinite by [17],[18]. If α ≡ 0 or β ≡ 0 mod n then T (r, n, k, h) is the semigroup free product of (n, h)
copies of T (2, n, k, 1) = S(2, n, k) which, by [16, Theorem 4], is the union of n trivial ideals, and hence
T (r, n, k, h) is infinite. 2

Remark 8 Question 1 of [3] asks for the classification of the finite groups R(2, n, k, h). Except for two
groups, this was provided in [13],[17],[18],[10]. The unresolved groups are the Gilbert-Howie groups
([13]) H(9, 4) = R(2, 9, 6, 4) and H(9, 7) = R(2, 9, 3, 7). Theorem B therefore classifies the finite
semigroups T (2, n, k, h) except for the two unresolved semigroups T (2, 9, 6, 4) and T (2, 9, 3, 7) (up
to isomorphism and anti-isomorphism). By Theorem 5 the semigroups T (2, 9, 6, 4) and T (2, 9, 3, 7)
are each the unions of 3 disjoint left ideals which are isomorphic to R(2, 9, 6, 4) and to R(2, 9, 3, 7),
respectively. Therefore completing the classification of the finite groups R(2, n, k, h) is equivalent to
completing the classification of the finite semigroups T (2, n, k, h). It seems unlikely, however, that
semigroup techniques will shed more light on the problem.
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