The Tits alternative for generalized triangle groups of type (3, 4, 2)

James Howie and Gerald Williams

May 4, 2006

Abstract

A generalized triangle group is a group that can be presented in the form $G=$ $\left\langle x, y \mid x^{p}=y^{q}=w(x, y)^{r}=1\right\rangle$ where $p, q, r \geq 2$ and $w(x, y)$ is a cyclically reduced word of length at least 2 in the free product $\mathbb{Z}_{p} * \mathbb{Z}_{q}=\left\langle x, y \mid x^{p}=y^{q}=1\right\rangle$. Rosenberger has conjectured that every generalized triangle group G satisfies the Tits alternative. It is known that the conjecture holds except possibly when the triple (p, q, r) is one of $(2,3,2),(2,4,2),(2,5,2),(3,3,2),(3,4,2)$, or $(3,5,2)$. In this paper we show that the Tits alternative holds in the case $(p, q, r)=(3,4,2)$.

Keywords: Generalized triangle group, Tits alternative, free subgroup.
MSC: 20F05, 20E05, 57M07.

1 Introduction

A generalized triangle group is a group that can be presented in the form

$$
G=\left\langle x, y \mid x^{p}=y^{q}=w(x, y)^{r}=1\right\rangle
$$

where $p, q, r \geq 2$ and $w(x, y)$ is a cyclically reduced word of length at least 2 in the free product $\mathbb{Z}_{p} * \mathbb{Z}_{q}=\left\langle x, y \mid x^{p}=y^{q}=1\right\rangle$ that is not a proper power. It was conjectured by Rosenberger [15] that every generalized triangle group G satisfies the Tits alternative. That is, G either contains a non-abelian free subgroup or has a soluble subgroup of finite index.

If $1 / p+1 / q+1 / r<1$ then G contains a non-abelian free subgroup [2]; if $r \geq 3$ then the Tits alternative holds, and in most cases G contains a non-abelian free subgroup [8]. (These results are also described in the survey article [9] and in [10].) The cases $r=2,1 / p+1 / q+1 / r \geq 1$ have had to be treated on a case by case basis. The Tits alternative was shown to hold for the cases $(3,6,2),(4,4,2)$ in [13], and for the cases $(2, q, 2)(q \geq 6)$ in $[1],[3],[4],[6],[14]$. Thus the open cases of the conjecture are $(p, q, r)=(2,3,2),(2,4,2),(2,5,2),(3,3,2),(3,4,2)$, and $(3,5,2)$. In this paper show that the conjecture holds for the case $(3,4,2)$:

Main Theorem. Let $\Gamma=\left\langle x, y \mid x^{3}=y^{4}=w(x, y)^{2}=1\right\rangle$ where $w(x, y)=x^{\alpha_{1}} y^{\beta_{1}} \ldots$ $x^{\alpha_{k}} y^{\beta_{k}}, 1 \leq \alpha_{i} \leq 2,1 \leq \beta_{i} \leq 3$ for each $1 \leq i \leq k$ where $k \geq 1$. Then the Tits alternative holds for Γ.

Benyash-Krivets and Barkovich [5],[6] have proved this result when k is even, and for this reason we focus on the case when k is odd.

2 Preliminaries

We first recall some definitions and well-known facts concerning generalized triangle groups; further details are available in (for example) [9].

Let $G=\left\langle x, y \mid x^{\ell}=y^{m}=w(x, y)^{2}=1\right\rangle$ where $w(x, y)=x^{\alpha_{1}} y^{\beta_{1}} \ldots x^{\alpha_{k}} y^{\beta_{k}}$, $1 \leq \alpha_{i}<\ell, 1 \leq \beta_{i}<m$ for each $1 \leq i \leq k$ where $k \geq 1$. A homomorphism $\rho: G \rightarrow H$ (for some group H) is said to be essential if $\rho(x), \rho(y), \rho(w)$ are of orders $\ell, m, 2$ respectively. By [2] G admits an essential representation into $P S L(2, \mathbb{C})$.

A projective matrix $A \in P S L(2, \mathbb{C})$ is of order n if and only if $\operatorname{tr}(A)=2 \cos (q \pi / n)$ for some $(q, n)=1$. Note that in $P S L(2, \mathbb{C})$ traces are only defined up to sign. A subgroup of $\operatorname{PSL}(2, \mathbb{C})$ is said to be elementary if it has a soluble subgroup of finite index, and is said to be non-elementary otherwise.

Let $\rho:\left\langle x, y \mid x^{\ell}=y^{m}=1\right\rangle \rightarrow P S L(2, \mathbb{C})$ be given by $x \mapsto X, y \mapsto Y$ where X, Y have orders ℓ, m, respectively. Then $w(x, y) \mapsto w(X, Y)$. By Horowitz [12] $\operatorname{tr} w(X, Y)$ is a polynomial with integer coefficients in $\operatorname{tr} X, \operatorname{tr} Y, \operatorname{tr} X Y$, of degree k in $\operatorname{tr} X Y$. Since X, Y have orders ℓ, m, respectively, we may assume (by composing ρ with an automorphism of $\left\langle x, y \mid x^{\ell}=y^{m}=1\right\rangle$, if necessary), that $\operatorname{tr} X=2 \cos (\pi / \ell), \operatorname{tr} Y=$ $2 \cos (\pi / m)$. Moreover (again by [12]) X and Y can be any elements of $P S L(2, \mathbb{C})$ with these traces. We refer to $\operatorname{tr} w(X, Y)$ as the trace polynomial of G. The representation ρ induces an essential representation $G \rightarrow P S L(2, \mathbb{C})$ if and only if $\operatorname{tr} \rho(w)=0$; that is, if and only if $\operatorname{tr} X Y$ is a root of $\operatorname{tr} w(X, Y)$. By [12] the leading coefficient of $\operatorname{tr} w(X, Y)$ is given by

$$
\begin{equation*}
c=\prod_{i=1}^{k} \frac{\sin \left(\alpha_{i} \pi / \ell\right) \sin \left(\beta_{i} \pi / m\right)}{\sin (\pi / \ell) \sin (\pi / m)} \tag{1}
\end{equation*}
$$

Now if X, Y generate a non-elementary subgroup of $P S L(2, \mathbb{C})$ then $\rho(G)$ (and hence G) contains a non-abelian free subgroup. Thus in proving that G contains a non-abelian free subgroup we may assume that X, Y generate an elementary subgroup of $\operatorname{PSL}(2, \mathbb{C})$. By Corollary 2.4 of [15] there are then three possibilities: (i) X, Y generate a finite subgroup of $P S L(2, \mathbb{C})$; (ii) $\operatorname{tr}[X, Y]=2$; or (iii) $\operatorname{tr} X Y=0$. The finite subgroups of $\operatorname{PSL}(2, \mathbb{C})$ are the alternating groups A_{4} and A_{5}, the symmetric group S_{4}, cyclic and dihedral groups (see for example [7]). The Fricke identity

$$
\operatorname{tr}[X, Y]=(\operatorname{tr} X)^{2}+(\operatorname{tr} Y)^{2}+(\operatorname{tr} X Y)^{2}-(\operatorname{tr} X)(\operatorname{tr} Y)(\operatorname{tr} X Y)-2
$$

implies that (ii) is equivalent to $\operatorname{tr} X Y=2 \cos (\pi / \ell \pm \pi / m)$. These values occur as roots of $\operatorname{tr} w(X, Y)$ if and only if G admits an essential cyclic representation. Such a
representation can be realized as $x \mapsto A, y \mapsto B$ where

$$
A=\left(\begin{array}{cc}
e^{i \pi / \ell} & 0 \\
0 & e^{-i \pi / \ell}
\end{array}\right), \quad B=\left(\begin{array}{cc}
e^{ \pm i \pi / m} & 0 \\
0 & e^{\mp i \pi / m}
\end{array}\right) .
$$

We summarize the above as
Lemma 1 Let $G=\left\langle x, y \mid x^{\ell}=y^{m}=w(x, y)^{2}=1\right\rangle$. Suppose $G \rightarrow \operatorname{PSL}(2, \mathbb{C})$ is an essential representation given by $x \mapsto X, y \mapsto Y$, where $\operatorname{tr} X=2 \cos (\pi / \ell), \operatorname{tr} Y=$ $2 \cos (\pi / m)$. If G does not contain a non-abelian free subgroup then one of the following occurs:

1. X, Y generate A_{4}, S_{4}, A_{5} or a finite dihedral group;
2. $\operatorname{tr} X Y=2 \cos (\pi / \ell \pm \pi / m)$;
3. $\operatorname{tr} X Y=0$.

Case (2) occurs if and only if G admits an essential cyclic representation.

3 Proof of Main Theorem

Throughout this section Γ will be the group defined in the Main Theorem.
Lemma 2 If Γ admits an essential cyclic representation then Γ contains a nonabelian free subgroup.

Proof

Let $\rho: \Gamma \rightarrow \mathbb{Z}_{12}$ be an essential representation. Then $K=\operatorname{ker} \rho$ has a deficiency zero presentation with generators

$$
\begin{array}{lll}
a_{1}=y x y^{-1} x^{-1}, & a_{2}=y^{2} x y^{-2} x^{-1}, & a_{3}=y^{3} x y^{-3} x^{-1}, \\
a_{4}=x y x y^{-1} x^{-2}, & a_{5}=x y^{2} x y^{-2} x^{-2}, & a_{6}=x y^{3} x y^{-3} x^{-2},
\end{array}
$$

and with relators
$W^{\prime}\left(a_{i}, \ldots, a_{6}, a_{1}, \ldots, a_{i-1}\right) W^{\prime}\left(y^{2} a_{i} y^{2}, \ldots, y^{2} a_{6} y^{2}, y^{2} a_{1} y^{2}, \ldots, y^{2} a_{i-1} y^{2}\right) \quad(1 \leq i \leq 6)$
where W^{\prime} is a rewrite of W.
Let $S=\left\{\left[a_{i}, a_{j}\right], a_{i}\left(y^{2} a_{i} y^{2}\right)(1 \leq i, j \leq 6)\right\}$, and let L, N respectively be the normal closures of S and $S \cup\left\{a_{6}\right\}$ in K. Noting that

$$
\begin{array}{lll}
y^{2} a_{1} y^{2}=a_{3} a_{2}^{-1}, & y^{2} a_{2} y^{2}=a_{2}^{-1}, & y^{2} a_{3} y^{2}=a_{1} a_{2}^{-1}, \\
y^{2} a_{4} y^{2}=a_{2} a_{6} a_{5}^{-1} a_{2}^{-1}, & y^{2} a_{5} y^{2}=a_{2} a_{5}^{-1} a_{2}^{-1}, & y^{2} a_{6} y^{2}=a_{2} a_{4} a_{5}^{-1} a_{2}^{-1},
\end{array}
$$

we have that $K / L \cong \mathbb{Z}^{4}$ and $K / N \cong \mathbb{Z}^{3}$, and hence that $N / N^{\prime} \neq 0$.
Let $\phi: K \rightarrow K$ be given by $a_{i} \mapsto y^{2} a_{i} y^{2}(1 \leq i \leq 6)$. It is clear from the presentation of K that ϕ is an automorphism of K; furthermore $\phi(N)=N$. In the
abelian group $K / N, \phi\left(a_{i}\right)=y^{2} a_{i} y^{2}=a_{i}^{-1}(1 \leq i \leq 6)$. That is, ϕ induces the antipodal automorphism $\alpha \mapsto-\alpha$ on K / N. By Corollary 3.2 of [13], K contains a non-abelian free subgroup.

We will write the trace polynomial of Γ as $\tau(\lambda)=\operatorname{tr} w(X, Y)$, where $\operatorname{tr}(X)=1$, $\operatorname{tr}(Y)=\sqrt{2}, \lambda=\operatorname{tr}(X Y)$. By Lemmas 1 and 2 we may assume that $\operatorname{tr} X Y=0$ or X, Y generate A_{4}, S_{4}, or A_{5}. But Y has order 4 so X, Y cannot generate A_{4} or A_{5}. If X, Y generate S_{4} then the product $X Y$ has order 2 or 4 so $\operatorname{tr} X Y=0, \pm \sqrt{2}$. Suppose $\operatorname{tr} X Y=-\sqrt{2}$. It follows from the identity

$$
\operatorname{tr} X Y+\operatorname{tr} X^{-1} Y=(\operatorname{tr} X)(\operatorname{tr} Y)
$$

that $\operatorname{tr} X^{-1} Y=2 \sqrt{2}$. Replacing X by X^{-1} in Lemma 1 shows that Γ contains a non-abelian free subgroup. Thus we may assume that the only roots $\lambda=\operatorname{tr} X Y$ of τ are $\lambda=0, \sqrt{2}$. Using (1) the leading coefficient of τ is given by $c= \pm(\sqrt{2})^{\kappa}$ where κ denotes the number of values of i for which $\beta_{i}=2$. Hence $\tau(\lambda)$ takes the form

$$
\begin{equation*}
\tau(\lambda)=(\sqrt{2})^{\kappa} \lambda^{s}(\lambda-\sqrt{2})^{k-s} \tag{2}
\end{equation*}
$$

where $s \geq 0$. Moreover, Theorem 2 of [6] implies that the Main Theorem holds when k is even, so we may assume that k is odd.

Let

$$
A=\left(\begin{array}{cc}
e^{i \pi / 3} & 0 \\
1 & e^{-i \pi / 3}
\end{array}\right), \quad B=\left(\begin{array}{cc}
e^{i \pi / 4} & z \\
0 & e^{-i \pi / 4}
\end{array}\right) .
$$

Then $\operatorname{tr} A=1, \operatorname{tr} B=\sqrt{2}, \operatorname{tr} A B=z-(\sqrt{6}-\sqrt{2}) / 2$. Consider the representation $\rho:\left\langle x, y \mid x^{3}=y^{4}=1\right\rangle \rightarrow P S L(2, \mathbb{C})$ given by $x \mapsto A, y \mapsto B$. Then $\operatorname{tr} \rho\left(x^{\alpha_{1}} y^{\beta_{1}} \ldots x^{\alpha_{k}} y^{\beta_{k}}\right)=\tau(z-(\sqrt{6}-\sqrt{2}) / 2)$ whose constant term (by (2)) is

$$
\pm(\sqrt{2})^{\kappa}((\sqrt{6}-\sqrt{2}) / 2)^{s}((\sqrt{6}+\sqrt{2}) / 2)^{k-s}
$$

which simplifies to

$$
\pm(\sqrt{2})^{\kappa}((\sqrt{6}+\sqrt{2}) / 2)^{k-2 s} .
$$

Now the constant term in $\operatorname{tr}\left(A^{\alpha_{1}} B^{\beta_{1}} \ldots A^{\alpha_{k}} B^{\beta_{k}}\right)$ is equal to

$$
2 \cos \left(\frac{\left(4 \sum_{i=1}^{k} \alpha_{i}+3 \sum_{i=1}^{k} \beta_{i}\right) \pi}{12}\right)
$$

Thus $\left.(\sqrt{2})^{\kappa}((\sqrt{6}+\sqrt{2}) / 2)\right)^{k-2 s}=2 \cos \left(\frac{\left(4 \sum_{i=1}^{k} \alpha_{i}+3 \sum_{i=1}^{k} \beta_{i}\right) \pi}{12}\right)$ and since k is odd, this only happens if $\kappa=0$ and $k-2 s= \pm 1$. It follows that

$$
\begin{equation*}
4 \sum_{i=1}^{k} \alpha_{i}+3 \sum_{i=1}^{k} \beta_{i}=1,5,7,11 \bmod 12 \tag{3}
\end{equation*}
$$

Since $\kappa=0$ there is no value of i for which $\beta_{i}=2$ and hence Γ maps homomorphically onto the group

$$
\begin{equation*}
\bar{\Gamma}=\left\langle x, y \mid x^{3}=y^{2}=\bar{w}(x, y)^{2}=1\right\rangle \tag{4}
\end{equation*}
$$

where $\bar{w}(x, y)=x^{\alpha_{1}} y \ldots x^{\alpha_{k}} y$. If \bar{w} is a proper power then $\bar{\Gamma}$ contains a non-abelian free subgroup by [2]. Thus we may assume that \bar{w} is not a proper power, and so (4) is a presentation of $\bar{\Gamma}$ as a generalized triangle group.

We will write the trace polynomial of $\bar{\Gamma}$ as $\sigma(\mu)=\operatorname{tr} \bar{w}(\bar{X}, \bar{Y})$, where $\operatorname{tr}(\bar{X})=1$, $\operatorname{tr}(\bar{Y})=0, \mu=\operatorname{tr}(\bar{X} \bar{Y})$. It follows from (3) that $\sum_{i=1}^{k} \alpha_{i} \neq 0 \bmod 3$ so $\bar{\Gamma}$ admits no essential cyclic representation. By Lemma 1 we may assume that $\mu=0$ or \bar{X}, \bar{Y} generate A_{4}, S_{4}, A_{5} or a finite dihedral group, in which case $\bar{X} \bar{Y}$ has order 2,3 , 4, or 5 and hence $\mu=0, \pm 1, \pm \sqrt{2},(\pm 1 \pm \sqrt{5}) / 2$. Moreover \bar{X} is of order 4 in $S L(2, \mathbb{C})$ so $\bar{X}^{-1}=-\bar{X}$ and thus $\operatorname{tr}\left(\bar{X}^{-1} \bar{Y}\right)=-\mu$ and $\operatorname{tr} \bar{w}(\bar{X}, \bar{Y})=(-1)^{k} \operatorname{tr} \bar{w}\left(\bar{X}^{-1}, \bar{Y}\right)$, so $\sigma_{w}(\mu)= \pm \sigma_{w}(-\mu)$. Thus μ and $-\mu$ occur as roots of σ with equal multiplicity. By (1) the leading coefficient of σ is ± 1 so

$$
\sigma(\mu)= \pm \mu^{u_{1}}\left(\mu^{2}-1\right)^{u_{2}}\left(\mu^{2}-2\right)^{u_{3}}\left(\mu^{2}-(3+\sqrt{5}) / 2\right)^{u_{4}}\left(\mu^{2}-(3-\sqrt{5}) / 2\right)^{u_{5}}
$$

where $u_{1}, u_{2}, u_{3}, u_{4}, u_{5} \geq 0$ and $u_{1}+2 u_{2}+2 u_{3}+2 u_{4}+2 u_{5}=k$. Since $\operatorname{tr}(\bar{X} \bar{Y})$ is a polynomial with integer coefficients in $\operatorname{tr} \bar{X}=1, \operatorname{tr} \bar{Y}=0$ we have that $u_{5}=u_{4}$ so

$$
\begin{equation*}
\sigma(\mu)= \pm \mu^{u_{1}}\left(\mu^{2}-1\right)^{u_{2}}\left(\mu^{2}-2\right)^{u_{3}}\left(\mu^{4}-3 \mu^{2}+1\right)^{u_{4}} \tag{5}
\end{equation*}
$$

and $u_{1}+2 u_{2}+2 u_{3}+4 u_{4}=k$. Let

$$
\tilde{A}=\left(\begin{array}{cc}
e^{i \pi / 3} & 0 \\
1 & e^{-i \pi / 3}
\end{array}\right), \quad \tilde{B}=\left(\begin{array}{cc}
i & z \\
0 & -i
\end{array}\right)
$$

Then $\operatorname{tr} \tilde{A}=1, \operatorname{tr} \tilde{B}=0, \operatorname{tr} \tilde{A} \tilde{B}=z-\sqrt{3}$. Now the constant term in $\sigma(z-\sqrt{3})$ is $(-\sqrt{3})^{u_{1}} \cdot 2^{u_{2}}$. But the constant term in $\operatorname{tr}\left(\tilde{A}^{\alpha_{1}} \tilde{B} \ldots \tilde{A}^{\alpha_{k}} \tilde{B}\right)$ is $2 \cos \left(\left(2 \sum_{i=1}^{k} \alpha_{i}+\right.\right.$ $3 k) \pi / 3)= \pm \sqrt{3}$ so $u_{1}=1, u_{2}=0$ and thus $k=1+2 u_{3}+4 u_{4}$.

Lemma 3 If $\sqrt{2}$ is a repeated root of $\sigma(\mu)$ then Γ contains a non-abelian free subgroup.

Proof

Let $q: \Gamma \rightarrow \bar{\Gamma}$ denote the canonical epimorphism. By hypothesis, there is an essential representation $\rho: \bar{\Gamma} \rightarrow P S L\left(2, \mathbb{C}[\mu] /(\mu-\sqrt{2})^{2}\right)$. Indeed, we can construct ρ explicitly via:

$$
\rho(x)=\left(\begin{array}{rr}
e^{i \pi / 3} & \mu \\
0 & e^{-i \pi / 3}
\end{array}\right), \quad \rho(y)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Composing this with the canonical epimorphism

$$
\psi: P S L\left(2, \mathbb{C}[\mu] /(\mu-\sqrt{2})^{2}\right) \rightarrow P S L(2, \mathbb{C}[\mu] /(\mu-\sqrt{2})) \cong P S L(2, \mathbb{C})
$$

gives an essential representation $\tilde{\rho}=\psi \circ \rho: \bar{\Gamma} \rightarrow P S L(2, \mathbb{C})$ with image S_{4}, corresponding to the root $\sqrt{2}$ of the trace polynomial.

Let \bar{K} denote the kernel of $\tilde{\rho}, V$ the kernel of ψ, and K the kernel of the composite $\operatorname{map} \tilde{\rho} \circ q: \Gamma \rightarrow P S L(2, \mathbb{C})$. Then V is a complex vector space, since its elements have the form $\pm(I+(\mu-\sqrt{2}) A)$ for various 2×2 matrices A, with multiplication

$$
[\pm(I+(\mu-\sqrt{2}) A)][\pm(I+(\mu-\sqrt{2}) B)]= \pm(I+(\mu-\sqrt{2})(A+B))
$$

Now \bar{K} is generated by conjugates of $(x y)^{4}$ and $\rho\left((x y)^{4}\right)=-I+(\mu-\sqrt{2}) M$ where $M=\left(\begin{array}{cc}2 \sqrt{2} & -2(1+i \sqrt{3}) \\ 2(1-i \sqrt{3}) & -2 \sqrt{2}\end{array}\right)$. Since M is non-zero, \bar{K} (and hence K) maps onto the free abelian group of rank 1 . Let N be a normal subgroup of K such that $K / N \cong \mathbb{Z}$.

Note that K is the fundamental group of a 2-dimensional CW-complex X arising from the given presentation of Γ. This complex X has 24 cells of dimension 0,48 cells of dimension 1 , and $24\left(\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\right)=26$ cells of dimension 2 . Here, $24 / 4=6$ of the 2-cells (call them $\alpha_{1}, \ldots, \alpha_{6}$, say) arise from the relator $y^{4}, 24 / 3=8\left(\alpha_{7}, \ldots, \alpha_{14}\right.$, say) arise from the relator x^{3}, and $24 / 2=12\left(\alpha_{15}, \ldots, \alpha_{26}\right.$, say) arise from the relator $w(x, y)^{2}$. Moreover, $\alpha_{1}, \ldots, \alpha_{6}$ are attached by maps which are 2 nd powers. Let \widehat{X} be the regular covering complex of X corresponding to the normal subgroup N of K and let $\widehat{\alpha}_{i}$ denote a lift of the 2 -cell α_{i}. Then each of $\widehat{\alpha}_{1}, \ldots, \widehat{\alpha}_{6}$ is a 2 -cell attached by a map which is a 2 nd power.

Let $G F_{2}$ denote the field of 2 elements. Now $H_{2}\left(\widehat{X}, G F_{2}\right)$ is a subgroup of the 2-chain group $C_{2}\left(\widehat{X}, G F_{2}\right)$ and since K / N freely permutes the cells of $\widehat{X}, C_{2}\left(\widehat{X}, G F_{2}\right)$ is a free $G F_{2}(K / N)$-module on the basis $\widehat{\alpha}_{1}, \ldots, \widehat{\alpha}_{26}$. Let Q be the free $G F_{2}(K / N)$ submodule of $C_{2}\left(\widehat{X}, G F_{2}\right)$ of rank 6 generated by $\widehat{\alpha}_{1}, \ldots, \widehat{\alpha}_{6}$. Since these 2 -cells are attached by maps which are 2nd powers, their boundaries in the 1-chain group $C_{1}\left(\widehat{X}, G F_{2}\right)$ are zero. Thus Q is a subgroup of $H_{2}\left(\widehat{X}, G F_{2}\right)$. Since the rank of Q is greater than $\chi(X)=2$, Theorem A of [13] implies that K, and hence Γ, contains a non-abelian free subgroup

Lemma 4 If $(1+\sqrt{5}) / 2$ is a repeated root of $\sigma(\mu)$ then Γ contains a non-abelian free subgroup.

Proof

The proof is similar to that of Lemma 3. In this case $\tilde{\rho}$ has image A_{5}, corresponding to the root $(1+\sqrt{5}) / 2$. The complex X has 600 -cells, 1201 -cells, and $60\left(\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\right)=65$ 2 -cells (so $\chi(X)=5$). Moreover, $60 / 4=15$ of the 2-cells (call them $\alpha_{1}, \ldots, \alpha_{15}$, say) are attached by maps which are 2 nd powers. As before, the free $G F_{2}(K / N)-$ submodule, Q, of $C_{2}\left(\widehat{X}, G F_{2}\right)$ of rank 15 generated by $\widehat{\alpha}_{1}, \ldots, \widehat{\alpha}_{15}$ is a subgroup of $H_{2}\left(\widehat{X}, G F_{2}\right)$. Since the rank of Q is greater than $\chi(X)$, Theorem A of [13] again implies that K contains a non-abelian free subgroup.

By Lemmas 3 and 4 we may assume $u_{3}, u_{4} \leq 1$ so $k \leq 7$. A computer search reveals that if $k=3$ or 7 then there is no word $w(x, y)$ such that $\tau(\lambda)$ is of the form (2). If $k=5$ then (up to cyclic permutation, inversion, and automorphisms of $\left\langle x \mid x^{3}\right\rangle$ and $\left\langle y \mid y^{4}\right\rangle$) the only word $w(x, y)$ with $\tau(\lambda)$ of the form (2) is $w=x y x y x^{2} y^{3} x^{2} y x y^{3}$. In this case, a computer search using GAP [11] shows that Γ contains a subgroup of index 4 which maps onto the free group of rank 2 . If $k=1$ then either $\Gamma=\left\langle x, y \mid x^{3}=y^{4}=(x y)^{2}=1\right\rangle$ or $\Gamma=\left\langle x, y \mid x^{3}=y^{4}=\left(x y^{2}\right)^{2}=1\right\rangle$. In the first case $\Gamma \cong S_{4}$, and in the second Γ can be written as an amalgamated free
product

$$
\Gamma=\left\langle x, y^{2} \mid x^{3}=y^{4}=\left(x y^{2}\right)^{2}=1\right\rangle_{\left\langle y^{2} \mid y^{4}\right\rangle}^{*}\left\langle y \mid y^{4}\right\rangle
$$

in which the amalgamated subgroup has index 3 in the first factor and index 2 in the second, and thus Γ contains a non-abelian free subgroup. This completes the proof of the Main Theorem.

References

[1] O.A. Barkovich and V.V. Benyash-Krivets. On Tits alternative for generalized triangular groups of $(2,6,2)$ type (Russian). Dokl. Nat. Akad. Nauk. Belarusi, 48(3):28-33, 2003.
[2] Gilbert Baumslag, John W. Morgan, and Peter B. Shalen. Generalized triangle groups. Math. Proc. Cambridge Philos. Soc., 102(1):25-31, 1987.
[3] V.V. Benyash-Krivets. On free subgroups of certain generalised triangle groups (Russian). Dokl. Nat. Akad. Nauk. Belarusi, 47(3):14-17, 2003.
[4] V.V. Benyash-Krivets. On Rosenberger's conjecture for generalized triangle groups of types $(2,10,2)$ and ($2,20,2$). In Shyam L. Kalla et al., editor, Proceedings of the international conference on mathematics and its applications, pages 59-74. Kuwait Foundation for the Advancement of Sciences, 2005.
[5] V.V Benyash-Krivets and O.A. Barkovich. On the Tits alternative for some generalized triangle groups of type $(3,4,2)$ (Russian). Dokl. Nat. Akad. Nauk. Belarusi, 47(6):24-27, 2003.
[6] V.V Benyash-Krivets and O.A. Barkovich. On the Tits alternative for some generalized triangle groups. Algebra Discrete Math., 2004(2):23-43, 2004.
[7] H.S.M. Coxeter and W.O.J. Moser. Generators and relations for discrete groups. Ergeb. Math. Grenzgebiette. Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[8] Benjamin Fine, Frank Levin, and Gerhard Rosenberger. Free subgroups and decompositions of one-relator products of cyclics. I. The Tits alternative. Arch. Math. (Basel), 50(2):97-109, 1988.
[9] Benjamin Fine, Frank Roehl, and Gerhard Rosenberger. The Tits alternative for generalized triangle groups. In Young Gheel et al. Baik, editor, Groups - Korea '98. Proceedings of the 4th international conference, Pusan, Korea, August 10-16, 1998, pages 95-131. Berlin: Walter de Gruyter, 2000.
[10] Benjamin Fine and Gerhard Rosenberger. Algebraic generalizations of discrete groups: a path to combinatorial group theory through one-relator products. New York: Marcel Dekker, 1999.
[11] The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.4, 2004. (http://www.gap-system.org).
[12] Robert D. Horowitz. Characters of free groups represented in the twodimensional special linear group. Comm. Pure Appl. Math., 25:635-649, 1972.
[13] James Howie. Free subgroups in groups of small deficiency. J. Group Theory, 1(1):95-112, 1998.
[14] James Howie and Gerald Williams. Free subgroups in certain generalized triangle groups of type $(2, m, 2)$. Geometriae Dedicata, to appear.
[15] Gerhard Rosenberger. On free subgroups of generalized triangle groups. Algebra i Logika, 28(2):227-240, 245, 1989.

Author addresses:

James Howie
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh EH14 4AS
J.Howie@hw.ac.uk
Gerald Williams (corresponding author)
Institute of Mathematics, Statistics and Actuarial Science
University of Kent
Canterbury
Kent CT2 7NF
g.williams@kent.ac.uk

