Unimodular integer circulants associated with trinomials

Gerald Williams

May 8, 2009

Abstract

The $n \times n$ circulant matrix associated with the polynomial $f(t) = \sum_{i=0}^{d} a_i t^i$ (with d < n) is the one with first row $(a_0 \dots a_d \ 0 \dots 0)$. The problem as to when such circulants are unimodular arises in the theory of cyclically presented groups and leads to the following question, previously studied by Odoni and Cremona: when is $\operatorname{Res}(f(t), t^n - 1) = \pm 1$? We give a complete answer to this question for trinomials $f(t) = t^m \pm t^k \pm 1$. Our main result was conjectured by the author in an earlier paper and (with two exceptions) implies the classification of the finite Cavicchioli-Hegenbarth-Repovš generalized Fibonacci groups, thus giving an almost complete answer to a question of Bardakov and Vesnin.

1 Introduction

The $n \times n$ circulant matrix $M_n(f)$ associated with the polynomial $f(t) = \sum_{i=0}^d a_i t^i$ where d < n and $a_i \in \mathbb{Z}$ is the one whose first row is $(a_0 \dots a_d \ 0 \dots 0)$. Well known properties of circulants and resultants give that $\det(M_n) = \operatorname{Res}(f, t^n - 1)$. The question as to when M_n is unimodular arises in the theory of cyclically presented groups and has been considered by Odoni [7] and Cremona [3].

For $n \ge 1$ define

$$R_n(f) = \prod_{\theta^n = 1} f(\theta).$$

Our approach, as in [3],[7], is to work with $R_n(f)$ rather than with $M_n(f)$. It was shown in [3],[7] that, for n > d, $\det(M_n) = R_n(f)$ so it is enough to consider when $R_n(f) = \pm 1$. We note that $R_n(f)$ is defined for all $n \ge 1$ whereas $M_n(f)$ is only defined for n > d.

Briefly, the connection with cyclically presented groups is as follows. Fix a word $w(x_0, \ldots, x_{n-1})$ in generators x_0, \ldots, x_{n-1} and let $\Gamma_n(w)$ be the group defined by the presentation with these n generators and the n relators

$$w(x_0, x_1, \ldots, x_{n-2}, x_{n-1}), w(x_1, x_2, \ldots, x_{n-1}, x_0), \ldots, w(x_{n-1}, x_0, \ldots, x_{n-3}, x_{n-2}).$$

If a_i is the exponent sum of x_i in $w(x_0, \ldots, x_{n-1})$ then $\Gamma_n(w)$ has infinite abelianization if and only if $R_n(f) = 0$ and is perfect if and only if $R_n(f) = \pm 1$ [5],[7]. Indeed $\Gamma_n(w)^{ab}$ has order $|R_n(f)|$ ([5, page 77]). In this paper we consider trinomials $f(t) = t^m \pm t^k \pm 1$. When both signs are '+' it is easy to deduce that $R_n(f) \neq \pm 1$. In the other three cases we can reduce to a polynomial of the form $t^m - t^k + 1$; moreover we may assume (n, m, k) = 1 (see Section 3). We note that Lemma 5 of [8] and Lemma 2.3 of [4] determine when $R_n(t^m \pm t^k \pm 1) = 0$.

The Cavicchioli-Hegenbarth-Repovš generalized Fibonacci groups $G_n(m,k)$ are the cyclically presented groups with generators x_1, \ldots, x_n and relators $x_i x_{i+m} x_{i+k}^{-1}$ and these are our primary motivation for considering trinomials $f(t) = t^m - t^k + 1$. Our main result is

Main Theorem Let $n \ge 1$ and $f(t) = t^m - t^k + 1$ where $m, k \in \mathbb{Z}$ and (n, m, k) = 1. 1. Then $R_n(f) = \pm 1$ if and only if $((n, 6) = 1 \text{ and } m = 2k \mod n)$ or $k = 0 \mod n$ or $k = m \mod n$.

This was conjectured (in group theoretic terms) in [8] and is a natural generalization of a theorem of Odoni [7] which deals with the case k = 1. With the exception of two groups, the Main Theorem implies the classification of the finite groups $G_n(m,k)$ (see [8]), thus giving an almost complete answer to a problem posed by Bardakov and Vesnin ([1, Question 1]).

2 Preliminaries

A number of equivalent characterizations of $R_n(f) = \pm 1$ were given in [3],[7]. We only need some of them:

Lemma 2.1 ([3, 7]) For $f \in \mathbb{Z}[t]$ and $n \ge 1$ the following are equivalent:

- (a) $R_n(f) = \pm 1;$
- (b) $f(\zeta_d)$ is a unit in the ring $\mathbb{Z}[\zeta_d]$ for all d|n where ζ_d denotes a primitive dth root of unity;
- (c) $\operatorname{Res}(f, t^n 1) = \pm 1.$

We record some properties of R_n ; those in Proposition 2.2 follow directly from its definition.

Proposition 2.2 Let $f, g \in \mathbb{Z}[t]$ and let $n \ge 1$. Then the following hold:

- (a) $R_n(fg) = R_n(f)R_n(g);$
- (b) $R_n(t) = (-1)^{n+1};$
- (c) If m|n then $R_m(f)|R_n(f)$.

Proposition 2.3 ([7]) Let $f(t) = c \prod_{j=1}^{k} (t - \beta_j)$. Then

$$R_n(f) = \left((-1)^k c \right)^n \prod_{j=1}^k (\beta_j^n - 1).$$

In [3] the expression $c^n \prod_{j=1}^k (\beta_j^n - 1)$ was denoted B(f, n) and so $R_n(f) = \pm B(f, n)$.

Proposition 2.4 Let $f, F \in \mathbb{Z}[t]$ be polynomials such that $f(t) = F(t^{\alpha})$ for some $\alpha \in \mathbb{N}$. Then

$$R_n(f) = \left(R_{n/(n,\alpha)}(F)\right)^{(n,\alpha)}$$

In particular $R_n(t^m \pm t^k \pm 1) = (R_N(t^M \pm t^K \pm 1))^{(n,m,k)}$ where N = n/(n,m,k), M = m/(m,k), K = k/(m,k).

Proof

Let $d = (n, \alpha)$. Then we have

$$R_n(f) = \prod_{\theta^n = 1} F(\theta^\alpha) = \prod_{q=0}^{n-1} F(e^{2\pi i q \alpha/n}) = \prod_{q=0}^{n-1} F(e^{2\pi i q (\alpha/d)/(n/d)})$$

which is equal to

1

$$\left(\prod_{q=0}^{n/d-1} F(e^{2\pi i q(\alpha/d)/(n/d)})\right)^d.$$

so $R_n(f) = (R_{n/d}(F))^d$. Now since $(\alpha/d, n/d) = 1$, for each $q = 0, \ldots, (n/d - 1)$ there exists a unique $Q = 0, \ldots, (n/d - 1)$ such that $q(\alpha/d) = Q \mod n/d$. Hence

$$\prod_{q=0}^{n/d-1} F(e^{2\pi i q(\alpha/d)/(n/d)}) = \prod_{Q=0}^{n/d-1} F(e^{2\pi i Q/(n/d)}) = \prod_{\phi^{n/d}=1} F(\phi) = R_{n/d}(F)$$

so $R_n(f) = (R_{n/d}(F))^d$.

To prove the last claim let $f(t) = t^m \pm t^k \pm 1$ and $F(t) = t^M \pm t^K \pm 1$. \Box

Since (N, M, K) = 1, in considering when $R_n(t^m \pm t^k \pm 1) = \pm 1$ Proposition 2.4 allows us to assume that (n, m, k) = 1.

3 Properties of $R_n(t^m \pm t^k \pm 1)$

We have that $R_1(t^m + t^k + 1) = 3$ so by Proposition 2.2(c) $R_n(t^m + t^k + 1) \neq \pm 1$ for all n. Thus we may assume that at least one of the signs is a '-'.

Proposition 3.1 (a) $|R_n(t^m - t^k - 1)| = |R_n(t^k - t^m + 1)|;$

(b)
$$|R_n(t^m + t^k - 1)| = |R_n(t^{k-m} - t^k + 1)|;$$

(c) $|R_n(t^m - t^k + 1)| = |R_n(t^m - t^{m-k} + 1)|.$

Proof

(a) $t^m - t^k - 1 = -(t^k - t^m + 1)$ so $|R_n(t^m - t^k - 1)| = |R_n(t^k - t^m + 1)|$. (b) $t^m + t^k - 1 = t^k(t^{m-k} - t^{-k} + 1)$ so

$$R_n(t^m + t^k - 1) = R_n(t^k)R_n(t^{m-k} - t^{-k} + 1)$$

= $(R_n(t))^kR_n(t^{k-m} - t^k + 1)$
= $\pm R_n(t^{k-m} - t^k + 1).$

(c) $t^m - t^k + 1 = t^m(t^{-m} - t^{k-m} + 1)$ so

$$R_n(t^m - t^k + 1) = R_n(t^m)R_n(t^{-m} - t^{k-m} + 1)$$

= $(R_n(t))^m R_n(t^m - t^{m-k} + 1)$
= $\pm R_n(t^m - t^{m-k} + 1).$

н			
н			
J	_	L	J

Other similar identities can be established. For example [2, Theorem 2] implies that if n, m, k, m', k' are integers such that (n, m, k) = 1, (n, m', k') = 1, (n, k') = 1 and $m'(m - k) = mk' \mod n$ then $R_n(t^m - t^k + 1) = \pm R_n(t^{m'} - t^{k'} + 1)$.

Parts (a) and (b) of Proposition 3.1 show that $R_n(t^m - t^k - 1) = \pm R_n(t^{m'} - t^{k'} + 1)$ (for some m', k') and $R_n(t^m + t^k - 1) = \pm R_n(t^{m'} - t^{k'} + 1)$ (for some m', k'), so we only need consider $R_n(f)$ for $f(t) = t^m - t^k + 1$. Moreover, by Proposition 2.4 we may assume that (n, m, k) = 1. Proposition 3.1(c) shows that the roles of k and (m - k) can be interchanged.

The next result was prompted by [1, Lemma 1.3].

Proposition 3.2 (a) If (k, n) = 1 then $R_n(t^m - t^k + 1) = R_n(t^{m\ell} - t + 1)$ where $\ell = k^{-1} \mod n$;

(b) if (m - k, n) = 1 then $R_n(t^m - t^k + 1) = R_n(t^{m\ell} - t + 1)$ where $\ell = (m - k)^{-1} \mod n$;

(c) if
$$(m,n) = 1$$
 then $R_n(t^m - t^k + 1) = R_n(t - t^{k\ell} + 1)$ where $\ell = m^{-1} \mod n$.

Proof

(a) Let $\phi = \theta^k$, then $\theta = \phi^\ell$ so

$$R_n(t^m - t^k + 1) = \prod_{\theta^n = 1} \theta^m - \theta^k + 1 = \prod_{\phi^n = 1} (\phi^\ell)^m - \phi + 1 = R_n(t^{m\ell} - t + 1).$$

(b) This follows from (a) by interchanging the roles of k and (m - k).
(c) Similar to (a).

Parts (a),(b) of Proposition 3.2 show that it is sometimes enough to consider the polynomials considered by Odoni [7] (that is, polynomials of the form $t^m - t + 1$).

When $k = 0 \mod n$ or $k = m \mod n$ it is clear that $R_n(t^m - t^k + 1) = \pm 1$. We can obtain the value of R_n in some other cases; for example by Proposition 2.3 and Proposition 2.4 we have that $R_n(t^0 - t^k + 1) = (2^{n/(n,k)} - 1)^{(n,k)}$. By [8, Lemma 3] we also have

Lemma 3.3 Suppose that n is even, (m,k) = 1 and either $k = n/2 \mod n$ or $(m-k) = n/2 \mod n$. Then $|R_n(t^m - t^k + 1)| = 2^{n/2} - (-1)^{m+n/2}$.

4 Proof of Main Theorem

Odoni proved the Main Theorem in the case k = 1: we summarize this result ([7, Theorem 2(ii),(iii)]) as

Theorem 4.1 ([7]) Let $n \ge 1$ and $f(t) = t^m - t + 1$ where $m \in \mathbb{Z}$. Then $R_n(f) = \pm 1$ if and only if $((n, 6) = 1 \text{ and } m = 2 \mod n)$ or $m = 1 \mod n$.

Corollary 4.2 Let $n \ge 1$ and $f(t) = t^m - t^k + 1$ where $m, k \in \mathbb{Z}$, (n, m, k) = 1and suppose that either (k, n) = 1 or (m - k, n) = 1. Then $R_n(f) = \pm 1$ if and only if $((n, 6) = 1 \text{ and } m = 2k \mod n)$ or $k = 0 \mod n$ or $k = m \mod n$.

Proof

By interchanging the roles of k and (m - k) we may assume that (k, n) = 1. By Proposition 3.2(a) $R_n(f) = R_n(t^{m\ell} - t + 1)$, where $\ell = k^{-1} \mod n$. Now $m\ell = 1, 2 \mod n$ if and only if $m = k, 2k \mod n$, so the result follows from Theorem 4.1.

The following corollary generalizes [7, Lemma 3.2] to our setting.

Corollary 4.3 Let $n = p^u$ where p = 2 or 3, $u \ge 1$, and $f(t) = t^m - t^k + 1$ where $m, k \in \mathbb{Z}$, (n, m, k) = 1. Then $R_n(f) = \pm 1$ if and only if $k = 0 \mod n$ or $k = m \mod n$.

Proof

The hypotheses imply that either (k, n) = 1 or (m - k, n) = 1 and so the result follows from Corollary 4.2.

The 'if' direction of the Main Theorem is straightforward to prove (see [8, Lemma 5]) so from now on we focus on the 'only if' direction.

Lemma 4.4 Let $n = 2^r 3^s \ge 1$ and $f(t) = t^m - t^k + 1$ where $m, k \in \mathbb{Z}$, (n, m, k) = 1. If $R_n(f) = \pm 1$ then $k = 0 \mod n$ or $k = m \mod n$.

Proof

By Corollary 4.3 we may assume $r \ge 1, s \ge 1$. Now $R_n(f) = \pm 1$ implies $R_{2^r}(f) = \pm 1$ and so by Corollary 4.3 we have $k = 0 \mod 2^r$ or $(m - k) = 0 \mod 2^r$. By interchanging the roles of k and (m - k) we may assume that the first of these holds. We also have $R_{3^s}(f) = \pm 1$ so $k = 0 \mod 3^s$ or $k = m \mod 3^s$. In the first case we have $k = 0 \mod n$, so assume the second.

Let $d = 2 \cdot 3^s$. Now $k \neq m \mod d$, for otherwise 2|(n, m, k) = 1; thus $k = m + d/2 \mod d$. It follows that $(m \mod d, k \mod d) = 1$ so Lemma 3.3 implies that $R_d(f) \neq \pm 1$ and hence $R_n(f) \neq \pm 1$. \Box

Our next lemma generalizes [7, Lemma 3.3] to our setting. We use ideas from the proof of that result.

Lemma 4.5 Let n = pq where q = 2 or 3 and $p \ge 5$ is prime, $f(t) = t^m - t^k + 1$ where $m, k \in \mathbb{Z}$, (n, m, k) = 1. If $R_n(f) = \pm 1$ then $k = 0 \mod n$ or $k = m \mod n$.

Proof

By Corollary 4.2 we may assume (k, n) > 1, (m - k, n) > 1 so (since (n, m, k) = 1) either (q|k and p|(m - k)) or (p|k and q|(m - k)). By interchanging the roles of k and (m - k) we may assume that the first case occurs, i.e. $k = 0 \mod q$ and $(m - k) = 0 \mod p$. Moreover we may assume $k \neq 0 \mod p$, $(m - k) \neq 0 \mod q$ for otherwise $k = 0 \mod n$ or $(m - k) = 0 \mod n$.

If either p or q divides m then we get a contradiction to (n, m, k) = 1 so (m, n) = 1. Now by Proposition 3.2 $R_n(f) = R_n(g)$ where $g(t) = t^{m'} - t^{k'} + 1$ where m' = 1, $k' = km^{-1}$. The conditions on m, k imply $k' = 0 \mod q$, $(m' - k') = 0 \mod p$, $(m' - k') \neq 0 \mod q$. When q = 2 we have that $(m' - k') = n/2 \mod n$ and since (m', k') = 1 Lemma 3.3 implies $R_n(g) \neq \pm 1$.

Suppose then that q = 3 and $R_n(g) = \pm 1$. We have that $k' = 1 \mod p$, $k' = 0 \mod 3$. Now $R_{3p}(g) = \pm 1$ so, writing ζ_d for a primitive dth root of unity, Lemma 2.1 implies that $g(\theta)$ is a unit in $\mathbb{Z}[\zeta_{3p}]$ whenever θ is a primitive (3p)th root of unity. In particular $g(\zeta_p\zeta_3) = \zeta_p(\zeta_3 - 1) + 1$ and $g(\zeta_p\zeta_3^2) = \zeta_p(\zeta_3^2 - 1) + 1$ are units in $\mathbb{Z}[\zeta_{3p}]$ and hence so is their product $3\zeta_p^2 - 3\zeta_p + 1$, which must therefore also be a unit in $\mathbb{Z}[\zeta_p]$. Let $h(x) = 3x^2 - 3x + 1$. Then h(1) = 1 and $h(\zeta_p)$ are units in $\mathbb{Z}[\zeta_p]$ so by Lemma 2.1 we have that $R_p(h) = \pm 1$. Now Proposition 2.3 implies that $R_p(h) = 3^p(\beta_1^p - 1)(\beta_2^p - 1)$ where $\beta_1, \beta_2 = 3^{-1/2}e^{\pm i\pi/6}$ are the roots of h. But

$$3^{p}(\beta_{1}^{p}-1)(\beta_{2}^{p}-1) = 3^{p}+1 \pm 3^{(p+1)/2} \neq \pm 1$$

and we have a contradiction.

Our next result (Lemma 4.8) deals with the case (n, 6) = 1. It generalizes [7, Lemma 3.1] to our setting and its proof is essentially a re-run of the proof of that result. We will require the following theorem of Kronecker, a proof of which can be found on page 46 of [6].

Lemma 4.6 Let $\beta = \beta_1$ be a non-zero algebraic integer and let β_1, \ldots, β_k be the conjugates of β over \mathbb{Q} . If $\max_j |\beta_j| \leq 1$ then β is a root of unity.

We will also need the following:

Lemma 4.7 If $\sum_{i=1}^{\ell} w_i^j = \sum_{i=1}^{\ell} z_i^j$ for all $j = 1, \ldots, \ell$ then the multisets $\{w_1, \ldots, w_\ell\}$ and $\{z_1, \ldots, z_\ell\}$ are equal.

The proof is a standard application of the Newton-Girard formula and so is omitted.

Lemma 4.8 Let $n \ge 1$ and $f(t) = t^m - t^k + 1$ where $m, k \in \mathbb{Z}$, (n, m, k) = 1and suppose (n, 6) = 1. If $R_n(f) = \pm 1$ then $m = 2k \mod n$ or $k = 0 \mod n$ or $k = m \mod n$.

Proof

By Lemma 2.1 $\lambda = f(\zeta)$ is a unit in the ring $\mathbb{Z}[\zeta]$ for some primitive *n*th root of unity ζ , and therefore so is $\sigma(\lambda)$ for any $\sigma \in \Gamma = \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$. Let $\mu = \overline{\lambda}\lambda^{-1}$. Then, since Γ is abelian, we have

$$|\sigma(\mu)|^2 = \sigma(\mu)\overline{\sigma(\mu)} = \sigma(\mu\overline{\mu}) = \sigma(1) = 1.$$

Lemma 4.6 implies that μ is a root of unity in $\mathbb{Q}(\zeta)$, and thus $\mu = s\zeta^{j}$ for some $j \in \mathbb{Z}$, $s = \pm 1$. Since $\mu = \overline{\lambda}\lambda^{-1} = \overline{f(\zeta)}f(\zeta)^{-1} = f(\zeta^{-1})f(\zeta)^{-1}$ it follows that

$$s\zeta^{j}(\zeta^{m}-\zeta^{k}+1) = \zeta^{-m}-\zeta^{-k}+1.$$
(4.1)

Case 1: s = -1. Let $w_1 = \zeta^{-m}$, $w_2 = 1$, $w_3 = \zeta^{m+j}$, $w_4 = \zeta^j$, $z_1 = \zeta^{-k}$, $z_2 = \zeta^{j+k}$, $z_3 = z_4 = 0$. Then (4.1) is equivalent to

$$w_1 + w_2 + w_3 + w_4 = z_1 + z_2 + z_3 + z_4.$$
(4.2)

Since (n, 6) = 1 we have that (r, n) = 1 for r = 1, 2, 3, 4. Thus the maps $\zeta \mapsto \zeta^r$ (r = 1, 2, 3, 4) are automorphisms of $\mathbb{Q}(\zeta)$. Applying these to (4.2) we get

$$\sum_{i=1}^{4} w_i^r = \sum_{i=1}^{4} z_i^r \quad (r = 1, 2, 3, 4).$$
(4.3)

By Lemma 4.7 we have that $\{w_1, w_2, w_3, w_4\} = \{z_1, z_2, z_3, z_4\}$, but $z_3 = 0 \notin \{w_1, w_2, w_3, w_4\}$ which gives a contradiction.

Case 2: s = +1. Let $w_1 = \zeta^{-m}$, $w_2 = 1$, $w_3 = \zeta^{k+j}$, $z_1 = \zeta^{-k}$, $z_2 = \zeta^{j+m}$, $z_3 = \zeta^{j}$. Then (4.1) is equivalent to

$$w_1 + w_2 + w_3 = z_1 + z_2 + z_3. (4.4)$$

As in Case 1, the maps $\zeta \mapsto \zeta^r$ (r = 1, 2, 3) are automorphisms of $\mathbb{Q}(\zeta)$ and applying them to (4.4) gives $\{w_1, w_2, w_3\} = \{z_1, z_2, z_3\}$. If $(z_1, z_2, z_3) = (w_3, w_1, w_2)$ then $\zeta^{2k} = \zeta^{2m} = 1$ so k = 0 or $n/2 \mod n$ and m = 0 or $n/2 \mod n$ and so k = 0 or $m \mod n$ or $m = 2k \mod n$. If $(z_1, z_2, z_3) = (w_1, w_2, w_3), (w_1, w_3, w_2),$ or (w_2, w_3, w_1) then $\zeta^{m-k} = 1$ and hence $k = m \mod n$. If $(z_1, z_2, z_3) = (w_3, w_2, w_1)$ then $2k = m \mod n$. If $(z_1, z_2, z_3) = (w_2, w_1, w_3)$ then $k = 0 \mod n$. \Box

Proof of Main Theorem

The 'if' direction was proved in [8, Lemma 5] so suppose that $R_n(f) = \pm 1$. By Lemmas 4.4 and 4.8 we may assume n = ab where $a = 2^r 3^s > 1$, (b, 6) = 1, b > 1. Now $R_a(f) = \pm 1$ implies (by Lemma 4.4) that $k = 0 \mod a$ or $(m - k) = 0 \mod a$. By interchanging the roles of k and (m - k) we may assume that $k = 0 \mod a$. Also, $R_b(f) = \pm 1$ implies (by Lemma 4.8) that $k = 0 \mod b$ or $m = 2k \mod b$ or $k = m \mod b$. If $k = 0 \mod b$ then $k = 0 \mod n$ so assume otherwise.

Suppose $m = 2k \mod b$. Then no prime divisor of n divides (m - k) for otherwise it would also divide (n, m, k) = 1. Therefore (m - k, n) = 1 and the result follows from Corollary 4.2. Suppose then that $k = m \mod b$ and let $p \ge 5$ be a prime divisor of b and let q = 2 if $r \ge 1$ or q = 3 otherwise. Now $k \ne m \mod pq$ and $k \ne 0 \mod pq$ for otherwise q|(n, m, k) = 1 or p|(n, m, k) = 1 (respectively) and so Lemma 4.5 implies $R_{pq}(f) \ne \pm 1$ so $R_n(f) \ne \pm 1$.

Acknowledgement

I would like to thank the referee(s) of this paper and of an earlier version of it for the helpful comments.

References

- V.G. Bardakov and A.Yu. Vesnin. A generalization of Fibonacci groups. Algebra and Logic, 42(2):131–160, 2003.
- [2] A. Cavicchioli, E.A. O'Brien, and F. Spaggiari. On some questions about a family of cyclically presented groups. J. Algebra, 320(11):4063–4072, 2008.
- [3] J.E. Cremona. Unimodular integer circulants. Math. Comp., 77:1639–1652, 2008.

- [4] M. Edjvet and G. Williams. The cyclically presented groups with relators $x_i x_{i+k} x_{i+\ell}$. *Preprint*.
- [5] D.L. Johnson. Topics in the theory of group presentations, volume 42 of London Mathematical Society Lecture Note Series. Cambridge University Press, 1980.
- [6] W. Narkiewicz. *Elementary and analytic theory of algebraic numbers*. Springer-Verlag, second edition, 1990.
- [7] R.W.K. Odoni. Some Diophantine problems arising from the theory of cyclically-presented groups. *Glasg. Math. J.*, 41(2):157–165, 1999.
- [8] G. Williams. The aspherical Cavicchioli-Hegenbarth-Repovš generalized Fibonnacci groups. J.Group Theory, 12(1):139–149, 2009.

Author's address

Gerald Williams Department of Mathematical Sciences University of Essex Wivenhoe Park Colchester Essex CO4 3SQ gwill@essex.ac.uk