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Axiomatic abstract formulations are presented to derive upper bounds on the degeneracy of the ground state in quantum field
models including massless ones. In particular, given is a sufficient condition under which the degeneracy of the ground state of
the perturbed Hamiltonian is less than or equal to the degeneracy of the ground state of the unperturbed one. Applications of the
abstract theory to models in quantum field theory are outlined.

1. Introduction

Let H be a complex Hilbert space with inner product ⟨⋅, ⋅⟩
(complex linear in the right variable) and norm ‖ ⋅ ‖. For a
linear operator 𝐴 on H, we denote its domain by 𝐷(𝐴) and
its spectrum by 𝜎(𝐴).

Let𝐻 be a self-adjoint operator onH andbounded below.
Then, by abstract use of word, we call the infimum of 𝜎(𝐻)

𝐸
0
(𝐻) fl inf 𝜎 (𝐻) (1)

the lowest orminimal energy of𝐻 (this name originally comes
from the context in quantum physics where 𝐻 denotes the
Hamiltonian of a quantum system). If 𝐸

0
(𝐻) is an eigenvalue

of𝐻, then𝐻 is said to have ground state and a nonzero vector
in the eigenspace ker(𝐻 − 𝐸

0
(𝐻)) is called a ground state of

𝐻. In that case, the dimension

𝑚(𝐻) fl dim ker (𝐻 − 𝐸
0
(𝐻)) (2)

of the eigenspace ker(𝐻 − 𝐸
0
(𝐻)) is called the degeneracy or

the multiplicity of the ground state of 𝐻. If 𝑚(𝐻) = 1, then
the ground state is said to be unique. If 𝑚(𝐻) ≥ 2, then the
ground state is said to be degenerate.

As is well known, it has been an important issue to
determine the degeneracy of the ground state of a given
Hamiltonian in quantum physics. For Schrödinger type
Hamiltonians in quantum mechanics with finite degrees of
freedom and massive Bose field Hamiltonians in quantum

field theory, general theorems on the uniqueness of the
ground state and upper bounds on the degeneracy of the
ground state have been established (see, e.g., [1, §XIII.12] and
references in Notes for §XIII.12). For fermion systems, Faris
[2] discussed conditions which ensure the uniqueness of the
ground state. Faris’s ideas and methods have been extended
by Miyao [3, 4] to obtain general criteria on the uniqueness
of the ground state in bosonic quantum field models as well
as fermionic ones.

As for models in which a massless quantum field appears,
estimation of the degeneracy of the ground state is highly
nontrivial, because, in that case, one has to treat an embedded
eigenvalue problem so that the regular perturbation theory
or the min-max principle cannot be used (for a review of
this aspect, see, e.g., [5]). A first breakthrough result on this
problemwas given by Bach et al. [6].They considered amodel
in nonrelativistic quantum electrodynamics and proved that,
under suitable hypotheses, the degeneracy of the ground state
of the total Hamiltonian of the model is less than or equal
to the degeneracy of the ground state of the unperturbed
Hamiltonian [6, Theorem I.1(f)]. The methods used in [6]
to estimate the degeneracy of the ground state have been
generalized by Hiroshima [7] to be applied to a class of
quantum field models whose Hamiltonian is of the following
form:

𝐻(𝑔) = 𝐴 ⊗ 𝐼 + 𝐼 ⊗ 𝑑Γ (𝑆) + 𝑔𝐻int (3)
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acting in the tensor product Hilbert space

F fl h ⊗Fb (𝑊) (4)

of a complex Hilbert space h and the boson Fock space
Fb(𝑊) over a complex Hilbert space 𝑊 (see (80) for the
definition). Here 𝐴 is a self-adjoint operator on h which is
bounded below, 𝐼 denotes identity, 𝑆 is a nonnegative self-
adjoint operator on 𝑊, 𝑑Γ(𝑆) is the second quantization
operator of 𝑆 on Fb(𝑊) (see, e.g., [8, p.302] and [9, §X.7]),
𝑔 ∈ R is a coupling constant, and𝐻int is a symmetric operator
on F which describes an interaction between a Bose field
and a quantum system whose Hilbert space of state vectors
is h. In [7], it is assumed that 𝐻int is relatively bounded with
respect to the unperturbed operator 𝐻(0) fl 𝐴 ⊗ 𝐼 + 𝐼 ⊗

𝑑Γ(𝑆). It is proved in [7] that, under a suitable condition,
𝑚(𝐻(𝑔)) ≤ 𝑐(𝑔)𝑚(𝐻(0)) with 𝑐(𝑔) > 0 being a constant
depending on 𝑔 and, in particular, 𝑚(𝐻(𝑔)) ≤ 𝑚(𝐻(0)) for
all sufficiently small |𝑔| in an abstract framework and in the
case where 𝑊 = ⨁

𝐷
𝐿
2
(R𝑑), the 𝐷-direct sum of 𝐿2(R𝑑)

(𝐷, 𝑑 ∈ N). Moreover, these results were applied to the gen-
eralized spin-boson model [10], the Pauli-Fierz model, and
a model in relativistic quantum electrodynamics with cutoffs
[7].

One of the motivations of the present work comes
from extending results in [7] to the case where 𝐻int is not
necessarily relatively bounded with respect to 𝐻(0). But
we find that, before going on analyzing such models, it is
better to construct an abstract theory on the degeneracy of
ground state with the requirement that it formulates general
aspects independent of concrete models. From this point of
view, we construct in this paper such an abstract theory
in axiomatic manners. Careful investigations and structural
analyses on results on the existence and the degeneracy of
ground statewhich have been established so far (e.g., [6, 7, 10–
12]) make it possible. Applications of the abstract theory to
concrete models will be discussed in a separate paper. We
hope that the abstract theory given in the present paper not
only clarifies general structures behind the theory on the
degeneracy of ground state in [7] but also makes the range
of applications wider, because the abstract results established
in the present paper show what are general independently
of models and what should be proved in each concrete
model.

The present paper is organized as follows. In Section 2, we
consider a bounded below and self-adjoint operator𝐻

0
and a

symmetric operator𝐻
1
on a Hilbert spaceH. The sum𝐻 fl

𝐻
0
+ 𝐻

1
is supposed to be self-adjoint and bounded below.

We formulate a sufficient condition which yields inequality
𝑚(𝐻) ≤ 𝑐𝑚(𝐻

0
) with a constant 𝑐 > 0 being computed

from the given data. In particular, an additional condition
for 𝑐 = 1 is given so that 𝑚(𝐻) ≤ 𝑚(𝐻

0
). In Section 3, we

derive an integral equation for any ground state of𝐻 in terms
of a linear operator 𝐴 on H which has some characteristic
properties (Theorem 11). In Section 4 we state and prove the
main theorem in the present paper (Theorem 12). In the last
section, we give remarks for applications of themain theorem
to concrete models in quantum field theory.

2. Comparison Theorem on Degeneracy of
Ground States

For nonnegative self-adjoint operators 𝐴
0
, 𝐴

1
, . . . , 𝐴

𝑛
on H

(𝑛 = 1, 2, . . .), we write “𝐴
0
⪯ ∑

𝑛

𝑗=1
𝐴
𝑗
” if ⋂𝑛

𝑗=1
𝐷(𝐴

1/2

𝑗
) ⊂

𝐷(𝐴
1/2

0
) and

⟨𝐴
1/2

0
𝜓,𝐴

1/2

0
𝜓⟩ ≤

𝑛

∑
𝑗=1

⟨𝐴
1/2

𝑗
𝜓,𝐴

1/2

𝑗
𝜓⟩ ,

𝜓 ∈

𝑛

⋂
𝑗=1

𝐷(𝐴
1/2

𝑗
) .

(5)

Let 𝐻
0
be a bounded below and self-adjoint operator on

H and let𝐻
1
be a symmetric operator onH such that

𝐻 fl 𝐻
0
+ 𝐻

1 (6)

is self-adjoint and bounded below (𝐷(𝐻) fl 𝐷(𝐻
0
)∩𝐷(𝐻

1
)).

We assume the following.

Hypothesis 1. (i) The operators 𝐻
0
and 𝐻 have ground state

with𝑚(𝐻
0
) < ∞.

(ii) There exists a nonnegative self-adjoint operator 𝐿 on
H such that

𝐼 ⪯ 𝐿 + 𝑃
𝐻0
, (7)

where, for a bounded below self-adjoint operator 𝑇 onH, we
denote by 𝑃

𝑇
the orthogonal projection onto ker(𝑇 − 𝐸

0
(𝑇)):

𝑃
𝑇
H = ker(𝑇 − 𝐸

0
(𝑇)).

A vector 𝜓 ∈ H is said to overlap with a subset 𝐷 ⊂ H if
there exists a vector 𝜂 ∈ 𝐷 such that ⟨𝜓, 𝜂⟩ ̸= 0.

The following theorem, which is a comparison theorem
on𝑚(𝐻) and𝑚(𝐻

0
), andCorollary 2 below aremore abstract

versions of Lemma 3.3 and Corollaries 3.4-3.5 in [7].

Theorem 1. Assume Hypothesis 1 and suppose that there exists
a constant 𝛿 with 0 < 𝛿 < 1 such that

sup
𝜙∈𝐷(𝐿

1/2
)∩𝑃𝐻H,‖𝜙‖=1

󵄩󵄩󵄩󵄩󵄩
𝐿
1/2
𝜙
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛿. (8)

Then,

(i) any 𝜙 ∈ 𝑃
𝐻
H with ‖𝜙‖ = 1 overlaps with 𝑃

𝐻0
H;

(ii) let

𝑚
𝐿 (𝐻) fl dim [𝐷 (𝐿

1/2
) ∩ 𝑃

𝐻
H] ; (9)

then

𝑚
𝐿 (𝐻) ≤

1

1 − 𝛿
𝑚 (𝐻

0
) ; (10)

(iii) if 𝑃
𝐻
H ⊂ 𝐷(𝐿

1/2
) in addition, then

𝑚(𝐻) ≤
1

1 − 𝛿
𝑚 (𝐻

0
) . (11)
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Proof. (i) Let 𝜙 ∈ 𝐷(𝐿
1/2
) ∩ 𝑃

𝐻
H with ‖𝜙‖ = 1. Then, by

Hypothesis 1(ii), we have

1 ≤
󵄩󵄩󵄩󵄩󵄩
𝐿
1/2
𝜙
󵄩󵄩󵄩󵄩󵄩

2

+ ⟨𝜙, 𝑃
𝐻0
𝜙⟩ ≤ 𝛿 + ⟨𝜙, 𝑃

𝐻0
𝜙⟩ . (12)

Hence

1 ≤ (1 − 𝛿)
−1
⟨𝜙, 𝑃

𝐻0
𝜙⟩ . (13)

In particular, ⟨𝜙, 𝑃
𝐻0
𝜙⟩ ̸= 0. Therefore 𝜙 overlaps with 𝑃

𝐻0
H.

(ii) We first show that 𝐷(𝐿
1/2
) ∩ 𝑃

𝐻
H is finite-

dimensional. So suppose that 𝐷(𝐿1/2) ∩ 𝑃
𝐻
H were infinite-

dimensional. Then there is an orthonormal system {𝜙
𝑛
}
∞

𝑛=1

with 𝜙
𝑛
∈ 𝐷(𝐿

1/2
) ∩ 𝑃

𝐻
H, 𝑛 ≥ 1. Taking 𝜙

𝑛
as 𝜙 in (13) and

summing over 𝑛, we obtain∑∞
𝑛=1

⟨𝜙
𝑛
, 𝑃
𝐻0
𝜙
𝑛
⟩ = ∞. But the left

hand side is less than or equal to Tr𝑃
𝐻0

= 𝑚(𝐻
0
) < ∞, where

Trmeans trace. Hence one is led to a contradiction.Therefore
𝐷(𝐿

1/2
)∩𝑃

𝐻
H is finite-dimensional; that is,𝑚

𝐿
(𝐻) < ∞. Let

{𝜙
𝑛
}
𝑚𝐿(𝐻)

𝑛=1
be an orthonormal basis of 𝐷(𝐿1/2) ∩ 𝑃

𝐻
H. Then,

by (13), we have

𝑚
𝐿
(𝐻) ≤

1

1 − 𝛿

𝑚𝐿(𝐻)

∑
𝑛=1

⟨𝜙
𝑛
, 𝑃
𝐻0
𝜙
𝑛
⟩ ≤

1

1 − 𝛿
Tr𝑃

𝐻0

=
1

1 − 𝛿
𝑚 (𝐻

0
) .

(14)

Thus (10) follows.
(iii) This follows from (10).

Corollary 2. Assume Hypothesis 1 and suppose that there
exists a constant 𝛿 such that

0 < 𝛿 <
1

𝑚 (𝐻
0
) + 1

(15)

and (8) holds. Then

𝑚
𝐿
(𝐻) ≤ 𝑚 (𝐻

0
) . (16)

In particular, if 𝑃
𝐻
H ⊂ 𝐷(𝐿

1/2
) in addition, then

𝑚(𝐻) ≤ 𝑚 (𝐻
0
) . (17)

Proof. Condition (15) implies that 0 < 𝛿 < 1. Hence the
conclusion of Theorem 1 holds. Therefore

𝑚
𝐿
(𝐻) ≤

1

1 − 𝛿
𝑚 (𝐻

0
) < 𝑚 (𝐻

0
) + 1, (18)

where, in the second inequality, we have used (15). Since
𝑚
𝐿
(𝐻) and𝑚(𝐻

0
) are natural numbers, (16) follows.

Corollary 3 (uniqueness). Assume Hypothesis 1 with 𝑚(𝐻
0
)

= 1 and suppose that the following (i) and (ii) hold:

(i) 𝑃
𝐻
H ⊂ 𝐷(𝐿

1/2
).

(ii) There exists a constant 𝛿 with 0 < 𝛿 < 1/2 such that
(8) holds.

Then𝑚(𝐻) = 1.

Proof. In the present case, (15) holds with𝑚(𝐻
0
) = 1. Hence

𝑚(𝐻) ≤ 1. Since 𝑚(𝐻) is a natural number, it follows that
𝑚(𝐻) = 1.

In applications to quantum field models, it may be
convenient to consider𝐻 in the form

𝐻
𝑔
fl 𝐻

0
+ 𝑔𝐻

1 (19)

with a constant parameter 𝑔 > 0, as in the case of𝐻(𝑔) given
by (3).

Remark 4. Thecondition𝑔 > 0 is taken so that𝐻
𝑔
is bounded

below in the case where𝐻
1
is not𝐻

0
-bounded but bounded

below. In the case where𝐻
1
is𝐻

0
-bounded, 𝑔 needs not to be

positive, being allowed to be a negative number as well, and,
by the Kato-Rellich theorem,𝐻

𝑔
is self-adjoint and bounded

below for all sufficiently small |𝑔| (𝑔 ∈ R) [7].

Corollary 5. Assume Hypothesis 1 with 𝐻 = 𝐻
𝑔
, 0 < 𝑔 < 𝑎

(𝑎 > 0 is a constant), and suppose that there exists a continuous
function 𝛿 fl 𝛿(𝑔) on [0, 𝑎) such that 𝛿(0) = 0 and

sup
𝜙∈𝐷(𝐿

1/2
)∩𝑃𝐻𝑔

H,‖𝜙‖=1

󵄩󵄩󵄩󵄩󵄩
𝐿
1/2
𝜙
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛿 (𝑔) , 𝑔 ∈ [0, 𝑎) . (20)

Then there exists a constant 𝑔
0
∈ (0, 𝑎) such that, for all 𝑔 ∈

(0, 𝑔
0
), any 𝜙 ∈ 𝑃

𝐻𝑔
H with ‖𝜙‖ = 1 overlaps with 𝑃

𝐻0
H and

𝑚
𝐿
(𝐻

𝑔
) ≤ 𝑚 (𝐻

0
) . (21)

In particular, if 𝑃
𝐻𝑔
H ⊂ 𝐷(𝐿

1/2
) for all 𝑔 ∈ (0, 𝑔

0
) in addition,

then

𝑚(𝐻
𝑔
) ≤ 𝑚 (𝐻

0
) (22)

for all 𝑔 ∈ (0, 𝑔
0
).

Proof. By the continuity of 𝛿(𝑔) in 𝑔 ∈ [0, 𝑎) with 𝛿(0) = 0,
there exists a constant 𝑔

0
∈ (0, 𝑎) such that, for all 𝑔 ∈ [0, 𝑔

0
),

0 ≤ 𝛿 (𝑔) <
1

𝑚 (𝐻
0
) + 1

. (23)

Hence, for each 𝑔 ∈ (0, 𝑔
0
), one can apply Theorem 1 and

Corollary 2 to obtain the desired results.

Remark 6. Condition (20) with 𝑔 = 0 implies that 𝐷(𝐿1/2) ∩
𝑃
𝐻0
H ⊂ ker 𝐿1/2 = ker 𝐿. In some models in quantum field

theory, 𝐿 can be taken in such a way that this property is
satisfied (see Section 5).

3. An Abstract Integral Equation for
Ground States

In applications of Theorem 1, we need to prove (8). In
concrete models in quantum field theory, this has been done
by using operators which have some characteristic relations
to 𝐿 and𝐻

0
. In this section we introduce an abstract version

of such operators.
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Let 𝐴 be a densely defined closed linear operator on H
and

𝐴
0
(𝑡) fl 𝑒

𝑖𝑡𝐻0𝐴𝑒
−𝑖𝑡𝐻0 ,

𝐴 (𝑡) fl 𝑒
𝑖𝑡𝐻
𝐴
0
(−𝑡) 𝑒

−𝑖𝑡𝐻
, 𝑡 ∈ R.

(24)

We assume the following:

(A.1)

(i) For some 𝛼 ∈ (0, 1], 𝐴 is 𝐻𝛼

0
-bounded; that is,

𝐷(𝐻
𝛼

0
) ⊂ 𝐷(𝐴), and there exist constants 𝑎, 𝑏 ≥

0 such that
󵄩󵄩󵄩󵄩𝐴𝜓

󵄩󵄩󵄩󵄩 ≤ 𝑎
󵄩󵄩󵄩󵄩𝐻

𝛼

0
𝜓
󵄩󵄩󵄩󵄩 + 𝑏

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 , 𝜓 ∈ 𝐷 (𝐻

𝛼

0
) . (25)

(ii) There exists a coreD of𝐻𝛼

0
such that

lim
𝑡→∞

𝐴𝑒
𝑖𝑡𝐻0𝜓 = 0, 𝜓 ∈ D. (26)

Remark 7. Under condition (A.1)(i), the functional calculus
of the self-adjoint operator 𝐻

0
gives that, for all 𝜓 ∈ 𝐷(𝐻

𝛼

0
)

and 𝑡 ∈ R, 𝑒𝑖𝑡𝐻0𝜓 ∈ 𝐷(𝐻
𝛼

0
) and𝐻𝛼

0
𝑒
𝑖𝑡𝐻0𝜓 = 𝑒

𝑖𝑡𝐻0𝐻
𝛼

0
𝜓. Hence

𝐷(𝐻
𝛼

0
) ⊂ 𝐷(𝐴

0
(𝑡)) for all 𝑡 ∈ R. In particular, 𝐷(𝐻

0
) ⊂

𝐷(𝐴
0
(𝑡)) for all 𝑡 ∈ R. Since𝐷(𝐻) ⊂ 𝐷(𝐻

0
) and 𝑒−𝑖𝑡𝐻𝐷(𝐻) =

𝐷(𝐻) for all 𝑡 ∈ R, it follows that 𝐷(𝐻) ⊂ 𝐷(𝐴(𝑡)) for all
𝑡 ∈ R. Inwhat follows, we use these facts withoutmentioning.

Lemma 8. Assume (A.1). Then, for all 𝜙 ∈ 𝑃
𝐻
H,

lim
𝑡→∞

𝐴(𝑡)𝜙 = 0.

Proof. Since 𝑒
−𝑖𝑡𝐻

𝜙 = 𝑒
−𝑖𝑡𝐸0(𝐻)𝜙, we have ‖𝐴(𝑡)𝜙‖ =

‖𝐴𝑒
𝑖𝑡𝐻0𝜙‖. By (A.1)(ii), for any 𝜀 > 0, there exists a vector

𝜓
𝜀
∈ D such that

󵄩󵄩󵄩󵄩𝜓𝜀 − 𝜙
󵄩󵄩󵄩󵄩 < 𝜀,

󵄩󵄩󵄩󵄩𝐻
𝛼

0
𝜓
𝜀
− 𝐻

𝛼

0
𝜙
󵄩󵄩󵄩󵄩 < 𝜀.

(27)

Hence
󵄩󵄩󵄩󵄩󵄩
𝐴𝑒

𝑖𝑡𝐻0𝜙
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝐴𝑒

𝑖𝑡𝐻0 (𝜙 − 𝜓
𝜀
)
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐴𝑒

𝑖𝑡𝐻0𝜓
𝜀

󵄩󵄩󵄩󵄩󵄩

≤ 𝑎
󵄩󵄩󵄩󵄩𝐻

𝛼

0
(𝜙 − 𝜓

𝜀
)
󵄩󵄩󵄩󵄩 + 𝑏

󵄩󵄩󵄩󵄩𝜙 − 𝜓𝜀
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐴𝑒

𝑖𝑡𝐻0𝜓
𝜀

󵄩󵄩󵄩󵄩󵄩
< (𝑎 + 𝑏) 𝜀 +

󵄩󵄩󵄩󵄩󵄩
𝐴𝑒

𝑖𝑡𝐻0𝜓
𝜀

󵄩󵄩󵄩󵄩󵄩
.

(28)

Taking the limit 𝑡 → ∞, we have

0 ≤ lim sup
𝑡→∞

󵄩󵄩󵄩󵄩󵄩
𝐴𝑒

𝑖𝑡𝐻0𝜙
󵄩󵄩󵄩󵄩󵄩
≤ (𝑎 + 𝑏) 𝜀. (29)

Then the limit 𝜀 → 0 yields that lim
𝑡→∞

‖𝐴𝑒
𝑖𝑡𝐻0𝜙‖ = 0. Thus

lim
𝑡→∞

‖𝐴(𝑡)𝜙‖ = 0.

To state additional assumptions, we recall the concept of
weak commutator [13]. Let 𝑇 and 𝑆 be densely defined linear
operators onH and letE be a dense subspace inH such that
E ⊂ 𝐷(𝑇)∩𝐷(𝑆)∩𝐷(𝑇

∗
)∩𝐷(𝑆

∗
), where, for a densely defined

linear operator𝐴 onH,𝐴∗ denotes the adjoint of𝐴.Then the

pair (𝑇, 𝑆) is said to haveweak commutator onE if there exists
a linear operator𝐶 onH such thatE ⊂ 𝐷(𝐶) and ⟨𝑇∗𝜓, 𝑆𝜙⟩−
⟨𝑆
∗
𝜓, 𝑇𝜙⟩ = ⟨𝜓, 𝐶𝜙⟩, 𝜓, 𝜙 ∈ E. In this case, the operator 𝐶

restricted to E is written as [𝑇, 𝑆]Ew so that

⟨𝑇
∗
𝜓, 𝑆𝜙⟩ − ⟨𝑆

∗
𝜓, 𝑇𝜙⟩ = ⟨𝜓, [𝑇, 𝑆]

E
w 𝜙⟩ ,

𝜓, 𝜙 ∈ E.
(30)

We call [𝑇, 𝑆]Ew the weak commutator of (𝑇, 𝑆) on E.
We also need the following assumption:

(A.2)

(i) For each 𝑡 ∈ R and 𝑗 = 0, 1, (𝐻
𝑗
, 𝐴

0
(𝑡))

has weak commutator [𝐻
𝑗
, 𝐴

0
(𝑡)]

𝐷(𝐻)

w on𝐷(𝐻).
Moreover, for all 𝜓 ∈ 𝐷(𝐻), [𝐻

1
, 𝐴

0
(𝑡)]

𝐷(𝐻)

w 𝜓 is
strongly continuous in 𝑡.

(ii) For all 𝜓 ∈ 𝐷(𝐻), 𝐴
0
(𝑡)𝜓 is strongly differen-

tiable in 𝑡 and its strong derivative 𝑑𝐴
0
(𝑡)𝜓/𝑑𝑡

is of the form
𝑑𝐴

0
(𝑡) 𝜓

𝑑𝑡
= 𝑖 [𝐻

0
, 𝐴

0 (𝑡)]
𝐷(𝐻)

w 𝜓, 𝑡 ∈ R. (31)

(iii) There exist a 𝜎-finite measure space (𝑀, Σ, 𝜇),
a nonnegative Σ-measurable function 𝑢 on 𝑀

with 0 < 𝑢(𝑘) < ∞ for 𝜇-a.e. 𝑘 ∈ 𝑀, and a linear
operator 𝑆(𝑘) on H (𝑘 ∈ 𝑀) with 𝐷(𝑆(𝑘)) ⊃

𝐷(𝐻) such that the following (a)–(c) hold:
(a) for all𝜓, 𝜒 ∈ 𝐷(𝐻), ∫

𝑀
|⟨𝜒, 𝑆(𝑘)𝜓⟩|𝑑𝜇(𝑘) <

∞ and

⟨𝜒, [𝐻
1
, 𝐴

0
(−𝑡)]

𝐷(𝐻)

w 𝜓⟩

= ∫
𝑀

𝑒
𝑖𝑡𝑢(𝑘)

⟨𝜒, 𝑆 (𝑘) 𝜓⟩ 𝑑𝜇 (𝑘) ;

(32)

(b) for all 𝜙 ∈ 𝑃
𝐻
H, ∫

𝑀
‖𝑆(𝑘)𝜙‖𝑑𝜇(𝑘) < ∞

and ∫
𝑀
‖𝑆(𝑘)𝜙‖/𝑢(𝑘)𝑑𝜇(𝑘) < ∞;

(c) for all 𝜓 ∈ D and 𝜙 ∈ 𝑃
𝐻
H,

∫
∞

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑀

⟨𝜓, 𝑒
𝑖𝑠(𝐻−𝐸0(𝐻)+𝑢(𝑘))𝑆 (𝑘) 𝜙⟩ 𝑑𝜇 (𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑠 < ∞. (33)

Remark 9. Condition (a) in (A.2)(iii) may be regarded as an
abstract form of “sum rules” in quantum mechanics [13]. In
fact, under stronger additional conditions, one can prove (32)
(cf. [13]), where 𝜇 is determined by the spectral measure of
𝐻
0
.
Under condition (A.2), (𝐻 − 𝐸

0
(𝐻) + 𝑢(𝑘))

−1 is bounded
for 𝜇-a.e. 𝑘 ∈ 𝑀 with

󵄩󵄩󵄩󵄩󵄩
(𝐻 − 𝐸

0
(𝐻) + 𝑢 (𝑘))

−1󵄩󵄩󵄩󵄩󵄩
≤

1

𝑢 (𝑘)
, 𝜇-a.e. 𝑘 ∈ 𝑀. (34)

Hence, for all 𝜙 ∈ 𝑃
𝐻
H,

∫
𝑀

󵄩󵄩󵄩󵄩󵄩
(𝐻 − 𝐸

0
(𝐻) + 𝑢 (𝑘))

−1
𝑆 (𝑘) 𝜙

󵄩󵄩󵄩󵄩󵄩
𝑑𝜇 (𝑘)

≤ ∫
𝑀

󵄩󵄩󵄩󵄩𝑆 (𝑘) 𝜙
󵄩󵄩󵄩󵄩

𝑢 (𝑘)
𝑑𝜇 (𝑘) < ∞.

(35)
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It is easy to see that, for all 𝜓 ∈ 𝐷(𝐻), 𝑒𝑖𝑠(𝐻−𝐸0(𝐻))[𝐻
1
,

𝐴
0
(−𝑠)]

𝐷(𝐻)

w 𝜓 is strongly continuous in 𝑠. Hence, for each
𝑡 ∈ R, the strong Riemann integral ∫𝑡

0
𝑒
𝑖𝑠(𝐻−𝐸0(𝐻)) ⋅ [𝐻

1
,

𝐴
0
(−𝑠)]

𝐷(𝐻)

w 𝜓𝑑𝑠 exists.

Lemma 10. Assume (A.1) and (A.2). Then, for all 𝜙 ∈ 𝑃
𝐻
H

and 𝑡 ∈ R,

𝐴 (𝑡) 𝜙 = 𝐴𝜙

+ 𝑖 ∫
𝑡

0

𝑒
𝑖𝑠(𝐻−𝐸0(𝐻)) [𝐻

1
, 𝐴

0 (−𝑠)]
𝐷(𝐻)

w 𝜙𝑑𝑠.
(36)

Moreover, for all 𝜓 ∈ 𝐷(𝐻),

⟨𝜓, 𝐴 (𝑡) 𝜙⟩

= ⟨𝜓, 𝐴𝜙⟩

+ 𝑖 ∫
𝑡

0

𝑑𝑠∫
𝑀

𝑑𝜇 (𝑘) ⟨𝜓, 𝑒
𝑖𝑠(𝐻−𝐸0(𝐻)+𝑢(𝑘))𝑆 (𝑘) 𝜙⟩ .

(37)

Proof. Let 𝜒 ∈ 𝐷(𝐻) and

𝑓 (𝑡) fl ⟨𝜒, 𝐴 (𝑡) 𝜙⟩ = ⟨𝑒
−𝑖𝑡(𝐻−𝐸0(𝐻))𝜒, 𝐴

0 (−𝑡) 𝜙⟩ . (38)

Then it is easy to see that 𝑓(𝑡) is differentiable in 𝑡 with

𝑑𝑓 (𝑡)

𝑑𝑡
= 𝑖 ⟨(𝐻 − 𝐸

0 (𝐻)) 𝑒
−𝑖𝑡𝐻

𝜒, 𝐴
0 (−𝑡) 𝑒

−𝑖𝑡𝐻
𝜙⟩

+ ⟨𝑒
−𝑖𝑡𝐻

𝜒, −𝑖 [𝐻
0
, 𝐴

0
(−𝑡)]

𝐷(𝐻)

w 𝑒
−𝑖𝑡𝐻

𝜙⟩ .

(39)

Using the identity ⟨𝐴
0
(−𝑡)

∗
𝑒
−𝑖𝑡𝐻

𝜒, (𝐻 − 𝐸
0
(𝐻))𝑒

−𝑖𝑡𝐻
𝜙⟩ = 0,

we obtain

𝑑𝑓 (𝑡)

𝑑𝑡
= 𝑖 ⟨𝑒

−𝑖𝑡𝐻
𝜒, [𝐻

1
, 𝐴

0
(−𝑡)]

𝐷(𝐻)

w 𝑒
−𝑖𝑡𝐻

𝜙⟩

= 𝑖 ⟨𝜒, 𝑒
𝑖𝑡(𝐻−𝐸0(𝐻)) [𝐻

1
, 𝐴

0 (−𝑡)]
𝐷(𝐻)

w 𝜙⟩ .

(40)

Hence

𝑓 (𝑡)

= ⟨𝜒, 𝐴𝜙⟩

+ ∫
𝑡

0

𝑖 ⟨𝜒, 𝑒
𝑖𝑠(𝐻−𝐸0(𝐻)) [𝐻

1
, 𝐴

0
(−𝑠)]

𝐷(𝐻)

w 𝜙⟩𝑑𝑠.

(41)

By a property of strong Riemann integral, we have

∫
𝑡

0

𝑖 ⟨𝜒, 𝑒
𝑖𝑠(𝐻−𝐸0(𝐻)) [𝐻

1
, 𝐴

0 (−𝑠)]
𝐷(𝐻)

w 𝜙⟩𝑑𝑠

= ⟨𝜒, 𝑖 ∫
𝑡

0

𝑒
𝑖𝑠(𝐻−𝐸0(𝐻)) [𝐻

1
, 𝐴

0
(−𝑠)]

𝐷(𝐻)

w 𝜙𝑑𝑠⟩ .

(42)

Thus (36) follows. Formula (37) follows from (36) and
(A.2)(iii).

For all 𝜙 ∈ 𝑃
𝐻
H,

∫
𝑀

󵄩󵄩󵄩󵄩󵄩
(𝐻 − 𝐸

0
(𝐻) + 𝑢 (𝑘))

−1
𝑆 (𝑘) 𝜙

󵄩󵄩󵄩󵄩󵄩
𝑑𝜇 (𝑘)

≤ ∫
𝑀

󵄩󵄩󵄩󵄩𝑆 (𝑘) 𝜙
󵄩󵄩󵄩󵄩

𝑢 (𝑘)
𝑑𝜇 (𝑘) < ∞.

(43)

Hence the Bochner integral ∫
𝑀
(𝐻 − 𝐸

0
(𝐻) +

𝑢(𝑘))
−1
𝑆(𝑘)𝜙 𝑑𝜇(𝑘) exists. The main theorem in this

section is as follows.

Theorem 11. Assume (A.1) and (A.2). Then, for all 𝜙 ∈ 𝑃
𝐻
H,

𝐴𝜙 = ∫
𝑀

(𝐻 − 𝐸
0
(𝐻) + 𝑢 (𝑘))

−1
𝑆 (𝑘) 𝜙 𝑑𝜇 (𝑘) . (44)

Proof. Let 𝜓 ∈ D. Then, taking the limit 𝑡 → ∞ in (37) and
using Lemma 8, we obtain

⟨𝜓, 𝐴𝜙⟩

= −𝑖 ∫
∞

0

𝑑𝑠∫
𝑀

𝑑𝜇 (𝑘) ⟨𝜓, 𝑒
𝑖𝑠(𝐻−𝐸0(𝐻)+𝑢(𝑘))𝑆 (𝑘) 𝜙⟩ .

(45)

For all 𝜀 > 0, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
−𝜀𝑠

∫
𝑀

𝑑𝜇 (𝑘) ⟨𝜓, 𝑒
𝑖𝑠(𝐻−𝐸0(𝐻)+𝑢(𝑘))𝑆 (𝑘) 𝜙⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑀

𝑑𝜇 (𝑘) ⟨𝜓, 𝑒
𝑖𝑠(𝐻−𝐸0(𝐻)+𝑢(𝑘))𝑆 (𝑘) 𝜙⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

(46)

By (c) in (A.2)(iii), the right hand side is integrable in
𝑠 ∈ [0,∞). Hence, by the Lebesgue dominated convergence
theorem, we have

⟨𝜓, 𝐴𝜙⟩ = −𝑖 lim
𝜀→0

∫
∞

0

𝑑𝑠𝑒
−𝜀𝑠

∫
𝑀

𝑑𝜇 (𝑘)

⋅ ⟨𝜓, 𝑒
𝑖𝑠(𝐻−𝐸0(𝐻)+𝑢(𝑘))𝑆 (𝑘) 𝜙⟩ .

(47)

Note that

∫
∞

0

𝑑𝑠𝑒
−𝜀𝑠

∫
𝑀

󵄨󵄨󵄨󵄨󵄨
⟨𝜓, 𝑒

𝑖𝑠(𝐻−𝐸0(𝐻)+𝑢(𝑘))𝑆 (𝑘) 𝜙⟩
󵄨󵄨󵄨󵄨󵄨

≤ ∫
∞

0

𝑑𝑠𝑒
−𝜀𝑠

∫
𝑀

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑆 (𝑘) 𝜙

󵄩󵄩󵄩󵄩 𝑑𝜇 (𝑘) < ∞.

(48)

Hence, by Fubini’s theorem, we have

∫
∞

0

𝑑𝑠𝑒
−𝜀𝑠

∫
𝑀

𝑑𝜇 (𝑘) ⟨𝜓, 𝑒
𝑖𝑠(𝐻−𝐸0(𝐻)+𝑢(𝑘))𝑆 (𝑘) 𝜙⟩

= ∫
𝑀

𝑑𝜇 (𝑘)

⋅ ⟨𝜓, 𝑖 (𝐻 − 𝐸
0 (𝐻) + 𝑢 (𝑘) + 𝑖𝜀)

−1
𝑆 (𝑘) 𝜙⟩ .

(49)

Therefore

⟨𝜓, 𝐴𝜙⟩ = lim
𝜀→0

∫
𝑀

𝑑𝜇 (𝑘)

⋅ ⟨𝜓, (𝐻 − 𝐸
0 (𝐻) + 𝑢 (𝑘) + 𝑖𝜀)

−1
𝑆 (𝑘) 𝜙⟩ .

(50)
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It is easy to see that, for 𝜇-a.e. 𝑘,

lim
𝜀→0

⟨𝜓, (𝐻 − 𝐸
0 (𝐻) + 𝑢 (𝑘) + 𝑖𝜀)

−1
𝑆 (𝑘) 𝜙⟩

= ⟨𝜓, (𝐻 − 𝐸
0
(𝐻) + 𝑢 (𝑘))

−1
𝑆 (𝑘) 𝜙⟩ ,

󵄨󵄨󵄨󵄨󵄨
⟨𝜓, (𝐻 − 𝐸

0
(𝐻) + 𝑢 (𝑘) + 𝑖𝜀)

−1
𝑆 (𝑘) 𝜙⟩

󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑆 (𝑘) 𝜙
󵄩󵄩󵄩󵄩

𝑢 (𝑘)
.

(51)

Hence we can apply the Lebesgue dominated convergence
theorem to obtain

⟨𝜓, 𝐴𝜙⟩

= ⟨𝜓, (∫
𝑀

(𝐻 − 𝐸
0 (𝐻) + 𝑢 (𝑘))

−1
𝑆 (𝑘) 𝜙 𝑑𝜇 (𝑘))⟩ .

(52)

Thus (44) holds.

4. Main Theorem

We now state and prove the main theorem in the present
paper. For this purpose, we first rewrite the theory in the
preceding section in a form suitable for applications to
models in quantum field theory.

We assume Hypothesis 1. Let (𝐾, Σ, 𝜇) be a 𝜎-finite
measure space and let 𝜔 be a nonnegative Σ-measurable
function on 𝐾 such that 0 < 𝜔(𝑘) < ∞, 𝜇-a.e. 𝑘 ∈ 𝐾. We
set

𝑋 fl 𝐿
2
(𝐾, 𝑑𝜇) (53)

and, for each 𝑠 ∈ R, introduce a subspace

𝑋
𝑠
fl {𝑓 ∈ 𝑋 | ∫

𝐾

𝜔 (𝑘)
𝑠 󵄨󵄨󵄨󵄨𝑓 (𝑘)

󵄨󵄨󵄨󵄨
2
𝑑𝜇 (𝑘) < ∞} . (54)

Suppose that there exists a family {𝐴(𝑓) | 𝑓 ∈ 𝑋} of
densely defined closed linear operators on H such that, for
all 𝑓 ∈ 𝑋,𝐷(𝐿1/2) ⊂ 𝐷(𝐴(𝑓)) and, for all 𝜓 ∈ 𝐷(𝐿

1/2
),

𝐴 (𝑧𝑓 + 𝑤𝑔)𝜓 = 𝑧
∗
𝐴 (𝑓)𝜓 + 𝑤

∗
𝐴 (𝑔)𝜓,

𝑓, 𝑔 ∈ 𝑋, 𝑧, 𝑤 ∈ C,
(55)

where 𝑧∗ is the complex conjugate of 𝑧 ∈ C. We introduce an
operator:

𝐴
0
(𝑓, 𝑡) fl 𝑒

−𝑖𝑡𝐻0𝐴 (𝑓) 𝑒
𝑖𝑡𝐻0 , 𝑡 ∈ R, 𝑓 ∈ 𝑋. (56)

For the operator 𝐴(𝑓), we assume conditions similar to (A.1)
and (A.2) for 𝐴 in the preceding section.

Hypothesis 2. (i) For some 𝛼 ∈ (0, 1] and 𝛽 ≥ 0, 𝐷(𝐻𝛼

0
) ⊂

𝐷(𝐴(𝑓)), 𝑓 ∈ 𝑋
−𝛽

and for each 𝑓 ∈ 𝑋
−𝛽
, there exist

constants 𝑎
𝑓
, 𝑏
𝑓
≥ 0 such that

󵄩󵄩󵄩󵄩𝐴 (𝑓)𝜓
󵄩󵄩󵄩󵄩 ≤ 𝑎

𝑓

󵄩󵄩󵄩󵄩𝐻
𝛼

0
𝜓
󵄩󵄩󵄩󵄩 + 𝑏𝑓

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 , 𝜓 ∈ 𝐷 (𝐻

𝛼

0
) . (57)

(ii) There exists a coreD of𝐻𝛼

0
such that

lim
𝑡→∞

𝐴 (𝑓) 𝑒
𝑖𝑡𝐻0𝜓 = 0, 𝜓 ∈ D, 𝑓 ∈ 𝑋

−𝛽
. (58)

(iii) There exists a dense subspace 𝑌 ⊂ 𝑋
−𝛽

such that, for
all 𝑡 ∈ R and 𝑓 ∈ 𝑌, (𝐻

0
, 𝐴

0
(𝑓, 𝑡)) has weak commutator on

𝐷(𝐻) and, for all 𝜓 ∈ 𝐷(𝐻), [𝐻
0
, 𝐴

0
(𝑓, 𝑡)]

𝐷(𝐻)

w 𝜓 is strongly
continuous in 𝑡.

(iv) For all 𝜓 ∈ 𝐷(𝐻) and 𝑓 ∈ 𝑌, 𝐴
0
(𝑓, 𝑡)𝜓 is strongly

differentiable in 𝑡 and

𝑑𝐴
0
(𝑓, 𝑡) 𝜓

𝑑𝑡
= 𝑖 [𝐻

0
, 𝐴

0
(𝑓, 𝑡)]

𝐷(𝐻)

w 𝜓, 𝑡 ∈ R. (59)

(v) For all 𝑡 ∈ R, 𝑓 ∈ 𝑌, (𝐻
1
, 𝐴

0
(𝑓, 𝑡)) has weak com-

mutator on 𝐷(𝐻) and, for all 𝜓 ∈ 𝐷(𝐻), [𝐻
1
, 𝐴

0
(𝑓, 𝑡)]

𝐷(𝐻)

w 𝜓

is strongly continuous in 𝑡. Moreover, for 𝜇-a.e. 𝑘 ∈ 𝐾,
there exists a densely defined linear operator 𝑇(𝑘) onH with
𝐷(𝑇(𝑘)

∗
) ∩ 𝐷(𝑇(𝑘)) ⊃ 𝐷(𝐻) such that the following hold:

(a) for all 𝜓, 𝜒 ∈ 𝐷(𝐻) and 𝑓 ∈ 𝑌, ∫
𝐾
|𝑓(𝑘)⟨𝜒,

𝑇(𝑘)𝜓⟩|𝑑𝜇(𝑘) < ∞ and for all 𝑡 ∈ R,

⟨𝜒, [𝐻
1
, 𝐴

0
(𝑓, 𝑡)]

𝐷(𝐻)

w 𝜓⟩

= ∫
𝐾

𝑒
𝑖𝑡𝜔(𝑘)

𝑓 (𝑘)
∗
⟨𝜒, 𝑇 (𝑘) 𝜓⟩ 𝑑𝜇 (𝑘) ;

(60)

(b) for all 𝜙 ∈ 𝑃
𝐻
H and 𝑓 ∈ 𝑌,

∫
𝐾

󵄨󵄨󵄨󵄨𝑓 (𝑘)
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑇 (𝑘) 𝜙

󵄩󵄩󵄩󵄩 𝑑𝜇 (𝑘) < ∞,

∫
𝐾

󵄨󵄨󵄨󵄨𝑓 (𝑘)
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑇 (𝑘) 𝜙
󵄩󵄩󵄩󵄩

𝜔 (𝑘)
𝑑𝜇 (𝑘) < ∞;

(61)

(c) there exists a dense subspace 𝑌
0
⊂ 𝑌 such that, for all

𝜓 ∈ D, 𝑓 ∈ 𝑌
0
, and 𝜙 ∈ 𝑃

𝐻
H,

∫
∞

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐾

𝑓 (𝑘)
∗
⟨𝜓, 𝑒

𝑖𝑠(𝐻−𝐸0(𝐻)+𝜔(𝑘))𝑇 (𝑘) 𝜙⟩ 𝑑𝜇 (𝑘)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

< ∞.

(62)

We need an assumption on a relation between 𝐴(𝑓) and
𝐿.

Hypothesis 3. There exist a complete orthonormal system
(CONS) {𝑒

𝑛
}
∞

𝑛=1
of 𝑋 with 𝑒

𝑛
∈ 𝑌, 𝑛 ∈ N, and a constant

𝜀
0
∈ [0, 1) such that

sup
𝜙∈𝐷(𝐿

1/2
)∩𝑃𝐻H,‖𝜙‖=1

(
󵄩󵄩󵄩󵄩󵄩
𝐿
1/2
𝜙
󵄩󵄩󵄩󵄩󵄩

2

−

∞

∑
𝑛=1

󵄩󵄩󵄩󵄩𝐴 (𝑒
𝑛
) 𝜙

󵄩󵄩󵄩󵄩
2
) ≤ 𝜀

0
. (63)

The main theorem in the present paper is as follows.
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Theorem 12. Assume Hypotheses 1–3. Suppose that there exist
nonnegative functions 𝑓

1
and 𝑓

2
on (𝐾, Σ) such that 𝑓

1
+

𝜔
−1
𝑓
2
∈ 𝑋 with

𝛾 fl
󵄩󵄩󵄩󵄩󵄩
𝑓
1
+ 𝜔

−1
𝑓
2

󵄩󵄩󵄩󵄩󵄩

2

< 1 − 𝜀
0
, (64)

󵄩󵄩󵄩󵄩𝑇 (𝑘)
∗
𝜓
󵄩󵄩󵄩󵄩 ≤ 𝑓

1 (𝑘)
󵄩󵄩󵄩󵄩(𝐻 − 𝐸

0 (𝐻) + 𝜔 (𝑘)) 𝜓
󵄩󵄩󵄩󵄩

+ 𝑓
2
(𝑘)

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 ,

𝜓 ∈ 𝐷 (𝐻) , 𝜇-a.e. 𝑘 ∈ 𝐾.

(65)

Then,
(i) any 𝜙 ∈ 𝑃

𝐻
H with ‖𝜙‖ = 1 overlaps with 𝑃

𝐻0
H;

(ii)

𝑚
𝐿
(𝐻) ≤

1

1 − 𝛾 − 𝜀
0

𝑚(𝐻
0
) , (66)

where𝑚
𝐿
(𝐻) is defned by (9); moreover, if

𝛾 + 𝜀
0
<

1

𝑚 (𝐻
0
) + 1

(67)

in addition, then

𝑚
𝐿
(𝐻) ≤ 𝑚 (𝐻

0
) ; (68)

(iii) suppose that 𝑃
𝐻
H ⊂ 𝐷(𝐿

1/2
) in addition; then

𝑚(𝐻) ≤
1

1 − 𝛾 − 𝜀
0

𝑚(𝐻
0
) ; (69)

in particular, if (67) holds, then

𝑚(𝐻) ≤ 𝑚 (𝐻
0
) ; (70)

(iv) if 𝑃
𝐻
H ⊂ 𝐷(𝐿

1/2
),𝑚(𝐻

0
) = 1, and 𝛾 + 𝜀

0
< 1/2, then

𝑚(𝐻) = 1.

To proveTheorem 12, we need some lemmas.

Lemma 13. Assume Hypothesis 2. Then, for all 𝜙 ∈ 𝑃
𝐻
H and

𝑓 ∈ 𝑌,

𝐴 (𝑓) 𝜙

= ∫
𝐾

𝑓 (𝑘)
∗
(𝐻 − 𝐸

0
(𝐻) + 𝜔 (𝑘))

−1
𝑇 (𝑘) 𝜙 𝑑𝜇 (𝑘) .

(71)

Proof. One can apply Theorem 11 with 𝐴 = 𝐴(𝑓). Then (71)
follows.

Lemma 14. Assume Hypothesis 2. Let 𝜙 ∈ 𝑃
𝐻
H and

∫
𝐾

󵄩󵄩󵄩󵄩󵄩
(𝐻 − 𝐸

0
(𝐻) + 𝜔 (𝑘))

−1
𝑇 (𝑘) 𝜙

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝜇 (𝑘) < ∞. (72)

Then, for any CONS {𝑒
𝑛
}
∞

𝑛=1
of𝑋 with 𝑒

𝑛
∈ 𝑌 (𝑛 ∈ N),

∞

∑
𝑛=1

󵄩󵄩󵄩󵄩𝐴 (𝑒
𝑛
) 𝜙

󵄩󵄩󵄩󵄩
2

= ∫
𝐾

󵄩󵄩󵄩󵄩󵄩
(𝐻 − 𝐸

0
(𝐻) + 𝜔 (𝑘))

−1
𝑇 (𝑘) 𝜙

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝜇 (𝑘) .

(73)

Proof. Define a mapping 𝑇 : 𝑋 → H by

𝑇𝑓 fl ∫
𝐾

𝑓 (𝑘) (𝐻 − 𝐸
0 (𝐻) + 𝜔 (𝑘))

−1
𝑇 (𝑘) 𝜙 𝑑𝜇 (𝑘) ,

𝑓 ∈ 𝑋.

(74)

Then, in quite the same way as in the proof of [12, Lemma
2.6], one can show that 𝑇 is Hilbert-Schmidt and

‖𝑇‖
2

2
= ∫

𝐾

󵄩󵄩󵄩󵄩󵄩
(𝐻 − 𝐸

0
(𝐻) + 𝜔 (𝑘))

−1
𝑇 (𝑘) 𝜙

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝜇 (𝑘) , (75)

where ‖𝑇‖
2
is the Hilbert-Schmidt norm of 𝑇. In general, for

any CONS {𝑓
𝑛
}
∞

𝑛=1
of 𝑋, ‖𝑇‖2

2
= ∑

∞

𝑛=1
‖𝑇𝑓

𝑛
‖
2. The set {𝑒∗

𝑛
}
∞

𝑛=1

also is a CONS of𝑋. By (71), we have𝑇𝑒∗
𝑛
= 𝐴(𝑒

𝑛
)𝜙.Thus (73)

holds.

We are now ready to proveTheorem 12.

Proof of Theorem 12. Let 𝑘 ∈ 𝐾 be such that 0 < 𝜔(𝑘) < ∞.
Then (65) implies that𝑇(𝑘)∗(𝐻−𝐸

0
(𝐻)+𝜔(𝑘))

−1 is bounded
with operator norm

󵄩󵄩󵄩󵄩󵄩
𝑇 (𝑘)

∗
(𝐻 − 𝐸

0
(𝐻) + 𝜔 (𝑘))

−1󵄩󵄩󵄩󵄩󵄩
≤ 𝑓

1
(𝑘) +

𝑓
2
(𝑘)

𝜔 (𝑘)
. (76)

Hence (𝐻 − 𝐸
0
(𝐻) + 𝜔(𝑘))

−1
𝑇(𝑘) is bounded with domain

𝐷(𝑇(𝑘)) and

󵄩󵄩󵄩󵄩󵄩
(𝐻 − 𝐸

0
(𝐻) + 𝜔 (𝑘))

−1
𝑇 (𝑘)

󵄩󵄩󵄩󵄩󵄩
≤ 𝑓

1
(𝑘) +

𝑓
2
(𝑘)

𝜔 (𝑘)
. (77)

Hence, for all 𝜓 ∈ 𝐷(𝐻),

∫
𝐾

󵄩󵄩󵄩󵄩󵄩
(𝐻 − 𝐸

0
(𝐻) + 𝜔 (𝑘))

−1
𝑇 (𝑘) 𝜓

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝜇 (𝑘)

≤ 𝛾
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2
.

(78)

Therefore, by Lemma 14 and Hypothesis 3, we have

󵄩󵄩󵄩󵄩󵄩
𝐿
1/2
𝜙
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛾 + 𝜀
0
, 𝜙 ∈ 𝐷 (𝐿

1/2
) ∩ 𝑃

𝐻
H,

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩 = 1. (79)

Thus, by Theorem 1, we obtain (66). The other parts of
Theorem 12 easily follow from Theorem 1 and Corollaries 2
and 3.

From the purely operator theoretical point of view,
Theorem 12 can be regarded as a comparison theorem on the
degeneracy of ground states in the framework given by the
quintuple (H, 𝐻

0
, 𝐻

1
, 𝐿, {𝐴(𝑓) | 𝑓 ∈ 𝑋}).

5. Remarks for Applications

As for applications of Theorem 12 to quantum field models,
we describe only basic aspects, because full descriptions of
applications need many pages and it may be suitable to
present them in a separate paper.

The Hilbert space H in the abstract theory may have
different concrete realizations depending on quantum field
models. Here we present a unified treatment of various
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models in quantumfield theory, taking asH a generalHilbert
space. This will make less work in applications.

Let𝑊b and𝑊f be complexHilbert spaces.Then the boson
Fock spaceFb(𝑊b) over𝑊b is defined by

Fb (𝑊b) fl
∞

⨁
𝑛=0

𝑛

⨂
s
𝑊b = {Ψ = {Ψ

(𝑛)
}
∞

𝑛=0
| Ψ

(𝑛)

∈

𝑛

⨂
s
𝑊b, 𝑛 ≥ 0, ‖Ψ‖

2 fl
∞

∑
𝑛=0

󵄩󵄩󵄩󵄩󵄩
Ψ
(𝑛)󵄩󵄩󵄩󵄩󵄩

2

< ∞} ,

(80)

where ⨂𝑛

s𝑊b denotes the 𝑛-fold symmetric tensor product
Hilbert space of 𝑊b with convention ⨂

0

s𝑊b fl C. On the
other hand, the fermion Fock spaceFf(𝑊f) over𝑊f is defined
by

Ff (𝑊f) fl
∞

⨁
𝑛=0

𝑛

⨂
as
𝑊f, (81)

where ⨂
𝑛

as𝑊f is the 𝑛-fold antisymmetric tensor product
Hilbert space of𝑊f with convention⨂

0

as𝑊f fl C. The boson-
fermion Fock spaceFBF(𝑊b,𝑊f) over (𝑊b,𝑊f) is defined by

FBF (𝑊b,𝑊f) fl Fb (𝑊b) ⊗Ff (𝑊f) . (82)

This Hilbert space is a Hilbert space for a quantum system in
which a Bose field interacts with a Fermi field.

A general Hilbert space unifying Hilbert spaces for
various quantum field models is given by

H = h ⊗FBF (𝑊b,𝑊f) , (83)

where h is a complex Hilbert space. Indeed, H includes,
as special cases, three types of Hilbert spaces which appear
typically in quantum field theory:

(i) In the case where 𝑊f = {0}, then Ff(𝑊f) = C.
Hence, in this case,H is identified with h ⊗Fb(𝑊b),
which is a Hilbert space for a general quantum system
interacting with a Bose field. In particular, if h = C,
thenH is identified withFb(𝑊b).

(ii) In the case where 𝑊b = {0}, H is identified with
h ⊗ Ff(𝑊f), which is a Hilbert space for a general
quantum system interacting with a Fermi field. In
particular, if h = C, thenH is identified withFf(𝑊f).

(iii) In the case where h = C, H is identified with
FBF(𝑊b,𝑊f).

In this sense, at least for applications to quantum field theory,
the above choice of the Hilbert spaceH is general enough.

Let 𝐴 be a nonnegative self-adjoint operator on h having
ground state with 𝐸

0
(𝐴) = 0 and 𝑚(𝐴) < ∞. In what

follows, # denotes either b or f. Let 𝑆# be a nonnegative
injective self-adjoint operator on 𝑊# and denote by 𝑑Γ#(𝑆#)
the second quantization of 𝑆# on F#(𝑊#). Let 𝐻1 be a
symmetric operator on H. Then the following operator 𝐻
serves as unification of Hamiltonians of various quantum
field models:

𝐻 = 𝐻
0
+ 𝐻

1
, (84)

where

𝐻
0
fl 𝐴 ⊗ 𝐼 ⊗ 𝐼 + 𝐼 ⊗ 𝑑Γb (𝑆b) ⊗ 𝐼 + 𝐼 ⊗ 𝐼 ⊗ 𝑑Γf (𝑆f) , (85)

and𝐻
1
is not necessarily𝐻

0
-bounded.

Since 𝑆# is nonnegative and injective, it follows that
𝑑Γ#(𝑆#) has a unique ground state with zero ground state
energy and

ker 𝑑Γb (𝑆b) = F
(0)

b fl {𝑐Ωb | 𝑐 ∈ C} ,

ker 𝑑Γf (𝑆f) = F
(0)

f fl {𝑐Ωf | 𝑐 ∈ C} ,

(86)

where Ω# fl {1, 0, 0, . . .} is the Fock vacuum in F#(𝑊#).
We denote by 𝑃# the orthogonal projection onto F

(0)

# from
F#(𝑊#).

The operator𝐻
0
has ground state with 𝐸

0
(𝐻

0
) = 0 and

𝑃
𝐻0
H = ker𝐴 ⊗F

(0)

b ⊗F
(0)

f . (87)

We have

𝑃
𝐻0

= 𝑃
𝐴
⊗ 𝑃b ⊗ 𝑃f. (88)

Hence

𝑚(𝐻
0
) = 𝑚 (𝐴) . (89)

We denote by𝑁# the number operator onF#(𝑊#):𝑁# fl
𝑑Γ#(𝐼). The operator

𝑄
𝐴
fl 𝐼 − 𝑃

𝐴 (90)

is the orthogonal projection onto (ker𝐴)⊥ (the orthogonal
complement of ker𝐴). For each 𝜀 > 0, we define an operator
𝐿
𝜀
by

𝐿
𝜀
fl (1 + 𝜀) 𝐼 ⊗ 𝑁b ⊗ 𝐼 + (1 +

1

4𝜀
) 𝐼 ⊗ 𝐼 ⊗ 𝑁f + 𝑄𝐴

⊗ 𝑃b ⊗ 𝑃f.

(91)

Lemma 15. For any 𝜀 > 0,
𝐼 ⪯ 𝐿

𝜀
+ 𝑃

𝐻0
. (92)

Proof. It is easy to see that

𝐼 ⪯ 𝑁
1/2

b + 𝑃b,

𝐼 ⪯ 𝑁
1/2

f + 𝑃f.
(93)

Hence

𝐼 ⪯ 𝐼 ⊗ (𝑁
1/2

b + 𝑃b) ⊗ (𝑁
1/2

f + 𝑃f) . (94)

By this inequality and the fact that 𝑃# ≤ 𝐼 and 𝑄
𝐴
+ 𝑃

𝐴
= 𝐼,

we obtain

𝐼 ⪯ 𝐼 ⊗ 𝑁
1/2

b ⊗ 𝑁
1/2

f + 𝐼 ⊗ 𝑁
1/2

b ⊗ 𝐼 + 𝐼 ⊗ 𝐼 ⊗ 𝑁
1/2

f

+ 𝑄
𝐴
⊗ 𝑃b ⊗ 𝑃f + 𝑃𝐻0 .

(95)

By the functional calculus,

𝐼 ⊗ 𝑁
1/2

b ⊗ 𝑁
1/2

f ⪯ 𝜀𝐼 ⊗ 𝑁b ⊗ 𝐼 +
1

4𝜀
𝐼 ⊗ 𝐼 ⊗ 𝑁f. (96)

Since 𝜎(𝑁#) = {0} ∪ N, it follows that𝑁1/2

# ⪯ 𝑁#. Hence (92)
is obtained.
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In the present framework, the operator 𝐿
𝜀
will be the

operator 𝐿 in Hypothesis 1.

Remark 16. The parameter 𝜀 > 0 in 𝐿
𝜀
is introduced to

maintain the best possibility of (92) when the Hilbert space
H is reduced to h ⊗Fb(𝑊b) (the case where𝑊f = {0} so that
𝑁f = 0 and 𝑃f = 𝐼) or Ff(𝑊f) (the case where 𝑊b = {0} so
that𝑁b = 0 and 𝑃b = 𝐼).

We next describe a candidate for the operator 𝐴(𝑓) in
Section 4. For this purpose, we use an isomorphism between
a separable Hilbert space and an 𝐿2 space. Hence we assume
that 𝑊# is separable. Then, by the multiplication operator
form of the spectral theorem on a self-adjoint operator
[8, Theorem VIII.4], there exist a finite measure space
(𝐾#, Σ#, 𝜇#), a unitary operator 𝑈# : 𝑊# → 𝐿

2
(𝐾#, 𝑑𝜇#), and

a nonnegative function 𝜔# on 𝐾# satisfying 0 < 𝜔#(𝑘) < ∞,
𝜇#-a.e. 𝑘 ∈ 𝐾# so that

𝑈𝑆#𝑈
−1
= 𝜔#, (97)

where the right hand side denotes themultiplication operator
by the function 𝜔# on 𝐿

2
(𝐾#, 𝑑𝜇#). The isomorphism 𝑈#

induces the isomorphism

Γ (𝑈#) : F# (𝑊#) 󳨀→ F# (𝐿
2
(𝐾#, 𝑑𝜇#)) (98)

defined by

Γ (𝑈#) fl
∞

⨁
𝑛=0

𝑛

⨂𝑈# (99)

with⨂0
𝑈# fl 1.

In what follows we freely use the identification of𝑊# and
F#(𝑊#) with 𝐿

2
(𝐾#, 𝑑𝜇#) andF#(𝐿

2
(𝐾#, 𝑑𝜇#)), respectively.

Let

𝐾 fl 𝐾b ∪ 𝐾f (100)

with𝐾b ∩𝐾f fl 0 and let 𝜇 be the measure on𝐾 such that the
restriction of𝜇 to𝐾# is equal to𝜇#. For each element (𝑓

1
, 𝑓
2
) ∈

𝐿
2
(𝐾b, 𝑑𝜇b) ⊕ 𝐿

2
(𝐾f, 𝑑𝜇f), we define a function 𝑓 on𝐾 by

𝑓 (𝑘) fl
{

{

{

𝑓
1 (𝑘) , if 𝑘 ∈ 𝐾b,

𝑓
2 (𝑘) , if 𝑘 ∈ 𝐾f.

(101)

Then it is easy to see that the correspondence (𝑓
1
, 𝑓
2
) 󳨃→ 𝑓

gives an isomorphism between 𝐿2(𝐾b, 𝑑𝜇b) ⊕ 𝐿
2
(𝐾f, 𝑑𝜇f) and

𝐿
2
(𝐾, 𝑑𝜇). In this sense, we write 𝑓 = (𝑓

1
, 𝑓
2
). Below we see

that, in the present case, the Hilbert space 𝑋 in Section 4 is
given by

𝑋 fl 𝐿
2
(𝐾, 𝑑𝜇) . (102)

We freely use the identification of 𝐿2(𝐾b, 𝑑𝜇b) ⊕ 𝐿
2
(𝐾f, 𝑑𝜇f)

with𝑋.
In the present case, we take 𝜔 in Section 4 as follows:

𝜔 (𝑘) fl
{

{

{

𝜔b (𝑘) , if 𝑘 ∈ 𝐾b,

𝜔f (𝑘) , if 𝑘 ∈ 𝐾f.
(103)

We are now ready to describe a candidate for 𝐴(𝑓) in
Section 4. Let 𝑢 ∈ 𝑊b and let 𝑎(𝑢) be the boson annihilation
operator on Fb(𝑊b), which is the densely defined closed
linear operator on Fb(𝑊b) such that its adjoint 𝑎(𝑢)∗ is of
the form

(𝑎 (𝑢)
∗
Ψ)

(0)
= 0,

(𝑎 (𝑢)
∗
Ψ)

(𝑛)
= √𝑛𝑆

𝑛
(𝑢 ⊗ Ψ

(𝑛−1)
) ,

Ψ ∈ 𝐷 (𝑎 (𝑢)
∗
) ,

(104)

where 𝑆
𝑛
is the symmetrization operator on the 𝑛-fold tensor

product⨂𝑛
𝑊b of𝑊b. The following facts are well known:

(a.1) Canonical commutation relations: for all 𝑢, 𝑢󸀠 ∈ 𝑊b,

[𝑎 (𝑢) , 𝑎 (𝑢
󸀠
)
∗

] = ⟨𝑢, 𝑢
󸀠
⟩ ,

[𝑎 (𝑢) , 𝑎 (𝑢
󸀠
)] = 0

(105)

on the subspace

Fb,0 (𝑊b)

fl {Ψ ∈ Fb (𝑊b) | ∃𝑛0 ∈ N, ∀𝑛 ≥ 𝑛
0
, Ψ

(𝑛)
= 0} ,

(106)

where [𝐴, 𝐵] fl 𝐴𝐵 − 𝐵𝐴.
(a.2) For all 𝑢 ∈ 𝑊b, 𝐷(𝑁

1/2

b ) ⊂ 𝐷(𝑎(𝑢)) and ‖𝑎(𝑢)Ψ‖ ≤

‖𝑢‖‖𝑁
1/2

b Ψ‖, Ψ ∈ 𝐷(𝑁
1/2

b ).
(a.3) For all CONS {𝑢

𝑛
}
∞

𝑛=1
of𝑊b,

󵄩󵄩󵄩󵄩󵄩
𝑁
1/2

b Ψ
󵄩󵄩󵄩󵄩󵄩

2

=

∞

∑
𝑛=1

󵄩󵄩󵄩󵄩𝑎 (𝑢𝑛) Ψ
󵄩󵄩󵄩󵄩
2
, Ψ ∈ 𝐷 (𝑁

1/2

b ) . (107)

(a.4) For all 𝑢 ∈ 𝐷(𝑆−1/2b ),𝐷(𝑑Γb(𝑆b)
1/2
) ⊂ 𝐷(𝑎(𝑢)) and

‖𝑎 (𝑢)Ψ‖ ≤
󵄩󵄩󵄩󵄩󵄩
𝑆
−1/2

b 𝑢
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
𝑑Γb (𝑆b)

1/2
Ψ
󵄩󵄩󵄩󵄩󵄩󵄩
,

Ψ ∈ 𝐷(𝑑Γb (𝑆b)
1/2
) .

(108)

(a.5) For all 𝑡 ∈ R and 𝑢 ∈ 𝑊b, 𝑒
𝑖𝑡𝑑Γb(𝑆b)𝑎(𝑢)𝑒

−𝑖𝑡𝑑Γb(𝑆b) =

𝑎(𝑒
𝑖𝑡𝑆b𝑢).

On the other hand, the fermion annihilation operator 𝑏(V)
(V ∈ 𝑊f) onFf(𝑊f) is the everywhere defined bounded linear
operator onFf(𝑊f) such that

(𝑏 (V)∗Ψ)(0) = 0,

(𝑏 (V)∗Ψ)(𝑛) = √𝑛𝐴
𝑛
(V ⊗ Ψ(𝑛−1)) ,

Ψ ∈ Ff (𝑊f) ,

(109)

where 𝐴
𝑛
is the antisymmetrization operator on⨂𝑛

𝑊f. The
following facts are well known:
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(b.1) Canonical anticommutation relations: for all V, V󸀠 ∈

𝑊f,

{𝑏 (V) , 𝑏 (V󸀠)
∗

} = ⟨V, V󸀠⟩ ,

{𝑏 (V) , 𝑏 (V󸀠)} = 0,

(110)

where {𝐴, 𝐵} fl 𝐴𝐵 + 𝐵𝐴.
(b.2) ‖𝑏(V)‖ = ‖𝑏(V)∗‖ = ‖V‖, V ∈ 𝑊f.
(b.3) For all CONS {V

𝑛
}
∞

𝑛=1
of𝑊f,

󵄩󵄩󵄩󵄩󵄩
𝑁
1/2

f Ψ
󵄩󵄩󵄩󵄩󵄩

2

=

∞

∑
𝑛=1

󵄩󵄩󵄩󵄩𝑏 (V𝑛) Ψ
󵄩󵄩󵄩󵄩
2
, Ψ ∈ 𝐷 (𝑁

1/2

f ) . (111)

(b.4) For all 𝑡 ∈ R and V ∈ 𝑊f, 𝑒
𝑖𝑡𝑑Γf(𝑆f)𝑏(V)𝑒−𝑖𝑡𝑑Γf(𝑆f) =

𝑏(𝑒
𝑖𝑡𝑆fV).

In the present case, we see that a candidate for 𝐴(𝑓) in
Section 4 may be the closure of the following operator:

𝐴
𝜀
(𝑓) fl √1 + 𝜀𝐼 ⊗ 𝑎 (𝑓

1
) ⊗ 𝐼 + √1 +

1

4𝜀
𝐼 ⊗ 𝐼

⊗ 𝑏 (𝑓
2
) , 𝑓 = (𝑓

1
, 𝑓
2
) ∈ 𝑋,

(112)

where 𝜀 > 0 is arbitrary. We denote the closure of 𝐴
𝜀
(𝑓)

by the same symbol. The parameter 𝜀 in 𝐴
𝜀
is introduced in

correspondence to 𝐿
𝜀
defined by (91). It is easy to see that

𝐷(𝐿
1/2

𝜀
) = 𝐷 (𝐼 ⊗ 𝑁

1/2

b ⊗ 𝐼) ∩ 𝐷 (𝐼 ⊗ 𝐼 ⊗ 𝑁
1/2

f ) . (113)

Hence𝐷(𝐿1/2
𝜀
) ⊂ 𝐷(𝐴

𝜀
(𝑓)) for all 𝑓 ∈ 𝑋 and (55) holds.

It follows from (a.4) that, for all 𝑓 = (𝑓
1
, 𝑓
2
) ∈ 𝐷(𝑆

−1/2

b ) ⊕

𝑊f,𝐷(𝐻
1/2

0
) ⊂ 𝐷(𝐴

𝜀
(𝑓)) and

󵄩󵄩󵄩󵄩𝐴𝜀
(𝑓)Ψ

󵄩󵄩󵄩󵄩

≤ √1 + 𝜀
󵄩󵄩󵄩󵄩(𝐼 ⊗ 𝑎 (𝑓1) ⊗ 𝐼)Ψ

󵄩󵄩󵄩󵄩

+ √1 +
1

4𝜀

󵄩󵄩󵄩󵄩𝑓2
󵄩󵄩󵄩󵄩 ‖Ψ‖

≤ √1 + 𝜀
󵄩󵄩󵄩󵄩󵄩
𝑆
−1/2

b 𝑓
1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
𝐼 ⊗ 𝑑Γb (𝑆b)

1/2
⊗ 𝐼Ψ

󵄩󵄩󵄩󵄩󵄩󵄩

+ √1 +
1

4𝜀

󵄩󵄩󵄩󵄩𝑓2
󵄩󵄩󵄩󵄩 ‖Ψ‖

≤ √1 + 𝜀
󵄩󵄩󵄩󵄩󵄩
𝑆
−1/2

b 𝑓
1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐻
1/2

0
Ψ
󵄩󵄩󵄩󵄩󵄩
+ √1 +

1

4𝜀

󵄩󵄩󵄩󵄩𝑓2
󵄩󵄩󵄩󵄩 ‖Ψ‖ .

(114)

Hence Hypothesis 2(i) holds with 𝛽 = 1 and 𝛼 = 1/2.
In the present case, we have

𝐴
0
(𝑓, 𝑡) = 𝐴

𝜀
(𝑒
−𝑖𝑡𝜔b𝑓

1
, 𝑒
−𝑖𝑡𝜔f𝑓

2
) ,

𝑓 = (𝑓
1
, 𝑓
2
) ∈ 𝑋, 𝑡 ∈ R,

(115)

where, for notational simplicity, the dependence of 𝐴
0
(𝑓, 𝑡)

on 𝜀 is not explicitly written.
To ensure that Hypothesis 2(ii) holds, we consider an

additional condition:

(S) The self-adjoint operators 𝑆b and 𝑆f are purely abso-
lutely continuous.

For a subspace 𝐷# of𝑊#, we define F#,fin(𝐷) ⊂ F#(𝑊#)
by

F#,fin (𝐷#) fl span {Ω#, 𝑐# (𝑔1)
∗
⋅ ⋅ ⋅ 𝑐# (𝑔𝑛)

∗
Ω# | 𝑛

∈ N, 𝑔
𝑗
∈ 𝐷#, 𝑗 = 1, . . . , 𝑛} ,

(116)

where, for a subset 𝑉 of a vector space, span𝑉 denotes the
subspace algebraically spanned by all the vectors in 𝑉 and
𝑐b(⋅) = 𝑎(⋅), 𝑐f(⋅) = 𝑏(⋅). For a subspace G# of F#(𝑊#), we
denote by h⊗̂Gb⊗̂Gf the algebraic tensor product of h, Gb,
andGf.

Lemma 17. Assume (S). Then, for all Ψ ∈ h⊗̂Fb,fin(𝑊b)⊗̂
Ff ,fin(𝑊f ),

lim
𝑡→±∞

𝐴
𝜀
(𝑓) 𝑒

𝑖𝑡𝐻0Ψ = 0. (117)

Proof. It is sufficient to prove the assertion for vectors Ψ of
the form

Ψ = 𝜓 ⊗ 𝑎 (𝑢
1
)
∗
⋅ ⋅ ⋅ 𝑎 (𝑢

𝑛
)
∗
Ωb ⊗ 𝑏 (V1)

∗
⋅ ⋅ ⋅ 𝑏 (V

𝑚
)
∗
Ωf,

𝜓 ∈ h, 𝑢
𝑗
∈ 𝑊b, Vℓ ∈ 𝑊f, 𝑗 = 1, . . . , 𝑛, ℓ = 1, . . . , 𝑚, 𝑛,𝑚 ∈ N.

(118)

Let 𝑓 = (𝑓
1
, 𝑓
2
) ∈ 𝑋. Then, using (115), (a.1), and (b.1), we

have

𝑒
−𝑖𝑡𝐻0𝐴

𝜀
(𝑓) 𝑒

𝑖𝑡𝐻0Ψ =

𝑛

∑
𝑘=1

⟨𝑒
−𝑖𝑡𝑆b𝑓

1
, 𝑢
𝑘
⟩Ψb,𝑘

+

𝑚

∑
ℓ=1

⟨𝑒
−𝑖𝑡𝑆f𝑓

2
, V
ℓ
⟩Ψf,ℓ,

(119)

where

Ψb,𝑘

fl 𝜓

⊗ 𝑎 (𝑢
1
)
∗
⋅ ⋅ ⋅ 𝑎 (𝑢

𝑘−1
)
∗
𝑎 (𝑢

𝑘+1
)
∗
⋅ ⋅ ⋅ 𝑎 (𝑢

𝑛
)
∗
Ωb

⊗ 𝑏 (V
1
)
∗
⋅ ⋅ ⋅ 𝑏 (V

𝑚
)
∗
Ωf,

Ψf,ℓ

fl (−1)
ℓ−1

𝜓 ⊗ 𝑎 (𝑢
1
)
∗
⋅ ⋅ ⋅ 𝑎 (𝑢

𝑛
)
∗
Ωb

⊗ 𝑏 (V
1
)
∗
⋅ ⋅ ⋅ 𝑏 (V

ℓ−1
)
∗
𝑏 (V

ℓ+1
)
∗
⋅ ⋅ ⋅ 𝑏 (V

𝑚
)
∗
Ωf.

(120)

By assumption (S), lim
𝑡→±∞

⟨𝑒
−𝑖𝑡𝑆b𝑓

1
, 𝑢
𝑘
⟩ =

0 and lim
𝑡→±∞

⟨𝑒
−𝑖𝑡𝑆f𝑓

2
, V
ℓ
⟩ = 0. Hence

lim
𝑡→±∞

𝑒
−𝑖𝑡𝐻0𝐴

𝜀
(𝑓)𝑒

𝑖𝑡𝐻0Ψ = 0. Since 𝑒
−𝑖𝑡𝐻0 is unitary,

(117) follows.

Since𝐷(𝐴)⊗̂Fb,fin(𝐷(𝑆b))⊗̂Ff,fin(𝐷(𝑆f)) is a core of𝐻
1/2

0
,

Lemma 17 implies that Hypothesis 2(ii) holds in the present
case.
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It is well known that, for all 𝑢 ∈ 𝐷(𝑆b) ∩ 𝐷(𝑆
−1/2

b ),
(𝑑Γb(𝑆b), 𝑎(𝑢)) has weak commutator on𝐷(𝑑Γb(𝑆b)) and

[𝑑Γb (𝑆b) , 𝑎 (𝑢)]
𝐷(𝑑Γb(𝑆b))

w = −𝑎 (𝑆b𝑢)

on 𝐷(𝑑Γb (𝑆b)) .
(121)

Also, for all V ∈ 𝐷(𝑆f), (𝑑Γf(𝑆f), 𝑏(V)) has weak commutator
on𝐷(𝑑Γf(𝑆f)) and

[𝑑Γf (𝑆f) , 𝑏 (V)]
𝐷(𝑑Γf(𝑆f))

w = −𝑏 (𝑆fV) . (122)

Hence, by (115), (𝐻
0
, 𝐴

0
(𝑓, 𝑡)) has weak commutator on

𝐷(𝐻
0
) and

[𝐻
0
, 𝐴

0
(𝑓, 𝑡)]

𝐷(𝐻0)

w = −𝐴
𝜀
(𝑒
−𝑖𝑡𝑆b𝑆b𝑓1, 𝑒

−𝑖𝑡𝑆f𝑆f𝑓2)

on 𝐷(𝐻
0
) .

(123)

Lemma 18. Let 𝑓 = (𝑓
1
, 𝑓
2
) ∈ 𝑋 with 𝑓

1
∈ 𝐷(𝑆b) ∩ 𝐷(𝑆

−1/2

b )

and 𝑓
2
∈ 𝐷(𝑆f ). Then, for allΨ ∈ 𝐷(𝐻

0
), [𝐻

0
, 𝐴

0
(𝑓, 𝑡)]

𝐷(𝐻0)

w Ψ

is strongly continuous in 𝑡 ∈ R.

Proof. For notational simplicity, we omit identity 𝐼 in tensor
products of operators (e.g., 𝐼 ⊗ 𝑎(𝑢) ⊗ 𝐼 (𝑢 ∈ 𝑊b) is simply
written as 𝑎(𝑢)). For all 𝑡, 𝑡󸀠 ∈ R and Ψ ∈ 𝐷(𝐻

1/2

0
), we have

by (a.4)

󵄩󵄩󵄩󵄩󵄩󵄩
𝑎 (𝑒

−𝑖𝑡
󸀠
𝑆b𝑆b𝑓1)Ψ − 𝑎 (𝑒

−𝑖𝑡𝑆b𝑆b𝑓1)Ψ
󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝑖𝑡
󸀠
𝑆b𝑆

1/2

b 𝑓
1
− 𝑒

−𝑖𝑡𝑆b𝑆
1/2

b 𝑓
1

󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐻
1/2

0
Ψ
󵄩󵄩󵄩󵄩󵄩
󳨀→ 0

(𝑡
󸀠
󳨀→ 𝑡) .

(124)

Similarly one can show that lim
𝑡
󸀠
→𝑡
𝑏(𝑒

−𝑖𝑡
󸀠
𝑆f𝑆f𝑓2)Ψ =

𝑏(𝑒
−𝑖𝑡𝑆f𝑆f𝑓2)Ψ. Hence 𝐴

𝜀
(𝑒
−𝑖𝑡𝑆b𝑆b𝑓1, 𝑒

−𝑖𝑡𝑆f𝑆f𝑓2)Ψ is strongly
continuous in 𝑡. By this fact and (123), we obtain the desired
result.

Lemma 19. For all Ψ ∈ 𝐷(𝐻
0
) and 𝑓 ∈ 𝑋

−1
∩ 𝑋

2
, 𝐴

0
(𝑓, 𝑡)Ψ

is strongly differentiable in 𝑡 and

𝑑𝐴
0
(𝑓, 𝑡) Ψ

𝑑𝑡
= 𝑖 [𝐻

0
, 𝐴

0
(𝑓, 𝑡)]

𝐷(𝐻0)

w Ψ, 𝑡 ∈ R. (125)

Proof. This follows from (115) and (123).

As for the weak commutator of (𝐻
1
, 𝐴

0
(𝑓, 𝑡)), the follow-

ing form gives unification of some models:

[𝐻
1
, 𝐴

0
(𝑓, 𝑡)]

𝐷(𝐻)

w Ψ

= ∫
𝐾

𝑒
𝑖𝑡𝜔(𝑘)

𝑓 (𝑘)
∗
𝑇 (𝑘)Ψ𝑑𝜇 (𝑘) ,

Ψ ∈ 𝐷 (𝐻) , 𝑓 ∈ [𝐷 (𝜔b) ∩ 𝐷 (𝜔
−1/2

b )] ⊕ 𝐷 (𝜔f) ,

(126)

where 𝑇(𝑘) is a densely defined linear operator onH defined
for 𝜇-a.e. 𝑘 ∈ 𝐾, satisfying𝐷(𝑇(𝑘)) ∩ 𝐷(𝑇(𝑘)∗) ⊃ 𝐷(𝐻) and

∫
𝐾

󵄨󵄨󵄨󵄨𝑓 (𝑘)
󵄨󵄨󵄨󵄨 ‖𝑇 (𝑘)Ψ‖ 𝑑𝜇 (𝑘) < ∞,

∫
𝐾

󵄨󵄨󵄨󵄨𝑓 (𝑘)
󵄨󵄨󵄨󵄨

𝜔 (𝑘)
‖𝑇 (𝑘)Ψ‖ 𝑑𝜇 (𝑘) < ∞.

(127)

Note that one can write

[𝐻
1
, 𝐴

0
(𝑓, 𝑡)]

𝐷(𝐻)

w Ψ

= ∫
𝐾b

𝑒
𝑖𝑡𝜔b(𝑘)𝑓

1
(𝑘)

∗
𝑇
1
(𝑘) Ψ 𝑑𝜇b (𝑘)

+ ∫
𝐾f

𝑒
𝑖𝑡𝜔f(𝑘)𝑓

2 (𝑘)
∗
𝑇
2 (𝑘)Ψ 𝑑𝜇f (𝑘) ,

(128)

where 𝑇
1
(𝑘) fl 𝑇(𝑘), 𝑘 ∈ 𝐾b and 𝑇2(𝑘) fl 𝑇(𝑘), 𝑘 ∈ 𝐾f.

To give an example of𝐻
1
which has the abovementioned

properties and is not relatively bounded with respect to 𝐻
0
,

we recall a basic object inFb(𝑊b)

𝜙 (𝑢) fl
1

√2
(𝑎 (𝑢) + 𝑎 (𝑢)

∗
) , 𝑢 ∈ 𝑊b, (129)

which is called the Segal field operator with test vector 𝑢 [9,
§X.7].

Example 20. Consider the case where𝑊b = 𝐿
2
(R𝑑) (𝑑 ∈ N)

and 𝑊f = {0} so that H = h ⊗Fb(𝐿
2
(R𝑑)). In this case, 𝐻

0

becomes

𝐻
0
= 𝐴 ⊗ 𝐼 + 𝐼 ⊗ 𝑑Γb (𝜔b) (130)

and 𝐴
𝜀
(𝑓) takes the form

𝐴 (𝑓) fl 𝐼 ⊗ 𝑎 (𝑓) , 𝑓 ∈ 𝐿
2
(R

𝑑
) , (131)

where we set 𝜀 = 0. Let 𝐹 be a nonnegative bounded
continuous function on R and 𝜆 ∈ 𝐿

2
(R𝑑) \ {0} such that

𝜆/√𝜔b ∈ 𝐿
2
(R𝑑). Let 𝑛 ≥ 1 and

𝐻
1
fl 𝐹 (𝐴) ⊗ 𝜙 (𝜆)

2𝑛
. (132)

Then 𝐻
1
is a symmetric operator. It is proved that 𝐻 is self-

adjoint (this is nontrivial andwill be discussed elsewhere) and
bounded below (this is trivial). If 𝑛 ≥ 2, then 𝐻

1
is not 𝐻

0
-

bounded.
One can show that (𝐻

1
, 𝐴

0
(𝑓, 𝑡)) has weak commutator

on𝐷(𝐻) with

[𝐻
1
, 𝐴

0
(𝑓, 𝑡)]

𝐷(𝐻)

w = −√2𝑛 ⟨𝑒
−𝑖𝑡𝜔b𝑓, 𝜆⟩𝐹 (𝐴)

⊗ 𝜙 (𝜆)
2𝑛−1

(133)

on𝐷(𝐻). Hence, in the present example, we have

𝑇 (𝑘) = −√2𝑛𝜆 (𝑘) 𝐹 (𝐴) ⊗ 𝜙 (𝜆)
2𝑛−1

. (134)

Under additional conditions, one can show that Hypothesis
2(v) and (65) hold (these facts also will be discussed else-
where).
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Example 21. Consider the case where h = C and𝑊b = 𝑊f =

𝐿
2
(R𝑑) (𝑑 ∈ N) so thatH = Fb(𝐿

2
(R𝑑)) ⊗Ff(𝐿

2
(R𝑑)). We

set 𝐾b = R𝑑, 𝐾f = R𝑑, and 𝐾 = 𝐾b ∪ 𝐾f. We denote by 𝜇
the measure on 𝐾 such that the restriction of 𝜇 to 𝐾# is the
𝑑-dimensional Lebesgue measure. In this case,𝐻

0
becomes

𝐻
0
= 𝑑Γb (𝜔b) ⊗ 𝐼 + 𝐼 ⊗ 𝑑Γf (𝜔f) ,

𝐴
𝜀
(𝑓) = √1 + 𝜀𝑎 (𝑓

1
) ⊗ 𝐼 + √1 +

1

4𝜀
𝐼 ⊗ 𝑏 (𝑓

2
) ,

𝑓 = (𝑓
1
, 𝑓
2
) ∈ 𝐿

2
(R

𝑑
) ⊗ 𝐿

2
(R

𝑑
) .

(135)

Let 𝜆 ∈ 𝐿
2
(R𝑑) be as in Example 20 and let V, 𝑤 ∈ 𝐿

2
(R𝑑) be

fixed and

𝐵 fl 𝑏 (V)∗ + 𝑏 (𝑤) . (136)

Then, for 𝑛 ≥ 2, we define

𝐻
1
fl 𝜙 (𝜆) ⊗ 𝐵

∗
𝐵 + 𝜙 (𝜆)

2𝑛
⊗ 𝐼. (137)

The operator 𝐻
1
is not 𝐻

0
-bounded. It is easy to see that

𝐻 is bounded below (the self-adjointness of 𝐻 will be
shown elsewhere). One can show that (𝐻

1
, 𝐴

0
(𝑓, 𝑡)) has weak

commutator on𝐷(𝐻) and

[𝐻
1
, 𝐴

0
(𝑓, 𝑡)]

𝐷(𝐻)

w = −√
1 + 𝜀

2
⟨𝑒
−𝑖𝑡𝜔b𝑓

1
, 𝜆⟩ 𝐼 ⊗ 𝐵

∗
𝐵

− √2 (1 + 𝜀)𝑛 ⟨𝑒
−𝑖𝑡𝜔b𝑓

1
, 𝜆⟩ 𝜙 (𝜆)

2𝑛−1
⊗ 𝐼

+ √1 +
1

4𝜀
(⟨𝑒

−𝑖𝑡𝜔f𝑓
2
, V⟩𝜙 (𝜆) ⊗ 𝐵∗

− ⟨𝑒
−𝑖𝑡𝜔f𝑓

2
, 𝑤⟩ 𝜙 (𝜆) ⊗ 𝐵) .

(138)

Hence, in the present example, we have

𝑇 (𝑘) =

{{{{{

{{{{{

{

−√
1 + 𝜀

2
𝜆 (𝑘) 𝐼 ⊗ 𝐵

∗
𝐵 − √2 (1 + 𝜀)𝑛𝜆 (𝑘) 𝜙 (𝜆)

2𝑛−1
⊗ 𝐼, if 𝑘 ∈ 𝐾b,

√1 +
1

4𝜀
(V (𝑘) 𝜙 (𝜆) ⊗ 𝐵∗ − 𝑤 (𝑘) 𝜙 (𝜆) ⊗ 𝐵) , if 𝑘 ∈ 𝐾f.

(139)

Let {𝑢
𝑛
}
∞

𝑛=1
(resp., {V

𝑛
}
∞

𝑛=1
) be a CONS of 𝑊b (resp., 𝑊f)

and define 𝑒
𝑛
∈ 𝑊b ⊕𝑊f as follows:

𝑒
2𝑛−1

fl (𝑢
𝑛
, 0) ,

𝑒
2𝑛

fl (0, V
𝑛
) ,

𝑛 ∈ N.

(140)

Then {𝑒
𝑛
}
∞

𝑛=1
is a CONS of𝑊b⊕𝑊f. By (a.3) and (b.3), we have

∞

∑
𝑛=1

󵄩󵄩󵄩󵄩𝐴𝜀
(𝑒
𝑛
) Ψ

󵄩󵄩󵄩󵄩
2
= (1 + 𝜀)

󵄩󵄩󵄩󵄩󵄩
(𝐼 ⊗ 𝑁

1/2

b ⊗ 𝐼)Ψ
󵄩󵄩󵄩󵄩󵄩

2

+ (1 +
1

4𝜀
)
󵄩󵄩󵄩󵄩󵄩
𝐼 ⊗ 𝐼 ⊗ 𝑁

1/2

f Ψ
󵄩󵄩󵄩󵄩󵄩

2

(141)

for all Ψ ∈ 𝐷(𝐼 ⊗ 𝑁
1/2

b ⊗ 𝐼) ∩ 𝐷(𝐼 ⊗ 𝐼 ⊗ 𝑁
1/2

f ). Hence, by (91),
we obtain

sup
𝜙∈𝐷(𝐿

1/2

𝜀 )∩𝑃𝐻H,‖𝜙‖=1

(
󵄩󵄩󵄩󵄩󵄩
𝐿
1/2

𝜀
𝜙
󵄩󵄩󵄩󵄩󵄩

2

−

∞

∑
𝑛=1

󵄩󵄩󵄩󵄩𝐴𝜀
(𝑒
𝑛
) 𝜙

󵄩󵄩󵄩󵄩
2
)

= sup
𝜙∈𝐷(𝐿

1/2

𝜀 )∩𝑃𝐻H,‖𝜙‖=1

󵄩󵄩󵄩󵄩𝑄𝐴 ⊗ 𝑃b ⊗ 𝑃f𝜙
󵄩󵄩󵄩󵄩
2
.

(142)

Therefore we need only to show that there exists a constant
𝜀
0
∈ [0, 1) such that

sup
𝜙∈𝐷(𝐿

1/2

𝜀 )∩𝑃𝐻H,‖𝜙‖=1

󵄩󵄩󵄩󵄩𝑄𝐴 ⊗ 𝑃b ⊗ 𝑃f𝜙
󵄩󵄩󵄩󵄩
2
≤ 𝜀

0
. (143)

ThenHypothesis 3 is satisfied. Estimate (143) can be obtained
by extending the methods in [6, 7, 10] to the present case.

In this way, for quantum field models within the class
under consideration, one can obtain results (i)–(iii) in
Theorem 12 (under additional conditions).The details will be
given in a separate paper.
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