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Chimera states in the systems of nonlocally coupled phase oscillators are considered stable in the continuous
limit of spatially distributed oscillators. However, it is reported that in the numerical simulations without taking
such limit, chimera states are chaotic transient and finally collapse into the completely synchronous solution. In
this Rapid Communication, we numerically study chimera states by using the coupling function different from
the previous studies and obtain the result that chimera states can be stable even without taking the continuous
limit, which we call the persistent chimera state.
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The behavior of coupled oscillator systems can describe
various pattern formations in a wide range of scientific
fields [1,2]. In the systems of nonlocally coupled identical
oscillators, there often appears a strange phenomenon called
the chimera state, which is characterized by the coexistence of
coherent and incoherent domains, where the former domain
consists of phase-locked oscillators and the latter domain con-
sists of drifting oscillators with spatially changing frequencies
[3–26]. This interesting phenomenon was first discovered in
the system of nonlocally coupled phase oscillators obeying the
evolution equation

∂

∂t
θ (x,t) = ω −

∫
dx ′G(x − x ′)�(θ (x,t) − θ (x ′,t)) (1)

with 2π -periodic phases θ (x) on a finite interval x ∈ [0,1]
under the periodic boundary condition, a smooth 2π -periodic
coupling function �, and the kernel G(y) = (κ/2) exp(−κ|y|),
where a constant 1/κ denotes the coupling range [3]. Recently,
similar spatiotemporal patterns have been found in various
systems using, e.g., the logistic maps [14,15], Rössler systems
[15], and FitzHugh-Nagumo oscillators [18].

In the study of the chimera state, the system, Eq. (1), with
the sine coupling [27]

�(φ) = − sin(φ + α) (2)

is particularly important because of its simplicity and gener-
ality. In fact, this coupling function was used also in the first
discovery of the chimera state [3]. For numerical simulations,
we usually discretize Eq. (1) into such form as Eq. (3). In
the simulations of such discretized systems, we can confirm
that chimera states are surely stable in the continuous limit
N → ∞. However, the stability of chimera states in finitely
discretized systems is questioned. In fact, it is reported that
when N is finite, chimera states with the sine coupling are
chaotic transient and finally collapse into the completely
synchronous solution [12,13,26].

Recently, Ashwin and Burylko proposed the weak chimera
similar to the chimera state, which is defined by the coexistence
of frequency-synchronous and -asynchronous oscillators in the
systems of coupled indistinguishable phase oscillators but is
not necessarily spatially structured as coherent and incoherent
domains [28]. They studied the weak chimera in some types of
networks composed of the minimal number of oscillators with
the Hansel-Mato-Meunier coupling, Eq. (4), and demonstrated
that the weak chimera can be persistent (nontransient). In this

Rapid Communication, we study chimera states in the systems
of nonlocally coupled phase oscillators with the Hansel-Mato-
Meunier coupling by numerical simulation, and demonstrate
that it is possible for persistent chimera states to appear.

As a model, we consider a ring of N identical nonlocally
coupled phase oscillators described as

θ̇j (t) = ω + 1

2R

j+R∑
k=j−R

�(θj (t) − θk(t)) (3)

with 2π -periodic phases θj (j = 1, . . . ,N). This model
corresponds to a spatially discretized version of Eq. (1)
with a constant kernel within a certain range. The natural
frequency ω of the oscillators can be set to zero without loss of
generality, and the nonlocal coupling range R needs to satisfy
1 < R < (N − 1)/2. In this Rapid Communication, we fix
R/N ∼ 0.35. As the coupling function �(φ), we choose the
Hansel-Mato-Meunier coupling [29]

�(φ) = − sin(φ + α) + r sin(2φ), (4)

where α is the phase lag parameter of the fundamental
harmonic component and r is the amplitude ratio of the second
harmonic component. For r = 0, Eq. (4) recovers the sine
coupling, Eq. (2). In the systems of globally coupled phase
oscillators, it is known that such higher harmonic components
in the coupling function are responsible for a rich variety of
synchronous patterns excluded by the sine coupling [29–34].
Therefore we expect that also in the systems of nonlocally
coupled phase oscillators with Eq. (4), we could observe new
chimera patterns excluded by the sine coupling.

First, we consider the case of sufficiently large N corre-
sponding to the continuous limit. Figure 1 shows the results of
numerical simulation of Eq. (3) with Eq. (4) for several r � 0.
For all the simulations of the present Rapid Communication,
we used the fourth-order Runge-Kutta method with time
interval 
t = 0.01. In Fig. 1, we fix α = 1.46, for which
chimera states are observed in the case of the sine coupling
(r = 0). As initial conditions, we used

θj (0) = 6 exp

[
−30

(
j

N
− 1

2

)2
]
Rj , (5)

where Rj ∈ [−1/2,1/2] is a uniform random number, which
is so close to a chimera state as to assist its emergence [6].
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FIG. 1. Results of numerical simulation of Eq. (3) with N = 2000
and α = 1.46. In each row, the left panel shows the snapshot of phase
θj , and the right panel shows the profile of the average frequency
〈θ̇j 〉 with T = 5000 and trel = 2000 in Eq. (6). For (a) r = 0.001, (b)
r = 0.03, and (c) r = 0.06, chimera states are observed, while they
are not observed for (d) r = 0.12.

In our simulation, chimera states are observed for r < 0.073
as shown in Figs. 1(a)–1(c). The phase pattern (left panels) is
clearly separated into coherent and incoherent domains, which
is characteristic of the chimera state. From the right panels of
this figure, we can see that the average frequency

〈θ̇j 〉(T ) = 1

T

∫ trel+T

trel

θ̇j (t) dt (6)

of each oscillator in the coherent domain is almost constant,
where T is the measurement time and trel is the relaxation time,
while the frequency in the incoherent domain varies contin-
uously. For r � 0.073, chimera states gradually disappear as
r increases. In addition, for r � 0.110, chimera states are not
observed, but each oscillator evolves almost independently,
where the average frequency seems to converge to a constant
value in the limit of T → ∞, though the frequency in Fig. 1(d)
still exhibits some fluctuations due to a finite T . The survey of
these behaviors is depicted in Fig. 2.

From the linear stability analysis, it is found that the com-
pletely synchronous solution θ1 = θ2 = · · · = θN to Eq. (3)
with Eq. (4) is stable for r < (cos α)/2 (	0.055 at α = 1.46).
Moreover, chimera states also appear to be stable in this
parameter region [see Figs. 1(a) and 1(b)]. However, it is
reported that when N is finite, chimera states at r = 0 are
transient and finally collapse into the completely synchronous

FIG. 2. Phase diagram of stable solutions to Eq. (3) with Eq. (4) at
α = 1.46 in the continuous limit (N = 2000). Horizontal lines denote
the stability regions of each solution. We have not clearly determined
the transition between the chimera state and almost independent
oscillation yet. Note that the stability region of the wave solution
with the wave number k = 1 does not cover r = 0.

state [13]. We below confirm whether these chimera states,
particularly for r > 0, are transient or really stable even when
N is finite.

Figure 3 shows the average lifetime τ of the chimera state
for N = 30, as increasing r from 0 to (cos α)/2 	 0.055. Here
we regard the lifetime of the chimera state as the time at which
the completely synchronous state appears, i.e., the global order
parameter

Z(t) =
∣∣∣∣∣ 1

N

N∑
k=1

ei θk

∣∣∣∣∣ (7)

reaches Z(t) = 1. As for the chimera state in the finite N cases,
it should be noted that it is difficult to judge the emergence of
the chimera state, because the spatial position of the chimera
state does not stay still but fluctuates [11], in particular, more
violently as N becomes smaller. In fact, in the case of N = 30,
we could not observe the characteristic profile of the average
frequency as in the right panels of Figs. 1(a)–1(c). However, we
observed that the coherent domain exists in the phase snapshots
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FIG. 3. Average lifetime τ of the chimera state as varying r

at the parameters N = 30 and α = 1.46. A point in the figure is
the average over 1000 simulations from different initial conditions
obeying Eq. (5).
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FIG. 4. Log-log plot of the data (
r,τ ) for r∗ = 0.035 (diamond),
0.039 (circle), 0.045 (cross), 0.050 (square), and 0.055 (triangle). The
data for r∗ = 0.039 are fitted linearly by the least-squares method
(black line), where we used only the data τ � 300 000 to obtain
better linearity for this fitting.

as in the left panels of Figs. 1(a)–1(c), which convinces us of
the emergence of the chimera state.

For Fig. 3, it should be noted that there is a possibility
that chimera states collapse into a stable solution other than
the completely synchronous state. From the linear stability
analysis, we can show that the wave solution θi = θ1 +
2πk(i − 1)/N [23,25] with the wave number k = 1 is also
stable for r � 0.003 (Fig. 2). This implies that chimera states
may collapse into the wave solution. However, we never
observed such collapse in our simulations from 1000 different
initial conditions, Eq. (5), at each r .

As r is increased, the average lifetime τ increases mono-
tonically, and appears to diverge to infinity at a certain r = r∗.
Assuming some values as r∗, we obtain Fig. 4 by the log-log
plot of the data (
r,τ ), where 
r ≡ r∗ − r . From this figure,
we can assume the power law

τ ∝ (
r)−ζ (8)

and we determine r∗ 	 0.039 from the best linear fitting
of the data. Since r∗ < (cos α)/2 	 0.055, this implies that
there exists a parameter region where the chimera state (with
infinite lifetime) and the completely synchronous state are
bistable even in the finite N cases. However, we cannot exclude
the possibility of r∗ = (cos α)/2, because it is difficult to obtain
the exact value of r∗ due to divergent simulation time.

Next, we investigate the chimera state of N = 30 for
r > (cos α)/2, where the completely synchronous state is
unstable. The possibility that chimera states appear in the
region without the stable completely synchronous state differs
from the case of the sine coupling. In this region, chimera
states cannot collapse into the completely synchronous state.
Though the wave solution with k = 1 is stable in this region,
we never observed that chimera states collapse into the wave
solution within our maximum simulation time t = 2×108.
Therefore, the collapse of the chimera state should not occur
if other stable nonchimera solutions do not exist. Though we
searched for stable nonchimera solutions other than the wave
solution by extensive numerical simulations, we could not
find any such solutions. From the above results, we conclude
that, in a certain range of r > (cos α)/2, the chimera state and
the wave solution are bistable, and the chimera state can be

FIG. 5. (Color online) Stability region of the chimera state (red)
on the (cos α,r) plane in the continuous limit (N = 2000). The
hatched region corresponds to the persistent chimera state, that is, the
stability region of the chimera state in the case of N = 30. The blue
line denotes r = (cos α)/2, and the completely synchronous solution
is stable for r < (cos α)/2. Black circles denote the parameter values
of Fig. 1. Black triangles denote the parameter values of Fig. 7, where
multichimera states appear.

persistent (nontransient) even in the finite N cases. This result
is consistent with τ → ∞ for r > r∗, as seen in Fig. 3.

Investigating the chimera states in the (cos α,r) parameter
space, we obtained Fig. 5. The red region corresponding to
the chimera state in the continuous limit (N = 2000) is spread
around r = (cos α)/2. In the finite N cases, the chimera state
for small r becomes transient, while the chimera state for
large r remains persistent, as seen at least for r > (cos α)/2
of the red region. For cos α < 0.15, we can see that there
exists a region r∗ < r < (cos α)/2 where the chimera state is
persistent in the case of N = 30. Note that the stability region
of the persistent chimera state (hatched in Fig. 5) extends to the
r = 0 line, which implies that the chimera state with the sine
coupling can be persistent (nontransient) even in the finite N

cases. Specifically, the average lifetime τ of the chimera state
increases similarly to Fig. 3 as cos α is decreased on the r = 0
line, and diverge at cos α∗ 	 0.044. However, this fact does not
contradict the previous study that shows the transient chimera
state [13], because the parameter α in that study corresponds
to the line of black circles in Fig. 5, which has a larger cos α

than our hatched region on the r = 0 line.
In summary, we studied chimera states in the systems of

nonlocally coupled phase oscillators, Eq. (3), with the Hansel-
Mato-Meunier coupling, Eq. (4), by numerical simulations,
motivated by the result that chimera states with the sine
coupling, Eq. (2), in finitely discretized systems are chaotic
transient and finally collapse into the completely synchronous
state [13]. The existence of chimera states was examined
in the parameter space (α,r) in Eq. (4), and the chimera
states were observed around r = (cos α)/2 in the continuous
limit N → ∞. For r < (cos α)/2, the chimera state and the
completely synchronous state can be bistable. In this region
of the finite N cases, the chimera state is transient for r < r∗,
but it is persistent for r∗ < r < (cos α)/2. Moreover, even for
r > (cos α)/2, it is persistent in the region where the chimera
state in N → ∞ is stable. At first, we expected the chimera
state to become persistent due to the destabilization of the
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FIG. 6. Weak chimera for Eq. (3) with N = 30, α = 1.46, and
r = 0.032, which are the parameter values on the line of black circles
in Fig. 5. The snapshot of phase θj (left) and the profile of the average
frequency 〈θ̇j 〉 (right).

completely synchronous state by the effect of r , but have
obtained the persistent chimera state not only in the unstable
region of the completely synchronous state as expected but
also in its stable region. As a result, we have discovered
that the chimera state in the case of the sine coupling can
also be persistent by using appropriate α in the stability
region of the completely synchronous state. Though we have
numerically found the persistent chimera state in this Rapid
Communication, its bifurcation-theoretical understanding is
still an open problem.

When we investigated the collapse of chimera states at
α = 1.46, we infrequently observed that a chimera state col-
lapses into a weak chimera characterized by the coexistence of
frequency-synchronous and -asynchronous oscillators [28,35],
as shown in Fig. 6. In [28], the existence of weak chimeras for
Eq. (3) with Eq. (4) is confirmed in the system with a small
number of oscillators (N = 4,6, and 10). In our numerical
simulation with a larger number of oscillators (N = 30), such

FIG. 7. Multichimera states for Eq. (3) with N = 2000. The left
panels show the snapshot of phase θj , and the right panels show the
profile of the average frequency 〈θ̇j 〉 with T = 5000 and trel = 2000
in Eq. (6). Parameter values are (a) α = 0.95 and r = 0.28, and (b)
α = 1.22 and r = 0.30, which are plotted in Fig. 5.

a weak chimera is stable in a small range of r < (cos α)/2, for
example, 0.032 � r � 0.040 at α = 1.46.

Moreover, as other solutions, we observed multichimera
states, which have two or more incoherent domains
[18,23–25], for Eq. (3) with Eq. (4) in the continuous limit
(N = 2000), as shown in Fig. 7. Other than the black triangles
in Fig. 5, we observed multichimera states in a large region
of the parameter space, though we do not describe the region
in detail because it is beyond the scope of the present Rapid
Communication.
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