e
ol

x‘

HOKKAIDO UNIVERSITY

N
/IEH;
l\x/’

Upper Bounds on the Degeneracy of the Ground State in Quantum Field Models

Title
Author(s) Avrai, Asao; Funakawa, Daiju
Citation Advqnces_ in mathematical physics, 2016, 8908413
https://doi.org/10.1155/2016/8908413
Issue Date 2016-01-06
Doc URL http://hdl.handle.net/2115/60793
Rights(URL) http://creativecommons.org/licenses/by/4.0/
Type article

File Information

8908413.pdf

®

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP



https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Hindawi Publishing Corporation
Advances in Mathematical Physics
Volume 2016, Article ID 8908413, 13 pages
http://dx.doi.org/10.1155/2016/8908413

Research Article

Hindawi

Upper Bounds on the Degeneracy of the Ground State in

Quantum Field Models

Asao Arai and Daiju Funakawa

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan

Correspondence should be addressed to Asao Arai; arai@math.sci.hokudai.ac.jp

Received 31 August 2015; Accepted 28 October 2015

Academic Editor: Kamil Bradler

Copyright © 2016 A. Arai and D. Funakawa. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Axiomatic abstract formulations are presented to derive upper bounds on the degeneracy of the ground state in quantum field
models including massless ones. In particular, given is a sufficient condition under which the degeneracy of the ground state of
the perturbed Hamiltonian is less than or equal to the degeneracy of the ground state of the unperturbed one. Applications of the

abstract theory to models in quantum field theory are outlined.

1. Introduction

Let # be a complex Hilbert space with inner product ¢, )

(complex linear in the right variable) and norm || - ||. For a
linear operator A on #, we denote its domain by D(A) and
its spectrum by o(A).

Let H be a self-adjoint operator on # and bounded below.
Then, by abstract use of word, we call the infimum of o(H)

E, (H) = inf o (H) 1)

the lowest or minimal energy of H (this name originally comes
from the context in quantum physics where H denotes the
Hamiltonian of a quantum system). If E,(H) is an eigenvalue
of H, then H is said to have ground state and a nonzero vector
in the eigenspace ker(H — E(H)) is called a ground state of
H. In that case, the dimension

m (H) = dimker (H - E, (H)) (2)

of the eigenspace ker(H — E(H)) is called the degeneracy or
the multiplicity of the ground state of H. If m(H) = 1, then
the ground state is said to be unique. If m(H) > 2, then the
ground state is said to be degenerate.

As is well known, it has been an important issue to
determine the degeneracy of the ground state of a given
Hamiltonian in quantum physics. For Schrodinger type
Hamiltonians in quantum mechanics with finite degrees of
freedom and massive Bose field Hamiltonians in quantum

field theory, general theorems on the uniqueness of the
ground state and upper bounds on the degeneracy of the
ground state have been established (see, e.g., [1, $XIIL.12] and
references in Notes for §XIIL.12). For fermion systems, Faris
[2] discussed conditions which ensure the uniqueness of the
ground state. Faris’s ideas and methods have been extended
by Miyao [3, 4] to obtain general criteria on the uniqueness
of the ground state in bosonic quantum field models as well
as fermionic ones.

As for models in which a massless quantum field appears,
estimation of the degeneracy of the ground state is highly
nontrivial, because, in that case, one has to treat an embedded
eigenvalue problem so that the regular perturbation theory
or the min-max principle cannot be used (for a review of
this aspect, see, e.g., [5]). A first breakthrough result on this
problem was given by Bach et al. [6]. They considered a model
in nonrelativistic quantum electrodynamics and proved that,
under suitable hypotheses, the degeneracy of the ground state
of the total Hamiltonian of the model is less than or equal
to the degeneracy of the ground state of the unperturbed
Hamiltonian [6, Theorem 1.1(f)]. The methods used in [6]
to estimate the degeneracy of the ground state have been
generalized by Hiroshima [7] to be applied to a class of
quantum field models whose Hamiltonian is of the following
form:

H(g)=A®I+I1&dl(S)+ gHy, (3)



acting in the tensor product Hilbert space
F =heF, (W) (4)

of a complex Hilbert space §) and the boson Fock space
F (W) over a complex Hilbert space W (see (80) for the
definition). Here A is a self-adjoint operator on ¥ which is
bounded below, I denotes identity, S is a nonnegative self-
adjoint operator on W, dI'(S) is the second quantization
operator of S on F (W) (see, e.g., [8, p.302] and [9, §X.7]),
g € Risacoupling constant, and H,,,, is a symmetric operator
on & which describes an interaction between a Bose field
and a quantum system whose Hilbert space of state vectors
is h. In [7], it is assumed that H,, is relatively bounded with
respect to the unperturbed operator H0) = A® I +1®
dr(S). It is proved in [7] that, under a suitable condition,
m(H(g)) < c(g)m(H(0)) with c¢(g) > 0 being a constant
depending on g and, in particular, m(H(g)) < m(H(0)) for
all sufficiently small |g| in an abstract framework and in the
case where W = @DLZ(IRd), the D-direct sum of L*(R%)
(D,d e N). Moreover, these results were applied to the gen-
eralized spin-boson model [10], the Pauli-Fierz model, and
amodel in relativistic quantum electrodynamics with cutoffs
[7].

One of the motivations of the present work comes
from extending results in [7] to the case where H;, is not
necessarily relatively bounded with respect to H(0). But
we find that, before going on analyzing such models, it is
better to construct an abstract theory on the degeneracy of
ground state with the requirement that it formulates general
aspects independent of concrete models. From this point of
view, we construct in this paper such an abstract theory
in axiomatic manners. Careful investigations and structural
analyses on results on the existence and the degeneracy of
ground state which have been established so far (e.g., [6,7,10-
12]) make it possible. Applications of the abstract theory to
concrete models will be discussed in a separate paper. We
hope that the abstract theory given in the present paper not
only clarifies general structures behind the theory on the
degeneracy of ground state in [7] but also makes the range
of applications wider, because the abstract results established
in the present paper show what are general independently
of models and what should be proved in each concrete
model.

The present paper is organized as follows. In Section 2, we
consider a bounded below and self-adjoint operator H, and a
symmetric operator H; on a Hilbert space #. The sum H :=
H, + H, is supposed to be self-adjoint and bounded below.
We formulate a sufficient condition which yields inequality
m(H) < cm(H,) with a constant ¢ > 0 being computed
from the given data. In particular, an additional condition
for ¢ = 1 is given so that m(H) < m(H,). In Section 3, we
derive an integral equation for any ground state of H in terms
of a linear operator A on % which has some characteristic
properties (Theorem 11). In Section 4 we state and prove the
main theorem in the present paper (Theorem 12). In the last
section, we give remarks for applications of the main theorem
to concrete models in quantum field theory.
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2. Comparison Theorem on Degeneracy of
Ground States

For nonnegative self-adjoint operators Ay, A,..., A, on 7
(n = 1,2,...), we write “A, < Y7, A if (V1 D(A;/Z) c
D(AY?) and

(v Al < 3 (A A,
j=1
(5)

Ve ﬁD(Alj/z).

J=1

Let H, be a bounded below and self-adjoint operator on
Z and let H, be a symmetric operator on # such that

H:=H,+H, (6)

is self-adjoint and bounded below (D(H) = D(H,) N D(H,)).
We assume the following.

Hypothesis 1. (i) The operators H, and H have ground state
with m(H,) < oco.

(ii) There exists a nonnegative self-adjoint operator L on
Z such that

I<L+Py, )

where, for a bounded below self-adjoint operator T' on 7, we
denote by P; the orthogonal projection onto ker(T — E(T')):
Pr = ker(T — Ey(T)).

A vector ¢ € F is said to overlap with a subset D ¢ 7 if
there exists a vector # € D such that (y, %) # 0.

The following theorem, which is a comparison theorem
onm(H) and m(H,), and Corollary 2 below are more abstract
versions of Lemma 3.3 and Corollaries 3.4-3.5 in [7].

Theorem 1. Assume Hypothesis 1 and suppose that there exists
a constant & with 0 < 8 < 1 such that

sup ||L1/2¢“2 <. ®)
deD(LY)NPL . I$ll=1

Then,

(i) any ¢ € Py with ||$|l = 1 overlaps with Py, 7;
(ii) let

my (H) = dim [D (L'?) n Py |; )

then

my (H) < m(H,); (10)

1-6

(iii) if Py < D(L'?) in addition, then

1
1-98

m(H) < m (H,). (11)
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Proof. (i) Let ¢ € D(L'?) n Py with |¢] = 1. Then, by
Hypothesis 1(ii), we have

1< L2 + (. Py @) <8+ (. Pyg). (12

Hence
1<(1-8)" (¢, Py ¢). (13)

In particular, (¢, Py ¢) # 0. Therefore ¢ overlaps with Py 7.

(i) We first show that D(L'Y?) n Py is finite-
dimensional. So suppose that D(L'/?) N P, % were infinite-
dimensional. Then there is an orthonormal system {¢,}>°,
with ¢, € D(L'*) n Py, n > 1. Taking ¢, as ¢ in (13) and
summing over 1, we obtain Y’ 2, (¢, Py ¢,) = 00. But the left
hand side is less than or equal to Tr Py = m(H,) < co, where
Tr means trace. Hence one is led to a contradiction. Therefore
D(Ll/z)nPH% is finite-dimensional; that is, m; (H) < 00. Let
{¢n}mL(H) be an orthonormal basis of D(L'?) N P %. Then,

n=1

by (13), we have

1 D 1
my (H) < 5 Y (S Py < —5 TPy,
-8 & _
(14)
1
= mm (HO) .
Thus (10) follows.
(iii) This follows from (10). O

Corollary 2. Assume Hypothesis 1 and suppose that there
exists a constant § such that

0<d8< _
m(Hy) + 1 (15)
and (8) holds. Then
my (H) <m(H,). (16)

In particular, if Py < D(L'?) in addition, then
m(H) <m(H,). 17)

Proof. Condition (15) implies that 0 < § < 1. Hence the
conclusion of Theorem 1 holds. Therefore

my (H) <

1
n am(HO) <m(Hy) + 1, (18)
where, in the second inequality, we have used (15). Since
my (H) and m(H,)) are natural numbers, (16) follows. O

Corollary 3 (uniqueness). Assume Hypothesis 1 with m(H,)
= 1 and suppose that the following (i) and (ii) hold:

(i) Py < D(L'?).

(ii) There exists a constant § with 0 < 8§ < 1/2 such that
(8) holds.

Then m(H) = 1.

Proof. In the present case, (15) holds with m(H,) = 1. Hence
m(H) < 1. Since m(H) is a natural number, it follows that
m(H) = 1. O]

In applications to quantum field models, it may be
convenient to consider H in the form

H, = Hy+ gH, (19)

with a constant parameter g > 0, as in the case of H(g) given
by (3).

Remark 4. The condition g > 0is taken so that H,, is bounded
below in the case where H, is not Hy-bounded but bounded
below. In the case where H, is Hj-bounded, g needs not to be
positive, being allowed to be a negative number as well, and,
by the Kato-Rellich theorem, H,, is self-adjoint and bounded
below for all sufficiently small |g] (g € R) [7].

Corollary 5. Assume Hypothesis 1 with H = H;, 0 < g < a
(a > 0is a constant), and suppose that there exists a continuous
function & = 6(g) on [0, a) such that §(0) = 0 and

2
sup ”Ll/z(/)“ <6(9), geloa). (20)
¢€D(LI/Z)WPHg Z\l=1

Then there exists a constant g, € (0,a) such that, for all g €
(0, gyp), any ¢ € PHg% with ||¢ll = 1 overlaps with Py, and

my (H,) <m(H,). (21)

In particular, ifPHg% c D(L'?) for all g € (0, g,) in addition,
then

m (Hg) <m(H,) (22)
forall g € (0, gy).

Proof. By the continuity of §(g) in g € [0,a) with §(0) = 0,
there exists a constant g, € (0, a) such that, forall g € [0, g,),

1

0S8(g)<m.

(23)

Hence, for each g € (0, g,), one can apply Theorem 1 and
Corollary 2 to obtain the desired results. O

Remark 6. Condition (20) with g = 0 implies that D(L/?) n
Py, # C ker L' = ker L. In some models in quantum field
theory, L can be taken in such a way that this property is
satisfied (see Section 5).

3. An Abstract Integral Equation for
Ground States

In applications of Theorem 1, we need to prove (8). In
concrete models in quantum field theory, this has been done
by using operators which have some characteristic relations
to L and H,,. In this section we introduce an abstract version
of such operators.



Let A be a densely defined closed linear operator on #
and

A (t) = ot Ae—itHO,
. ) (24)
A@t) =eMA (-t)e ™, teR.

We assume the following:
(A1)

(i) For some « € (0,1], A is Hy -bounded; that is,
D(Hy) c D(A), and there exist constants a,b >
0 such that

layl < a|Hgy|+blv], veD(H;).  (25)
(ii) There exists a core & of Hyy such that

lim Ae™y =0, yeD. (26)

t— 0o
Remark 7. Under condition (A.1)(i), the functional calculus
of the self-adjoint operator H, gives that, for all y € D(H)
andt € R, "y € D(HS) and HSe" oy = e H'y. Hence
D(Hy) < D(A,(t)) for all t € R. In particular, D(H,) ¢
D(A,(t)) forallt € R.Since D(H) ¢ D(H,) and e D(H) =
D(H) for all t € R, it follows that D(H) c D(A(t)) for all
t € R.In what follows, we use these facts without mentioning.

Lemma 8. Assume (A.I). Then, for all ¢ ¢
lim, , A(t)¢ = 0.

P, %,

Proof. Since e Mg e B we have |A(t)p] =
||Ae”H°¢||. By (A.1)(ii), for any ¢ > 0, there exists a vector
Y, € D such that

lve - ol < -
IHGy. - 14 < e
Hence
[4e™ 9] < 4™ (¢ - vo)] + |4 e

<alHy (¢-ve)l +ble - vel (28)

+ ||Ae”H°1//E|' <(a+b)e+ “Ae"tH"t//£

Taking the limit# — o0, we have

0 < lim sup "AeitH"(/)" <(a+b)e (29)
t— o0

Then the limite — 0 yields that lim, _, . | Ae"™@|| = 0. Thus
lim, _, ,|A®)$] = 0. O

To state additional assumptions, we recall the concept of
weak commutator [13]. Let T'and S be densely defined linear
operators on # and let & be a dense subspace in # such that
& ¢ D(T)ND(S)ND(T*)ND(S™), where, for a densely defined
linear operator A on %, A™ denotes the adjoint of A. Then the
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pair (T, S) is said to have weak commutator on & if there exists
alinear operator C on & such that & ¢ D(C) and (T* v, S¢p) —
(S*w, Tp) = (v,Co), v,¢ € &.In this case, the operator C
restricted to & is written as [T, S]Vg; so that

(T*y,8¢) = (S"y, T$) = (v, [T.S]5 ¢),
(30)

v, ped.

We call [T, S]ff the weak commutator of (T, S) on &.
We also need the following assumption:

(A.2)

(i) For eacht € Rand j = 0,1, (Hj, Ay (1))
has weak commutator [Hj, Ao(t)]g(H) on D(H).
Moreover, for all y € D(H), [Hl,AO(t)]g(H)q/ is
strongly continuous in t.

(ii) For all v € D(H), Ay(t)y is strongly differen-
tiable in ¢ and its strong derivative dA,(t)y/dt
is of the form

dA, (t
% =i[Hy Ay (£)

(iii) There exist a o-finite measure space (M, 2, p),
a nonnegative X-measurable function u on M
with 0 < u(k) < co for y-a.e.k € M,and alinear
operator S(k) on # (k € M) with D(S(k)) >
D(H) such that the following (a)-(c) hold:

(a) forally, x € D(H), [, [(x, S(yy) ldu(k) <
0o and

PPy, ter. G

(o [Hy A9 (0] )
| (32)
_ JM ¢ (8 (k) v dp ()

(b) for all ¢ € Py, [ IS(k)plldu(k) < oo
and [, [S(o)ll/u(k)du(k) < co;
(c) forally € @ and ¢ € Py,

(o)
J ds < co. (33)

0
Remark 9. Condition (a) in (A.2)(iii) may be regarded as an
abstract form of “sum rules” in quantum mechanics [13]. In
fact, under stronger additional conditions, one can prove (32)
(cf. [13]), where p is determined by the spectral measure of
H,.

Under condition (A.2), (H — E,(H) + u(k))™" is bounded

for y-a.e. k € M with

JM < y, S HE DN g () ¢> dp (k)

|(H = Ey () + u (k)| < L p-ae ke M. (34)

u(k)’
Hence, for all ¢ € Py,

[ 0= By + ) 5 00 6] s )

s @9l )
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It is easy to see that, for all y € D(H), e"‘(H’E"(H))[Hl,
AO(—s)]g(H)w is strongly continuous in s. Hence, for each

t _
t € R, the strong Riemann integral _[0 SHE(H) [H,,

AO(—S)]V?(H)W ds exists.

Lemma 10. Assume (A.1) and (A.2). Then, for all § € Py
andt € R,

A(t) ¢ = Ap
+i J(: oSHEH) [p AO(_S)]‘I;‘:(H) bds. (36)
Moreover, for all y € D(H),
(v, A1) )
= (v, A¢) N

vi L ds JM da (k) (& FD DG ) g
Proof. Let y € D(H) and
F@O=(pAme) = (" Py 40(-0¢).  (38)

Then it is easy to see that f(¢) is differentiable in t with

df (t —it —it
%:i((H-EO(H))e "y Ag (1) e g)

(39)
+ <e_itHx, -i[Hy, A, (—t)]f(H) e_itH¢> .

Using the identity (A, (—t)*e ™y, (H — E,(H))e H¢) = 0,
we obtain

df (t ; .
f( ) —i <e—thX’ [HDAO (_t)]D(H) e—th¢>
dt v
(40)
=i <X’ MR [, A, (_t)]S(H) ¢> '
Hence
@
= <X’ A¢) (41)
¢ .
i ,[ i <X’ R [Hy, Aq (_5)]3(H) ¢> ds.
0
By a property of strong Riemann integral, we have
t .
|| Qe TR (11, A (9]0 ) ds
0
(42)

t .
= (o [ B (11,4, o1 g ).

Thus (36) follows. Formula (37) follows from (36) and
(A.2)(iii). O

5
Forall ¢ € Py,
[ = By -+ ) 0 6] s )
(43)
IS k) 9|
< JM T ® dy (k) < oo.
Hence the Bochner integral _[M(H E,(H) +

u(k))"'S(k)¢p du(k) exists. The main theorem in this
section is as follows.

Theorem 11. Assume (A.1) and (A.2). Then, for all ¢ € Py,
Ap= | (=B (D +u o) SRPdu). (40

Proof. Let v € 9. Then, taking the limitt — oo in (37) and
using Lemma 8, we obtain

(v, Ad)

0 , (45)
_ —iJ dsJ dp (k) (y, e HE DG oy 4
0 M
For all € > 0, we have
o J du (k) < g, B g (o ¢>|
" (46)

< |J du (k) <1//, eis(H—Eo(H)+u(k))S(k) ¢>| )
M
By (c) in (A.2)(iii), the right hand side is integrable in

s € [0,00). Hence, by the Lebesgue dominated convergence
theorem, we have

(v, Ap) = —ilim j dse_ssj du (k)
>0 Jo M

. <1// eiS(H—Eo(H)+u(k))S (k) ¢> .

(47)

Note that

J'oo dse™S J ' < y, @SHEED () g (g ¢>|
0 M (48)

< | dse | lvlIs @8l du o < .
0 M

Hence, by Fubini’s theorem, we have

JO dse™* JM d{/l () <w, eiS(H—Eo(H)+u(k))S (k) ¢>

- | auto (49)
M

Ay,i(H - By (H) + u(k) +ie)" S(k) ).
Therefore
(v 49) = lim | du 0
oM (50)
Ay, (H—Eo (H) + u (k) +ie) " S(k) ).



It is easy to see that, for p-a.e. k,

lim (. (H — Ey (H) +u (k) + i) ' S(K)¢)

= {y,(H - E,(H) +u (k)" S(k) ),
(v, (H = Eq (H) + u (k) +ie) ™ S(k) §)|

< vy BR s ) ¢ll
u(k)

(51)

Hence we can apply the Lebesgue dominated convergence
theorem to obtain

(v, Ad)

= (. (| (H-Eg(H) +u (k)" Sk pdu(k)) ). 2
(v, )

Thus (44) holds. O

4. Main Theorem

We now state and prove the main theorem in the present
paper. For this purpose, we first rewrite the theory in the
preceding section in a form suitable for applications to
models in quantum field theory.

We assume Hypothesis 1. Let (K,X,u) be a o-finite
measure space and let w be a nonnegative X-measurable
function on K such that 0 < w(k) < oo, y-a.e. k € K. We
set

X = L*(K,dy) (53)

and, for each s € R, introduce a subspace

X, = {feX|J W) |f W du k) < oo} (59
K

Suppose that there exists a family {A(f) | f € X} of
densely defined closed linear operators on % such that, for
all f € X, D(L"?) ¢ D(A(f)) and, for all y € D(L'/?),

A(zf +wg)y =z A(f)y +w A(g) v,
f,geX, zzweC,

(55)

where z* is the complex conjugate of z € C. We introduce an
operator:

Ay(fit)=e ™A (f)e"™, teR, feX.  (56)

For the operator A(f), we assume conditions similar to (A.1)
and (A.2) for A in the preceding section.

Hypothesis 2. (i) For some « € (0,1] and 8 > 0, D(H{) ¢
D(A(f)), f € X_gand for each f € X_g, there exist
constants a, bf > 0 such that

y € D(Hp). (57)

A vl < ar |Hgwl +bf vl

Advances in Mathematical Physics

(ii) There exists a core @ of Hy such that

lim A(f)"™y =0, yeD, feX . (58)
(iii) There exists a dense subspace Y ¢ X_j; such that, for
allt e Rand f €Y, (Hy, Ay(f,t)) has weak commutator on
D(H) and, for all y € D(H), [Hy, Ao(f, t)]2*y is strongly
continuous in ¢.
(iv) Forally € D(H) and f € Y, Ay(f,t)y is strongly
differentiable in t and

dA,(fD)y _

" i[Hp Ay (£ y, ter. (59

(v) Forallt € R, f €Y, (H;,Ay(f,t)) has weak com—

mutator on D(H) and, for all v € D(H), [H, Ay(f,1)]

is strongly continuous in t. Moreover, for p-a.e. k jE K
there exists a densely defined linear operator T'(k) on # with
D(T(k)*) n D(T(k)) > D(H) such that the following hold:

(@ for all v,y € D(H) and f € Y, _[K |f (k) x>
T(k)y)|ldu(k) < co and for all t € R,

([ A0 (£ v)

| (60)
= [ LW (T R ) due
(b) forall¢ € Py and f €Y,
[ L 1T 0 s ) < oo
()
IT () |
J 17 001 =2 o <

(c) there exists a dense subspace Y, C Y such that, for all
yveD, feYy,and € Py,

ds

[, | £ 0 Gy BT 1 )

< 0.

We need an assumption on a relation between A(f) and
L.

Hypothesis 3. There exist a complete orthonormal system

(CONS) fe,},2, of X with e, € Y, n € N, and a constant
g € [0,1) such that

w (e - Siae)dl) <o @
n=1

$eDIL)NPLT I$ll=1

The main theorem in the present paper is as follows.
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Theorem 12. Assume Hypotheses 1-3. Suppose that there exist
nonnegative functions f, and f, on (K,X) such that f, +
w™ f, € X with

Y= “f1 + w71f2||2 <1-¢gp (64)
76" vl < fi (9 - Ey () + @0 (0) ]
+ £ @ vl (65)

y € D(H), p-ae keK.
Then,
(i) any ¢ € Py with ||¢p|l = 1 overlaps with Py 7;
(ii)

1
m; (H) < ———
l-y-¢g

m (H,), (66)

where my (H) is defned by (9); moreover, if

Yré < m(H,) + 1 ©7)
in addition, then
my (H) <m(H,); (68)
(iii) suppose that Py c D(L"?) in addition; then
1
m(H) < l—m(HO); (69)
Y&

in particular, if (67) holds, then

m(H) <m(Hy); (70)

(iv) if Py < D(L?), m(H,) = 1, and y + &, < 1/2, then
m(H) = 1.

To prove Theorem 12, we need some lemmas.

Lemma 13. Assume Hypothesis 2. Then, for all ¢ € Py and
fey,

A(f)¢
- jK F k) (H = Ey (H) + 0 (0)) " T (k) pd (k).

Proof. One can apply Theorem 11 with A = A(f). Then (71)
follows. O

(71)

Lemma 14. Assume Hypothesis 2. Let ¢ € Py and
- 2
JK |(H = By () + w ()" T (k) || dia (k) < 0. (72)

Then, for any CONS {e,}2, of X withe, € Y (n € N),

2 4 () oI

73)
= [ o=yt + @0) " T 6 dsh).

Proof. Define a mapping T : X — # by

TF = | 00 (- By () + @ (0) ' T (0§ dus(h),
feX

Then, in quite the same way as in the proof of [12, Lemma
2.6], one can show that T' is Hilbert-Schmidt and

I8 = [ (- Eo D +00) T R[] ducir, 75

where || T||, is the Hilbert-Schmidt norm of T'. In general, for
any CONS {£,}%, of X, IITI2 = ¥, ITf,|I*. The set {e}°2,

also isa CONS of X. By (71), we have Te}, = A(e,)¢. Thus (73)
holds. O

We are now ready to prove Theorem 12.

Proof of Theorem 12. Let k € K be such that 0 < w(k) < oo.
Then (65) implies that T (k)" (H - E,(H) + w(k))"" is bounded
with operator norm

1> (k)
w (k)

|7 ()" (H = Ey (H) + 0 (k)| < f, (k) + (76)

Hence (H — Ey(H) + w(k))"'T(k) is bounded with domain
D(T'(k)) and
f> (k)

|(F = By (1) + w0 (k)" T (0)| < f, () + " (77)

Hence, for all y € D(H),

[l =By 0+ @ 0) T 0w e
K 78)

2
<vlvl™
Therefore, by Lemma 14 and Hypothesis 3, we have

of <+ 6 D)0 lol =1 09

Thus, by Theorem 1, we obtain (66). The other parts of
Theorem 12 easily follow from Theorem 1 and Corollaries 2
and 3. O

From the purely operator theoretical point of view,
Theorem 12 can be regarded as a comparison theorem on the
degeneracy of ground states in the framework given by the
quintuple (%, Hy, H,, L, {A(f) | f € X}).

5. Remarks for Applications

As for applications of Theorem 12 to quantum field models,
we describe only basic aspects, because full descriptions of
applications need many pages and it may be suitable to
present them in a separate paper.

The Hilbert space # in the abstract theory may have
different concrete realizations depending on quantum field
models. Here we present a unified treatment of various



models in quantum field theory, taking as # a general Hilbert
space. This will make less work in applications.

Let W;, and W; be complex Hilbert spaces. Then the boson
Fock space F,(W,)) over W, is defined by

F, (W3) —@@Wb { {‘I’(")} |y
le‘P’”

where X)IW, denotes the n-fold symmetric tensor product
Hilbert space of W, with convention ®2Wb = C. On the
other hand, the fermion Fock space F (W) over W; is defined
by

(80)

E®Wb, n>0, |\I'|| < 00

F:(Wp) = PRW: (81)

n=0 as

where X)W is the n-fold antisymmetric tensor product

Hilbert space of W; with convention ®SSWf := C. The boson-
fermion Fock space F (W, Wy) over (W,, Wy) is defined by

For Wy, Wp) = F, (W) © F¢ (W) . (82)

This Hilbert space is a Hilbert space for a quantum system in
which a Bose field interacts with a Fermi field.

A general Hilbert space unifying Hilbert spaces for
various quantum field models is given by

I =9 Fpr (W, Wy), (83)

where § is a complex Hilbert space. Indeed, # includes,
as special cases, three types of Hilbert spaces which appear
typically in quantum field theory:

(i) In the case where W; = {0}, then F:(W;) = C.
Hence, in this case, # is identified with § ® F (W),
which is a Hilbert space for a general quantum system
interacting with a Bose field. In particular, if j = C,
then 7 is identified with F, (W,,).

(ii) In the case where Wy, = {0}, # is identified with
b ® F(Wp), which is a Hilbert space for a general
quantum system interacting with a Fermi field. In
particular, if h = C, then # is identified with F (W).

(iii) In the case where ) = C, # is identified with

F (W, Wp).

In this sense, at least for applications to quantum field theory,
the above choice of the Hilbert space # is general enough.
Let A be a nonnegative self-adjoint operator on f having
ground state with E;(A) = 0 and m(A) < oo. In what
follows, # denotes either b or f. Let S, be a nonnegative
injective self-adjoint operator on W, and denote by dI,(S,)
the second quantization of S, on F,(W,). Let H, be a
symmetric operator on . Then the following operator H
serves as unification of Hamiltonians of various quantum

field models:

H=H,+H,, (84)
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where
Hy=A®I®l+I®dl,(S,)®l+I11edl;(S), (85)

and H, is not necessarily H,-bounded.

Since S, is nonnegative and injective, it follows that
dr,(S,) has a unique ground state with zero ground state
energy and

ker dT}, (Sb) = PIE’O) = {ch | ce C} ,
(86)
ker drf (Sf) t_f’ = {CQf | C € C}
where Q, = {1,0,0,...} is the Fock vacuum in & ,(W,).

We denote by P, the orthogonal projection onto 9&0) from
F s(W,).

The operator H,, has ground state with E(H,) = 0 and
Py =kert Ao F" & F. (87)
We have
Py, =P, ®P,®P: (88)
Hence
m(Hy) =m(A). (89)
We denote by N, the number operator on F,(W,): N, =
dr,(I). The operator
Qa=1-P,4 (90)

is the orthogonal projection onto (ker A)* (the orthogonal
complement of ker A). For each € > 0, we define an operator
L, by

1
=(1+‘9)I®Nb®1+<1+4—>I®I®Nf+QA
&€

(o1
®P, ® P,
Lemma 15. For any € > 0,
I<L,+Py. (92)
Proof. 1t is easy to see that
1<N*+R,
(93)
1<N;"”+P.
Hence
I<Ie(N/>+R)e (N +P). (94)

By this inequality and the fact that P, < Tand Q, + P, = I,
we obtain

I<IeN*eN/">+IoN 0l +I®1eN;”
(95)
+Q @B, @ P+ Py,

By the functional calculus,

1
I®N¢/2®Nf1/25sI®Nb®I+4—I®I®Nf. (96)
£

Since o(N,) = {0} U N, it follows that N;/z < N,. Hence (92)
is obtained. O
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In the present framework, the operator L, will be the
operator L in Hypothesis 1.

Remark 16. The parameter ¢ > 0 in L, is introduced to
maintain the best possibility of (92) when the Hilbert space
Z is reduced to h ® F (W) (the case where W; = {0} so that
N¢ = 0and P; = I) or F(W;) (the case where W, = {0} so
that Ny = 0 and B = I).

We next describe a candidate for the operator A(f) in
Section 4. For this purpose, we use an isomorphism between
a separable Hilbert space and an L* space. Hence we assume
that W, is separable. Then, by the multiplication operator
form of the spectral theorem on a self-adjoint operator
[8, Theorem VIII.4], there exist a finite measure space
(K,, 24, hs), a unitary operator U, : W, — L*(K,,dpu,), and
a nonnegative function w, on K, satisfying 0 < w,(k) < oo,
ps-a.e. k € K, so that

US,.U™" = w,, (97)

where the right hand side denotes the multiplication operator
by the function w, on L*(K,,du,). The isomorphism U,
induces the isomorphism

F(U#) P Fy (W#) — Fy (L2 (K#’d.“#)) (98)
defined by

I (U,) =PRU. (99)
n=0
with ®°U, = 1.
In what follows we freely use the identification of W, and
F «(W,) with L*(K,, du,) and F (LXK, du,)), respectively.
Let

K = Kb U Kf (100)

with Ky N K¢ == 0 and let 4 be the measure on K such that the
restriction of y to K, is equal to y,. For each element (f3, f,) €
L*(Ky, dw,) ® L*(K;, dy), we define a function f on K by

{fl k), ifkekK,,
(101)
£, (k), ifkeK.

Then it is easy to see that the correspondence (f;, f,) — f
gives an isomorphism between L*(K,, d,) ® L*(K, dy) and
L*(K,dy). In this sense, we write f = (f,, f,). Below we see
that, in the present case, the Hilbert space X in Section 4 is
given by

f (k)=

X =L (K, dy). (102)

We freely use the identification of L*(K, du,) ® L*(Ky, du)
with X.
In the present case, we take w in Section 4 as follows:
wy, (k), if ke Ky,
w (k) = { °

if k € K.

(103)
wg (k),

We are now ready to describe a candidate for A(f) in
Section 4. Let u € W, and let a(u) be the boson annihilation
operator on F,(W,), which is the densely defined closed
linear operator on %, (W,) such that its adjoint a(u)* is of
the form

(a(w)” ‘I’)(O) =0,
(@@ ¥)"” = Vs, (ue ¥ ™), (104)
YeD(am)"),

where S, is the symmetrization operator on the n-fold tensor
product "W, of W,,. The following facts are well known:

(a.1) Canonical commutation relations: for all u, 1’ € Wa,

[a (u),a(u')*] = <u, u'> )

[a (u),a (u')] =0

(105)

on the subspace

Fr0 (Wh)
(106)
= {\P € gb (Wb) | 31’10 € N’ vn > nO’ \P(H) — 0})

where [A, B] .= AB — BA.

(a2) Forallu € W, DN} ¢ D(a(w)) and la(w)¥| <
lullINY>¥1, ¥ € DINY?).

(a.3) For all CONS {u,}72, of Wy,

||N;/2qf||2 = i la () ¥, ¥eD(N).  o7)
n=1

(a.4) Forallu € D(S, %), D(dL,(S,)"?) ¢ D(a(u)) and

la () 1 < |5, [ (5,)" ]
(108)

v e D(dr, (s,)"?).
(a5) Forallt € Randu € W, (S0 g () NS =
a(e™Sou).
On the other hand, the fermion annihilation operator b(v)

(v € Wp) on F«(W;) is the everywhere defined bounded linear
operator on F (W) such that

b w)? =0,
) )" = Vna, (ve ¥ ™), (109)
Ye F (W),

where A, is the antisymmetrization operator on (X)"W;. The
following facts are well known:
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(b.1) Canonical anticommutation relations: for all v, €
W,

{b(v),b(v’)*} = <v, v’> ,
{b (v),b(v')} =0,

where {A, B} := AB + BA.
®.2) [bM)Il = Ib)* Il = Ivll, v € W,
(b.3) For all CONS {v,}7> of W,

(110)

HNQ/Z\P”Z = i Ib(v,)¥]*, ¥eD(N). an)
n=1

(b4) Forallt ¢ Randv € W, eitdrf(sf)b(v)eiitdrf(sf) =
b(e"™Sv).

In the present case, we see that a candidate for A(f) in
Section 4 may be the closure of the following operator:

A(f) = VTTeloa(f)el+ |1+ LTl
®b(f,), f=(fifi)eX

where ¢ > 0 is arbitrary. We denote the closure of A (f)
by the same symbol. The parameter € in A, is introduced in
correspondence to L, defined by (91). It is easy to see that

(112)

D(L?)=D(IeN*eI)nD(IeI1eN/?). (13)

Hence D(Lls/z) c D(A,(f)) forall f € X and (55) holds.
It follows from (a.4) that, for all f = (f}, f,) € D(Sgl/z)ea
W, D(H)'?) ¢ D(A,(f)) and

4. () ¥
<Vive|iea(f) DY

1
1+— 4
EETATY

< VTve|s; 2 fi||re ar, (s,) @ 1] (114)
R TATY

4 V2
_ 1

] S | e ER eI

Hence Hypothesis 2(i) holds with f = 1 and « = 1/2.
In the present case, we have
Ao (fit) = A, (eiitwalr eiitwffz) >
(115)

f=(fifi)eX teR,

where, for notational simplicity, the dependence of A,(f,t)
on ¢ is not explicitly written.

To ensure that Hypothesis 2(ii) holds, we consider an
additional condition:

Advances in Mathematical Physics

(S) The self-adjoint operators S, and S; are purely abso-
lutely continuous.

For a subspace D, of W,, we define (D) C F,(W,)
by

F 4 fin (D#) = Span {Q#’C# (91)* G (gn)* QIn
(116)
eN, gj € Dy, j= 1,...,n},

where, for a subset V' of a vector space, spanV denotes the
subspace algebraically spanned by all the vectors in V' and
6,() = a(), ¢(-) = b(:). For a subspace &, of F,(W,), we
denote by h®%,®Y; the algebraic tensor product of §j, &,
and ;.

Lemma 17. Assume (S). Then, for all ¥ € H@F 5 (W,)®
F t.in (W)

lim A, (f)e"™w =o. 117)

t — 0o

Proof. 1t is sufficient to prove the assertion for vectors ¥ of
the form

Y=yea(u) a() Qeb() b, Q
(118)

yeb, quWb, veeW, j=1,...,n, €=1,...,m, n,meN.

Let f = (f}, f,) € X. Then, using (115), (a.1), and (b.1), we
have

e—itHoAs (f) StHoy — i <e—itsbf1’uk> Wk
k=1

. (119)
+ ez1 <e_itsff2s Ve> Yo
where
P
=y
®a(u) - a(ue) a) au,) Q
®b(v) ---b(v,) Qp (120)
Fe
=D yoa(u) alu,) O
@b (1) b (vey) b(vens) b(v,)" O
By assumption (S), lim,_ . (e f,,u) =
0 and lim, (e f,,v,) = 0. Hence
lim, e ™A (f)e"™¥ = 0. Since e is unitary,
(117) follows. O

Since D(A)®F 1, 5, (D(Sy))®F ¢, (D(Sy)) is a core of H'?,
Lemma 17 implies that Hypothesis 2(ii) holds in the present
case.
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It is well known that, for all u € D(S,) n D(S;"%),
(dL,(Sp), a(u)) has weak commutator on D(dI} (S;,)) and

] D(dr, (Sb)

[T, (Sp) a (u -a (Syu)
(121)

on D (dL, (Sp)) -

Also, for all v € D(Sy), (dT¢(S;), b(v)) has weak commutator
on D(dT(S;)) and

D(dT¢(Sr))

(122)

[T (S, b (]2 = _p (5,0).

Hence, by (115), (H,, A
D(H,) and

o(f>1)) has weak commutator on

[Hos Ao (£8)]0" = A, (78, £, 758, £,)
(123)

on D (H,).

Lemma 18. Let f = (f;, f,) € X with f; € D(S,) N D(S.j”z)

and f, € D(S;). Then, for all ¥ € D(H,), [Hy, Ao(f, t)]2* 0w
is strongly continuous in t € R.

Proof. For notational simplicity, we omit identity I in tensor
products of operators (e.g., I ® a(u) ® I (u € W,) is simply
written as a(u)). Forall t,t' € Rand ¥ ¢ D(Hé/z), we have
by (a.4)

Ha (eiit’SbSbﬂ) Y-a (eiits"Sbfl) ‘I’"

crsn-cmst =

(f —t).

Similarly one can show that lim, _}tb(e_”’sfo LY =
b(e "5iSf,)¥. Hence A (eS8, f,,e ™S f,)¥ is strongly
continuous in f. By this fact and (123), we obtain the desired
result. O

Lemma 19. Forall¥ € D(Hy) and f € X_| N X,, Ay(f,t)¥
is strongly differentiable in t and

dA, (f,t
%{) i[Hy Ao ()]0 w, ter. (125
Proof. This follows from (115) and (123). 0

As for the weak commutator of (H;, A( f, 1)), the follow-
ing form gives unification of some models:

] D(H)

[Hi, Ay (f:1)
_ J W) £ () T (k) ¥ dyu (k) , (126)
K

¥ eD(H), f € [D(w)nD(w;"?)] D (),

1

where T'(k) is a densely defined linear operator on # defined

for p-a.e. k € K, satisfying D(T(k)) N D(T(k)*) > D(H) and
[ L @0l 6o ¥ dus o < o,

(127)

jV(HWWWMMM<m
(k)

Note that one can write
[Hy, Aq (fi1)],,

=L8Wm®WﬂWMM)

D(H)

(128)

. J "0 £ (k)" T, (k) ¥ dye (k) ,
K

where T, (k) = T(k), k € K, and T,(k) := T(k), k € K.

To give an example of H; which has the abovementioned
properties and is not relatively bounded with respect to H,,
we recall a basic object in #,(W,)

¢u)=— u €W,

\/— (a@) +a@w)’), (129)

which is called the Segal field operator with test vector u [9,
§X.7].

Example 20. Consider the case where W, = LZ([R{d) (d € N)
and W; = {0} sothat Z = h @ &F b(LZ([Rd)). In this case, H,

becomes
Hy=A®I+1®dl (w,) (130)
and A, (f) takes the form
A(f)=1Ie®a(f), fel*(RY), (131)

where we set ¢ = 0. Let F be a nonnegative bounded
continuous function on R and A € L*(R?) \ {0} such that

A @, € LH(RY). Letn > 1and

H,=F(A)®¢1)™". (132)

Then H, is a symmetric operator. It is proved that H is self-
adjoint (this is nontrivial and will be discussed elsewhere) and
bounded below (this is trivial). If n > 2, then H, is not H-
bounded.

One can show that (H,, Ay(f,t)) has weak commutator
on D(H) with

[Hy, Ay (f)]) = —Van (e f,2) F(4)

(133)
® (/) (/\)Zn—l
on D(H). Hence, in the present example, we have
T (k) = —V2nA (k) F (A) @ ¢ (L)™' (134)

Under additional conditions, one can show that Hypothesis
2(v) and (65) hold (these facts also will be discussed else-
where).
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Example 21. Consider the case where f) = C and Wy, = W; =
L*(RY) (d € N) so that Z = F,(L*(RY)) ® F(L*(R?)). We
set K, = RY, K; = R? and K = Ky, U K. We denote by u
the measure on K such that the restriction of u to K, is the
d-dimensional Lebesgue measure. In this case, H, becomes

HO =drb(a)b)®l+1®drf(wf),

Ae(f)z\/1+sa(f1)®1+\/1+:—81®b(f2), (135)
f=(f.f) e P (R oL’ (R).

Let A € L*(R%) be as in Example 20 and let v,w € L*(R?) be
fixed and

B=b(v)" +b(w). (136)

1+¢
2

T (k) =

Jl +i(v(k)¢()x)®3* -w(k)$p (L) ®B),

Let {u,},>, (resp., {v,}.2)) be a CONS of W, (resp., W)
and define e, € W, @ W; as follows:
€on-1 = (un’ 0) >

ey, = (0,v,), (140)

neN.
Then {e,};2, isa CONS of Wy @W;. By (a.3) and (b.3), we have
Y 1A ¥ = 4o |(Te NP o 1) ¥
n=l (141)
+ (1 + i) lro 10 N2y
4e

forall ¥ € DI ® N> ® I)n D(I ® I ® N}'*). Hence, by (1),
we obtain

2 (o)
llzsup <| Li/z(p“ - Z ”As (en) ¢||2>
$eD(LY)NP, 7 IplI=1 n=l (142)

= sp [QueRePg.

$eD(LY)NP T, $]1=1

Therefore we need only to show that there exists a constant
g € [0, 1) such that

sup [Que P, ® Pqu"2 < &.

143
$eD(LY)NP, T, ¢lI=1 (143)
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Then, for n > 2, we define
H =¢M)®BB+p(V)" ol (137)

The operator H, is not Hjy-bounded. It is easy to see that
H is bounded below (the self-adjointness of H will be
shown elsewhere). One can show that (H,, A,(f,t)) has weak
commutator on D(H) and

A (LR =1 () re s

-2+ on{e™ LA gV e T

(138)
1 —itw *
+\/1+;(<e fz,V>¢(A)®B
—{e™ f,w)¢(N)®B).
Hence, in the present example, we have
A(K)IT®B*B—\2(1+enh (k)¢ V)" ' eI, ifkeK,
(139)

if k € K;.

Then Hypothesis 3 is satisfied. Estimate (143) can be obtained
by extending the methods in [6, 7, 10] to the present case.

In this way, for quantum field models within the class
under consideration, one can obtain results (i)-(iii) in
Theorem 12 (under additional conditions). The details will be
given in a separate paper.
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