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ABSTRACT
Although mutational inactivation of p53 is found in 50% of all human tumors, 

a subset of tumors display defective p53 function, but retain wild-type (WT) p53. 
Here, direct and indirect mechanisms leading to the loss of WT p53 activities are 
discussed. We summarize the oncogenic roles of iASPP, an inhibitor of WT p53, in 
promoting proliferation, invasion, drug or radiation-resistance and metastasis. From 
the therapeutic view, we highlight promising perspectives of microRNA-124, peptide 
and small molecules that reduce or block iASPP for the treatment of cancer. High 
iASPP expression enhances proliferation, aggressive behavior, the resistance to 
radiation/chemotherapy and correlates with poor prognosis in a range of human 
tumors. Overexpression of iASPP accelerates tumorigenesis and invasion through 
p53-dependent and p53-independent mechanisms. MicroRNA-124 directly targets 
iASPP and represses the growth and invasiveness of cancer cells. The disruption of 
iASPP-p53 interaction by a p53-derived peptide A34 restores p53 function in cancer 
cells. The inhibition of iASPP phosphorylation with small molecules induces p53-
dependent apoptosis and growth suppression. The mechanisms underlying aberrant 
expression of iASPP in human tumors should be further investigated. Reactivating 
WT p53 functions by targeting its novel inhibitor iASPP holds promise for potential 
therapeutic interventions in the treatment of WT p53-containing tumors.

INTRODUCTION

The initiation and progression of cancer is a 
multistep process including self-renewal, aberrant cell 
cycle, defective apoptosis, the induction of the epithelial 
to mesenchymal transition (EMT), enhanced mobility, 
invasion and angiogenesis, and the remodeling of the 
tumor microenvironment [1]. In addition to numerous 
genetic alterations, such as inactivation of a tumor 
suppressor and activation of an oncogene, human tumor 
cells harbor global epigenetic abnormalities, such as 
DNA methylation, histone modifications, nucleosome 
positioning and non-coding RNAs [2]. Genetic and 

epigenetic changes interact with each other to enable 
cancer progression [3]. 

MicroRNAs (miRNAs) are characterized as 
endogenous, small size, non-coding RNA molecules that 
post-transcriptionally control the translation and stability 
of mRNAs [4]. MiRNAs are predicted to regulate the 
expression of approximately 60% of human genes [5]. A 
single miRNA can bind to multiple mRNAs via perfect or 
partial base-pairing with the 3’-untranslated region (UTR) 
of the target mRNAs [5], resulting in profound effects on 
gene expression and cellular functions. MiRNAs modulate 
tumor cell proliferation, invasion and EMT/cancer stem 
cell (CSC) properties by targeting multiple downstream 
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genes or signaling pathways [6, 7, 8]. 
 The p53 family members (p53, p63 and p73) play 

a pivotal role in the regulation of many critical biological 
processes including cell death, proliferation, cell cycle 
control and tumorigenesis [9, 10, 11, 12]. When DNA 
damage is sensed, the apical kinases ATM and ATR 
checkpoint pathways are triggered, and in turn activates 
and stabilizes wild-type (WT) p53 via the phosphorylation 
of CHK2/CHK1, or degradation of MDM2 [13]. Once 
activated by various cellular stresses, WT p53 accumulates 
in the nucleus and works as a transcriptional factor to 
either transactivate or transrepress downstream genes 
or miRNAs, leading to the induction of growth arrest, 
cellular senescence and apoptosis, the inhibition of 
angiogenesis and metastasis in tumors [9, 14, 15, 16] 
(Figure 1). In addition to these anticancer effects, a new 
role of p53 has emerged, regulation of EMT and CSC 
features [9, 17, 18]. During the metastatic cascade, tumor 
cells usually activate the EMT, a dynamic cellular process 
thought to be critical step of metastasis by promoting the 
acquisition of migratory and invasive capabilities and gain 
of CSC-like phenotypes, such as the resistance to radiation 
or chemotherapy [1]. Several transcription factors 
including Snail, Slug, Twist and ZEB-1/2 induce EMT, by 
downregulating the epithelial markers such as E-cadherin 
and by upregulating the mesenchymal markers such as 
vimentin [1]. By targeting Slug and Snail, p53 negatively 
regulates EMT and suppresses cancer cell invasiveness 
[19, 20]. Emerging evidence has demonstrated that WT 
p53 can also indirectly silence EMT-inducing transcription 
factors though the transcriptional regulation of some 
miRNAs, such as miR-34, miR-130b, miR-145, miR-
192, miR-215 and miR-200c [21, 22, 23, 24, 25, 26, 
27]. For example, by binding to the promoter region of 
miR-130b, p53 transactivates this miRNA to reduce the 
levels of ZEB1 (a direct target gene of miR-130b), and 
thereby attenuates EMT and invasiveness in endometrial 
cancer cells [22]. These studies support the idea that the 
disruption of p53 tumor suppressor-regulated pathways 
contributes to progression and worse clinical outcome of 
human tumors [28]. 

In this review, we provide a brief overview of 
the mechanisms by which the functions of WT p53 are 
inactivated and will focus on the oncogenic roles of 
iASPP, a negative regulator of WT p53, in human tumors. 
We will discuss current approaches that aim to restore 
p53 functions by targeting iASPP, including miR-124, a 
peptide derived from p53 and other small molecules. 

DIRECT AND INDIRECT MECHANISMS 
LEADING TO THE LOSS OF WT P53 
ACTIVITIES IN HUMAN TUMORS

The loss of p53 function in human cancers occurs 
either by direct or indirect mechanisms (Figure 1a). 
At least half of all tumors lose WT p53 function as a 

result of mutations [29], however a subset of tumors, 
such as cervical cancer, chronic lymphocytic leukaemia, 
acute lymphoblastic leukaemia, acute myeloblastic 
leukaemia, myeloma, neuroblastoma, melanoma, mantle 
cell lymphoma and sarcoma, retains WT p53, but its 
activity can be attenuated [30, 31]. MDM2 is the best-
known inhibitor of p53. MDM2 limits p53 activity by 
binding to and blocking the N-terminal trans-activation 
domain of p53, or by working as an E3 ubiquitin ligase 
to promote p53 degradation [32, 33]. MDM2 is directly 
inhibited by the tumor suppressor p14ARF, loss of which 
also leads to reduced p53 [34]. MDMX, a homolog of 
MDM2, can interact with p53 and repress its activities 
[35]. Moreover, the EMT inducers Twist and BMI-1 
were shown to mediate the inhibition of p53 pathway 
via suppressing p14ARF [36, 37]. The E6 oncoproteins 
of high-risk human papillomaviruses (HPV) bind p53 
and are capable of inducing its degradation [38]. Human 
TP73 gene produces an NH2 terminally truncated isoform, 
ΔNp73 that lacks the transactivation domain and function 
as a dominant-negative inhibitor of WT p53 [39]. Other 
mechanisms responsible for loss of WT p53 functions in 
human tumors include the lack of p53 nuclear retention 
[40] and the deacetylation of p53 by Sirtuin 1 (SIRT1) 
[41]. Thus, the reactivation of endogenous p53, either by 
reducing or blocking its negative regulators, would benefit 
cancer patients with WT p53 tumors [42]. 

THE ONCOGENIC ROLES OF IASPP IN 
HUMAN TUMORS

To date, intensive efforts have been made to 
restore WT p53 activity as an anticancer therapeutic 
approach [42]. Reducing the levels of p53 suppressors or 
interfering with the direct physical association between 
p53 suppressors and p53, has shown effectiveness for the 
restoration of p53 function. For example, Withaferin A 
(WA), a small-molecule natural compound, downregulates 
the expression of HPV E6 oncoprotein and helps to restore 
p53-dependent apoptosis in cervical cancer cells [43]. 
Given that the inhibition of p53 by MDM2 protein relies 
on their direct binding with p53, small-molecule MDM2 
inhibitors, such as Nutlin-3 that disrupts this interaction, 
have been utilized to induce WT p53-mediated cell-cycle 
arrest and apoptosis in various types of tumor cells [42]. 
However, tumor cells may develop the resistance to 
Nutlin-3 owing to the fact that this MDM2 inhibitor does 
not efficiently target the MDMX-p53 interaction or fails 
to induce MDMX degradation [44]. More importantly, the 
continuous Nutlin-3 exposure can result in the acquisition 
of somatic mutations in p53 and select for p53-mutated 
cells in solid tumors [45, 46]. Therefore, additional 
attempts to achieve p53 activation through targeting other 
p53 inhibitors are required for effective tumor regression. 

The ASPP family consisting of three proteins 
(ASPP1, ASPP2 and iASPP) interacts with and modulates 
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the functions of WT p53 [47]. ASPP1/2 enhances p53-
dependent cell death, whereas iASPP inhibits the apoptotic 
transactivation potential of p53 by direct interaction [47]. 
Here, we review the oncogenic functions of iASPP in 
tumors and discuss promising therapeutic perspectives of 
miRNA, peptide and small molecules that reduce or block 
iASPP for the treatment of cancer. 

Human iASPP, which is encoded by PPP1R13L 
located on 19q13.2-3 [48], has two isoforms (407 and 828 
amino acids-aa) [49, 50]. The shorter form of iASPP (407 
aa) is a nuclear protein, and the longer form of iASPP (828 
aa) is located in both the nucleus and cytoplasm [48, 49, 
50]. iASPP was considered as an oncogene that not only 
inhibits the transcriptional activity of p53 on promoters 
of downstream genes (Figure 1a), but also promotes 
carcinogenesis through p53-independent mechanisms, 
mainly by inhibiting the apoptotic activity of p63 and p73 
[51]. Of note, in normal cells, iASPP can actually induce 
apoptosis via inhibition of nuclear factor-κB (NF-κB) [52]. 

iASPP is overexpressed in diverse human tumors, 
including colorectal cancer [53], acute leukemia [54], 

endometrioid endometrial cancer [55], lung cancer 
[56], glioblastoma [57], head and neck squamous cell 
carcinoma [58], prostate cancer [59], hepatocellular 
carcinoma [60, 61, 62], oral squamous cell carcinoma [63, 
64], cervical cancer [65] and ovarian cancer [66]. Elevated 
expression of iASPP correlates with poor survival in head 
and neck cancer [58], oral squamous cell carcinoma [64], 
cervical cancer [65] and ovarian cancer [66]. Increased 
iASPP expression is associated with tumor grade, invasion 
and lymph node metastasis in endometrial cancer [55]. 
Furthermore, siRNA- or shRNA-mediated iASPP silencing 
reduces in vitro proliferation in human cancer cells [56, 
59, 60, 61, 62, 63, 67, 68, 69]. The overexpression of 
iASPP in primary mouse embryonic fibroblasts promotes 
p53 degradation and strongly stimulates cell migration and 
metastasis [70]. These data suggest that iASPP contributes 
to the progression and metastasis of human tumors. 

Human cancers are composed of heterogeneous cell 
populations. Genetic and phenotypic variation exists not 
only between different tumor types or between patients 
with the same tumor type (inter-tumor heterogeneity), but 

Figure 1: Reactivating wild-type p53 functions in tumors by targeting its novel inhibitor iASPP. a. Direct and indirect 
mechanisms of p53 inactivation in human tumors. iASPP acts as a key p53 inhibitor. MiR-124 negatively regulates the expression of 
iASPP in human tumors. The disruption of iASPP-p53 interaction by a p53-derived peptide A34 restores p53 function in cancer cells. The 
inhibition of iASPP phosphorylation with small molecule JNJ-7706621 induces p53-dependent apoptosis and growth suppression. b. Wild-
type p53 represses cancer initiation, progression and metastasis by regulating downstream genes and microRNAs (miR-34, miR-130b, 
miR-192 and miR-200c)-target gene networks.
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also within a single tumor (intra-tumor heterogeneity) [71]. 
This intra-tumor heterogeneity produces distinct subclones 
that show diverse malignant properties [72.]. It is thought 
that within a tumor, only a small population of tumor 
cells (CSC) is capable of self-renewal, multipotency, in 
vivo tumorigenicity and forming metastasis [73, 74]. This 
CSC model has been used to explain tumor heterogeneity. 
Accumulating evidence has linked p53 loss to stem-like 
phenotypes in cancers [9]. Importantly, knockdown of 
iASPP with siRNA impaired in vivo tumorigenesis of 
prostate cancer cells [59]. These data support the possible 
role of iASPP in promoting CSC properties, at least 
though inhibiting p53 activity. 

On the other hand, the concept of CSC plasticity 
(the model of dynamic stemness) has been also proposed 
[75], in which CSC and non-CSC states may not be 
definitive, and cancer cells have the dynamic and transient 
ability of shifting from a non-CSC state to a CSC state as 
a consequence of EMT induction or microenvironmental 
stimuli [75]. The plasticity of CSC may at least partially 
help explain the tumor heterogeneity observed in tumors, 
and is consistent with those findings that tumor cell 
undergoing EMT can acquire stem cell-like properties [1]. 

Despite some results showing that the activation of 
EMT program suppresses the tumor-initiating properties 
of CSCs [76, 77], numerous studies have provided a strong 
link between EMT activation and the emergence of a CSC-
like phenotype in human cancers [78]. In endometrial 
cancer, oncogenes such as p53 gain-of-function mutations 
[21], KLF17 [79], EZH2, MCL-1 and FOS [8] promote 
EMT-associated invasiveness and enhance CSC properties 
including self-renewal capacity and chemoresistance, 
whereas miR-101, miR-106b, miR-130b and miR-194 [7, 
8, 22, 80] serve as EMT suppressors and attenuate CSC 
features. Of significance, CSC cells enriched with CD29 
and CD44 markers exhibit molecular characteristics, 
consistent with EMT [81]. These data collectively suggest 
a close correlation between EMT induction and CSC 
characteristics. 

The increased iASPP expression is correlated 
with the resistance to radiation or chemotherapy in 
cervical cancer [65]. The overexpression of iASPP in 
ovarian cancer cells confers resistance to paclitaxel 
[66]. Consistent with these observations, enhanced 
iASPP expression can render cells resistant to ultraviolet 
radiation and cisplatin-induced apoptosis in human tumors 
expressing WT p53 [82]. Given the anti-oncogenic effects 
of WT p53 on EMT and CSC phenotypes, we speculate 
that iASPP might have a regulatory role in enhancing 
EMT and CSC-related phenotypes, such as resistance 
to chemotherapy and radiation, by inhibiting WT p53 
function [83]. More studies are clearly needed to address 
these possibilities. 

IASPP, A TARGET FOR ANTITUMOR 
THERAPEUTICS

The therapeutic targeting of iASPP might include 
targeting iASPP itself as well as modulating its upstream 
regulators or downstream effectors (Figure 1a). The Wnt/
beta-catenin signaling seems to be an upstream regulator 
of iASPP in gastric cancer, because the attenuation of 
beta-catenin by shRNA resulted in apparent apoptosis 
and downregulated iASPP [84]. MiR-124 directly targets 
iASPP and represses the growth and invasiveness in 
a variety of cancer cells, including colorectal cancer, 
glioblastoma and prostate cancer [85, 86, 87]. In 
addition, A34 (a small peptide derived from p53 linker) 
binds directly to iASPP and competitively inhibits the 
iASPP-p53 interaction in human tumor cells [88], causing 
WT p53-mediated transcriptional activation of Bax and 
PUMA and tumor cell apoptosis in vitro and in vivo [88]. 
Furthermore, a small-molecule inhibitor of cyclin B/
CDK1, JNJ-7706621 that inhibits iASPP phosphorylation 
and prevents the nuclear entry of iASPP, can induce 
WT p53-dependent apoptosis and growth suppression 
in melanoma cells [89]. The identification of miRNAs 
and molecules that control the levels of iASPP and a 
high-throughput screening to search for small-molecule 
compounds that release p53 from iASPP, would lead to the 
development of therapies against iASPP for the treatment 
of human tumors through activation of WT p53. 

CONCLUSIONS

In addition to affecting tumor cell proliferation and 
survival, WT p53 can repress cancer initiation, progression 
and metastasis by regulating downstream genes and 
miRNAs-target gene networks. A more complete 
understanding of genetic and epigenetic mechanisms 
underlying aberrant expression of WT p53 inhibitor iASPP 
in human tumors, and detailed studies on iASPP function 
in various aspects of tumor progression, including EMT, 
stemness and metastasis, can provide a basis for new 
potential therapeutic applications in WT p53-containing 
tumors. 
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