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X-ray-induced redox changes can lead to incorrect assignments of the functional

states of metals in metalloprotein crystals. The need for on-line monitoring of

the status of metal ions (and other chromophores) during protein crystal-

lography experiments is of growing importance with the use of intense

synchrotron X-ray beams. Significant efforts are therefore being made

worldwide to combine different spectroscopies in parallel with X-ray crystal-

lographic data collection. Here the implementation and utilization of optical

and X-ray absorption spectroscopies on the modern macromolecular crystal-

lography (MX) beamline 10, at the SRS, Daresbury Laboratory, is described.

This beamline is equipped with a dedicated monolithic energy-dispersive X-ray

fluorescence detector, allowing X-ray absorption spectroscopy (XAS) measure-

ments to be made in situ on the same crystal used to record the diffraction data.

In addition, an optical microspectrophotometer has been incorporated on the

beamline, thus facilitating combined MX, XAS and optical spectroscopic

measurements. By uniting these techniques it is also possible to monitor the

status of optically active and optically silent metal centres present in a crystal at

the same time. This unique capability has been applied to observe the results of

crystallographic data collection on crystals of nitrite reductase from Alcaligenes

xylosoxidans, which contains both type-1 and type-2 Cu centres. It is found that

the type-1 Cu centre photoreduces quickly, resulting in the loss of the 595 nm

peak in the optical spectrum, while the type-2 Cu centre remains in the oxidized

state over a much longer time period, for which independent confirmation is

provided by XAS data as this centre has an optical spectrum which is barely

detectable using microspectrophotometry. This example clearly demonstrates

the importance of using two on-line methods, spectroscopy and XAS, for

identifying well defined redox states of metalloproteins during crystallographic

data collection.
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1. Introduction

The foremost part of our knowledge of protein structure and

function is based on X-ray crystallography using synchrotron

radiation. Metalloproteins comprise more than 30% of the

proteins in a genome, and many of these use the redox

properties of metals to catalyse enzymatic reactions. A

particular issue in the study of metalloproteins by X-ray

crystallography is whether the crystal structure is a true

representation of the protein in a functionally relevant

metal redox state.

In this context, X-ray-induced photoreduction of

metal centres in proteins is a phenomenon which is of

increasing concern to experimentalists using the highly

intense X-ray beams produced by third-generation synchro-

tron radiation sources. The majority of the incident X-ray

energy absorbed by a protein crystal is via the photoelectric

effect (Burmeister, 2000; Murray et al., 2005). The photo-

excited electrons produced in this way can readily reduce

redox centres in metalloproteins and measures have to be

taken that either minimize or monitor these X-ray-induced

effects.
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As an example, consider the case of photosystem II, where

X-ray absorption spectroscopy (XAS) data showed that the

expected Mn(IV) cluster had become 80% photoreduced to

biologically inactive Mn(II) by X-rays at less than the

absorbed dose used for determining the crystal structure

(Yano et al., 2005). Similarly, rapid photoreduction of three

different haem proteins with varying redox potential has been

shown using single-crystal optical spectroscopy (Beitlich et al.,

2007). Importantly, in many cases it is non-trivial to identify

changes in metal oxidation states using structural changes

visible by X-ray crystallography alone, even at high resolution.

We note that such photon-induced changes in oxidation state

(and hence in X-ray absorption edge position) may also cause

problems during multiwavelength anomalous diffraction

(MAD) phasing experiments.

Where the protein contains a chromophore, spectroscopic

measurements can be made on individual crystals (Hadfield &

Hajdu, 1993; Mozzarelli & Rossi, 1996) and, as a response to

these issues, increasing attention has been given to combining

X-ray diffraction with single-crystal spectroscopies (Royant

et al., 2007; Carpentier et al., 2007). For optically active

metalloproteins, single-crystal microspectrophotometry may

be used to monitor the metal centres and a key advance has

been the incorporation of microspectrophotometers onto

X-ray beamlines (on-line single-crystal spectroscopy) (Chen et

al., 1994; Hadfield & Hajdu, 1993; Sakai et al., 2002). Through

this approach, diffraction and optical spectroscopic data may

be collected on the same crystal without the need to remove

the sample from the beamline. To this end, macromolecular

crystallography (MX) beamlines at a number of synchrotron

sources, including the Swiss Light Source and ESRF, have

been equipped with microspectrophotometers. These instru-

ments have been used to monitor the redox state of inter-

mediates generated during X-ray exposure of a methylamine

dehydrogenase–amicyanin complex, thus allowing tailored

data-collection protocols to be developed such that the

structures of each intermediate could be determined (Pearson

et al., 2007). In some cases, X-ray-driven reduction of metal

centres may allow intermediate states in an enzymatic

mechanism to be accessed (Schlichting et al., 2000).

Although optical microspectrophotometry is a powerful

technique, it suffers from a major limitation in that many

metal centres are optically silent in biologically relevant

oxidation states (Table 1a). These include the important Cu(I)

and Zn(II) states which are optically [and EPR (electron

paramagnetic resonance)] silent owing to their d10 nature.

Other metal sites, such as type-2 Cu centres, may contain an

optically active metal but the resulting spectrum may be too

weak and difficult to measure in a crystal, as is the case for

copper nitrite reductase, an enzyme under study in this paper.

Also, in proteins that contain several different optically active

metal centres, it may not be possible to monitor the site with

the weaker absorbance. An example would be sulfite oxidase

where the optical spectrum of the molybdenum cofactor is

entirely masked by that of the haem centre (Kisker, 2001).

XAS, in contrast, is generally applicable to metal centres in

any oxidation state (Table 1b). The complementarity of

protein crystallography (PX) with solution XAS studies was

noted (Hasnain & Hodgson, 1999; Hasnain & Strange, 2003)

and capabilities to combine these methods on the same crystal

were implemented on the MX beamline 10 at the SRS (Cianci

et al., 2005; Arcovito et al., 2007) and at SSRL (Latimer et al.,

2005; Yano et al., 2006). SRS beamline 10 is fully tunable over

a wavelength range of 0.873 Å to 2.3 Å (5.45–14.21 keV) with

a normal operating range of 0.92 Å to 2.07 Å (5.99–13.47 keV)

delivering a flux of �1011 photons s�1. This energy range

covers X-ray absorption edges for many of the biologically

important 3d transition metals (Table 1b). Recently, we have

exploited this beamline to combine X-ray diffraction and

polarized XANES measurements on crystals of cyano-

myoglobin (Arcovito et al., 2007).

The end-station of the beamline is composed of a MAR

desktop beamline (DTB) with cryogenic sample changer, with

a MARMosaic 225 CCD detector for recording diffraction

data and an Ortec C-TRAIN-04 detector for measuring XAS

data (Derbyshire et al., 1999). Here we describe an extension

to these capabilities through the incorporation of a single-

crystal microspectrophotometer into the goniometry, thus

allowing optical spectra to be collected in situ and in parallel

with X-ray diffraction and high-quality XAS data. The

combination of two spectroscopies allows the status of both

optically active and optically silent metal centres to be

monitored during a crystallographic experiment (see Hough et

al., 2008).

2. Description of the experimental apparatus

A microspectrophotometer based on the 4DX Uppsala system

(Hadfield & Hajdu, 1993; Wilmot et al., 2002) has been

installed on SRS MAD beamline 10. Two light sources,

halogen or halogen/deuterium, may be used to provide good

spectral intensities in the UV–visible region (350–800 nm). A

50 mm fibre-optic cable transmits the light to a collimating

lens/reflecting objective. The focal point of the light emitted by

the objective is centred on the crystal some 24 mm away with

a typical spot size of �25 mm. A second collimating lens/

reflecting objective at the same distance from the sample

passes the transmitted light via a 400 mm fibre-optic cable and

through a 50 mm slit to an Oriel MS125 spectrograph equipped

with a 400 lines mm�1 diffraction grating. The dispersed

spectrum is then measured using an Andor DV401A-UV CCD

detector (1024 � 127 pixels) operating at 213 K.

To incorporate the microspectrophotometer into the DTB,

an easily attachable/removable mounting arc was designed

that extends over the � axis. In this configuration, one

objective is behind and above the crystal and the second is

below and in front of the crystal (Fig. 1). The arc is designed to

be easily removable from the DTB to allow for a rapid tran-

sition between operation of the beamline with and without the

instrument. Two guide pins and two screws locate and fix the

arc into the DTB. A modified alignment tool has been

designed specifically for the beamline, and the micro-

spectrophotometer can be fitted and aligned ready for use in

approximately 30 min. The positioning of the instrument is
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such that it does not interfere with the operation of the

nitrogen cryostream and so data using all three techniques

(optical spectroscopy, XAS, MX) may be collected at either

room temperature or temperatures down to 100 K. This

configuration allows the optical light path to be centred using

the crystal microscope such that it intersects the same volume

of the crystal as the X-ray beam, and allows both diffraction

and XAS data to be measured without removing the crystal

from the system. This in turn allows both the optical spec-

troscopic and XAS monitoring of the oxidation states of metal

centres during crystallographic data collection.

Alignment of the objectives to the centred-sample position

is conducted using an in-house alignment tool mounted on a

Hampton pin adapter. This allows manual fine alignment of

the light spot from the source to the cross hairs of the crystal-

alignment camera. The Andor CCD detector may be cali-

brated to wavelength using a Holmium filter built into the light

source. A series of test data were measured to ensure that the

addition of the new instrument into the beamline goniometry

did not significantly interfere with the normal measurement of

crystallographic or XAS data. The correct operation of the

fluorescence detector with the microspectrophotometer was

confirmed by collection of data from metal foils, while test

X-ray diffraction data were collected to a resolution limit

of �1.5 Å.

3. Experimental methods and results

3.1. Copper nitrite reductase from Alcaligenes xylosoxidans

In order to test the capabilities of this currently unique

experimental facility, we have undertaken a combined optical–

XAS-crystallographic study of crystals of copper nitrite

reductase from Alcaligenes xylosoxidans (AxNiR). AxNiR
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Table 1
(a) Optical properties of selected metalloproteins and (b) X-ray absorption energies and main oxidation states of 3d metals found in proteins.

(a) The major peak in the optical spectrum between 350 and 800 nm is given. Note that Zn(II) and Cu(I) are always optically silent. The optical spectra of Mo
centres are generally masked by the Fe centres occurring in the same proteins. ‘Weak’ optical spectra are difficult to measure using a single-crystal
microspectrophotometer.

Metal Example protein Redox state
Optical
properties

Main peak (nm)
/ " (M�1 cm�1) Reference

Cobalt Methionine synthase Co(III) Strong 352 / 20200 Banerjee & Matthews (1990)
Co(II) Strong 475 / 9470
Co(I) Strong 525 / 10000

Copper Azurin (type-1 Cu) Cu(II) Strong 620 / 5700 Colczak et al. (2001)
Cu(I) Silent –

Cu, Zn superoxide
dismutase (type-2 Cu)

Cu(II) Weak 680 / 300 McCord & Fridovich (1969)

Cu(I) Silent –
Galactose oxidase

(type-2 Cu)
Cu(II) Strong 445 / 6500 McPherson et al. (2001)

Catechol oxidase
(type-3 Cu)

Cu(II) Weak 580 / 450 Eicken et al. (2001)

Iron: haem Haemoglobin Fe(III) oxy Strong 541 / 13500 Di Iorio (1981)
Fe(III) deoxy Strong 555 / 12500

Cytochrome c Fe(III) Strong 410 / 100000 Banci & Assfalg (2001)
Fe(II) Strong 413 / 125000

Iron: Fe–S proteins Rubredoxin Fe(III) Strong 490 / 6600 Meyer & Moulis (2001)
Fe(II) Silent –

Manganese Mn superoxide
dismutase

Mn(III) Weak 478 / 850 Stroupe et al. (2001)

Mn(II) Silent –
Arginase Mn(II) Silent – Bewley & Flanagan (2001)

Nickel Ni superoxide dismutase Ni(III) Strong 378 / 6000 Bryngelson & Maroney (2007)
Ni(II) Weak 450 / < 500

Vanadium Vanadium
haloperoxidase

V(V) Silent – Wever & Hemrika (2001)

(b) The energy of an absorption edge will vary with changes of the metal oxidation state and the nature of the ligand environment. For example, for vanadium
complexes the edge shift can vary by up to�5 eV per unit oxidation and by up to�2.5 eV for changes of ligation for the same oxidation state (Frank et al., 1998).
X-ray absorption energies are taken from Thompson et al. (2001).

K-edge absorption energy

Metal (Å) (eV) Oxidation states

Cobalt 1.608 7709.0 +2, +3
Copper 1.381 8979.0 +1, +2
Iron 1.743 7112.0 +2, +3, +4
Manganese 1.896 6540.0 +2, +3, +4
Nickel 1.488 8333.0 +2
Vanadium 2.269 5465.0 +2, +3, +4, +5
Zinc 1.284 9659.0 +2



contains both an optically active type-1 Cu (T1Cu) centre and

a type-2 Cu (T2Cu) centre that has weak absorbance

(Abraham et al., 1993)1 and is thus essentially optically silent

with the current detection capabilities of the micro-

spectrophotometer. The two copper centres are linked via a

Cys–His bridge where T1Cu ligates to Cys and T2Cu ligates to

His. Both Cu centres are in the Cu(II) oxidation state in the

resting enzyme. Under physiological conditions the T1Cu

receives an electron from a partner protein, azurin. It has been

shown that electron transfer from T1Cu to T2Cu is gated and

is triggered by the conformational changes resulting from the

binding of nitrite to T2Cu, replacing the water molecule

ligated to T2Cu in the resting state (Strange et al., 1999; Hough

et al., 2005).

X-ray irradiation can be used to introduce electrons into

the protein crystal that may be selectively taken up by metal

centres, resulting in their reduction. By combining the three

techniques described above, both metal centres may be

monitored and the effect of X-ray exposure on redox state can

be characterized. Recombinant native AxNiR was produced

as described previously (Prudencio et al., 1999). Crystals in

space group R3 were grown by the hanging-drop vapour-

diffusion method. A drop containing 2 ml of 10 mg ml�1

protein solution was mixed with an equal volume of reservoir

solution containing 20% PEG550 MME, 10 mM ZnSO4 and

100 mM MES pH 6.0. Crystals grew in one week and were

intense blue in colour.

3.2. Optical, XAS and MX data collection from AxNiR
crystals

Crystals were transferred into a cryoprotectant solution

consisting of mother liquor with a PEG550 MME concentra-

tion of 35% before mounting in a nitrogen cryostream at

100 K. Optical spectra were either an accumulation of 20

exposures each of 0.05 s duration or were single 0.5 s expo-

sures measured at regular time intervals. Data were analysed

using the Andor iDus software package. Background and

reference spectra were measured with the crystal translated

out of the light path. A crystal orientation was chosen such

that the crystal spectrum matched the solution spectrum of

AxNiR.

A crystal of AxNiR was exposed to a continuous flux of

X-rays of wavelength 1.37 Å. The effect of this X-ray radiation

exposure on the optical spectrum is shown in Fig. 2(a).2 The

size (in absorbance units) of the 595 nm peak as a function of

absorbed X-ray dose is given in Fig. 2(b). X-ray doses were

calculated using the program RADDOSE (Murray et al., 2005)

and included the absorption contributions from sulfur and

metal atoms. In brief, photon fluxes were calculated from

photodiode measurements carried out at the sample position.

These photodiode measurements were referenced against the

ionization chamber readings inside the collimator system of

the MAR DTB allowing calculation of the flux incident on the

sample position. Crystal sizes were measured using a graticule

on one of the objectives on the microscope. These optical

spectroscopic data indicate that the T1Cu centre was rapidly

photoreduced from the Cu(II) to Cu(I) oxidation state by

X-ray exposure. We note that the X-ray dose sufficient to

predominantly reduce the T1Cu centres is modest in

comparison with doses commonly used in the determination

of high-resolution crystal structures.

Cu K-edge X-ray absorption data were collected in fluor-

escence mode using an energy-resolving four-element mono-

lithic germanium C-TRAIN-4 detector (Ortec) (Derbyshire et

al., 1999). A silicon (111) double-crystal monochromator with
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Figure 1
Views of the microspectrophotometer as installed on SRS beamline 10. A mounting arc allows for easy fitting of the instrument onto the MAR DTB. The
cryostream and C-TRAIN fluorescence detector are unaffected by the addition of the mounting arc, thus allowing optical spectroscopic, XAS and
crystallographic data to be collected from the same crystal.

1 The T1Cu centre exhibits an intense optical absorption spectrum. The T2Cu
centre shows only a very weak absorption, which is non-detectable from these
crystals. 2 Optical spectra were single 0.5 s exposures.



an energy resolution of �1 � 10�4 eV was used (Cianci et al.,

2005). XAS spectra consisted of 168 data points over the

energy range 8.96–9.11 keV with a dwell time of 1 s per point.

Data were processed using the Daresbury Laboratory

programs EXCALIB and EXBACK. X-ray diffraction data

were measured using a MAR 225 CCD and processed using

HKL2000 (Otwinowski & Minor, 1997), the structures solved

by molecular replacement in PHASER (McCoy et al., 2007)

and refined in REFMAC5 (Murshudov et al., 1997).

Each of the three crystallographic data sets (MX1, MX2 and

MX3) consisted of 100 X-ray exposures each of 10 s. Following

the collection of the second X-ray data set, a Cu K-edge XAS

spectrum was measured. An optical spectrum3 was collected

from the crystal following each X-ray and the XAS data set.

We note that all optical and XAS measurements were taken at

the same crystal position and orientation in order to eliminate

any changes in the spectrum that might arise from a change in

orientation. In all cases, data using these three techniques

were collected on the same crystal on-line at 100 K. Data

collection parameters are given in Table 2.

The type-2 Cu centre is essentially optically silent, and so to

monitor its status we have combined the information obtained

from the Cu K-edge XAS data with the crystal structures. The

XAS spectra following the determination of the second and

third crystal structures are given in Fig. 3. Note that the

8984 eV edge feature, characteristic of the Cu(I) redox state in

the T2Cu centre (Fig. 3 inset), is not observed, consistent with

the T2Cu site remaining in the Cu(II) oxidized state although

the optical data (not shown) indicate that the T1Cu centre is

essentially completely reduced to Cu(I) at this point. The Cu–

OH2 distance in the three crystal structures is similar to that

expected for an oxidized T2Cu centre (Fig. 4, Table 3),

suggesting that the photoreduction of the T2Cu centre is much

less rapid than that of the T1Cu centre and that structure MX3

is of the T1Cu(I)–T2Cu(II) form, i.e. where the two Cu centres

are in different redox states.

4. Conclusions

A single-crystal microspectrophotometer has been success-

fully integrated into the fully tunable MAD beamline 10 at the
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Figure 2
Dose-dependent X-ray-induced photoreduction of a static AxNiR crystal using 1.37 Å X-rays. (a) Spectra collected at 30 s intervals showing the
progressive reduction in the height of the 595 nm peak associated with conversion of T1Cu(II) to T1Cu(I). The first 20 spectra and the final spectrum are
plotted. (b) The dependence of the 595 nm peak height on absorbed X-ray dose. The time points indicative of MX and XAS data collection are shown.

Table 2
Data collection, refinement and model statistics.

Values in parentheses are for the outer resolution shell (1.95–1.90 Å).

MX1 MX2 MX3

Data collection
Wavelength (Å) 0.98 0.98 0.98
Space group R3 R3 R3
Cell dimensions: a, b, c (Å) 89.1, 89.1,

288.3
89.1, 89.1,

288.3
89.1, 89.1,

288.4
Resolution (Å) 1.90 1.90 1.90
Rmerge 3.9 (12.4) 3.8 (13.6) 4.1 (16.1)
I/�(I) 20.3 (3.8) 20.3 (4.8) 20.6 (4.0)
Completeness (%) 97.7 (81.2) 97.8 (82.2) 97.7 (81.1)
Wilson B-factor (Å2) 19.5 19.6 20.9
No. unique reflections 66937 65482 65507

Refinement
Rwork 0.162 0.162 0.162
Rfree 0.201 0.197 0.195
ESU (Å) 0.12 0.12 0.12
No. protein atoms 5228 5198 5206
No. water molecules 696 642 670
Average B-factor

Protein (Å2) 18.6 18.5 19.9
Water (Å2) 31.0 30.1 32.7

RMS deviations
Bond lengths (Å) 0.011 0.011 0.011
Bond angles (�) 1.30 1.32 1.32

Ramachandran plot
Most favoured (%) 90.1 89.5 90.6
PDB accession code 2vw7 2vw4 2vw6

3 Accumulation of 20 � 0.05 s exposures.



SRS, resulting in the unique capability of measuring the on-

line optical spectrum together with high-quality XAS and

X-ray diffraction data from a crystal in situ. This development

allows the monitoring of the status of metal centres in

metalloproteins during a crystallographic experiment. The

capability for such monitoring is becoming increasingly

important with the higher X-ray doses which can be delivered

by beamlines on third-generation synchrotron radiation

sources. We have used crystals of the copper nitrite reductase

from A. xylosoxidans as a test case. Optical spectroscopy

revealed that the T1Cu centre was rapidly reduced by expo-

sure to X-rays. To determine the oxidation state of the opti-

cally silent T2Cu centre, XAS measurements were performed

on the same crystal, showing that the edge features indicative

of reduced T2Cu centres were not present. Combined with the

diffraction data, these observations showed that the crystal

structures collected were in the mixed T1[red]–T2[ox] form,

consistent with previous biochemical, kinetic and structural

observations on AxNiR in the solution state, that electron

transfer from T1Cu to T2Cu is gated (Strange et al., 1999;

Hough et al., 2005). The combination of these three techniques

applied to a single crystal allows monitoring of both optically

active and optically silent metal centres during a crystal-

lographic experiment. This approach provides a model for the

design of MX/PX beamlines on current and future generations

of synchrotron radiation sources.
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