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Abstract

Continuing Cavicchioli, Repovš, and Spaggiari’s investigations into the cyclic presentations

〈x1, . . . , xn | xixi+kxi+l = 1 (1 ≤ i ≤ n)〉 we determine when they are aspherical and when they

define finite groups; in these cases we describe the groups’ structures. In many cases we show

that if the group is infinite then it contains a non-abelian free subgroup.
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1 Introduction

In this paper we consider the cyclic presentations

Pn(k, l) = 〈x1, . . . , xn | xixi+kxi+l (1 ≤ i ≤ n)〉

and the groups Gn(k, l) they define (where 1 ≤ k, l ≤ n − 1 and subscripts are taken
mod n). We classify the finite groups Gn(k, l) and determine when the presentations Pn(k, l)
are aspherical (that is, when π2(K) = 0 where K is the standard 2-dimensional CW-
complex associated with P). Similar investigations were carried out in [1],[14] for the cyclic
presentations Qn(m, k) with relators xixi+mx−1

i+k and the groups Hn(m, k) they define. (The
groups Hn(m, k) were introduced in [5] and generalize Conway’s Fibonacci groups F (2, n)
and the Sieradski groups S(2, n)). It turns out that for n ≥ 10 the finite groups Gn(k, l)
have a richer structure than the finite groups Hn(m, k), which are cyclic.

The presentations Pn(k, l) and Qn(m, k) fit into the more general class of cyclic presenta-

tions G
(a,b,r,s)
n (m, k, h) introduced by Cavicchioli, Repovš and Spaggiari in [6]. It is hoped

that the results here, together with those in [14], will provide insight into Problem 4.4 of [6]
which asks for necessary and sufficient conditions for asphericity of those presentations.

Our main results are the following.

Theorem A. Suppose (n, k, l) = 1 and let P = Pn(k, l). Then P is aspherical if and only
if k 6= l, k + l 6≡ 0 (mod n), 2l − k 6≡ 0 (modn), 2k − l 6≡ 0 (mod n), 3l 6≡ 0 (modn),
3k 6≡ 0 (modn), 3(l − k) 6≡ 0 (mod n) and either

(i) n 6= 18; or

(ii) n = 18 and k + l 6≡ 0 (mod 3).

Theorem B. The group G = Gn(k, l) is finite if and only if (n, k, l) = 1 and one of the
following conditions holds:

(i) k = l in which case G ∼= Zs where s = 2n − (−1)n;

(ii) k 6= l, n 6≡ 0 (mod 3) and either k+ l ≡ 0 (mod n) or 2l−k ≡ 0 (modn) or 2k− l ≡ 0
(modn) in which case G ∼= Z3;

(iii) k 6= l, k + l 6≡ 0 (mod 3) and either 3l ≡ 0 (modn) or 3k ≡ 0 (mod n) or 3(l− k) ≡ 0
(modn) in which case G is metacyclic of order s = 2n − (−1)n and we have the
metacyclic extension

Zs/3 →֒ G ։ Z3;

and the metacyclic extension

G′ ∼= Zβ →֒ G ։ Zα;

where α = 3(2n/3 − (−1)n/3), β = s/α.
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(A) (B) (C) Aspherical Abelianization Group

F F F Yes finite 6= 1 ∞

F F T No Zα Metacyclic

F T F No Z3 Z3

T F F n 6= 18 Yes ∞ Large

T F F n = 18 No Z × Z × Z19 Z ∗ Z ∗ Z19

T F T No Z × Z × Zγ Z ∗ Z ∗ Zγ

T T F No Z × Z Z ∗ Z

T T T No Z × Z Z ∗ Z

Table 1: Summary of results for (n, k, l) = 1, k 6= l.

Let d = (n, k, l). Then Pn(k, l) is aspherical if and only if Pn/d(k/d, l/d) is aspherical. (This
is why we assume (n, k, l) = 1 in Theorem A). Moreover, by Lemma 2.4 of [6] Gn(k, l) is
isomorphic to the free product of d copies of the non-trivial group Gn/d(k/d, l/d) so Gn(k, l)
is infinite when d > 1. Furthermore, if d = 1 and k = l then an elementary argument using
Tietze transformations shows that Gn(k, l) ∼= Zs where s = 2n − (−1)n.

We shall state some of our results in terms of the following three conditions:

(A) n ≡ 0 (mod 3) and k + l ≡ 0 (mod 3);

(B) k + l ≡ 0 (modn) or 2l − k ≡ 0 (mod n) or 2k − l ≡ 0 (mod n);

(C) 3l ≡ 0 (mod n) or 3k ≡ 0 (modn) or 3(l − k) ≡ 0 (modn).

These conditions were derived in part from computational experiments using GAP [8] which
was invaluable in formulating our results. Note that if (B) and (C) hold then (A) holds.

It follows that there are precisely seven (out of the possible eight) combinations of (A), (B),
(C) being true or false. These are listed in Table 1 where we summarize our results (here
α = 3(2n/3 − (−1)n/3), γ = (2n/3 − (−1)n/3)/3). In this table ∞ denotes a group of infinite
order whose structure is unknown, Metacyclic denotes metacyclic of order s = 2n − (−1)n,
Large denotes a large group (that is, one that has a finite index subgroup that maps
homomorphically onto the free group of rank 2). Note also in Table 1 that the 2nd line
corresponds to Theorem B(iii); and the 3rd corresponds to Theorem B(ii). Further, the
8th line only occurs when n = 3 or 6.

In Section 2 we obtain information about the structure of Gn(k, l) for various combina-
tions of (A),(B),(C) being true or false; in Section 3 we study the metacyclic case (Theo-
rem B(iii)); in Section 4 we prove Theorem A and make other remarks on asphericity; in
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Section 5 we prove Theorem B and consider whether the Tits alternative holds. For basic
concepts used in this paper we refer the reader to [12].

2 Preliminaries

Lemma 2.1. In each of the following cases the standard 2-complexes associated with the
presentations Pn(k, l) and Pn(k′, l′) are homotopy equivalent. Moreover the triple (n, k, l)
satisfies condition (A),(B), or (C) if and only if (n, k′, l′) does.

(i) Let k′ = l − k, l′ = −k (modn).

(ii) Let k′ = l, l′ = k.

(iii) Let k′ = k − l, l′ = −l (modn).

(iv) Let k′ = k, l′ = k − l (mod n).

(v) If (k, n) = 1 let k′ = 1, l′ = Kl (mod n), where Kk ≡ 1 (mod n).

(vi) If n is even and (l, n) = 1 let k′ = 1, l′ = Lk + 1 (mod n), where Ll ≡ −1 (modn).

Proof. (i) Setting j = i + k in the relators xixi+kxi+l and cyclically permuting gives
xjxj+(l−k)xj−k.

(ii) Taking the inverse of the relators xixi+kxi+l and replacing each generator by its inverse
gives xi+lxi+kxi; cyclically permuting yields xixi+lxi+k.

(iii) Setting j = i+l in the relators xixi+kxi+l and cyclically permuting gives xjxj−lxj+(k−l).
Then apply part (ii).

(iv) Negating each subscript of the relators xixi+lxi+k of Pn(l, k) and letting j = −i − k,
then cyclically permuting yields the relators xjxj+lxj+(k−l).

(v) Applying the subscript shift i → iK to the relators xixi+kxi+l yields the relators
xixi+1xi+Kl.

(vi) Applying the subscript shift i → iL to the relators xixi+kxi+l yields xixi+kLxi−1.
Writing j = i − 1 and cyclically permuting gives xjxj+1xj+kL+1.

Thus if (k, n) = 1 or (l, n) = 1 or (k − l, n) = 1 then Gn(k, l) ∼= Gn(1, l′) for some l′.
Parts (iii),(v) of Lemma 2.1 are contained in Lemmas 2.1 and 2.2 of [6]. More equivalences
amongst the presentations Pn(k, l) can be established using the other results in Section 2
of [6].

Since the exponent sum of xixi+kxi+l is not equal to ±1 the abelianization Gn(k, l)ab is
non-trivial. Moreover, as a corollary to Theorem 5.1 of [4] we know precisely when the
abelianization is infinite. (Strictly, all parameters in that theorem are positive whereas we
require one of them to be negative; this does not affect the proof, however.)
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Lemma 2.2 ([4]). Suppose (n, k, l) = 1, k 6= l. The abelianization Gn(k, l)ab is infinite if
and only if (A) holds.

Lemma 2.3. Suppose (n, k, l) = 1, k 6= l. If (A) holds then Gn(k, l) is large.

Proof. The standard split extension of Gn(k, l) by the cyclic group of order n has presen-
tation En(k, l) = 〈x, t | tn, xt−kxtk−lxtl〉. We have that l ≡ −k ≡ k − l mod 3 so adjoining
the relator t3 gives that 〈x, t | t3, (xtl)3〉 ∼= Z3 ∗ Z3 is a homomorphic image of En(k, l).
Thus En(k, l), and hence Gn(k, l), is large.

Lemma 2.4. Suppose (n, k, l) = 1, k 6= l. If (B) holds then Pn(k, l) is not aspherical. If,
in addition, (A) holds then Gn(k, l) ∼= Z ∗ Z otherwise Gn(k, l) ∼= Z3.

Proof. If k+l ≡ 0 (mod n) set k′ = −l, l′ = k−l (mod n); if 2l−k ≡ 0 (mod n) set k′ = l−k,
l′ = −k (mod n) . This gives that l′ = 2k′ and Gn(k

′, l′) ∼= Gn(k, l) by Lemma 2.1. Thus
we may assume that l ≡ 2k (mod n).

Since (n, k, l) = 1 we have (n, k) = 1 so Gn(k, l) ∼= Gn(1, 2), by Lemma 2.1. The relators
xixi+1xi+2, xi+1xi+2xi+3 together imply that xi = xi+3 for all i. Suppose (A) holds, so
that n ≡ 0 (mod 3); then the generating set {xi | 1 ≤ i ≤ n} = {x1, x2, x3} and thus
Gn(1, 2) = 〈x1, x2, x3 | x1x2x3〉 ∼= Z ∗Z. An aspherical presentation of any given group has
the maximal possible deficiency of all presentations of that group [13, page 478]. The group
Z ∗ Z has a presentation of deficiency 2 so Pn(k, l) is not aspherical. Suppose then that
(A) does not hold. Then xi = x1 for all i so Gn(1, 2) = 〈x1 | x3

1〉
∼= Z3, a finite non-trivial

group, so Pn(k, l) is not aspherical.

Thus we may have Gn(k, l) ∼= Gn′(k′, l′) with n 6= n′, for finite and for infinite groups. In
connection with this and with Question 5 of [1] we note that this behaviour cannot occur
for the groups Hn(m, k) (of the introduction) when they are finite (by [14],[15]), and that
there are no recorded examples of it when they are infinite.

Lemma 2.5. Suppose (n, k, l) = 1, k 6= l. If (B) does not hold and (A),(C) both hold then
Gn(k, l) ∼= Z ∗ Z ∗ Zγ where γ = (2n/3 − (−1)n/3)/3 and thus Pn(k, l) is not aspherical.

Proof. It follows from the hypotheses that either (n, k) = 1 or (n, l) = 1 so by Lemma 2.1
we may assume k = 1. The conditions imply also that n = 3m where m ≥ 4 and so
l ∈ {m, m + 1, 2m, 2m + 1}, 1 + l ≡ 0 (mod 3). Lemma 2.1 also implies that Gn(1, m) ∼=
Gn(1, 2m + 1) and Gn(1, m + 1) ∼= Gn(1, 2m) so it is enough to consider l ∈ {m, m + 1}.
We give only the proof for l = m, the case l = m + 1 being similar.

Let n = 3m where 1+m ≡ 0 (mod 3) and m ≥ 5. Then m = 3m̂+2 and n = 9m̂+6 where
m̂ ≥ 1. We prove that G = 〈x1, x2, x3 | (x1x2x3)

γ〉 from which the result follows. Our first
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step is to re-order the relators (for convenience we will write i for xi and ī for x−1
i ):

1 2 m + 1
2 3 m + 2

m + 1 m + 2 2m + 1

2m + 1 + 3j 2m + 2 + 3j 1 + 3j
2m + 2 + 3j 2m + 3 + 3j 2 + 3j
2m + 3 + 3j 2m + 4 + 3j 3 + 3j
m + 2 + 3j m + 3 + 3j 2m + 2 + 3j
m + 3 + 3j m + 4 + 3j 2m + 3 + 3j
m + 4 + 3j m + 5 + 3j 2m + 4 + 3j

3 + 3j 4 + 3j m + 3 + 3j
4 + 3j 5 + 3j m + 4 + 3j
5 + 3j 6 + 3j m + 5 + 3j

2m 2m + 1 3m
3m − 1 3m m − 1

3m 1 m

where 0 ≤ j ≤ m̂ − 1.

The first three relators yield m + 1 = 2̄ 1̄; m + 2 = 3̄ 2̄ and 2m + 1 = 2 3 1 2. Then
there follows 9m̂ = n − 6 relators in blocks of 9 the first 9m̂ − 1 of which together with
2m 2m+1 3m show that G = 〈1, 2, 3〉 subject to the three relators 5+3(m̂−1) 6+3(m̂−1)
m + 5 + 3(m̂− 1); 3m− 1 3m m− 1 and 3m 1 m. In fact 3(m̂− 1) = m− 5 so the first of
these relators is m m + 1 2m.

Put Tv = (2v − (−1)v)/3 where v ≥ 1. A calculation shows that for j = 2ĵ ≥ 0 the
corresponding block of 9 relators yield

2m + 2 + 3j = 2̄ 1̄(123)−u(j,1)

m + 3 + 3j = 2 3(123)v(j,1)1 2

4 + 3j = (123)−w(j,1)3̄ 2̄

2m + 3 + 3j = (123)u(j,2)1
m + 4 + 3j = 2̄ 1̄(123)−v(j,2)

5 + 3j = 2 3(123)w(j,2)

2m + 4 + 3j = 1̄(123)−u(j,3)3̄
m + 5 + 3j = (123)v(j,3)1

6 + 3j = 2̄ 1̄(123)−w(j,3)

where

u(j, 1) = T1+6ĵ

v(j, 1) = T2+6ĵ

w(j, 1) = T3+6ĵ − 1

u(j, 2) = T2+6ĵ

v(j, 2) = T3+6ĵ

w(j, 2) = T4+6ĵ

u(j, 3) = T3+6ĵ − 2

v(j, 3) = T4+6ĵ

w(j, 3) = T5+6ĵ

and if j = 2ĵ + 1 ≥ 1 the corresponding block yields

2m + 2 + 3j = 3(123)u(j,1)

m + 3 + 3j = 1̄(123)v(j,1)3̄

4 + 3j = (123)w(j,1)1

2m + 3 + 3j = (123)−u(j,2)3̄ 2̄
m + 4 + 3j = 3(123)v(j,2)

5 + 3j = 1̄(123)−w(j,2)3̄

2m + 4 + 3j = 2 3(123)u(j,3)1 2
m + 5 + 3j = (123)−v(j,3)3̄ 2̄

6 + 3j = 3(123)w(j,3)

where

u(j, 1) = T4+6ĵ − 1

v(j, 1) = T5+6ĵ − 2
w(j, 1) = T6+6ĵ

u(j, 2) = T5+6ĵ − 1

v(j, 2) = T6+6ĵ − 1
w(j, 2) = T7+6ĵ − 2

u(j, 3) = T6+6ĵ

v(j, 3) = T7+6ĵ − 1
w(j, 3) = T8+6ĵ − 1
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Figure 1: Sphere for P15(1, 5)

It follows that when m is even the relator m m + 1 2m rewrites to

1̄(123)−w(m̂−1,2)3̄ 2̄ 1̄(123)−v(m̂−1,3) = (123)−Tm;

using 2m 2m + 1 3m the relator 3m − 1 3m m − 1 rewrites to

2 3(123)u(m̂−1,3)1 2(2312)2 3(123)v(m̂−1,3)(123)2(m̂−1,1)1 = (123)Tm;

and the relator 3m 1 m rewrites to

(2312)2 3(123)v(m̂−1,3)11̄(123)−w(m̂−1,2)3̄ = (123)0

from which we obtain the result. The consequences when m is odd are similar and we omit
the details.

In certain cases of Lemma 2.5 we can explicitly obtain spheres. An application of Lemma 2.1
shows that when n = 15 there is (up to homotopy) only one presentation to be considered,
namely P15(1, 5). We give a sphere for this case in Figure 1.

3 The metacyclic cases

In this section we deal with the cases where (n, k, l) = 1, k 6= l, (C) holds and (A) does
not. It follows that (B) does not hold. These conditions imply that either (n, k) = 1 or
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(n, l) = 1 or (n, k − l) = 1 so by Lemma 2.1 we may assume that k = 1. Thus it is enough
to consider G = Gn(1, l) where 1 + l 6≡ 0, 2l − 1 6≡ 0, 2 − l 6≡ 0 and either 3l ≡ 0 or
3(l − 1) ≡ 0 all modulo n; and where n ≡ 0 (mod 3) and 1 + l 6≡ 0 (mod 3).

Lemma 3.1. Suppose (n, k, l) = 1, k 6= l. If (C) holds and (A) does not then |Gn(k, l)ab| =
α where α = 3(2n/3 − (−1)n/3).

Proof. As explained above it is enough to consider Gn(1, l) together with the conditions
on l and n listed there. Let n = 3m. Then there are four cases: (i) l = m and m ≡ 0 or
1 (mod 3); (ii) l = m + 1 and m ≡ 0 or 2 (mod 3); (iii) l = 2m and m ≡ 0 or 2 (mod 3);
and (iv) l = 2m + 1 and m ≡ 0 or 1 (mod 3). But the substitution M = m + 1, M = 2m,
M = 2m + 1 (respectively) transforms case (ii), (iii), (iv) (respectively) to case (i) so it is
enough to consider (i) only. Now the relation matrix of a cyclic presentation is a circulant
matrix and it follows (see, for example, [7, page 77]) that |Gn(k, l)ab| = P where

P =

n−1
∏

j=0

f(ζ)

where f(x) = 1 + x + xl and ζ = e2πi/3m.

Put w = e2πi/3, θ = e2πi/m. Then j = 3t yields

P1 =

m−1
∏

t=0

(1 + θt + 1) =

m−1
∏

t=0

(−1)((−2) − θt) = 2m − (−1)m;

j = 3t + 1 yields

P2 =
m−1
∏

t=0

(1 + ζθt + w) =
m−1
∏

t=0

(−ζ)

[

−

(

1 + w

ζ

)

− θt

]

= (1 + w)m − (−ζ)m;

and j = 3t + 2 yields

P3 =

m−1
∏

t=0

(1 + ζ2θt + w2) = (1 + w2)m − (−ζ2)m.

Then P = P1P2P3 = 3(2m − (−1)m).

Lemma 3.2. Suppose (n, k, l) = 1, k 6= l. If (C) holds and (A) does not then G = Gn(k, l)
is metacyclic of order s = 2n − (−1)n and we have the metacyclic extension

Zs/3 →֒ G ։ Z3

and the metacyclic extension

G′ ∼= Zβ →֒ G ։ Zα

where α = 3(2n/3 − (−1)n/3), β = s/α.
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Figure 2: Covering complex

Proof. Again it is enough to consider Gn(1, l) (with the conditions on l and n listed above).

Let E be the standard split extension of G by the cyclic group of order n. Then |E : G| = n
and E has the presentation

E = 〈x, t | tn, xt−1xt−(l−1)xtl〉.

We claim that E ′, the derived subgroup of index 3n in E, is cyclic of order s/3 where
s = 2n − (−1)n and it follows that G is metacyclic of order s. Since E ′ is a subgroup of
index 3 in (the isomorphic copy in E of) G we obtain the first metacyclic extension in the
statement of the lemma. Moreover, it follows that G′ and Gab are cyclic so by Lemma 3.1
Gab ∼= Zα and we obtain the second metacyclic extension.

To prove our claim first observe that Eab ∼= Z3 × Zn and so the covering complex corre-
sponding to E ′ has 1-skeleton as given by Figure 2. The 2-cells are obtained from the lifts
of tn and xt−1xt−(l−1)xtl at each vertex and these are (up to cyclic permutation):

tj,0 tj,1 . . . tj,n−1 (3.1)

and

xj,it
−1
j+1,i−1xj+1,i−1t

−1
j+2,i−2 . . . t−1

j+2,i−lxj+2,i−ltj,i−l . . . tj,i−1, (3.2)

where 0 ≤ j ≤ 2, 0 ≤ i ≤ n − 1 and the subscripts are taken modulo 3, modulo n
respectively.

A presentation for E ′ is obtained by collapsing a maximal tree. We first collapse the edges
labelled tj,i apart from t0,n−1, t1,n−1 and t2,n−1. Note however that the t-lifts (3.1) now yield
t0,n−1 = t1,n−1 = t2,n−1 = 1 in E ′. Thus the lifts (3.2) become

xj,ixj+1,i−1xj+2,i−l (0 ≤ j ≤ 2, 0 ≤ i ≤ n − 1). (3.3)
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Before choosing which two x-edges to collapse we first rearrange the 3n words in (3.3) into
n rows each having a triple of words.

Assume that 3l ≡ 0 (mod n). The first row of the new arrangement is

x0,0x1,n−1x2,n−l x2,n−lx0,n−l−1x1,n−2l x1,lx2,l−1x0,0 (3.4)

and since 3l ≡ 0 (mod n) these words are

x0,0x1,n−1x2,2l x2,2lx0,2l−1x1,l x1,lx2,l−1x0,0. (3.5)

To obtain the next n−1 rows we repeatedly make the shift xj,i → xj,i+2l−1 starting at (3.5).
The point being that the gcd (2l − 1, 3l) = 1 since if q > 1 divides 3l and 2l − 1 then q
divides l + 1. Since l + 1 6≡ 0 (mod 3) it follows that q divides l, a contradiction. Therefore
the shift induces a permutation of our set.

The n rows are

x0,0 x1,n−1 x2,2l x2,2l x0,2l−1 x1,l x1,l x2,l−1 x0,0

x0,2l−1 x1,2l−2 x2,l−1 x2,l−1 x0,l−2 x1,n−1 x1,n−1 x2,n−2 x0,2l−1
...

...
...

...
...

...
x0,2l+2 x1,2l+1 x2,l+2 x2,l+2 x0,l+1 x1,2 x1,2 x2,1 x0,2l+2

x0,l+1 x1,l x2,1 x2,1 x0,0 x1,2l+1 x1,2l+1 x2,2l x0,l+1

(3.6)

Observe that (3.6) is also arranged into three columns each of n words. We label the words
in the first column ri (0 ≤ i ≤ n − 1); the second column si (0 ≤ i ≤ n − 1); and the third
column ui (0 ≤ i ≤ n − 1). To obtain a presentation for E ′ collapse the edges labelled by
x2,2l and x1,l giving

E ′ = 〈xj,i | ri, si, ui〉

where 0 ≤ j ≤ 2, 0 ≤ i ≤ n − 1 and (j, i) 6= (2, 2l), (1, l).

To see that E ′ = 〈x0,0〉 we consider each of the n − 1 triples ri, si, ui (0 ≤ i ≤ n − 2) in
turn. The triple r0, s0, u0 yields x1,n−1 = x−1

0,0, x0,2l−1 = x0
0,0 and x2,l−1 = x−1

0,0. The next
triple r1, s1, u1 now yields x1,2l−2 = x0,0, x0,l−2 = x2

0,0 and x2,n−2 = x0,0. More generally,
the triple ri, si, ui will yield x1,i(2j−1)−1, x0,(2l−1)+i(2j−1), x2,(l−1)+i(2j−1) are each in 〈x0,0〉 and
so E ′ is indeed cyclic generated by x0,0. Observe also that the sequence powers of x0,0

obtained by ri, si, ui is as follows: −1, 0,−1; 1, 2, 1; −3,−2,−3; 5, 6, 5, and so on. Solving
the recurrence relation shows that we obtain from rn−2, sn−2, un−2 the following identities:

x1,2l+1 = xp1

0,0; x0,l+1 = xp2

0,0; x2,1 = xp3

0,0, (3.7)

where p1, p2, p3 (respectively) equals (2n−1 − 1)/3, (2n−1 + 2)/3, (2n−1 − 1)/3 (respectively)
(n odd), or equals −(2n−1 + 1)/3, −(2n−1 − 2)/3, −(2n−1 + 1)/3 (respectively) (n even).

It follows from all this that E ′ = 〈x0,0〉 subject to the relators rn−1, sn−1, un−1. But an easy

check using (3.7) shows that each of these yields the relator x
s/3
0,0 and this proves our claim.
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If we assume that 3(l − 1) ≡ 0 (modn) the argument is similar. This time our first triple
r0, s0, u0 is:

x0,2l−1x1,2l−2x2,l−1 x1,lx2,l−1x0,0 x2,1x0,0x1,2l−2.

The shift is again xj,i → xj,i+2l−1 and the x-edges collapsed to produce the presentation for
E ′ are x1,2l−2 and x2,l−1. We omit the details.

It is well-known (see, for example, Chapter 3 in [12]) that any finite metacyclic group L,
with metacyclic extension ZM →֒ L ։ ZN has a presentation of the form

B(M, N, r, λ) = 〈a, b | aM = 1, bab−1 = ar, bN = aλM/(M,r−1)〉

for some r, λ where rN ≡ 1 (mod M). Moreover, by [2] if L has a balanced presentation
then λ = 1, H2(L, Z) = 0 and L has a 2-generator, 2-relator presentation. Thus we have:

Corollary 3.3. Let G = Gn(k, l) and suppose (n, k, l) = 1, k 6= l. If (C) holds and (A)
does not hold then

(i) H2(G, Z) = 0;

(ii) G has a presentation B((2n − (−1)n)/3, 3, r, 1) for some r where r3 ≡ 1 (mod (2n −
(−1)n)/3);

(iii) G has a presentation with 2 generators and 2 relators.

Computer experiments in GAP [8] in the cases n = 9, 12, 15 suggest a value for r for the
presentation in part (ii).

Conjecture 3.4. Suppose (n, k, l) = 1, k 6= l. If (C) holds and (A) does not hold then
Gn(k, l) ∼= Γ where Γ = B((2n − (−1)n)/3, 3, 22n/3, 1).

An analysis of the presentation for Γ yields the following result which, in particular, shows
that Γ has the desired abelianisation.

Lemma 3.5. Let n = 3m. Then

(i) Γ = 〈a, b | b3 = a(22m+(−2)m+1)/3, ba2m

= a(−1)m

b〉;

(ii) Γab ∼= Zα where α = 3(2m − (−1)m).

Proof. It follows from [2] that Γ has a presentation

Γ = 〈a, b | b3 = aV , basb−1a−s = a(M,r−1)〉

where V = M/(M, r−1), M = (2n − (−1)n)/3, r = 22n/3 and where s is defined as follows.
If s1 and k1 are integers such that (M, r − 1) = s1(r − 1) + k1M and d (taken mod M) is
the greatest factor of M that is prime to s1 then put s = s1 + dV .
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To prove (i) observe that M = (2m − (−1)m)(22m + (−2)m + 1)/3 and r − 1 = (2m −
(−1)m)(2m+(−1)m) so 3M−2m(r−1) = 2m−(−1)m. From this it follows that (M, r−1) =
2m − (−1)m, that V = (22m + (−2)m + 1)/3 and that we can take s1 = −2m and k1 = 3.
Since M is odd and s1 is a power of 2 we have d = 0 hence s = −2m yielding the desired
presentation for Γ.

For (ii) observe that V − 2
3
(2m−1 − (−1)m−1)(M, r−1) = 1 so (V, (M, r−1)) = 1 and there

exists v with (v, (M, r − 1)) = 1 such that vV ≡ 1 (mod(M, r − 1)). It now follows that
Γab = 〈a, b | b3 = aV , a(M,r−1) = 1, ab = ba〉 = 〈a, b, c | b3 = aV , a(M,r−1) = 1, ab = ba, c =
aV 〉 = 〈b, c | b3 = c, c(M,r−1) = 1, bc = cb〉 = 〈b | bα = 1〉 as required.

4 Asphericity

The standard split extension of Gn(k, l) by the cyclic group of order n has presentation
En(k, l) = 〈x, t | tn, xt−kxtk−lxtl〉. If we put T = 〈t | tn〉 then En(k, l) has a so-called
relative presentation Rn(k, l) = 〈T, x | xt−kxtk−lxtl〉. Lemma 4.1 of [6] gives that if Rn(k, l)
is aspherical (in the sense that any non-empty spherical picture over R contains a dipole)
then the presentation Pn(k, l) is aspherical (more precisely, it is diagrammatically reducible
in the sense of Gersten [10] which implies that π2(K) = 0, where K is the standard CW-
complex associated with P). Theorem 4.1 of [3] gives necessary and sufficient conditions
for Rn(k, l) to be aspherical. Following [1],[9], this approach was used in Theorem 4.3 of [6]
to obtain sufficient conditions for Pn(k, l) to be aspherical. Unfortunately that theorem is
incorrect, implying (for example) that P9(2, 3) is an aspherical presentation whereas in fact
it defines a metacyclic group of order 513. We correct and improve that result by including
the missing condition and strengthening the other conditions:

Theorem 4.1. The presentation R = Rn(k, l) is aspherical if and only if none of the
following conditions (a)–(e) is satisfied and P = Pn(k, l) is aspherical if none of them is
satisfied.

(a) (n, 2k − l) + (n, 2l − k) + (n, k + l) > n;

(b) n = 6(n, 2k − l) and (k − 2l) ≡ α(l − 2k) (modn) where α = 2 or 3;

(c) n = 6(n, 2l − k) and (k + l) ≡ α(k − 2l) (modn) where α = 2 or 3;

(d) n = 6(n, k + l) and (l − 2k) ≡ α(k + l) (mod n) where α = 2 or 3;

(e) n divides 3l or n divides 3k or n divides 3(l − k).

If (n, k, l) = 1 we have a simpler formulation:

Corollary 4.2. Suppose (n, k, l) = 1, k 6= l, that (C) does not hold, (n, 2k − l) + (n, 2l −
k) + (n, k + l) ≤ n and that if n = 18 then (A) does not hold. Then Pn(k, l) is aspherical.
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Proof. Clearly (a) and (e) do not hold. Suppose for contradiction that (b) holds. Then
(n, 2k − l) = n/6 so n/6 divides 2k − l and since (k − 2l) = α(l − 2k) we have that n/6
divides k−2l. Thus n/6 divides 3k and 3l so n/18 divides (n, k, l) = 1 and hence n = 6, 12,
or 18, and in these cases the hypotheses are never satisfied. Thus (b) does not hold; similar
arguments show that (c),(d) do not hold and hence Pn(k, l) is aspherical.

We can now prove Theorem A.

Proof of Theorem A. If k = l then Gn(k, l) ∼= Zs so Pn(k, l) is not aspherical, so assume
k 6= l. Note that the remaining conditions are that neither (B) nor (C) holds and either
n 6= 18 or (n = 18 and (A) does not hold). By Lemma 2.4 we may assume that (B) does
not hold.

Suppose that (C) holds. If (A) holds then Pn(k, l) is not aspherical by Lemma 2.5. If (A)
does not hold then Gn(k, l) is a finite non-trivial group by Lemma 3.2, so Pn(k, l) is not
aspherical. Thus we may assume that neither (B) nor (C) holds.

If n = 18 and (A) holds then either (k, n) = 1 or (l, n) = 1 so by Lemma 2.1 we may
assume that k = 1. The conditions then imply that l = 5, 8, 11, or 14. Another application
of Lemma 2.1 yields that G18(1, 5) ∼= G18(1, 8) ∼= G18(1, 11) ∼= G18(1, 14). By eliminat-
ing generators using a routine application of Tietze transformations we may show that
G18(1, 5) ∼= 〈x3, x5, x14 | (x5x

−1
14 )19〉 ∼= Z ∗ Z ∗ Z19 which has torsion so P is not aspherical.

So we may assume that neither (B) nor (C) hold and that if n = 18 then (A) does not
hold. By Corollary 4.2 it suffices to show that (n, 2k − l) + (n, 2l − k) + (n, k + l) ≤ n.

Let p = n/(n, 2k − l), q = n/(n, 2l − k), r = n/(n, k + l), then this fails to hold if and
only if {p, q, r} ∈ S where S = {{2, 3, 3}, {2, 3, 4}, {2, 3, 5}, {2, 2, N} (N ≥ 2)}. (Note that
p, q, r 6= 1 since (A) does not hold.) We shall assume, for contradiction, that {p, q, r} ∈ S.
From the definition of p, (n, l − 2k) = n/p so n/p divides l − 2k and therefore for some
1 ≤ α ≤ p − 1

l − 2k ≡ αn/p mod n. (4.1)

Similarly, for some 1 ≤ β ≤ q − 1 and some 1 ≤ γ ≤ r − 1

k − 2l ≡ βn/q modn, (4.2)

k + l ≡ γn/r mod n. (4.3)

Summing (4.1)–(4.3) we obtain αn/p+βn/q+γn/r ≡ 0 mod n, so setting κ = α/p+β/q+
γ/r we have κ ∈ Z. For each triple {p, q, r} ∈ S it is easy to check that κ /∈ Z for any
choice of α, β, γ, and the proof is complete. 2

As a corollary to Theorem A we have that the converse of Lemma 4.1 of [6] holds.

Corollary 4.3. The relative presentation Rn(k, l) is aspherical if and only if the absolute
presentation Pn(k, l) is aspherical.
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Proof. If Rn(k, l) is aspherical then Pn(k, l) is aspherical, by Lemma 4.1 of [6]. Let d =
(n, k, l), N = n/d, K = k/d, L = l/d. If Pn(k, l) is aspherical then PN (K, L) is aspherical.
Then none of (a)–(e) of Theorem 4.1 hold for the numbers N, K, L and hence none of them
do for n, k, l, so Rn(k, l) is aspherical.

The standard split extension of Hn(m, k) (from the introduction) has a relative presentation
Sn(m, k) = 〈T, x | xtmxt−kx−1tk−m〉. Lemma 2.2 of [1] (a generalization of Lemma 3.1
of [9]) gives that if Sn(m, k) is aspherical then Qn(m, k) is aspherical. Using Theorem 2
of [14] and Theorem 3.2 of [9] we can obtain the (analogous result to Corollary 4.3) that
the converse holds in many cases. For simplicity we only state a result for the ‘strongly
irreducible’ cases (see [14]).

Theorem 4.4. Suppose that (n, m, k) = 1 and (n, k) > 1, (k − m, n) > 1. Then the
relative presentation Sn(m, k) is aspherical if and only if the absolute presentation Qn(m, k)
is aspherical.

5 Finiteness and the Tits alternative

Proof of Theorem B. If d = (n, k, l) > 1 then Gn(k, l) is isomorphic to the free product of d
copies of Gn/d(k/d, l/d), which has non-trivial abelianization, so Gn(k, l) is infinite. Thus
we may assume (n, k, l) = 1. If k = l then G ∼= Zs, and this is condition (i), so assume
k 6= l.

If (B) holds and (A) does not hold then G ∼= Z3 by Lemma 2.4 and this is condition (ii)
of the theorem; and if (A) does not hold and (C) holds then this is condition (iii) and the
result follows from Lemma 3.2.

Now suppose that conditions (i),(ii),(iii) do not hold. If (A) holds then G is infinite by
Lemma 2.2 so assume otherwise. This in particular forces both (B) and (C) not to hold.
It follows from Theorem A that the presentation Pn(k, l) is aspherical so G is torsion-free
and since G is non-trivial it is infinite. 2

Recall that a group satisfies the Tits alternative if it either contains a non-abelian free
subgroup or is virtually soluble. As noted in the introduction, Gn(k, l) is isomorphic to the
free product of d = (n, k, l) copies of Gn/d(k/d, l/d). Since |Gn/d(k/d, l/d)| ≥ 3, Gn(k, l)
is large when d > 1 so we may assume that (n, k, l) = 1. Our results, as summarized in
Table 1, show that the Tits alternative holds except possibly when none of (A),(B),(C)
hold. We now show that it often holds in these cases as well. We introduce a fourth
condition:

(D) 2(k + l) ≡ 0 (mod n) or 2(2l − k) ≡ 0 (mod n) or 2(2k − l) ≡ 0 (mod n)

Lemma 5.1. Suppose (n, k, l) = 1, k 6= l.

(i) Pn(k, l) satisfies the small cancellation condition C(3) if and only if (B) does not hold;
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(ii) Pn(k, l) satisfies the small cancellation condition T(6) if and only if none of (B),(C),(D)
hold.

Proof. Let Pn(k, l) have associated star graph Γ. Then Γ is a bipartite graph with vertices
xi, x

−1
i (1 ≤ i ≤ n) which we shall denote by i, ī (respectively). The undirected edge with

vertices i and j will be denoted by {i, j}.

(i) Clearly C(3) does not hold if and only if there is a piece of length 2 and this occurs if
and only if Γ contains a closed path, γ say, of length 2. Using symmetry it can be assumed
that γ contains one of the edges {1̄, 1 + k}, {1 + k, 1 + l}, {1 + l, 1} obtained from the
relator x1x1+kx1+l. Suppose γ contains {1̄, 1 + k}. Since the other two edges involving
1̄ are {1̄, 1 + l − k} and {1̄, 1 − l} obtained from the relators x1−kx1x1+l−k, x1−lx1+k−lx1

(respectively) it follows that γ is closed of length 2 if and only if either 1 + k ≡ 1 + l − k
or 1 + k ≡ 1− l (mod n) and this occurs if and only if either 2k − l ≡ 0 or k + l ≡ 0 (mod
n). Similarly if γ contains {1 + k, 1 + l} then γ is closed of length 2 if and only if either
2k − l ≡ 0 or 2l − k ≡ 0 (mod n); and if γ contains {1 + l, 1} then γ is closed of length 2
if and only if either 2l − k ≡ 0 or k + l ≡ 0 (mod n) and the result follows.

(ii) Since Γ is bipartite it follows from [11] that Pn(k, l) fails to satisfy T(6) if and only if Γ
contains a closed path γ of length 2 or 4. The case of length 2 is dealt with in (i) so assume
length 4. Without loss of generality it can be assumed that γ contains the vertex 1̄. The
three edges involving 1̄ are {1̄, 1 + k}, {1̄, 1 + l − k}, {1̄, 1 − l} obtained from the relators
x1x1+kx1+l, x1−kx1x1+l−k, x1−lx1+k−lx1 (respectively). Suppose that γ contains {1̄, 1 + k}.
The other two edges involving 1 + k are {1 + k, 1 + k + l} and {1 + k, 1 + 2k − l}. The
two further edges involving 1 + k + l are {1 + k + l, 1 + 2k + l} and {1 + k + l, 1 + 2l};
and involving 1 + 2k − l are {1 + 2k − l, 1 + 3k − l} and {1 + 2k − l, 1 + 2k − 2l}. It then
follows that γ is closed of length 4 if and only if either 1 + 2k + l or 1 + 2l or 1 + 3k − l or
1+2k−2l coincides with one of 1+ l−k or 1− l; this occurs if and only if either (C) holds
or l + k ≡ 0 or 2k − l ≡ 0 or 2(k + l) ≡ 0 or 2(2k − l) ≡ 0 (mod n). Similarly if γ contains
{1̄, 1 + l − k} then γ is closed of length 4 if and only if either (C) holds or 2k − l ≡ 0 or
2l − k ≡ 0 or 2(2k − l) ≡ 0 or 2(2l − k) ≡ 0 (mod n); or if γ contains {1̄, 1 − l} then γ is
closed of length 4 if and only if either (C) holds or 2l − k ≡ 0 or l + k ≡ 0 or 2(2l − k) ≡ 0
or 2(k + l) ≡ 0 (mod n). The result now follows.

Corollary 5.2. Suppose (n, k, l) = 1, k 6= l. If none of (B),(C),(D) hold then Gn(k, l)
contains a non-abelian free subgroup.

Proof. Since Pn(k, l) satisfies C(3)+T(6) this follows from Theorem 8.1 of [7].

It remains to consider the cases where (n, k, l) = 1, k 6= l, (A),(B),(C) do not hold and
(D) does hold. In these cases either (k, n) = 1 or (l, n) = 1 so by using Lemma 2.1 we
may assume that k = 1. The conditions then imply that n = 2 or 4 mod 6, k = 1,
and l = n/2 − 1. When n = 8 a calculation in GAP [8] shows that the subgroup H of
G = Gn(1, n/2 − 1) generated by {x1x5, x2x6, x3x7, x4x8, x5x1, x6x2, x7x3, x8x4} is normal,
isomorphic to Z

8, and that G/H ∼= Z3 × Z3. That is, G is infinite and metabelian. We
have not been able to determine the situation for n > 8.
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A Appendix

As the proofs of Lemma 2.5 and Lemma 3.2 are somewhat technical we include here some
examples to aid their understanding. We write i, j for xi,j .

A.1 Proof of Lemma 2.5 in the case (n, k, l) = (42, 1, 14)

relators re-order consequences

1 2 15 1 2 15 15 = 2̄1̄

2 3 16 2 3 16 16 = 3̄2̄

3 4 17 15 16 29 29 = 2312

4 5 18 29 30 1 30 = 2̄1̄(123)−1

5 6 19 30 31 2 31 = (123)1

6 7 20 31 32 3 32 = 1̄(123)−13̄

7 8 21 16 17 30 17 = 23(123)12

8 9 22 17 18 31 18 = 2̄1̄(123)−3

9 10 23 18 19 32 19 = (123)51

10 11 24 3 4 17 4 = (123)−23̄2̄

11 12 25 4 5 18 5 = 23(123)512

12 13 26 5 6 19 6 = 2̄1̄(123)−11

13 14 17 32 33 4 33 = 3(123)4

14 15 28 33 34 5 34 = (123)−103̄2̄

15 16 29 34 35 6 35 = 23(123)2112

16 17 30 19 20 33 20 = 1̄(123)−93̄

17 18 31 20 21 34 21 = 3(123)20

18 19 32 21 22 35 22 = (123)−423̄2̄

19 20 33 6 7 20 7 = (123)211

20 21 34 7 8 21 8 = 1̄(123)−413̄

21 22 35 8 9 22 9 = 3(123)84
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22 23 36 35 36 7 36 = 2̄1̄(123)−43

23 24 37 36 37 8 37 = (123)851

24 25 38 37 38 9 38 = 1̄(123)−1693̄

25 26 39 22 23 36 23 = 23(123)8512

26 27 40 23 24 37 24 = 2̄1̄(123)−171

27 28 41 24 25 38 25 = (123)3411

28 29 42 9 10 23 10 = (123)−1703̄2̄

29 30 1 10 11 24 11 = 23(123)34112

30 31 2 11 12 25 12 = 2̄1̄(123)−683

31 32 3 38 39 10 39 = 3(123)340

32 33 4 39 40 11 40 = (123)−6823̄2̄

33 34 5 40 41 12 41 = 23(123)136512

34 35 6 25 26 39 26 = 1̄(123)−6813̄

35 36 7 26 27 40 27 = 3(123)1364

36 37 8 27 28 41 28 = (123)−27303̄2̄

37 38 9 12 13 26 13 = (123)13651

38 39 10 13 14 27 14 = 1̄(123)−27293̄

39 40 11 14 15 28 (1̄(123)−27293̄)(2̄1̄)(123)−27303̄2̄ ∼ (123)−5461

40 41 12 28 29 42 42 = 2̄1̄(123)2730

41 42 13 41 42 13 (23(123)136512)(2̄1̄(123)2730)(123)13651) ∼ (123)5461

42 1 14 42 1 14 (2̄1̄(123)2730)(1)(1̄(123)−27293̄) ∼ (123)0

Note Let Tu = 1
3
(2u − (−1)u).

u 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Tn 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461
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A.2 Proof of Lemma 3.2 in the case (n, k, l) = (15, 1, 10)

We have n = 15, l = 10, so shift = 2l − 1 = 4.

Relators

0,0 1,14 2,5 1,0 2,14 0,5 2,0 0,14 1,5

0,1 1,0 2,6 1,1 2,0 0,6 2,1 0,0 1,6

0,2 1,1 2,7 1,2 2,1 0,7 2,2 0,1 1,7

0,3 1,2 2,8 1,3 2,2 0,8 2,3 0,2 1,8

0,4 1,3 2,9 1,4 2,3 0,9 2,4 0,3 1,9

0,5 1,4 2,10 1,5 2,4 0,10 2,5 0,4 1,10

0,6 1,5 2,11 1,6 2,5 0,11 2,6 0,5 1,11

0,7 1,6 2,12 1,7 2,6 0,12 2,7 0,6 1,12

0,8 1,7 2,13 1,8 2,7 0,13 2,8 0,7 1,13

0,9 1,8 2,14 1,9 2,8 0,14 2,9 0,8 1,14

0,10 1,9 2,0 1,10 2,9 0,0 2,10 0,9 1,0

0,11 1,10 2,1 1,11 2,10 0,1 2,11 0,10 1,1

0,12 1,11 2,2 1,12 2,11 0,2 2,12 0,11 1,2

0,13 1,12 2,3 1,13 2,12 0,3 2,13 0,12 1,3

0,14 1,13 2,4 1,14 2,13 0,4 2,14 0,13 1,4
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Reordered relators

r0: 0,0 1,14 2,5 s0: 2,5 0,4 1,10 u0: 1,10 2,9 0,0

r1: 0,4 1,3 2,9 s1: 2,9 0,8 1,14 u1: 1,14 2,13 0,4

0,8 1,7 2,13 2,13 0,12 1,3 1,3 2,2 0,8

0,12 1,11 2,2 2,2 0,1 1,7 1,7 2,6 0,12

0,1 1,0 2,6 2,6 0,5 1,11 1,11 2,10 0,1

0,5 1,4 2,10 2,10 0,9 1,0 1,0 2,14 0,5

0,9 1,8 2,14 2,14 0,13 1,4 1,4 2,3 0,9

0,13 1,12 2,3 2,3 0,2 1,8 1,8 2,7 0,13

0,2 1,1 2,7 2,7 0,6 1,12 1,12 2,11 0,2

0,6 1,5 2,11 2,11 0,10 1,1 1,1 2,0 0,6

0,10 1,9 2,0 2,0 0,14 1,5 1,5 2,4 0,10

0,14 1,13 2,4 2,4 0,3 1,9 1,9 2,8 0,14

0,3 1,2 2,8 2,8 0,7 1.13 1,13 2.12 0,3

0,7 1,6 2,12 2,12 0,11 1,2 1,2 2,1 0,7

r14: 0,11 1,10 2,1 s14: 2,1 0,0 1,6 u14: 1,6 2,5 0,11

Kill 1, 10 and 2, 5 to obtain the following consequences.
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1, 14 = (0, 0)−1 0, 4 = (0, 0)0 2, 9 = (0, 0)−1

1, 3 = (0, 0)0(0, 0) 0, 8 = (0, 0)(0, 0) 2, 13 = (0, 0)(0, 0)0

1, 7 = (0, 0)−2(0, 0)−1 0, 12 = (0, 0)−1(0, 0)−1 2, 2 = (0, 0)−1(0, 0)−2

1, 11 = (0, 0)2(0, 0)3 0, 1 = (0, 0)3(0, 0)3 2, 6 = (0, 0)3(0, 0)2

1, 0 = (0, 0)−6(0, 0)−5 0, 5 = (0, 0)−5(0, 0)−5 2, 10 = (0, 0)−5(0, 0)−6

1, 4 = (0, 0)10(0, 0)11 0, 9 = (0, 0)11(0, 0)11 2, 14 = (0, 0)11(0, 0)10

1, 8 = (0, 0)−22(0, 0)−21 0, 13 = (0, 0)−21(0, 0)−21 2, 3 = (0, 0)−21(0, 0)−22

1, 12 = (0, 0)42(0, 0)43 0, 2 = (0, 0)43(0, 0)43 2, 7 = (0, 0)43(0, 0)42

1, 1 = (0, 0)−86(0, 0)−85 0, 6 = (0, 0)−85(0, 0)−85 2, 11 = (0, 0)−85(0, 0)−86

1, 5 = (0, 0)170(0, 0)171 0, 10 = (0, 0)171(0, 0)171 2, 0 = (0, 0)171(0, 0)170

1, 9 = (0, 0)−342(0, 0)−341 0, 14 = (0, 0)−341(0, 0)−341 2, 4 = (0, 0)−341(0, 0)−342

1, 13 = (0, 0)682(0, 0)683 0, 3 = (0, 0)683(0, 0)683 2, 8 = (0, 0)683(0, 0)682

1, 2 = (0, 0)−1366(0, 0)−1365 0, 7 = (0, 0)−1365(0, 0)−1365 2, 12 = (0, 0)−1365(0, 0)−1366

1, 6 = (0, 0)2730(0, 0)2731 0, 11 = (0, 0)2731(0, 0)2731 2, 1 = (0, 0)2731(0, 0)2730

H ′ = 〈0, 0 | r14, s14, u14〉

= 〈0, 0 | (0, 0)5462(0, 0)0(0, 0)5461, (0, 0)5461(0, 0)1(0, 0)5461, (0, 0)5461(0, 0)0(0, 0)5462〉

= Z10923
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