
POTTSIAN LFG

Doug Arnold and Louisa Sadler
University of Essex

Proceedings of the LFG10 Conference

Miriam Butt and Tracy Holloway King (Editors)

2010

CSLI Publications

http://csli-publications.stanford.edu/

43

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/4188099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.1 Introduction

Constructions that one might broadly call ‘parenthetical’ (including vari-
ous kinds of appositive construction) have received very little attention in
the LFG literature. This is surprising because, taken broadly, parentheticals
include a wide range of rather common constructions including supple-
mental/appositional constructions, expressives, and ’pure’ parentheticals
of various sorts. Apart from some brief coverage in Butt et al. (1999), the
most extensive discussion of such constructions probably occurs in a series
of papers in which Fortmann looks at some parenthetical constructions in
German (Fortmann, 2005, 2006). Fortmann’s concern is largely syntactic: in
Fortmann (2005) he argues that parentheticals such as (1) are ‘non-regular’
constituents in that they are integrated into the c-structure, but not the
f-structure, of the host clause.1

(1) Theo
Theo

hat
has

—
—

ein
a

Klempner
plumber

war
was

nicht
not

zu
to

erreichen
reach

—
—

den
the

Rohrbruch
pipe burst

selbst
self

repariert.
fixed

However, Fortmann (2006) shows that the structural integration facts are
different for different kinds of parenthetical, specifically that at least some
verba dicendi parentheticals are fully integrated at both c- and f-structure.

Outside LFG there has been a considerable amount of work on the syn-
tax of parentheticals and supplemental/appositive constructions, a major
focus being whether or not parenthetical elements should be analysed as
syntactically integrated or syntactically orphaned (see Arnold (2007) for
references). Beyond purely syntactic accounts, an important contribution
is made by Potts (2005). Potts provides a very appealing account of the
semantics of a range of parenthetical expressions, including supplemen-
tal/appositive (non-restrictive) relative clauses, and expressives (e.g. damn
Republican).

In the current paper we explore whether an approach to the analysis of
supplementals and appositions inspired by the work of Potts (2005) can be
expressed in the framework of LFG. We concentrate on ARCs, and focus on
how Potts’ approach can be implemented using a resource sensitive glue
approach to semantic composition (see e.g. Dalrymple, 1999; Asudeh, 2004).
An LFG account of the syntax and semantics of English ARCs is a side effect
of our discussion (no account seems to have been previously proposed).

The paper is structured as follows. Section 2 sets out the basic properties of
English ARCs. Section 3 outlines Potts’ approach. In Section 4 we describe

†We are grateful to the participants at LFG10 in Ottawa, Canada, for insightful and
stimulating discussion, and in particular to Ash Asudeh and Mary Dalrymple. We should
also thank Tracy Holloway-King for detailed comments on a earlier version of the paper.

1Fortmann does not provide an English translation, but it would presumably be along
the line of ‘No plumber being available, Theo has fixed the burst pipe himself’.

44

what seems to be the most direct implementation of Potts’ ideas, building
on the standard LFG analysis of restrictive relative clauses from Dalrymple
(2001). In Section 5 we consider an alternative analysis that makes more
use of the LFG projection architecture. Section 6 provides a conclusion and
notes some open questions.

2 ARCs: The Facts

As is well known, supplemental or appositive relative clauses (ARCs),
such as in (2), are distinguishable from restrictive relative clauses (RRCs),
such as in (3), on a number of grounds. Phonologically, an ARC as in (2)
is often associated with special ’comma’ intonation, which is not typical of
an RRC such as in (3). Semantically, in (3) the relative clause restricts the
denotation of the noun pets, in (2) it does not, instead it simply provides
additional or supplementary information about the pets (hence the terms
’non-restrictive’ or ’supplementary’ relative clause). As a consequence a
restrictive can give rise to a ’contrast set’ of entities that are in the denotation
of the head noun, but do not satisfy the relative clause. Thus there is a
potential antecedent for the others in (3), while there is no antecedent for the
others in (2).

(2) Kim has three pets, which a neighbour looks after.
#The others fend for themselves. [ARC]

(3) Kim has three pets which a neighbour looks after.
The others fend for themselves. [RRC]

English ARCs are subject to a number of surface morphosyntactic re-
strictions, in particular, they must be finite and +WH, as illustrated by the
contrast between (4) and (5)-(6). The corresponding RRCs are acceptable,
witness (7)-(8).

(4) Kim, who Sandy spoke to, will arrive later.
(5) *Kim, for Sandy to speak to, will arrive later.
(6) *Kim, that Sandy spoke to, will arrive later.

(7) A person for Sandy to speak to will arrive later.
(8) A person that Sandy invited will arrive later.

In the remainder of this section, we will establish two key properties of
ARCs in English. These are (i) that they show semantic ‘wide scope’ effects;
and (ii) that they are syntactically integrated, at both c- and f-structure.2

The existence of ’wide scope’ effects with ARCs is relatively well known.
Consider the pair (9a)-(9b). A reading of (9a) is available in which Sandy’s
aunt (also) lives in Sweden, i.e. where the content of the relative clause
(roughly ’she lives in Sweden’) is part of the antecedent of so; but (9b)
provides no information about where Sandy’s mother lives – the ARC is

2See Arnold (2007) and references there for more discussion of the empirical issues.

45

not part of the antecedent of so. Similarly, in (10b) who use the IPA scopes
outside Kim’s belief set (Kim’s belief is about linguists in general), while in
(10a) Kim’s beliefs concern those linguists who use the IPA. In (11b) who use
the IPA similarly falls outside the scope of the question.

(9) a. Kim is visiting her aunt who lives in Sweden, and so is Sandy. [RRC]
b. Kim is visiting her mother, who lives in Sweden, and so is Sandy.

[ARC]

(10) a. Kim believes that linguists who use the IPA are clever. [RRC]
b. Kim believes that linguists, who use the IPA, are clever. [ARC]

(11) a. Are linguists who use the IPA invariably clever people? [RRC]
b. Are linguists, who use the IPA, invariably clever people? [ARC]

The existence of wide scope effects with ARCs is not controversial.3 The
syntactic status of ARCs is more problematic, though we think the emerging
consensus favours analyses where they are fully integrated with few, if any,
structural distinctions between ARCs and RRCs.

As regards c-structure, we believe the evidence that ARCs are integrated
is overwhelming. First, a range of standard constituency tests show that the
ARC and the NP antecedent form a constituent. For example, it is in general
impossible to separate an ARC from its antecedent in a raising context (other
’movement’ phenomena show exactly the same restriction):

(12) [Kim, who Sandy invited], seemed ∆ to leave early.
(13) *Kim seemed, [∆ who Sandy invited], to leave early.

The same conclusion follows from the possibilities of placement for the
possessive ’s when the possessor is modified by an ARC. If we assume
that possessive ’s attaches to the right edge of NP, the following provide
convincing evidence that an ARC and its antecedent together form a NP
(i.e. they are integrated at c-structure). Notice also that the phonological
form of the possessive varies according to the final segment of the ARC, as
one would expect if the ARC is integrated.

(14) Kim – who you hit –’s mother (wants to talk). (/s/)
(15) Kim – who you hid –’s mother (wants to talk). (/z/)
(16) Kim – who you miss –’s mother (wants to talk). (/ız/)
(17) *Kim’s – who you miss – mother (wants to talk).

The issue of f-structure is more subtle, but what evidence there is suggests
that the ARC is also integrated at f-structure.

3But not entirely unproblematic. It is widely assumed that ARCs invariably take wide
scope, but this is not the case. Arnold (2007) discusses circumstances where ARCs appear
to take narrow scope, and Harris and Potts (2010) give convincing examples, bolstered with
some persuasive experimental results, which indicate that ARCs can sometimes take narrow
scope.

46

One argument in favour of this conclusion may be provided by data
concerning conditions on VP ellipsis (VPE) in English. Potsdam (1997),
following Warner (1993), observes that in ellipsis of a VP with an auxiliary
verb, the antecedent VP must not be finite, so (18) is grammatical but (19)
is ungrammatical. This shows that the resolution process that finds the an-
tecedent of an ellided VP needs to check some morphosyntactic properties
(f-structure attributes) of potential antecedents.

(18) You may not be confused, but you really should. [be confused]
(19) *You are not confused, but you really should. [be confused]

The key point for present purposes is how this fact about VPE interacts
with ARCs. VPE is possible both into and out of ARCs and RRCs. The
antecedent of VPE in an ARC can be inside a restrictive as in (20a), and
the antecedent of VPE in a restrictive relative clause can be inside an ARC,
as in (20b). As (20c) additionally shows, both antecedent and VPE can be
within ARCs. Given that VPE is subject to morphosyntactic constraints,
these data provide an important argument that ARCs are contained within
(accessible within) whatever representation is relevant to the statement
of morphosyntactic conditions such as those noted by Potsdam: in LFG
this would be f-structure. The data in (21a)-(21f) support this conclusion
by showing that the nonfiniteness requirement (on VPE) determines the
grammaticality. Notice in particular that the pattern of judgements is the
same regardless of whether the examples involve ARCs or RRCs.

(20) a. Someone that [supports the war]i insulted Kim, who doesn’t ∆i

b. Sandy, who [supports the war]i, insulted someone that doesn’t ∆i

c. Sandy, who [supports the war]i, insulted Kim, who doesn’t ∆i

(21) a. Someone that [may be worried]i told Kim, who really should ∆i

b. *Someone that [is worried]i told Kim, who really should ∆i

c. Sandy, who [may be worried]i, told someone that really should ∆i

d. *Sandy, who [is worried]i, told someone that really should ∆i

e. Sandy, who [may be worried]i, insulted Kim, who really should ∆i

f. *Sandy, who [is worried]i, insulted Kim, who really should ∆i

At very least, these data show that the facts about VPE will be easier to
describe if ARCs are part of f-structure in the same way as RRCs.

A second argument for f-structure integration comes from the fact that
Right-Node Raising operates out of both ARCs and restrictives alike, as
shown in the following examples:

(22) Sam met someone [that buys ∆], and Kim met someone [that sells ∆],
the pretentious garbage that some call Modern Art. RRC

(23) Sam met Sandy, [who buys ∆], and Kim met Leslie, [who sells ∆], the
pretentious garbage that some call Modern Art. ARC

(24) a. Sam met someone [that buys ∆], and Kim met Leslie, [who sells ∆],

47

the pretentious garbage that some call Modern Art. RRC,ARC
b. Sam met Sandy, [who buys ∆], and Kim met someone [that sells ∆],

the pretentious garbage that some call Modern Art. ARC,RRC

Simplifying considerably, one might have a structure for (25) such as
(26). A functional uncertainty statement is associated with the RNR-ed NP
(given here in maximally general form as ↓= (↑GF* GF)). Since ↑ is a set, the
functional uncertainty may be solved differently in each member of the set
(in each conjunct), but in each it will have to be a continuous path through
the f-structure, for example, OBJ RELMOD OBJ in the first conjunct and OBJ
RELMOD COMP OBJ in the second conjunct. Since it appears that these
paths can reach indiscriminately into either ARCs or RRCs, the implication
is that ARCs are integrated into the f-structure just as RRCs are — or at
least, a description of RNR will be easier to formulate if ARCs are part of
f-structure in the same way as RRCs.

(25) Sam met someone that buys∆ and Kim met Leslie, who I think despises
∆, the pretentious garbage that some call Modern Art.

(26)

CProothhhhhhhh
((((((((

CProothhhhhh¯̄
((((((

CProotPPPP
³³³³

Sam met
someone

that buys ∆

and CProotXXXXX
»»»»»

Kim met Leslie,
who I think
despises ∆

NP
↓=(↑ GF* GF)

````̀
ÃÃÃÃÃ

the pretentious
garbage that some
call Modern Art























[

. . .
]

[

. . .
]























3 Potts’ Approach

Potts’ central idea is that the interpretation of an expression involves (at
least) two dimensions: an at-issue dimension of normal truth-conditional
content, and another dimension, which Potts argues to consist of Gricean
conventional implicatures — the ci dimension. It is to this dimension that
supplemental expressions, including ARCs, make their contribution. Since
we assume that one could accept the idea of a special ‘supplemental’ di-
mension of meaning without accepting Potts’ Gricean characterization of
it, we will not pursue the latter topic, interesting though it is. We also focus
only on ARCs, leaving aside other parentheticals and supplementals, but
note that Potts’ own proposal has much wider scope.

Potts’ framework is type-theoretic, so the idea is that every expression is
associated with a pair of meanings, and a pair of types

〈

αa, γc〉, where αa is
an at-issue type, andγc is a ci type (note the superscripts). In what follows we

48



will normally suppress the superscript on at-issue types, to avoid notational
clutter. Semantic composition involves constructing a semantic parsetree,
whose nodes are subject to a number of node-admissibility conditions.
These are most easily understood via an example, such as (27).

(27) Kim, who Sam admires, left.

The basic syntactic structure Potts assumes is along the lines of (28) (mod-
ulo the node labels, e.g. Potts has DP where we have used NP). From the
point of view of the discussion above, the only important points to note
are (a) that the ARC is syntactically integrated, and (b) the presence of
a COMMA feature on the ARC. This syntactic feature provides an inter-
face between the phonology (comma intonation) and the semantics (ci type
content).

(28) S̀
```̀

ÃÃÃÃÃ
NP

PPPP
³³³³

NP

Kim

S
COMMA

XXXX
»»»»

who Sam admires

VP

left

The corresponding semantic tree is along the lines of (29), in which each
node is associated with a pair denoting the at-issue and ci content, and
where we have highlighted ci content by putting it in a box. Notice that
most nodes have no ci content (the box is empty). We have only indicated
the types of expressions where they are non-standard.

(29) 〈

λx.left(x)(kim),
〉

hhhhhhhhhh
((((((((((

〈

kim, comma(λy.dislike(sam, y))〈e,tc〉(kim)
〉

hhhhhh
((((((

〈

kim,
〉

Kim

〈

comma(λy.dislike(sam, y))〈e,tc〉,
〉

XXXX
»»»»

who Sam admires

〈

λx.left(x),
〉

left

Notice that the at-issue content of the whole sentence isλx.le f t(x)(kim), that
is le f t(kim), which would also be the at-issue content of a simple sentence
without a parenthetical (viz. Kim left). Notice likewise that the at-issue
content of Kim, who Sandy admires, is the same as the at-issue content of Kim
(the content of the ARC has disappeared from the at-issue dimension). The
ci content of Kim, who Sandy admires, is produced from the at-issue content of
who Sandy admires and the at-issue content of Kim in a way we will describe
directly. It will turn out to be the ci proposition dislike(sam, kim)tc . Finally,
notice that the ci content of who Sandy admires is empty – at the level of

49

the relative clause, the content is still in the at-issue dimension. Intuitively,
what happens is that the content of the relative clause ‘starts out’ as at-issue
content, but then moves to the ci dimension, and then plays no further part
in the construction of the at-issue content of the main clause. This is in
contrast with the content of Kim, which one might think of as being ’copied’
from the at-issue dimension into the ci dimension, since it plays a role in
the ci content, and also plays a role in the at-issue content of the clause as a
whole (i.e. it is used twice).

The mechanics here involves two admissibility conditions, and the defi-
nition of comma, which is the semantic correlate of the COMMA feature.4

Potts defines comma as in (30) – it is simply a function that changes the
type of its argument from being of type 〈e, t〉 to being of type 〈e, tc〉; it takes
a function from entities to normal propositions, and produces a function
from entities to propositions in the ci dimension.

(30) comma = λX.λx.X(x)〈〈e,t〉,〈e,tc〉〉

In the example above, the denotation of who Sam admires is of type 〈e, t〉, so
comma will apply to it as in (31), giving (32) as the ci content of Kim, who
Sam admires, as promised above.

(31) comma(λy.dislike(sam, y))〈e,tc〉 =

λX.λx.X(x)(λy.dislike(sam, y))〈e,tc〉 =

λx.dislike(sam, x)〈e,tc〉

(32) λx.dislike(sam, x)〈e,tc〉(kim) =
dislike(sam, kim)tc

The first of Potts’ node admissibility conditions is given schematically in
(33a), and exemplified in (33b). This is used for ‘normal’ (at-issue) content.
(The order of daughters in these trees is not relevant; we have used α for
the functor daughter, and β for the argument; more generally, functor and
argument are identified by their types, which we have not bothered to
indicate here).

(33) a.
〈

α(β),
〉

aaa!!!
〈

β,
〉 〈

α,
〉

b.
〈

λx.left(x)(kim),
〉

XXXX
»»»»

〈

kim,
〉

Kim

〈

λx.left(x),
〉

left

In words: the at-issue content of the mother is produced by applying
the at-issue content of the functor argument to the at-issue content of the
argument daughter. The ci content is not touched or affected in any way
(note, in particular, that it is not percolated). Essentially, this is just normal

4Potts assumes a third admissibility condition, which licenses ci content which does not
take any piece of at-issue content as an argument. This is used for the parenthetical part of
examples like Kim (and you won’t believe this) ate fifty eggs. It is not relevant here.

50

semantic composition.

The second is given schematically in (34a) and exemplified in (34b).

(34) a.
〈

β, α(β)
〉

aaa!!!
〈

β,
〉 〈

α,
〉

b.
〈

kim, comma(λy.dislike(sam, y))〈e,tc〉(kim)
〉

hhhhhh
((((((

〈

kim,
〉

Kim

〈

comma(λy.dislike(sam, y))〈e,tc〉,
〉

who Sandy admires

Here the at-issue content of the mother is just that of the argument daugh-
ter, but as well as being ‘passed up’ to the mother, the content of this daugh-
ter is also used as an argument in the ci content of the mother. The functor in
the ci content comes from the at-issue content of the functor daughter. This
admissibility condition requires α to be a function from at-issue content to ci
content: 〈σa, τc〉 for some types σ, τ— in the example in (34b) the function
is of type 〈e, tc〉. Producing this sort of type from a ‘normal’ at-issue type is
of course the semantic effect of the COMMA feature. One way of thinking
of this node admissibility condition is as moving the functor into the ci di-
mension, and ‘copying’ the argument into the ci dimension (the argument
also remains in the at-issue dimension; in resource logic terms, this means
the argument is ‘consumed twice’).

Semantic parsetrees are interpreted according to the following principle
(ignoring intensionality). Let T be a semantic parsetree with the at-issue
term ασa on its root node (that is, a semantic expression α of type σa), and
distinct terms β1

τc , . . . , βn
τc on its nodes, then the interpretation of T is the

tuple in (35).

(35)
〈

[[ασa]]M,g, [[β1
τc]]M,g, . . . , [[βn

τc]]
M,g
〉

That is, a tuple consisting of the interpretation of the at-issue content, and
all the ci content from anywhere in the tree, all interpreted relative to the
same model and variable assignment.

Several features of this approach are worth noting. First, we have seen
there are expressions of type 〈σa, τc〉, that is, functors which take at-issue
content to ci content (ARCs are of this type, and comma is designed to
produce expressions of this type). However, Potts sets up the type theory
so that there are no expressions which work the other way: there are no
expressions of type 〈τc, σa〉. Intuitively, this means there are no expressions
which take ci content and move or copy it into the at-issue dimension. There
is only one way traffic from the at-issue dimension into the ci dimension.

The fact that there are no functions from ci content means that ci content
escapes the scope of all ’normal’ (at-issue) operators, and makes ci content
‘scopeless’. The effect of (35) is to combine ci content at the highest level –
to give it ‘wide scope’. Potts’ approach thus captures what we take to be
two key features of ARCs: syntactic integration and semantic wide scope.

51

Second, notice that the ci dimension is not percolated around the semantic
parsetree. Instead, once an appositive has been formed, it is left where
it is until the interpretation of the whole parsetree assimilates it to the
interpretation of the whole main clause. This further underlines the limited
possibilities for interaction across the dimension: once an appositive has
been formed it is entirely inaccessible to the at-issue content — as though
it was not part of the higher semantic tree. Potts considers and rejects
introducing ci projection and ci storage mechanisms, on the grounds that
the approach adopted makes the conceptual separation of the dimensions
clearer.

The third, and for current purposes the most interesting, feature of the ap-
proach is the potential problem it raises for resources sensitive approaches
to semantic interpretation — as we have seen, some content (e.g. the con-
tent of Kim above) is used twice, once in the at-issue dimension, once in the
ci dimension.

Potts is aware of this issue, and sketches out a possible solution (Potts,
2005, p85ff). He exemplifies it with ‘expressive’ adjectives. The basic idea
is that the semantics of an expressive adjective like damn is such that the
semantics of damn Republican is associated with an at-issue/ci pair like (36),
where the at-issue content is just the normal content of Republican, which
can be used in the normal way (as in, e.g. The Republicans will win), and the
ci content predicates damn of Republican, conveying a negative attitude to
Republicans.

(36)
〈

Republican〈e,t〉, damn(Republican)tc

〉

Producing this is mainly a matter of giving the right semantics to damn in
the lexicon — specifically, giving it a type that yields a ci proposition when
applied to its argument. We need not pursue this here. What matters here
is that issues of resource sensitivity arise with damn as they do with ARCs
above, because the semantics of Republican is used in both at-issue and ci
dimensions.

Potts suggests this issue can be addressed by associating damn with a
resource like (37). He gives a derivation of damn Republican as in (38).5

(37) f ⊸ [f ⊗ pc]

The idea is that damn should consume the resource associated with the con-
tent of a noun like Republican to produce a composite (’tensor’) resource,
consisting of another normal resource (f), and a ci resource (pc), thus dupli-
cating the resource associated with Republican and avoiding the apparent

5Here we use the notation Potts uses, with ‘meaning’ and ‘glue’ expressions linked by
‘;’. Below we will use a different notation, this will typically involve a name (abbreviation)
for a meaning constructor, followed by a meaning expression (a piece of lambda calculus)
and a glue expression separated by a comma, so we would have something like [Republican]
λx.Republican(x) : f in place of (38a).

52

problem of ’double consumption’ of resources.6

(38) a. [Republican] ; f
b. [damn] ; f ⊸ [f ⊗ pc]
c. [damn-Republican] ; f ⊗ pc

Potts does not develop this suggestion beyond this description of a re-
source for expressive adjectives, in particular, he does not consider whether
the approach can be generalized to deal with ci content that is not lexically
based. In what follows, we attempt to remedy this, filling out details, and
applying the approach to the analysis of ARCs.

4 An LFG-Glue Implementation

Assuming ARCs are syntactically integrated like RRCs, then a reasonable
starting point for our analysis is the approach to English RRCs in Dalrymple
(2001, 416ff), which provides an account of the syntax and the semantics
of English RRCs. Since our account makes crucial use of the meaning
constructors that she proposes, we begin by outlining her analysis.

4.1 Restrictive Relatives (Dalrymple, 2001)

Dalrymple’s c-structure is as in (40), where the RRC is adjoined to N’, and
the [rel] meaning constructor is associated with C’.

(39) A man who Sam dislikes left.

(40)

NPXXXX
»»»»

DET

a

N′
PPPP

³³³³
N′

man

CP
↓∈ (↑ ADJ)

PPP³³³

RelP

who

C′

[rel]
PPP

³³³
Sam dislikes

 ’man’

{

[. . .]
}

 v[]

 r[]

φ σ

The core of Dalrymple (2001)’s glue approach to RRCs is the meaning con-
structor [rel] which is associated with the C′ node in RRCs. The meaning
constructor [rel] is defined as in (41), where we use v〈e〉 and r〈t〉 as abbrevi-

6Strictly speaking, the issue is not ’double consumption’, but ’multiple consumption’. In
an example like The damn Republicans, who I despise, will win, the resource associated with
Republicans is involved in three ways: in the main clause, as an argument of damn, and in
the ARC. More complicated examples involving still more resource consumption can easily
be imagined.

53

ations for ((ADJ ∈ ↑)σ VAR) and ((ADJ ∈ ↑)σ RESTR) , and h<e>and g<t>are
(↑RELPRO)σ and ↑σ, respectively.7 Intuitively, [h<e> ⊸ g<t>] corresponds
to the resource contributed by the relative clause, which is a function from
an individual to a proposition. Since [v<e> ⊸ r<t>] ⊸ [v<e> ⊸ r<t>] is
the sort of thing one associates with a nominal modifier, [rel] is a meaning
constructor which combines with a particular kind of (semantically incom-
plete) clause to produce a nominal modifier. In (42) we spell out the glue
side of the definition of [rel] with abbreviations expanded.

(41) [rel] λP.λQ.λX.P(X) ∧ Q(X) : [h<e> ⊸ g<t>] ⊸ [[v<e> ⊸ r<t>] ⊸
[v<e> ⊸ r<t>]]

(42) [(↑ RELPRO)σ ⊸ ↑σ] ⊸
[[((ADJ ∈ ↑)σ VAR) ⊸ ((ADJ ∈ ↑)σ RESTR)] ⊸

[((ADJ ∈ ↑)σ VAR) ⊸ ((ADJ ∈ ↑)σ RESTR)]]

Inside the relative clause itself the relevant meaning constructors are as
shown in (43). The resource (43a) is basically a one-place predicate (i.e. it
will consume an entity to provide a proposition), and the resource associ-
ated with who, (43b), will consume (43a) to produce (43c): who is taken to
add the restriction that the argument in question is human.

(43) a. [Sam-dislikes] λY.dislike(Sam,Y) : h<e> ⊸ g<t>

b. [who] λQ.λX.person(X) ∧Q(X) : [h<e> ⊸ g<t>] ⊸ [h<e> ⊸ g<t>]
c. [who-Sam-dislikes]
λY.person(Y) ∧ dislike(Sam,Y) : h<e> ⊸ g<t>

[rel] will combine with [who-Sam-dislikes] to produce a relative clause
meaning, i.e. a nominal modifier, as noted above.

(44) a. [who-Sam-dislikes] λY.person(Y) ∧ dislike(Sam,Y) : h<e> ⊸ g<t>

b. [rel] λP.λQ.λX.P(X) ∧ Q(X) : [h<e> ⊸ g<t>] ⊸ [[v<e> ⊸ r<t>] ⊸
[v<e> ⊸ r<t>]]

c. [rel-who-Sam-dislikes]
λP.λQ.λX.P(X) ∧Q(X)(λY.person(Y) ∧ dislike(Sam,Y))
λQ.λX.[λY.person(Y) ∧ dislike(Sam,Y)](X) ∧Q(X)
λQ.λX.person(X) ∧ dislike(Sam,X) ∧Q(X) : [v<e> ⊸ r<t>] ⊸ [v<e> ⊸ r<t>]

Finally, the relative clause as a whole consumes the nominal meaning and
produces a (suitably restricted) nominal meaning, as in (47).

(45) [man] λZ.man(Z) : v<e> ⊸ r<t>

(46) [rel-who-Sam-dislikes]
λQ.λX.person(X) ∧ dislike(Sam,X) ∧Q(X) : [v<e> ⊸ r<t>] ⊸ [v<e> ⊸ r<t>]

(47) [man-rel-who-Sam-dislikes]
λQ.λX.person(X) ∧ dislike(Sam,X) ∧Q(X)(λZ.man(Z))
λX.person(X) ∧ dislike(Sam,X) ∧ λZ.man(Z)(X)
λX.person(X) ∧ dislike(Sam,X) ∧man(X) : [v<e> ⊸ r<t>]

7In (41) we give both the complete paths and the abbreviations naming the pieces of
semantic structure, but generally below we give only the abbreviations.

54

Note that Dalrymple (2001) introduces [rel] inside CP as an annotation to
C′. This is not crucial, however, and we can recast the analysis of the N’ man
who Sam dislikes as in (48) — where [rel] is associated with CP — without
any changes being required to either the f-structure or the meaning side of
the meaning constructors. The only changes required are in the associated
glue expression, where small changes to the paths to the σ structures are
necessary. (The reason this is possible is that semantic derivations using glue
are not compositional in the c-structure, of course). The revised definition
of [rel] is show in abbreviated form in (49); (50) presents the glue expression
with abbreviations expanded. This is not crucial to our approach, but it will
open up the possibility of a simplification of the treatment we present in
the next section.

(48)

N’
PPPP

³³³³
N’

man

CP
↓∈ (↑ ADJ)

[rel]
XXXX

»»»»
who Sam dislikes

 ’man’

{

[. . .]
}

σ

 v[]

 r[]

φ

(49) [rel] λP.λQ.λX.P(X) ∧ Q(X) : [h<e> ⊸ g<t>] ⊸ [[v<e> ⊸ r<t>] ⊸
[v<e> ⊸ r<t>]]

(50) [(↓ RELPRO)σ ⊸ ↓σ] ⊸ [[(↑σ VAR) ⊸ (↑σ RESTR)] ⊸ [(↑σ VAR) ⊸
(↑σ RESTR)]]

4.2 ARCs

We now turn to the analysis of ARCs. Alongside [rel] we introduce a mean-
ing constructor [comma] in the semantics. We will assume the modification
of Dalrymple’s approach to English relative clauses made in (48) and (49),
so that these meaning constructors are associated with the CP node corre-
sponding to the relative clause itself, which is syntactically integrated as
sister of an NP head, as in (52). Notice that, apart from adjunction to N’ vs
NP, the only difference between this, and structure given for the restrictive
in (48) is the presence of [comma] in (52).

(51) Kim, who Sam dislikes, left.

55

(52)
NP

PPPP
³³³³

NP
cc##

Kim

CP
↓∈ (↑ ADJ)
[comma]

[rel]
XXXX

»»»»
who Sam dislikes

 ’Kim’

{

[. . .]
}

 v[]

 r[]

φ σ

Recall that Potts uses comma to change the type of the relative who Sam dislikes
so that it becomes a function to ci content (type 〈e, tc〉), and uses the schema
in (34) to ensure that the content of Kim is available in both at-issue and ci
domains. We therefore want [comma] to consume [rel-who-Sam-dislikes]
(the meaning of the relative clause) and produce a resource which will
consume the meaning of Kim (which is of type e), and produce a ’tensor’
meaning constructor which combines the meanings of Kim and the relative
clause (a ci meaning of type tc, with roughly the meaning of Sam dislikes Kim,
formed by applying the relative clause meaning to the meaning of Kim). To
bring this about we define [comma] as in (53).8

(53) [comma] =
λP.λY.[Y, (P(λZ.true))(Y)] :
[[v〈e〉 ⊸ r〈t〉] ⊸ [v〈e〉 ⊸ r〈t〉]] ⊸ [l〈e〉 ⊸ [l〈e〉 ⊗ l〈tc〉]]

Here [v〈e〉 ⊸ r〈t〉] ⊸ [v〈e〉 ⊸ r〈t〉] is the glue expression associated
with a nominal modifier such as a relative clause (a function from noun
meanings to noun meanings), using abbreviations introduced above; and l
abbreviates ↑σ — the σ-projection of the mother NP. On the glue side, then,
[comma] will consume an RRC-like resource and produce a resource whose
glue is of the form l〈e〉 ⊸ [l〈e〉 ⊗ l〈tc〉] — the kind of resource Potts suggested
in (37) above; viz a resource which will itself consume an NP meaning (l〈e〉)
to produce a ‘tensor resource’ consisting of (a) an NP meaning (l〈e〉), and (b)
a propositional resource in the ci domain (l〈tc〉). On the meaning expression
side, [comma] is a function that applies to an RRC meaning expression,
does some type lowering (this is the purpose of the λZ.true expression),
and yields an expression λY.[Y,T], a function from individuals to a pair of
meaning expressions.

The end result will be that we will get a meaning constructor like (54)
for Kim, who Sam dislikes. In what follows, we will spell out the process by

8Our version of [comma] is less general than Potts’. This is because we want to build
directly on the existing treatment of RRCs. Since semantically RRCs are of common noun
modifiers of type 〈〈e, t〉 , 〈e, t〉〉, and ARCs are NP modifiers (type 〈e, t〉), this means we
have to do some type lowering, and we have chosen to build this in to the definition of
[comma]. Potts is not concerned with the relation between RRCs and ARCs, and so ignores
this. Of course, it is not obvious that combining type lowering with the ci to at-issue type
manipulation in this way is the right thing to do. However, we will not pursue the issue
here.

56

which this result is produced, step by step.

(54) [Kim, (person(Kim) ∧ dislikes(Sam,Kim) ∧ true)] : l〈e〉 ⊗ l〈tc〉

The RRC-like resource that [comma] consumes is shown in (55) — this
is just the nominal modifier resource standardly associated with relative
clauses (and produced in turn by [rel]) — it is in fact exactly what we had
for an RRC above, cf. (44c).

(55) [rel-who-Sam-dislikes]
λQ.λX.person(X) ∧ dislike(Sam,X) ∧Q(X) :
[v<e> ⊸ r<t>] ⊸ [v<e> ⊸ r<t>]

The effect of combining [comma] with [rel-who-Sam-dislikes] is shown in
(56). On the glue side, [comma] consumes the resource [rel-who-Sam-dislikes]
to produce a resource which is a function that will take an entity resource
and produce the required tensor resource. The effect of applying the func-
tion [comma] to the (relative clause meaning) argument is spelled out in the
reduction steps in (56), resulting in a lambda function corresponding to a
one-place predicate. This in turn will apply to [Kim] to produce the tensor
resource in (58).

(56) [comma-rel-who-Sam-dislikes]
λP.λY.[Y, (P(λZ.true))(Y)]([rel-who-Sam-dislikes]) : l〈e〉 ⊸ [l〈e〉 ⊗ l〈tc〉]
λY.[Y, ([rel-who-Sam-dislikes](λZ.true))(Y)] : l〈e〉 ⊸ [l〈e〉 ⊗ l〈tc〉]
λY.[Y, (λQ.λX.person(X) ∧ dislikes(Sam,X) ∧Q(X)(λZ.true))(Y)] : l〈e〉 ⊸ [l〈e〉 ⊗ l〈tc〉]
λY.[Y, (λX.person(X) ∧ dislikes(Sam,X) ∧ λZ.true(X))(Y)] : l〈e〉 ⊸ [l〈e〉 ⊗ l〈tc〉]
λY.[Y, (λX.person(X) ∧ dislikes(Sam,X) ∧ true)(Y)] : l〈e〉 ⊸ [l〈e〉 ⊗ l〈tc〉]

(57) [Kim] Kim : l〈e〉

(58) [Kim-comma-rel-who-Sam-dislikes]
λY.[Y, (λX.person(X) ∧ dislikes(Sam,X) ∧ true)(Y)](Kim) : l〈e〉 ⊗ l〈tc〉

[Kim, (λX.person(X) ∧ dislikes(Sam,X) ∧ true)(Kim)] : l〈e〉 ⊗ l〈tc〉

[Kim, (person(Kim) ∧ dislikes(Sam,Kim) ∧ true)] : l〈e〉 ⊗ l〈tc〉

Thus, corresponding to Kim, who Sam dislikes, we have, on the meaning
side, a pair of meanings corresponding to Kim and the proposition that Kim
is a person and Sam dislikes Kim. On the glue side, we have a ‘tensor’
resource consisting of two resources, one in the at-issue dimension, and one
in the ci dimension.

A further step is now required. In order to deal with these resources
separately, we will need a new inference rule, which we will call at-issue-
ci-split (ACiS), to separate the two parts of the tensor resource so that they
may be used separately in subsequent proof steps. The rule is formulated
as in (59); it is inspired by the Context Split rule of Dalrymple (2001, 297).
In (60) we show a proof using it.

(59)
[M,M′] : Re ⊗ Rtc

M : Re M′ : Rtc

ACiS (at-issue-ci-split)

57

(60)
λY.le f t(Y) :
l〈e〉 ⊸ s〈t〉

[Kim, (person(Kim) ∧ dislikes(Sam,Kim) ∧ true)] : l〈e〉 ⊗ l〈tc〉

Kim : l〈e〉 (person(Kim) ∧ dislikes(Sam,Kim) ∧ true) : l〈tc〉

ACiS

le f t(Kim) : s〈t〉 (person(Kim) ∧ dislikes(Sam,Kim) ∧ true) : l〈tc〉

If, following Potts, we assume there are no functions from ci types, then
this will ensure that the content of an ARCs will not be in the scope of
any normal operator. However, we must still find a way of integrating the
at-issue and ci content, since both are relevant for truth conditions. Recall
that Potts (2005) dealt with this by having a principle which collects all ci
content from the semantic parsetree (cf (35)). Our goal now is to find a
resource sensitive way of dealing with this issue.

The simplest approach is to introduce an ‘!’ (’of course’) meaning con-
structor on the root S, which will (iteratively, and non-deterministically)
select ci propositions and combine them with the main clause content. Sup-
pose, for example, that the ’start’ rule for the grammar is associated with
a [root-cp] meaning constructor, as in (61), where [root-cp] is defined as in
(62).

(61) Root→ CP
[root-cp]

(62) [root-cp] λq.λp.(p ∧ q) : ! [Sometc ⊸ [↑σ⊸ ↑σ]]

The idea is that this meaning constructor can be applied as many times as
required to consume resources of type tc, ’and’-ing them together and then
combining them with the main clause content.

The main question is how the relevant ci resources are to be located ,
i.e. how Sometc should be defined in (62). This is straightforward. The
following functional uncertainty expression, which will pick out meaning
resources of type tc associated with any piece of f-structure, will do the job,
giving (64) as the full definition of [root-cp].

(63) (↓ GF∗)σtc

(64) [root-cp] λq.λp.(p ∧ q) : ! [(↓ GF∗)σtc ⊸ [↑σ⊸ ↑σ]]

With respect to the example in hand, one solution for the functional
uncertainty expression will be the resource of type tc associated with Kim,
who Sam dislikes, namely [Kim-comma-rel-who-Sam-dislikes], as in (58).
We can procede as follows. First [root-cp] applies to this, as in (65), the result
can then be applied to the at-issue content to produce the interpretation of
the whole main clause, as in (66).

(65) [root-cp] ([Kim-rel-who-Sam-dislikes])
λq.λp.(p ∧ q)(person(Kim) ∧ dislikes(Sam,Kim) ∧ true)
λp.(p ∧ person(Kim) ∧ dislikes(Sam,Kim) ∧ true) : [↑σ⊸ ↑σ]

(66) [root-cp-Kim-rel-who-Sam-dislikes] ([left-Kim])
λp.(p∧ person(Kim)∧ person(Kim)∧ dislikes(Sam,Kim)∧ true)(le f t(Kim))

58

le f t(Kim) ∧ person(Kim) ∧ person(Kim) ∧ dislikes(Sam,Kim) ∧ true :↑σ

This gives us the desired interpretation for the whole clause, but it deviates
from the strict Pottsian approach, because [root-cp] must clearly be a func-
tion from expressions of type tc, which are otherwise forbidden. However,
since this should be the only such deviation, it is perhaps not problematic.

To summarise: we have shown how a Potts’ style approach to ARCs can
be implemented in a resource sensitive way, based on the standard LFG
analysis of RRCs. Apart from a straightforward, and empirically harmless,
reformulation of Dalrymple’s treatment of RRC’s, we have taken over Potts’
type theory, and introduced a new meaning constructor [comma], and
an inference rule, ACiS, to extract ci content, and a further new meaning
constructor, [root-cp] to integrate it. We have the following two rules for
RRCs and ARCs respectively:

(67) a. N′ → N′ CP
↓∈ (↑ ADJ)

[rel]

b. NP→ NP CP
↓∈ (↑ ADJ)

[rel]
[comma]

The special restrictions on ARCs (viz that they are finite and +WH) can
easily be expressed by adding the annotations (↑TENSE), and (↑WH=c+) to
(67b). Notice that we can use exactly the same rules to describe the internal
structure of ARCs and RRCs.

We can, however, simplify things further. Given that [comma] and [rel]
are associated with the same node in (67b), we can fold them together,
to produce something simpler. If we introduce the meaning constructor
[relarc], as in (68), we can dispense with the trivial (though harmless) true
conjunct used above, and procede in fewer steps.9

[relarc] consumes the one-place predicate [who-Sam-dislikes], in (69), and
produces the tensor resource (70). This in turn consumes [Kim] to produce
the tensor resource corresponding to [Kim, person(Kim) ∧ dislike(Sam,Kim)]
exactly as before, see (72).

(68) [relarc] λP.λZ.[Z,P(Z)] : [h<e> ⊸ g<t>] ⊸ [l〈e〉 ⊸ [l〈e〉 ⊗ l〈tc〉]]
(69) [who-Sam-dislikes]

λY.person(Y) ∧ dislike(Sam,Y) : h<e> ⊸ g<t>

(70) [relarc-who-Sam-dislikes]
λP.λZ.[Z,P(Z)] (λY.person(Y) ∧ dislike(Sam,Y))
λZ.[Z, λY.person(Y) ∧ dislike(Sam,Y)(Z)]
λZ.[Z, person(Z) ∧ dislike(Sam,Z)] : l〈e〉 ⊸ [l〈e〉 ⊗ l〈tc〉]

(71) [Kim] Kim : l〈e〉
(72) [Kim-relarc-who-Sam-dislikes]

9Our main reason for introducing this simplification is to simplify the discussion in the
following section. It is in no way essential. In fact, on may wonder if it is not retrograde
from a theoretical point of view, because it takes us further from Potts’ idea of a very general
statement of a single operation for type manipulation.

59

λZ.[Z, person(Z) ∧ dislike(Sam,Z)](Kim)
[Kim, person(Kim) ∧ dislike(Sam,Kim)] : l〈e〉 ⊗ l〈tc〉

This can be split, and the parts combined with the at-issue content exactly
as before.

With or without this simplification, this is a promising result — it sug-
gests that we can directly incorporate Potts’s approach, and his analyses
of particular phenomena, in a straightforward and simple manner into the
LFG framework. In the following section we consider an alternative which
avoids the multiplication of types characteristic of the Potts’ approach.

5 An Alternative Implementation

The previous section built directly on Potts’ idea of handling supplemen-
tary/appositive meanings by introducing non-standard types, and appara-
tus for manipulating them.

A potential alternative in the LFG architecture would be to use the projec-
tion architecture directly, introducing an additional projection for ci content,
the idea being that the ci content would be distinct only in terms of which
projection it is associated with. This will permit us to dispense with Potts’
non-standard ci types. The architecture which this approach involves is ex-
emplified in (73) — in addition to the σ projection from f-structure to seman-
tic structure (we might now say ‘at-issue’ semantic structure), we introduce
a parallel projection, the ci-projection, from f-structure to ‘ci-structure’. In
this section we outline a formalization of this alternative.

(73)

NP
PPPP

³³³³
NP

cc##
Kim

CP
↓∈ (↑ ADJ)

[relarc]XXXX
»»»»

who Sam dislikes

 ’Kim’

{

[. . .]
}

 []

 []

[]

φ σ

ci

We start from the [relarc] resource introduced above and repeated here as
(74) for convenience. Recall that this consumes the resource corresponding
to a relative clause and produces a function from the meaning of the head
NP to the tensor resource:

(74) [relarc] λP.λZ.[Z,P(Z)] : [h<e> ⊸ g<t>] ⊸ [l〈e〉 ⊸ [l〈e〉 ⊗ l〈tc〉]]

The new idea is that the ci meaning should be associated with a separate
projection, hence we replace (74) by (75): (76) spells out the paths to the
f-structure in full.

(75) [relarc] λP.λZ.[Z,P(Z)] : [h<e> ⊸ g<t>] ⊸ [l〈e〉 ⊸ [l〈e〉 ⊗ ↑ci]]

60

(76) [relarc] λP.λZ.[Z,P(Z)] : [(↓ RELPRO)σ ⊸ ↓σ] ⊸ [↑σ⊸ [↑σ ⊗ ↑ci]]

Careful comparison of (75) with (74) will reveal exactly one difference —
where in the former, the second part of the tensor resource is an resource
of type tc, in the latter it is a resource associated with the ci projection, ↑ci.
We have not indicated its type, but it is the standard type t. This, with
some obvious and straightforwardly related modifications, is almost the
only thing we need to change to implement the approach in the projection
architecture.

The derivation proceeds as before, only the final result is different. The
newly defined meaning constructor [relarc] consumes the meaning of who
Sam dislikes to produce the meaning of an ARC as shown in (79). The
resulting meaning constructor is a function from an NP meaning (that of
the host NP of the relative clause) to a tensor resource corresponding to this
NP meaning and a (propositional) meaning in the ci projection.

(77) [relarc] λP.λZ.[Z,P(Z)] : [h<e> ⊸ g<t>] ⊸ [l〈e〉 ⊸ [l〈e〉 ⊗ ↑ci]]
(78) [who-Sam-dislikes]

λY.person(Y) ∧ dislike(Sam,Y) : h<e> ⊸ g<t>

(79) [relarc-who-Sam-dislikes]
λP.λZ.[Z,P(Z)] (λY.person(Y) ∧ dislike(Sam,Y))
λZ.[Z, λY.person(Y) ∧ dislike(Sam,Y)(Z)]
λZ.[Z, person(Z) ∧ dislike(Sam,Z)] : l〈e〉 ⊸ [l〈e〉 ⊗ ↑ci]

(80) [Kim] Kim : l〈e〉
(81) [Kim-relarc-who-Sam-dislikes]

λZ.[Z, person(Z) ∧ dislike(Sam,Z)](Kim)
[Kim, person(Kim) ∧ dislike(Sam,Kim)] : l〈e〉 ⊗ ↑ci

As before, we need to split the tensor resource, so that the resource associ-
ated with Kim can be consumed separately by composition steps accessing
resources in σ structure. The reformulation of the splitting rule is straight-
forward. The resources we want to split are now characterised by the pro-
jection they are associated with, rather than their type (we have changed
the name of the rule accordingly):

(82)
[M,M′] : Rσ ⊗ Rci

M : Rσ M′ : Rci

SCiS (sigma-ci-split)

We also need to be able to re-integrate content from σ- and ci-projections.
The most straightforward approach involves a trivial reformulation of the
[root-cp] meaning constructor: what we now want is that [root-cp] picks
up resources of type t associated with the ci-projection of various pieces of
f-structure, and ’and’s them together with the content of the σ projection:

(83) [root-cp] λq.λp.(p ∧ q) : ! [(↓ GF∗)cit ⊸ [↑σ⊸ ↑σ]]

This is a straightforward re-formulation of the definition we gave in the
previous section, and we will not repeat the discussion.10

10 To ensure that ci content does not appear in the scope of other operators, we must also

61

However, once we have dispensed with the need to associate ci content
with Potts’ non-standard types, there are other possibilities. In particular,
we can avoid the use of the ‘!’ ‘of course’ meaning constructor. We will
briefly outline how.

To begin with, we will introduce the abbreviation ↑Rσ to designate the
σ-projection of the root f-structure. It can be defined by the inside-out func-
tional uncertainty expression (84), in which the off-path constraint ensures
that the solution to the functional uncertainty statement is not the value of
any attribute.11

(84)
(

GF
¬ ←

GF∗ ↑
)

σ

Now suppose that instead of being of type t, as we have assumed, ci
resources are of type 〈t, t〉: specifically, functions from the σ projection of
the root f-structure to the σ projection of the root f-structure (i.e. from ↑Rσ

to ↑Rσ).

The general form of a ci meaning constructor would be (85), where CI

is the content specific to the particular construction. So, for Kim, who Sam
dislikes it might be as in (86).

(85) λp.(p ∧ CI) :↑Rσ⊸ ↑Rσ

(86) [Kim-relarc-who-Sam-dislikes]
λp.(p ∧ person(Kim) ∧ dislike(Sam,Kim)) :↑Rσ⊸ ↑Rσ

Since the ordinary (at-issue) meaning associated with the root f-structure of
Kim, who Sam dislikes, left is:

(87) [left-Kim] le f t(Kim) :↑Rσ

The ‘full-interpretation’, involving reintegration of the ci content, will be
obtained by applying each ci meaning constructor to the normal at-issue
meaning constructor associated with the root f-structure:

(88) [Kim-relarc-who-Sam-dislikes]
λp.(p ∧ person(Kim) ∧ dislike(Sam,Kim)) :↑Rσ⊸ ↑Rσ

(89) [Kim-relarc-who-Sam-dislikes] ([left-Kim])
λp.(p ∧ person(Kim) ∧ dislike(Sam,Kim))(le f t(Kim))
le f t(Kim) ∧ person(Kim) ∧ dislike(Sam,Kim) :↑Rσ

stipulate that no ordinary meaning constructor (i.e. other than [root-cp]) is permitted to
access the ci-projection.

11We could have used this idea of directly accessing the root f-structure with the Pottsian
approach we considered in Section 4.2. If we have b., rather than a., as the glue expression
associated with [comma], then the glue expression for [Kim-comma-rel-who-Sam-dislikes]
will be [l〈e〉 ⊗ ↑Rσ], and the ci content will be directly associated with the root f-structure.
Nothing else would need to change.

a. [[v〈e〉 ⊸ r〈t〉] ⊸ [v〈e〉 ⊸ r〈t〉]] ⊸ [l〈e〉 ⊸ [l〈e〉 ⊗ l〈tc〉]]
b. [[v〈e〉 ⊸ r〈t〉] ⊸ [v〈e〉 ⊸ r〈t〉]] ⊸ [l〈e〉 ⊸ [l〈e〉 ⊗ ↑Rσ]]

We will not pursue this here, because associating all ci content with the syntactic root is a
departure from Potts’ approach. It is not clear if it would have empirical consequences.

62

This resource is available both as the final interpretation of the whole clause,
or as input to be consumed by any other ci resources that may exist.

6 Conclusion and Further Work

Potts’ approach provides an interesting account of the semantics of inter
alia supplementals (including ARCs) and expressives by introducing addi-
tional semantic types alongside the normal types used to capture at-issue
content. We have explored how the central insights of this approach can be
expressed within the LFG formalism. We have suggested two ways: one
more or less directly encodes Potts idea, including his non-standard types.
Our contribution here has been to fill out Potts’ sketch of how his approach
could be made compatible with a resource sensitive approach, and show
that the idea is workable. We have also suggested an alternative which
uses only standard types, and which exploits the projection architecture of
LFG. We leave open the question whether there is any empirical basis for
favouring one approach over the other.

References

Doug Arnold. Non-Restrictive relatives are not orphans. Journal of Linguis-
tics, 43(2):272–309, 2007.

Ash Asudeh. Resumption as Resource Management. PhD thesis, Stanford
University, 2004.

Miriam Butt, Tracy Holloway King, Marı́a-Eugenia Niño, and Frédérique
Segond. A Grammar Writer’s Cookbook. CSLI Pubs., Stanford, CA, 1999.

Mary Dalrymple, editor. Semantics and Syntax in Lexical Functional Grammar:
The Resource Logic Approach. The MIT Press, Cambridge, MA, 1999.

Mary Dalrymple. Lexical Functional Grammar, volume 34 of Syntax and
Semantics. Academic Press, New York, 2001.

Christian Fortmann. On Parentheticals (in German). In Miriam Butt and
Tracy Holloway King, editors, The Proceedings of the LFG ’05 Conference,
Stanford, CA, 2005. CSLI Pubs.

Christian Fortmann. The complement of verba dicendi parentheticals. In
Miriam Butt and Tracy Holloway King, editors, The Proceedings of the LFG
’06 Conference, University of Konstanz, Germany, 2006.

Jesse A. Harris and Christopher Potts. Perspective-shifting with appositives
and expressives. Linguistics and Philosophy, 32(6):523–552, 2010.

Eric Potsdam. English verbal morphology and VP ellipsis. In Proceedings
of the 27th Meeting of the North East Linguistic Society, pages 353–368,
Amherst, Mass, 1997. GLSA, University of Massachusetts at Amherst.

Christopher Potts. The Logic of Conventional Implicatures. Oxford University
Press, Oxford, 2005.

Anthony R. Warner. English Auxiliaries: Structure and History. Cambridge
University Press, Cambridge, 1993.

63

	Doug Arnold and Louisa Sadler: Pottsian LFG

