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Abstract

The nxn circulant matrix associated with the polynomial f(t) = Z?:o a;t!
(with d < n) is the one with first row (ag...aq 0...0). The problem as to
when such circulants are unimodular arises in the theory of cyclically presented
groups and leads to the following question, previously studied by Odoni and
Cremona: when is Res(f(t),t" —1) = £1?7 We give a complete answer to this
question for trinomials f(t) = t™4t*+1. Our main result was conjectured by
the author in an earlier paper and (with two exceptions) implies the classifica-
tion of the finite Cavicchioli-Hegenbarth-Repovs generalized Fibonacci groups,
thus giving an almost complete answer to a question of Bardakov and Vesnin.

1 Introduction

The n x n circulant matrix M, (f) associated with the polynomial f(t) = Z?:o a;tt

where d < n and a; € Z is the one whose first row is (ag...aq 0...0). Well known
properties of circulants and resultants give that det(M,) = Res(f,t" — 1). The
question as to when M, is unimodular arises in the theory of cyclically presented
groups and has been considered by Odoni [7] and Cremona [3].

For n > 1 define

R(f) = ]] £(0).
=1

Our approach, as in [3],[7], is to work with R, (f) rather than with M, (f). It was
shown in [3],[7] that, for n > d, det(M,,) = R,,(f) so it is enough to consider when
R, (f) = £1. We note that R, (f) is defined for all n > 1 whereas M,(f) is only
defined for n > d.

Briefly, the connection with cyclically presented groups is as follows. Fix a word
w(zo,...,Tn—1) in generators x,...,T,—1 and let T';,(w) be the group defined by
the presentation with these n generators and the n relators

W(Ty X1y - ey T2y Tie1), W(T1, T2y ooy Ty 1,20y« o o W(Tp—1, X0y -+« T3y Tpe2)-

If a; is the exponent sum of z; in w(xo,...,z,—1) then I';(w) has infinite abelian-
ization if and only if R,(f) = 0 and is perfect if and only if R,(f) = £1 [5],[7].
Indeed T, (w)®” has order |R,(f)| ([5, page 77]).
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In this paper we consider trinomials f(¢) = ™ 4 t* + 1. When both signs are
‘4’ it is easy to deduce that R, (f) # £1. In the other three cases we can reduce to
a polynomial of the form t™ — t* 4 1; moreover we may assume (n,m,k) = 1 (see
Section 3). We note that Lemma 5 of [8] and Lemma 2.3 of [4] determine when
R,(t™ £tF £1) =0.

The Cavicchioli-Hegenbarth-Repovs generalized Fibonacci groups G,,(m, k) are

the cyclically presented groups with generators z1, ..., x, and relators z;zitma, ),

and these are our primary motivation for considering trinomials f(t) = ™ —t* + 1.
Our main result is

Main Theorem Letn > 1 and f(t) = t™ —t* +1 where m, k € Z and (n,m, k) =
1. Then Ry, (f) = %1 if and only if ((n,6) =1 and m = 2k mod n) or k =0 mod n

or 'k =m mod n.

This was conjectured (in group theoretic terms) in [8] and is a natural gener-
alization of a theorem of Odoni [7] which deals with the case & = 1. With the
exception of two groups, the Main Theorem implies the classification of the finite
groups Gy (m,k) (see [8]), thus giving an almost complete answer to a problem
posed by Bardakov and Vesnin ([1, Question 1]).

2 Preliminaries

A number of equivalent characterizations of R, (f) = 1 were given in [3],[7]. We
only need some of them:

Lemma 2.1 ([3, 7]) For f € Z[t] and n > 1 the following are equivalent:

(a) Rn(f) = +1;

(b) f(Cq) is a unit in the ring Z[(4] for all dn where (4 denotes a primitive dth
root of unity;

(c) Res(f,t" —1) ==+1.

We record some properties of R,,; those in Proposition 2.2 follow directly from
its definition.

Proposition 2.2 Let f,g € Z[t] and let n > 1. Then the following hold:
(a) Rn(fg) = Ru(f)Rn(9);
(b) Rn(t) = (=1)"*;
(¢) If mn then Ry (f)|Ra(f).



Proposition 2.3 ([7]) Let f(t) = cl_[?:l(t — Bj). Then

Ra(f) = ((=1)%)" f[ﬁjl.

In [3] the expression ¢ H?:l(ﬁ?_l) was denoted B(f,n) and so R, (f) = £B(f,n).

Proposition 2.4 Let f, F € 7Z][t] be polynomials such that f(t) = F(t*) for some a €
N. Then

Rn(f) = (Rn/(n,a) (F))(n,a) .

In particular R, (t™ £tF £1) = (Ry(tM £¢5 £ 1))(n’m’k) where N = n/(n,m, k),
M =m/(m,k), K =k/(m,k).

Proof
Let d = (n,«). Then we have

n—1 n—1
_ H F(Qa) _ H F(627riqoc/n) _ H F(€27riq(a/d)/(n/d))
on=1 q=0 q=0
which is equal to
n/d—1 d
[T F(e2riateroo)
q=0

50 Ru(f) = (Rpja(F))". Now since (a/d,n/d) = 1, for each ¢ = 0,...,(n/d — 1)
there exists a unique Q =0,...,(n/d — 1) such that ¢(a/d) = @Q mod n/d. Hence

n/d—1 n/d—1
H F(627riq(a/d)/(n/d)) _ H F(eQﬂ'iQ/(n/d H F — n/d( )
q=0 Q=0 pn/d=1

d
50 Ru(f) = (Rnya(F))"
To prove the last claim let f(t) =™ £t* £ 1 and F(t) =t £t5 £ 1. O

Since (N, M, K) = 1, in considering when R,,(t™ +*41) = £1 Proposition 2.4
allows us to assume that (n,m, k) =1
3 Properties of R,(t™ £ " +1)

We have that Ry (t™ + tF 4+ 1) = 3 so by Proposition 2.2(c) R,(t"™ +t* +1) # +1
for all n. Thus we may assume that at least one of the signs is a ‘—’.

Proposition 3.1 (a) |R,(t" —tF — 1)| = |R,(tF — t™ + 1)|;



(0) [Ru(t™ + 1% — )] = [Rp (tF™ — " + 1)},
(¢) |Ru(t™ —t* + 1) = [Rp(t™ — ™ F + 1)].

Proof
(@) t"m —th — 1= —(tF —t™ 4+ 1) so |R,(t™ — tF —1)| = | R (tF —t™ +1)|.
(b) t™ 4tk — 1 =tk F — 7% 1 1) s0

R,(t™ +t* —1) = R, (t") R, (™% —t7F + 1)
= (Ro(t))F Ry (5™ — % 4 1)
= +R,(t""™ —tF 1),

()t —tF +1=tm(t"™ —tF=™ 1 1) s0

Ro(t™ —t* +1) = R,(t"™)R,(t™™ —tF"™ + 1)
= (R ()™ R, (t™ — t™ % 4 1)
= +R,(t™ —t™F 1),

d

Other similar identities can be established. For example [2, Theorem 2] implies
that if n,m, k,m’, k" are integers such that (n,m,k) =1, (n,m’, k') =1, (n, k') =1
and m/(m — k) = mk’ mod n then R,(t™ —t* + 1) = £ R, (t™ — t* +1).

Parts (a) and (b) of Proposition 3.1 show that R,(t™ — tF — 1) = +R,,(t™ —
t*" 4+1) (for some m/, k') and R, (t" +tF —1) = £R,, (™ —t* +1) (for some m/, k'),
so we only need consider R, (f) for f(t) = t™ —t*+1. Moreover, by Proposition 2.4
we may assume that (n,m, k) = 1. Proposition 3.1(c) shows that the roles of k& and
(m — k) can be interchanged.

The next result was prompted by [1, Lemma 1.3].

Proposition 3.2  (a) If (k,n) =1 then R,(t™ —tF +1) = R,(t™" —t + 1) where
=k~ mod n;

(b) if (m —k,n) =1 then R,(t™ —t¥ + 1) = R, (t™ —t + 1) where £ = (m —
k)~! mod n;

(c) if (m,n) =1 then R,(t™ —t* +1) = R, (t — t** 4+ 1) where £ = m™! mod n.

Proof
(a) Let ¢ = 0%, then 6 = ¢* so

Ro(tm—t"+1)= [ 0" 0" +1= [ )" — ¢+ 1=Ra(t™ -t +1).
on=1 pn=1



(b) This follows from (a) by interchanging the roles of k and (m — k).
(c) Similar to (a). O

Parts (a),(b) of Proposition 3.2 show that it is sometimes enough to consider the
polynomials considered by Odoni [7] (that is, polynomials of the form ¢ —¢ + 1).

When k = 0 mod n or k =m mod n it is clear that R, (t™ —t* +1) = £1. We
can obtain the value of R, in some other cases; for example by Proposition 2.3 and
Proposition 2.4 we have that R, (t® — % 4 1) = (27/(n4) — 1)(n’k). By [8, Lemma 3]
we also have

Lemma 3.3 Suppose that n is even, (m,k) = 1 and either k = n/2 mod n or
(m — k) =n/2 mod n. Then |R,(t™ —tF 4+ 1)] = 27/2 — (—1)m+/2,

4 Proof of Main Theorem

Odoni proved the Main Theorem in the case k = 1: we summarize this result ([7,
Theorem 2(ii),(iii)]) as

Theorem 4.1 ([7]) Letn>1 and f(t) =t™ —t+1 where m € Z. Then R,(f) =
+1 if and only if (n,6) =1 and m =2 mod n) or m =1 mod n.

Corollary 4.2 Let n > 1 and f(t) = t™ — t* + 1 where m,k € Z, (n,m,k) = 1
and suppose that either (k,n) =1 or (m—k,n) =1. Then R,(f) = £1 if and only
if (n,6) =1 and m =2k mod n) or k=0 mod n or k =m mod n.

Proof

By interchanging the roles of k& and (m — k) we may assume that (k,n) = 1.
By Proposition 3.2(a) R,(f) = Rn(t™ — ¢ + 1), where £ = k~! mod n. Now
mf = 1,2 mod n if and only if m = k, 2k mod n, so the result follows from Theo-
rem 4.1. O

The following corollary generalizes [7, Lemma 3.2] to our setting.

Corollary 4.3 Let n = p* where p = 2 or 3, u > 1, and f(t) = t™ —tF + 1
where m,k € Z, (n,m,k) = 1. Then R,(f) = £1 if and only if k = 0 mod n or

k=m modn.

Proof
The hypotheses imply that either (k,n) = 1 or (m — k,n) = 1 and so the result
follows from Corollary 4.2. O

The ‘if” direction of the Main Theorem is straightforward to prove (see [8,
Lemma 5]) so from now on we focus on the ‘only if’ direction.



Lemma 4.4 Letn =2"3° > 1 and f(t) = t"™—tF+1 where m, k € Z, (n,m, k) = 1.
If R,(f) = £1 then k =0 mod n or k =m mod n.

Proof
By Corollary 4.3 we may assume r > 1,s > 1. Now R, (f) = 1 implies Ror(f) =
+1 and so by Corollary 4.3 we have k£ = 0 mod 2" or (m — k) = 0 mod 2". By
interchanging the roles of k£ and (m — k) we may assume that the first of these
holds. We also have R3s(f) = 1 so k = 0 mod 3° or £k = m mod 3°. In the first
case we have kK = 0 mod n, so assume the second.

Let d = 2-3°. Now k # m mod d, for otherwise 2|(n,m,k) = 1; thus
k= m+d/2 mod d. Tt follows that (m mod d,k mod d) = 1 so Lemma 3.3
implies that Rq(f) # £1 and hence R, (f) # £1. O

Our next lemma generalizes [7, Lemma 3.3] to our setting. We use ideas from
the proof of that result.

Lemma 4.5 Let n = pq where ¢ =2 or 3 and p > 5 is prime, f(t) =t™ —tF +1
where m,k € Z, (n,m,k) = 1. If R,(f) = £1 then k =0 mod n or k =m mod n.

Proof
By Corollary 4.2 we may assume (k,n) > 1, (m —k,n) > 1 so (since (n,m, k) = 1)
either (g|k and p|(m — k)) or (p|k and ¢g|(m — k)). By interchanging the roles of
k and (m — k) we may assume that the first case occurs, i.e. £k = 0 mod ¢ and
(m — k) = 0 mod p. Moreover we may assume k # 0 mod p, (m — k) # 0 mod ¢
for otherwise k = 0 mod n or (m — k) = 0 mod n.

If either p or ¢ divides m then we get a contradiction to (n,m,k) = 1so (m,n) =
1. Now by Proposition 3.2 R,,(f) = Rn(g) where g(t) = t™ —t* +1 where m/ = 1,
k' = km~!. The conditions on m,k imply k¥’ = 0 mod ¢, (m' — k') = 0 mod p,
(m' — k') # 0 mod q. When ¢ = 2 we have that (m' — k') = n/2 mod n and since
(m/, k") =1 Lemma 3.3 implies R, (g) # £1.

Suppose then that ¢ = 3 and R,(g) = £1. We have that ¥ = 1 mod p,
k' = 0 mod 3. Now Rsy(g) =
Lemma 2.1 implies that ¢g(f) is a unit in Z[(3,] whenever 6 is a primitive (3p)th
root of unity. In particular g(¢,¢3) = (p(¢3 —1)+1 and g(¢p¢3) = (p(¢3 —1) +1 are
units in Z[(3,] and hence so is their product 3(3 — 3(p + 1, which must therefore
also be a unit in Z[(p)]. Let h(x) = 322 — 3z + 1. Then h(1) = 1 and h((,) are units
in Z[(,) so by Lemma 2.1 we have that R,(h) = 1. Now Proposition 2.3 implies
that R,(h) = 3P(6Y —1)(6% — 1) where 31, B2 = 37 /2e*™/6 are the roots of h. But

+1 so, writing (4 for a primitive dth root of unity,

3B —1)(B0 —1) =3P +1+£30+HD/2 £ 1

and we have a contradiction. O



Our next result (Lemma 4.8) deals with the case (n,6) = 1. It generalizes [7,
Lemma 3.1] to our setting and its proof is essentially a re-run of the proof of that
result. We will require the following theorem of Kronecker, a proof of which can
be found on page 46 of [6].

Lemma 4.6 Let 8 = (31 be a non-zero algebraic integer and let (1,..., 0Bk be the
conjugates of B over Q. If max;|3;] <1 then [ is a root of unity.

We will also need the following:

Lemma 4.7 Ifozl wzj = Zle zzj forallj =1,... ¢ then the multisets {w, ..., ws}
and {z1,...,z¢} are equal.

The proof is a standard application of the Newton-Girard formula and so is
omitted.

Lemma 4.8 Let n > 1 and f(t) = t™ — t* + 1 where m,k € Z, (n,m,k) = 1
and suppose (n,6) = 1. If R,(f) = £1 then m = 2k mod n or k = 0 mod n or
k=m mod n.

Proof

By Lemma 2.1 A = f({) is a unit in the ring Z[(] for some primitive nth root of
unity ¢, and therefore so is o()\) for any 0 € I' = Gal(Q(¢)/Q). Let pu = AL
Then, since T' is abelian, we have

lo(w)* = o(p)o(u) = o(up) = o(1) = 1.

Lemma 4.6 implies that yu is a root of unity in Q(¢), and thus u = s¢’ for some

jE€7Z,s==+1. Since p = A1 = f(O)f(O)F = fF(CHF(O)! it follows that
s =P+ 1) =¢" =P+ (4.1)
Case 1: s = —1. Let w; = (™™, wy =1, wg = (", wy =, 21 = (F, 29 =
(Itk 23 = 24 = 0. Then (4.1) is equivalent to
w1 +wy +w3 +wyg =21+ 29+ 23+ 24. (4.2)
Since (n,6) = 1 we have that (r,n) =1 for r = 1,2,3,4. Thus the maps ¢ — ("
(r =1,2,3,4) are automorphisms of Q(¢). Applying these to (4.2) we get

4 4

dwi=> "z (r=1,2,34). (4.3)

=1 i=1

By Lemma 4.7 we have that {wy,wa,ws,ws} = {21, 22, 23,24}, but z3 = 0 ¢
{w1,wa, w3, ws} which gives a contradiction.



Case 2: s =+41. Let wy =", wo =1, wy = Ck+j, 21 = C_k, 2o = (ITM 23 = (7.
Then (4.1) is equivalent to

w1 +wy +ws = 21 + 29 + 23. (4.4)

As in Case 1, the maps ¢ — (" (r = 1,2,3) are automorphisms of Q(¢) and ap-
plying them to (4.4) gives {w1,wa, w3} = {z1, 29, 23} If (21, 22, 23) = (w3, w1, w2)
then ¢(?* = ¢(?™ = 1s0 k = 0 or n/2 mod n and m = 0 or n/2 mod n and so
k =0 or m mod n or m = 2k mod n. If (21, 29, 23) = (w1, wa, ws), (w1, ws, ws), or
(wa, w3, w1) then (™% =1 and hence k = m mod n. If (21, 20, 23) = (w3, wa, w1)
then 2k = m mod n. If (21, 22, 23) = (w2, w1, w3) then k = 0 mod n. ]

Proof of Main Theorem

The ‘if’ direction was proved in [8, Lemma 5] so suppose that R,(f) = £1. By
Lemmas 4.4 and 4.8 we may assume n = ab where a = 2"3° > 1, (b,6) =1, b > 1.
Now R,(f) = %1 implies (by Lemma 4.4) that £ = 0 mod a or (m —k) = 0 mod a.
By interchanging the roles of k and (m — k) we may assume that & = 0 mod a.
Also, Ry(f) = 1 implies (by Lemma 4.8) that £ = 0 mod b or m = 2k mod b or
k=m mod b. If £ = 0 mod b then k¥ = 0 mod n so assume otherwise.

Suppose m = 2k mod b. Then no prime divisor of n divides (m — k) for oth-
erwise it would also divide (n,m, k) = 1. Therefore (m — k,n) = 1 and the result
follows from Corollary 4.2. Suppose then that &K = m mod b and let p > 5 be a
prime divisor of b and let ¢ = 2 if r > 1 or ¢ = 3 otherwise. Now k& # m mod pq
and k # 0 mod pq for otherwise ¢|(n,m,k) = 1 or p|(n,m,k) = 1 (respectively)
and so Lemma 4.5 implies Rp,(f) # £1 so R,(f) # £1. O
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