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THE INTERSECTION OF PAST AND FUTURE FOR
MULTIVARIATE STATIONARY PROCESSES

AKIHIKO INOUE, YUKIO KASAHARA, AND MOHSEN POURAHMADI

ABSTRACT. We consider an intersection of past and future property of mul-
tivariate stationary processes which is the key to deriving various representa-
tion theorems for their linear predictor coefficient matrices. We extend useful
spectral characterizations for this property from univariate processes to mul-
tivariate processes.

1. INTRODUCTION

We write C™*™ for the set of all complex m x n matrices. Let {X (k) : k € Z}
be a C?*!-valued, centered, weakly stationary process, defined on a probability
space (Q, F, P), which we shall simply call a g-variate stationary process. Write
X(k) = (X1(k),...,X,(k))T, and let M be the complex Hilbert space spanned
by all the entries {X;(k) : k € Z, j = 1,...,q} in L*(Q, F, P), which has inner
product (Y7,Y2)y = E[Y1Ys] and norm [|Y||ar := (Y, Y)}Véz. For I C Z such as
{n}, (—oo,n] :=={n,n—1,...}, [n,00) :={n,n+1,...}, and [m,n] :== {m,...,n}
with m < n, we define the closed subspace M f( of M by

M =p{Xj(k):j=1,...,q, k€ T}.

Notice that M[)Ti,n] = M{);} =sp{Xi1(n),..., X4(n)}.
In this paper, we are concerned with the following intersection of past and future
property of a g-variate stationary process { X (k)}:

(IPF) ME JAME, =M~ n=1,23,....

—o0,—1
It is shown in [I1, Theorem 3.1] that a univariate stationary process satisfies (IPF) if
it is purely nondeterministic (PND) (see Section 2 below) and has spectral density
w such that w™! is integrable. We prove a multivariate analog of this sufficient
condition for (IPF). More precisely, we show that a g-variate stationary process
{X (k)} satisfies (IPF) if {X(k)} has maximal rank (see Section 2 below) and has
spectral density w such that w™1! is integrable (see Corollary 3.6 below). We remark
that such a process {X(k)} is PND.

The importance of (IPF) for univariate stationary processes is that it, combined
with von Neumann’s Alternating Projection Theorem (cf. [P, §9.6.3]), allows one
to derive explicit and useful representations of finite-past prediction error variances
([11, 12, IK1]), finite-past predictor coefficients ([IK2]), and partial autocorrelations
or Verblunsky coefficients ([I3, BIK, KB]), of { X (k)}. We can extend this approach
introduced by [I1] to multivariate stationary processes. In so doing, the sufficient
condition for (IPF) stated above plays a crucial role. In our subsequent work,
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2 A. INOUE, Y. KASAHARA, AND M. POURAHMADI

under the (IPF) condition and using an argument which involves the Alternating
Projection Theorem, we extend various known univariate representations for the
finite-past prediction error variances, finite-past predictor coefficients, and partial
autocorrelations to the multivariate setting.

The property (IPF) is closely related to the property

(CND) ME -1 N Mg o) = {0},

called complete nondeterminism by Sarason [S]. Pointing out that the essence of a
spectral characterization of CND processes had been given by Levinson and McK-
ean [LM], Bloomfield et al. [BJH] considered various characterizations of univariate
CND processes. For univariate stationary processes, the equivalence (CND) <
(PND) + (IPF) holds (see [IK2, Theorem 2.3]). For ¢-variate processes, this equiv-
alence is not necessarily true (see Remark 3.2 below). The main theorem of this
paper is the equivalence between (IPF) and (CND) and their spectral character-
izations similar to the univariate ones stated above, under the assumption that
{X(k)} is PND and has maximal rank (see Theorems 3.5 below). We prove the
above sufficient condition for (IPF) that w~! is integrable as a simple corollary of
this theorem. We also show an example of {X (k)} with (IPF) for which w~! is not
integrable, as another corollary of this theorem.

2. PRELIMINARIES

As stated in Section 1, let C™*"™ be the set of all complex m x n matrices, and
I,, the n x n unit matrix. For A € C™*", we denote by AT the transpose of A,
and by A and A* the complex and Hermitian conjugates of A, respectively. Thus
Ar = AT,

Let T be the unit circle in C, i.e., T := {z € C : |z] = 1}. We write o for the
normalized Lebesgue measure df/(2x) on ([—m, 7), B([—m,))), where B([—m, 7))
is the Borel g-algebra of [—m, 7). Thus we have o([—m, 7)) = 1. For p € [1,0), we
write L,(T) for the Lebesgue space of measurable functions f : T — C such that

I flp < oo, where
7T _ 1/p
I i={ [ 1aeatan |

—T

Let Ly*™(T) be the space of C™*"-valued functions on T whose entries belong to
Ly (T).

For p € [1,00), the Hardy class H,(T) on T is the closed subspace of L,(T)
defined by

s

H,(T) := {f €: L,(T): / ™0 f(e)o(dh) =0 form =1,2,... } .

Let H}"*"(T) be the space of C™*"-valued functions on T whose entries belong
to Hy(T). Let D be the unit open disk in C, i.e., D := {z € C : |z] < 1}. For
p € [1,00), we write H,(D) for the Hardy class on D, consisting of holomorphic
functions f on D such that

sup /7r |f(re?)|Po(df) < oco.

ref0,1) J —m



THE INTERSECTION OF PAST AND FUTURE 3

As usual, we identify each function f in Hy,(ID) with its boundary function
f(e?) .= ligl f(re®) o-a.e.

in H,(T) (cf. Rosenblum and Rovnyak [RR]).
A function h in Hy*"(T) is called outer if det h is a C-valued outer function,
that is, det h satisfies

(2.1) log | det h(0)] :/ log | det h(e?)|o(d6)
(cf. Katsnelson and Kirstein [KK, Definition 3.1]).

Let {X (k)} be a g-variate stationary process. If there exists a nonnegative g X g
Hermitian matrix-valued function w on T, satisfying w € L{*Y(T) and

E[X(m)X (n)*] = / e~ M=y (%) a(dh),  n,m €7,
then we call w the spectral density of {X(k)}. We say that {X(k)} has mazimal
rank if

(MR) {X (Kk)} has spectral density w such that det w(e??) > 0 o-a.e.

(see Rozanov [R, pp. 71-72]). A g-variate stationary process {X (k)} is said to be
purely nondeterministic (PND) if

(PND) mnEZM()ioo,n] = {O}

Every PND process {X (k)} has spectral density but it does not necessarily have
maximal rank unlike univariate processes (see [R, Theorem 4.1]). So we combine
the two to define the condition

(A) {X (k)} satisfies both (MR) and (PND).

A necessary and sufficient condition for (A) is that {X (k)} has spectral density w
such that logdetw € L1(T) (see [R, Theorem 6.1]).

Let {X(k)} be a g-variate stationary process satisfying (A), and let w be its
spectral density. Then, the spectral density w of {X(k)} has a decomposition of
the form

(2.2) w(e®) = h(e?)h(e?)* o-ae.

for some outer function h in H$*Y(T), and h is unique up to a constant unitary

factor (see, e.g., [R, Chapter IT] and Helson and Lowdenslager [HL, Theorem 11]).

Lemma 2.1. We assume (A). Then, X;(k), k € Z, j = 1,...,q, are linearly
independent.

Proof. Let h(z) = Y.,~,c¢(n)z", z € D, be the power series expansion of h, where
{c(n)}rLy is a C?*9-valued sequence whose entries {c; j(n)}5%, 4,5 = 1,...,¢,
belong to ¢2. Then, there exists a g-variate stationary process {£(k)}, called the
innovation process of {X (k)}, satisfying E[¢{(n)(m)*] = dp,m I, and
n
X(n)= ), cn—kEk), nez

k=—o0

ME =M n €z,

(_Ooxn],



4 A. INOUE, Y. KASAHARA, AND M. POURAHMADI

where Mf_m] :=5p{¢(k): k<0, j=1,...,q} in L*(, F, P) (see Theorem 4.3
in [R, Chapter II]).
Suppose Y p_, a(k)X(k) = 0 for n,m € Z with m < n and a(k) € C'*4,

k = m,...,n. Let @ be the projection operator from M onto the orthogonal

complement (M()ioom_l])L of M({oom_l]. Then,

0=Q (3 ak)X(k)) = a(n)e(0)§(n).
Since &1(n),...,&;(n) are linearly independent, we have a(n)c(0) = 0. However,
¢(0) is invertible by (2.1), whence a(n) = 0. In the same way, we also obtain
a(n—1) =---=a(m) =0. Thus, X;(k)’s are linearly independent. O

In addition to (2.2), w has a decomposition of the form
(2.3) w(e) = hy(e?)*hy(e?)  o-ae.

for another outer function hy in H§*(T), and hy is also unique up to a constant

unitary factor. In fact, for an outer function g in HJ*Y(T) satisfying w(e??)T =
g(e?)g(e??)* o-a.e., we may take hy = g*. It should be noticed that while we may
take hy = h for the univariate case ¢ = 1, there is no such simple relation between
h and hy for ¢ > 2.

We denote by L(w) the complex Hilbert space consisting of all measurable func-
tions f : T — C'™* with ["_ f(e"®)w(e®)f(e"?)*o(df) < oo, which has inner prod-
uct

(Fahu= [ 1y(e)g(e?) (@0

and norm || | := ( ,f)qli,/z. For k€ Z and j =1,...,q, we define e;(k) € L(w) by
e;(k)(z) = (0,... ,0,27%.0,...,0), zeT,
where z7% is in the j-th coordinate. For an interval I C Z, let L;(w) be the
closed subspace of L(w) spanned by {e;(k) : k € I, j =1,...,q}. By taking I,
as w, we regard L;Xq(T) as the complex Hilbert space L(I,;) with inner product
(f,9)1, = ffﬁ f(e?)g(e?®)*o(df) and norm Ifllz, = (f, f)}q/z, and HQIX”(T) as its
closed subspace.
We put, for p € [1, 00),

Hy*(T) == {f: f € H)*(T)}.

k

Lemma 2.2. We assume (A). Then, for n € Z and outer functions h and hy in
HI*(T) satisfying (2.2) and (2.3), respectively, the following two equalities hold:

(2.4) Li—oom(w) = 2" Hy*U(T) - A7,
(2.5) Lin o) (w) = 27" - Hy**(T) - (hf) .
Proof. We prove only (2.5); one can prove (2.4) in a similar way. Define an antilinear
bijection G : L(w) — Ly*%(T) by G(f) := fhi = fh;tF Since
IGHIT, = I1£r7117, = Wf(ew)hﬁ(ew)* { (@) hy(e)"} o(db) = || fII%,
the map G preserves the norms of f € L(w). Let
CY¥z] :=sple;j(k) : k<0, j=1,...,q}
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be the space of polynomials with coefficients in C'*4. Since h;jr is also an outer func-

tion in Hy*(T), it follows from the Beurling-Lax—Halmos Theorem that C*[z] -
h is dense in H,*Y(T) (cf. [KK, Remark 5.6 and Theorem 5.3]). Moreover,

Lin.y(w) =5p{e;(k) :k>n, j=1,...,q}

and
G(sp{ej(k):k>n, j=1,...,q}) = 2" - C™[2] - h;jr.
Thus,
Lin ooy (w) = G (27 HY*(T)) = 27" - HY¥I(T) - (),
as desired. O

3. THE PAST AND FUTURE
For a g-variate stationary process {X (k)}, the next theorem holds without (A).
Theorem 3.1. A g-variate CND process satisfies (IPF).
Proof. For any g-variate stationary process {X(k)}, we have
(3.1) M()ioo’n] = M({m’mfl] + M[)fn’n]7 m,n € Z, m <n.

For, the inclusion D is trivial, while M()i so,m—1] is closed and M[)fn)n] is finite-
dimensional, whence M()ioo,mq] + M[)n(%n] is also closed (see Halmos [H, Problem
8]), which implies C.

Forn e N, letz € M)iocy_l]ﬂM[)fmoo). Since x € M{w_l], it follows from (3.1)
that x = y + z for some y € M()ioo,—n—l] and z € M[)fm_l]. Since x, z € M[{nvm),
we have

Yy=r—2z€ M({oq_n_l] N M[)fn)oo).
Therefore, if {X(k)} is CND, then y =0orx =z € M[)fnﬁl], so that
ME N MK, MK, ).

Since the converse inclusion D is trivial, {X (k)} satisfies (IPF). O

Remark 3.2. The converse of Theorem 3.1 does not hold without additional assump-
tions. For example, let {Y (k) : k € Z} be a univariate CND stationary process;
the simplest example is a white noise. Then {Y (k)} is PND. Define a two-variate
stationary process {X (k) : k € Z} by X (k) :== (Y(k —1),Y (k). For I C Z, let
MY :=sp{Y (k) : k € I} in L?(Q, F, P). Then, for n,m € Z with n < m, we have

X _ Y X  _ agY X  _ asY
M(foo,n] - M(foo,n]7 M[n,oo) - M[nfl,oo)7 M[n,m] - M[nfl,m]'
Since ﬂnM()ioo,n] = ﬂnM(ono’n] = {0}, {X(k)} is PND. Furthermore, for n > 1,
X X _ Y Y _ Ay _ aX
MZ o g NMMEZ, ooy = M(_ oo )N ML,y ooy = ML,y = M2, s

whence {X (k)} satisfies (IPF). However,
X X _ Y Y _ Y
M o 1) VMg ooy = M(_ o g MMy oy = My # {0},
whence {X (k)} is not CND. Notice that {X (k)} has the degenerate spectral density
o wy(ew) eiewy(eie)
wx (e”) = <6i0,wy(ei9) wy () )

where wy is the spectral density of {Y (k)}.
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We assume (A), and for outer functions h and hy in Hy ?(T) satisfying (2.2)
and (2.3), respectively, we consider the following two conditions:

G2 {7 B 6T {HUD) AT = {0, 0),
(3.3) {ngq(qr) : (h;‘)*l} N {ngq(qr) : h*l} = 1,
For any a € C'*9, we have ahj € H,*Y(T), ah € Hy*%(T) and
a= ahg(hg)_l =ahh™*,
whence the inclusion D in (3.3) always holds.

Let X(k) = [T e ™" Z(df), k € Z, be the spectral representation of {X(k)}
satisfying (A), where Z is the random spectral measure such that

E[Z(A)Z(As)"] = / w(e®o(dd),  Av,As € B([—m, 7).
A1NA;
Define an isometric isomorphism S : L(w) — M by
st= [ fe)z@),  ferw)

Then, S(e;(k)) = X,;(k) for k € Z and j =1,...,q, whence we have
(3.4) S(Li(w)) =M, ICZ.

Lemma 3.3. We assume (A). Then, the following two conditions are equivalent:

(1) (3.2) holds.

Proof. By (3.4), (2) is equivalent to L(_ 0)(w) N L1 o0y (w) = {(0,...,0)}, which,
in turn, is equivalent to (1) by Lemma 2.2. O

Lemma 3.4. We assume (A). Then, the following two conditions are equivalent:

(1) (3.3) holds.

(2) M()ioo)o] ﬂM[OX,OO) = M{)g}.
Proof. We have Loy (w) =sp{e;(0):j =1,...,q} = C'*9. Hence, by (3.4), (2) is
equivalent to L(_s o)(w) N Ljg,c0)(w) = C'*4, which, in turn, is equivalent to (1)
by Lemma 2.2. O

Here is the main theorem of this paper.

Theorem 3.5. We assume (A). Then, the following five conditions are equivalent:

(1) (3.2) holds.
(2) (3.3) holds.
(3) (CND) holds.

X X
(4) MZ o _yNMZ,
(5) (IPF) holds.
Proof. By Lemma 3.3, (1) and (3) are equivalent. By Lemma 3.4, (2) (resp., (5))
implies (4) (resp., (2)). By Theorem 3.1, (3) implies (5). Suppose (4). Then,

ME N Mg C ME MY = M¥

[~n.00)

X X X X _ X
M~ o g N Mg ooy © MZ 1) N Mg ooy = Mg, 13-

= M[)En,q] for some n € N.

T —

n,—1]»
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However, by Lemma 2.1, we have M, ;N Mg, ;= {0}, whence (3). O
The next corollary gives a sufficient condition for (IPF) in terms of the spectral
density.

Corollary 3.6. We assume (MR) and that the spectral density w of {X(k)} sat-
isfies w=1 € LY*Y(T). Then {X(k)} satisfies (IPF).

Proof. Since (w™1);; = Y7 [(h71);;]? for j = 1,...,q, the condition w™! €
L{*9(T) implies h~1 € L{*Y(T). Hence, by [KK, Theorem 3.1] and [RR, Theorem
4.23], h=t € HY*(T), so that

HY*(T)-h™' ¢ H{“U(T).
Similarly, we have (hy)~! € H{*%(T), and
Hy*(T) - (hi) ™" € Hy™(T).

However, H;*%(T) N H;*%(T) = C'*4, whence (3.3). Therefore, by Theorem 3.5,
{X(k)} satisfies (IPF). O

Remark 3.7. A stationary process {X(k)} is said to be minimal if X (0) cannot
be interpolated precisely using all the other values of the process. The condition
w™l € L¥*YT) in Theorem 3.5 is known to be necessary and sufficient for the
minimality of a stationary process. See Section 10 of [R, Chapter II].

The next corollary gives an example of { X (k)} with (IPF) for which w™? is not
integrable (compare [BJH, Proposition 3]).

Corollary 3.8. Let B be an invertible matriz in C?*. Then {X (k)} with spectral
density w(e) = |1+ | BB* satisfies (IPF).

Proof. We can take h = (14 2)'/2B and hy = (1 + 2)*/2B*. Suppose that there
exist f=(f1,..., fq),9=10(91,...,9¢) € H;Xq('ﬂ‘) such that

zflf(h;{)fl =gh™L.
Then, since (h})~'h = €!%/?I, for z = ¢!’ (=7 < 6 < ), we have

2

(3.5) TN} = (o). i=1l..q

From (g;)? € H(T), we get

(3.6) / e {g; (ew)}2 o(df) =0

for m =1,2,..., while, from (f;)? € Hy(T) and (3.5), we see that (3.6) also holds
for m =0,—1,..., whence g; =0 for j =1,...,¢. Thus (3.2) holds. Therefore, by
Theorem 3.5, {X (k)} satisfies (IPF). O
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