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ABSTRACT

The World Health Organization declared Tuberculosis a global health emergency and has set a goal

to eradicate it by 2035. However, effective treatment and control of the disease is being hindered by

the emerging Multi-Drug Resistant and Extensively Drug Resistant strains on the most effective

first line prodrug, Pyrazinamide (PZA). Studies have shown that the main cause of PZA resistance

is due to mutations in the pncA gene that codes for the target protein Pyrazinamidase (PZase).

Therefore, this study aimed to identify novel drug compounds that bind to the active site of wild

type PZase and study the dynamics of these potential anti-TB drugs in the mutant systems of PZase.

This approach will aid in identifying drugs that may be repurposed for TB therapy and/or designed

to counteract PZA resistance. This was achieved by screening 2089 DrugBank compounds against

the whole wild type (WT) PZase protein in molecular docking using AutoDOCK4.2. Compound

screening based on docking binding energy, hydrogen bonds, molecular weight and active site

proximity identified 47 compounds meeting all the set selection criteria. The stability of these

compounds were analysed in Molecular Dynamic (MD) simulations and were further studied in

PZase mutant systems of A3P, A134V, A146V, D8G, D49A, D49G, D63G, H51P, H137R, L85R,

L116R, Q10P, R140S, T61P, V139M and Y103S. Generally, mutant-ligand systems displayed little

deviation from the WT systems. The compound systems remained compact, with less fluctuations

and more hydrogen bond interactions throughout the simulation (DB00255, DB00655, DB00672,

DB00782, DB00977, DB01196, DB04573, DB06414, DB08981, DB11181, DB11760, DB13867,

DB13952). From this research study, potential drugs that may be repurposed for TB therapy were

identified. Majority of these drugs are currently used in the treatment of hypertension, menopause

disorders and inflammation. To further understand the mutant-ligand dynamic systems, calculations

such as Dynamic Residue Network (DRN) may be done. Also, the bioactivity of these drugs on

Mycobacterium tuberculosis may be studied in wet laboratory, to understand their clinical impart in

vivo experiments.
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CHAPTER ONE

1. LITERATURE REVIEW

1.1 TUBERCULOSIS

1.1.1 Introduction

Tuberculosis (TB) was declared a global health emergency in 1993 by the World Health

Organization (WHO) (Floyd et al., 2018), a disease claiming approximately 1.7 billion infections

and 10 million sicknesses each year (WHO 2019). According to Singh et al., (2018), a third of the

world’s population has been infected with TB and there is a documented case of TB infection in

almost every country. WHO reported TB-related deaths of up to 1.4 million in 2019 out of the 10

million infections.Majority of the infections were reported from Africa, South-East Asia and West

Pacific regions (WHO, 2020). South Africa has been reported to be among the eight high burden

countries (India, China, Indonesia, Philippines, Pakistan, Nigeria, Bangladesh) that contribute to

two thirds of the global infections (Figure 1.1, WHO 2020). It is also the only high burden country

having zoonotic TB cases (Mycobacterium bovis) (WHO, 2020).

A target has been set by WHO to eradicate TB by 2035 with the acknowledgment that better

diagnostic methods, preventative and therapeutic measures have to be employed (CryPTIC, 2018).

The ultimate goal is guided by reducing deaths and incidence rates by 90% and 80% respectively

between 2015 and 2030 (WHO 2019; Floyd et al., 2018). However, WHO (2020) reports that due to

the current COVID-19 pandemic, the extra pressure on health services may slow or reverse the

progress done on TB eradication. Although lockdown measures and physical distancing policies
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imposed across all nations may reduce the incidences of TB transmission and infection, this may be

an offset of worsening TB therapy outcomes, having longer infectiousness periods and poverty

(WHO, 2020). Already, the high burden countries have reported massive reduction in the number of

new cases within the first few months of COVID-19 lockdown. The high burden countries reported

25–30% lower TB cases in India, Indonesia and the Philippines within the first six months of 2020

compared to 2019 while South Africa had a decrease of up to 50% (WHO, 2020).

Figure 1. 1: Estimated TB incidence cases for 2019 (image from WHO, 2020)

The main population at risk is adults with underlying conditions such as diabetes, HIV/AIDS or

malnutrition (WHO, 2020). Generally, there is a double risk in males than female (WHO, 2019),

and according to Jimenez-Corona et al., 2006 this difference is mainly due to men being more
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exposed to local transmission in crowded working areas, poor ventilated and imprisonment shelters.

Mens’ excessive use of tobacco and alcohol also increase the rate at which latent TB progresses to

active disease and symptoms such as coughing may be mistaken for tobacco use while one is

already symptomatic (Jimenez-Corona et al., 2006). However, McQuaid et al., (2020) states that

males and females have the same risk of Multi Drug Resistant (MDR) TB.

TB mainly affects the lungs (pulmonary TB), however, other organs such as the brain, joints,

central nervous system, lymph and circulatory system may also be affected. An infected person

shows respiratory symptoms such as emaciation, low fever, night sweats among many other

symptoms (Zhou et al., 2017). It is mostly spread when an infected person expels the bacteria into

the air through coughing or sneezing (Delogu et al., 2013; WHO, 2020). Failure of an individual’s

innate immune defense mechanism to eliminate the bacteria leads to its replication and spreads to

other organs and tissues. The cell-mediated response attempts to control the bacterial replication

resulting in latent TB (dormant bacilli) with no symptoms or signs of the disease which can last for

days or even years. A decrease in cell mediated response mechanism leads to manifestation of the

disease and thus active TB (Delogu et al., 2013). This process makes up the stages of TB which are

exposure, latent, and active TB. Patients with latent TB are at risk of reactivation of the disease,

which is one major problem in controlling TB globally (Smith et al., 2004).

1.1.2 Tubercle bacilli

The causative agent of TB was discovered by Robert Koch in 1882 as a bacillus species called

Mycobacterium tubercle bacilli (M. tb) (WHO, 2020). M. tb is a small, rod-shaped, aerobic bacillus

bacterium with a slow reproductive cycle of 24 to 48 hours under optimal conditions (Delogu et al,
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2013; Muller, 2016). It has a thick cell wall made up of mycolic acids and waxy components on its

inner and outer layers that prevent harmful agents and antibiotics from entering into the cell (Zhang

et al., 2003). The synthesis of these membrane components are the target sites of the effective anti-

TB drugs such as isoniziad and ethambutol (Muller, 2016). The cell also has a deficiency of

pyrazinoic acid (POA) efflux pumps which make it susceptible to POA derivative drugs like

pyrazinamide (Zhang et al., 2003). During a disease process, M. tb can be found in micro-

environments that are acidic, have nutrient deficiency and low or high oxygen content. All these

different environmental conditions lead to the development of heterogeneous bacterial populations

that are either non-replicating or growing with different levels of susceptibility to anti-TB drugs

(Zhang et al., 2012).

1.1.3 Diagnosis of TB

Different methods have been developed to detected TB infection with each technique having

different detection approach. TB infection can be identified using a microscope to visualize sputum

smears using the Ziehl-Neelsen technique, chest X-rays, molecular tests such as Gene-Xpert,

immunology-based technique like TB LAM test and cultured based methods (Lawn et al, 2017;

Broger et al., 2019; WHO, 2020). Multiple line probe assays tests for drug resistance have also been

developed, however, culture-based assays are the standard susceptibility tests frequently used

(Floyd et al., 2018).

1.1.4 Drug resistance

Effective treatment and eradication of TB is being hindered by the emergence of Drug Resistant

Tuberculosis (DR-TB) such as MDR-TB and Extensively Drug Resistant (XDR-TB). MDR-TB is
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defined as resistance of M. tb to at least isoniazid and rifampicin, while XDR-TB is the resistance to

both first line and second line injectable TB drugs including fluoquinolones (Zhang and Yew, 2015).

Resistance against newly discovered drugs targeting both growing and non-growing M. tb

(bedaquiline, pretomanid, delamanid) has been reported (Zhang and Yew, 2015). Studies revealing

the vital factors of TB virulence including the unique components of its cell membrane contributing

to virulence and persistence have also been done (Smith et al, 2004).

Zhang and Yew (2015) stated that chromosomal gene mutations and protein modifications account

for the two types of drug resistance in M. tb. These are genetic and phenotypic resistance

respectively. Mutations on the genes encoding the proteins that are targeted by the present anti-TB

drugs is the major cause of M. tb resistant strains which might occur as a result of sub-optimal

physician prescription, failure of patient compliance and bacterial efflux pump (Zhang and Yew,

2015; WHO 2020; WHO, 2020). The resistant gene may also be passed from one individual to the

other (Zhang and Yew, 2015) and the majority of MDR-TB and XDR-TB cases are due to the

transmitted Beijing genotype in China, Europe and Africa (Zhang and Yew 2015). Zhang et al (2012)

also states that persister bacteria, with the potential and ability to survive antibiotic stress, are one of

the main causes of prolonged TB treatments and drug resistance. Multiple clinical experiments have

demonstrated that persisters that can be found in lesions, sputum or adipose tissue, are the problem

cause in TB relapse and drug resistance (Connolly et al., 2007; Zhang et al., 2012).
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1.1.5 TB treatment

Statistics conducted before drugs for TB treatment became available reported that 70% of the

people diagnosed smear positive with pulmonary TB died within 10 years and overall 40% of the

people that tested positive for all forms of clinical TB died (Floyd et al., 2018). A decrease in

incidence and mortality rate was obtained from around the 1940s after the introduction of effective

anti-TB drugs, resulting in TB being regarded as a disease of the past. However, it has remained an

infectious disease responsible for the highest number of deaths globally (Floyd et al., 2018, WHO,

2020).

Currently, the available TB vaccine, Baccille Calmette-Guerin (BCG), is only effective in

preventing severe forms of TB infections in children and is restricted to HIV negative children. No

vaccine has been synthesized for adults (Floyd et al., 2018, WHO, 2020). The currently used first

line drugs for drug-susceptible TB are isoniziad (INH), rifampicin (RMP), ethambutol (EMB) and

pyrazinamide (PZA) (Zhang and Yew, 2015; Zhou et al., 2017; WHO, 2019). These drugs are

prescribed over a period of 6 months with a minimum success rate of 85% (WHO, 2020). Generally,

RMP interferes with RNA synthesis and binds to rpoB forming a hydroxyl radical. On the other

hand, INH attacks the enolyl acyl carrier protein reductase enzyme and inhibits mycolic acid

synthesis in cell wall while EMB targets arabinosyl transferase, resulting in no synthesis of cell wall

arabinogalactan (Zhang and Yew 2015). Table 1.1 gives a summary of some drugs used in TB

treatment.
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Table 2.1: Summary of the common drugs used in TB treatment (Zumla et al., 2013; Zhang and
Yew, 2015; Zhou et al., 2017; WHO, 2019; Barozi, 2020).

Group Drug name

First line drugs Isoniziad, Rifampicin, Ethambutol,
Pyrazinamide

Injectable drugs Kanamycin, Aminkacin, Streptomycin,
Capreomycin

Fluoroquinolones Moxifloxacin, Levofloxacin, Gatifloxacin

Second -line drugs Ethionamide, Terrizidone, Para-amino salicylic
acid, Prothionamide

Drugs with unclear efficacy Amoxicillin, linezolid, clofazimine

Majority of the developed antibiotic drugs are based on their effect on growing bacteria with little

or no activity on persister bacteria (Cogan, 2006). Since one of the main causes of different anti-TB

drug susceptibility is due to persisters, drugs with mechanisms that target persisters will greatly

improve treatment of TB (Zhang et al., 2012). Apart from developing drugs that target persisters,

manipulating the host immune system by enhancing and utilizing its defense mechanism with

vaccines and immuno-modulating agents, stimulating innate and adaptive immunity may assist in

preventing and quickening recovery from the disease (Bishop et al., 2001).

Some anti-TB drugs like rifamycins and fluoroquinolones primarily target growing bacteria but also

have limited activity on non-growing persisters. The few identified persister-active compounds are

not readily bioavailable and have high toxicity, thus need further studies for optimization (Cogan,

2006). In 1944, Bigger proposed an intermittent drug dosing approach to allow persisters to grow in

the absence of antibiotics and become susceptible to drugs (Bigger, 1944; Lewis, 2012), however,

his model was discovered to be practical in vitro as complex conditions are encountered in vivo
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(Cogan, 2006). The development of pyrazinamide drug that targets persisters by disrupting vital

processes needed for their survival in stressful conditions has greatly improved the treatment

regimens in TB (Bishop et al., 2001; Cogan, 2006).

1.2 PYRAZINAMIDE (PZA)

Pyrazinamide is a pro-drug used in the therapy of TB alongside other first line drugs. It is also used

to prevent relapse of TB and is incorporated with second line drugs in treating drug susceptible and

resistant M. tb (Juniad et al., 2018; Sheik Amamuddy et al., 2020). The drug pyrazinamide (PZA)

was chemically synthesized in 1936 by Dalmer and Walter, and was later discovered as an anti-TB

drug in 1952 based on the effects of its analog, nicotinamide, on mycobacteria in animal models

(Zhang and Mitchison, 2003; Zhang et al., 2014). It was initially used as a second line TB drug due

to its high hepatic toxicity effects which were caused by the high dosages (3.0 g daily) and

prolonged treatment periods. Further studies later discovered lower dosage concentration (1.5 to 2 g

daily) with effective sterilizing effects and in synergy with other TB drugs (Zhang et al., 2014). It

has a molecular weight of 123.1, melting point of 188-189 0C and molecular formula C5H5N3O

(Zhang and Mitchison, 2003; Zhang et al., 2015). PZA has poor solubility in organic solvents and

dissolves in water (15 mg/ml) at room temperature while its active derivative pyrazinoic acid (POA)

readily dissolves in organic solvents like dimethyl sulfoxide (DMSO) (Zhang and Mitchison, 2003).

Pyrazinamide has been reported to have excellent sterilizing bactericidal effect in vivo against M. tb

while having no notable activity in vitro (Peterson et al., 2015; Gopal et al., 2016). Its activity in

vitro can be induced in the presence of efflux pump inhibitors, in mild acidic conditions or in media

with nutrient deficiency, anaerobic conditions and molecules that alter energy metabolism. It has a

bactericidal effect on semi-dormant tubercle bacilli in a pH range of (4.8-5.0) (Zhang and Mitchison,
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2003). According to Juniad et al (2018), the use of PZA in TB treatment cuts the therapy time by

33% from the standard 9 to 12 months to 6 months. Additionally, its removal from TB therapy

reduces other drugs’ efficiency to destroy bacterial cells (Bishop et al., 2001). However, the 6

months therapy period is still long enough to facilitate drug resistance development and patient

noncompliance, thus the goal is to develop drugs for TB treatment within 2 months or less (Gopal et

al., 2016).

Pyrazinamide in humans and murine models have been reported to be effective in the first two

months of TB treatment in combination with the first line drugs (Zhang and Mitchison, 2003;

Ahmad et al., 2013). However, Ahmad et al (2013) states that in second line regimen of murine

models, PZA contributes sterilizing activity beyond two months when incorporated with

streptomycin and isoniazid which also resonates with his obtained study with moxifloxacin and

levofloxacin. Failure of PZA activity beyond the first two months may be due to overlapping

sterilizing effect with rifamycins or antagonistic effects with isoniazid (Ahmad et al., 2013; Zhang

et al., 2014). Apart from the good antibacterial effect exhibited by PZA, it has negative side effects

of damaging the liver, therefore alternative compounds with trivial side effects need to be identified

(Zhou et al., 2017).

1.2.1 Mechanism of PZA

In spite of the significant role played by PZA in TB treatment and its inclusion in all TB drug

combinations, its mechanism is the least understood among all anti-TB drugs (Zhang et al., 2013;

Gapol et al., 2016; Sheik Amamuddy et al., 2020). Its role as a persister drug has attracted a lot of

attention in trying to understand its mode of action in TB treatment and also in developing drugs for

other persistent infections (Cagon, 2006).
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Different mechanisms of PZA on M. tb have been suggested (Lamont et al., 2020). Multiple studies

revealed that the sterilizing activity of PZA depends on the acidic environment in the lesion caused

by inflammation, explaining its use only in the first two months of therapy (Zimhony et al., 2000;

Shi et al., 2011; Zhang et al., 2013) while further studies demonstrated the independence of PZA

bactericidal effect in nearly neutral and alkaline conditions with critical accumulation

concentrations of POA (Dillion et al., 2014).

The accepted model for PZA mechanism involves the acidification of cytoplasmic bacilli by POA

mediated proton shuttling (Figure 1.2) (Zhang et al., 2013; Peterson et al., 2015). PZA is activated

only in acidic conditions (Bishop et al., 2001), and at this low pH, POA becomes toxic and inhibits

the growth of M. tb (Juniad et al., 2018). PZA enters into M. tb by passive diffusion (Zhang and

Mitchison, 2003; Junaid et al., 2018) and possibly by active transport (Zhang and Mitchison, 2003).

Initially, POA is formed as a charged anionic form with no bactericidal effect in a neutral

cytoplasmic environment, however, in acidic conditions, POA is excreted by a weak efflux pump

and is converted to uncharged protonated POA (HPOA) which accumulates in the cell and

eventually kills the cell (Zhang et al., 2003; Zhang and Mitchison, 2015; Juniad et al., 2017).

Protonated POA acidifies the cell cytoplasm and affects bacterial cell activity by inhibiting

functioning of vital enzymes such as ribosomal protein S1 rpsA and panD which are involved in

translation, co-enzyme A synthesis and charges on the cell membrane thus affecting membrane

transportation (Zhang et al., 2013; Zhang and Yew, 2015).
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Several target sites and pathways for TB treatment have been proposed and studied (Shi et al., 2014,

Gopal et al., 2020; Smith et al., 2004). Zimhony et al (2000) suggested fatty acid synthase1 (FAS1)

as a molecular target site of PZA, however these findings were later refuted by Boshoff et al.,

(2002). Studies by Shi et al (2011) identified 30S ribosomal protein S1 (rpsA) as a target site for

PZA/POA which inhibits trans-translation process. However, Personne (2014) have shown that

strains with a defective trans-translation pathway were still susceptible to PZA and Dillion (2017)

also concluded that PZA is independent of rpsA and trans-translation.

Figure 1.2: Schematic representation of pyrazinamide mechanism in Mycobacteria tuberculosis
(mechanism generated from Zhang et al., 2013; Peterson et al, 2015; Junaid et al., 2018; Zhang and
Mitchison, 2003)

rspA and panD sites have been targeted as potential drug sites for PZA/POA (Zhang et al., 2003;

Zhang and Yew, 2015; Gopal et al., 2020). The study by Shi et al (2014) suggested panD as the

target site for PZA/POA. A recent study by Gopal et al (2020) supported Shi et al (2014) findings

and revealed the mechanism of POA as a weak panD inhibitor that triggers degradation of the
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enzyme by caseinolytic protease. Degradation of this enzyme blocks the synthesis of co-enzyme A,

an enzyme involved in energy metabolism reactions. Gopal studies in 2016 and 2017 have

illustrated that the use of PZA/POA in TB treatments reduces the levels of co-enzyme A. This site

however, is not the exclusive target site of the PZA drug as conditional susceptibility was observed

in strains without the panD region (Dillion et al., 2017). The mechanism of PZA remains elusive

and further studies are still to be done (Sheik Amamuddy et al., 2020).

1.2.2 Alternatives to PZA

PZA derivatives can be studied for their activity against M. tb. Some synthesized PZA derivatives

were studied by Zhou et al (2017), who discovered N-(3-thiomorpholinopropyl)pyrazine-2-

carboxamide as a potential compound, however further analysis is needed. One of the PZA

derivatives is morphazinamide (MZA) which has a similar impact on M. tb in both acidic and

neutral pH conditions. It is converted to PZA, formaldehyde and morphiline in bacterial cells.

However, its use in animal TB treatment is inferior to PZA regardless of its high activity in in vitro

models thus considered less useful in TB treatment (Zhang et al., 2003). A synthetic analogue of

PZA, 5-chloro-pyrazinamide, is also active against M. tb. However, its mode of action is

independent of the enzyme pyrazinamidase and has no effect on M. tb in mouse models thus makes

it different to PZA (Zhang et al., 2003; Zhang et al., 2014). Studies have also shown that esters of

POA have anti-TB properties similar to the mechanism of PZA in vitro studies, but have failed to

show significant activity against M. tb in vivo (Zhang et al., 2003). Therefore, PZA remains the best

prodrug for TB treatment regardless of the emerging PZA-resistant M. tb strains. However,

identification of an alternative drug that mimics the mechanism of PZA with little to no side effects

to counteract drug resistance is crucial for progress in TB eradication.
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1.3 PYRAZINAMIDASE

Pyrazinamidase (PZase) has been identified as the enzyme responsible for the conversion of

prodrug PZA into its active form pyrazinoic acid (POA) (Juniad et al., 2018). This enzyme is

present in microorganisms including M. tb, Saccharomyces cerevisiae, Acinetobacter baumanii,

Escherichia coli and Pyrococcus (Rasool et al., 2019). The overall structure of M. tb PZase is

similar to the crystal structures of A. baumanii and P. horikoshi, however, with crucial variations

(Petrella et al., 2011). P. horikoshii PZase was shown to contain Zn2+ ion in its crystal structure (Du

et al., 2001) while A. baumanii PZase had Zn2+ and Fe2+ ions in the ratio 1:1 (Fyfe et al., 2009) and

M. tb PZase contains Fe2+ (Petrella et al., 2011). PZase is located in the cytoplasm and is encoded

by the pncA gene of M. tb (Zhang et al., 2003). According to Zhang et al., (2003), PZase is also

responsible for the conversion of nicotinamide to its acidic form nicotinic acid, which is used in

making nicotinamide adenine dinucleotide (NAD) in bacterial species (Zhang et al., 2003).

1.3.1 Structure and mechanism

M. tb PZase is a metallo-enzyme with an amidase activity, made up of alpha helices surrounding six

parallel beta-sheets (Juniad et al., 2018; Sheik Amamuddy et al., 2020) (Figure 1.3) with a substrate

binding cavity of approximately 7Å wide and 10 Å deep (Petrella et al., 2011). Its metal binding

site (MBS) consists of an iron (Fe2+ ion) coordinated by two water molecules (H2O 220, H2O 221),

three histidine and one aspartate residues (H51, H57, H71, D49) in a distorted tetragonal

bipyramidal arrangement (Figure 1.4a) (Juniad et al., 2018; Petrella et al., 2011). These residues

leave a space on the cavity for PZA binding. It has also been reported that M. tb PZase might

contain low amounts of manganese and zinc or may contain them in the metal binding site (Petrella

et al., 2011) and some few metal ions can competitively bind as co-factors altering the structure and

function of the enzyme (Rasool et al., 2019).
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Figure 1.3: Crystal structure of M. tb PZase (PDB ID:3PL1) showing the alpha helices, loops and
six beta pleated sheets in wheat. The metal ion (Fe2+) is represented as an orange sphere while water
molecules are red spheres. The active site and metal binding site amino acid residues are
represented as sticks. The structure was generated in PyMOL.

The active site residues Asp8, Lys96 and Cys138 (Figure 1.4a) located at the end of β strand 1, β

strand 3 and at the N-terminal of alpha helix 3 respectively, make up a catalytic triad (Juniad et al.,

2018; Petrella et al., 2011). According to Petrella et al (2011), the key residue Cys138 is involved in

the nucleophillic attack of PZA while Asp8 and Lys96 act as the activating base and stabilizer of the
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acylenzyme. The addition-elimination mechanism found in A. baumanii also applies in M. tb which

results in the release of ammonia and the formation of acyl-enzyme intermediate after a

nucleophilic attack on PZA carbonyl carbon by the thiolate form of Cys138 supported by Asp8. In

the final hydrolytic step, the formed Acyl-enzyme intermediate is hydrolysed by water (H2O 202)

(Petrella et al., 2011). Figure 1.4b shows the general activity of PZase/pncA on PZA and

nicotinamide as explained above.

a) b)

Figure 1.4: a) Catalytic triad of M. tb pyrazinamidase with metal binding site residues in blues (H51,
H57, H71, Asp49) and active site residues in reds (Asp8, Lys96, Cys138). The metal ion (orange)
and water molecules (H2O 220/221) in cyan spheres b) Primary function of Pzase/pncA on
nicotinamide and pyrazinamide to produce nicotinic acid and pyrazonoic acid with ammonia as a
by-product respectively (active site residues visualized in PyMOL, equation generated from Zhang
et al., 2013).

The protein has 52-70 residues that form a loop lid controlling access to the active pocket, balanced

by H51 and H71 residues (Sheik Amamuddy et al., 2020). On the extended part of this loop, there is

a conserved residue found in M. tb, A. baumanii and P. horikoshi species (Trp68 residue), which is

located above the catalytic site and delineates binding site sides (Petrella et al., 2011). The active
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site also has a cis-peptide bond between Ile33 and Ala134 residues that draws the nitrogen atom of

Ala134 towards the center, forming an oxyanion hole with nitrogen from Cys138 that is occupied

by a water molecule (H2O 221) (Petrella et al., 2011).

1.4 PYRAZINAMIDE RESISTANCE

Current studies have reported some resistance in the use of PZA prodrug (Juniad et al., 2018). This

can be accounted for by the loss of PZase enzyme activity (Zhang and Mitchson, 2003; Kim et al.,

2012; Zhang and Yew, 2015). A recent study by Juma et al (2019) in Tanzania revealed that 50% of

patients with MDR-TB and 21.3% with drug sensitive TB also had PZA resistance. There have also

been reports on increasing rate of PZA resistance cases (Sheen et al., 2020). Determination of

resistance of M. tb to PZA is difficult to interpret and analyze using acidic media approaches thus

sequencing of the gene pncA is often done to identify mutations that are related to PZA resistance

(Petrella et al., 2011). A study by CRyPTIC (2018) showed that correct sequencing of the M. tb

isolates on pncA gene predicted PZA resistance with 96.8% specificity and 91,3% sensitivity and

susceptibility, accommodating other factors as causes for PZA resistance.

Strains of M. tb that are resistant to PZA have been found in isolates lacking pncA mutations

(Simons et al., 2013). These results supported the results obtained by Sreevatsan et al., 1997; Kim

et al., 2012; Shi et al., 2014, whose analysis also showed that approximately 0% to 30% (depending

on geographical region) of M. tb isolates show PZase inactivity in the absence of pncA mutation

thus suggesting alternative mechanisms for PZA resistance. Multiple studies have been done in

attempt to understand the mechanism of PZA resistance (Bishop et al., 2001; Shi et al., 2011; Zhang

et al., 2014; Shi et al., 2014; Palmer and Kishony, 2014; Gopal et al., 2016; Dillon et al., 2017).
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Analyses of genetic sequences of PZA-resistant strains reveal no PZA-associated prominent

clustering mutations apart from those identified in prodrug activating pyrazinamide (Gopal et al.,

2016). Although the resistance of PZA can be encoded by three genes (pncA, rpsA and panD), pncA

gene contributes up to 72-99% of the mutations (Juniad et al., 2018). Resistance of this drug

according to Junaid and colleagues is due to scattered mutations in the coding and promoter region

of the pncA gene (Kim et al., 2012; Juniad et al., 2018). The most identified type of mutations in the

pncA gene are missense and nonsense mutations which cause amino acid substitution or nucleotide

insertions or deletions (Zhang and Mitchison, 2003).

Mutations on the pncA gene are commonly found on three regions 3-17, 61-85 and 132-142 which

have an effect on the folding of the active site (Zhang et al., 2003; Sheik Amamuddy et al., 2020).

These mutations are responsible for 54% of PZA resistant strains (Sheik Amamuddy et al., 2020). A

study on various PZase species by Lemaitre et al., 1999 showed that these three regions are highly

conserved therefore alteration on these regions affect the structural or catalytic function of the

enzyme. This study also suggested Cys138, Ala134, Thr135, Trp68 and Asp8 as the key residues for

PZA hydrolysis and stated that mutations on these specific residues or close to these residues causes

active site modifications leading to the loss of PZase activity and PZA resistance (Lemaitre et al.,

1999). Apart from acquired PZA resistance through mutations, natural PZA resistance also occurs in

some mycobacteria such as M. bovis that have a point mutation on the pncA gene at nucleotide 169

from Cytosine to Guanine which replaces Histidine (H57) in M. tb with Aspartic acid in M. bovis.

The M. kansasii and M. smegmatis species are also naturally resistant to PZA due to the weak

activity of PZase enzyme and highly active POA efflux pump respectively (Zhang et al., 2003).
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1.5 PZase-PZACOMPLEXAND RESISTANT MUTATIONS

The mechanism of resistance to the drug PZA remains unclear and is yet to be determined (Sheik

Amamuddy et al., 2020). Due to the increase in M. tb PZA resistant strains, there is need for new

approaches to identify novel drug target sites and new drugs for TB treatment. Previous studies

have been focusing on the wet laboratory experiments such as PZA susceptibility tests (Yoon et al.,

2014; Morlock et al., 2017). Computational methods can aid in analyzing the effect of mutagenicity

on PZase function (Rasool et al., 2019).

PZase-PZA complex can be analysed by computational methods. Recent studies using

computational approaches have been focusing on the effect of mutations on the metal ion and PZA

binding (Sheen et al., 2012; Kadem-Maaref et al., 2017; Khan et al., 2018; Rasool et al., 2019;

Sheik Amamuddy et al, 2020). Mutations that have been identified to have major effects on PZase

activity include Ala3 to Gly17, Thr61to Leu85 and Gly132 to Thr142 (Juniad et al., 2017). Juniad

et al (2017) however stated that mutations on other sites might also have an effect on the solubility,

structure and function of the protein. Previous studies have also demonstrated that mutations on the

metal binding site lowers the binding affinity of the co-factor ion which is crucial for the activity of

PZase (Sheen et al., 2012; Rasool et al., 2019;).

According to Petrella et al., 2011, mutations on pncA gene not only affect catalytic functioning of

the protein, but also affect the thermal stability and folding properties of the protein. Their study on

mutating residues that make up the catalytic triad (Asp8Glu, Cys138Ala, and Lys96Gln), substrate

binding site (Phe13Leu and Trp68Leu), metal binding site (His51Ala, Asp49Gly, and His57Asp)

and the oxyanion hole formation (Ala134Val) resulted in none or low PZase activity. These results
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demonstrated the importance of specific residues for PZase activity and also support that mutations

have a great effect on the integrity of the 3D structure and activity. Khan et al (2018) study showed

that the mutations Leu19Arg, Arg140His and Glu144Lys on PZase caused changes in the protein

stability, flexibility, activity and in the binding pocket size when analyzed using molecular

dynamics simulations.

A study by Rasool et al., 2019based on the Density Functional Theory (DFT) approach reported

that mutagenicity on PZase is detrimental to its activity and results in weak binding of its co-factor

metal (iron) and the prodrug PZA. The study revealed that the mutations Asp12Gly, Asp12Ala,

Thr135Pro and Asp136Gly weaken the binding of PZA as these mutations occur close to the active

site. Junaid et al (2018) investigated the effect of mutating Asn11 to Lys, Pro69 to Thr and Asp126

to Asn on the pncA gene. Their study showed that these mutations resulted in an increase in

fluctuations in the mutant protein compared to the wild type, indicated by a weakened binding of

PZA to the active site and an alteration in the active site volume which in turn altered the binding of

PZA to PZase.

A study by Kadem-Maaref et al (2017), analyzing the effect of different metals on PZase function

using DFT model revealed that cobalt and nickel are more active than iron and can effectively

replace it as a co-factor while magnesium, zinc and copper decreases its activity. These results

resonate with those obtained by (Sheen et al., 2012 and Rasool et al., 2019). Sheik Amamuddy et

al (2020) study investigated the mechanism of PZA resistance by studying the unbinding events of

PZA on the WT and mutant Pzase. Their study revealed that mutations on MBS residues caused

iron ion delocalization which led to the opening of the lid and unbinding of PZA.
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1.6 DRUG REPURPOSING

Despite the advancement in technology and knowledge on human disease states, the traditional

development of new drugs is substantially expensive and time consuming (Rudrapal et al., 2020).

Therefore, the use of already discovered drugs (drug repurposing or repositioning) is being adopted

for lower costs and shorter timelines to treat common and rare diseases. Drug repurposing is a

strategy that identifies new alternative uses on drugs that have been approved, discontinued,

abandoned or under experimental investigations to target other medical conditions (Elder and

Tindall, 2020; Khan et al., 2020). The approach generally follow three steps of i) identifying a

potential molecule for the given state, ii) preclinical assessment of drug effects and iii) efficacy

evaluation in clinical trials (Pushpakom et al., 2019). According to Rudrapal et al., (2020)

approximately 30% of US Food and Drug Administration approved drugs and vaccines are as a

result of repositioned drugs. Some of the common effective drugs from repositioning are minoxidil,

aspirin, valproic acid including sildenafil (Viagra) which was initially developed for hypertension

and angina pectoris treatment but has been repurposed to treat erectile dysfunction (Pushpakom et

al., 2019; Elder and Tindall, 2020; Khan et al., 2020; Rudrapal et al., 2020).

Various computational approaches like signature matching, genome-wide association and molecular

docking and/or experimental approaches like phenotypic screening and binding-target assays may

be used to identify repositioning opportunities (Pushpakom et al., 2019; Rudrapal et al., 2020). The

experimental-based approach is a protein target-based and cell-based screening method of original

drugs for new pharmacological effects. The in silico approach is based on molecular interactions

between protein and drug molecules through virtual screening of drug databases using

computational biology tools (Rudrapal et al., 2020). In this study, the computational molecular
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docking approach will be used to screen multiple drugs against target protein PZase (conventional

docking).

1.6.1 Advantages and limitations of drug repurposing

Advantages of drug repurposing include low chances of failure as the drug would have been

approved and successfully tested in preclinical models and humans thus also implies less time and

less investment in preclinical tests (Pushpakom et al., 2019; Khan et al., 2020). According to

Rudrapal et al (2020), the average traditional approach requires 10-16 years to develop a new drug

while 3-12 years are required to design a drug through drug repurposing. Repurposed drugs may

also reveal off-target or on-target effects, exposing new target sites and pathways that can be further

exploited as potential drug-target sites (Pushpakom et al., 2019).

Successful drug repurposing has been achieved through both computational and experimental

approaches, with fast screening on large data using computational methods compared to

experimental methods. However, there are barriers hindering the wide use and success rate of these

techniques. The challenges faced include legal and intellectual property barriers and organizational

hurdles which require collaborations from pharmaceutical companies, biotechnology firms and

academic communities.
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1.7 PROBLEM STATEMENT

Tuberculosis has been declared a global health emergency by the WHO with South Africa being

reported to be among the high burden countries that contribute two thirds to the overall TB

incidences. The World Health Organization has set a target to eradicate TB by 2035 aiming to

reduce deaths and incidence rates by 90% and 80% respectively between 2015 and 2030 (WHO,

2020). The emergence of MDR-TB and XDR-TB M. tb strains has become a major public health

problem threatening the progress made in TB treatment worldwide. In order to accomplish the goal

set, intense research and development of new novel drugs and drug targets has to be done. The

prodrug PZA with bactericidal effect on semi-dormant mycobacterium tuberculosis has been

identified as a critical drug needed in all TB treatment combinations, reducing therapy time from 9

months to 6 months (Gopal et al., 2016; Juniad et al., 2018). However, various mechanisms

contributing to PZA drug resistance have been reported (Zhang and Mitchson, 2003; Kim et al.,

2012; Zhang and Yew, 2015) with previous studies focusing on wet laboratory experiments and in

silico analysis on the effect of mutations on active site and metal binding site of pyrazinamidase

(Sheen et al., 2012; Kadem-Maaref et al., 2017; Khan et al., 2018; Rasool et al., 2019; Sheik

Amamuddy et al., 2020). Exploration on alternative compounds to PZA has been partially

conducted in wet laboratory research (Zhang et al., 2003; Zhang et al., 2014; Zhou et al., 2017)

with no in silico approaches to identify compounds against PZase active site. This study aims to

identify novel selective compounds against the active site of M. tb PZase and analyse their

behaviour in the presence of mutations. The identification of scaffolds or selective novel

compounds against M. tb PZase might lead to the design of more effective drugs, for cure and

eradication of TB.
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1.8 HYPOTHESIS

The study hypothesizes that DrugBank database have compounds that can selectively bind to the

active site of M. tb PZase, mimicking the behavior of PZA prodrug. Therefore, computational

techniques of virtual screening and dynamic simulations may be employed for the identification of

novel compounds for drug repurposing in TB.

1.9 AIM

The study aimed to virtually screen DrugBank compounds against the active site of M. tb PZase and

analyze the effect of point mutations on the identified hit compounds. This is so as to identify

scaffolds that may lead to the development of effective TB drugs.

1.10 OBJECTIVES

1. To identify potential DrugBank compounds that selectively bind to PZase active site by

performing in silico molecular docking studies.

2. To perform Molecular Dynamics (MD) calculations on wildtype PZase to identify stable

protein-drug complexes.

3. To introduce mutations on PZase-DrugBank complexes and study the effect of the mutations

on the complexes.
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CHAPTER TWO

2. STRUCTURE BASED VIRTUAL SCREENING

2.1 CHAPTER OVERVIEW

Compounds that bind on to the active or allosteric site of a target protein can induce conformational

changes and either inhibit or promote the protein’s functionality. The aim of this chapter (Chapter 2)

was to identify potential DrugBank (Wishart et al, 2018) compounds that can selectively bind onto

the active site of wild type PZase with better binding characteristics compared to the control

Pyrazinamide. The entire protein surface was subjected to two thousand and eighty-nine (2089)

DrugBank compounds through molecular docking using AutoDOCK 4.2 (Morris et al., 2009). The

protein and PZA ligand structures were prepared using AutoDOCK4 Tools (Morris et al., 2009).

Pyrazinamide was used as a control and the docking parameters were validated by redocking PZA

onto the wildtype PZase and comparing its pose and interactions with those obtained by the

previous group study of Sheik Amamuddy et al., (2020). The best hit compounds were selected

based on lowest binding energy, active site proximity, low molecular weight and presence of

hydrogen bond interactions before being subjected for further analysis. This chapter provides a brief

introductory description on high throughput virtual screening, applied docking methodology,

discussion of the results obtained and summarized conclusion.

2.2 INTRODUCTION

Proteins interact with other molecules and their functionality in biological processes occur through

recognition of other molecules. Identification of the small molecules protein-target site provides

insight on the underlying molecular modes of actions, giving information on their pharmaceutical
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effects (Wang et al., 2012). The first target-substrate binding was reported by Fischer in 1894, who

interpreted using the lock and key analogue, based on the protein-substrate complementary shape.

However, his interpretation did not explain allosteric modulation and non-competitive binding

which lead to other binding models such as the induced-fit by Koshland in 1958 being proposed

(Salmaso and Moro, 2018).

2.2.1 Virtual screening

Computational methods have been applied in drug discovery processes since 1980s, leading to the

establishment of (Computer Aided Drug Design) CADD techniques which improved from analysis

of a rigid ligand-target binding to flexible ligand-protein complexes (Salmaso and Moro, 2018;

Nguyen et al., 2019). These techniques are developed primarily for virtual screening hit/lead

optimization as well for the designing of novel compounds (Kitchen et al., 2004; Salmaso and Moro,

2018). Virtual screening, which aims to increase the novel compounds hit rate and reduce

experimentally tested compounds, accomplishes its goal by screening a large data set of compounds

in search for binding capacity for a targeted molecule.

The CADD techniques are grouped as Ligand-based (LB) or Structure-based (SB) methods. The

Ligand-based method only depends on information about the similarity of known ligands (Sliwoski

et al., 2014). In this study, the Structure-based method was used, which depend on the crystal

structure of the target molecule (obtained by NMR, Xray crystalography or from homology

modelling) and on the fact that binding to the target structure may be optimized since ligand-target

binding is influenced by structure complementarity (Sliwoski et al., 2014; Salmaso and Moro,

2018). The SB technique has made prominent inhibitors of HIV-1 reverse transcriptase (Vadivelan
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et al., 2011), heat shock proteins (Doddareddy et al., 2011) and Plasmodium parasite (Chaudhary

and Prasad, 2014) among many other therapy fields.

The availability of databases that consist of chemical compounds from natural and/or synthetic

origin have enabled easier identification and screening on potential hit compounds. One of the most

comprehensive source of small biological molecules is the CheMBL database that is compiled from

publications and other chemical databases like PubChem. Generally, only approximately 11 000

compounds are readily available from pure natural products (Kinghorn et al, 2019). Several natural

product (NP) databases have been developed, however, majority of these databases are specialized

including databases such as Super Natural II (Banerjee et al., 2015), one of the largest online

database that mainly consist of purchasable compounds and NPAtlas (Van Santen et al., 2019)

database focusing on microbial natural products. Some databases like AnalytiCon provides over

2000 semi-synthetic compounds (Kinghorn et al, 2019) while other databases like PubChem (Kim

et al., 2016) and ZINC (Irwin et al., 2012) consist of millions of mainly commercially available

small and large synthetic molecules. The ZINC database is widely accepted as a meta-database of

readily purchasable compounds (Kinghorn et al., 2019).

Recently, a free and open generalistic NP database that inco-operates and curates data from various

databases (composed of 401,624 compounds), COlleCtion of Open Natural ProdUcTs (COCONUT)

has been designed for diverse and advanced searches for NPs (Sorokina et al, 2021). In Africa,

some key present natural compound databases are SANCDB, a South African Natural Compound

Database that is made up of highly curated natural compounds from plants and marine habitats

(Hatherley et al., 2015) and NANPDB, a Northern African Natural Database (Ntie-Kang et al.,
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2017). In this study, DrugBank database compounds were screened in search of orthosteric

compounds to the WT PZase using molecular docking technique. DrugBank contains information

on millions of drugs and their target sites, their clinical and drug repurposing trials (Wishart et al,

2018).

2.2.2 Molecular docking

In order to identify novel ligand compounds, prediction and interpretation of ligand binding modes

is vital. A well developed technique that accomplishes this is molecular docking, which predicts and

identifies the best ligand orientation to a protein molecule counterpart. It is an important technique

because it reduces time and cost to design novel pharmaceutical drugs. The main goals of molecular

docking are prediction of pose, virtual screening and estimation of binding affinity (Guedes et al.,

2014). The first algorithm for molecular docking was developed by Kuntz et al (1982), which was a

fully rigid docking technique. According to (Salmaso and Moro, 2018), docking methods can be

grouped based on the molecules degree of flexibility (Pagadala et al., 2017).

2.2.2.1 Molecular docking algorithms

Molecular docking process has two distinct steps which are orientation sampling and scoring

function. The sampling process searches conformational space while the scoring function associates

the bound conformation to the global minimum energy. One type of sampling method is rigid

docking, in which both proteins and ligands are treated as rigid molecules. This is based on the key-

lock model and is mainly done in protein-protein docking where there are infinite conformational

changes to sample. Semi-flexible docking however considers the ligand as flexible and protein as

rigid. This samples the conformational changes of the ligand while maintaining the protein
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conformation (Salmaso and Moro, 2018). The third method is flexible docking, which treats both

ligand and protein molecules as flexible entities (Salmaso and Moro, 2018). This method is

computationally expensive and thus techniques with a balance in accuracy and speed are preferred.

Majority of the algorithms consider the protein rigid, that is, allow the bond to rotate yet prohibiting

bond angle and lengths (Guedes et al., 2014).

The goal of the scoring function is to determine poses in the sampling engine and distinguish

correct binding poses from non-binding modes (Salmaso and Moro, 2018). The scoring functions

are divided into three main groups which are Empirical (such as GlideScore and LUDI), Knowledge

based (DrugScore and GOLD/ASP) and Force-field based (AutoDOCK) scoring functions (Salmaso

and Moro, 2018). The force-field based programs approximate the systems energy by calculating

the bonded and non-bonded components as by Lennard-Jones and Coulomb function while the

Knowledge-based are based on that the ligand-protein interactions are correlated with favourable

interactions (Salmaso and Moro, 2018). Other scoring functions employ algorithms from more than

one group to develop a multi-phase approach with better scoring, an example is AutoDOCK4 which

is a semi-empirical function (Huey et al., 2007). In this study, AutoDOCK4 was used to dock all the

ligand molecules to the wild type PZase protein.

2.2.2.2 AutoDOCK4

AutoDOCK is an automated molecular docking program that is computationally characterized by its

use of one CPU (Central Processing Unit) core during execution (Santos-Martins et al., 2019). Its

semi-empirical scoring function is made up of a force-field that calculates hydrogen bonding,

repulsion, desolvation and electrostatics (Morris et al., 2009). The program has two main
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algorithms, which are Autogrid4 and AutoDOCK4 (Morris et al., 2009; Lokesh and Kannbiran,

2016).

In AutoDOCK, intermolecular (ligand and target) interactions are calculated based on the search

parameters defined by the user. These intermolecular interactions are calculated using the Autogrid4

program that creates energy maps for all the amino acids in the defined search area (Santos-Martins

et al., 2019). AutoDOCK4 then calculates the interactions of the ligand to the amino acids using

AMBER force field and linear regression approaches. It provides an option to treat the target as

rigid or flexible while automatically determining the ligand’s flexibility on rotatable and non-

rotatable bonds (Lokesh and Kannbiran, 2016).

Ligand poses are generated using the Lamarckian Genetic Algorithm (LGA) which employs a

global and local search in genetic algorithms (Santos-Martins et al., 2019). Execution for ligand

pose search is terminated when either the given score evaluations or GA generations are met. The

ligand pose results are then clustered based on root mean square deviation (RMSD), where

generally, if the first cluster has at least 20% of the ligand poses, the search process is considered a

success (Santos-Martins et al., 2019). The binding error found in AutoDOCK4 is approximately 2.5

kcal/mol (Morris et al., 2009; Lokesh and Kannbiran, 2016).

2.3 METHODOLOGY

The flow chart below (Figure 2.1) shows the overall procedure applied to successfully dock and

select novel hit compounds. The key steps taken include data retrieval, protein-ligand docking
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preparations, setting docking parameters, screening and identifying successfully docked orthosteric

compounds.

Figure 2.1: Overall applied molecular docking steps, tools and techniques. The docking simulation
was perfomed using AutoDOCK 4.2 algorithm. Arrows show the flow of the procedure.

2.3.1 Data retrieval

Due to no available co-crystallized PZase-PZA complex structure in Protein Data Bank (PDB),

homology modelling technique was applied to generate a complex structure as described in the

study by Sheik Amamuddy et al., (2020). The PZase-PZA complex was provided by the previous

group (Sheik Amamuddy et al., 2020). The protein’s PDB ID is 3PL1 (Petrella et al., 2011). It is an

X-ray diffractioned structure with no co-crystallized molecules obtained at 2.20Å resolution having

an R-Value Free of 0.240. A data-set of minimized 2089 DrugBank compounds were also provided

by Sheik Amamuddy et al., (2020), who prepared using an in house built script incorporating RDkit

tool (Landrum, 2006).
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2.3.2 PZase protonation

According to Zhang et al., (2008), PZase is active at a pH of 7.0, therefore in this study, the

modelled structure was protonated at pH 7 using the webserver

(https://server.poissonboltzmann.org/pdb2pqr) (Dolinsky et al, 2004). The protonation states were

assigned using PROPKA with the pH set at 7.0. AMBER force field was used as the output naming

scheme. Additional selected options were to avoid rebuild of atoms close to existing ones, optimize

hydrogen bonding, create an APBS input file and to keep chain IDs in the output file. One key

option was not to remove waters from the output file, since there are two crucial water molecules

involved in stabilizing the metal binding site. The created .pqr file was edited by adding Iron and

renaming the water molecules.

2.3.3 Protein and compound preparation

The protein was prepared for docking using the Python command (prepare_receptor4.py -r ‘name

of receptor’) in AutoDOCKTools/Utilities24 by adding hydrogens and gasteiger charges. The

Gasteiger-Huckel method computed the assigning of charges. Non polar hydrogens were mergerd

and AutoDOCK atom types were assigned. The output modified file was saved as a .pdbqt file.

Since the waters on position 220 and 221 and the Iron metal are required for the functioning of the

protein, the water molecules were retained and the metal ion was concatenated to the output file

with its charge manually edited to +2.000. The control ligand, PZA was prepared using the Python

command (prepare_ligand4.py -l ‘name of ligands’) which added gasteiger charges, hydrogens and

torsions, merged non-polar hydrogens, detected aromatic carbons and rotatable bonds and saved the

modified output file in a .pdbqt format. All the 2089 DrugBank compounds were prepared in a



32

similar manner to PZA and they were provided by the previous group (Sheik Amamuddy et al.,

2020).

2.3.4 Docking parameters

Blind docking was done using AutoDOCK (ADT) version 4.2 on all 2089 DrugBank compounds

and PZA (as a control) against the PZase enzyme in a Linux based cluster, YODA. The parameters

were set in ADT (version 1.5.6). Grid box size was set to cover the whole protein with 110Å in all

x,y,z directions (Figure 2.2 a). The grid center box spacing was set to 0.375Å while the x,y,z centers

were set to 9.88, -26.60 and 0.35 respectively (Figure 2.2 b). LGA was used to search for 100

conformations with the maximum number of generations at 27 000 and energy evaluations at 450

000. The semi empirical scoring algorithm calculated the interaction energies. All compounds were

docked using the above mentioned parameters and tools. The best poses were selected based on

largest cluster and lowest energy, hydrogen bonds and center of mass distance (active site

proximity).
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Figure 2.2: Molecular docking box size covering whole protein as used in blind docking. a)
Visualized grid box dimensions viewed in AutoDOCK Tools. The protein is represented as an
orange surface while its center is marked by a yellow line. b) The spacing, x,y,z centers and
dimension parameters assigned to obtain the required box size. All x,y,z dimensions are colour co-
ordinated as red, green and blue respectively.

2.3.5 Initial docking validation

In order to validate the set parameters and the ability of AutoDOCK 4.2 to reproduce the correct

poses, the prepared PZA ligand was docked on to PZase using the above mentioned docking

parameters. Due to the absence of a co-crystallized PZA-PZase complex, the obtained pose and

interactions were compared to those obtained by Sheik Amamuddy et al., (2020). Ligand pose and

residues interactions were visualized in BIOVIADiscovery Studio Visualizer and PyMOL.
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2.3.6 Criteria for compound selection

Python scripts were used on the resultant files containing the ligand binding energies to separate

and extract the best ligand pose based on lowest energy and/or largest cluster. The docking scores

predicts the binding potential of the ligand to the target molecule. From the extracted ligands,

selection was done based on (i) lowest binding energy, which is the minimum energy required to

destabilize system particles, (ii) the presence of conventional hydrogen bonds, (iii) compound size

and iv) compound proximity to the active site, which allows for ligand interaction with active site

residues.

Proximity of the ligand to the active site was calculated using the center of mass by applying

Equation 1 below in a Python script. The Euclidean distance cut off was set at 8Å. The selected

ligands were further screened using a cut off binding energy ≤ -7.0 kcal/mol, molecular weight ≤

500g/mol and having at least one conventional hydrogen bond with residues in the active pocket.

All selected ligands were further subjected for further stability analysis (Chapter 3).

Equation 1: The Euclidean equation used in the calculation of the center of mass distance. From
this equation, x1, y1, and z1 represent the coordinates of the active site and x2, y2, and z2 represent
the central point of each ligand.
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2.4 RESULTS AND DISCUSSION

The docking procedure was completed in three distinct steps. The steps were (i) docking validation

by referencing PZA interactions (ii) blind docking of 2089 DrugBank compounds against PZase

and (iii) virtual screening, identification and visualization of the successfully docked potential

compounds.

2.4.1 Docking validation

Docking validation was done to determine the reproducibility of the results and to validate the

docking parameters used. The redocked PZA best ligand was selected based on the ability to mimic

the pose and interactions exhibited by that obtained from Sheik Amamuddy et al., (2020). The PZA

pose with binding energy of -4.12 kcal/mol had the best pose. Its interactions with the protein were

visualized in PyMOL and BIOVIA Discovery Studio Visualizer. The refRSMD was 0.6 which

indicates the difference between the expected outcome and the exhibited pose. A low value shows

less divergence from the expected pose.

Figure 2.3 shows the superimposed 3D of the redocked ligand with the expected PZA pose and

interactions. The redocked ligand in this study (Figure 2.3 c) exhibited a similar pose with that

obtained from the previous study (Figure 2.3 b). All the interactions were similar except for Trp68

that interacted with a Pi-Pi bond instead of van der Waal interaction. The key interactions are the

four conventional hydrogen bonds, out of which two were with the active site residues, Asp8 and

Cys138. The conventional hydrogen bonds were formed by the PZA carbonyl oxygen with Ala134

and Cys138 while its amide hydrogens interacted with Ile133 and Asp8. The ligand also formed a

water hydrogen bond with H2O220, crucial for the hydrolytic activation of the prodrug PZA. Some
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active site residues(Lys96, Asp49) and metal binding site residue (His71), iron (Fe2+ 188) and other

proximal residues (Leu19, Phe13, His137, Val7) interacted via van der Waal forces of attraction.

Figure 2.3: Docking validation of PZA on wild type PZase (wheat cartoon and surface). a)
Visualization of superimposed redocked PZA structures from this study (blue) against the redocked
pose from Sheik Amamuddy et al., 2020 (red) as visualized in PyMOL. The active site residues are
represented in green, Fe2+ metal in orange and the water molecules as cyan spheres. The 2D
interactions of the redocked PZA against PZAse b) from the reference study by Sheik Amamuddy et
al., 2020 and c) from this study, as visualized in BIOVIADiscovery Studio Visualizer.

2.4.2 Blind docking screening

Since the redocking parameters exhibited the desired pose and key interactions, 2089 DrugBank

compounds were docked against the WT PZase protein. Screening was done using various ad hoc

Python scripts. After extracting the lowest energy and/or highest cluster poses, further compound

screening was done by selecting ligands that passed the 4 selection criteria of binding energy ≤ -7.0
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kcal/mol, Euclidean distance ≤ 8 Å, molecular weight ≤ 500 g/mol and having at least one

conventional hydrogen bond with proximal amino acid residues (Figure 2.4).

Figure 2.4: Systematic order summarizing the flow of blind docking compound selection. Ligand
filtering was done in 5 stages to extract and identify the best docked DrugBank compounds.

The lowest energy and/or largest cluster poses were both selected in order to reduce bias on

selecting ligand poses. The lowest energy poses have higher binding affinity which means that the

ligand is more stably bound to the receptor compared to those with higher molecular docking energy.

However, the lowest energy cluster might have few conformations and exhibit less reproducibility

in the cluster. The largest cluster ligand poses thus counteract this bias by representing the cluster

with the highest pose reproducibility, regardless of not falling in the lowest energy cluster. Ideally,

the best ligand poses would be those having the lowest energy while also falling in the largest

cluster. Thus, in this study, in cases where the largest cluster pose was not in the lowest energy

cluster, both poses were extracted and manually analysed to identify the best pose exhibiting the

desired key interactions. Appendix 1 shows an example of compound DB11793 in which the largest

cluster pose was not the lowest energy pose. In that instance (Appendix 1), both poses were

extracted and selection of the best pose was made after visualizing and further analysis. For this

ligand, the largest cluster conformation was selected over the lowest energy pose. The cut off

binding energy was set at most -7 kcal/mol, to increase the chances of extracting ligands with high
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receptor-ligand stability. The Euclidean 8 Å COM distance was to selectively identify compounds

within the active site pocket, increasing the probability of forming molecular bonds with some key

active site residues, hence the additional screening criteria of at least one conventional hydrogen

bond.

2.4.2.1 Blind docking outcome

Figure 2.5: Blind docking screening of the 2089 DrugBank compounds against wild type PZase
(wheat surface) a) Lowest energy and highest cluster ligand poses. b) Hit compounds (93 ligands)
on the active pocket of PZase with the active site residues highlighted in green.

Extraction of lowest energy and/or largest cluster ligand poses resulted in potential 3516 ligand

poses from the 2089 docked compounds. After the screening process, a total of 93 ligands passed

the selection criteria. Figure 2.5 (a) shows the 3516 compound poses covering majority of the

protein, with majority of the ligands binding around the catalytic pocket (the top parts of the

protein). The down surface sites of the protein were hardly bound to a ligand Figure 2.5 (a). This
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could be due to the presence of bigger binding pockets around this receptor’s surface area (top parts

of the protein, Figure 2.5 a) compared to the almost empty regions (down area). The compounds

that met all the criteria are shown in Figure 2.5 (b), bound within the catalytic cleft with the active

site residues highlighted green.

From the potential 93 ligands (Figure 2.5 (b)), after 2D visualization of the compounds (discussed

under Section 2.4.3) and initial molecular dynamics stability simulation analysis (further explained

in Chapter 3, Section 3.4.1), 47 ligands were identified and selected as the best docked drug

compounds with their binding energies, Euclidean distance, number of conventional hydrogen

bonds and molecular weights summarized in Figure 2.6.

In Figure 2.6 (a), binding energies are colour coordinated with the highest energy being illustrated

by a dark colour (black) fading to the lowest energy of light colour (white). A lower binding energy

represents high binding affinity which signifies better receptor-ligand stability. The control PZA had

the highest binding energy of -4.12 kcal/mol as indicated by the colour black. All the compounds

had binding energy lower than -7 kcal/mol as set off during the screening process, and thus can be

deduced that they had better affinity to the receptor compared to PZA. The lowest binding energy

was exhibited by compounds DB13943 (-9.84 kcal/mol) and DB00878 (-9.12 kcal/mol),

represented with white and lightest yellow colours respectively. A few other DrugBank compounds

(DB13953, DB13952, DB09132, DB06414, DB01623, DB01104, DB01058, DB00952, DB00655,

DB00606, DB00146) ranged below -8 kcal/mol but not above -9 kcal/mol. The rest of the

compounds had their energies in the red colour range of approximately -7 kcal/mol.
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Figure 2.6: Characteristic heatmaps of the selected 47 compounds in reference to the control PZA. a)
Docking binding energies of the ligands ranging from -4 kcal/mol for the PZA and the rest of the
compounds below -7 kcal/mol. b) Euclidean distances of the ligands, all ligands within 8 Å. c) The
number of hydrogen bonds formed between ligand and protein. d) The calculated compound
molecular weight values.

Proximity of the ligand to the catalytic cleft allows for the formation of strong molecular

interactions between the receptor active site residues and the ligand. Compound DB09123 and

b)

c) d)

a)
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DB01120 were the closest with distance 2.85 Å and 3.81 Å respectively. These compounds would

therefore be expected to have stronger bond formation with the protein. However, Figure 2.6 (c)

shows that the ligands only formed one hydrogen bond (the strongest molecular bond) with the

receptor. While the furthest compound DB00878 (7.85 Å; Figure 2.6 b) formed two hydrogen

bonds. All the other selected compounds were within the 8 Å distance (Figure 2.6 b) of the set

protein center (x=9.88, y=-26.60, z=0.35; Figure 2.2) and formed at least one hydrogen bond

(Figure 2.6 c). PZA had the highest number of hydrogen bonds (four), followed by compounds

(DB11560, DB06292, DB00977, DB00672) with three hydrogen bonds. Analysis based on these

two criteria show that proximity of the ligand does not guarantee formation of many hydrogen

bonds but however only provides higher chances for interactions (Chapter 2, Section 2.4.3).

All the selected compounds had molecular weight less than 500g/mol. PZA had the smallest weight

of 123.11g/mol represented by the yellow colour, followed by DB00498 (212.16 g/mol) (Figure 2.6

d). The biggest molecules were DB00878 and DB09143 with molecular weight of 485.29 and

460.30 g/mol respectively. Majority of the ligands were in the range 200 to 400g/mol Figure 2.6 (d).

2.4.3 Protein-ligand interactions

Interactions between the hit compounds and the protein residues were analyzed using BIOVIA

Discovery Studio Visualiser. Due to the 8 Å cut-off distance used in selecting ligands, majority of

compounds formed similar molecular bond interactions while a few had unique interactions (Figure

2.7). The most proximal compounds (DB09123 and DB01120; Figure 2.6 b) were expected to

exhibit more molecular interactions. However, there was no distinct difference with other

compounds (DB00977, DB00783, DB00672, DB00255) with average Euclidean distance including

the furthest compound DB00878. Each ligand formed at least one conventional hydrogen bond with
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receptor residues, one of the main stabilizing forces in molecular structures which also play a key

role in dynamic processes (Alapour et al., 2017). Key conventional hydrogen bonds between PZA

and receptor formed with active site residues Cys138 and Asp8 (Chapter 2, Figure 2.3 c). Similar

interactions were exhibited by compounds (DB00180, DB00255, DB00498, DB00606, DB00776,

DB00821, DB00952, DB01058, DB01120, DB01124, DB01178, DB01322, DB04573, DB06725,

DB08971, DB08981, DB09096, DB09123, DB09355, DB09495, DB11181, DB11817, DB13657,

DB13943) while others formed the bond with other residues in proximity. Compounds (DB09335,

DB9495, DB11181, DB12020, DB13867) also formed a conventional hydrogen bond with the

active site residue Lys96, which stabilizes the enzyme while majority interacted with Lys96 through

van der Waal forces.

DB00146 DB00180 DB00255 DB00457

DB00498 DB00606 DB00655 DB00672 DB00678

DB00776 DB00783 DB00821 DB00878 DB00952

DB00338
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DB00977 DB01058 DB01104 DB01120 DB01124

DB01178 DB01196 DB01322 DB01623 DB04573

DB06292 DB06414 DB06725 DB08971 DB08981

DB09096 DB09123 DB09143 DB09355 DB09495

DB11181 DB11560 DB11672 DB11760 DB11817
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DB12020 DB13657 DB13867 DB13943 DB13952

DB13953 DB14033 KEY :

Figure 2.7: Discovery Studio 2D visualization of the 47 best docked DrugBank compounds against
PZase. The colour key represents the different bonds formed within each complex. The ligand is
represented as balls and sticks while the receptor residues are disc shaped.

Just as PZA formed a water hydrogen bond with H2O220, some compounds (DB00146, DB00338,

DB00498, DB00606, DB00655, DB00672, DB00776, DB01058, DB01120, DB01124, DB01178,

DB01196, DB04573, DB09096, DB09143, DB09355, DB09495, DB11181, DB11560, DB11817,

DB12020, DB13657, DB13867, DB13953, DB14033) also had a similar bond. This water hydrogen

bond is crucial in PZA compounds as it activates the compound by hydrolysis, thus a similar

mechanism may be expected to occur in these other compounds, an aspect that can be studied in the

future to understand the mechanism of successfully selected hit compounds. Compounds DB00338,
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DB00678, DB04573 formed unfavourable donor-donor interactions with Ala134, H20220 and

Ile133 residues respectively.

Other intermolecular interactions that were formed are pi (π) interactions, which are noncovalent

bonds that can occur with other π systems, metals or anions (represented by the purple colour).

These interactions can be used in recognition of protein-ligand complexes and also increases their

binding stability (Meyer et al., 2003). Majority of the receptor residues interacted through van der

Waal forces of attraction represented by the light green colour. A few other systems (DB13867,

DB12020, DB11760, DB11560, DB11181, DB09143, DB08971) had halogen bonds (cyan colour)

with Bromine, lodine, Fluorine or Chlorine ligand atoms. The colour key shows other respective

bonds (sulfur-X, alkyl, π-sigma, π-sulfur, π-alkyl, π-lone pair, π-donor hydrogen, amide-π,

attractive charge, carbon hydrogen) formed between the docked compounds and the protein

receptor.

2.4.4 Pharmacology of the hit compounds

Since the identified 47 potential anti-TB compounds are approved drugs already in use or under

clinical investigation, their current medicinal uses were searched and tabulated in the table below

(Table 2.1). From this table, generally, majority of the drugs are used in the treatment of

hypertension (DB00457, DB00606, DB00678), manage menopause disorders (DB00255, DB00655,

DB00783, DB00977, DB04573, DB09123, DB13952, DB13953), inflammations (DB00180,

DB00878, DB06725, DB08971, DB08981, DB13867) and non-insulin-dependent diabetes mellitus

(DB00672, DB01120, DB06292) among many other disease conditions. Since all these compounds
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successfully bound to PZase active site, it implies that they may be subjected for further tests which

may eventually lead to their repurposing for TB therapy.

Table 2. 1: Summary of general clinical uses of the selected 47 hit compound. The compound
names and uses are from the DrugBank online database (www.DrugBank.ca).

Compound Use

ID Name

DB00146 Calcifediol Used in the treatment of rickets and osteomalacia

DB00180 Flunisolide It is an anti-inflammatory for the treatment of
allergic rhinitis

DB00255 Diethylstilbestrol Synthetic nonsteroidal estrogen for treating
menopause and postmenopause disorders

DB00338 Omeprazole Treat gastric acid disorders like peptic ulcer
diseaseand gastroesophageal reflux disease

DB00457 Prazosin Treatment of hypertension and controlling post-
traumatic stress disorders

DB00498 Phenindione It is used as an anticoagulant for the treatment of
pulmonary and cerebral embolism and mural
thrombosis

DB00606 Cyclothiazide Used in therapy of hypertension and edema
associated with hepatic cirrhosis or congestive heart
failure

DB00655 Estrone Managemnet of peri- and post-menopausal
symptoms

DB00672 Chlorpropamide Treats non-insulin-dependent diabetes mellitus

DB00678 Losartan Treament of hypertension

DB00776 Oxcarbazepine Anti-epileptic medication for

treatment of partial onset seizures

DB00783 Estradiol Supplement estrogen amounts such as vulvovaginal
atrophy and hot flashes

DB00821 Carprofen Reduces arthritic symptoms in geriatric dogs

DB00878 Chlorhexidine Antiseptic, and treats dental inflammatory
conditions.
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DB00952 Naratriptan Treatment of migraine headaches.

DB00977 Ethinylestradiol Used as contraceptive pills

DB01058 Praziquantel Used in schistosome and many cestode infestations.

DB01104 Sertraline Functions as an antidepressant

DB01120 Gliclazide Treats non-insulin-dependent diabetes mellitus

DB01124 Tolbutamide Used for the treatment of non-insulin-dependent
diabetes mellitus

DB01178 Chlormezanone Used in management of anxiety

DB01196 Estramustine Used to treat prostatic neoplasms

DB01322 Kava -

DB01623 Thiothixene Used as an antipsychotic agent for management of
schizophrenia.

DB04573 Estriol Menopausal and Postmenopausal Disorders and
determine the general health of an unborn fetus.

DB06292 Dapagliflozin Managing diabetes mellitus type 2

DB06414 Etravirine Treatment of human immunodeficiency virus type 1
(HIV-1) infection

DB06725 Lornoxicam Treats pain and inflammation of the joints.

DB08971 Fluocortolone Anti-inflammatory drug for various skin disorders

DB08981 Fenbufen Non-steroidal anti-inflammatory drug for
inflammation treatment and backaches, sprains and
fractures.

DB09096 Benzoyl peroxide Treatment for acne and bleaching hair and teeth
whitening

DB09123 Dienogest It is used as a contraceptive

DB09143 Sonidegib Anti-cancer agent for treatment of basal cell
carcinoma.

DB09355 Sulfabenzamide Antimicrobial agent for intravaginal infections

DB09495 Avobenzone -

DB11181 Homatropine Anticholinergic drug for induction of mydriasis in
ophthalmic solutions.

DB11560 Lesinurad treatment of hyperuricemia associated with gout

DB11672 Curcumin It has antibacterial, anti-inflammatory,

https://go.drugbank.com/indications/DBCOND0058539
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hypoglycemic, antioxidant, wound-healing, and
antimicrobial activities used in care clinical
conditions

DB11760 Talazoparib Used in germline BRCA mutated, HER2 negative

DB11817 Baricitinib Treatment of rheumatoid arthritis in adults.

DB12020 Tecovirimat Treatment of smallpox

DB13657 Benorilate -

DB13867 Fluticasone Treatments for various inflammatory indication,
nonallergic rhinitis

DB13943 Testosterone cypionate Supplement deficiency or absence of endogenous
testosterone

DB13952 Estradiol acetate Pro-drug ester of Estradiol used in oestrogen
hormone balancing

DB13953 Estradiol benzoate Treating menopause and postmenopause disorders

DB14033 Acetyl sulfisoxazole Antibiotic to treat acute otitis media

2.5 CONCLUSION

In order to achieve the set objective for this chapter, 2089 DrugBank compounds were docked using

AutoDOCK4. The whole protein (blind docking) was subjected to all DrugBank compounds

(Figure 2.2 a) after validation of the docking parameters by referencing the pose and molecular

interactions of the control, PZA, obtained by Sheik Amamuddy et al., 2020 (Figure 2.3 b) with

those obtained in this chapter (Figure 2.3 c). From the blind docking, several ligands were

positioned in the active site as well as other sites. These other docked sites (other than the active site)

where the compounds were located might be allosteric sites and can be further studied and

analysed.The specific selection parameters for each ligand were summarised on (Figure 2.6). The

selected 47 compounds had the highest binding affinity to the PZase active site and also had the

most interactions with the active pocket residues. These two characteristics implies that the ligand

will be stably bound to the active cleft and thus less likely to exit during protein dynamics. This

screening approach is significant as it allows for best potentially bound compounds with strong

https://go.drugbank.com/drugs/DB00783
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intermolecular interactions to be identified.

The current clinical use of the hit compounds is summarized in Table 2.1. Majority of these

compounds are currently approved drugs in the treatment of hypertension, inflammation, diabetes

and menopause disorders. All the identified 47 compounds may potentially be repurposed as anti-

TB drugs and can be further investigated on their mode of action, in molecular dynamic simulations

and other stability check methods.
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CHAPTER THREE

3. WILD TYPE - MOLECULAR DYNAMICS

3.1. CHAPTER OVERVIEW

Protein-protein or protein-ligand interactions influences the protein’s stability and dynamic

processes. The use of techniques such as Molecular Dynamic (MD) simulations have been

employed to study the dynamics of protein complexes as a function of time, analyzing their

interactions and flexibility behaviours. In this chapter, all-atom MD simulations was performed on

the WT Pyrazinamidase-ligand complexes and the dynamics of the selected hit DrugBank

compounds from Chapter 2 in each system were analyzed. The 93 compounds from blind docking

screening were subjected to short MD simulations of 20 ns after which the stable compounds were

subjected for longer MD runs of 150 ns. A total of 142 MD runs were performed (93 runs for 20 ns

and 48 runs for 150 ns). PZase-PZA system was used as the control. Due to the presence of the iron

metal, the AMBER force-field was used to calculate forces that act on the metal binding site. The

output files were converted to GROMACS (using GROMACS v2018) compatibles using tLeap and

ACPYPE algorithms. All systems were subjected to energy minimization, equilibration and finally

the MD run set for 150ns at 2fs on Centre for High Performance Computing (CHPC) cluster using

GROMACS v2016. The protein-ligand dynamic trajectories were analysed using the gmx tools for

Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), gyration and

hydrogen bonds. Ligands that remained stable throughout the simulation period were identified and

subjected for further analytical tests.
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3.2 INTRODUCTION

3.2.1 Protein dynamics

Nucleic acids and proteins are dynamic entities, their behaviour in the presence of environmental

forces play a significant role in their functionality (Karplus and Kuriyan, 2005; Hospital et al,.2015).

Majority of proteins are unfolded in the absence of ligands, however, in the presence of other

molecules or environmental changes, their structures undergo conformational changes. Among

many other theoretical methods, MD simulations are one of the most powerful developed

techniques to understand the relationship between structure and biological function of

macromolecules (Rueda et al., 2007). These simulations give details on the vital conformational

changes and structural rearrangements made when macromolecules form complexes with other

molecules (Hospital et al., 2015, Junaid et al., 2020). MDs treat all entities in the simulation system

as flexible entities and give their dynamic behaviour as a function of time (Salmaso and Moro,

2018). These simulations can provide insight on ligand binding and protein folding, mutations,

protonation and phosphorylation (Karplus and Kuriyan, 2005; Hollingsworth and Dror, 2018). It is

a key aspect in the study of biomolecules as it provides important information on the molecules

dynamics at different time scales (Shaw et al., 2009).

Since the establishment of the first MD simulation of simple gasses (Alder and Wainwright, 1957)

and protein MD of 9.2 ps by McCammon et al (1977), there has been great advancement in MD

algorithms that cover long time scales of up to a millisecond where major critical phenomena occur,

providing details that are inaccessible in experimental studies (Shaw et al., 2009; Hollingsworth and

Dror, 2018). MD algorithms of fine-tuning energy calculations and graphical processing units (GPU)

have enabled simulation of systems with better biological relevance through the use of

HighPerformance Computing (HPC) computer facilities (Shaw et al., 2009; Hospital et al, 2015).
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3.2.2 Simulation parameters

Molecular mechanics uses the laws of classical mechanics to counteract computational cost required

in quantum mechanical calculations (Vanommeslaeghe et al., 2014). In each MD system, positions

and velocities of the atoms are calculated using classical mechanics, where Newtons second law

(motion equation) is employed to calculate the systems time evolution. In order to accurately solve

the motion equation, a time-step smaller than the fastest time scale in the system has to be used to

avoid unstable and atomic collisions which results in rapid rise in energy and forces. A time-step of

1 fs is often used in classical systems with fastest motion being bond vibrations while a 2fs time-

step is used in simulations with altered lengths of covalent bonds (Hospital et al., 2015; Weiergräber

et al., 2017). A smaller timestep is advised because majority of biochemical structural changes

occur at nanoseconds or microseconds timescales (Hollingsworth and Dror, 2018). Larger time-

steps can be used to accommodate longer simulation periods, however, these result in less accurate

simulation ensembles (Hospital et al., 2015).

The motion equation is also based on that the system has to conserve its total energy based on the

NVE ensemble of constant number of atoms (N), volume (V) and energy (E). However, in

experimental systems, temperature causes fluctuations in total energies. Therefore during MD

simulations, kinetic energy of the system is controlled to desired temperature (T), room temperature

(298K) or physiological temperature (310K), using the NVT ensemble while pressure (P) is

maintained at 1 bar using the NPT ensemble (Weiergräber et al., 2017). Periodic boundary

conditions are used to prevent the system from having unexpected borders in a vacuum and to

create an infinite system by replicating the polyhedron shape (Weiergräber et al., 2017).
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3.2.3 Force fields

Calculation of the protein model is carried out in the presence of one empirical potential, known as

molecular mechanics force fields (FF). These force fields represent protein conformations by fitting

their parameters to the calculations of quantum mechanics and small molecules experimental

properties (Weiergräber et al., 2017; Hollingsworth and Dror, 2018). In each FF, electrostatic

interactions, bond length and other interatomic interactions are incorporated. Some of the mostly

used force-fields include AMBER (Assisted Model Building with Energy Refinement) (Case et al.,

2005), CHARMM (Brooks et al., 1983), NAMD (Phillips et al., 2005), GROMACS (Groningen

Machine for Chemical Simulations) (Pronk et al., 2013) and OPLS (Jorgensen et al., 1996). These

force fields differ in the way they are parameterized, thus not all FFs represent all types of

molecules (Hospital et al, 2015). In this study, the AMBER and GROMACS (GROMACS v2016.4)

force fields were used to study the simulation of the protein complexes.

3.2.3.1 GROMACS

GROMACS is an open source and free software widely used in the study of biomolecule dynamic

simulations. This force field uses a set of equations describing time evolution of torsions, bond

angles and lengths, electrostatic and van der Waal interactions between atoms. Completion of the

MD run generates a trajectory file (composed of information on the movement of atoms over the

simulation period) that can be analysed using the gmx commands and tools for the systems. The

goal of the FF is to have the highest absolute efficiency on any hardware and to provide high

realworld throughput (Karplus and Kuriyan, 2005; Abraham et al, 2015). The system can be used in

parallel using Message Passing Interface (MPI) or threads as a results of its flexibility accounted for

by support from different force fields.
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3.2.3.2 AMBER

AMBER is also a biomolecular dynamic simulation force-field which requires the parameter values

such as force constants, charges, bond lengths and angles. Each parameter is specific for the

different types of molecules like peptides, proteins, nucleic acids, carbohydrates, lipids and small

organic molecules (Dickson et al., 2014). For the modeling of proteins, the primary FF used is

ff14SB (Maier et al., 2015), this FF was therefore used in this study for modeling PZase. A set of

programs like LEaP, MM-PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area), NAB

(for complex nucleic acids) and Antechamber among many others are incorporated in the AMBER

software. In this study, the LEaP (tleap) and Antechamber programs were used so as to prepare

input files for production calculations and parameterize small molecules using the General AMBER

Force Field (GAFF2) respectively.

3.2.4 Advantages and limitations of molecular dynamics

Difficulties in understanding protein dynamics in wet labs such as inconsistent results using

different experimental techniques and results that are difficult to interpret are encountered (Shaw et

al., 2009; Abraham et al., 2015). MD simulations can be used in linking with experimental data by

calculating experimental observables from MD data (Shaw et al., 2009). The current MD biological

modelling provides a better realistic environment by including ions, solvents and lipid membranes

(Weiergräber et al., 2017) and also account for flexibility and thermodynamics properties in the

systems (Hospital et al., 2015). It provides spatial and temporal resolution of data not observed in

laboratory experiments (Abraham et al., 2015). However, there is still room to improve the

representation standards, optimize analysis tools and create storage for the created huge trajectory



55

files. The lack of parameters for cofactors also challenge the use of force-fields in many simulations.

However, webservers such as ATB (Malde et al., 2011), ProDRG (van Aalten et al., 1996) and

ACPYPE (Sousa da Silva and Vranken, 2012) have been developed to bridge this gap.

3.3 METHODOLOGY

Summary of all the steps executed to successfully calculate acting forces, simulate biological

environmental conditions and analyze the obtained trajectories from the Molecular Dynamics

simulation (Figure 3.1).

Figure 3.1: Overall summary of the performed Molecular Dynamics simulation methods. The three
key steps are Force-field inferring, Molecular dynamics run and analysis obtained results

3.3.1 Inferring force fields parameters

Due to the presence of the cofactor Iron metal (Fe2+) that is crucial for the protein functionality,

there was need for a force-field that accounted for the ion. The coordinating MBS residues (H51,



56

H57, H71 and D49 including the Iron) forcefield parameters were provided by the previous group

(Sheik Amamuddy et al., 2020). The AMBER FF was used to perform all atoms MD simulation

(AMBER SQM V19) (Walker et al., 2008). The importance of all atom MD simulations is to study

and explore conformational flexibility and stability of protein and/or ligand systems (Musyoka et al,

2016).

3.3.2 MD simulation runs

3.3.2.1 Protein and ligand preparation

The WT PZase protein was protonated on H++ webserver (http://biophysics.cs.vt.edu/) at pH 7. The

other parameters were left at default of 0.15 salinity, 10 internal dielectric, 80 external dielectric and

no preparation of explicit solvent box topology/coordinate files (AMBER). The obtained topology

and coordinate files were concatenated to a pdb file using the ambpdb command.

An ad hoc Python script was used to reduce the ligand, delete extra hydrogens, rename the HIS and

ASP atoms to HID/HIE and AP1 respectively, correctly number all atoms, merge the protein, iron

and ligand coordinates files and execute tLeap and AMBER ACPYPE (antechamber Python parser

interface). tLeap and ACPYPE were used to infer parameters and import AMBER files to generate

GROMACS compatibles. The tLeap step solvated the system using TIP3P mode (Mahoney and

Jorgensen, 2000).
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3.3.2.2 Energy minimization

Energy minimization was done using the GROMACS (v2018) gmx mdrun to avoid steric clashes

that might have formed due to inappropriate geometry and/or addition of ions and water molecules.

This step was done so as to relax the system using the steepest descents method with a force

tolerance of 1000 kJ/mol/nm capped to an upper limit of 50 000 steps.

3.3.2.3 Equilibration

After minimization, the systems were equilibrated to mimic the biological environmental conditions

necessary for the functioning of the protein. Equilibration of temperature and pressure were done on

CHPC cluster. The temperature of the system was equilibrated using a constant number of particles,

volume and temperature (NVT) ensemble over a period of 100 ps at 300 K while pressure was

equilibrated at 50 000 steps for 100 ps at 1 atm using the NPT ensemble.

3.3.2.4 MD simulation

CHPC cluster was used for the dynamic simulations of the protein complexes using GROMACS

(gromacs/v2016). The initial 93 simulations were run for 20 ns at 2 fs timestep. From the 93

simulation systems, compounds that portrayed unimodal conformations (47 compounds) in the last

10 ns of the 20 ns simulation period were extended to 150 ns using the same timestep.

3.3.3 Post MD trajectory analysis

After completion of 150 ns MD simulations, the whole system was removed from the periodic

boundary conditions and centered using the MD trajectory analysis (trjconv) tool. Analysis of the
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trajectories were computed using Radius of gyration (Rg), hydrogen bond,RMSD and RMSF. The

dynamics of the systems throughout the simulation period were visualized in Visual Molecular

Dynamics (VMD) (Humphrey et al., 1996). The ad hoc analysis Python and R scripts used were

provided by the previous group (Sheik Amamuddy et al., 2020), the codes were edited to suit the

current data.

3.3.3.1 RMSD

RMSD measures the average distance between atoms of superimposed proteins. It is often used in

globular protein studies measuring similarities of alpha carbon atomic co-ordinates and molecular

configuration of ligands when bound to macromolecules (Zhao et al., 2015). To determine how each

ligand was behaving throughout the simulation, initial analysis of the ligand RMSD was done. The

ligands that portrayed stable and unimodal conformations were identified and reviewed in further

analysis. Alpha carbon RMSD was also computed. A Python script was used to create compatible R

data files which were analysed in R studio to generate a data frame for use in Jupyter Lab. The

RMSD data was then plotted as violin plots using Jupyter Lab.

3.3.3.2 RMSF

RMSF measures local chain flexibility by calculating the deviation of protein residues from the

averaged position of the particle over time (Zhao et al., 2015). To monitor the protein residues

motions in each system, RMSF was computed based on alpha carbon atoms using the GROMACS

rms command. A Python script was used to create compatible R data files which were analysed in R

studio to generate a data frame for use in Jupyter Lab. The RMSF data was then plotted as a heat

map in Jupyter Lab.
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3.3.3.3 Radius of gyration

Radius of Gyration measures the protein compactness by calculating the distance between protein

centre of mass and its terminals. A stably folded structure roughly maintains a steady Rg value. The

whole protein compactness and active site compactness were computed. Active site Rg was

computed by selecting residues interacting within 8 Å of the PZA ligand. The results were

represented as violin plots plotted in Jupyter Lab after the use of a Python script and R compatible

files in R studio.

3.3.3.4 Hydrogen bonding profiling

Since a hydrogen bond is one of the main stabilizing forces in molecular structures, the number of

present hydrogen bonds were computed throughout the simulation period using the GROMACS

gmx hbond command. Python scripts and R studio were used to extract and analyse the data while

Jupyter Lab was used to construct the hbond plot. To determine the precise residues that formed the

hbonds, the cpptraj4 command was used.

3.3.3.5 VMD visualization

Protein dynamics results were visualized on VMD, a tool used to animate and analyze trajectories

of MD simulations.

3.4 RESULTS AND DISCUSSION

Molecular Dynamic simulation on the WT PZase was successfully executed. The obtained data
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from the procedure was analyzed based on RMSD, RMSF, RoG, hydrogen bonds and the results

were represented as violin plots and heat maps.

3.4.1 Initial MD simulation

After successful docking and initial screening of active site hit compounds (Chapter 2, Section

2.4.2.1, Figure 2.5 b), the 93 identified compounds were subjected for further short stability check

through Molecular Dynamics. The initial step was to screen by analysing the behaviour of the

ligand within the last 10 ns of the 20 ns simulation period.

Figure 3.2 gives the ligand structural conformations based on RMSD values. RMSD values predicts

the deviation or average distance between any two points. PZA was set as the control (blue). It had

an RMSD value of approximately 0.2 nm and portrayed a thin distribution of a unimodal shape

ranging from around 0.1 to 0.3 nm. Since the ligand poses were selected based on largest cluster

and/or lowest energy (Chapter 2, Section 2.4.2), the compound naming had the suffix le for lowest

energy, lc for largest cluster and vs to indicate that the lowest energy cluster was also the largest

cluster. Ligands were selected based on compounds that had RMSD values less than or slightly

higher than that exhibited by PZA and also exhibiting unimodal conformations. The unimodal

conformation (represented by one peak) shows that the ligand conformed to a single conformation,

an indication of less fluctuation and more stability (Sheik Amamuddy et al., 2020). The selected

ligands are highlighted in yellow while the rejected compounds are highlighted in red (Figure 3.2).

From the selected group, majority of the compounds had RMSD values lower than 0.2 nm with

some of the best compounds (DB00498_le, DB00672_vs, DB00977_le, DB11760_le) being

distinctly below 0.1 nm. A few selected compounds (DB00457_le, DB00606_le, DB06292_le,

DB11560_le, DB12020_le, DB13867_le, DB14033_le) had RMSD values slightly higher than 0.2
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nm but however, exhibited the unimodal conformation. The ligands highlighted in red portrayed

higher RMSD values and/or multimodal conformations. Compounds DB00322_le, DB0125_le,

DB11750_le had RMSD values close to 0.8 nm with bimodal distributions. Visualization of these

systems in VMD showed a lot of fluctuations throughout the simulation. Thus, these ligands were

excluded as they were not stable and left the system at some point during the simulation.

Figure 3.2: Violin plots for Ligand RMSD of the last 10ns of the 20ns simulation period. The
control PZA in blue, selected stable compounds in yellow and rejected compounds in red.

3.4.2 Root Mean Square Deviation

Screening from the initial MD (20 ns simulation) analysis identified 47 ligand compounds set for an

extended simulation of 150 ns. RMSD calculations were done on both the ligand (Figure 3.3 a) and

backbone protein residues (Figure 3.3 b). Ligand RMSD calculation was crucial to understand the

behaviour of the ligand throughout the simulation, this was used as the basis to highlight potentially

stable systems.



62

Figure 3.3: Violin plots of a) Ligand RMSD and b) Protein backbone RMSD of the selected 47
compounds. PZA is in blue, potential hit compounds in yellow and excluded compounds in red.

After the 150 ns simulation period, ligand RMSD for PZA (Figure 3.3 a, blue) was around 0.2 nm

and the ligand exhibited a distinct unimodal conformation, predicting stability of the ligand

throughout the simulation. Not all the 47 ligands that passed the first 20 ns simulation (Figure 3.2)

exhibited unimodality and low RMSD value at the end of the 150 ns simulation. Compounds with

unimodal conformations and RMSD values close to that of PZA (0.2 nm) were selected as the

stable systems. Out of 47 ligands, only 13 compounds (DB00255, DB00655, DB00672, DB00782,

DB00977, DB01196, DB04573, DB06414, DB08981, DB11181, DB11760, DB13867, DB13952)

were identified (Figure 3.3, yellow) while the majority mainly had multimodal conformations

(DB00678, DB00776, DB00821, DB00878, DB01120, DB01124, DB09355, DB11560, DB12020,

DB13675, DB14033) or high RMSD values (DB01058, DB08971, DB09096, DB11762) as

highlighted in red.
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The systems backbone RMSD values had small differences as majority ranged between 0.1 nm and

0.2 nm. This provided less correlation between the ligand RMSD data with the backbone RMSD

data. PZA had a backbone RMSD value around 0.12 nm and the selected systems also exhibited

their RMSD values around that value. In some systems (DB00776, DB00878, DB01178, DB01322,

DB09096, DB11817, DB13657, DB13953), ligand RMSD plots portrayed bimodal conformation

but however exhibited unimodal conformation in backbone RMSD calculations while the opposite

occurred in systems like DB01623. This may be due to ligand fluctuations that did not have a great

impact on the protein backbone residues resulting in the system still obtaining a unimodal state

regardless of the ligand fluctuations.

3.4.3 Root Mean Square Fluctuation

The degree of protein-ligand complex fluctuations were analysed by calculating the deviation of the

protein residues from an average set position (RMSF). The calculation predicts the most and least

flexible residues throughout the simulation process. From Figure 3.4(a), a higher value (ranging

from 0.05 to 0.45 nm) shows more flexibility and it is represented by a dark colour on the heat map.

The system with PZA showed less fluctuations with the darkest colour ranging around 0.25 nm. In

PZA bound system, residues 34-41 had the most flexibility. The selected 13 compounds are marked

by an asterisk. Majority of these systems had similar flexibility trend to PZA except for DB00338,

DB13687 and DB13952 that displayed high flexibility on residues 98-102 that were not identified

in PZA and other selected systems. Across all the systems, the most fluctuating residues were

amino acids 14-17, 32-41, 52-54, 59-66, 98-102, 182-184. These residues were mapped on the

protein structure (Figure 3.4b), represented in red. From Figure 3.4(b), as expected, the highlighted
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areas are loop regions around the catalytic cleft and on the protein N-terminal. These loop area

regions form part of the side flaps that opens during ligand release (14-17, 32-41, 52-54, 59-66, 98-

102) and N-terminal (182-184) regions. The beta pleated sheets and alpha helices regions had less

flexibility represented by an orange colour. This shows that the protein’s secondary structure is

more stable and was less affected by ligand binding. The active site residues (8, 49, 51, 57, 71, 96,

138) were not affected by the fluctuations, signifying their stability for protein functionality.

Figure 3.4: RMSF analysis. a) A heat map showing the local residue fluctuations during the 150ns
simulation period across all hit compounds. A high RMSF value represents more flexibility. The 13
potential hit compounds are identified by an asterisk. b) Mapped fluctuating regions on the protein,
green spheres - active site residues, red - most fluctuating, orange- moderate fluctuating.

3.4.4 Radius of gyration

After deducing the most flexible regions, the protein’s compactness was analysed by computing
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radius of gyration on the whole protein complex system and active site area. This measure gives

insight on how closely the protein is packed. A lower Rg value shows more structural compactness

while a larger value indicates less compact. The lowest exhibited backbone Rg value on the selected

13 compounds was in DB00655 system similar to that of PZA (1.53 nm) (Figure 3.5a). The active

site compactness was also analysed (Figure 3.5b) where PZA system had the lowest value of 0.95

nm. Across all systems, in both active site and whole protein gyration analysis, unimodal

conformations were displayed, which generally shows close packing, except for DB01623 system

that displayed a bimodal shape. Generally, the systems Rg values are within a small range of 0.925-

1.100 nm in active site and 1.52-1.60 nm in whole protein gyration. Thus, there are extremely small

differences across the systems resulting in little conclusion and deduction based on gyration

analysis.

Figure 3.5: Radius of Gyration a) for the protein and b) active site residues within 8Å of PZA in the
catalytic cleft. PZA is in blue, selected potential hit compounds in yellow, compounds in red.



66

3.4.5 Hydrogen bonds

Throughout the MD simulation, multiple intermolecular interactions such as van der Waals, ionic,

pi and hydrogen bonds are formed among many other interactions. Since hydrogen bonds are one of

the main stabilizing forces in molecular structures, the number of hydrogen bonds present over the

period of 150 ns was counted (Figure 3.6). This analysis predicts that more hydrogen bonds tend to

make the receptor-ligand complex more stable since more energy is required to break the strong

bond.

The control PZA had a constant number of bonds throughout the simulation of about 2 to 3 bonds

and at some points formed 4 bonds (around 65 ns, 115 ns ,135 ns). Majority of the selected hit

compounds (identified by an asterisk) had at least one hydrogen bond. The most number of bonds

were formed in systems DB00783, DB04573 and DB08981 and great consistence was observed in

DB00255, DB06414, DB13867. Of the selected compounds, the least number of hydrogen bonds

were observed in DB00672 and DB11181 systems, however, these systems were selected as the

ligand RMSD analysis portrayed distinct unimodal and low RMSD values.

Other unselected systems (DB00457, DB00821, DB00878, DB01120, DB09143, DB09355,

DB13953) however had more hydrogen bonds compared to the selected hit compounds regardless

of showing bimodal or multimodal conformations and high ligand RMSD values (Figure 3.3).

Visualization of these systems showed that fluctuations of these ligands occurred within the

catalytic cleft and at no point left the system thus still maintained molecular bonding throughout the

simulation. However, in DB00498, DB01104, DB09096 and DB13943 systems, the ligand would

remain in the active site for the first 20 to 40 ns after which it was completely released from the
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system or takes a conformation position that does not allow the formation of hydrogen bonds.

Hence the total absence or sparsely presence of hydrogen bond until the end of the simulation,

respectively.

Figure 3.6: Number of hydrogen bonds throughout the 150 ns simulation period. The light colour
represent fewer bonds while a dark colour shows more hydrogen bonds at a specific time.

Figure 3.7 summarizes the hydrogen bonds between the ligand and amino acid residues within 8 Å

of the catalytic cleft center. The occupancy percentage values of these interactions are shown

corresponding to each residue. Occupancy values estimates the fraction of time at which the bond

occurred throughout the simulation (Helen et al., 2000). Thus, a higher value means the bond

occurred for a longer period. PZA had a total of 4 hydrogen bonds out of which 2 were with the
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active site residues (CYS138-3% and Asp8-70%). From the H bonds that were formed between the

ligands and the protein, majority of the ligands had high occupancy with Leu19 residue. The only

systems with hydrogen bonding with the active site residues were DB00672, DB11181 and

DB13867. The behaviour of the selected 13 compounds were further analyzed for stability in the

mutants structures.

Figure 3.7: Summary of hydrogen bonds formed throughout the 150 ns simulation. The interactions
were between the ligand and active site residues within 8 Å. The percentage occupancy values are
stated for each residue interaction (0-100%). The occupancy values are also colour ranked from
white-low to black-high.

3.4.6 Drug use and target site

Table 3.1 below gives the general overview on the uses and target sites of the selected compounds.

Out of the 13 compounds, 6 are estrogen steroid supplements (DB00255, DB00655, DB00783,
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DB00977, DB04573 and DB13952) that target estrogen receptors in the treatment of menopause

disorders. The other compounds generally treat inflammations, diabetes and HIV-1 infections. Mild

side effects like nausea, vomiting and rash are related with some of these drugs with extreme effects

being carcinogenic.

Table 3. 1: Summary of the uses and target sites of 13 identifiied stable DrugBank compounds in
WT PZase dynamic simulations.

Uses Compound ID
and name

Target area Side effetcts

Syntehtic or natural
estrogen steroid for
perimenopause,
menopause and
postmenopause
treatment

DB00255

Diethylstilbestrol

The drug targets the female
reproductive tract,
hypothalamus, pituitary and
mammary gland.

It binds to the Estrogen
Receptor (ER) including
ERα and ERβ subtypes,
located in tissues like
breasts, uterus, ovaries,
skin, prostate, bone, faf and
brain

It is a carcinogen

DB00655

Estrone

Nausea, breast
tenderness, edema,
poor contact lenses

DB00783

Estradiol

Breast cancer and
cardiovascular
related diseases

DB00977

Ethinylestradiol

No adverse effects
except risks of
thrombotis

DB04573

Estriol

--

DB13952

Estradiol acetate

Nausea and
vomiting, and
withdrawal bleeding
in women

Treatment of non-
insulin-dependent
diabetes mellitus

DB00672

Chlorpropamide

Stimulating β cells of the
pancreas to release insulin

May cause
hypoglycemia,
weight gain

Treatment of patients
with metastatic and/or
progressive carcinoma
of the prostate

DB01196

Estramustine

It is a combination of
estradiol with nitrogen that
alkylates DNA leading to
apoptosis.

--

Treatment of human
immunodeficiency
virus type 1 (HIV-1)

DB06414 Inhibits reverse
transcriptase enzyme of
HIV-1 and blocks DNA-

Rash, Nausea,
Diarrhea and
peripheral
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infection Etravirine and RNA-dependent
polymerase activity.

neuropathy

Treats inflammation DB08981

Fenbufen

Prevents cyclooxygenase
from producing
prostaglandins which cause
inflammation.

--

DB13867

Fluticasone

Activates glucocorticoid
receptors and inhibits lung
eosinophilia in rats

Adrenal suppression

Anticholinergic drug
for induction of
mydriasis in
ophthalmic solutions.

DB11181

Homatropine

Acts as an antagonist at
muscarinic acetylcholine
receptors

--

Used in germline
BRCA mutated, HER2
negative, advanced or
metastatic breast
cancer

DB11760

Talazoparib

Binds to and inhibits
PARP1 and PARP2 at the
NAD+ binding site

--

3.6 CONCLUSION

Molecular dynamic simulations on the WT PZase-DrugBank compound systems were performed

successfully and the behaviour of the systems were determined. From the initial MD runs of 20 ns

on the 93 ligands (Section 3.4.1), 47 compounds were identified as stable by the end of the 20 ns

short MD simulation (Figure 3.2). Extension of the simulation on the selected compounds revealed

only 13 compounds with low ligand RMSD value and unimodal distribution. These ligands were

represented in green throughout the whole analysis steps of Backbone RMSD, RMSF and radius of

gyration, where they indicated more stable dynamic motions compared to the control PZA system.

Further studies were done based on the number of hydrogen bonds and interaction between PZase

and the ligand throughout the simulation (Figure 3.6 and Figure 3.7). Compounds that displayed the

best stable dynamic motions across all analytical steps were DB00255, DB00655, DB00783,
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DB00977, DB04573 and DB13952 (Figure 3.3 - Figure 3.7). These 6 compounds are all eostrogen

derivatives currently used to supplement oestrogen levels in female and in the treatment of

menopause disorders. The other compounds also behaved better than the PZA control and these

drugs are generally approved clinical drugs for inflammation, diabetes and hypertension (Table 3.1).

Since these compounds were found to be stable in the WT PZase systems, further MD analysis can

be done in the mutant PZase systems.



72

CHAPTER FOUR

4. MUTANTS - MOLECULAR DYNAMICS

4.1. CHAPTER OVERVIEW

Mutations are alterations in DNA sequence that may result in changes in amino acid sequences,

eventually affecting the functional and structural purpose of the organism. Techniques such as

molecular dynamics have been implemented to understand the dynamic effects of mutations in

biomolecules. The aim of this chapter was to mutate WT PZase and investigate the effect of those

mutations on PZase-ligand systems using MD simulations. This was done by mutating WT PZase

based on the identified mutations from TB resistant database and previous group study by Sheik

Amamuddy et al (2020). The identified hit compounds from Chapter 3 were further studied in

subjection to mutations. The simulations and calculations were performed just as in Chapter 3, for

150 ns across all systems. The WT system for each specific ligand was used as the control.

Calculations were done using RMSD, RMSF, radius of gyration and hydrogen bond count. The

structure of this chapter begins with background introduction on mutations, detailed methodology,

followed by results, discussion and chapter conclusion.

4.2 INTRODUCTION

4.2.1 Mutations

Mutations are changes in the genetic make-up of a cell that may be hereditary and these changes are

the main cause of diversity among organisms (Loewe et al., 2008; Griffiths, 2020). Mutations may

occur spontaneously due to errors in DNA replication or may be induced by exposure to
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environmental conditions with detrimental effects such as ultraviolet radiation or chemical

carcinogens (Lodish and Zipursky, 2001).

The different types of mutations include nonsynonymous and synonymous. The nonsynonymous

mutations are categorized as either nonsense mutations in which an amino acid is replaced with a

stop codon leading to early termination of protein synthesis or frameshift mutations which changes

the reading frame and introduce new unrelated amino acids resulting in the production of a different

protein (Loewe et al, 2008; Khan and Malik, 2020). The synonymous point mutations are due to

alteration of a single base pair, producing a missense mutation whereby one amino acid is

substituted with another amino acid. These mutations alter electrostatic nature of protein surfaces

which may eventually affect the proteins’ folding, functionality, stability and ligand binding affinity

(Khan and Malik, 2020).

4.2.2 Pyrazinamidase mutations

Drug resistance has been reported in all first line TB drugs (Khan et al., 2019) and it is a major

hinderance to TB eradication (WHO 2019; Khan and Malik, 2020). Resistance of the first line drugs

in M. tb treatment has been reported in various studies and this resistance has been attributed to

mutations in the target protein coding or promoter regions (Whitfield et al., 2015)

A database that consists of all TB related mutations (in DNA and proteins) has been developed with

the goal to easily provide mutations responsible for M. tb antibiotics resistance and gives biological

and therapeutic interpretation of mutations. MUBII-TB-DB is a TB database that consist of seven

major loci mutations, having a great effect on the treatment and management of tuberculosis. The
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major mutations gene loci are rrs for amikacin drug, rpoB for rifampcin, KatG and mabA operon for

isoniazid, gyrA and gyrB for fluoroquinolones and pncA for pyrazinamide (Flandrois et al., 2014).

Out of all the reported cases, 85% of resistance to the essential prodrug (PZA) has been discovered

to be caused by mutations in the coding and promoter region of the pncA gene (Khan et al., 2019;

Khan and Malik, 2020). These mutations mainly affect three regions, which are residues 3–17, 61–

85 and 132–142, resulting in the proteins’ loss of activity, although mutations on other regions may

also alter the protein’s structural and functional behaviour (Petrella et al., 2011; Khan et al., 2019;

Khan and Malik, 2020).

4.2.3 Mutation study

Analysing and studying various protein mutations may aid in understanding the molecular

mechanisms and dynamics that result in drug resistance (Khan and Malik, 2020). Biomolecular

dynamics is a technique used to study atom interactions in proteins or other systems over a

stipulated time period, providing insight on target-ligand interactions and structural changes. It is

also useful in determining and studying the effects of perturbates such as protonation, ligand

binding or unbinding, phosphorylation and mutations (Hollingsworth and Dror, 2018). Thus, this in

silico approach may be used to elucidate the dynamics within mutant systems and predict the effects

of the mutations on the macromolecules functionality and stability.

A number of studies have reviewed and analysed PZA prodrug susceptibility in mutants (Chang et

al., 2011; Miotto et al., 2014; Whitfield et al., 2015; Khan et al., 2019; Wu et al., 2019) and studied

the PZase molecular mechanism of resistance using computational techniques such as MD

simulations (Junaid et al., 2019; Juniad et al, 2020; Sheik Amamuddy et al., 2020). Information on
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the mechanism of resistance and mode of action will assist in the design and identification of novel

effective drugs (Juniad et al., 2020). Recent computational methods by Sheik Amamuddy studied

the binding and unbinding of PZA on a selected number of mutations based of mutant location

(Sheik Amamuddy et al., 2020). Their study determined the unbinding time of PZA from the

mutants and thus predicted the mutations in which PZA was more or less stable. The study by Sheik

Amamuddy et al (2020) was used as a reference point for selecting the protein mutants. MD

simulations were done on some selected mutants to investigate the dynamic behaviour of the

various mutant-ligand systems, using the 13 potential compounds identified from Chapter 2 and

Chapter 3 analysis.

4.3 METHODOLOGY

Generally, the same MD steps taken in Chapter 3 were repeated with minor alterations after

completing the initial step of mutating PZase. The overall workflow of MD simulation and dynamic

calculations on the PZase mutants is displayed below (Figure 4.1).

Figure 4.1: Summary of the performed molecular dynamics simulation on the mutant systems. The
first step was introduction of mutations followed by the general MD steps of inferring force-field,
running molecular dynamic simulations and analysis of obtained results.
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4.3.1 Mutants preparation

A total of sixteen PZase mutations were selected from those studied by the previous group (Sheik

Amamuddy et al., 2020), which they identified from the MUBII-TB-DB database. Twelve of these

mutations were selected based on systems that had PZA unbinding time of less than 50 ns (Table

4.1). Additional mutants were selected by selecting representatives from the given groups, which

were catergorised based on location of the alpha carbon of the mutation from PZA center of mass

distance (Table 4.2). Group 1 represented mutations within a radius of 6.7 Å while group 2

comprised of mutations between 6.7 Å and 11.0 Å. Group 3 had mutations in a distance above 11 Å

while group 4 consisted of mutations in the metal binding site. The position of these mutations

relative to the PZA ligand are illustrated in Figure 4.2.

Table 4. 1: Selected mutations from the previous group study by Sheik Amamuddy et al (2020)
where PZA-bound protein complexes had an estimated exit time point of less than 50 ns.

Mutant Estimated exit time (ns) Group

A134V 48.71 1

D8G 18.26 2

Y103S 27.70 2

V139M 25.94 2

A3P 33.80 3

L116R 26.59 3

T61P 48.66 3

A146V 7.34 3

D49A 12.31 4

D49G 12.16 4

H51P 29.80 4
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Table 4.2: Selected mutants from Sheik Amamuddy et al (2020) from group 1-3. Mutants were
selected based on systems where ligand appeared stable prior to release.

Mutant Group

H137R 1

Q10P 2

R140S 2

D63G 3

L85R 3

Figure 4.2: Representation of positions on the mutated amino acid residues in PZase, based on the
center of mass of the docked PZA ligand. The amino acid residues are coloured based on their
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designated groups where yellow, red, black and green are for groups 1, 2, 3 and 4 respectively.
Labelling of residues shows transition from WT to mutant amino acid residue.

4.3.2 MD preparation and analysis

Point mutations were introduced on to the WT PZase in BIOVIA Discovery Studio following Table

4.1 and 4.2 above. The mutated structures were saved and protonated at pH seven on H++

webserver. Inferring of all metal binding site residue parameters was done across all mutants as

described in Chapter 3 (Section 3.3.1) except for mutants D49A, D49G and H51P. In mutants

D49A and D49G, Asp49 parameters were not inferred while in H51P, His51 parameters were not

included. This was because D49A/G and H51P mutations affected the metal binding site residues

hence D49 and H51 residue parameters were not needed for the respective mutants.

Minimization, equilibration, MD simulation and analysis (RMSD, RMSF, radius of gyration,

hydrogen bond) steps were performed using the same steps as in WT simulation as described in

Chapter 3 (Section 3.3.2 and 3.3.3). An R script was used to calculate the exact medians for ligand

RMSD on the WT and mutant ligand systems to determine range of median RMSD values. An

additional analysis tool cpptraj was used to investigate the fraction of time the ligands and the

protein residues formed hydrogen bonds.

4.4 RESULTS AND DISCUSSION

The mutated sixteen PZase in complex with the potential thirteen hit compounds systems were

successfully subjected to MD simulations of 150 ns. Analysis using RMSD, RMSF, radius of

gyration and hydrogen bonds were done in comparison to the wild type systems.
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A number of studies on effects of mutations on PZase revealed alteration in enzyme activity and

stability have been done (Sheen et al., 2009; Rajendran and Sethumadhavan, 2014; Junaid et al.,

2018; Juniad et al., 2020; Sheik Amamuddy et al., 2020). Previous related studies on some of the

mutations in this study has been done. An in silico study by Juniad et al (2020) on mutation Q10P

showed that the mutation greatly affected Gln10-His43, Phe50-Gly75 regions and also disturbed the

catalytic triad (Asp8, Lys98 and Cys138) and metal bind site residues (Asp49, His51, His57 and

His71). A study on D8G by Rajendran and Sethumadhavan (2014) indicated that the alteration

caused PZA rigid binding, resulting in failure of its conversion to pyrazonoic acid, thus the cause

for its resistance. As mutations may alter the folding, packaging and overall structure of a molecule,

the selected hit compounds may thus behave differently as in the WT systems. Therefore, from this

Chapter’s analysis, ligands that display similar behaviour to WT systems across majority of the

mutants would be potential drugs for repurposing to TB treatment.

4.4.1 Root Mean Square Deviation

This parameter measures the average difference between any two values. A smaller value indicates

less deviation and thus signifies higher similarity between the compared states. A higher RMSD

value imply great difference between systems, thus less similarities between them. The RMSD

values for the ligand and backbone protein residues were calculated.

4.4.1.1 Ligand RMSD

The behaviour of the compounds throughout the simulation were analysed by calculating the ligand

RMSD values in comparison to the WT systems (Figure 4.3). The control system (WT) is

highlighted in blue while the mutants systems are in yellow. The PZA ligand systems had mutant-
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ligand systems with higher RMSD values and thin distribution plots compared to the rest of the

ligand systems. In PZA systems, the control had unimodal conformation with RMSD value close to

0.16 nm (Appendix 2). Visualization in VMD of the ligand in mutant systems showed that PZA

took a number of conformations and left the system in (A3P, A134V, D49A, D49G, H51P, L116R,

Q10P, R140S, T61P, V139M, Y103S) mutants. In mutant systems A146V and D8G, PZA had high

RMSD value and bimodal conformation. However, PZA exhibited unimodal conformation in

systems D63G, H137R and L85R. The behaviour in these systems shows that the ligand was stable

throughout the simulation and similar results were reported by Sheik Amamuddy et al (2020) for

ligand release time analysis. The aim of this analysis was to identify compounds that remained

stable across all mutants. Generally, majority of the ligand systems exhibited unimodal and low

RMSD values, an indication of ligand stability. Systems of DB00672, DB06414 and DB11181

showed higher and more multimodal conformations compared to other systems. Ligand systems

that portrayed best stability were DB13952, DB13867, DB08981 and DB00255, where the ligands

displayed well distributed unimodal plots closely ranging to the WT RMSD value (Figure 4.3 and

Appendix 2).
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Figure: 4.3: Ligand RMSD violin plots of the hit compounds across mutants. The WT systems are
highlighted in blue while mutant ligand systems are in yellow.
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A table summarizing the median values is shown on Appendix 2. The table indicates the WT and

mutant ligand RMSD values. As already shown in the kernel plots (Figure 4.3), majority of the

ligand RMSD values clustered around the same values. Calculation of the exact median values

clearly showed that there was little difference between the RMSD values as most of the mutant

systems were within 0.5 nm range with the control WT system. Extreme ligand systems with values

that were not within 0.5 nm of the WT are highlighted in red (Appendix 2). PZA system had the

most number of systems having values out of 0.5 nm with the WT system while systems like

DB00255, DDB00977, DB01196, DB04573, DB08981, DB13867, DB13952 had all systems within

the range. This overally implies that the ligands were stable in the mutant systems as they behaved

and exhibited similar RMSD values as those in the WT systems.

4.4.1.2 Backbone RMSD.

In addition to the Ligand RMSD calculations,protein backbone RMSD was calculated to understand

the deviation of the backbone residues. From Figure 4.4 the WT systems (blue) generally had lower

RMSD values, however the overall range from 0 to 0.25 nm implies the systems were all in a close

range. Unlike in the Ligand RMSD plots, the backbone RMSD data displayed more unimodal

conformations with RMSD values all clustered around the WT system of 0.15 nm. Mutant D49G

RMSD value was consistently higher and displayed bimodal or multimodal conformations across

majority of the systems. In systems such as PZA (Figure 4.3) where the ligand left majority of the

systems, the calculated backbone RMSD values does not give true insight on system behaviour as

the results only provide data of the protein in the absence of the the ligand. Thus therefore explains

the similar unimodal conformations and RMSD values on Figure 4.4 across the mutant systems.
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Figure: 4.4: Backbone RMSD violin plots for 150 ns of the hit compounds across mutants. The WT
systems are highlighted in blue, mutant systems ligands in yellow.

4.4.2 Radius of gyration

4.4.2.1 Active site radius of gyration

The stability of protein folding is measured in MD simulations by calculating the systems radius of

gyration. The compactness of the active site pocket and protein were analysed, where a well packed

structure would be expected to have a low Rg value and exhibit a unimodal structure while a

loosely packed structure will have a bigger Rg value. A more compact system would represent a

more stable receptor-ligand system. From Figure 4.5, across all ligand systems, majority exhibited

tight unimodal conformations with Rg values below 1.00 nm. Mutant systems D49A and D49G

prominently displayed different behaviour across all systems, exhibiting a higher Rg value and/or

bimodal conformations. This is because the mutations affect the metal binding site coordinating

residues (D49) in which replacement of Aspartic acid to Alanine or Glycine disrupts the closely

packing of the protein residues because of the difference in amino acid structural properties. For the
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other systems, the displayed data implies that the change in amino acid residues did not greatly

affect the packaging and arrangement on the active site pocket.
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Figure 4.5: Active site radius of gyration violin plots for the MD simulation of 150 ns on the hit
compounds across PZase mutants. The WT systems are highlighted in blue while mutant systems
are in yellow.

4.4.2.2 Whole system gyration

The compactness of the whole system was also analysed to determine how the protein-ligand

complex affected the residues packing throughout the simulation (Figure 4.6). This analysis

displayed a similar trend to that observed in active site gyration analysis (Figure 4.5). Generally, the

gyration value ranged from 1.52 to 1.60 nm, a small range for distinct comparison between systems

while the WT ligand systems were between 1.54 to 1.56 nm. However, systems D49A and D49G

still exhibited distinct Rg values in most of the ligand systems (DB00255, DB00655, DB00672,

DB00783, DB00977, DB01196, DB11181, DB11760, DB13867). Since the introduction of

mutations are expected to alter the active site pocket and whole protein complex compactness of

ligand binding, results from this analysis shows that the presence of these ligands maintained

similar protein-ligand compactness as that observed in the WT systems.
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Figure 4.6: Whole protein system radius of gyration for PZase WT and mutant systems. The WT
systems are highlighted in blue while mutant systems are in yellow.

4.4.3 Hydrogen bonds

Throughout the simulation period, the number of hydrogen bonds present at each time were counted.

Figure 4.7 gives a summary on the number of hydrogen bonds exhibited within each mutant-ligand

system. As shown in the PZA system, the ligand had more hydrogen bonds in the WT system and in

three of the mutant systems (D63G, H137R, L85R). This data also corresponds to the data provided

by the PZA ligand RMSD analysis where only these three mutants showed unimodal conformations

with low RMSD values (Figure 4.3). In other mutant systems, PZA hardly reached 50 ns with at

least one consistent hydrogen bond, shown by the presence of white space after 50 ns. These results

support those obtained by Sheik Amamuddy et al., 2020, who explained PZA unbinding within 50

ns of the simulation and thus explains the cause for PZA resistance in these mutants.

Among the selected compounds, ligands DB00255, DB00655, DB00783, DB00977, DB04573,

DB06414, DB08981, DB11760, DB13867, DB13952 displayed more bonds compared to PZA in

majority of the mutants. This suggests these ligands as potentially better drugs than PZA. The other

ligand systems DB00672, DB01196 and DB11181 had fewer bonds but however had almost at least

one bond throughout the simulation an indication that the ligand was bound to the active pocket
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through out the simulation regardless of exhibiting high flexibility when visualized VMD.an . The

active site mutations (D49A and D49G) distinctly had few bonds in systems DB01196, DB08981,

DB13867, results that relate to those observed in the previous analysis techniques of RMSD and

gyration.

The hydrogen interactions formed between the ligand and the proximal protein amino acid residues

were determined and summarized in Figure 4.8. The number corresponding to each residue

represents the bond occupancy percentage values. A bigger value, represented by a darker colour

implies that the ligand bond to the precise residue was present for a longer time during the

simulation. The best three ligands based on hydrogen bond count (DB00255, DB04573 and

DB08981, Figure 4.6) displayed high occupancy values with the active site residue Asp8.
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Figure 4.7: Distribution of hydrogen bonds through out 150 ns MD simulation. The light colour
represent fewer bonds while a dark colour shows more hydrogen bonds at a specific time.

Compound DB08981 averagely had 100% occupancy with the active site residue Asp8 across all

mutants except for mutants D8G, D49A and D49G that displayed 6%, 7% and 6% on Asp49, Lys96

and Asp8 respectively. This is a crucial bond present throughout the simulation occurring with one

of the active site residues thus results in the ligand being bound to the catalytic pocket for the whole

simulation period. These ligands also interacted with Ala134 and active site Cys138 residues.

Compound DB00255 had similar interactions to DB08981 with Asp8 residue. In other ligand
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systems, there was a wider distribution of bonds with majority of them occuring with Leu19, Lys96,

Ala102, Ile133 and His137 amino acid residues.
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Figure 4.8: Occupancy of hydrogen bonds throughout the 150ns simulation period. The percentage
value is highlighted in each box. The light colour represent fewer bonds than dark color.

4.4.4 RMSF

In all systems, the degree of fluctuating residues were calculated using RMSF analysis. This

measure predicts the protein regions that are most or least flexible. From Figure 4.9, the most

fluctuating areas are highlighted by a dark colour ranging from 0.05 to 0.45. Generally, across all

systems, comparison of the WT systems in each ligand system to its respective mutant systems

shows little difference. The most highlighted fluctuating regions in majority of the mutants were

residues 14-17, 34-40 and 184-186, mapped on Figure 4.10. This analysis also revealed active site

mutants D49G and D49A having the most fluctuating regions on residues 52 - 64 in systems of PZA,

DB00255, DB00655, DB00672, DB00783, DB00977, DB08981, DB11181, DB11760, DB13876,

DB13952. Mapping these fluctuating regions on the proteins structure indicated that these regions

were mainly loop regions (Figure 4.10). However, additional fluctuating residues 52-64 in mutants

D49G and D49A occurred on some secondary structure regions (highlighted in magenta in Figure

4.10). The overall analysis implies that majority of the mutant-ligand complexes were quite stable

as signified by the low RMSF values and light colors on the heat maps.
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Figure 4.9: RMSF heat maps of local residue fluctuations during the 150 ns MD simulation period
in 13 hit compounds across 16 PZase mutations. A higher value (represented by a darker colour)
signifies more fluctuations while a lower value (lighter colour) represents less flexibility.

Figure 4.10: Mapped fluctuating regions on mutant PZase protein structure. The coloured spheres
represent different mutant groups, iron and water while magenta shows the most fluctuating regions
in mutants D49G/A while blue show the general fluctuating residues. The protein cartoon and
surface structures is shown in wheat.
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4.5 CONCLUSION

Molecular dynamic simulations on the mutants complexes were successfully performed. Analysis

using RMSD, RMSF, radius of gyration and hydrogen bonds identified majority of the ligand

systems as stable (Figure 4.3 and 4.4), closely packed (Figure 4.5 and Figure 4.6) and less

fluctuating (Figure 4.9). All the selected ligands performed better than the PZA ligand across all the

analysis measures. The aim of this chapter was to screen the compounds that were stable in WT

PZase by identification of those that would also be stable in mutant PZase. Comparison of the

ligand WT systems to each respective mutant showed little differences between the WT and mutant

systems. The little differences between the dynamic behaviour of the WT and mutant-ligand

systems is a positive outcome as it implies that the ligand was stably bound in both WT and mutant

PZase. This ultimately suggests that the drug is likely to be functional in both WT and mutant

PZase, reducing the rate of drug resistance accounted by mutated pncA gene. The best ligands that

consistently displayed high stability, low RMSD and RMSF values, high structure compactness and

more hydrogen bond interactions were compound systems DB00255, DB04573 and DB13952.

Among all the mutants, the active site mutation on D49 to A or G displayed the most fluctuations

and unstable results. Mapping of these flexible residues showed that the regions were mainly loop

areas with exception of mutant D49 that had fluctuations on alpha helix structure on residues 52 to

64. This was mainly because the mutations were in the metal binding site. Overally, fromthese

stable mutant-compound systems, the compounds are identified as potential drugs targeting the WT

and mutant M. tb PZase strains requiring further analytical and activity studies for TB therapy.
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CHAPTER FIVE

5 CONCLUSIONAND FUTUREWORK

5.1 CONCLUDING REMARKS

Tuberculosis is an infectious disease caused by M. tb and has the leading cause of death especially

in low income countries. Effective treatment of this disease has been achieved by the use of first

line drugs rifampicin, isoniziad, ethambutol and PZA. The prodrug, PZA, has been reported the

most effective drug, reducing therapy time from 9 months to 6 months and thus is incorporated in

all TB treatments. However, studies have reported resistance to PZA due to alteration in the pncA

gene that codes for its target protein, PZase. Various laboratory studies and in silico approaches

have been done to understand the causes of PZA resistance and mutations and the effects of these

mutations on the protein stability and functionality. The emergency of TB drug resistance has

lagged successful eradication and treatment of TB, therefore there is need for the development of

novel drugs functional in both WT and mutant M. tb strains

The aim of this study was to identify compounds that bind to the active site of PZA target protein,

PZase, and analyse the behaviour and dynamics of the complexes in the presence of mutations. This

was achieved by screening 2089 DrugBank compounds against WT PZase in molecular docking

experiments and study the dynamics of the WT and mutant complexes in MD simulations as

summarized in Figure 5.1. These are useful techniques in drug repurposing as they identify potential

hit compounds within a short period of time and at a low cost.
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Figure 5.1: Overall flow of compound screening from data retrieval to molecular docking and
molecular dynamic simulations of the WT and mutant PZase.

Screening of the docked compounds gave 93 ligands that selectively bind to the active site, where

further screening in 20 ns MD simulations gave 47 stable protein-ligand complexes (Figure 2.5). All

47 compounds had Euclidean distance ≤ 8 Å to the active site, binding energy ≤ -7.0 kcal/mol,

molecular weight ≤ 500 g/mol and formed hydrogen bond ≥ 1 (Figure 2.6).

Stability of these ligands in WT PZase were analysed using MD simulations where a total of 13

ligands were selected as the most stable compounds (DB00255, DB00655, DB00672, DB00782,

DB00977, DB01196, DB04573, DB06414, DB08981, DB11181, DB11760, DB13867, DB13952),

based on RMSD (Figure 3.3), radius of gyration (Section 3.4.4), RMSF (Figure 3.4) and number of

hydrogen bonds throughout the simulation (Section 3.4.5). The effects of mutations on the potential

hit compounds were analysed by introducing mutants (A3P, A134V, A146V, D8G, D49A, D49G,

D63G, H51P, H137R, L85R, L116R, Q10P, R140S, T61P, V139M, Y103S) and calculating the

deviation of the mutant systems from the WT system. The selected 13 compounds generally had

stable conformations across majority of the mutants with exception to mutant D49A/G that

consistently displayed high deviation values and more flexibility compared to other systems. The

primary goal of the study, to identify drugs that can be repurposed for TB therapy or aid in the

development of novel drugs was successfully achieved.
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5.2 FUTUREWORK

Further analysis may be to perform dynamic residue network (DRN) calculations to calculate the

betweenness centrality and average shortest path of residues. This will provide more information on

the overall interactions of residues throughout the simulation period. From the whole protein

molecular docking in Chapter 2, potential future work will be to identify allosteric sites and study

the effect of compounds that might bind to these sites in relation to the stability and functionality of

PZase. The mechanism of the identified potential drugs may be studied to identify those that may

mimick PZA as prodrugs or function just as inhibitors of the PZase enzyme.
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APPENDICES

Appendix 1: AutoDOCK4 clustering on ligand DB11793_lc. The lowest energy cluster was not the
highest energy, thus both poses were selected for assessing.

Appendix 2: Tabulated median values for all the mutants across all the ligand systems in
comparison to the WT median. The WT medians are in blue. Median values that fell above 0.5
range to the WT syteme are highlighted in red.
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