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Abstract

In this paper, we extend a class of globally convergent evolution strategies to handle
general constrained optimization problems. The proposed framework handles quantifiable
relaxable constraints using a merit function approach combined with a specific restoration
procedure. The unrelaxable constraints, when present, can be treated either by using the
extreme barrier function or through a projection approach. Under reasonable assumptions,
the introduced extension guarantees to the regarded class of evolution strategies global con-
vergence properties for first order stationary constraints. Numerical experiments are carried
out on a set of problems from the CUTEst collection as well as on known global optimization
problems.

Keywords: Constrained optimization; derivative-free optimization; evolution strategy; merit function;
global convergence.

1 Introduction

In this paper, we are interested in constrained derivative-free optimization problems [3], i.e.,

min f(x)

s.t. x ∈ Ω = Ωqr ∩ Ωur,
(1)

where the objective function f is assumed to be locally Lipschitz continuous. The feasible
region Ω ⊂ Rn of this problem includes two categories of constraints [32]. The first, denoted
by Ωqr and known as quantifiable relaxable (QR) constraints, or soft constraints, is allowed to
be violated during the optimization process and may need to be satisfied only approximately or
asymptotically. Such a set of constraints will be assumed, in the context of this paper, to be of
the form:

Ωqr = {x ∈ Rn|∀i ∈ {1, . . . , r}, ci(x) ≤ 0} ,

where the functions ci are locally Lipschitz continuous. The second category of constraints,
denoted by Ωur ⊂ Rn, pools all unrelaxable (UR) constraints (also known as hard constraints),
for such constraints no violation is allowed and they require satisfaction during the entire opti-
mization process.

∗ISAE-SUPAERO, Université de Toulouse, 31055 Toulouse Cedex 4, France
(youssef.diouane@isae-supaero.fr).
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Evolution strategies (ES’s) [37] are evolutionary algorithms designed for global optimization
in a continuous space, and that lead to promising results on practical optimization problems [7,
38, 8]. In [16, 17], the authors dealt with a large class of ES’s, where a certain number λ of
points (called offspring) are randomly generated in each iteration, among which µ ≤ λ of them
(called parents) are selected. ES’s have been growing rapidly in popularity and used for solving
challenging optimization problems [24, 6].

In [17], the authors proposed a general globally convergent framework for unrelaxable con-
straints using two different approaches. The first relies on techniques inspired from directional
direct-search methods [13, 28], where one uses an extreme barrier function to prevent unfeasible
displacements together with the possible use of directions that conform to the local geometry
of the feasible region. The second approach was based on enforcing all the generated sample
points to be feasible, while using a projection mapping approach. Both proposed strategies were
compared to some of the best available solvers for minimizing a function without derivatives.
The numerical results confirmed the competitiveness of the two approaches in terms of efficiency
as well as robustness. Motivated by the recent availability of massively parallel computing plat-
forms, the authors in [15] proposed a highly parallel globally convergent ES (inspired by [17])
adapted to the full-waveform inversion setting. By combining model reduction and ES’s in a
parallel environment, the authors contributed solving realistic instances of the full-waveform
inversion problem.

In the context of ES’s, many algorithms have been proposed in the literature to adapt
ES’s to solve constrained optimization problems [10]. Coello [11] and Kramer [30] outlined a
comprehensive survey of the most popular constraints handling methods currently used with
ES’s. Recently, the authors in [1] proposed an adaptation of a class of ES’s to handle QR
constraints by using an augmented Lagrangian framework. The proposed approach was showed
to enjoy good local and invariant convergence properties. To the best of our knowledge, all the
ES’s proposed suffer from the lack of global convergence guarantees when applied to general
constrained optimization problems.

In the context of deterministic derivative-free optimization (DFO), only few works looked
at both kinds (relaxable and unrelaxable) of constraints separately. For instance, Audet and
Dennis [5] outlined a globally convergent direct-search approach based on a progressive barrier,
which combined an extreme barrier approach for unrelaxable constraints and non-dominance
filters [19] to handle QR constraints. More recently, the authors in [2] extended the progressive
barrier approach, developed in [5], to cover the setting of a derivative-free trust-region method.
Within the framework of directional direct-search methods, Vicente and Gratton [22] proposed
an alternative where one handles QR constraints by means of a merit function. Under the
appropriate assumptions, the latter approach ensured global convergence by imposing a sufficient
decrease condition on a merit function combining information from both objective function
and constraint violation. Another two-phases derivative-free approach was proposed in [33] to
specifically handle the case where finding a feasible point is easier than minimizing the objective
function.

In this paper, inspired by the merit function approach for direct search methods [22], we
propose to adapt a class of ES algorithms (as proposed in [17]) to handle both QR and unre-
laxable constraints. The class of ES algorithms obtained relies essentially on a merit function
(eventually with a restoration procedure) to decide and control the distribution of the offspring
points. The merit function is a standard penalty-based function that has already been proposed
in the context of ES [11]. The main advantage of the proposed approach is to ensure a form of
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global convergence. Namely, under reasonable assumptions, this paper presents the first globally
convergent ES framework handling both QR and UR constraints.

The proposed convergence theory generalizes the ES framework in [17] by including QR
constraints, all in the spirit of the proposed merit function for directional direct search meth-
ods [22]. The contribution of this paper is twofold. First, we propose an adaptation of the merit
function approach algorithm to the ES setting, a detailed convergence theory of the proposed
approach is given. Second, we provide a practical implementation and extensive tests on a set
of problems from the CUTEst collection as well as on known global optimization problems. The
performance of our proposed solver is compared to (a) the progressive barrier approach imple-
mented in the NOMAD solver [31], (b) the directional direct search method as proposed in [22]
and (c) an adaptation of a well known ES using an augmented Lagrangian approach to handle
QR constraints [1].

The paper is organized as follows. The proposed merit function approach is given in Section 2
with a detailed description of the changes introduced in a class of ES algorithms in order to
handle general constraints. The convergence results of the adapted approach are then detailed
in Section 3. In Section 4, we test the proposed algorithm on a set of problems from the CUTEst
collection as well as on known global optimization problems. Finally, we make some concluding
remarks in Section 5.

2 A globally convergent ES for general constraints

This paper focuses on a class of ES’s, denoted by (µ/µW , λ)-ES, which evolves a single candidate
solution. In fact, at the k−th iteration, a new population y1

k+1, . . . , y
λ
k+1 (called offspring) is

generated around a weighted mean xk of the previous parents (candidate solution). The symbol
“/µW ” in (µ/µW , λ)-ES specifies that µ parents are “recombined” into a weighted mean. The
parents are selected as the µ best offspring of the previous iteration in terms of the objective
function value. The mutation operator of the new offspring points is done by yik+1 = xk+σES

k dik,

i = 1, . . . , λ, where dik is drawn from a certain distribution Ck and σES
k is a chosen step size.

The weights used to compute the means belong to the simplex set S = {(ω1, . . . , ωµ) ∈ Rµ :∑µ
i=1w

i = 1, wi ≥ 0, i = 1, . . . , µ}. The (µ/µW , λ)-ES adapts the sampling distribution to the
landscape of the objective function. An adaptation mechanism for the step size parameter is also
possible. The latter increases or decreases depending on the landscape of the objective function.
One relevant instance of such an ES is covariance matrix adaptation ES (CMA-ES) [25].

In [16, 17], the authors proposed a framework for making a class of ES’s enjoying some global
convergence properties while solving optimization problems possibly with UR constraints. In
fact, in [16], by imposing a sufficient decreasing condition on the objective function value, the
proposed algorithm monitored the step size σk to ensure its convergence to zero (which leads then
to the existence of a stationary point). The imposed sufficient decreasing condition is applied
directly to the weighted mean xtrial

k+1 of the new parents. By sufficient decreasing condition we

mean f(xtrial
k+1) ≤ f(xk)−ρ(σk), where ρ(·) is a forcing function [28], i.e., a positive, nondecreasing

function satisfying ρ(σ)/σ → 0 when σ → 0. To handle UR constraints [17], one starts with
a feasible iterate x0 and then aviods stepping outside the feasible region by means of a barrier
approach. In this context, the sufficient decrease condition is applied not to f but to the extreme
barrier function fΩur associated with f with respect to the constraints set Ωur [4] (also known
as the death penalty function in the terminology of evolutionary algorithms), which is defined
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by:

fΩur(x) =

{
f(x) if x ∈ Ωur,
+∞ otherwise.

The extreme barrier function is formally introduced in [3]. The obtained ES approach is detailed
in [17, Algorithm 2.1]. The global convergence of the algorithm is achieved by establishing that
some type of directional derivatives are nonnegative at limit points of refining subsequences
along certain limit directions (see [17, Theorem 2.1]).

The challenge of this paper consists in extending [17, Algorithm 2.1] to a globally convergent
framework that takes into account both QR and UR constraints. The author acknowledges that
a preliminary version of this work was produced during his PhD thesis [14, Chapter 5]. In what
comes next, we define the merit function as follows:

M(x) =

{
f(x) + δ̄g(x) if x ∈ Ωur,
+∞ otherwise.

where δ̄ > 0 is a given positive constant and g defines a constraint violation function with respect
to QR constraints. The `1-norm is commonly used to define the constraint violation function,
i.e.,

g(x) =

r∑
i=1

max{ci(x), 0}.

Other choices for g exist, for instance, using the `2-norm i.e., g(x) =
∑r

i=1 max{ci(x), 0}2.
We note that the same constraint violation function g is used within the progressive barrier
approach [5], that was in turn inspired by the filter approach of Fletcher and Leyffer [19]. The
merit function will be used to evaluate a trial step and hence decide whether such step will be
accepted or not. The extension of the globally convergent ES to a general constrained setting can
be seen as a combination of two approaches, a feasible one where either the extreme barrier or
a projection operator will be used to handle the UR constraints, and a merit function approach
(possibly with a restoration procedure) to handle QR constraints.

The description of the proposed framework is as follows. For a given iteration k, a trial mean
parent xtrial

k+1 is computed as the weighted mean of the µ best points in terms of the merit function
value. The current trial mean parent will be considered as a “Successful point” if one of the
two following situations occur. The first scenario arises when one is sufficiently away from the
feasible region (i.e., g(xk) > Cρ(σk) for some constant C > 1) and xtrial

k+1 sufficiently decreases

the constraint violation function g (i.e., gΩur(x
trial
k+1) < g(xk) − ρ(σk), where gΩur denotes the

extreme barrier function associated with g with respect to Ωur). The second situation occurs
when the merit function is sufficiently decreased (i.e., M(xtrial

k+1) < M(xk)− ρ(σk)).
Before checking whether the trial point is successful or not, the algorithm will try first to

restore the feasibility or at least decrease the constraint violation if needed. The restoration
process will be activated if the current mean parent xk is far away from the feasible region and
the trial point xtrial

k+1 sufficiently decreases the constraint violation function g but not the merit
function. More specifically, a “Restoration identifier” will be activated if one has

gΩur(x
trial
k+1) < g(xk)− ρ(σk) and g(xk) > Cρ(σk)

and
M(xtrial

k+1) ≥ M(xk).
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The restoration algorithm will be left as far as progress on the reduction of the constraint vi-
olation can not be achieved all without any considerable increase in f . The complete description
of the restoration procedure is given in Algorithm 2.

As a result, the main iteration of the proposed merit function approach can be divided
into two steps: restoration and minimization. In the restoration step the aim is to decrease
infeasibility (by minimizing essentially the function gΩur) while in the minimization step the
objective function f is improved over a relaxed set of constraints by using the merit function
M . The final approach obtained is described is given in Algorithm 1.

For both algorithms (main and restoration), our global convergence analysis will be per-
formed independently of the choice of the distribution Ck, the weights (ω1

k, . . . , ω
µ
k ) ∈ S, and

the step size σES
k . Therefore, the update of the ES parameters is left unspecified at this stage.

However, the distribution Ck will be very useful in ensuring that a central convergence assump-
tion (related to the density of the directions in the unit sphere) can be seen as reasonable. In
fact, by choosing the distribution Ck to be multivariate normal distribution with mean zero, one
can guarantee the density of the directions with a probability one. We will give more details on
that in the next section.

Note that we also impose bounds on all directions dik used by the algorithm. This modification
is, however, very mild since the lower bound dmin can be chosen very close to zero and the upper
bound dmax set to a very large number. The construction of the set of directions {d̃ik} can be
done with respect to the local geometry of the UR constraints as proposed in [17, Section 2.2].

3 Global convergence

The convergence results presented in this section are in the vein of those first established for the
merit function approach for direct search methods [22]. For the convergence analysis, we will
consider a sequence of iterations generated by Algorithm 1 without any stopping criterion. The
analysis is organized depending on the number of times restoration is entered.

3.1 Case 1: the restoration algorithm is never entered after a certain order

When the restoration is entered finite times, one can guarantee that a subsequence of the step
sizes {σk} will converge to zero. In fact, due to the sufficient decrease condition imposed on
the merit function along the iterates (or in the constraints violation function if the iterates are
sufficiently away from the feasible region) and the control on the step size (reduced at least by
β2 for unsuccessful iterations), one can ensure the existence of a subsequence K of unsuccessful
iterates driving the step size to zero.

Lemma 3.1 Let f be bounded below and assuming that the restoration is not entered after a
certain order. Then,

lim inf
k→+∞

σk = 0.

Proof. Suppose that there exists a k̄ > 0 and σ > 0 such that σk > σ and k ≥ k̄ is a given
iteration of Algorithm 1. If there is an infinite sequence J1 of successful iterations after k̄, this
leads to a contradiction with the fact that g and f are bounded below.
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Algorithm 1: A globally convergent ES for general constraints (Main)

Data: choose positive integers λ and µ such that λ ≥ µ. Select an initial x0 ∈ Ωur and
evaluate f(x0). Choose initial step lengths σ0, σ

ES
0 > 0 and initial weights

(ω1
0, . . . , ω

µ
0 ) ∈ S. Choose constants β1, β2, dmin, dmax such that 0 < β1 ≤ β2 < 1

and 0 < dmin < dmax. Select a forcing function ρ(·)
for k = 0, 1, . . . do

Step 1: compute new sample points Yk+1 = {y1
k+1, . . . , y

λ
k+1} such that

yik+1 = xk + σkd̃
i
k, i = 1, . . . , λ,

where the directions d̃ik’s are computed from the original ES directions dik’s (which in
turn are drawn from a chosen ES distribution Ck and scaled if necessary to satisfy
dmin ≤ ‖dik‖ ≤ dmax).;
Step 2: evaluate M(yik+1), i = 1, . . . , λ, and reorder the offspring points in

Yk+1 = {ỹ1
k+1, . . . , ỹ

λ
k+1} by increasing order: M(ỹ1

k+1) ≤ · · · ≤M(ỹλk+1).
Select the new parents as the best µ offspring sample points {ỹ1

k+1, . . . , ỹ
µ
k+1}, and

compute their weighted mean

xtrial
k+1 =

µ∑
i=1

ωikỹ
i
k+1;

Step 3: if xtrial
k+1 /∈ Ωur then

the iteration is declared unsuccessful;
else

if xtrial
k+1 is a “Restoration identifier” then

enter Restoration (with kr = k);
else

if xtrial
k+1 is a “Successful point” then

declare the iteration successful, set xk+1 = xtrial
k+1, and σk+1 ≥ σk (for

example σk+1 = max{σk, σES
k });

else
the iteration is declared unsuccessful;

end

end

end
if the iteration is declared unsuccessful then

set xk+1 = xk and σk+1 = βkσk, with βk ∈ (β1, β2);
end
Step 4: update the ES step length σES

k+1, the distribution Ck+1, and the weights

(ω1
k+1, . . . , ω

µ
k+1) ∈ S;

end

In fact, since ρ is a nondecreasing positive function, one has ρ(σk) ≥ ρ(σ) > 0. Hence, if
g(xk+1) < g(xk)− ρ(σk) and g(xk) > Cρ(σk) for all k ∈ J1, then

g(xk+1) < g(xk)− ρ(σ),
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Algorithm 2: A globally convergent ES for general constraints (Restoration)

Data: Start from xkr ∈ Ωur given from the Main algorithm and consider the same
parameter as therein.

for k = kr, kr + 1, kr + 2, . . . do
Step 1: compute new sample points Yk+1 = {y1

k+1, . . . , y
λ
k+1} such that

yik+1 = xk + σkd̃
i
k, i = 1, . . . , λ,

where the directions d̃ik’s are computed from the original ES directions dik’s (which in
turn are drawn from a chosen ES distribution Ck and scaled if necessary to satisfy
dmin ≤ ‖dik‖ ≤ dmax);
Step 2: evaluate gΩur(y

i
k+1), i = 1, . . . , λ, and reorder the offspring points in

Yk+1 = {ỹ1
k+1, . . . , ỹ

λ
k+1} by increasing order: gΩur(ỹ

1
k+1) ≤ · · · ≤ gΩur(ỹ

λ
k+1).

Select the new parents as the best µ offspring sample points {ỹ1
k+1, . . . , ỹ

µ
k+1}, and

compute their weighted mean

xtrial
k+1 =

µ∑
i=1

ωikỹ
i
k+1;

Step 3: if xtrial
k+1 /∈ Ωur then

the iteration is declared unsuccessful;
else

if g(xtrial
k+1) < g(xk)− ρ(σk) and g(xk) > Cρ(σk) then

the iteration is declared successful, set xk+1 = xtrial
k+1, and σk+1 ≥ σk (for

example σk+1 = max{σk, σES
k });

else
the iteration is declared unsuccessful;

end

end
if the iteration is declared unsuccessful then

if M(xtrial
k+1) < M(xk) then

leave Restoration and return to the Main algorithm (starting at a new
(k + 1)−th iteration using xk+1 and σk+1);

else
set xk+1 = xk and σk+1 = βkσk, with βk ∈ (β1, β2);

end

end
Step 4: update the ES step length σES

k+1, the distribution Ck+1, and the weights

(ω1
k+1, . . . , ω

µ
k+1) ∈ S;

end

which obviously contradicts the boundness below of g by 0. Thus there must exist an infinite
subsequence J2 ⊆ J1 of iterates for which M(xk+1) < M(xk)− ρ(σk). Hence,

M(xk+1) < M(xk)− ρ(σ) for all k ∈ J2.
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Thus M(xk) tends to -∞ which is a contradiction, since both f and g are bounded below.
The proof is thus completed if there is an infinite number of successful iterations. However, if

no more successful iterations occur after a certain order, then this also leads to a contradiction.
The conclusion is that one must have a subsequence of iterations driving σk to zero.

Theorem 3.1 Let f be bounded below and assuming that the restoration is not entered after a
certain order.

There exists a subsequence K of unsuccessful iterates for which limk∈K σk = 0. Moreover,
if the sequence {xk} is bounded, there exists an x∗ and a refining subsequence K ′ such that
limk∈K xk = x∗.

Proof. From Lemma 3.1, there must exist an infinite subsequence K of unsuccessful iterates
for which σk+1 goes to zero. In such a case we have σk = (1/βk)σk+1, βk ∈ (β1, β2), and β1 > 0,
and thus σk → 0, for k ∈ K, too.

The second part of the theorem is proved by extracting a convergent subsequence K ′ ⊂ K
for which xk converges to x∗.

Global convergence will be achieved by establishing that some type of directional derivatives
are nonnegative at limit points of refining subsequences along certain limit directions (known as
refining directions). By refining subsequence [4], we mean a subsequence of unsuccessful iterates
in the Main algorithm (see Algorithm 1) for which the step-size parameter converges to zero.

Assuming that h is Lipschitz continuous around the point x∗ ∈ Ωur, it is possible to use the
Clarke-Jahn generalized derivative along a direction d

h◦(x∗; d) = lim sup
x→ x∗, x ∈ Ωur

t ↓ 0, x+ td ∈ Ωur

h(x+ td)− h(x)

t
.

The latter derivative, proposed by Jahn [27], can be seen as an adaptation of the Clarke general-
ized directional derivative [9] to the presence of constraints. We note that definition of h◦(x∗; d)
required that x + td ∈ Ωur for x ∈ Ωur arbitrarily close to x∗ which can be guaranteed if d is
hypertangent to Ωur at x∗. In what comes next, B(x; ε) will denote the closed ball formed by
all points with a distance of no more than ε to x.

Definition 3.1 A vector d ∈ Rn is said to be a hypertangent vector to the set Ωur ⊆ Rn at the
point x in Ωur if there exists a scalar ε > 0 such that

y + tw ∈ Ωur, ∀y ∈ Ωur ∩B(x; ε), w ∈ B(d; ε), and 0 < t < ε.

The hypertangent cone to Ωur at x, denoted by TH
Ωur

(x), is the set of all hypertangent vectors

to Ωur at x. Then, the Clarke tangent cone to Ωur at x (denoted by TCL
Ωur

(x)) can be defined as

the closure of the hypertangent cone TH
Ωur

(x). The Clarke tangent cone generalizes the notion

of tangent cone in Nonlinear Programming [36], and the original definition d ∈ TCL
Ωur

(x) is given
below.

Definition 3.2 A vector d ∈ Rn is said to be a Clarke tangent vector to the set Ωur ⊆ Rn at the
point x in the closure of Ωur if for every sequence {yk} of elements of Ωur that converges to x
and for every sequence of positive real numbers {tk} converging to zero, there exists a sequence
of vectors {wk} converging to d such that yk + tkwk ∈ Ωur.
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For a direction v in the tangent cone, we consider the Clarke-Jahn generalized derivative to
Ωur at x∗ as the limit

h◦(x∗; v) = lim
d∈TH

Ωur
(x∗),d→v

h◦(x∗; d)

(see [4]). A point x∗ ∈ Ωur is considered Clarke stationary if h◦(x∗; d) ≥ 0, ∀d ∈ TCL
Ωur

(x∗).
An important ingredient used in our convergence analysis is the notion of refining direc-

tion [4], associated with a convergent refining subsequence K. A refining direction is defined as
the limit point of {ak/‖ak‖} for all k ∈ K sufficiently large such that xk + σkak ∈ Ωur, where
ak =

∑µ
i=1 ω

i
kd̃
i
k.

The following convergence result concerns the determination of feasibility.

Theorem 3.2 Let ak =
∑µ

i=1 ω
i
kd
i
k and assume that f is bounded below. Suppose that the

restoration is not entered after a certain order. Let x∗ ∈ Ωur be the limit point of a convergent
subsequence of unsuccessful iterates {xk}K for which limk∈K σk = 0. Assume that g is Lipschitz
continuous near x∗ with constant νg > 0.

If d ∈ TH
Ωur

(x∗) is a refining direction associated with {ak/‖ak‖}K , then either g(x∗) = 0 or
g◦(x∗; d) ≥ 0.

Proof. Let d be a limit point of {ak/‖ak‖}K . Then, a subsequence K ′ of K must exist such
that ak/‖ak‖ → d on K ′. On the other hand, we have for all k

xtrial
k+1 =

µ∑
i=1

ωikỹ
i
k+1 = xk + σk

µ∑
i=1

ωikd
i
k = xk + σkak,

Since the iteration k ∈ K ′ is unsuccessful, g(xtrial
k+1) ≥ g(xk)− ρ(σk) or g(xk) ≤ Cρ(σk), and then

either there exists an infinite number of the first inequality or the second one as follows:

1. For the case where there exists a subsequence K1 ⊆ K ′ such that g(xk) ≤ Cρ(σk), it is
trivial to obtain g(x∗) = 0 using both the continuity of g and the fact that σk tends to
zero in K1.

2. For the case where there exists a subsequence K2 ⊆ K ′ such that the sequence {ak/‖ak‖}K2

converges to d ∈ TH
Ωur

(x∗) in K2 and the sequence {‖ak‖σk}k∈K2 goes to zero in K2 (ak is
bounded above for all k, and so σk‖ak‖ tends to zero when σk does). Thus one must have
necessarily for k sufficiently large in K2, xk + σkak ∈ Ωur such that

g(xk + σkak) ≥ g(xk)− ρ(σk).

From the definition of the Clarke-Jahn generalized derivative along directions d ∈ TH
Ωur

(x∗),

g◦(x∗; d) = lim sup
x→x∗,t↓0,x+td∈Ωur

g(x+ td)− g(x)

t

≥ lim sup
k∈K2

g(xk + σk‖ak‖d)− g(xk)

σk‖ak‖

= lim sup
k∈K2

g(xk + σk‖ak‖(ak/‖ak‖))− g(xk)

σk‖ak‖
− gk,
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where,

gk =
g(xk + σkak)− g(xk + σk‖ak‖d)

σk‖ak‖

from the Lipschitz continuity of g near x∗

gk =
g(xk + σkak)− g(xk + σk‖ak‖d)

σk‖ak‖

≤ νg

∥∥∥∥ ak
‖ak‖

− d
∥∥∥∥

tends to zero on K2. Finally,

g◦(x∗; d) ≥ lim sup
k∈K2

g(xk + σkak)− g(xk) + ρ(σk)

σk‖ak‖
− ρ(σk)

σk‖ak‖
− gk

= lim sup
k∈K2

g(xk + σkak)− g(xk) + ρ(σk)

σk‖ak‖
.

One then obtains g◦(x∗; d) ≥ 0.

Moreover, assuming that the set of the refining directions d ∈ TH
Ωur

(x∗), associated with
{ak/‖ak‖}K , is dense in the unit sphere. One can show that the limit point x∗ is Clarke
stationary for the flowing optimization problem, known as the constraint violation problem:

min g(x) (2)

s.t. x ∈ Ωur.

Theorem 3.3 Let ak =
∑µ

i=1 ω
i
kd
i
k and assume that f is bounded below. Suppose that the

restoration is not entered after a certain order. Assume that the directions d̃ik’s and the weights
ωik’s are such that (i) σk‖ak‖ tends to zero when σk does, and (ii) ρ(σk)/(σk‖ak‖) also tends to
zero.

Let x∗ ∈ Ωur be the limit point of a convergent subsequence of unsuccessful iterates {xk}K
for which limk∈K σk = 0 and that TCL

Ω (x∗) 6= ∅. Assume that g is Lipschitz continuous near x∗
with constant ν > 0

Then either (a) g(x∗) = 0 (implying x∗ ∈ Ωqr and thus x∗ ∈ Ω) or (b) if the set of refining
directions d ∈ TCL

Ωur
(x∗) associated with {ak/‖ak‖}K′ (where K ′ is a subsequence of K for which

g(xk + σkak) ≥ g(xk)− ρ(σk)) is dense in TCL
Ωur

(x∗) ∩ {d ∈ Rn : ‖d‖ = 1}, then g◦(x∗; v) ≥ 0 for

all v ∈ TCL
Ωur

(x∗) and x∗ is a Clarke stationary point of the constraint violation problem (2).

Proof. See the proof of [22, Theorem 4.2].

We point out that the assumption regarding the directions {ak/‖ak‖}K , in particular their
density in the unit sphere, applies to a given refining subsequence K ′′ and not to the whole
sequence of iterates. However, such a strengthening of the requirements on the density of the
directions seems necessary for these types of directional methods [4]. By choosing the distribution
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Ck in the algorithm to be a multivariate normal distribution with mean zero (the most commonly
used choice in the literature), the density of the directions ak in the unit sphere is guaranteed
with a probability 1. In particular for such choice of Ck, one has for any y ∈ Rn such that
‖y‖ = 1 and for any α ∈ (0, 1), there exists a positive constant η such that

P (cos(Ak/‖Ak‖, y) ≥ 1− α, ‖Ak‖ ≥ ε) ≥ η,

where Ak is a random variable whose realization is ak =
∑µ

i=1 ω
i
kd̃
i
k. The justification of such a

claim is discussed in further detail in [16].
We now move to an intermediate optimality result. As in [22], we will not use x∗ ∈ Ωqr

explicitly in the proof but only g◦(x∗; d) ≤ 0. The latter inequality describes the cone of first
order linearized directions under feasibility assumption x∗ ∈ Ωqr.

Theorem 3.4 Let ak =
∑µ

i=1 ω
i
kd
i
k and assume that f is bounded below. Suppose that the

restoration is not entered after a certain order.
Let x∗ ∈ Ωur be the limit point of a convergent subsequence of unsuccessful iterates {xk}K

for which limk∈K σk = 0. Assume that g and f are Lipschitz continuous near x∗.
If d ∈ TH

Ωur
(x∗) is a refining direction associated with {ak/‖ak‖}K such that g◦(x∗; d) ≤ 0.

Then f◦(x∗; d) ≥ 0.

Proof. By assumption there exists a subsequence K ′ ⊆ K such that the sequence {ak/‖ak‖}K′
converges to d ∈ TH

Ωur
(x∗) in K ′ and the sequence {‖ak‖σk}K′ goes to zero in K ′, Thus one must

have necessarily for k sufficiently large in K ′, xtrial
k+1 = xk + σkak ∈ Ωur.

Since the iteration k ∈ K ′ is unsuccessful, one has M(xtrial
k+1) ≥ M(xk)− ρ(σk), and thus

f(xk + σkak)− f(xk)

‖ak‖σk
≥ −δ̄ g(xk + σkak)− g(xk)

‖ak‖σk
− ρ(σk)

σk‖ak‖
(3)

On the other hand,

f◦(x∗; d) = lim sup
x→x∗,t↓0,x+td∈Ω

f(x+ td)− f(x)

t

≥ lim sup
k∈K′

f(xk + σk‖ak‖d)− f(xk)

σk‖ak‖

= lim sup
k∈K′

f(xk + σk‖ak‖(ak/‖ak‖))− f(xk)

σk‖ak‖
− fk,

where,

fk =
f(xk + σkak)− f(xk + σk‖ak‖d)

σk‖ak‖
,

which then implies from (3)

f◦(x∗; d) ≥ lim sup
k∈K′

f(xk + σk‖ak‖(ak/‖ak‖))− f(xk)

σk‖ak‖
− fk,

≥ lim sup
k∈K′

−δ̄ g(xk + σkak)− g(xk)

‖ak‖σk
− ρ(σk)

σk‖ak‖
− fk

≥ lim sup
k∈K′

−δ̄ g(xk + σk‖ak‖d)− g(xk)

σk‖ak‖
+ δ̄gk −

ρ(σk)

σk‖ak‖
− fk,

11



where

gk =
g(xk + σkak)− g(xk + σk‖ak‖d)

σk‖ak‖
.

From the assumption g◦(x∗; d) ≤ 0, one has

lim sup
k∈K′

g(xk + σk‖ak‖d)− g(xk)

σk‖ak‖
≤ lim sup

x→x∗,t↓0,x+td∈Ωur

g(x+ td)− g(x)

t
≤ 0,

one obtains then

f◦(x∗; d) ≥ lim sup
k∈K′

δ̄gk −
ρ(σk)

σk‖ak‖
− fk. (4)

The Lipschitz continuity of both g and f near x∗ guaranties that the quantities fk and gk tend
to zero in K ′. Thus, the proof is completed since the right-hand-side of (4) tends to zero in K ′.

Finally, we derive the complete optimality result.

Theorem 3.5 Assuming that f is bounded below and that Restoration is not entered after a
certain order.

Let x∗ ∈ Ωur be the limit point of a convergent subsequence of unsuccessful iterates {xk}k∈K
for which limk∈K σk = 0. Assume that g and f are Lipschitz continuous near x∗.

Assume that the set

T (x∗) = TH
Ωur

(x∗) ∩ {d ∈ Rn : ‖d‖ = 1, g◦(x∗, d) ≤ 0} (5)

has a non-empty interior.
Let the set of refining directions be dense in T (x∗). Then f◦(x∗, v) ≥ 0 for all v ∈ TCL

Ωur
(x∗)

such that g◦(x∗, v) ≤ 0, and x∗ is a Clarke stationary point of the problem (1).

Proof. See the proof of [22, Theorem 4.4].

Now, we provide the analysis of the two other cases, namely when (a) an infinite run of
consecutive steps inside Restoration or (b) one enters the restoration an infinite number of
times.

3.2 Case 2: the restoration algorithm is entered and never left

In this case, by a refining subsequence below, we mean a subsequence of unsuccessful Restoration
iterates for which the step-size parameter converges to zero.

Theorem 3.6 Assume that f is bounded below and that the restoration is entered and never
left.

(i) Then there exists a refining subsequence.
(ii) Let x∗ ∈ Ωur be the limit point of a convergent subsequence of unsuccessful of iterates

{xk}K for which limk∈K σk = 0. Assume that g is Lipschitz continuous near x∗, and let d ∈
TH

Ωur
(x∗) be a corresponding refining direction. Then either g(x∗) = 0 or g◦(x∗; d) ≥ 0.

12



(iii) Let x∗ ∈ Ωur be the limit point of a convergent subsequence of unsuccessful of iterates
{xk}K for which limk∈K σk = 0. Assume that g and f are Lipschitz continuous near x∗, and let
d ∈ TH

Ωur
(x∗) be a corresponding refining direction such that g◦(x∗; d) ≤ 0. Then f◦(x∗; d) ≥ 0.

(iv) Assume that the interior of the set T (x∗) given in (5) is non-empty. Let the set of refining
directions be dense in T (x∗). Then f◦(x∗, v) ≥ 0 for all v ∈ TCL

Ωur
(x∗) such that g◦(x∗, v) ≤ 0,

and x∗ is a Clarke stationary point of the problem (1).

Proof. (i) There must exist a refining subsequence K within this call of the restoration, by
applying the same argument of the case where one has g(xk+1) < g(xk) − ρ(σk) and g(xk) >
Cρ(σk) for an infinite subsequence of successful iterations (see the proof of Theorem 3.1). By
assumption there exists a subsequence K ′ ⊆ K such that the sequence {ak/‖ak‖}k∈K′ converges
to d ∈ TH

Ωur
(x∗) in K ′ and the sequence {‖ak‖σk}k∈K′ goes to zero in K ′. Thus one must have

necessarily for k sufficiently large in K ′, xtrial
k+1 = xk + σkak ∈ Ωur.

(ii) Since the iteration k ∈ K ′ is unsuccessful in the Restoration, g(xk + σkak) ≥ g(xk) −
ρ(σk) or g(xk+1) ≤ Cρ(σk), and the proof follows an argument already seen (see the proof of
Theorem 3.2).

(iii) Since at the unsuccessful iteration k ∈ K ′, Restoration is never left, so one has M(xk +
σkak) ≥ M(xk), and the proof follows an argument already seen (see the proof of Theorem 3.4).

(iv) The same proof as [22, Theorem 4.4].

3.3 Case 2: the restoration algorithm is entered and left infinite times

Theorem 3.7 Consider Algorithm 1 and assume that f is bounded below. Assume that Restora-
tion is entered and left an infinite number of times.

(i) Then there exists a refining subsequence.
(ii) Let x∗ ∈ Ωur be the limit point of a convergent subsequence of unsuccessful of iterates

{xk}K for which limk∈K σk = 0. Assume that g is Lipschitz continuous near x∗, and let d ∈
TH

Ωur
(x∗) be a corresponding refining direction. Then either g(x∗) = 0 (implying x∗ ∈ Ωr and

thus x∗ ∈ Ω) or g◦(x∗; d) ≥ 0.
(iii) Let x∗ ∈ Ωur be the limit point of a convergent subsequence of unsuccessful of iterates

{xk}K for which limk∈K σk = 0. Assume that g and f are Lipschitz continuous near x∗, and let
d ∈ TH

Ωur
(x∗) be a corresponding refining direction such that g◦(x∗; d) ≤ 0. Then f◦(x∗; d) ≥ 0.

(iv) Assume that the interior of the set T (x∗) given in (5) is non-empty. Let the set of refining
directions be dense in T (x∗). Then f◦(x∗, v) ≥ 0 for all v ∈ TCL

Ωur
(x∗) such that g◦(x∗, v) ≤ 0,

and x∗ is a Clarke stationary point.

Proof. (i) Let K1 ⊆ K and K2 ⊆ K be two subsequences where Restoration is entered and left
respectively.

Since the iteration k ∈ K2 is unsuccessful in the Restoration, one knows that the step size
σk is reduced and never increased, one then obtains that σk tends to zero. By assumption there
exists a subsequence K ′ ⊆ K2 such that the sequence {ak/‖ak‖}k∈K′ converges to d ∈ TH

Ωur
(x∗)

in K2 and the sequence {‖ak‖σk}k∈K′ goes to zero in K ′.
(ii) For all k ∈ K ′, one has g(xk + σkak) ≥ g(xk)− ρ(σk) or g(xk) ≤ Cρ(σk), one concludes

that either g(x∗) = 0 or g◦(x∗; d) ≥ 0.
(iii) For all k ∈ K ′, one has M(xk + σkak) ≥ M(xk), and from this we conclude that

f◦(x∗; d) ≥ 0 if g◦(x∗; d) ≤ 0.
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(iv) The same proof as [22, Theorem 4.4].

To sum up, the analysis of the global convergence of Algorithm 1 was provided depending
on the number of times the restoration procedure is entered. When the restoration is entered
finite times, Theorem 3.2 showed that the limit points of certain subsequences of iterates are
either feasible or Clarke stationary for the constraint violation problem (2). Theorem 3.5 showed
then that such limit points are Clarke stationary for the optimization problem (1). Our analysis
provide similar feasibility and optimality results for the two remaining cases (i.e., when the
restoration is “entered but never left” or “entered and left an infinite number of times”), see
Theorems 3.6 and 3.7.

4 Numerical experiments

In this section, we evaluate the performance of the proposed merit function approach using
different solvers, different comparison procedures, and a large collection of non-linear constrained
optimization problems. All the procedures were implemented in Matlab and run using Matlab
2019a on a MacBook Pro 2,4 GHz Intel Core i5, 4 GB RAM.

4.1 Problems tested and testing strategies

In what comes next, as a benchmark test, we will use 40 small-scale constrained test problems
as given in [2] (those problems are extracted from the CUTEst collection [20]). The dimensions
of the tested problems do not exceed 9 variables, with eventually bound constraints and no
more than 13 nonlinear constraints (see [2, Table 1] for a detailed description on all the tested
problems). For each test problem, the initial point provided by CUTEst is used, the latter
respects the bound contraints but does not necessarily satisfy the nonlinear constraints.

To illustrate the obtained results, we will use the two well-known testing strategies: data
profiles [35] and performance profiles [18]. For data profiles, we use the following convergence
test

f0
max − fΩ(x) ≥ (1− α)(f0

max − fmin),

while for the performance profiles, we make use of

fΩ(x)− fmin ≤ α(fmin + 1),

where α is the level accuracy and f0
max represents the largest value among all the feasible

objective function values initially visited by all the tested solvers (i.e., f0
max = maxs f

0
s where

f0
s represents the objective function value at the first feasible point visited by the solver s). The

value fmin represents the best feasible solution found by the tested solvers. A tolerance of 10−7

for constraint violation is used to consider a point as being feasible. We note that, if a solver
fails to find a feasible starting point for a given problem, the problem is considered as unsolved,
in this case the convergence test is not used. The performance and data profiles are computed
for a maximum of 3000 function evaluations. For the stochastic solvers, we will describe our
results using the median data/performance profile obtained over 20 runs.
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4.2 Implementation choices

Algorithm 1 and Algorithm 2 are implemented in Matlab. The obtained implementation will
be called ES-MF. Most of the parameter choices followed those in [17] (where some of the
user-specified parameters are the same used by directional direct search methods and CMA-
ES). In particular, the values of λ and µ and of the initial weights are those of CMA-ES for
unconstrained optimization (see [23]): λ = 4 + floor(3 log(n)), µ = floor(λ/2), where floor(·)
rounds to the nearest integer, and ωi0 = ai/(a1 + · · · + aµ), ai = log(λ/2 + 1/2) − log(i),
i = 1, . . . , µ. The choices of the distribution Ck and of the update of σES

k also followed CMA-
ES for unconstrained optimization. As used in most directional direct search implementations,
the forcing function selected was ρ(σ) = 10−4σ2. To reduce the step length in unsuccessful
iterations we used σk+1 = 0.9σk which corresponds to setting β1 = β2 = 0.9. For successful
iterations we set σk+1 = max{σk, σCMA-ES

k } (with σCMA-ES
k the CMA step size used in ES). The

directions dik, i = 1, . . . , λ, were scaled if necessary to obey the safeguards dmin ≤ ‖dik‖ ≤ dmax,
with dmin = 10−10 and dmax = 1010. The initial step size is estimated using only the bound
constraints: If there is a pair of finite lower and upper bounds for a variable, then σ0 is set to
the half of the minimum of such distances, otherwise σ0 = 1.

4.3 Sensitivity analysis

The proposed evolution strategy introduces some user-specified control parameters and their
performances might depend on the setting of these parameters. A full sensitivity analysis of all
the control parameters of the merit function approach can be computationally demanding and
is beyond the scope of this paper. Hence, this subsection focuses on the sensitivity of ES-MF
with respect to the newly introduced control parameters, namely, the constants δ̄ and C as well
as the choice of norm type used to evaluate g.

Figure 1 shows their performance and the data profiles using different choices for the con-
stants δ̄ and C as well as for the norm type used to evaluate the constraint violation function g.
With respect to the choice the norm in g, see Figure 1(a), one can see that the use of `2-norm
is clearly favorable to our approach in particular with a large budget of objective function eval-
uations. The choice of working with the `2-norm to evaluate g was shown to perform better for
the progressive barrier approach used in MADS [5].

Regarding the δ̄ parameter, we tested 8 different values varied in range 10−2 and 105, see
Figure 1(b). The obtained profiles show that, for a small budget of evaluations, ES-MF is not
sensitive to the value of δ̄. For a larger budget, the performance changes slightly probably due
to the stochastic nature of the solver. However, on the tested problems, one value of δ̄ = 103 is
shown to be very favorable to the ES-MF solver.

Next, for the parameter C, we tested 8 different values varied in range 10−2 and 105, see
Figure 1(c). Again, the obtained profiles change slightly. We suspect that the slight changes in
the performance are just due to the stochastic nature of the solver and consider that ES-MF
is not very sensitive to the choice of the parameter C.

In what comes next, for the solver ES-MF, we set by default δ̄ = 1, C = 1, and use the
`2-norm to define the constraint violation function g.
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(b) `2-norm for g and C = 1.
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(c) `2-norm for g and δ̄ = 1.

Figure 1: Median profiles for the solver ES-MF computed using 40 problems from the CUTEst
set and different control parameters.
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4.4 The extreme barrier versus the merit function for ES

In this subsection, we present a comparison between ES-MF and ES-EB from [17] (ES-EB
can be seen as a particular instance of ES-MF where all the constraints are UR). Since the
solver ES-EB requires a feasible starting point, when the starting point is infeasible, finding a
feasible point is accomplished by minimizing the constraint violation function g.
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(b) Considering the level of accuracy α = 10−7.

Figure 2: Median profiles for the solvers ES-MF and ES-EB using 40 problems from the
CUTEst set.

Figure 2 depicts the resulting performance and data profiles considering two levels of accuracy
10−3 and 10−7. One can see that the extreme barrier approach is not able to solve more than
50% of the problems (as shown by the performance profiles). The data profiles indicate that
the extreme barrier can be competitive for small budgets. Overall, the merit function approach
is outperforming the extreme barrier approach. Thus, relaxing the constraints clearly makes it
possible to reach better optimal solutions which motivates the use of the merit function approach
ES-MF instead of ES-EB.
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4.5 Comparison of solvers using the problems from the CUTEst collection

To quantify the efficiency of ES-MF, we include in our numerical comparison the solvers
MADS-PB, DDS-MF, and CSA-AL:

• MADS-PB [5]: a mesh adaptive direct search (MADS) method where a progressive
barrier (PB) approach has been implemented [5] to handle QR constraints. The progressive
barrier approach, proposed in MADS, enjoys similar convergence properties as for our
algorithm, hence, a comparison between the two solvers is very meaningful. For the MADS
solver, we used the implementation given in the NOMAD package [31], version 3.9.1 (C++
version linked to Matlab via a mex interface). This solver is deterministic.

• DDS-MF [22]: a Matlab implementation of a directional direct search (DDS) method
where a merit function (MF) is used to handle QR constraints. The parameter choices
followed those given in the numerical section of [22]. We recall that ES-MF is inspired
from the DDS-MF method, hence including the latter solver in the comparison can be
also very meaningful. We note also that this is the first time DDS-MF is compared using
an extensive test set. The behavior of the solver is stochastic as it generates randomly (at
most) n+ 1 directions at each iteration of the algorithm.

• CSA-AL [1]: a Matlab implementation of CMA-ES using an augmented Lagrangian
approach to handle QR constraints. For the CMA-ES part, we used the same choice of
parameters as for ES-MF, for the parameters associated with the augmented Lagrangian
part we chose the values given in [1].

For all the solvers, we consider that all the nonlinear constraints are QR except the bounds
which are treated using an `2-projection.

Figure 3 reports the median (out of 20 runs) profiles considering the two accuracy levels
10−3 and 10−7. Clearly, for all the runs, CSA-AL is performing the worst among all the tested
solvers. For the resulting data profiles, one can see that with a small budget, DDS-MF and
MADS-PB exhibit better performance than the ES-MF. However, when the budget is getting
larger, ES-MF performs the best. From the resulting performance profiles, one can see that in
terms of efficiency (i.e., small values of τ), DDS-MF is shown to be best. The ES-MF solver
performs better in terms of robustness (i.e., large values of τ).

In conclusion, first, clearly the ES-MF solver leads to very good results compared to CSA-
AL. In fact, in our tests, CSA-AL showed difficulties finding feasible points while making
progress on the objective function. We stress that the main difference between the two evolution
strategies is the restoration procedure, the latter helps ES-MF to progress better towards
feasible zones without severe deterioration in terms of the objective function value. Second,
ES-MF can be very competitive with both solvers DDS-MF and MADS-PB, in particular
when using a large number of function evaluations.

4.6 Comparison of solvers using global optimization test problems

To confirm the results obtained when using CUTEst problems, we perform complementary tests
using a set of problems with a diversity of features and the kind of difficulties that appear in
constrained global optimization. The test set is that used in [26, 29, 34] and comprises 12 well-
known test problems (see Table 1). The problems G2, G3, and G8 are originally maximization
problems and were converted to minimization.
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Figure 3: Median profiles for the solvers ES-MF, MADS-PB, DDS-MF, and CSA-AL, using
40 problems from the CUTEst set.

In addition to such problems, we include three realistic problems. The first one is the tension-
compression string (TCS) problem [12], the aim is to minimize the weight of a tension-compression
string subject to constraints on minimum deflection, shear stress, surge frequency, limits on
outside diameter and on design variables. The design variables are the mean coil diameter; the
wire diameter and the number of active coils. The second problem is the well known welded
beam design (WBD) problem [12] where a welded beam is designed with a minimum cost subject to
constraints on shear stress; bending stress in the beam; buckling load on the bar; end deflection
of the beam; and side constraints. The third optimization problem is a multidisciplinary design
optimization (MDO) problem [39, 21] where a simplified wing design (built around a tube) is
looked at. For this problem, one tries to minimize the range of the aircraft under coupled aero-
structural constraints. The problem has 7 optimization variables corresponding to the geometry
of the wing. The details of the three realistic problems features are included in Table 1.

To allow the analysis of the asymptotic efficiency and the robustness of the tested solvers,
we generate performance and data profile using a larger maximal number of function evaluation
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Problem n m # UB # LB f(x0) g(x0) fopt

G1 13 9 13 13 −228.028 93357.8 −15

G2 20 2 20 20 −0.0641952 0 −0.803619

G3 20 1 20 20 −5.53267e− 07 0.582395 −1

G4 5 6 5 5 −24703.8 4.58618 −30665.5

G6 2 2 2 2 777287 1.78677e+ 08 −6961.81

G7 10 8 10 10 1154.69 410492 24.3062

G8 2 2 2 2 −6.40052e− 09 4322.48 −0.095825

G9 7 4 7 7 156193 3.67173e+ 06 680.63

G10 8 6 8 8 20711.3 6.01742 7049.33

G11 2 1 2 2 4.97537 3.95049 0.75

G12 3 1 3 3 −0.532992 0 −1

G13 5 3 5 5 7.97186 71.9042 0.0539498

TCS 3 4 3 3 3.51385e+ 07 2.15037e+ 10 5868.76

WBD 4 6 4 4 278.59 1150.36 0.0126653

MDO 7 3 7 7 −10.6934 2.3618e+ 07 −16.61011

Table 1: Description of the features of the 15 global optimization problems: the dimension n,
the number of the QR constraints m, the number of the lower bounds # LB, the number of
the upper bounds # UB, the initial objective value f(x0), the initial constraints violation g(x0),
and the best known feasible solution fopt.

of 104. The starting point x0 is chosen to be the same for all solvers and set to (LB + UB)/2
where LB are the lower bound constraints and UB are the upper bound constraints. We
consider that all the constraints as QR except the bounds on the design variables which are
treated using the `2-projection for all the solvers. We note that problems G3, G11, and WBD

contain equality constraints. When a constraint is of the form cei (x) = 0, we use the following
relaxed inequality constraint instead ci(x) = |cei (x)| − 10−5 ≤ 0. We describe our finding using
the median performance and data profiles over 20 runs.

Figure 4 reports the obtained profiles for the solvers MADS-PB, DDS-MF and ES-MF
using a maximal budget of 104. Additionally, we include the profiles of a variant of the solver
MADS-PB where the variable neighborhood search (VNS) strategy is enabled to enhance its
global performance (by setting the flag vns search to 1 in the NOMAD package). The latter
solver is denoted by MADS-PB (with VNS) in Figure 4. We note also that the solver
CSA-AL is no longer included in the comparison as it displayed the worst results in our tests
(it produced unfeasible solutions on most of the tested problems). Clearly, one can see that,
unlike the previous test bed, the ES-MF solver outperforms the solvers MADS-PB and DDS-
MF, particularly when considering a large function evaluations. For the low accuracy level
(i.e., α = 10−3), enabling the VNS option improves significantly the efficiency of MADS-PB.
For such accuracy, the solver MADS-PB (with VNS) reaches better efficiency performance
compared to ES-MF. However, considering a higher accuracy level (i.e., α = 10−7) tends to
degrade the performance of MADS-PB (with VNS) compared to ES-MF.

Tables 2 and 3 depict the final obtained results for the solvers MADS-PB, DDS-MF,
MADS-PB (with VNS) and ES-MF, using a maximal budget of 104 function evaluations.
For each problem, we display the optimal objective value found by the solver f(x∗), the associ-

20



τ (log scaled)
0 1 2 3 4 5 6 7 8 9 10

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Profiles, α=0.001

Groups of n+1 evaluations
0 500 1000 1500 2000 2500 3000

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Profiles, α=0.001

MADS-PB
MADS-PB  (with VNS)
DDS-MF
ES-MF

(a) Considering the level of accuracy α = 10−3.

τ (log scaled)
0 1 2 3 4 5 6 7 8 9 10

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Profiles, α=1e-07

Groups of n+1 evaluations
0 500 1000 1500 2000 2500 3000

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Profiles, α=1e-07

MADS-PB
MADS-PB  (with VNS)
DDS-MF
ES-MF

(b) Considering the level of accuracy α = 10−7.

Figure 4: Median profiles for the solvers ES-MF, MADS-PB, and DDS-MF, using 15 global
optimization test problems.

ated constrained violation g(x∗), and the number of objective function evaluations #f needed
to reach x∗. When a solver returns a flag error or encounters an internal problem, we display
“∗”. At the solution x∗, one requires at least a tolerance of 10−5 on the constraint violation to
consider x∗ as feasible with respect to QR constraints. Considering the median run, ES-MF
converged to a feasible solution for all the problems, MADS-PB converged as well to a feasible
point for all the problems, except the TCS problem for which MADS-PB returns a flag error.
The DDS-MF solver could not converge to a feasible solution for three problems G2, G4, and G5.
In terms of the objective function value, one can see clearly that ES-MF is outperforming both
solvers MADS-PB and DDS-MF. As expected, in terms of function evaluations, MADS-
PB required in general less function evaluations than ES-MF to converge to a solution (but
not necessarily better then the one found by ES-MF). The use of the variable neighborhood
search option within MADS improves significantly its performance, MADS-PB (with VNS)
is displaying similar performances compared to the ES-MF.
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Pb
f(x∗) #f g(x∗)

Best Median Worst Best Median Worst Best Median Worst
MADS-PB
G1 -12.4531 -12.4531 -12.4531 4202 4202 4202 2e-26 2e-26 2e-26
G2 -0.321533 -0.321533 -0.321533 8194 8194 8194 0 0 0
G3 -0.00101297 -0.00101297 -0.00101297 10000 10000 10000 0 0 0
G4 -30665.5 -30665.5 -30665.5 1846 1846 1846 8.5e-27 8.5e-27 8.5e-27
G6 -6961.81 -6961.81 -6961.81 427 427 427 7.3e-27 7.3e-27 7.3e-27
G7 30.0027 30.0027 30.0027 2161 2161 2161 2.9e-26 2.9e-26 2.9e-26
G8 -0.095825 -0.095825 -0.095825 350 350 350 0 0 0
G9 680.915 680.915 680.915 1769 1769 1769 5e-27 5e-27 5e-27
G10 7973.6 7973.6 7973.6 10000 10000 10000 4.5e-06 4.5e-06 4.5e-06
G11 0.7499 0.7499 0.7499 9355 9355 9355 1e-26 1e-26 1e-26
G12 -1 -1 -1 425 425 425 0 0 0
G13 0.679994 0.679994 0.679994 10000 10000 10000 0 0 0
TCS ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
WBD 2.21815 2.21815 2.21815 3625 3625 3625 1e-26 1e-26 1e-26
MDO -16.6007 -16.6007 -16.6007 6837 6837 6837 0 0 0
DDS-MF
G1 -14.6929 -11.8944 -7.76563 4529 10000 10000 0 0 0
G2 -0.268315 -0.195197 -0.174585 8237 9364 10000 0 0 0
G3 -0.245346 -0.000195272 -0 980 10000 10000 0 0 2.8e-05
G4 -32217.4 -29246.5 -23837.1 10000 10000 10000 0 0.7 6
G6 -7495.49 -7331.06 -7206.23 10000 10000 10000 0.023 0.054 0.11
G7 24.8165 26.2708 30.9808 10000 10000 10000 0 0 0
G8 -0.095825 -0.095825 -0.0258078 285 324 10000 0 0 0
G9 681.499 683.972 691.198 10000 10000 10000 0 0 9.3e-07
G10 3714.74 6463.86 8790.21 6079 10000 10000 0.014 0.086 0.44
G11 0.748826 0.749978 0.750995 10000 10000 10000 0 4.7e-08 1.2e-06
G12 -0.986446 -0.554001 -0.553667 10000 10000 10000 0 2.2e-10 5.8e-08
G13 0.0932763 0.903758 8.50155 10000 10000 10000 0 3.7e-08 1
TCS 0.0154595 0.0514077 0.0547682 10000 10000 10000 0 0 2.8e-06
WBD 2.26572 4.03345 24.2009 684 2103 10000 0 0 39
MDO -15.8881 -15.3359 -14.0585 585 1028 1738 0 0 0

Table 2: Obtained results with MADS-PB and DDS-MF, using 15 global optimization test
problems.

5 Conclusion

In this paper, we proposed a globally convergent class of ES algorithms where a merit function
is used to decide and control the distribution of the generated points. The proposed approach
included a restoration procedure which is entered whenever a decrease on the constraint violation
function is achieved while the objective function is being considerably increased. The obtained
algorithm generalized the work [17] by including quantifiable relaxable constraints. In the spirit
of what is achieved in [22], the proposed convergence analysis was organized depending on the
number of times Restoration is entered.

We provided numerical tests on problems from the CUTEst collection and a global opti-
mization test bed. The results showed the potential of the proposed merit approach compared
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Pb
f(x∗) #f g(x∗)

Best Median Worst Best Median Worst Best Median Worst
ES-MF
G1 -15.0003 -15.0003 -12.4537 10000 10000 10000 1.2e-07 1.7e-07 5.6e-07
G2 -0.756445 -0.716013 -0.252014 5851 10000 10000 0 0 1.9e-10
G3 -1.00565 -1.00538 -1.03027 10000 10000 10000 0 2.7e-06 3e-06
G4 -30665.5 -30664.8 -30649.1 10000 10000 10000 0 0 9.6e-05
G6 -7865.39 -6953.54 -6369.01 4493 8406 10000 0 1.4e-06 9.7e-05
G7 24.3035 24.3037 24.3062 10000 10000 10000 1.1e-08 1.3e-08 1.5e-06
G8 -0.095825 -0.095825 -0.0273164 1492 1653 10000 0 0 2.7e-08
G9 680.629 680.629 680.629 7231 8526 10000 3.6e-07 3.6e-07 3.6e-07
G10 7086.26 11177.6 18860.8 7288 9899 10000 0 4.3e-05 9.4e-05
G11 0.7499 0.7499 0.7499 2830 3522 10000 1.6e-09 2.5e-09 3.9e-07
G12 -1 -0.960558 -0.783887 1457 3533 4281 0 1.6e-09 8.6e-09
G13 0.0539573 0.438745 1 5465 10000 10000 1.2e-16 1.8e-09 3.2e-08
TCS 0.0126649 0.0126688 0.0132221 6598 10000 10000 1.1e-12 1.8e-10 6.9e-10
WBD 2.19747 2.21258 2.53771 8488 10000 10000 2.6e-10 2.8e-08 1.7e-08
MDO -16.612 -16.612 -16.6119 5031 10000 10000 0 0 1.1e-14
MADS-PB (with VNS)
G1 -15 -15 -15 10000 10000 10000 0 0 0
G2 -0.697381 -0.697381 -0.697381 10000 10000 10000 0 0 0
G3 -0.0870995 -0.0870995 -0.0870995 10000 10000 10000 0 0 0
G4 -30665.5 -30665.5 -30665.5 10000 10000 10000 0 0 0
G6 -6961.81 -6961.81 -6961.81 6523 6523 6523 3.2e-27 3.2e-27 3.2e-27
G7 24.8226 24.8226 24.8226 10000 10000 10000 0 0 0
G8 -0.095825 -0.095825 -0.095825 6505 6505 6505 0 0 0
G9 680.632 680.632 680.632 10000 10000 10000 0 0 0
G10 7087.99 7087.99 7087.99 10000 10000 10000 0 0 0
G11 0.7499 0.7499 0.7499 10000 10000 10000 0 0 0
G12 -1 -1 -1 10000 10000 10000 0 0 0
G13 0.781443 0.781443 0.781443 10000 10000 10000 0 0 0
TCS ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
WBD 2.21815 2.21815 2.21815 10000 10000 10000 1e-26 1e-26 1e-26
MDO -16.6054 -16.6054 -16.6054 10000 10000 10000 0 0 0

Table 3: Obtained results with ES-MF and MADS-PB (with VNS), using 15 global opti-
mization test problems.

to existing direct search DFO solvers, in particular when using a large number of function
evaluations.
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[39] C. Tribes, J.-F. Dubé, and J.-Y. Trépanier. Decomposition of multidisciplinary optimization prob-
lems: formulations and application to a simplified wing design. Optim. Eng., 37:775–796, 2005.

25


