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To study the functional role of the predisposed preference for Johansson's biological motion (BM) at an
early stage of life, newly hatched domestic chicks, Gallus gallus domesticus, were exposed to a variety of
motion pictures composed of light points (in red or yellow), and then tested for their learned colour
preference. Point-light animations depicting the BM of a walking hen successfully facilitated both the
approach activity during imprinting and the learned preference in the test, although significant positive
correlations did not appear between these at the individual level. Furthermore, scrambling the light
points did not significantly reduce the effects, whereas linear motion of a hen-shaped set of points had
no effect. If pretreated with the linear motion, those chicks primed with a high BM preference score
showed a high learning score in subsequent imprinting. We conclude that the local movement feature of
the BM animation is critical in making chicks approach and learn the associated colour. We propose a
scenario wherein naïve chicks have an innate preference for BM, which arises prior to imprinting
through nonspecific visual experience in the early posthatch period. The induced BM preference then
allows chicks to form a learned colour preference for the associated colour more effectively, leading to
the development of tighter social attachment.

© 2016 The Authors. Published by Elsevier Ltd on behalf of The Association for the Study of Animal
Behaviour. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).

Animations composed of moving light points, if appropriately
arranged to represent themajor joints of awalking human, generate
a vivid perception of locomotion. This phenomenon is known as the
perception of biological motion (BM; Johansson, 1973). Highly
simplified though the animation is, human observers detect not
only the direction and type of the movement (Cutting, Moore, &
Morrison, 1988), but also infer various features associated with
the animation such as gender (Kozlowski & Cutting, 1977), age
(Pavlova, Krageloh-Mann, Birbaumer,& Sikolov, 2002) and emotion
(Dittrich, Troscianko, Lea, & Morgan, 1996), and can even identify
the individual (Cutting & Kozlowski, 1977). The cognitive capability
for BM perception has been thought to be limited only to human
adults with mature visual-processing mechanisms, as it develops
gradually and slowly in juveniles (Blake, Turner, Smoski, Pozdol, &
Stone, 2003; Freire, Lewis, Maurer, & Blake, 2006; Pavlova,
Krageloh-Mann, Sokolov, & Birbaumer, 2001).

Recent studies have shown that BM perception might occur in
taxonomically remote animals. Cats, Felis catus, were trained to
discriminate BM animations from non-BM counterparts in an op-
erant conditioning study (Blake, 1993). Marmosets, Callithrix

jacchus (although only females) inspected a BM animation of a
walking hen more than the other patterns (Brown, Kaplan, Rogers,
& Vallortigara, 2010). Further pioneering work reported that newly
hatched domestic chicks, Gallus gallus domesticus, show a prefer-
ence for the point-light animation depicting a walking hen (BM)
over non-BM alternatives (Regolin, Tommasi, & Vallortigara, 2000;
Vallortigara & Regolin, 2006; Vallortigara, Regolin, & Marconato,
2005). More recently, we confirmed these findings, as chicks
showed a clear BM preference when they had been pretreated by
any sort of point-light animation (Miura & Matsushima, 2012). The
animation did not necessarily have to be a BM picture, and even an
assembly of randomly moving light points was effective. We
therefore agree with the idea that BM preference is predisposed
(Rosa Salva, Mayer, & Vallortigara, 2015). Chicks may not learn BM,
but the BM preference is induced through nonspecific visual ex-
periences. Also, in Vallortigara et al.'s (2005) study, chicks ran in a
running wheel in the darkness before the BM preference tests.
Besides the visual experiences, chicks may thus have to execute
motor activities in response to the stimuli. The critical factors
required for the BM preference induction are yet to be specified.

We must stress that the BM preference arises at a very early
stage of chick life. This early emergence is also found in humans, as
2-day-old babies prefer the walking hen animation in preference
looking tests (Simion, Regolin, & Bulf, 2008). Although it is unclear
whether chicks or newborn human babies have processes similar to
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those employed by human adults, the BM preference in the early
postnatal (posthatch) period may be based on a common mecha-
nism shared by birds and humans. In this respect, it is interesting
that chicks have a similar pattern of functional lateralization of BM
preference to that found in humans (Rugani, Rosa Salva, Roglin, &
Vallortigara, 2015).

What functional roles might the BM preference play in early
life? Imprinting, and the social bond formation that follows, might
be a target. Precocial chicks follow conspicuous objects and learn
their visual features (colour and shape in particular) after a brief
exposure in the early posthatch period, a process referred to as
imprinting (Lorenz, 1937; also see reviews in Bolhuis & Honey,
1998; Horn, 2004; Matsushima, Izawa, Aoki, & Yanagihara, 2003).
Even though chicks can be imprinted with a variety of artefacts
such as a rotating cylinder or a toy made of LEGO blocks (Izawa,
Yanagihara, Atsumi, & Matsushima, 2001; Yamaguchi et al., 2012),
the preference gradually shifts towards more natural objects such
as a stuffed hen (Johnson, Bolhuis, & Horn, 1985), suggesting that
filial behaviour is also influenced by a predisposition (Bolhuis,1991;
Rosa Salva et al., 2015). Possibly, imprinted chicks may gradually
shift their preference to those objects with a predisposed nature,
such as BM pictures, and/or the BM preference may arise earlier
than the filial imprinting, allowing chicks to form a memorized
attachment selectively to those objects.

In this study, we investigated the possible contribution of BM
preference to imprinting. We did not address the possibility that
the BM preference is strengthened after imprinting. Specifically, we
asked (1) whether chicks would selectively learn the colour asso-
ciated with BM animations and (2) if pretreated with nonspecific
visual stimuli to showa BM preference, whether chicks would score
higher in learned colour preference by imprinting. To do that, we
recorded two behavioural parameters: the number of approaches
to a single visual stimulus during imprinting and the learned colour
preference in a binary choice test.

GENERAL METHODS

Subjects and Ethical Note

Domestic white leghorn chicks (Julia strain) were used at
24e48 h posthatch. Fertilized eggs supplied from a local hatchery
(Iwamura Poultry Co. Ltd., Yubari, Japan) were incubated in the
laboratory. The inside of the incubator was kept in darkness. To
avoid posthatch visual experiences, hatchlings were individually
housed and kept in another incubator in complete darkness. After
the experiments, chicks were sexed and euthanized by carbon di-
oxide. A total of 221 chicks (111 males and 110 females) were used.
We did not perform any potentially harmful manipulations, inva-
sive sampling of blood or tissues or tagging. All experiments were
conducted under the guidelines and approval of the Committee on
Animal Experiments of Hokkaido University. The guidelines are
based on the national regulations for animal welfare in Japan (Law
for Humane Treatment and Management of Animals; after a partial
amendment No. 68, 2005).

Apparatus

We used an I-shaped maze (9 cm � 70 cm) equipped with a
50 cm long treadmill consisting of a rubber belt at the centre and an
LCD monitor at each end. During imprinting and pretreatment
(Fig. 1a), an infrared sensor and a transparent Plexiglas partition
were placed at a point 10 cm from the monitor, and the other
monitor was occluded by an opaque partition. When chicks ran and
hit the sensor, the rubber belt of the treadmill moved for 0.3 s,
drawing the chick backwards by about 30 cm at a time. The

treadmill motion was digitally counted, and the number of ap-
proaches was recorded for each of the trials, which lasted for 1 h if
not stated otherwise.

In the binary choice test (Fig. 1b), the partitions were removed
and the treadmill was turned off. The subject chick was enclosed in
a start box placed at the centre for about 10 s, andwas then allowed
to freely go out and choose between the two arms. We recorded the
total stay time near each monitor for a period of 5 min, starting
from the point when the chick walked out of the start box. The
choice test was repeated twice with the side changed after 0.5 h (in
experiments 1 and 2) or about 1e2 min (experiments 3-1 and 3-2).
The behaviour of the subject chick was monitored through a CCD
camera (250 kilo pixels) placed on the ceiling, and the videos were
stored for offline analysis in a video recorder (DCR-SR60, Sony,
Japan). The apparatus was placed in a soundproof wooden box,
which was illuminated by infrared LED lamps.

Video Clips and Point-light Animations

For imprinting and pretreatment, we used a full-screen colour
illumination (Plate), two realistic video clips (LEGO block and Real
chick), and seven point-light animations (LEGO point, Walking hen,
Stationary dots, Walking chick, Scrambled, Linear motion and
Stationary chick). The colour preference was tested using a binary
choice between two Plates with different colours (yellow and red).
The BM preference was tested using a binary choice between a pair
of point-light animations (Walking hen and Rotating hen). These
are available in the SupplementaryMaterial. The videos/animations
were accompanied by sounds, except those used in the BM pref-
erence test (Walking hen and Rotating hen) and the colour pref-
erence test (test (red) and test (yellow)). The same sound source

(a) Imprinting and pretreatment

Transparent partition Opaque partition

LCD monitor

LCD monitor LCD monitor

Infra-red sensor

(b) Test

Start box

Hatch Imprinting Imprinting Tests

1 day 1 h

1 h 1 h

0.5 h

(c)

Treadmill

Figure 1. Apparatus used for (a) imprinting and pretreatment and (b) testing. (c) The
procedure is shown schematically for experiments 1 and 2. Chicks were imprinted
twice at a 1 h interval, and subsequently tested twice at 0.5 h intervals. During the first
posthatch day and the intervals between the sessions, chicks were individually housed
in a dark incubator at 37e38 �C. For experiments 3-1 and 3-2, see Figs 4a and 5a,
respectively.
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accompanied different videos in each experiment: repetition of
‘clicks’ synchronized with the LEGO block motion (experiment 1)
and repetition of distress ‘peep’ calls (experiments 2 and 3). See the
Supplementary Material for detailed accounts of the sound.

The point-light animations were composed of 13 light points
and displayed at a speed of 30 frames/s. We edited video clips and
animations using Adobe Premiere (Elements 7) and the colour was
set either to red (R: 255, G: 0, B: 0), yellow (R: 255, G: 255, B: 0) or
white (R: 255, G: 255, B: 255). These stimuli were displayed on the
LCD monitors (size 10.400, 800 � 600 pixels, Logitec LCM-T102AS,
Japan; flash rate: 56e75 Hz; brightness: 230 cd/m2; pitch size:
0.264 � 0.264 mm) using free viewer software (A-player, version
6.0) on Windows PC. The width of the presentation was set at 9 cm
on the monitor.

Statistical Analysis

We used R (version 2.12.0, R, The R Foundation for Statistical
Computing, Vienna, Austria, http://www.r-project.org) for
nonparametric tests (KruskaleWallis test, SteeleDwass multiple
comparisons, Spearman rank-order correlations, Wilcoxon rank
sum test). We also constructed generalized linear models (GLMs) in
R, and evaluated them using the Akaike information criterion (AIC).
The recorded colour preference score (difference of stay time in
binary choice test, s) was given as a weighted sum of several
explanatory variables. As the link, we adopted the logistic function.
For details, see our previous report (Miura & Matsushima, 2012)
and the Supplementary Material.

EXPERIMENT 1: EFFECTS OF STIMULUS MOTION

Methods

As the first step, we prepared five types of visual stimulus
(Fig. 2a): full screen colour (Plate), video clip of a rotating LEGO
block, point-light animation made from the block (LEGO point; see
Fig. S8 of the Supplementary Material), BM animation depicting a
Walking hen and a still pattern of randomly arranged light points
(Stationary dots). We recorded two behaviours (Fig. 1c), one during
imprinting (number of approaches during the 2 h of observation)
and the other during the test (colour preference score).

Results

Among the five groups, significant differences occurred in the
number of approaches (Fig. 2b; KruskaleWallis test: c24 ¼ 37.05,
P < 0.001). Post hoc SteeleDwassmultiple comparisons (performed
in all of the 10 possible pairs) also revealed significant differences
(Fig. 2b). The motionless Plate resulted in an approach number
comparable to that of the LEGO block. Conversely, the LEGO point
groupwas significantly lower than the LEGO block group (t ¼ 3.873,
P ¼ 0.001), even though the LEGO point depicted the motion of the
LEGO block. Among the three groups trained by point-light ani-
mations, the Walking hen group was higher than the other two
(versus LEGO point: t ¼ 3.816, P ¼ 0.001; versus Stationary dots:
t ¼ 4.073, P < 0.001), but it was comparable to the LEGO block and
the Plate groups. The Stationary dots group was significantly lower
than the Plate group (t ¼ 3.434, P ¼ 0.005), which was also
motionless. We conclude that motionless colour plates are also
attractive, if they are given in full-screen size (9 cm wide). When
the colour is presented as moving light points, however, the BM
feature is critical.

A similar pattern of intergroup differences occurred in the
colour preference score (Fig. 2c; KruskaleWallis: c24 ¼ 25.01,
P < 0.001). No significant difference appeared between the Plate

and the LEGO block groups, whereas the LEGO point group was
significantly lower (SteeleDwass: versus LEGO block: t ¼ 3.415,
P ¼ 0.006). Among the three point-light animations, the Walking
hen group was higher than the others (significantly versus Sta-
tionary dots: t ¼ 3.092, P ¼ 0.017; not significantly versus LEGO
point: t ¼ 2.342, P ¼ 0.132). Clearly, chicks learned the motionless
full-screen colour. However, the BM features of the point-light
animations facilitated imprinting. In repeated testing on the
following day (Test 2 after Test 1), chicks of each group showed a
highly reproducible colour preference (Supplementary Fig. S1).

At the individual level, however, significant positive correlations
did not appear between the number of approaches and the colour
preference score (Fig. 2d; Spearman rank-order correlation analysis:
Plate: rS ¼ �0.027, P ¼ 0.882; LEGO block: rS ¼ 0.125, P ¼ 0.579;
LEGO point: rS ¼ �0.599, P ¼ 0.003; Walking hen: rS ¼ �0.413,
P¼ 0.046; Stationary dots: rS ¼ �0.006, P¼ 0.983). This indicates
that the number of approaches during imprinting is not a reliable
predictor of the learned colour preference during testing.

To obtain reliable estimates of the contributing factors, GLM
analysis was applied to the colour preference score. We merged all
five groups of chicks and constructed a total of 32 GLMs for all
possible combinations for five variables: Colour (red or yellow),
Motion (motionless or motion picture), Point_light (point-light
animation or otherwise), Sex (female or male) and Approach
(number of approaches in imprinting); see Supplementary Table S1
for details. The best and the second-best model in terms of AIC
included Point_light as the most effective variable with a negative
coefficient (b3 < 0 at confidence level P < 0.001 for the best model).
The less effective variables included Motion (b2 > 0 at P ¼ 0.002)
and Colour (b1 > 0 at P ¼ 0.003). However, the confidence levels of
the estimated coefficients of Sex (b4) and Approach (b5) were
negligible. Here again, the number of approaches failed to predict
the learned colour preference.

BM facilitated imprinting, but point-light animations were
generally weaker at the population level. At the individual level,
however, the chick's approaches to the visual stimulus (during
imprinting) and the consequent colour preference (during testing)
were not linked. Critical features of the moving pictures, yet to be
characterized, should thus independently regulate these two as-
pects of imprinting.

EXPERIMENT 2: EFFECTS OF BM ANIMATION

Methods

To characterize the critical features of the BM picture, we pre-
pared three point-light animations from a video clip of Real chick
(Fig. 3a). Walking chick was composed of 13 light points, each
representing a part of a chick's body such as the head, neck, body,
limbs and tail. Scrambled was made from Walking chick by
randomizing the spatiotemporal relationship of the light points
(see Fig. S9 of the Supplementary Material); thus it had only the
local movements of points as a common feature with the Walking
chick. Conversely, Linear motion maintained the global configura-
tion of Walking chick, but lacked the local movement of points. In
this and the following experiments, to avoid possible ceiling effects
on imprinting when using yellow, we used red animations.

Results

In number of approaches (Fig. 3b), the KruskaleWallis test
revealed a statistically significant difference between the four
groups (c2 ¼ 19.91, P < 0.001). We made post hoc comparisons in
the three pairs by assigning the Walking chick group as the refer-
ence control. The Real chick group was comparable to the Walking

M. Miura, T. Matsushima / Animal Behaviour 116 (2016) 171e180 173

http://www.r-project.org
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Figure 2. Effects of motion pictures on the learned colour preference (experiment 1). (a) Video clips and point-light animations used for imprinting; for samples, see Supplementary
Material. Pictures were in red or yellow in a balanced manner. (b) Sum of the number of approaches counted during the two imprinting sessions. (c) Colour preference score
measured at tests. Sum of the difference in stay time (imprinting colour minus unfamiliar colour). Columns and bars denote the mean ± SEM in each group, and numbers in
parentheses denote the group size. Asterisks indicate the level of significance after SteeleDwass multiple comparisons: *P < 0.05; **P < 0.01; ***P < 0.001. (d) Colour preference
score plotted against the number of approaches. Different groups are indicated by different symbols.
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chick group (SteeleDwass multiple comparison test: t ¼ 0.6427,
P ¼ 0.857) and so was the Scrambled group (t ¼ 2.117, P ¼ 0.088),
but the Linear motion group was significantly lower (t ¼ 3.705,
P < 0.001). Movements of individual points are thus apparently
critical.

The colour preference score showed a similar pattern of differ-
ences (KruskaleWallis: c2 ¼ 15.68, P ¼ 0.001). In post hoc Steel-
eDwass multiple comparisons, the Real chick and Scrambled
groups were comparable to the Walking chick group (t ¼ 0.7559,
P ¼ 0.791; statistical results were coincidentally equal), whereas
the Linear motion group was lower (t ¼ 3.402, P ¼ 0.002). Within
each group, repeated tests yielded highly reproducible preference
scores (Supplementary Fig. S2). Between the approach number and
the colour preference, we found a significant positive correlation
only in the Real chick, but not in the other three groups (Fig. S3 for
Test 1). In the repeated test on the following day (Test 2), no sig-
nificant correlation appeared for any of the four groups (Fig. S4).

To estimate the critical factors, we merged the colour prefer-
ence score of the four groups, and constructed GLMs by adopting
five explanatory variables: Shape (real chick image or point-light
animation), Local_movement, Global_configuration, Sex (female
or male) and Approach (number of approaches in imprinting). The
results showed that the best and the second-best models included
Local_movement as an effective variable (b2 > 0; confidence level
P < 0.001; the Test 1 data), and no other variables contributed
significantly (Supplementary Table S2). Similar results were found
for the Test 2 data. Taken together, we conclude that local move-
ments of the point-light animations are critical, which separately
regulate the attractiveness and the colour learning, yielding a
considerable interindividual variance in both aspects of
imprinting.

Experiment 2
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Figure 3. Effects of BM features on the learned colour preference (experiment 2). (a) Video clip and animations. Walking chick was made from the Real chick video. Scrambled and
Linear motion were made from Walking chick, each depicting the local movements and the global configuration, respectively. (b) Sum of the number of approaches. (c) Colour
preferences score. Columns and bars denote the mean ± SEM in each group, and numbers in parentheses denote the group size. Asterisks indicate the level of significance after
SteeleDwass multiple comparisons made by taking Walking chick as the reference control group: *P < 0.05; **P < 0.01.
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EXPERIMENT 3-1: PRETREATMENT INDUCTION OF BM
PREFERENCE

Methods

As a first step, we examined whether BM preference could be
induced by the Linear motion that proved to be ineffective in
imprinting in experiment 2. Two groups of chicks received pre-
treatments, one using Linear motion and the other Stationary chick,
both composed of white light points (Fig. 4a). These chicks were
then tested using a binary choice between simultaneously pre-
sented Walking hen and Rotating hen.

In the number of approaches in the pretreatment (Fig. 4b), the
Linear motion group was higher than that of the Stationary chick
group in both pretreatment 1 (Wilcoxon rank sum test: W ¼ 39.5,
N1 ¼8, N2 ¼ 8, P ¼ 0.044; size effect was estimated by Grissom's
probability of priority bps ¼ 0.6172; Grissom, 1994) and pretreat-
ment 2 (W ¼ 51.5, P ¼ 0.041; bps ¼ 0.8516), but the significance level
was marginal. In Test 1 and Test 2 (Fig. 4c), similarly, the Linear
motion group was higher than the Stationary chick group in their
preference of Walking hen over Rotating hen, and the difference
was significant in Test 1 (Wilcoxon rank sum test: W ¼ 52, N1 ¼8,
N2 ¼ 8, P ¼ 0.035; bps ¼ 0.8125) but not in Test 2 (W ¼ 43.5,
P ¼ 0.240; bps ¼ 0.6484). Pretreatment using Linear motion thus

Linear motion
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Linear motion Stationary chickor

Test 1 & 2 (white)

Walking hen VS Rotating hen
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Figure 4. Effects of motion pictures on the BM preference (experiment 3-1). (a) Two groups of chicks were repeatedly pretreated using Linear motion or Stationary chick (both in
white). At 0.5 h after each session, each chick was tested twice using binary choice. (b) Number of approaches in pretreatment 1 and 2. (c) BM preference scores (Walking hen minus
Rotating hen) measured at Tests 1 and 2. Columns and bars denote the mean ± SEM in each group, and numbers in parentheses denote the group size. Asterisks indicate the level of
significance after SteeleDwass multiple comparisons: *P < 0.05.
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induced BM preference at the population level with a considerable
interindividual variance. The induced BM preference was consis-
tent in the two tests (Fig. S5), but it lacked a significant correlation
with the number of approaches in the pretreatment (Fig. S6).

EXPERIMENT 3-2: INDUCED BM AND LEARNED COLOUR
PREFERENCES

Methods

For the second step, we examined whether a higher BM pref-
erence could lead to a higher imprinting score. Two groups of
chicks were similarly pretreated by Linear motion or Stationary
chick (both in white), tested for their BM preference (Walking hen
over Rotating hen; both in white), further imprinted using Real
chick (in red), and then tested for a learned colour preference of red
over yellow (Fig. 5a). Expecting to detect a larger interindividual
variance, we intentionally adopted a weak imprinting paradigm for
15 min.

Results

In the approach number in the pretreatment (Fig. 5b), the Linear
motion group was higher than the Stationary chick group, but not
significantly so (Wilcoxon rank sum test:N1 ¼16,N2 ¼ 15;W ¼ 152,
P ¼ 0.210; bps ¼ 0.6354). In the BM preference score (Fig. 5c), how-
ever, a significant difference occurred between them (W ¼ 178,
P ¼ 0.021; bps ¼ 0.7417). In the subsequent imprinting (Fig. 5d),
similarly, the difference was not significant (W ¼ 152, N1 ¼16,
N2 ¼ 15, P ¼ 0.211; bps ¼ 0.6333). In the final colour preference tests
(Fig. 5e), no significant difference appeared (W ¼ 155, P ¼ 0.171;
bps ¼ 0.6458). At the level of population means, therefore, the
induced BM preference seemed not to significantly facilitate
imprinting. At the individual level (Fig. 5f), however, a significant
correlation appeared between the two preference scores in the
Linear motion group (Spearman rank-order correlation: rS ¼ 0.713,
P ¼ 0.002), but not in the Stationary chick group (rS ¼ 0.043,
P ¼ 0.880).

We merged the colour preference scores of two groups and
constructed GLMs by adopting five explanatory variables:
BM_preference (score in the BM preference test), Pretreatment
(number of approaches in pretreatment), Imprinting (number of
approaches in imprinting), Type (animation used in pretreatment)
and Sex (female or male) (Supplementary Table S3). The results
showed that BM_preference was the most effective variable (b1;
confidence level P ¼ 0.012 for the best model and P < 0.001 for the
second best), whereas all other variables (including Type) failed to
contribute. The induced BM preference thus proved to be a critical
determinant of the individual imprintability.

DISCUSSION

Visual Features for Imprinting

A variety of objects have been used in previous imprinting
studies. In its early history, Fabricius and Boyd (1954) systemati-
cally investigated these objects and reported that mallard duck-
lings, Anas platyrhynchos, imprint on awide range of artefacts (such
as boxes, balloons and toy railway trucks) and biological models
(human, duck, duckling, stuffed animals and model ducks). They
thus concluded that object features such as size, colour and shape
do not limit the imprinting. Hess (1958) also reported that a stuffed
brown leghorn chicken was the least efficient model, and artefacts
such as a plain ball or a super-structured ball with attachments

(wing, tail and head on it) resulted in a higher score. Imprinting
objects thus do not necessarily need to look natural.

Object movement is also not critical. Gray (1960) showed that
chicks are imprinted after exposure to stationary geometrical fig-
ures for 24 h. In quail chicks, Coturnix japonica, preference for col-
ours has a genetic basis (Kovach, 1980), and the chicks changed
their preference after exposure to a motionless colour plate (Kabai
& Kovach, 1993). However, most studies of imprinting have
empirically usedmoving objects such as a decoy duckmoving along
a round runway (Hess, 1958), a cylinder or a box (Bolhuis, 1991;
Horn, 2004) and a LEGO block (Izawa et al., 2001; Yamaguchi
et al., 2012) rotating along its vertical axis. The use of artefacts
moving in a nonbiological manner has been the norm in imprinting
studies, and the role of motion has not been given attention.

In the present study (experiment 1, Fig. 2), exposure to the
colour Plates proved to be effective similarly to the quail chick
study cited above. The LEGO block video on a monitor was also as
effective as the real LEGO objects, suggesting that chicks do not care
much about the depth of a moving object. On the other hand, the
LEGO point animation that depicted the motion of a LEGO block
failed. The Walking hen animation was strikingly effective despite
the point-lights, and we thus assume that the BM feature facilitated
the imprinting. According to Sluckin (1964), Fabricius stated that
the movement of some parts of the body in relation to other parts is
an important factor in eliciting following in ducklings. An assembly
of objects that maintain relative distance and/or synchronized
movements with one another may facilitate imprinting. In experi-
ment 2, we examined whether this idea applied to our case of
point-light animations.

BM and Local Movements of Individual Light Points

In experiment 2, we constructed three types of point-light an-
imations from a video clip of Real chick, and two of these (Walking
chick and Scrambled) had local movements of points in common. In
both imprinting (number of approaches) and tests (colour prefer-
ence scores), Walking chick and Scrambled gave rise to comparable
results, whereas Linear motion was ineffective (Fig. 3). The local
movements of individual points thus play a critical role, whereas
the geometric relationships among points do not contribute.

Vallortigara et al. (2005) were the first to construct a motion
picture by randomizing the relative locations of light points. Most
of the neighbouring points were thus desynchronized. In our study,
in addition to the location, the phase relationships were also ran-
domized, so that all pairs of the points were perfectly
desynchronized from one another. In other words, the global
configuration (or the geometric associations among points) was
preserved in Linear motion, but it was completely removed in
Scrambled used in this study. Note, however, that Scrambled gave
rise to a slightly lower average than Walking chick in both behav-
ioural scores (Fig. 3b, c), although this difference was not statisti-
cally significant. The global configuration of the animation may
thus have only a partial effect.

Experiments 1 and 2 also revealed a high degree of interindi-
vidual variance among chicks despite the same visual experiences
(see Supplementary Figs S3,S4). Variance in the colour preference
score may be because of the different sensitivity to the BM pictures.
We examined this in experiment 3.

BM Preference may Precede Imprinting

In experiments 3-1 and 3-2, we pretreated chicks by exposing
them to Linear motion or Stationary chick in white. In a previous
study (Miura & Matsushima, 2012), exposure to a variety of point-
light animations (either BM or otherwise; rotating hen, pendulum
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Experiment 3-2
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Figure 5. Effects of the induced BM preference on the learned colour preference (experiment 3-2). (a) Two groups of chicks were pretreated once by Linear motion or Stationary
chick (both in white), tested for the BM preference, and then imprinted briefly for 15 min by Real chick (in red) before the colour preference test (red over yellow). (b, c) Results of
the pretreatment. (d, e) Results of imprinting. (f) Colour preference score plotted against BM preference score. Filled and open circles denote individuals pretreated by Linear motion
and Stationary chick, respectively. Columns and bars denote the mean ± SEM in each group, and numbers in parentheses denote the group size. Asterisks indicate the level of
significance after SteeleDwass multiple comparisons: *P < 0.05.
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or randommotion, but not stationary image of points) made chicks
show a BM preference in choices between Walking hen and
Rotating hen. Here, we confirmed this phenomenon by using Linear
motion (Fig. 4) which was ineffective in imprinting (Fig. 3).

In experiment 3-2, we failed to detect a statistically significant
difference between these two groups of chicks in the mean colour
preference score (Fig. 5e). However, the score was correlated with
the induced BM preference at the individual level (Fig. 5f). We
therefore assume that the BM preference develops earlier in nature,
and the induced BM preference confines the chick's visual learning
to specific objects with BM features, most likely the mother hen
which moves near the chicks. Chicks would then learn the colour of
the hen and form a lasting social bond with it.

Those chicks with a high BM preference score approached more
in the subsequent imprinting (experiment 3-2, Supplementary
Fig. S7; the number of approaches in imprinting plotted against
the BM preference score in the Linear motion chicks). The corre-
lation was statistically significant (P ¼ 0.001) and the effect size
(rS ¼ 0.741) was high. Facilitated imprinting can therefore be
ascribed to the higher number of approaches, which might have
made chicks stay around themonitor for a longer time. Otherwise, a
higher BM preference may directly cause a higher colour prefer-
ence, despite how active the chick was during the imprinting. As a
future project, we will examine whether the intermediate medial
mesopallium network for imprinting (Horn, 2004) might also be
involved in BM preference.

The predisposed preference of chicks for BM is analogous to the
predisposition for ‘fowl’ (Bolhuis, Johnson, & Horn, 1985; Johnson
et al., 1985) and ‘face’ (Rosa Salva et al., 2015; Rosa Salva, Regolin,
& Vallortigara, 2010). In the former case of ‘fowl,’ chicks had
received nonspecific sensory stimuli and/or motor execution (e.g.
running under diffuse illumination or in darkness), and the pref-
erence for a stuffed fowl subsequently appeared. In the latter case,
chicks had been imprinted to a face-shaped piece of cardboard,
before they showed a preference for the ‘eyes & mouth’ arrange-
ment of blobs. It is unknown, however, whether the ‘fowl’ and the
‘face’ predispositions are functionally linked to the memory for-
mation of filial imprinting.

In the present study, the predisposed BM preference appeared
immediately after visual exposure to a nonspecific animation
(experiment 3-1, Fig. 4). If the BM predisposition emerged prior to
imprinting, chicks would readily learn visual features of any nearby
objects with a BM feature. It is unknown, however, which of these
predisposed processes arises first, how these are ordered in time
and how they are causally linked with one another in the course of
filial imprinting.

In this respect, we must note a close similarity to the chick's
preference for self-propelled causality in the study by Mascalzoni,
Regolin, and Vallortigara (2010): naïve chicks acquired a learned
preference for the colour that was associated with the self-motion
object. The determination process of the predispositions, the in-
duction time course through development and the functional roles
played by the predisposed preference, as well as the underlying
neural and cognitive mechanisms (either genetic or epigenetic),
will be important topics of future research.

Approaches and Preference: Two Parameters of Filial Behaviour

The lack of correlations between the number of approaches in
imprinting and the colour preference score in tests needs careful
consideration. Hess (1958) reported that the strength of imprinting
was a function of the effort made by the subject ducklings, and
coined the term ‘law of effort’. In our previous study (Miura &
Matsushima, 2012), a similar correlation appeared between the
locomotor activity and the induced BM preference. However, the

‘law of effort’ has been criticized (Moltz, Rosenblum, & Stettner,
1960). In a more recent paper, a significant correlation was re-
ported between the approach activity during imprinting and the
preference score at test (Bateson& Jaeckel, 1974). That study used a
large number of chicks (>100), compared to our present study
(8e32 chicks per group). We may thus have failed to detect a sig-
nificant correlation in these small samples. Regardless, the link
between the approach and the preference is not thought to be tight.

The number of approaches and the preference score might
represent two distinct processes of filial behaviour. The approach
number recorded in this study may represent a sort of ‘vigour’ of
the subject chicks. Conversely, the colour preference score may
represent not only the chick's preference but also the tendency to
leave the imprinting object, as chicks often shuttled between the
two monitors in tests. In a behavioural study mimicking the
optimal patch use behaviour, we found that the patch use time at a
gradually depleting food patch followed a Poisson distribution,
suggesting that the decision to leave is a stochastically determined
behaviour (Matsunami et al., 2012). In the present choice test,
similarly, the stay time at an option may be reduced if the subject
has a higher tendency to leave and explore the alternative, so that a
proactive and neophilic chick may have a lower score given an
identical preference. Distinct processes might cause distinct inter-
individual variations between these two parameters. Independent
tests for personality (or behavioural syndromes; Sih & Giudice,
2012) must be done in future to determine its possible link to the
preference score.

Relevance to Social Bond Formation in Humans

Our findings in domestic chicks may help us understand the
development of social bonds in humans. Two-year-old autistic
children fail to show selective attention to BM images (Klin, Lin,
Gorrindo, Ramsay, & Jones, 2009). The authors argued that a
genetically predisposed lack of BM preference makes the children's
experiences increasingly atypical, leading to severe deficits in social
skills throughout development. In this respect, we may consider
the interindividual variance in the BM preference found in this
study (Fig. 5f). Those chicks with BM preference score <200 s (and
thus lacking a learned colour preference after imprinting) may have
failed to develop normal social behaviours. Besides the possible
genetic basis, the developmental consequences of the variation in
BM preference should be studied in social behaviours (such as
aggressive and sexual behaviours) in adults.
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